WO2022247941A1 - 一种显示装置 - Google Patents

一种显示装置 Download PDF

Info

Publication number
WO2022247941A1
WO2022247941A1 PCT/CN2022/095745 CN2022095745W WO2022247941A1 WO 2022247941 A1 WO2022247941 A1 WO 2022247941A1 CN 2022095745 W CN2022095745 W CN 2022095745W WO 2022247941 A1 WO2022247941 A1 WO 2022247941A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting chip
emitting
display device
angle
Prior art date
Application number
PCT/CN2022/095745
Other languages
English (en)
French (fr)
Inventor
宗志豪
李富琳
张楠楠
刘晓杰
丛晓东
石磊
袁光军
张继兵
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110590520.2A external-priority patent/CN115407547B/zh
Priority claimed from CN202110593057.7A external-priority patent/CN115407551B/zh
Priority claimed from CN202122019685.2U external-priority patent/CN215416207U/zh
Priority claimed from CN202110984187.3A external-priority patent/CN115732525A/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2022247941A1 publication Critical patent/WO2022247941A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present application relates to the field of display technology, and in particular to a display device.
  • liquid crystal display LCD
  • LCD liquid crystal display
  • the backlight module provides sufficient brightness and evenly distributed light source for the liquid crystal panel, so that it can display images normally.
  • commonly used backlight modules include side-type backlight modules and direct-type backlight modules.
  • direct-type backlight modules in order to ensure uniform brightness of the display screen, a certain light mixing distance needs to be set between the light source and the diffusion plate.
  • reducing the light mixing distance when the number of light sources and the distance between light sources remain unchanged will cause the position above the light source to be brighter in the backlight module, and the handover position of two adjacent light sources to be biased. It is dark, and the display effect of the display device is not uniform.
  • the display device includes: a display panel and a backlight module;
  • the backlight module includes: a backboard and a lamp board; It has a reflection effect on at least part of the incident light, which can weaken the intensity of the outgoing light at the top of the light source; and when the light reflected by the shielding part reaches the bottom of the light source, it can be reflected again, and finally exits on the side of the light source, which not only increases the light output from the side of the light source
  • the intensity of the emitted light homogenizes the light intensity everywhere in the light emitting range, and increases the light emitting angle of the light source.
  • the present application also provides a display device, the display device comprising: a display panel, used for image display; a backlight module, located on the light incident side of the display panel, for providing backlight; the backlight module includes: The bottom plate has the function of supporting and carrying; the light-emitting chip is located on one side of the bottom plate and is used to provide backlight for the display panel; the shielding part is arranged relative to the light-emitting chip, and the geometric center of the shielding part is the same as the The light-emitting axes of the light-emitting chips are coincident, and are used to block the light beams emitted by the light-emitting chips that are smaller than the set outgoing angle.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present application
  • FIG. 2 is one of the partial cross-sectional structural schematic diagrams of the backlight module provided by the embodiment of the present application;
  • Fig. 3 is a schematic cross-sectional structure diagram of a light source provided in an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of a light source provided in an embodiment of the present application.
  • Fig. 5 is a schematic cross-sectional view of a light source in which the shielding part is located above the packaging part according to an embodiment of the present application;
  • Fig. 6 is a schematic cross-sectional view of a light source in which the shielding part is located in the groove of the packaging part provided by the embodiment of the present application;
  • Fig. 7A is a schematic cross-sectional view of a light source including a cylindrical shielding part provided by an embodiment of the present application;
  • Fig. 7B is a schematic bottom view of a cylindrical shielding part provided by the embodiment of the present application.
  • Fig. 8A is a schematic cross-sectional view of a light source including a frustum-shaped shielding part provided by an embodiment of the present application;
  • Fig. 8B is a schematic bottom view of a frustum-shaped shielding part provided by the embodiment of the present application.
  • Fig. 9 is a schematic cross-sectional view of a light source including a hemispherical shield provided by an embodiment of the present application.
  • Fig. 10 is a schematic cross-sectional view of another light source including a cylindrical shielding part provided by the embodiment of the present application;
  • Fig. 11 is one of the cross-sectional schematic diagrams of the light source provided by the embodiment of the present application.
  • Fig. 12 is the second schematic cross-sectional structure diagram of the light source provided by the embodiment of the present application.
  • Fig. 13 is the third schematic diagram of the cross-sectional structure of the light source provided by the embodiment of the present application.
  • Fig. 14a is the fourth schematic cross-sectional structure diagram of the light source provided by the embodiment of the present application.
  • Fig. 14b is the fifth schematic diagram of the cross-sectional structure of the light source provided by the embodiment of the present application.
  • Fig. 14c is the sixth schematic diagram of the cross-sectional structure of the light source provided by the embodiment of the present application.
  • Fig. 15a is the seventh schematic diagram of the cross-sectional structure of the light source provided by the embodiment of the present application.
  • Fig. 15b is the eighth schematic diagram of the cross-sectional structure of the light source provided by the embodiment of the present application.
  • Fig. 16 is a schematic cross-sectional structure diagram of a backlight module provided by some embodiments of the present application.
  • Fig. 17 is a schematic cross-sectional structure diagram of a backlight module provided by some embodiments of the present application.
  • Fig. 18 is a schematic cross-sectional structure diagram of a backlight module provided by some embodiments of the present application.
  • Fig. 19 is a schematic cross-sectional structure diagram of a light-emitting chip provided by an embodiment of the present application.
  • Fig. 20 is a schematic top view of the base of the bracket provided by the embodiment of the present application.
  • Fig. 21 is a schematic cross-sectional structure diagram of the base of the bracket provided by the embodiment of the present application.
  • Fig. 22 is a schematic cross-sectional structure diagram of the bracket provided by the embodiment of the present application.
  • FIG. 23 is a schematic top view of the backlight module provided by the embodiment of the present application.
  • FIG. 24 is a flow chart of a manufacturing method of a display device provided by an embodiment of the present application.
  • Fig. 25 is a schematic diagram of a partial cross-sectional structure of a backlight module provided in some embodiments of the present application.
  • Fig. 26 is a schematic diagram of a partial cross-sectional structure of a backlight module provided in some embodiments of the present application.
  • Fig. 27 is a working principle diagram of the angle selective film provided by the embodiment of the present application.
  • a liquid crystal display device is mainly composed of a backlight module and a liquid crystal display panel.
  • the liquid crystal display panel itself does not emit light, and needs to rely on the light source provided by the backlight module to achieve brightness display.
  • the imaging principle of the liquid crystal display device is to place the liquid crystal between two pieces of conductive glass, driven by the electric field between the two electrodes, to cause the electric field effect of twisting the liquid crystal molecules, so as to control the transmission or shielding function of the backlight, so as to display the image come out. If color filters are added, color images can be displayed.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present application.
  • the display device includes: a backlight module 100 and a display panel 200 .
  • the display panel 200 is located on the light-emitting side of the backlight module 100.
  • the shape and size of the display panel usually match the backlight module.
  • the display panel 200 can be set as a rectangle, including the sky side, the ground side, the left side and the right side.
  • the sky side is opposite to the ground side
  • the left side is opposite to the right side
  • the sky side is connected to one end on the left side and one side on the right side respectively
  • the ground side is connected to the other end on the left side and the other end on the right side respectively.
  • the display panel 200 is a transmissive display panel, which can modulate the transmittance of light, but does not emit light itself.
  • the display panel 200 has a plurality of pixel units arranged in an array, and each pixel unit can independently control the light transmittance and color of the backlight module 100 incident on the pixel unit, so that the light transmitted by all the pixel units constitutes displayed image.
  • the backlight module 100 is generally located at the bottom of the display device, and its shape and size are adapted to the shape and size of the display device. When applied to fields such as televisions or mobile terminals, the backlight module usually adopts a rectangular shape.
  • FIG. 2 is one of the partial cross-sectional structural schematic diagrams of the backlight module provided by the embodiment of the present application.
  • the backlight module includes: a back panel 11 , a lamp panel 12 , a diffuser plate 13 , an optical film 14 and a diffuser plate bracket 15 .
  • the back plate 11 is located at the bottom of the backlight module and has the function of supporting and carrying.
  • the backplane 11 is generally a rectangular structure, and when applied to a display device with a special shape, its shape is adapted to the shape of the display device.
  • the backplane 11 includes a sky side, a ground side, a left side and a right side.
  • the sky side is opposite to the ground side
  • the left side is opposite to the right side
  • the sky side is connected to one end on the left side and one side on the right side respectively
  • the ground side is connected to the other end on the left side and the other end on the right side respectively.
  • the material of the back plate 11 is aluminum, iron, aluminum alloy or iron alloy.
  • the backboard 11 is used to support the lamp board 12 and to support and fix the edge positions of components such as the diffuser plate 13 and the optical film 14 .
  • the backlight module is a direct type backlight module
  • the lamp panel 12 is located on the backplane 11 .
  • the overall shape of the lamp panel 12 can be square or rectangular.
  • its shape and size are adapted to the shape and size of the display device.
  • a plurality of lamp panels 12 may be provided, and the lamp panels 12 jointly provide a backlight by splicing.
  • the seams between the adjacent lamp panels 12 should be as small as possible, and even seamless splicing can be realized.
  • the lamp board 12 specifically includes: a circuit board 121 , a light source 122 and a reflective layer 123 .
  • the circuit board 121 includes a substrate 1211 and a circuit layer 1212 ; the substrate 1211 is located on the backplane 11 , and the shape of the substrate 1211 is the same as the overall shape of the light board 12 . Under normal circumstances, the substrate 1211 is plate-shaped and generally rectangular or square.
  • the material used for the substrate 1211 can be glass with a high thermal conductivity, and the substrate 1211 is made of glass with a high thermal conductivity, so that the heat emitted by the display device can be dissipated quickly when displaying. The problem of reducing luminous efficiency caused by excessive temperature is avoided.
  • the surface of the glass substrate is smooth and flat, which is beneficial to later processing and production.
  • the material used for the substrate 1211 may be made of materials such as FR4 or PET, which is not limited here.
  • the circuit layer 1212 provided in the embodiment of the present application is deposited on the substrate 1211 by electroplating with a conductive material, and formed by etching the circuit as required.
  • the conductive material can be copper, which is not limited here.
  • a fracture is etched out of the conductive material, and the two sides of the fracture are respectively connected to the positive pole and the negative pole of the light source 122 .
  • the substrate 1211 and the circuit layer 1212 can form a circuit board, and the circuit board can be a printed circuit board (PCB for short); or, when the circuit layer 1212 adopts a thin film
  • the substrate 1211 and the circuit layer 1212 may also constitute an array substrate, which is not limited here.
  • the light source 122 is located on the circuit layer 1212. After the circuit layer 1212 is fabricated, a pad for welding the light source 122 will be formed on its surface. The light source 122 is soldered on the pad, so that the light source 122 is driven by controlling the driving signal of the circuit layer 1212. glow.
  • the light emitting surface of the light source 122 facing away from the back plate 11 is provided with a shielding portion 1223, the shielding portion 1223 has a reflection effect on at least part of the incident light, and can weaken the intensity of the outgoing light at the top of the light source 122; and is When the light reflected by the shielding part 1223 reaches the bottom of the light source 122, it can be reflected again, and finally emerges on the side of the light source 122, which not only increases the intensity of the light emitted from the side of the light source 122, but also homogenizes the light intensity everywhere in the light emitting range. The light emitting angle of the light source 122 is also increased.
  • the problems of brightening above the light source 122 and darkening at the junction of two adjacent light sources 122 can be avoided.
  • the light mixing distance can be appropriately reduced, so the development demand for thinner display devices can be met without increasing the production cost; in addition, the light mixing distance can also be changed without changing the light mixing distance , reduce the number of light sources 122 used, and reduce costs.
  • the reflective layer 123 is located on the side of the circuit board 121 close to the light source 122.
  • the shape and size of the reflective layer 123 are consistent with the shape and size of the circuit board 121.
  • the reflective layer 123 includes a plurality of openings for exposing the light source 122, and has the property of reflecting light .
  • the reflective layer 123 is coated on the surface of the circuit board 121 on the side away from the back plate 11 with a reflective material.
  • the material can be a white ink that reflects light, and the reflection of the white ink The rate is greater than or equal to 85%, which is not limited here.
  • the reflective layer 123 can also be a reflective sheet, which is made by coating the surface of the substrate with colloid mixed with reflective particles, and the reflective rate of the reflective sheet is greater than or equal to 97%.
  • the reflective layer 123 provided in the embodiment of the present application may be a diffuse reflective layer, and the diffuse reflective layer may randomize the reflection path of the reflected light and play a role in homogenizing the light.
  • the diffuser plate 13 is located on the light emitting side of the light source 122 , and the shape of the diffuser plate 13 is the same as the overall shape of the lamp plate 12 .
  • the diffuser plate 13 can be set as a rectangle or a square.
  • the function of the diffusion plate 13 is to scatter the incident light so as to make the light passing through the diffusion plate 13 more uniform.
  • Scattering particle materials are arranged in the diffusion plate 13 , and light incident on the scattering particle materials will continuously undergo refraction and reflection, so as to achieve the effect of scattering the light and realizing the effect of light uniformity.
  • the diffuser plate 13 has higher haze and more uniform effect, and can usually be processed by extrusion process.
  • the material used for the diffuser plate 13 is generally selected from polymethyl methacrylate PMMA, polycarbonate PC, polystyrene-based material PS, At least one of polypropylene PP.
  • a quantum dot material can also be arranged in the diffusion plate 13 to form a quantum dot diffusion plate.
  • the quantum dot material includes a red quantum dot material and a green quantum dot material, and the red quantum dot material is Under the excitation of blue light, the red light with a wavelength of about 620nm-640nm is emitted; the green quantum dot material emits green light with a wavelength of about 520nm-540nm under the excitation of blue light, and the red light, green light and transmitted blue light are stimulated to emit The colored light is mixed into white light.
  • the quantum dot film is no longer installed, which not only reduces the cost, but also makes the display device lighter and thinner.
  • the optical film 14 is located on the side of the diffusion plate 13 facing away from the lamp panel 12 .
  • the optical film 14 is arranged in a whole layer, and its shape is the same as the overall shape of the diffusion plate 13 . Usually, it can be set as a rectangle or a square.
  • the arrangement of the optical film 14 can make the backlight module adapt to various practical applications.
  • the light source 122 may be a blue light device, and the optical film 14 includes a quantum dot layer or a fluorescent layer.
  • the quantum dot layer includes red quantum dot material and green quantum dot material, the red quantum dot material emits red light under the excitation of blue light, the green quantum dot material emits green light under the excitation of blue light, and the red light emitted by stimulation, Green light and transmitted blue light are mixed to produce white light.
  • the fluorescent layer includes fluorescent materials that are stimulated to emit red light and stimulated to emit green light, and the stimulated emitted red light, green light and transmitted blue light are mixed to form white light that is emitted.
  • the optical film 14 may also include a prism sheet, which can change the outgoing angle of the light, thereby changing the viewable angle of the display device.
  • the optical film 14 may also include a reflective polarizer.
  • the reflective polarizer can increase the brightness of the backlight module, improve the utilization efficiency of light, and at the same time make the outgoing light have the property of polarization, omitting the need for a liquid crystal display panel. Use of polarizers.
  • a diffuser plate bracket 15 is arranged between the diffuser plates 13 for supporting the diffuser plate 13 .
  • the diffuser plate bracket 15 is generally made of polycarbonate PC.
  • the shape of the diffusion plate support 15 may be a simple triangle, trapezoid, cone, etc., which is not limited here.
  • Fig. 3 is a schematic cross-sectional structure diagram of a light source provided by some embodiments of the present application.
  • the light source 122 specifically includes: a light emitting chip 1221 , a packaging part 1222 and a shielding part 1223 .
  • the light emitting chip 1221 is located on a side of the circuit board 121 away from the backplane 11 .
  • the light emitting chip 1221 specifically refers to a micro light emitting diode chip. Since the size of the miniature LED chip is very small, it is beneficial to control the dynamic light emission of the backlight module to a smaller partition, and it is beneficial to improve the contrast of the picture.
  • the size of the micro LED chip is less than 500 ⁇ m.
  • Micro light emitting diodes can be manufactured in corresponding sizes according to actual applications, which is not limited here.
  • the miniature light emitting diode chip is a mini LED (Mini Light Emitting Diode, Mini LED for short) chip.
  • the light-emitting chip 1221 used in the embodiment of the present application may be a light-emitting chip of one color, or may be a light-emitting chip of multiple colors, which is not limited herein.
  • the encapsulation part 1222 is located on the surface of the light emitting chip 1221 , and is used for encapsulating and protecting the light emitting chip 1221 , and preventing foreign matter from entering into the light emitting chip 1221 .
  • the package part 1222 is a package holder; specifically, the light-emitting chip 1221 is packaged in a POB package, and a package holder is provided outside the light-emitting chip 1221 .
  • the light-emitting chip 1221 when the light-emitting chip 1221 is packaged by POB packaging, patch electrodes will be formed on its lower surface at the same time, and the patch electrodes are electrically connected to the electrodes of the light-emitting chip 1221.
  • the packaged light-emitting chip 1221 is attached to the corresponding position of the circuit layer 1212 .
  • the POB packaging method has mature technology and good adaptability.
  • the encapsulation part 1222 is an encapsulation glue; specifically, when the light-emitting chip 1221 is packaged by COB encapsulation, the light-emitting chip 1221 is first soldered to the pad corresponding to the circuit layer 1212, and then the light-emitting The surface of the chip 1221 is encapsulated by dispensing glue.
  • the encapsulation glue on the surface of the light-emitting chip 1221 can be made of transparent colloidal materials, such as silica gel, modified silica gel or epoxy resin with better permeability.
  • the shielding portion 1223 is located on a side of the packaging portion 1222 away from the circuit board 121 .
  • the shielding part 1223 is a diffusion layer, and the diffusion layer is provided with scattering particle materials, and the light incident on the scattering particle materials will continuously refract and reflect, so as to achieve the effect of breaking up the light, which can Avoid the problem of partial brightness above the light source 122; in addition, the light reflected back to the bottom of the light source 122 by the scattering particle material can be reflected again, and finally emerges at the side of the light source 122, which not only increases the intensity of the light emitted from the side of the light source 122, but also The light intensity of each place in the light emitting range is reduced, and the light emitting angle of the light source 122 is increased.
  • the problems of brightening above the light source 122 and darkening at the junction of two adjacent light sources 122 can be avoided.
  • the light mixing distance can be appropriately reduced, so the development demand for thinner display devices can be met without increasing the production cost; in addition, the light mixing distance can also be changed without changing the light mixing distance , reduce the number of light sources 122 used, and reduce costs.
  • the shielding part 1223 includes a matrix and reflective particles, and the reflective particles reflect incident light.
  • the reflective particles reflect incident light.
  • part of the incident light will enter the reflective particles and be reflected.
  • Particle reflection thereby weakening the intensity of the outgoing light at the top of the light source 122; Intensity, homogenizes the light intensity everywhere in the light emitting range, and increases the light emitting angle of the light source 122. In this way, the problems of brightening above the light source 122 and darkening at the junction of two adjacent light sources 122 can be avoided.
  • the light mixing distance can be appropriately reduced, so the development demand for thinner display devices can be met without increasing the production cost; in addition, the light mixing distance can also be changed without changing the light mixing distance , reduce the number of light sources 122 used, and reduce costs.
  • the reflective particles provided in the embodiment of the present application may be titanium dioxide.
  • the H/P value (the distance from the upper surface of the lamp panel 12 to the lower surface of the diffuser plate 13, that is, the light mixing distance/the distance between two adjacent light sources 122) is usually used to measure the cost of the backlight module (the number of light sources 122) and thickness relationship.
  • the H/P value in the industry is generally above 0.6, and the smaller the H/P value, the thinner the thickness of the module, or the fewer the number of 122 light sources used.
  • the content of titanium dioxide provided by the embodiment of the present application is 30%, the H/P value can be reduced from above 0.6 to about 0.5, which can meet the development needs of thinning display devices without increasing the production cost (without changing the number of light sources 122). .
  • FIG. 4 it exemplarily shows a schematic cross-sectional view of a light source.
  • the light source shown in FIG. 4 includes a bottom plate 301 , an electrode 302 , a gold wire 303 , a light emitting chip 304 , a packaging part 305 , and a shielding part 306 .
  • the electrodes 302 are disposed in the bottom plate 301 and are used to supply power to the light emitting chip 304 .
  • the gold wire 303 connects the electrode and the light-emitting chip, and has the function of conducting electricity. It should be noted that the light source shown in FIG. 4 is only an example.
  • the shielding part that shields the direct light of the light-emitting chip is located directly above the packaging part, the position of the shielding part is shown in FIG. 4 . Therefore, most of the light emitted by the light-emitting chip may be blocked, and the light is only emitted from the side, the light angle is small, the light utilization rate is reduced, and the light efficiency is lost. In order to improve light utilization efficiency, the light output angle can be increased.
  • a feasible way to increase the light output angle is to reduce the size of the package.
  • the shading part is located above the packaging part, and the size of the shading part is reduced while reducing the size of the packaging part, so as to increase the angle of light output.
  • this solution needs to reduce the processing size, it increases the difficulty of processing.
  • reducing the size of the package part may also lead to the problem of overflow of tin used for soldering. Tin overflow will affect the reflection of light and reduce the yield of production.
  • An embodiment of the present application provides a display device.
  • different types of shielding parts are used to replace the existing shielding parts, so as to reduce the angle of the light emitted by the light-emitting chips that are shielded, and improve the intensity of the light. utilization rate.
  • the present application does not need to reduce the size of the packaging part, but can increase the light output angle, avoid the problem of tin overflow, and improve the yield rate of production.
  • the size of the packaging part can also be increased to facilitate processing.
  • the shading part proposed in the embodiment of the present application is set relative to the light-emitting chip, and the geometric center of the shading part coincides with the light-emitting axis of the light-emitting chip, and is used to block the light beam emitted by the light-emitting chip with an emission angle smaller than a set emission angle.
  • the set emission angle may be set according to the light emission angle of the light emitting chip.
  • the thickness of the liquid crystal display device is reduced, the light mixing distance of the backlight module used to provide the light source in the display device will be reduced. If the light mixing distance becomes smaller, the light emitted from the light-emitting chip will not be sufficiently mixed, resulting in uneven brightness.
  • There are two known methods to ensure sufficient light mixing one is to have a long enough light mixing distance, and the other is to have enough light.
  • the specific angle of the mini LED can be 160°.
  • the light emitting angle of the mini LED is 160°, it can ensure that the thickness of the display device meets the requirements and at the same time, the cost is low.
  • the light-emitting angle of the light emitting chip can be understood as the scattering angle of the light emitted by the light emitting chip, and the light distribution curve of the light emitting chip is used to represent the light intensity distribution of the light emitted by the light emitting chip in space. It can be understood that the light distribution curve of the light-emitting chip includes the corresponding relationship between the light-emitting angle and the emission angle of the light-emitting chip.
  • the backlight module in the display device proposed by the present application further includes an encapsulation part, and the encapsulation part is located between the light-emitting chip and the shielding part for protecting the light-emitting chip.
  • the shielding part can be located on the packaging part, or the side of the packaging part facing away from the light-emitting chip has a groove, and the shielding part can be located in the groove.
  • the surface of the shielding portion near the light-emitting chip is circular.
  • titanium dioxide (TiO 2 ) may be used as a material of the shielding portion.
  • the shielding part when the shielding part is located above the encapsulation part, the shielding part shields the light beam emitted by the light-emitting chip that is smaller than the set exit angle, wherein the set exit angle can satisfy the following formulas (1)-(2) relation:
  • is the set emission angle
  • k is the radius of the surface circle of the side of the shielding part close to the light-emitting chip
  • d is the distance from the side of the shielding part close to the light-emitting chip to the light-emitting chip
  • L is any point on the side of the shielding part to The distance of the light axis.
  • FIG. 5 shows a schematic cross-sectional view of the light source when the shielding part is located above the packaging part.
  • the schematic cross-sectional view of the light source shown in FIG. 5 it includes a shielding part 401, a packaging part 402, a light emitting chip 403, a bottom plate 404, an electrode 405 for supplying power to the light emitting chip, and a connecting wire 406 for connecting the electrode and the light emitting chip.
  • Figure 5 is only an example, and the present application does not specifically limit the specific shape of the shielding part, it only needs to meet the requirement that the surface of the shielding part close to the light-emitting chip is circular and satisfy the formulas (1) and (2) conditions.
  • the shielding part may be a cylinder, a cone, a frustum of a cone, a hemisphere or other irregular shapes.
  • the shielding component is taken as an example of a circular frustum for introduction.
  • the shading part when the shading part is located in the groove on the side of the packaging part away from the light-emitting chip, the shading part can block the light beam emitted by the light-emitting chip that is smaller than the set outgoing angle, where the set outgoing angle can satisfy the following formula ( The relationship shown in 3)-(4):
  • is the set outgoing angle
  • k is the radius of the surface circle on the side of the shielding part away from the light-emitting chip
  • d is the distance from the side of the shielding part away from the light-emitting chip to the light-emitting chip
  • L is any point on the side of the shielding part to
  • p is the distance from any point to the plane on the side of the light-emitting chip that is close to the shielding portion.
  • FIG. 6 shows a schematic cross-sectional view of the light source when the shielding part is located in the groove of the packaging part.
  • the schematic cross-sectional view of the light source shown in FIG. 6 includes a shielding part 501, a packaging part 502, a light-emitting chip 503, a bottom plate 504, electrodes 505 for supplying power to the light-emitting chip, and connecting wires 506 for connecting the electrodes and the light-emitting chip.
  • Figure 6 is only an example, and the present application does not specifically limit the specific shape of the shielding part, it only needs to meet the requirement that the surface of the shielding part close to the light-emitting chip is circular and satisfy the formulas (3) and (4) conditions.
  • the shielding part is a cylinder, a truncated cone, a cone, or a hemisphere. It should be noted that the hemisphere involved in this application may not be a hemisphere in the standard sense, and the radius of the section of the hemisphere involved in this application is greater than or equal to the distance from the apex of the hemisphere to the section.
  • the shielding part is a cylinder and is located in the groove on the side of the packaging part away from the light-emitting chip.
  • FIG. 7A shows a schematic cross-sectional view of the light source provided by the embodiment of the present application when the shielding part is a cylinder and is located in the groove of the packaging part.
  • the shielding part includes a shielding part 601, a packaging part 602, a light emitting chip 603, a bottom plate 604, an electrode 605 for supplying power to the light emitting chip, and a connecting wire 606 for connecting the electrode and the light emitting chip.
  • connection wire 606 is a connection wire made of conductive material, for example, a gold wire may be used.
  • the shielding part 601 is used for shielding the light beam emitted by the light-emitting chip that is smaller than the set outgoing angle.
  • FIG. 7B shows a top view of a shielding part in this embodiment.
  • the relationship between setting the outgoing angle, the radius of the bottom circle of the cylindrical shielding part, and the distance from the side of the cylindrical shielding part close to the light-emitting chip to the light-emitting chip can satisfy the relationship shown in formula (5):
  • is the set outgoing angle
  • k is the radius of the bottom circle of the cylindrical shielding part
  • d is the distance from the side of the cylindrical shielding part close to the light-emitting chip to the light-emitting chip.
  • the set emission angle ⁇ may be determined according to the light emitting angle of the light emitting chip.
  • the light-emitting angle of the light-emitting chip is a specific angle
  • the purpose of ensuring that the display screen is sufficiently thin and that the cost is low can be achieved.
  • the specific angle of the mini LED can be 160°.
  • the light emitting angle of the mini LED is 160°, it can ensure that the thickness of the display device meets the requirements and at the same time, the cost is low.
  • the thickness of the cylindrical shielding portion is 0.1 mm.
  • the thickness of the cylindrical shielding portion may also take other values, which are not specifically limited in this embodiment of the present application.
  • the shielding portion is a circular truncated portion, and is located in a groove on a side of the packaging portion away from the light-emitting chip.
  • FIG. 8A shows a schematic cross-sectional view of a light source provided by an embodiment of the present application when the shielding portion is a truncated cone and is located in a groove.
  • the cross-sectional view of the light source shown in FIG. 8A it includes a shielding part 701, a packaging part 702, a light emitting chip 703, a bottom plate 704, an electrode 705 for supplying power to the light emitting chip, and a connecting wire 706 for connecting the electrode and the light emitting chip.
  • connection wire 706 is a connection wire made of conductive material, for example, a gold wire may be used.
  • the shielding part 701 is used for shielding the light beam emitted by the light-emitting chip that is smaller than the set outgoing angle. It should be noted that FIG. 8A is only an example, and the present application does not specifically limit whether the area of the surface circle on the side of the frustum-shaped shielding portion close to the light-emitting chip is larger than the area of the surface circle on the side of the frustum-shaped shielding portion away from the light-emitting chip. . In FIG.
  • the area of the surface circle of the frustum-shaped shielding portion close to the light-emitting chip is smaller than the area of the surface circle of the frustum-shaped shielding portion away from the light-emitting chip as an example.
  • FIG. 8B shows a schematic bottom view of a frustum-shaped shielding part in this embodiment.
  • setting the outgoing angle can satisfy the relationship shown in the following formulas (6)-(7):
  • is the set emission angle
  • a is the radius of the surface circle on the side of the circular platform away from the light-emitting chip
  • b is the distance from the side of the circular platform away from the light-emitting chip to the light-emitting chip
  • c is the surface circle on the side of the circular platform close to the light-emitting chip
  • the radius of , e is the distance from the side of the circular table close to the light-emitting chip to the plane on the side of the light-emitting chip close to the shielding part.
  • the output angle ⁇ can be determined first, and the value range of ⁇ can be [25°, 30°].
  • the distance from the side of the frustum-shaped shielding part away from the light-emitting chip to the light-emitting chip and the radius of the surface circle of the side of the frustum-shaped shielding part away from the light-emitting chip can be determined according to the relationship shown in formulas (6)-(7). The corresponding relationship, and determine the radius of the surface circle of the frustum-shaped shielding portion close to the light-emitting chip, and then determine the structure of the light source.
  • the thickness of the truncated-conical shielding portion may be 0.1 mm.
  • the thickness of the truncated-conical shielding portion may also be other values, which are not specifically limited in this embodiment of the present application.
  • the shielding portion has a hemispherical shape and is located in a groove on a side of the packaging portion away from the light-emitting chip.
  • FIG. 9 shows a schematic cross-sectional view of a light source provided by an embodiment of the present application when the shielding portion is hemispherical and located in a groove on one side of the light-emitting chip.
  • the light source shown in FIG. 9 it includes a shielding part 801, a packaging part 802, a light emitting chip 803, a bottom plate 804, an electrode 805 for supplying power to the light emitting chip, and a connecting wire 806 for connecting the electrode and the light emitting chip.
  • connection wire 806 is a connection wire with electrical conductivity, for example, a gold wire may be used as the connection wire.
  • the shielding part 801 is used for shielding the light beams emitted by the light-emitting chip that are smaller than the set outgoing angle. It should be noted that FIG. 9 is only an example. In an actual light source, whether the side of the hemispherical shielding part close to the light-emitting chip is used as the hemispherical section or the side of the hemispherical shielding part away from the light-emitting chip is used as the hemisphere The cross section is not limited. In FIG.
  • the side of the hemispherical shielding portion facing away from the light-emitting chip is taken as a cross-section of the hemisphere as an example for illustration. It should be noted that the radius of the section of the hemisphere involved in this embodiment may be greater than the distance from the apex of the hemisphere to the section, or equal to the distance from the apex of the hemisphere to the section.
  • setting the outgoing angle may satisfy the relationship shown in the following formula (8):
  • is the set emission angle
  • k is the radius of the surface circle of the hemispherical shielding part facing away from the light-emitting chip
  • d is the distance from the side of the hemispherical shielding part away from the light-emitting chip to the light-emitting chip.
  • the thickness of the hemispherical shielding part is 0.1 mm, that is, the distance from the cross section of the hemisphere to the apex of the hemisphere can be 0.1 mm.
  • the thickness of the hemispherical shielding part can also take other values , which is not specifically limited in this embodiment of the present application.
  • the shielding part is a cylinder and is located on the packaging part.
  • FIG. 10 shows a schematic cross-sectional view of the light source provided by the embodiment of the present application when the shielding component is a cylinder and is located on the packaging part.
  • the schematic cross-sectional view of the light source shown in FIG. 10 it includes a shielding part 901, a packaging part 902, a light-emitting chip 903, a bottom plate 904, an electrode 905 for supplying power to the light-emitting chip, and a connecting wire for connecting the electrode 905 and the light-emitting chip 903. 906.
  • connection wire 906 is a connection wire with electrical conductivity, for example, a gold wire may be used as the connection wire.
  • the shielding part 901 is used for shielding the light beam emitted by the light-emitting chip which is smaller than the set angle.
  • the relationship between setting the outgoing angle, the distance from the side of the cylindrical shielding part close to the light-emitting chip to the light-emitting chip, and the radius of the bottom circle of the cylindrical shielding part can satisfy the relationship shown in formula (9):
  • is the set outgoing angle
  • k is the radius of the bottom circle of the cylindrical shielding part
  • d is the distance from the side of the cylindrical shielding part close to the light-emitting chip to the light-emitting chip.
  • the thickness of the cylindrical shielding part is 0.1 mm.
  • the thickness of the cylindrical shielding part may also take other values, which are not specifically limited in this embodiment of the present application.
  • the different forms of the shielding part can be used for the light source of POB package and also can be used for the light source of COB package.
  • FIG. 11 is a schematic cross-sectional structure diagram of a light source provided by an embodiment of the present application.
  • the light source 13-1 includes: a shielding part 131-1, a light emitting chip 132-1 and a packaging part 133-1.
  • the shielding part 131-1 is located on the light emitting side of the light source 13-1, and the shielding part 131-1 has a reflection effect on at least part of the incident light, which can weaken the intensity of the outgoing light at the top of the light source 13-1; and the light reflected by the shielding part 131-1 When it reaches the bottom of the light source 13-1, it can be reflected again, and finally emits on the side of the light source 13-1, which not only increases the intensity of the light emitted from the side of the light source 13-1, but also homogenizes the light intensity of all places in the light output range. The light emitting angle of the light source 13-1 is also increased.
  • the problems of the upper part of the light source 13 - 1 being brighter and the handover position of two adjacent light sources 13 - 1 being darker can be avoided.
  • the light mixing distance can be appropriately reduced, so the development demand for thinner display devices can be met without increasing the production cost; in addition, the light mixing distance can also be not changed.
  • the number of light sources 13-1 used and reducing the cost can be reduced.
  • the orthographic projection of the shielding part 131-1 on the backplane 11 and the orthographic projection of the light-emitting chip 132-1 on the backplane 11 have overlapping areas, thereby ensuring that the light emitted by the light-emitting chip 132-1
  • the shielding part 131-1 When the light is incident on the overlapping area above the light-emitting chip 132-1, it can be reflected by the shielding part 131-1, weakening the intensity of the outgoing light at the top of the light source 13-1, and the light reflected by the shielding part 131-1 reaches the light source 13-1. 1, it can be reflected again, and finally emitted at the side of the light source 13-1, thereby avoiding the problem that the top of the light source 13-1 is brighter and the junction of two adjacent light sources 13-1 is darker.
  • the shielding part 131-1 has a centrally symmetrical structure, and the light emitted by the light source 13-1 after being shielded by the shielding part 131-1 is also symmetrical to each other, so that the light emitted by the display device is more uniform, and the display effect of the display device is improved. .
  • the light emitting chip 132-1 is located on the circuit layer 122-1, and the light emitting chip 132-1 can be an LED chip, a mini LED chip or an RGB chip.
  • the miniature light-emitting diode chip includes but is not limited to a Mini LED chip (Mini-Light Emitting Diode, Mini LED for short), which is different from an ordinary light-emitting diode.
  • the light-emitting chip 132-1 specifically refers to a miniature light-emitting diode chip with a size smaller than 500 ⁇ m.
  • the light-emitting chip 132-1 Since the size of the light-emitting chip 132-1 is very small, the light-emitting chip 132-1 is beneficial to control the dynamic light emission to a smaller partition, and is beneficial to improve the contrast of the picture.
  • the light-emitting chips 132-1 are arranged in an array, which is beneficial to design the spacing of the light-emitting chips according to the light emission requirements of the backlight module.
  • the existence of the shielding part 131-1 can appropriately reduce the light mixing distance. When it is applied to an ultra-thin display device, the light mixing distance needs to be further reduced. Due to the limitation of the light emission angle of the light-emitting chip 132-1, when the light mixing distance is further reduced, the light mixing distance still needs to be reduced. There will be problems that the top of the light source 13-1 is brighter and the handover position of two adjacent light sources 13-1 is darker.
  • the light source 13-1 provided by the embodiment of the present application further includes two reflective layers 134-1, and the two reflective layers 134-1 are respectively located on the light-emitting side and the side away from the light-emitting side of the light-emitting chip 132-1.
  • the two reflective layers 134-1 On the surface, the two reflective layers 134-1 have the property of reflecting light. When the light emitted by the light-emitting chip 132-1 reaches the reflective layer on the light-emitting side, part of the light is transmitted and most of the light is reflected.
  • the light emitting angle of 132-1 reduces the brightness at the center of the light-emitting chip 132-1, improves the light mixing effect of two adjacent light sources 13-1, and avoids the obvious light shadow due to the reduction of the light mixing distance
  • the phenomenon improves the display effect of the display device.
  • the existence of the reflective layer 134-1 can also avoid the black ring phenomenon that may occur after the shielding portion 131-1 is provided, further improving the display effect of the display device.
  • the two reflective layers 134-1 include: a first reflective layer 134-11 and a second reflective layer 134-12.
  • the first reflective layer 134-11 is located on the surface of the light emitting chip 132-1 close to the circuit layer 122-1
  • the second reflective layer 134-12 is located on the surface of the light emitting chip 132-1 away from the circuit layer 122-1.
  • the reflectivity of the first reflective layer 134-11 is greater than the reflectivity of the second reflective layer 134-12, and the reflectivity of the first reflective layer 134-11 is greater than or equal to 90%, thus ensuring Most of the light incident on the first reflective layer 134-11 is reflected, and part of the light incident on the second reflective layer 134-12 is transmitted, and most of the light is reflected, thereby preventing the central position of the light-emitting chip 132-1 from The brightness is too dim.
  • the two reflective layers 134-1 are Bragg reflective layers.
  • Both the first reflective layer 134-11 and the second reflective layer 134-12 are formed by alternately stacking the first dielectric layer and the second dielectric layer with two different refractive indices.
  • the materials of the first dielectric layer and the second dielectric layer can be determined according to It depends on the different requirements of different display devices, as long as the reflectivity of the first reflective layer 134-11 is greater than the reflectivity of the second reflective layer 134-12, and the reflectivity of the first reflective layer 134-11 is greater than or equal to 90%. Yes, there is no limitation here.
  • the first reflective layer 134-11 and the second reflective layer 134-12 provided in the embodiment of the present application can set the number of the first medium layer and the second medium layer according to different requirements of different display devices, which is not limited here.
  • the encapsulation part 133-1 is arranged around the light emitting chip 132-1, and is used for encapsulating and protecting the light emitting chip 132-1, and preventing foreign objects from entering into the light source 13-1.
  • the package part 133-1 can be a package bracket; specifically, the light-emitting chip 132-1 is packaged in a POB package, and a package is provided outside the light-emitting chip 132-1.
  • the bracket, the packaging bracket is used to package and protect the light-emitting chip 132-1, and prevent foreign matter from entering the inside of the light-emitting chip 132-1.
  • patch electrodes will be formed on its lower surface at the same time, and the patch electrodes are electrically connected to the electrodes of the light-emitting chip 132-1. Then the packaged light-emitting chip 132-1 is pasted on the corresponding pad of the circuit board.
  • the POB packaging method has mature technology and good adaptability.
  • the shielding part 131 - 1 may be disposed on the package holder. In this way, the design can be simplified, and it only needs to attach the shielding part to the surface of the packaging bracket.
  • a groove is provided on the light-emitting surface of the package holder, and the groove is used for placing the shielding part 131 - 1 , and the shielding part 131 - 1 is placed in the groove.
  • the use of grooves to set the shielding portion 131 - 1 is more securely fixed, the surface of the light source can be made into a planar structure, and the service life of the display device is increased.
  • the shielding part 131-1 is a diffusion layer, and the diffusion plate is provided with scattering particle materials, and the light incident on the scattering particle materials will continuously refract and reflect, so as to achieve the effect of breaking up the light, which can Avoid the problem of partial brightness above the light source 13-1; in addition, the light reflected by the scattering particle material back to the bottom of the light source 13-1 can be reflected again, and finally exits at the side of the light source 13-1, which not only increases the light source 13-1 1.
  • the intensity of the light emitted from the side which homogenizes the light intensity of all places in the light emitting range, and increases the light emitting angle of the light source 13-1.
  • the problems of the upper part of the light source 13 - 1 being brighter and the handover position of two adjacent light sources 13 - 1 being darker can be avoided.
  • the light mixing distance can be appropriately reduced, so the development demand for thinner display devices can be met without increasing the production cost; in addition, the light mixing distance can also be not changed.
  • the number of light sources 13-1 used is reduced and the cost is reduced.
  • the shielding portion 131-1 may also be a reflective layer, the reflective layer includes a matrix and reflective particles, and the reflective particles reflect incident light.
  • the reflective layer includes a matrix and reflective particles
  • the reflective particles reflect incident light.
  • the problem of brightening above the light source 13-1 and darkening at the handover position of two adjacent light sources 13-1 can be avoided.
  • the light mixing distance can be appropriately reduced, so the development demand for thinner display devices can be met without increasing the production cost; in addition, the light mixing distance can also be not changed.
  • the number of light sources 13-1 used is reduced and the cost is reduced.
  • the material of the shielding part may be made of materials having reflection and/or scattering properties such as titanium dioxide or titanium dioxide, which is not limited herein.
  • Fig. 14a is the fourth schematic cross-sectional structure diagram of the light source provided by the embodiment of the present application.
  • Fig. 14b is the fifth schematic diagram of the cross-sectional structure of the light source provided by the embodiment of the present application.
  • Fig. 14c is the sixth schematic diagram of the cross-sectional structure of the light source provided by the embodiment of the present application.
  • the packaging part 133-1 can also be a packaging glue; specifically, the COB packaging method is used to package the light-emitting chip 132-1, and the light-emitting chip 132-1 is first welded to the circuit On the pad corresponding to the layer 122-1, the light-emitting chip 132-1 is packaged by dispensing glue on the surface of the light-emitting chip 132-1.
  • the packaging glue on the surface of the light-emitting chip 132-1 can be a transparent colloid material, such as through Better silicone, modified silicone or epoxy resin, etc. COB packaging has higher efficiency and lower cost.
  • the shielding part 131-1 is made of a material that reflects light, such as white ink.
  • white ink When light enters the shielding part 131-1, part of the incident light will enter the white ink and be reflected by the white ink. , thereby weakening the intensity of the outgoing light at the top of the light source 13-1; and when the light reflected by the white ink reaches the bottom of the light source 13-1, it can be reflected again, and finally emerges at the side of the light source 13-1, which not only increases the light source
  • the intensity of the light emitted from the side of 13-1 homogenizes the light intensity of all places in the light emitting range, and increases the light emitting angle of the light source 13-1.
  • the problems of the upper part of the light source 13 - 1 being brighter and the handover position of two adjacent light sources 13 - 1 being darker can be avoided.
  • the light mixing distance can be appropriately reduced, so the development demand for thinner display devices can be met without increasing the production cost; in addition, the light mixing distance can also be not changed.
  • the number of light sources 13-1 used is reduced and the cost is reduced.
  • the white ink provided by the embodiment of the present application is located inside the encapsulation glue 133-1.
  • the encapsulation glue is dotted on the surface of the light-emitting chip 132-1
  • white ink is dotted on the surface of the encapsulation glue before the encapsulation glue is solidified. Since both the encapsulation glue and the white ink have fluidity, the white ink will flow into the interior of the encapsulation glue, forming a shielding portion 131-1 as shown in FIG. 14a.
  • the shielding part 131-1 is located inside the encapsulant, which can make the shielding part 131-1 fixed more firmly and increase the service life of the display device.
  • a groove for containing the white ink is formed on the encapsulation adhesive, and then the white ink is injected into the groove. Finally, due to the fluidity of the encapsulation adhesive and the white ink, the white The ink will flow into the inside of the encapsulant, forming a shielding portion 131-1 as shown in FIG. 14a.
  • a groove for containing the white ink is formed by pressing on the encapsulation glue, and after injecting the white ink into the groove, dot the encapsulation glue on the top to seal the white ink inside the encapsulation glue. It is sufficient to form the shielding portion 131 - 1 as shown in FIG. 14 a and seal the white ink inside the encapsulant, and the specific operation method is not limited here.
  • the white ink is located on the surface of the encapsulant 133-1, and after the encapsulant is solidified, white ink is dotted on the top of the shielding part 131-1 to form the form shown in Figure 14a
  • the shielding part 131-1 of this method is easy to operate and saves manufacturing time.
  • the parameters of the shielding part 131-1 meet the conditions of light intensity distribution of the light source 13-1; wherein, the parameters of the shielding part 131-1 include: setting position, material, shape, concentration, thickness and Reflectivity.
  • the thickness in the middle of the shielding part 131-1 can be set larger than the thickness at both ends; or, as shown in Figure 15b, further increase the thickness in the middle of the white ink (compared to Figure 14a), In this way, the intensity of the reflected light in the middle area of the shading part 131-1 can be increased.
  • the light emission pattern of each light source can be simulated according to the final light emission effect of the backlight module, so as to change the setting area, shape, material and thickness of the shielding part 131-1 according to the simulation structure and other parameters to adjust the light output rate of each position, so that the final light output light pattern of the light source meets the condition of emitting uniform backlight.
  • the embodiment of the present application does not limit the specific shape of the shielding portion 131-1.
  • the embodiment of the present application also provides a display device, which can increase the light-emitting angle of the light-emitting chip, reduce the number of light-emitting chips used in the display device, and avoid the problem of uneven brightness and darkness.
  • FIG. 16 is a schematic cross-sectional structure diagram of a backlight module provided by some embodiments of the present application.
  • the backlight module includes a circuit board 100-2, a light emitting chip 500-2, an encapsulation part 200-2, and a reflection part 210-2 located in the encapsulation part.
  • the size of the circuit board 100-2 is adapted to the size of the display device, and the shape can also be square, rectangular or irregular, which is not limited here.
  • the backlight module may also include a plurality of circuit boards 100-2, and the circuit boards 100-2 jointly provide backlight for the display device by splicing.
  • the splicing seam between adjacent circuit boards 100-2 should be as small as possible, and even seamless splicing can be realized.
  • the light emitting chips 500-2 are arranged in an array on the circuit board 100-2.
  • the light emitting chip is welded on the circuit board 100-2.
  • the light-emitting chip 500-2 is a miniature light-emitting diode chip, which includes but is not limited to Mini LED chips (Mini-Light Emitting Diode, Mini LED for short), which are different from ordinary light-emitting diodes.
  • the light-emitting chip specifically refers to a miniature light-emitting diode chip with a size between 50 ⁇ m and 200 ⁇ m.
  • the light-emitting chip 500-2 Since the size of the light-emitting chip 500-2 is very small, the light-emitting chip is beneficial to control the dynamic light emission to a smaller partition and improve the contrast of the picture.
  • the light-emitting chips 500-2 are arranged in an array, which is beneficial to design the spacing of the light-emitting chips according to the light emission requirements of the backlight module.
  • the package part 200-2 covers the light emitting chip 500-2.
  • the encapsulation part 200-2 may use transparent colloid material.
  • a separate package part 200-2 is formed on each light-emitting chip 500-2 by using a glue dispenser.
  • the shape of the package part 200-2 may be a hemisphere.
  • the encapsulation part 200-2 uses a transparent silicone material.
  • the hemispherical package part 200-2 has a height of 0.65mm and a diameter of 2.5mm.
  • the transparency of the encapsulation part 200-2 is greater than 95%, the viscosity is 12Pa ⁇ s/(25°C, 10rpm) ⁇ 16Pa ⁇ s/(25°C, 10rpm), and the thixotropic coefficient is 2.5/(3rpm/30rpm) ⁇ 3.0/( 3rpm/30rpm), the hardness is 35HA ⁇ 40HA. Therefore, the encapsulation part 200-2 has good light transmittance, good ability to restore the original structure after the structure is destroyed, and has certain hardness.
  • the formation of the encapsulation part 200-2 provides elastic protection for the light-emitting chip 500-2, which can be used to prevent the light-emitting chip 500-2 from being knocked and invalidated in each process flow, and improves the manufacturing quality of the display device. Rate.
  • a reflective part 210-2 is disposed in the packaging part 200-2, and the reflective part 210-2 is located on the light emitting side of the light emitting chip 500-2 for reflecting light.
  • FIG. 17 is a schematic cross-sectional structure diagram of a backlight module provided by some embodiments of the present application.
  • a reflective part 210-2 is disposed inside the packaging part 200-2, and the reflective part 210-2 is located on the light-emitting side of the light-emitting chip 500-2 for reflecting light.
  • the orthographic projection of the central point of the reflective part 210 - 2 on the circuit board coincides with the orthographic projection of the central point of the light emitting chip on the circuit board. Because the reflective part 210-2 has the property of reflecting light, part of the emitted light from the light-emitting chip 500-2 will be reflected by the reflective part 210-2 onto the circuit board 100-2 after being incident on the reflective part 210-2. The light will be reflected again by the circuit board 100-2; the outgoing light of the light-emitting chip 500-2 will form scattered outgoing light after multiple reflections, which increases the light-emitting angle of the light-emitting chip.
  • the outgoing light n near the midline area of the light-emitting chip is reflected by the reflecting part 210-2, and is reflected on the circuit board 100-2, and after being reflected again by the circuit board 100-2, a light n near the circuit board is formed.
  • the light m not reflected by the reflecting part 210-2 is normally emitted along the outgoing angle. Therefore, the arrangement of the reflection part 210-2 increases the light emission angle of the light-emitting chip 500-2, makes the emission light of the backlight module more uniform, and improves the utilization rate of light.
  • the distance c between the reflective part 210 - 2 and the light emitting chip 500 - 2 is 2 mils to 4 mils. In this way, it can be ensured that the outgoing light of the light emitting chip 500-2 can be reflected by the reflecting part 210-2 to the circuit board 100-2 for re-reflection, forming outgoing light scattered around, and increasing the light emitting angle of the light emitting chip 500-2. , so that the light output of the light panel is more uniform.
  • the reflective part 210-2 is spherical in shape, and its diameter is 3/4 of the width of the light-emitting chip 500-2. Therefore, the orthographic projection pattern of the reflection part 210-2 on the circuit board 100-2 and the orthographic projection pattern of the light emitting chip 500-2 on the circuit board 100-2 have a large overlapping range. This can ensure that most of the light emitted by the light-emitting chip 500-2 can be reflected by the reflecting part 210-2 to the circuit board 100-2, and then be reflected by the circuit board 100-2 again, and pass through the circuit board 100. -2 and the reflective part 210-2 reflect multiple times to form outgoing light scattered around, which increases the light emitting angle of the light-emitting chip 500-2 and makes the light emitting from the lamp panel more uniform.
  • the reflective part 210-2 includes a matrix and reflective materials dispersed in the matrix.
  • the reflective material is titanium dioxide.
  • the reflective part 210-2 may be formed by injection into the packaging part 200-2 again by a dispensing device after the packaging part 200-2 is formed.
  • the reflective material in the reflective part 210-2 has the property of reflecting light. Therefore, the emitted light from the light-emitting chip 500-2 enters the reflective part 210-2, and will be reflected by the reflective material in the reflective part 210-2 to the circuit board 100-2, and then reflected by the circuit board 100-2 again, The outgoing light scattered to the surroundings is formed, thereby increasing the light emitting angle of the light-emitting chip and making the light emitting of the backlight module more uniform.
  • the reflection part 210-2 since the reflection part 210-2 is provided, the light emitting angle of each light emitting chip 500-2 is increased. Therefore, on the circuit board 100-2 of the same size, the number of light-emitting chips used can be reduced, the distance between each light-emitting chip can be increased, and the backlight module can also form uniform outgoing light without uneven brightness and darkness. The problem.
  • FIG. 18 is a schematic cross-sectional structure diagram of a backlight module provided by some embodiments of the present application.
  • a circuit board 100-2 includes a substrate 110-2, a wiring layer 120-2 and a reflective layer 130-2.
  • the circuit board 100-2 can be manufactured by using a currently mature printed circuit board manufacturing process.
  • the substrate 110-2 can be made of metal aluminum material with good thermal conductivity and good mechanical durability.
  • the size of the substrate 110-2 is adapted to the size of the display device, and slightly smaller than the display device.
  • the shape of the substrate 110-2 can be square, rectangular or heterosexual, which is not limited here.
  • the circuit layer 120-2 may use one of various metal foils such as metal copper, metal nickel, and metal aluminum.
  • copper foil is selected as the material of the circuit layer 120-2.
  • the current mature copper-clad process can be used to set the conductive lines.
  • an insulating layer (not shown in the figure) between the substrate 110-2 and the circuit layer 120-2, which mainly serves the functions of adhesion, insulation and heat conduction.
  • the material of the insulating layer can be epoxy resin with high thermal conductivity and high insulation. The better the thermal conductivity of the insulating layer is, the more favorable it is to conduct the heat generated during the operation of the device, effectively reducing the operating temperature of the device and prolonging the life of the circuit board 100-2.
  • the reflective layer 130-2 is located on the side of the circuit layer 120-2 away from the substrate 110-2; as shown in FIG. 18 , the reflective layer 130-2 includes a first opening exposing each light emitting chip 500-2 131-2.
  • the reflective layer 130-2 can be made of a resin material with good insulating and reflective properties, such as white oil.
  • the reflective layer 130-2 has a plurality of first openings 131-2 for exposing the light emitting chip 500-2, so that the light emitting chip 500-2 is electrically connected with the conductive circuit in the circuit layer 120-2.
  • the light emitted by the light-emitting chip 500-2 is reflected by the reflecting part 210-2 onto the reflective layer 130-2, and the reflective layer 130-2 reflects this part of the light again.
  • the outgoing light is reflected multiple times by the reflective part 210-2 and the reflective layer 130-2 to form light that diffuses to the surroundings, increasing the light emitting angle of the light-emitting chip 500-2, making the outgoing light of the backlight module more uniform, and Improved light utilization.
  • the circuit board 100-2 is a single-sided board, and only one side has wiring, and the other side is a substrate or is directly covered with insulating ink. Only the side with lines in its cross-section contains copper foil, which can effectively reduce the cost.
  • Fig. 19 is a schematic cross-sectional structure diagram of a light emitting chip provided by some embodiments of the present application.
  • the light emitting chip 500-2 includes a first Bragg reflective layer 510-2, a first doped layer 520-2, a light emitting layer 530-2, a second doped layer 540-2, a second Bragg reflective layer 550- 2 and two electrodes 560-2.
  • the light-emitting chip 500-2 is a miniature light-emitting diode chip, which includes but is not limited to Mini LED chips (Mini-Light Emitting Diode, Mini LED for short), which are different from ordinary light-emitting diodes.
  • the light-emitting chip specifically refers to a miniature light-emitting diode chip with a size between 50 ⁇ m and 200 ⁇ m.
  • the light-emitting chip 500-2 can be manufactured using the current mature manufacturing process.
  • the first Bragg reflective layer 510-2, the first doped layer 520-2, the light emitting layer 530-2, and the second doped layer 540-2 can be sequentially grown on the substrate by chemical vapor deposition. 2 and the second Bragg reflective layer 550-2.
  • the first doped layer 520-2 and the second doped layer 540-2 can be obtained by using the same material, such as gallium nitride, etc., and performing P-type doping and N-type doping respectively; and photolithography to form two electrodes 560-2 on the second Bragg reflective layer 550-2; finally, a plurality of light-emitting chips 500-2 are formed on the substrate by etching.
  • the first Bragg reflection layer 510-2 and the second Bragg reflection layer 550-2 are periodic structures formed by alternately stacking layers of two materials with different refractive indices, for example, AlGaAs and AlxOy materials can be used. Because the two materials have a large difference in refractive index, it is beneficial to improve the reflection effect.
  • the product of the geometric thickness of each film layer and the refractive index of the material used in the film layer is called the optical thickness, and the optical thickness of each layer of material is 1/4 of its central reflection wavelength, so the first Bragg reflection layer 510-2 and the second Bragg reflection layer 510-2 Bragg reflector 550-2 is a 1/4 wavelength multilayer system, equivalent to a group of simple photonic crystals.
  • the light-emitting chip 500-2 After the light-emitting chip 500-2 is excited, the light emitted by the two Bragg reflective layers is changed by the Bragg reflective layer, so that most of the light cannot be emitted directly above the light-emitting chip 500-2, but toward the light-emitting chip 500-2.
  • the two sides of the light-emitting chip 500-2 emit light, so that the light emitted toward the two sides of the light-emitting chip 500-2 increases, and therefore the light-emitting angle of the light-emitting chip 500-2 increases, which can be increased to 165°.
  • each light-emitting chip 500-2 is transferred to a circuit board, and the position of each light-emitting chip 500-2 corresponds to the first opening on the reflective layer one by one. Then use the currently mature bonding process to electrically connect the light emitting chip 500-2 to the circuit board.
  • the backlight module also includes a diffusion plate 13 located on the light-emitting side of the light-emitting chip for uniform light; therefore, a bracket 15 for supporting the diffusion plate is also provided between the circuit board and the diffusion plate 13 .
  • the bracket 15 includes a base and a supporting body.
  • FIG. 20 is a schematic top view of the base of the bracket provided by some embodiments of the present application
  • FIG. 21 is a schematic cross-sectional structure diagram of the base of the bracket provided by some embodiments of the present application.
  • the base is located on the circuit board, and the base includes at least two embedded pieces erected towards the diffuser plate.
  • the base 15-2 is disc-shaped with a diameter of 4 mm, and can be processed into one of metal materials such as metal gold, metal silver, metal copper, metal iron and metal tin.
  • the hollowed-out areas on both sides of the base are the embedded sheet areas that are processed to stand upright toward the diffuser plate.
  • the base 15-2 includes two embedded pieces 15-21 erected towards the diffuser plate, the distance a between the two embedded pieces 15-21 is 1.30mm, and the two embedded pieces The width b is 0.75 mm.
  • Fig. 22 is a schematic cross-sectional structure diagram of the bracket provided by the embodiment of the present application.
  • the support body 15-3 of the bracket is connected to the base, and the embedded piece 15-21 is embedded into the interior of the support body 15-3.
  • the support body 15-3 is made of materials such as high-temperature-resistant nylon (Polyphthalamide, PPA for short), and the support body 15-3 and the embedded sheet 15-21 are injected together by injection molding technology, thereby ensuring that the support body 15
  • the connection strength between -3 and the base ensures the push-pull force strength of the bracket, which can make the diffusion plate supported by the bracket have better stability.
  • the stent provided by the embodiment of the present application has good high temperature resistance. Therefore, even at a relatively high operating temperature, the bracket can maintain its strength, making the support between the circuit board and the diffuser plate more stable.
  • the circuit board includes a plurality of first pads for connecting the bracket, and the position of each first pad corresponds to the position of the bracket one by one, and the reflective layer also includes an exposed first pad the second opening.
  • the first pad is used for soldering connection with the base of the bracket.
  • the bracket can be fixed more stably by welding.
  • the power is relatively high, which will lead to a high temperature of the lamp board.
  • the glue connection method will be affected by higher temperature, while the welding connection method will be less affected, which makes the structure of the backlight module more stable and prolongs its service life.
  • the bracket provided in the embodiment of the present application may be connected to the circuit board by welding. Therefore, the soldering and fixing of the bracket can be performed simultaneously with the soldering and fixing of the light-emitting chip, which simplifies the process flow and improves the manufacturing efficiency.
  • FIG. 23 is a schematic top view of a backlight module provided by some embodiments of the present application.
  • the circuit board 100-2 includes a light emitting chip covered by the encapsulation part 200-2, a support 15, at least one driving chip 400-2 and some peripheral circuit components 700-2.
  • the circuit board further includes a plurality of second welding pads
  • the reflective layer further includes a plurality of third openings exposing the second welding pads.
  • the position of each driving chip 400-2 and the peripheral circuit element 700-2 corresponds to each second pad, and the second pad connects the driving chip 400-2, the peripheral circuit element 700-2 and the circuit in the circuit board. layers are electrically connected.
  • the driving chip 400-2 provides a driving signal to the circuit layer in the circuit board, and then transmits the driving signal to each light-emitting chip through the conductive circuit in the circuit layer, so as to control the brightness of the light-emitting chip.
  • the peripheral circuit components 700-2 include components such as capacitors and resistors.
  • the arrangement of the peripheral circuit components 700-2 ensures the reliability of the operation of the driving chip 400-2 and improves the stability of the display device.
  • the number of light-emitting chips can be reduced, so that the driving chip 400-2 and the peripheral circuit element 700-2 can be set at the distance between the light-emitting chips.
  • the driving chip and peripheral circuit components are located on the side of the circuit board where the light emitting chip is disposed.
  • the circuit board uses a single-sided printed circuit board.
  • the number of pins of the driving chip 400-2 used to control the light emitting chip is also significantly reduced, which reduces the cost of terminals and wires.
  • each light-emitting chip can be directly electrically connected to each pin of the driver chip 400-2 through the circuit layer, so as to avoid signal transmission from being transferred to the circuit board end through terminals and transfer lines. Stability improves the stability of signal transmission, thereby improving the reliability of the display device.
  • FIG. 24 is a flow chart of the method for manufacturing a display device provided by the embodiment of the present application.
  • the manufacturing method of the display device includes:
  • the embodiment of the present application provides a manufacturing method by injecting a reflective material into the packaging part of the light-emitting chip.
  • the backlight module is limited by the light emission angle of the light-emitting chip, and needs to use a large number of micro light-emitting diodes; if the number of light-emitting chips used is reduced, the light will be bright and dark. uneven problem.
  • the manufacturing method provided by the embodiment of the present application can increase the light-emitting angle of the light-emitting chip, reduce the number of light-emitting chips used in the display device, and avoid the problem of uneven brightness and darkness.
  • the circuit board can be manufactured using a currently mature circuit board manufacturing process.
  • the circuit board can be a single-sided board, only one side has lines, and the other side is a substrate or directly covered with insulating ink. Only the side with lines in its cross-section contains copper foil, which can effectively reduce the cost.
  • the circuit board after the circuit board is fabricated, a plurality of light-emitting chips need to be connected to the circuit board.
  • the first doped layer and the second doped layer can be obtained by using the same material, such as gallium nitride, and performing P-type doping and N-type doping respectively; Two electrodes are formed on the two Bragg reflection layers; finally, a plurality of light-emitting chips are formed by etching.
  • the current mass transfer technology is used to transfer each light-emitting chip to the circuit board, and electrically connect each light-emitting chip to the circuit board.
  • the support While transferring the light-emitting chip, the support can be transferred together, so that the support and the circuit board are welded and fixed, which simplifies the process flow and improves the preparation efficiency.
  • each light-emitting chip after connecting a plurality of light-emitting chips on the circuit board, each light-emitting chip needs to be packaged, and glue is dispensed on the surface of each light-emitting chip to form a packaging part.
  • the encapsulation part can be made of transparent organic silicon material and formed on the surface of the light-emitting chip by dispensing equipment. The formation of the encapsulation part provides elastic protection for the light-emitting chip, which can be used to prevent the light-emitting chip from being knocked and invalidated in various technological processes, and improves the manufacturing yield of the display device.
  • a reflective material is injected into the sealing portion to form the reflecting portion.
  • the reflective part is located on the light emitting side of the light emitting chip and is used for reflecting light.
  • the reflective material may be titanium dioxide.
  • the reflective part can be formed by secondary injection of glue in the packaging part by a dispensing device.
  • the reflective material in the reflective part has the property of reflecting light. Therefore, when the light emitted by the light-emitting chip enters the reflection part, it will be reflected to the circuit board by the reflective material in the reflection part, and after being reflected again by the circuit board, the light emitted by the light-emitting chip will be scattered around, thereby increasing the size of the light-emitting chip.
  • the light emitting angle of the backlight module makes the light emitting from the backlight module more uniform, reduces the number of light-emitting chips used in the display device, and avoids the problem of uneven brightness and darkness.
  • the reflective part has a shielding effect.
  • the present application also provides a display device.
  • FIG. 25 is a schematic partial cross-sectional structure diagram of a backlight module provided by some embodiments of the present application.
  • FIG. 26 is a partial cross-sectional structural schematic diagram of a backlight module provided by some embodiments of the present application.
  • the backlight module further includes: an angle selection film 16 .
  • the angle selection film 16 is located on the side of the diffuser plate 13 close to the lamp panel 12.
  • the angle selection film 16 can increase the reflection of the light in the range of 0°-70° and increase the reflection of the light in the range of 70°-90°.
  • the range of 0°-70° refers to the small-angle light emitted by the light source 122
  • the range of 70°-90° refers to the large-angle light emitted by the light source 122 .
  • the shielding portion 1223 can reflect at least part of the incident light, but some small-angle light still passes through the shielding portion 1223 .
  • the angle-selective film 16 can increase the reflection of the small-angle light emitted through the shielding part 1223, and the light is reflected by the angle-selective film 16 back to the direction of the lamp board 12, while the outgoing light with a large angle is enhanced and emitted; it is reflected back to the lamp board
  • the small-angle light rays in the 12 direction will form part of the large-angle light rays after being scattered or diffusely reflected by the reflective layer 123, so that they will be emitted by the angle selective film 16, thereby reducing the emission of small-angle light rays near the center of the emission.
  • the intensity increases the emission intensity of the large-angle light away from the emission center, so that the final emission illuminance is consistent, and the uniformity of the light emitted by the light source 122 is improved.
  • the shape of the angle selection film 16 is the same as that of the diffuser plate 13, and the thickness of the angle selection film 16 is in the range of 30-60 ⁇ m. Since the thickness of the angle selection film 16 is relatively thin, in the embodiments provided by this application, the angle The selective film 16 is formed on the surface of the diffusion plate 13 close to the lamp panel 12 , so as to ensure the flatness of the angle selective film 16 itself, and further ensure the optical effect of the angle selective film 16 .
  • the angle selective film 16 uses the principle of thin film interference to increase reflection or anti-reflection of light that can respond to a specific incident angle, and the anti-reflection or anti-reflection effect on light depends on the incident angle of light incident on the film layer, the film The refractive index of the layer and the thickness of the film layer, so in order not to affect the calculation of the thickness of the film layer, it should be avoided to arrange two film layers with the same refractive index adjacent to each other. Moreover, the single-layer film layer has a limited anti-reflection or anti-reflection effect on the incident light. In specific implementation, multiple film layers can be used as a group, and multiple sets of film layers can be stacked to improve the anti-reflection or anti-reflection effect of the angle selection sheet. transparent effect.
  • the thickness of the film with the refractive index n2 is d, and it is a film with uniform thickness, because and So you can get:
  • n2 is the refractive index of a certain layer of medium
  • i is the angle of incidence from the air layer.
  • the angle selection film 16 provided in the embodiment of the present application can transfer a part of the small-angle light originally irradiated directly above the light source 122 to the junction of the light source 122 and the light source 122 after reflection, thereby improving the thickness of the backlight module. Uniformity of brightness.
  • the reflectivity of the angle selective film 16 provided by the embodiment of the present application to the 0° incident light is 70%-90%, and the reflectivity of the angle selective film 16 to the 0°-70° incident light decreases sequentially, and the transmittance increases sequentially.
  • the blocking part 1223 is set on the light emitting surface of the light source 122 facing away from the back plate 11, which can increase the light emitting angle of the light source 122, and at the same time, combined with the angle selection film 16, the irradiation range of a single light source 122 can be maximized to further reduce the backlight. H/P value.
  • the shading part 1223 limits the light intensity above the light source 122, that is, at small angles, and the angle selective film 16 has a reflectivity of 90% for light at small angles, the combination of the two will excessively reduce the intensity of light emitted above the light source 122. As a result, black shadows appear above the light source 122, affecting the display effect of the display device.
  • the embodiment provided by the present application is obtained through multiple optical simulation experiments: when the shielding part 1223 includes a matrix and reflective particles, the content of the reflective particles and the reflectivity of the angle-selective film to 0° incident light satisfy the following relationship:
  • a represents the content of reflective particles
  • b represents the reflectivity of angle selective film 16 to 0° incident light
  • the uniformity of the backlight output of the display device can be guaranteed, as shown in Figure 5, so that a single light source
  • the light output range of 122 is increased from D1 to D2, and the H/P value is greatly reduced to below 0.2; without increasing the production cost (without changing the number of light sources 122), it meets the development needs of thinner display devices.
  • the content a of the reflective particles and the reflectivity of the angle selective film 16 to the 0° incident light are set within the range of 75% ⁇ (a+b) ⁇ 115%.
  • a represents the content of reflective particles
  • b represents the reflectivity of the angle-selective film to 0° incident light
  • H represents the light mixing distance (the distance from the circuit layer to the lower surface of the diffuser plate)
  • P represents the distance between two adjacent light sources spacing
  • A represents the concentration coefficient of the shielding part 1223
  • B represents the reflectance coefficient of the angle selective film 16
  • the value range of the concentration coefficient A of the shielding part 1223 is 6.8-7.0; The value range is 4.5-4.7. Therefore, the embodiments of the present application can adjust the light mixing distance and the distance between two adjacent light sources according to the above relationship, so as to meet the requirements of different display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本申请公开了一种显示装置,包括:显示面板和背光模组;背光模组包括:背板和灯板;灯板包括光源,光源的出光面设置有遮挡部,遮挡部对至少部分入射光线具有反射作用,可以减弱光源顶部的出射光强度;并且被遮挡部反射的光线到达光源的底部时,可以再次被反射,最终在光源的侧面出射,既增大了光源侧面出射光的强度,匀化了出光范围内各处的光强,又增大了光源的出光角度。

Description

一种显示装置
相关申请交叉引用
本申请要求于2021年08月25日提交、申请号为202110984187.3;2021年05月28日提交、申请号为202110593057.7;2021年05月28日提交、申请号为202110590520.2;以及2021年08月25日提交、申请号为 202122019685.2中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置。
背景技术
随着液晶显示(liquid crystal display,简称LCD)技术快速的进步,使得液晶显示技术大量地被应用于笔记本电脑、数字相机、数字摄录像机、移动电话、计算机屏幕及液晶电视等各式电子产品中。
背光模组作为液晶显示装置的关键零组件之一,为液晶面板提供充足亮度与分布均匀的光源,使其能正常显示影像。目前常用的背光模组包括侧入式背光模组和直下式背光模组,在直下式背光模组中,为了保证显示画面亮度的均匀性,光源与扩散板之间需要设置一定的混光距离,然而满足显示装置薄型化的发展需求,在光源数量不变以及光源间距不变的情况下降低混光距离,会导致在背光模组中,光源上方位置偏亮,相邻两光源交接位置偏暗,显示装置的显示效果不均匀的问题。
发明内容
本申请一些实施例中,显示装置包括:显示面板和背光模组;背光模组包括:背板和灯板;灯板包括光源,光源背离背板一侧的出光面设置有遮挡 部,遮挡部对至少部分入射光线具有反射作用,可以减弱光源顶部的出射光强度;并且被遮挡部反射的光线到达光源的底部时,可以再次被反射,最终在光源的侧面出射,既增大了光源侧面出射光的强度,匀化了出光范围内各处的光强,又增大了光源的出光角度。
本申请还提供了一种显示装置,所述显示装置包括:显示面板,用于图像显示;背光模组,位于所述显示面板的入光侧,用于提供背光;所述背光模组包括:底板,具有支撑和承载作用;发光芯片,位于所述底板的一侧,用于向所述显示面板提供背光;遮挡部,相对于所述发光芯片设置,所述遮挡部的几何中心与所述发光芯片的发光轴重合,用于遮挡所述发光芯片发射出的小于设定出射角度的光束。
附图说明
图1为本申请实施例提供的显示装置的截面结构示意图;
图2为本申请实施例提供的背光模组的局部截面结构示意图之一;
图3为本申请实施例提供的光源的截面结构示意图;
图4为本申请实施例提供的一种光源的截面示意图;
图5为本申请实施例提供的一种遮挡部位于封装部之上的光源的截面示意图;
图6为本申请实施例提供的一种遮挡部位于封装部的凹槽中的光源的截面示意图;
图7A为本申请实施例提供的一种包含圆柱体遮挡部的光源的截面示意图;
图7B为本申请实施例提供的一种圆柱体遮挡部的仰视示意图;
图8A为本申请实施例提供的一种包含圆台形遮挡部的光源的截面示意图;
图8B为本申请实施例提供的一种圆台形遮挡部的仰视示意图;
图9为本申请实施例提供的一种包含半球形遮挡部的光源的截面示意图;
图10为本申请实施例提供的另一种包含圆柱体遮挡部的光源的截面示意图;
图11为本申请实施例提供的光源的截面结构示意图之一;
图12为本申请实施例提供的光源的截面结构示意图之二;
图13为本申请实施例提供的光源的截面结构示意图之三;
图14a为本申请实施例提供的光源的截面结构示意图之四;
图14b为本申请实施例提供的光源的截面结构示意图之五;
图14c为本申请实施例提供的光源的截面结构示意图之六;
图15a为本申请实施例提供的光源的截面结构示意图之七;
图15b为本申请实施例提供的光源的截面结构示意图之八;
图16为本申请某些实施例提供的背光模组的截面结构示意图;
图17为本申请某些实施例提供的背光模组的截面结构示意图;
图18为本申请某些实施例提供的背光模组的截面结构示意图;
图19为本申请实施例提供的发光芯片的截面结构示意图;
图20为本申请实施例提供的支架的底座的俯视示意图;
图21为本申请实施例提供的支架的底座的截面结构示意图;
图22为本申请实施例提供的支架的截面结构示意图;
图23为本申请实施例提供的背光模组的俯视结构示意图;
图24为本申请实施例提供的显示装置的制作方法的流程图;
图25为本申请某些实施例提供的背光模组的局部截面结构示意图;
图26为本申请某些实施例提供的背光模组的局部截面结构示意图;
图27为本申请实施例提供的角度选择膜的工作原理图。
具体实施方式
为了更清楚地说明本申请实施例,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他的附图。
液晶显示装置主要由背光模组和液晶显示面板构成。液晶显示面板本身不发光,需要依靠背光模组提供的光源实现亮度显示。
液晶显示装置的显像原理,是将液晶置于两片导电玻璃之间,靠两个电极间电场的驱动,引起液晶分子扭曲的电场效应,以控制背光源透射或遮蔽功能,从而将影像显示出来。若加上彩色滤光片,则可显示彩色影像。
图1为本申请实施例提供的显示装置的截面结构示意图。
参照图1,显示装置包括:背光模组100和显示面板200。
显示面板200位于背光模组100的出光侧,显示面板的形状与尺寸通常与背光模组相匹配,通常情况下显示面板200可以设置为矩形,包括天侧、地侧、左侧和右侧,其中天侧和地侧相对,左侧和右侧相对,天侧分别与左侧的一端和右侧的一侧相连,地侧分别与左侧的另一端和右侧的另一端相连。
显示面板200为透射型显示面板,能够对光的透射率进行调制,但本身并不发光。显示面板200具有多个呈阵列排布的像素单元,每个像素单元都可以独立的控制背光模组100入射到该像素单元的光线透过率和色彩,以使全部像素单元透过的光线构成显示的图像。
背光模组100通常位于显示装置的底部,其形状与尺寸与显示装置的形状与尺寸相适应。当应用于电视或移动终端等领域时,背光模组通常采用矩形的形状。
图2为本申请实施例提供的背光模组的局部截面结构示意图之一。
参照图2,背光模组包括:背板11、灯板12、扩散板13、光学膜片14和扩散板支架15。
背板11位于背光模组的底部,具有支撑和承载作用。背板11通常情况下为一矩形结构,当应用于异形显示装置时,其形状适应于显示装置的形状。背板11包括天侧、地侧、左侧和右侧。其中天侧和地侧相对,左侧和右侧相对,天侧分别与左侧的一端和右侧的一侧相连,地侧分别与左侧的另一端和右侧的另一端相连。
背板11的材质采用铝、铁、铝合金或铁合金等。背板11用于支撑灯板12,以及支撑固定扩散板13和光学膜片14等部件的边缘位置,背板11还对灯板12起到散热的作用。
在本申请实施例中,背光模组为直下式背光模组,灯板12位于背板11之上。通常情况下,灯板12整体可呈方形或矩形,当应用于异形显示装置时,其形状与尺寸大小适应于显示装置的形状和尺寸大小。
根据显示装置的尺寸可以设置多个灯板12,灯板12之间通过拼接方式共同提供背光。为了避免灯板12拼接带来的光学问题,相邻灯板12之间的拼缝尽量做到较小,甚至实现无缝拼接。
具体地,如图2所示,灯板12具体包括:电路板121、光源122和反射层123。
电路板121包括基板1211和线路层1212;基板1211位于背板11之上,基板1211的形状与灯板12的整体形状相同。在通常情况下,基板1211为板状,整体呈长方形或正方形。
在本申请实施例中,基板1211采用的材料可以为热导系数较高的玻璃,采用热导系数较高的玻璃制作基板1211,可以使显示装置在显示时发出的热量很快地散发出去,避免了温度过高引起的降低发光效率的问题,另外,玻璃基板表面光滑平整,有利于后期的加工制作。或者,基板1211采用的材料可以为FR4或PET等材料进行制作,在此不做限定。
本申请实施例提供的线路层1212经导电材料电镀沉积在基板1211上,根据需要刻蚀线路形成,导电材料可以采用铜,在此不做限定。导电材料会刻蚀出断口,断口的两侧分别连接光源122的正极和负极。
当线路层1212采用上述刻蚀工艺制作而成时,基板1211和线路层1212可以构成电路板,该电路板可以为印刷电路板(Printed Circuit Board,简称PCB);或者,当线路层1212采用薄膜工艺制作而成时,基板1211和线路层1212也可以构成阵列基板,在此不做限定。
光源122位于线路层1212之上,线路层1212制作完成后会在其表面形 成用于焊接光源122的焊盘,光源122焊接于该焊盘上,从而通过控制线路层1212的驱动信号驱动光源122发光。
在本申请提供的实施例中,光源122背离背板11一侧的出光面设置有遮挡部1223,遮挡部1223对至少部分入射光线具有反射作用,可以减弱光源122顶部的出射光强度;并且被遮挡部1223反射的光线到达光源122的底部时,可以再次被反射,最终在光源122的侧面出射,既增大了光源122侧面出射光的强度,匀化了出光范围内各处的光强,又增大了光源122的出光角度。由此,可以避免光源122上方偏亮及相邻两光源122交接位置偏暗的问题。在不改变光源122数量的前提下,可以适当缩小混光距离,因此可以在不增加制作成本的前提下,满足显示装置薄型化的发展需求;另外,也可以在不改变混光距离的前提下,减少光源122的使用数量,降低成本。
反射层123位于电路板121靠近光源122的一侧,反射层123的形状大小与电路板121的形状大小一致,反射层123包括多个用于暴露光源122的开口,具有对光线进行反射的性质。
在本申请实施例中,反射层123采用具有反光性质的材料涂覆于电路板121背离背板11的一侧的表面,该材料可以为具有对光进行反射的性质白色油墨,白色油墨的反射率大于或等于85%,在此不做限定。
本申请另一些实施例中,反射层123也可以为反射片,反射片采用混有反射粒子的胶体涂覆在基材的表面的方式进行制作,反射片的反射率大于或等于97%。
本申请实施例提供的反射层123可以为漫反射层,漫反射层可以使反射光线的反射路径随机,对光线起到了匀化的作用。
扩散板13位于光源122的出光侧,扩散板13的形状与灯板12的整体形状相同。通常情况下扩散板13可以设置为矩形或方形。
扩散板13的作用是对入射光线进行散射,使经过扩散板13的光线更加均匀。扩散板13中设置有散射粒子材料,光线入射到散射粒子材料会不断发生折射与反射,从而达到将光线打散的效果,实现匀光的作用。
扩散板13具有较高的雾度,均匀效果更加,通常可以采用挤出工艺加工,扩散板13所用材质一般选自聚甲基丙烯酸甲酯PMMA、聚碳酸酯PC、聚苯乙烯系材料PS、聚丙烯PP中的至少一种。
当灯板12的光源122只发蓝色光时,扩散板13中还可以设置量子点材料,形成量子点扩散板,量子点材料中包括红色量子点材料和绿色量子点材料,红色量子点材料在蓝色光的激发下出射波长约为620nm-640nm的红色光;绿色量子点材料在蓝色光的激发下出射波长约为520nm-540nm的绿色光,受激发射的红色光、绿色光以及透射的蓝色光混合成白光出射。
量子点扩散板,在制作背光模组的后续过程中,不再设置量子点膜,既降低了成本,又使显示装置更轻薄。
光学膜片14位于扩散板13背离灯板12的一侧,光学膜片14整层设置,其形状与扩散板13的整体形状相同,通常情况下可以设置为矩形或方形。
光学膜片14的设置可以使背光模组适应多种多样的实际应用。
在本申请提供的实施例中,光源122可以采用蓝光器件,光学膜片14包括量子点层或荧光层。
量子点层中包括红色量子点材料和绿色量子点材料,红色量子点材料在蓝色光的激发下出射红色光,绿色量子点材料在蓝色光的激发下出射绿色光,受激发射的红色光、绿色光以及透射的蓝色光混合成白光出射。
荧光层中包括受激发射红色光和受激发射绿色光的荧光材料,受激发射的红色光、绿色光以及透射的蓝色光混合成白光出射。
除此之外,光学膜片14还可以包括棱镜片,棱镜片可以改变光线的出射角度,从而改变显示装置的可观看角度。
光学膜片14还可以包括反射式偏光片,反射式偏光片作为一种增亮片,可以提高背光模组的亮度,提高光线的利用效率,同时使出射光线具有偏振的性质,省略液晶显示面板下偏光片的使用。
由于扩散板13需要覆盖所有灯板12所在的区域,其尺寸相对较大,容易发生塌陷翘曲变形,使背光模组的光学特性变差,甚至损坏光源122,因此 通常会在反射层123与扩散板13之间设置扩散板支架15,用于支撑扩散板13。
扩散板支架15所用材质一般为聚碳酸酯PC。
在具体实施时,扩散板支架15的形状可以为形态简单的三角形、梯形和锥形等,在此不做限定。
图3为本申请某些实施例提供的光源的截面结构示意图。
参照图3,光源122具体包括:发光芯片1221、封装部1222和遮挡部1223。
发光芯片1221位于电路板121背离背板11的一侧。在本申请某些实施例中,发光芯片1221其具体指的是微型发光二极管芯片。由于微型发光二极管芯片的尺寸很小,因此有利于将背光模组的动态发光控制到更小的分区,有利于提高画面的对比度。
在本申请某些实施例中,微型发光二极管芯片尺寸小于500μm。微型发光二极管可以根据实际应用进行相应尺寸的制作,在此不做限定。
在本申请某些实施例中,微型发光二极管芯片为miniLED(Mini Light Emitting Diode,简称Mini LED)芯片。
本申请实施例采用的发光芯片1221可以为一种颜色的发光芯片,也可以为多种颜色的发光芯片,在此不做限定。
封装部1222位于发光芯片1221的表面,用于封装保护发光芯片1221,阻隔异物进入到发光芯片1221内部。
在本申请某些实施例中,封装部1222为封装支架;具体地,采用POB封装方式对发光芯片1221进行封装,会在发光芯片1221的外侧设置封装支架。
在本申请某些实施例中,采用POB封装方式对发光芯片1221进行封装时,其下表面会同时形成贴片电极,该贴片电极与发光芯片1221的电极对应电连接,待封装后再将封装好的发光芯片1221贴片到线路层1212的对应位置上。POB封装方式工艺成熟,适应性好。
在本申请某些实施例中,封装部1222为封装胶;具体地,采用COB封 装方式对发光芯片1221进行封装,则先将发光芯片1221焊接到线路层1212对应的焊盘上,再在发光芯片1221表面采用点胶的方式对发光芯片1221进行封装,发光芯片1221表面的封装胶可以采用透明胶体材料,如透过性较佳的硅胶、改性硅胶或环氧树脂等。遮挡部1223位于封装部1222背离电路板121的一侧。
在本申请提供的某些实施例中,遮挡部1223为扩散层,扩散层中设置有散射粒子材料,光线入射到散射粒子材料会不断发生折射与反射,从而达到将光线打散的效果,可以避免光源122上方偏亮的问题;另外,被散射粒子材料反射回光源122的底部的光线,可以再次被反射,最终在光源122的侧面出射,既增大了光源122侧面出射光的强度,匀化了出光范围内各处的光强,又增大光源122的出光角度。由此,可以避免光源122上方偏亮及相邻两光源122交接位置偏暗的问题。在不改变光源122数量的前提下,可以适当缩小混光距离,因此可以在不增加制作成本的前提下,满足显示装置薄型化的发展需求;另外,也可以在不改变混光距离的前提下,减少光源122的使用数量,降低成本。
在本申请提供的某些实施例中,遮挡部1223包括基质和反射粒子,反射粒子对入射光线具有反射的作用,当光线入射至遮挡部1223时,部分入射光线会入射到反射粒子,被反射粒子反射,从而减弱了光源122顶部的出射光强度;并且被反射粒子反射的光线到达光源122的底部时,可以再次被反射,最终在光122的侧面出射,既增大了光源122侧面出射光的强度,匀化了出光范围内各处的光强,又增大光源122的出光角度。由此,可以避免光源122上方偏亮及相邻两光源122交接位置偏暗的问题。在不改变光源122数量的前提下,可以适当缩小混光距离,因此可以在不增加制作成本的前提下,满足显示装置薄型化的发展需求;另外,也可以在不改变混光距离的前提下,减少光源122的使用数量,降低成本。
本申请实施例提供的反射粒子可以为二氧化钛。目前通常采用H/P值(灯板12上表面到扩散板13下表面的距离,即混光距离/相邻两光源122之间的 间隔距离)来衡量背光模组成本(光源122数量)与厚度的关系。目前行业内H/P值一般在0.6以上,H/P值越小,说明模组厚度越薄,或者使用光源122颗数越少。本申请实施例提供的二氧化钛含量为30%时,H/P值可以由0.6以上降低到0.5左右,在不增加制作成本(不改变光源122数量)的前提下,满足显示装置薄型化的发展需求。
参见图4,示例性的展示了一种光源的截面示意图。图4所示的光源包括底板301、电极302、金线303、发光芯片304、封装部305、遮挡部306。电极302部署在底板301中,用于对发光芯片304进行供电。金线303连接电极与发光芯片,具有导电的作用。需要说明的是,图4示出的光源仅作为一种示例。
由于遮挡发光芯片的直射光线的遮挡部位于封装部的正上方,如图4中示出的遮挡部的位置。所以可能会导致发光芯片大部分射出的光线被遮挡,仅从侧方射出光线,出光角度较少,光线利用率降低,导致光效损失。为了提高光线利用率,可以增加出光角度。一种可行地增加出光角度的方法是减小封装部的尺寸。遮挡部是位于封装部之上,在减小封装部尺寸的同时减小遮挡部的尺寸,从而实现增大出光的角度。但是由于这种解决方法需要降低加工尺寸,所以增加加工的难度。并且,如果采用锡焊的方式将封装部固定在底板上的话,减小封装部的尺寸可能还会导致锡焊采用的锡溢出的问题。锡溢出会影响光线的反射,降低生产的良品率。
本申请实施例提供了一种显示装置,该显示装置中包含的背光模组中,采用不同类型的遮挡部代替现有的遮挡部,减小遮挡的发光芯片射出的光线的角度,提高光线的利用率。本申请并不需要减小封装部的尺寸但能够实现增大出光角度,不会出现锡溢出的问题,提升生产的良品率。并且为了提升加工的效率,还可以增大封装部的尺寸,便于加工。
本申请实施例提出的遮挡部是相对于发光芯片设置的,遮挡部的几何中心与发光芯片的发光轴重合,用于遮挡发光芯片发射出的小于设定出射角度的光束。
其中,设定出射角度可以是根据发光芯片的发光角度设定的。例如,在设计显示装置时,为了使显示装置更加轻薄,需要尽可能的减小液晶显示装置的厚度。但是如果显示装置的厚度减小会导致显示装置中用于提供光源的背光模组的混光距离变小。混光距离变小会使得发光芯片射出的光线混光不充分,从而导致亮度不均匀的现象。已知保证混光充分的方法有两个,一是有足够长的混光距离,二是光线足够多。那么为了在混光距离变小的情况下保证混光充分,就需要更多的光线,也就需要更多的发光芯片来发射光线,以保证混光充分,避免出现亮度不均匀的现象。但是增加发光芯片的数量会导致显示屏的制造成本增加。为了均衡降低厚度和控制成本这两个要求,申请人通过研究发现,当发光芯片的发光角度为一个特定角度时,可以达到既能保障显示装置足够薄,也能保证成本较低的目的。比如,mini LED,特定角度可以为160°,在mini LED的发光角度为160°时,可以保证显示装置薄厚满足要求的同时,成本较低。
在一些实施例中,基于发光芯片的配光曲线图,当发光芯片射出的光线的角度在25°~30°之间时,可以满足发光角度能够达到160°,所以发光芯片的设定出射角度的取值范围可以是[25°,30°]。其中,发光芯片的发光角度可以理解为发光芯片发射出的光线的散射角度,发光芯片的配光曲线图用于表征发光芯片发出的光线在空间上的光强分布。可以理解的是,发光芯片的配光曲线图中包含着该发光芯片的发光角度和出射角度的对应关系。
在一种可能的实现方式中,本申请提出的显示装置中的背光模组还包括封装部,封装部位于发光芯片与遮挡部之间,用于保护发光芯片。遮挡部可以位于封装部之上,或者,封装部背离发光芯片的一侧具有凹槽,遮挡部可以位于该凹槽中。
示例性地,遮挡部靠近发光芯片一侧的表面为圆形。可选地,遮挡部的材料可以采用二氧化钛(TiO 2)。
在一些实施例中,当遮挡部位于封装部之上时,遮挡部遮挡发光芯片发出的小于设定出射角度的光束,其中设定出射角度可以满足如下公式(1)- (2)所示的关系:
tanθ=k/d;                       (1)
L≤k;                         (2)
其中,θ为设定出射角度,k为遮挡部靠近发光芯片一侧的表面圆的半径,d为遮挡部靠近发光芯片的一侧到发光芯片的距离,L为遮挡部的侧面的任一点到发光轴的距离。
为了便于理解,可以参见图5,示出了当遮挡部位于封装部之上时,光源的截面示意图。在图5示出的光源的截面示意图中,包括遮挡部401、封装部402、发光芯片403、底板404以及用于向发光芯片供电的电极405和用于连接电极和发光芯片的连接线406。图5仅作为一种示例,本申请对于遮挡部的具体形状不作具体限定,仅需在满足遮挡部件靠近发光芯片一侧的表面为圆形,并且满足公式(1)和公式(2)所示的条件即可。
在一些可能的场景中,遮挡部可以是圆柱、圆锥,圆台,半球体或者其它不规则的形状。在图5中,以遮挡部件为圆台为例进行介绍。
在另一些实施例中,当遮挡部位于封装部背离发光芯片一侧的凹槽中时,遮挡部可以遮挡发光芯片发出的小于设定出射角度的光束,其中设定出射角度可以满足如下公式(3)-(4)所示的关系:
tanθ=k/d;                        (3)
L≤p*tanθ;                       (4)
其中,θ为设定出射角度,k为遮挡部背离发光芯片一侧的表面圆的半径,d为遮挡部背离发光芯片的一侧到发光芯片的距离,L为遮挡部的侧面的任一点到发光轴的距离,p为任一点到发光芯片上靠近遮挡部的一侧的平面的距离。
为了便于理解,可以参见图6,示出了当遮挡部位于封装部的凹槽中时,光源的截面示意图。图6示出的光源的截面示意图中包括遮挡部501、封装部502、发光芯片503、底板504以及用于向发光芯片供电的电极505和用于连接电极和发光芯片的连接线506。图6仅作为一种示例,本申请对于遮挡部的 具体形状不作具体限定,仅需在满足遮挡部靠近发光芯片一侧的表面为圆形,并且满足公式(3)和公式(4)所示的条件即可。
在一些实施例中,遮挡部为圆柱体、圆台、圆锥、半球体。需要说明的是,本申请涉及的半球体可以不是标准意义上的半球体,本申请涉及的半球体的截面的半径大于或者等于半球体的顶点到截面的距离。
下面,为了便于理解本申请提出的显示装置,如下结合具体的实施例进行介绍。
在本实施例中,遮挡部为圆柱体,并位于封装部背离发光芯片的一侧的凹槽中。例如,可以参见图7A,示出了本申请实施例提供的当遮挡部为圆柱体并位于封装部的凹槽中时光源的截面示意图。在图7A示出的光源的截面图中,包括遮挡部601、封装部602、发光芯片603、底板604以及用于向发光芯片供电的电极605和用于连接电极和发光芯片的连接线606。其中,连接线606为导电材质的连接线,例如,可以采用金线。遮挡部601用于遮挡发光芯片发射出的小于设定出射角度的光束。为了进一步理解本实施例,可以参见图7B,示出了本实施例下的一种遮挡部的俯视图。在本实施例中,设定出射角度、圆柱体遮挡部的底面圆半径和圆柱体遮挡部靠近发光芯片一侧到发光芯片的距离之间的关系可以满足公式(5)所示的关系:
tanθ=k/d                      (5)
其中,θ为设定出射角度,k为圆柱体遮挡部的底面圆半径,d为圆柱体遮挡部靠近发光芯片的一侧到发光芯片的距离。
在某些实施例中,设定出射角度θ可以是根据发光芯片的发光角度确定的。例如,当发光芯片的发光角度为一个特定角度时,可以达到既能保障显示屏足够薄,也能保证成本较低的目的。比如,mini LED,特定角度可以为160°,在mini LED的发光角度为160°时,可以保证显示装置薄厚满足要求的同时,成本较低。基于此,为了均衡减小液晶显示装置的厚度和增加发光芯片之间的间距这两个要求,可以根据该发光芯片的配光曲线图,确定当发 光角度为160°时,对应的出射角度可以取25°~30°之间的任一值,即上述的θ的取值范围可以是[25°,30°]。在本申请某些实施例中,圆柱体遮挡部的厚度为0.1mm,当然,圆柱体遮挡部的厚度也可以取其他的值,本申请实施例对此不作具体限定。
在某些实施例中,所述遮挡部为圆台,并位于封装部背离发光芯片一侧的凹槽中。参见图8A,示出了本申请实施例提供的当遮挡部为圆台并位于凹槽中时的光源的截面示意图。在图8A所示的光源的截面图中,包括遮挡部701、封装部702、发光芯片703、底板704以及用于向发光芯片供电的电极705和用于连接电极与发光芯片的连接线706。其中,连接线706为导电材质的连接线,例如,可以采用金线。遮挡部701用于遮挡发光芯片发射出的小于设定出射角度的光束。需要说明的是,图8A仅作为一种示例,本申请对于圆台形遮挡部靠近发光芯片一侧的表面圆的面积是否大于该圆台形遮挡部背离发光芯片一侧的表面圆的面积不作具体限定。在图8A中,以圆台形遮挡部靠近发光芯片一侧的表面圆的面积小于圆台形遮挡部背离发光芯片一侧的表面圆的面积为例进行介绍。为了进一步理解本实施例,还可以参见图8B,示出了本实施例下的一种圆台形遮挡部的仰视示意图。在本实施例中,设定出射角度可以满足如下公式(6)-(7)所示的关系:
tanθ=a/b;                        (6)
c≤e*tanθ;                        (7)
其中,θ为设定出射角度,a为圆台背离发光芯片的一侧的表面圆的半径,b为圆台背离发光芯片的一侧到发光芯片的距离,c为圆台靠近发光芯片一侧的表面圆的半径,e为圆台靠近发光芯片的一侧到发光芯片上靠近遮挡部的一侧的平面的距离。
作为一种举例,在设计包含mini LED的背光模组的过程中,可以首先确定设定出射角度θ,θ的取值范围可以是[25°,30°]。θ确定后,可以根据公式(6)-(7)所示的关系,确定圆台形遮挡部背离发光芯片的一侧到发光 芯片的距离与圆台形遮挡部背离发光芯片一侧的表面圆的半径的对应关系,以及确定圆台形遮挡部靠近发光芯片的表面圆的半径,进而确定该光源的结构。
在某些实施例中,圆台形遮挡部的厚度可以取值为0.1mm,当然,圆台形遮挡部的厚度也可以取其他的值,本申请实施例对此不作具体限定。
在某些实施例中,所述遮挡部为半球形状,并位于封装部背离发光芯片一侧的凹槽中。参见图9,示出了本申请实施例提供的当遮挡部为半球形并位于发光芯片一侧的凹槽中时的光源的截面示意图。在图9示出的光源的截面图中,包括遮挡部801、封装部802、发光芯片803、底板804以及用于向发光芯片供电的电极805和用于连接电极和发光芯片的连接线806。其中,连接线806为具有导电性能的连接线,例如,可以采用金线作为该连接线。遮挡部801用于遮挡发光芯片发射出的小于设定出射角度的光束。需要说明的是,图9仅作为一种示例,在实际的光源中,对于以半球形遮挡部靠近发光芯片的一侧作为半球的截面还是以半球形遮挡部背离发光芯片的一侧作为半球的截面不做限定。在图9中,以半球形遮挡部背离发光芯片的一侧作为半球的截面为例进行说明。需要说明的是,在本实施例中涉及的半球的截面的半径可以大于半球的顶点到截面的距离,也可以等于半球的顶点到截面的距离。
作为一种示例,在本实施例中,设定出射角度可以满足如下公式(8)示出的关系:
tanθ=k/d                      (8)
其中,θ为设定出射角度,k为半球形遮挡部背离发光芯片一侧的表面圆的半径,d为半球形遮挡部背离发光芯片一侧到发光芯片之间的距离。
在本申请某些实施例中,半球形遮挡部的厚度为0.1mm,即半球的截面到半球的顶点的距离可以取值为0.1mm,当然,半球形遮挡部的厚度也可以取其他的值,本申请实施例对此不作具体限定。
在某些实施例中,所述遮挡部为圆柱体,并位于封装部之上。参见图10, 示出了本申请实施例提供的当遮挡部件为圆柱体并且位于封装部之上时的光源的截面示意图。在图10所示的光源的截面示意图中,包括遮挡部901、封装部902、发光芯片903、底板904以及用于向发光芯片供电的电极905和用于连接电极905与发光芯片903的连接线906。其中,连接线906位具有导电性能的连接线,例如,可以采用金线作为连接线。遮挡部901用于遮挡发光芯片发射出的小于设定角度的光束。作为一种示例,设定出射角度、圆柱体遮挡部靠近发光芯片一侧到发光芯片的距离和圆柱体遮挡部的底面圆半径之间的关系可以满足公式(9)所示的关系:
tanθ=k/d                         (9)
其中,θ为设定出射角度,k为圆柱体遮挡部的底面圆半径,d为圆柱体遮挡部靠近发光芯片一侧到发光芯片之间的距离。
本申请某些实施例中,圆柱体遮挡部的厚度为0.1mm,当然,圆柱体遮挡部件的厚度也可以取其他的值,本申请实施例对此不作具体限定。
需要说明的是,遮挡部的不同形态可用于POB封装的光源也可用于COB封装的光源。
图11为本申请实施例提供的光源的截面结构示意图。
参照图11,在本申请实施例中,光源13-1包括:遮挡部131-1、发光芯片132-1和封装部133-1。
遮挡部131-1位于光源13-1的出光侧,遮挡部131-1对至少部分入射光线具有反射作用,可以减弱光源13-1顶部的出射光强度;并且被遮挡部131-1反射的光线到达光源13-1的底部时,可以再次被反射,最终在光源13-1的侧面出射,既增大了光源13-1侧面出射光的强度,匀化了出光范围内各处的光强,又增大了光源13-1的出光角度。由此,可以避免光源13-1上方偏亮及相邻两光源13-1交接位置偏暗的问题。在不改变光源13-1数量的前提下,可以适当缩小混光距离,因此可以在不增加制作成本的前提下,满足显示装置薄型化的发展需求;另外,也可以在不改变混光距离的前提下,减少光源13-1 的使用数量,降低成本。
在本申请提供的实施例中,遮挡部131-1在背板11的正投影与发光芯片132-1在背板11的正投影存在交叠区域,由此可以保证发光芯片132-1出射的光线,入射到发光芯片132-1上方的交叠区域时,可以被遮挡部131-1反射,减弱光源13-1顶部的出射光强度,并且被遮挡部131-1反射的光线到达光源13-1的底部时,可以再次被反射,最终在光源13-1的侧面出射,由此可以避免光源13-1上方偏亮及相邻两光源13-1交接位置偏暗的问题。
进一步地,遮挡部131-1呈中心对称结构,经遮挡部131-1遮挡后的光源13-1出射的光线也相互对称,从而使得显示装置出射的光线更均匀,提高了显示装置的显示效果。
发光芯片132-1位于线路层122-1之上,发光芯片132-1可以为LED芯片、mini LED芯片或RGB芯片。在本申请实施例中,发光芯片132-1为微型发光二极管芯片时,微型发光二极管芯片包括但不限于Mini LED芯片(Mini-Light Emitting Diode,简称Mini LED),其不同于普通的发光二极管,在本申请实施例中,发光芯片132-1具体指的是尺寸小于500μm之间的微型发光二极管芯片。由于发光芯片132-1的尺寸很小,因此发光芯片132-1有利于将动态发光控制到更小的分区,有利于提高画面的对比度。在本申请实施例中,发光芯片132-1呈现阵列排布,有利于根据背光模组的出光要求对发光芯片的间距进行设计。
遮挡部131-1的存在可以适当缩小混光距离,当应用于超薄显示装置时,混光距离需要进一步缩小,受发光芯片132-1出光角度的限制,当混光距离进一步缩小时,仍然会存在光源13-1上方偏亮及相邻两光源13-1交接位置偏暗的问题。
有鉴于此,参照图12,本申请实施例提供的光源13-1还包括两个反射层134-1,两个反射层134-1分别位于发光芯片132-1的出光侧和背离出光侧的表面,两个反射层134-1具有对光进行反射的性质,发光芯片132-1出射的光线到达出光侧的反射层时,部分光线透射、大部分光线被反射,被反射的光 线到达背离出光侧的反射层时,再次被反射,如此反复,最终发光芯片132-1出射的部分光线由出光侧的反射层透射,部分光线由发光芯片132-1的侧面出射,从而进一步增大了发光芯片132-1光线的出射角度、减小了发光芯片132-1中心位置处的亮度,提升相邻两个光源13-1的混光效果,避免了由于混光距离的减小出现的明显的灯影现象,提高了显示装置的显示效果。另外,反射层134-1的存在也可以避免在设置遮挡部131-1后,可能出现的黑环现象,进一步提高了显示装置的显示效果。
具体地,两个反射层134-1包括:第一反射层134-11和第二反射层134-12。第一反射层134-11位于发光芯片132-1靠近线路层122-1一侧的表面,第二反射层134-12位于发光芯片132-1背离线路层122-1一侧的表面。在本申请实施例中,第一反射层134-11的反射率大于第二反射层134-12的反射率,且第一反射层134-11的反射率大于或等于90%,由此可以保证入射到第一反射层134-11的光线绝大部分被反射,且入射到第二反射层134-12的光线部分透射,大部分光线被反射,从而可以防止发光芯片132-1中心位置处的亮度过暗的现象。
在本申请实施例中,两个反射层134-1为布拉格反射层。第一反射层134-11和第二反射层134-12均由两种不同折射率的第一介质层和第二介质层交替堆叠形成,具体第一介质层和第二介质层的材料可以根据不同显示装置的不同需求而定,只要保证第一反射层134-11的反射率大于第二反射层134-12的反射率,且第一反射层134-11的反射率大于或等于90%即可,在此不做限定。
本申请实施例提供的第一反射层134-11和第二反射层134-12可根据不同显示装置的不同需求设置第一介质层和第二介质层的层数,在此不做限定。
封装部133-1包围发光芯片132-1设置,用于对发光芯片132-1进行封装保护,阻隔异物进入到光源13-1内部。
在本申请提供的实施例中,参照图12,封装部133-1可以为封装支架;具体地,采用POB封装方式对发光芯片132-1进行封装,会在发光芯片132-1 的外侧设置封装支架,封装支架用于封装保护发光芯片132-1,阻隔异物进入到发光芯片132-1内部。在本申请实施例中,采用POB封装方式对发光芯片132-1进行封装时,其下表面会同时形成贴片电极,该贴片电极与发光芯片132-1的电极对应电连接,待封装后再将封装好的发光芯片132-1贴片到电路板的对应位置的焊盘上。POB封装方式工艺成熟,适应性好。
在一些实施例中,如图12所示,遮挡部131-1可以设置于封装支架上。由此可以简化设计,在封装支架的表面贴附遮挡部即可。
在另一实施例中,如图13所示,封装支架的出光面上设置有凹槽,该凹槽用于放置遮挡部131-1,将遮挡部131-1放置于凹槽中。采用凹槽设置遮挡部131-1固定更牢靠,可以使光源表面为平面结构,增加了显示装置的使用寿命。
在本申请某些实施例中,遮挡部131-1为扩散层,扩散板中设置有散射粒子材料,光线入射到散射粒子材料会不断发生折射与反射,从而达到将光线打散的效果,可以避免光源13-1上方偏亮的问题;另外,被散射粒子材料反射回光源13-1的底部的光线,可以再次被反射,最终在光源13-1的侧面出射,既增大了光源13-1侧面出射光的强度,匀化了出光范围内各处的光强,又增大光源13-1的出光角度。由此,可以避免光源13-1上方偏亮及相邻两光源13-1交接位置偏暗的问题。在不改变光源13-1数量的前提下,可以适当缩小混光距离,因此可以在不增加制作成本的前提下,满足显示装置薄型化的发展需求;另外,也可以在不改变混光距离的前提下,减少光源13-1的使用数量,降低成本。
在本申请某些实施例中,遮挡部131-1也可以为反射层,反射层包括基质和反射粒子,反射粒子对入射光线具有反射的作用,当光线入射至遮挡部131-1时,部分入射光线会入射到反射粒子,被反射粒子反射,从而减弱了光源13-1顶部的出射光强度;并且被反射粒子反射的光线到达光源13-1的底部时,可以再次被反射,最终在光13的侧面出射,既增大了光源13-1侧面出射光的强度,匀化了出光范围内各处的光强,又增大光源13-1的出光角度。由 此,可以避免光源13-1上方偏亮及相邻两光源13-1交接位置偏暗的问题。在不改变光源13-1数量的前提下,可以适当缩小混光距离,因此可以在不增加制作成本的前提下,满足显示装置薄型化的发展需求;另外,也可以在不改变混光距离的前提下,减少光源13-1的使用数量,降低成本。
在具体实施时,遮挡部的材料可以采用钛白粉或二氧化钛等具有反射和/或散射性质的材料进行制作,在此不做限定。
图14a为本申请实施例提供的光源的截面结构示意图之四。图14b为本申请实施例提供的光源的截面结构示意图之五。图14c为本申请实施例提供的光源的截面结构示意图之六。
参照图14a,在本申请提供的实施例中,封装部133-1也可以为封装胶;具体地,COB封装方式对发光芯片132-1进行封装,则先将发光芯片132-1焊接到线路层122-1对应的焊盘上,再在发光芯片132-1表面采用点胶的方式对发光芯片132-1进行封装,发光芯片132-1表面的封装胶可以采用透明胶体材料,如透过性较佳的硅胶、改性硅胶或环氧树脂等。COB封装具有较高的效率且成本较低。
在本申请提供的实施例中,遮挡部131-1为具有反射光线性质的材料,如白色油墨,当光线入射至遮挡部131-1时,部分入射光线会入射到白色油墨,被白色油墨反射,从而减弱了光源13-1顶部的出射光强度;并且被白色油墨反射的光线到达光源13-1的底部时,可以再次被反射,最终在光源13-1的侧面出射,既增大了光源13-1侧面出射光的强度,匀化了出光范围内各处的光强,又增大光源13-1的出光角度。由此,可以避免光源13-1上方偏亮及相邻两光源13-1交接位置偏暗的问题。在不改变光源13-1数量的前提下,可以适当缩小混光距离,因此可以在不增加制作成本的前提下,满足显示装置薄型化的发展需求;另外,也可以在不改变混光距离的前提下,减少光源13-1的使用数量,降低成本。
具体地,参照图14a,本申请实施例提供的白色油墨位于封装胶133-1的内部,发光芯片132-1表面点封装胶后,在封装胶凝固前,向封装胶的表面点 白色油墨,由于封装胶和白色油墨均具有流动性,白色油墨会流动到封装胶的内部,形成如图14a所示的遮挡部131-1。遮挡部131-1位于封装胶内部,可以使遮挡部131-1固定更牢靠,增加了显示装置的使用寿命。
在另一实施例中,封装胶凝固前,在封装胶上按压形成用于盛装白色油墨的凹槽,再将白色油墨注入到凹槽内,最终由于封装胶和白色油墨均具有流动性,白色油墨会流动到封装胶的内部,形成如图14a所示的遮挡部131-1。或者,在封装胶上按压形成用于盛装白色油墨的凹槽,将白色油墨注入到凹槽内后,再在上方点封装胶,将白色油墨封于封装胶的内部。只要形成如图14a所示的遮挡部131-1,将白色油墨封于封装胶的内部即可,具体操作方法在此不做限定。
参照图14b,在本申请提供的另一实施例中,白色油墨位于封装胶133-1的表面,在封装胶凝固后,再在遮挡部131-1的顶部点白色油墨形成如图14a所示的遮挡部131-1,此方法操作工艺简单,节省制作时间。
参照图14c,在本申请提供的实施例中,也可以在发光芯片132-1表面点胶后,对封装胶顶部进行适度按压,待封装胶凝固后,再在封装胶的顶部点白色油墨,相比于图14b所示的在圆弧状封装胶的表面形成的遮挡部131-1更牢靠,增加了显示装置的使用寿命。
在本申请提供的实施例中,遮挡部131-1的参数满足光源13-1出光光强分布的条件;其中,遮挡部131-1的参数包括:设置位置、材料、形状、浓度、厚度和反射率。例如,如图15a所示,可以将遮挡部131-1中间的厚度设置的比两端的厚度大;或者,如图15b所示,进一步加大白色油墨中间的厚度(相比于图14a),如此可以增加遮挡部131-1中间区域的反射光的强度,当光线入射至遮挡部131-1中间区域时,大部分光线被反射从而减弱了光源13-1中间区域的出射光强度;可以进一步避免光源13-1上方偏亮及相邻两光源13-1交接位置偏暗的问题。
在具体实施时,可以根据背光模组的最终出光效果,对每个光源的出光光型进行模拟,从而再根据模拟结构来改变遮挡部131-1的设置区域、形状、 所采用的材料、厚度等参数从而对各位置的出光率进行调整,以使得最终光源的出光光型满足出射均匀背光的条件。本申请实施例不对遮挡部131-1的具体形状进行限定。
本申请实施例还提供了一种显示装置,可以增大发光芯片的出光角度,减少显示装置中发光芯片的使用数量,避免出现亮暗不均的问题。
图16为本申请某些实施例提供的背光模组的截面结构示意图。
参考图16,背光模组包括电路板100-2、发光芯片500-2、封装部200-2和位于封装部内的反射部210-2。
电路板100-2的大小与显示装置的大小相适应,形状也可以为方形、矩形或者异形,在此不做限定。在本申请一些实施例中,背光模组也可以包括多个电路板100-2,电路板100-2之间通过拼接方式共同为显示装置提供背光。为了避免电路板100-2拼接带来的光学问题,相邻电路板100-2之间的拼缝尽量做到较小,甚至实现无缝拼接。
发光芯片500-2位于电路板100-2上呈阵列排布。发光芯片焊接于电路板100-2上。在本申请实施例中,发光芯片500-2为微型发光二极管芯片,微型发光二极管芯片包括但不限于Mini LED芯片(Mini-Light Emitting Diode,简称Mini LED),其不同于普通的发光二极管,在本申请一些实施例中,发光芯片具体指的是尺寸在50μm-200μm之间的微型发光二极管芯片。由于发光芯片500-2的尺寸很小,因此发光芯片有利于将动态发光控制到更小的分区,有利于提高画面的对比度。在本申请实施例中,发光芯片500-2呈现阵列排布,有利于根据背光模组的出光要求对发光芯片的间距进行设计。
封装部200-2覆盖在发光芯片500-2上。封装部200-2可以采用透明的胶体材料。
在本申请一些实施例中,使用点胶机在每个发光芯片500-2上形成单独的封装部200-2。封装部200-2的形状可以为半球体。封装部200-2使用透明的有机硅材料。
在本申请一些实施例中,半球体形的封装部200-2的高度为0.65mm,直 径为2.5mm。封装部200-2的透明度大于95%,粘度为12Pa·s/(25℃,10rpm)~16Pa·s/(25℃,10rpm),触变系数为2.5/(3rpm/30rpm)~3.0/(3rpm/30rpm),硬度为35HA~40HA。因此,封装部200-2具有良好的透光性,具有良好的在结构被破坏后恢复原有结构的能力,还具有一定的硬度。
在本申请实施例中,封装部200-2的形成为发光芯片500-2提供了弹性保护,可用于防止发光芯片500-2在各个工艺流程中被磕碰而失效,提高了显示装置的制备良率。
在本申请实施例中,封装部200-2内设置有反射部210-2,反射部210-2位于发光芯片500-2的出光一侧,用于反射光线。
图17为本申请某些实施例提供的背光模组的截面结构示意图。
参考图17,封装部200-2内设置有反射部210-2,反射部210-2位于发光芯片500-2的出光一侧,用于反射光线。反射部210-2的中心点在电路板上的正投影与发光芯片的中心点在电路板上的正投影重合。因反射部210-2具有反射光线的性质,因此发光芯片500-2的部分出射光线在入射到反射部210-2后,会被反射部210-2反射到电路板100-2上,此部分光线会被电路板100-2进行再次反射;发光芯片500-2的出射光线在经过多次的反射后,形成向四周分散的出射光线,增大了发光芯片的出光角度。
如图17所示,发光芯片的靠近中线区域的出射光线n经过反射部210-2的反射,被反射至电路板100-2上,经过电路板100-2的再次反射后形成了靠近电路板区域的出射光线。而未被反射部210-2反射的光线m则沿着出射角度正常出射。因此反射部210-2的设置,增大了发光芯片500-2的出光角度,使背光模组的出射光线更加均匀,还提高了光线利用率。
在本申请实施例中,如图17所示,反射部210-2和发光芯片500-2之间的距离c为2密耳~4密耳。由此可以保证发光芯片500-2的出射光线可以被反射部210-2反射至电路板100-2上进行再次反射,形成向四周分散的出射光线,增大了发光芯片500-2的出光角度,使灯板的出光更加均匀。
在本申请实施例中,反射部210-2的形状为球体,其直径为发光芯片500-2 宽度的3/4。因此,反射部210-2在电路板100-2上的正投影图形和发光芯片500-2在电路板100-2上的正投影图形具有很大的重叠范围。由此可以保证发光芯片500-2的出射光线中的绝大部分光线都能被反射部210-2反射至电路板100-2上,再被电路板100-2进行再次反射,经过电路板100-2与反射部210-2的多次反射后,形成向四周分散的出射光线,增大了发光芯片500-2的出光角度,使灯板的出光更加均匀。
在本申请实施例中,反射部210-2包括基质和分散在基质中的反射材料。其中,反射材料为二氧化钛。反射部210-2可以在形成封装部200-2后,再次通过点胶设备在封装部200-2中注入形成。反射部210-2中的反射材料具有反射光线的性质。因此,发光芯片500-2的出射光线入射到反射部210-2中,会被反射部210-2中的反射材料反射到电路板100-2上,被电路板100-2进行再次反射后,形成向四周分散的出射光线,由此增大了发光芯片的出光角度,使背光模组的出光更加均匀。
在本申请实施例中,因设置了反射部210-2,增大了各发光芯片500-2的出光角度。因此,在同样尺寸的电路板100-2上,可以减少发光芯片的使用数量,增大各个发光芯片之间的距离,其背光模组也可形成均匀的出射光线,不会出现亮暗不均的问题。
图18为本申请某些实施例提供的背光模组的截面结构示意图。
参照图18,在本申请实施例中,电路板100-2包括基板110-2、线路层120-2和反光层130-2。
在本申请实施例中,电路板100-2可采用目前成熟的印制电路板制作工艺制作。
在本申请实施例中,基板110-2可采用具有较好的热传导性能和较好的机械耐久力的金属铝材料制作。基板110-2的尺寸大小与显示装置大小相适应,略小于显示装置。基板110-2的形状可以为方形、矩形或是异性,在此不做限定。
在本申请实施例中,线路层120-2可采用金属铜、金属镍、金属铝等多种 金属箔中的一种。在本申请实施例中,选择铜箔作为线路层120-2的材料。在制作导电线路时,可采用目前成熟的覆铜工艺进行导电线路的设置。
在本申请实施例中,基板110-2和线路层120-2之间会有一层绝缘层(图中未示出),主要起到粘合、绝缘和导热的功能。绝缘层的材料可以采用高导热、高绝缘的环氧树脂。绝缘层的热传导性能越好,越有利于器件运行时所产生的热量的传导,有效地降低器件的运行温度,延长电路板100-2的寿命。
在本申请实施例中,反光层130-2位于线路层120-2背离基板110-2的一侧;如图18所示,反光层130-2包括暴露各个发光芯片500-2的第一开口131-2。反光层130-2可采用具有较好绝缘和反光性能的树脂材料,例如白油。反光层130-2上有多个第一开口131-2用于暴露出发光芯片500-2,使发光芯片500-2与线路层120-2中的导电线路形成电连接。同时,发光芯片500-2的出射光线被反射部210-2反射至反光层130-2上,反光层130-2将此部分光线再次进行反射。出射光线经过反射部210-2和反光层130-2的多次反射,可以形成向四周扩散的光线,增大了发光芯片500-2的出光角度,使背光模组的出射光线更加均匀,还提高了光线利用率。
本申请实施例中,因为增大了发光芯片500-2的出光角度,各个发光芯片500-2之间即使增大了相隔距离,也可以避免亮暗不均的问题;由此,可以减少灯板上发光芯片500-2的使用数量。因此,在本申请实施例中,电路板100-2为单面板,只有一面有线路,另一面为基板或者直接使用绝缘的油墨覆盖。其横截面只有有线路的一面含有铜箔,可以有效的降低成本。
图19为本申请某些实施例提供的发光芯片的截面结构示意图。
参考图19,发光芯片500-2包括第一布拉格反射层510-2,第一掺杂层520-2,发光层530-2,第二掺杂层540-2,第二布拉格反射层550-2以及两个电极560-2。
在本申请实施例中,发光芯片500-2为微型发光二极管芯片,微型发光二极管芯片包括但不限于Mini LED芯片(Mini-Light Emitting Diode,简称Mini LED),其不同于普通的发光二极管,在本申请一些实施例中,发光芯片具体 指的是尺寸在50μm-200μm之间的微型发光二极管芯片。发光芯片500-2可以使用目前成熟的制作工艺进行制作。
在本申请实施例中,可采用化学气相沉积法在衬底上依次生长第一布拉格反射层510-2、第一掺杂层520-2、发光层530-2、第二掺杂层540-2和第二布拉格反射层550-2。其中,第一掺杂层520-2和第二掺杂层540-2可以采用相同的材料,例如氮化镓等,分别进行P型掺杂和N型掺杂得到;再使用电子束蒸发电极及光刻技术在第二布拉格反射层550-2上形成两个电极560-2;最后通过刻蚀法,在衬底上形成多个发光芯片500-2。
其中,第一布拉格反射层510-2和第二布拉格反射层550-2是采用两种不同折射率的材料膜层交替堆叠而成的周期结构,例如可采用AlGaAs和AlxOy两种材料。因这两种材料具有很大的折射率差,有利于提高反射效果。每层膜层的几何厚度与膜层使用材料的折射率的乘积称为光学厚度,每层材料的光学厚度为其中心反射波长的1/4,因此第一布拉格反射层510-2和第二布拉格反射层550-2是一种1/4波长多层***,相当于一组简单的光子晶体。
发光芯片500-2被激励后,其经过两个布拉格反射层的出射光线被布拉格反射层改变出光角度,导致大部分光线无法朝向发光芯片500-2的正上方出射,而是朝向发光芯片500-2的两侧区域出射,使得朝向发光芯片500-2两侧出射的光线增多,也因此发光芯片500-2的出光角度增大,可增大至165°。
在形成了发光芯片500-2后,将各个发光芯片500-2转移至电路板上,各个发光芯片500-2的位置与反光层上的第一开口一一对应。再使用目前成熟的键合工艺,将发光芯片500-2与电路板电连接。
如图2所示,背光模组还包括有扩散板13,位于发光芯片的出光侧,用于均匀光线;因此,电路板与扩散板13之间还设置有用于支撑扩散板的支架15。其中,支架15包括有底座和支撑体。
如图20为本申请某些实施例提供的支架的底座的俯视示意图,图21为本申请某些实施例提供的支架的底座的截面结构示意图。
参考图20和图21,在本申请实施例中,底座位于电路板上,底座包括了 至少两个朝向扩散板竖起的嵌入片。底座15-2为圆盘形,其直径为4mm,可以采用金属金、金属银、金属铜、金属铁和金属锡等金属材料中的一种经过加工制成。底座上两侧的镂空区域即为加工为朝向扩散板竖起的嵌入片区域。
在本申请的一些实施例中,底座15-2包括了两个朝向扩散板竖起的嵌入片15-21,两个嵌入片15-21之间的距离a为1.30mm,两个嵌入片的宽度b为0.75mm。
图22为本申请实施例提供的支架的截面结构示意图。
参考图22,支架的支撑体15-3与底座连接,嵌入片15-21嵌入至支撑体15-3的内部。在本申请实施例中,支撑体15-3采用耐高温尼龙(Polyphthalamide,简称PPA)等材料,采用注塑工艺将支撑体15-3和嵌入片15-21一起注塑,由此保证了支撑体15-3与底座之间的连接强度,保证了支架的推拉力强度,能够使得由支架所支撑的扩散板有更好的稳定性。相比于目前常用的胶体支架,本申请实施例提供的支架有着良好的耐高温性能。因此即便是在较高的工作温度下,支架也能保持其强度,使电路板与扩散板之间的支撑更加稳定。
在本申请实施例中,电路板上包括多个用于连接支架的第一焊盘,每个第一焊盘的位置与支架的位置一一对应,并且反光层还包括了暴露第一焊盘的第二开口。第一焊盘用于与支架的底座焊接连接。相比于目前常用的用胶体连接支架与电路板的方法,使用焊接的方式能够使支架被固定得更加稳定。并且显示装置在工作时,功率较大,会导致灯板温度较高。胶体连接方式会受较高温度的影响,而焊接连接方式受到的影响则较小,使得背光模组结构更加稳定,延长了其使用寿命。
并且,本申请实施例提供的支架可以通过焊接的方式与电路板连接。由此,支架的焊接固定可以与发光芯片的焊接固定同时进行,简化了工艺流程,提高了制备效率。
图23为本申请某些实施例提供的背光模组的俯视结构示意图。
参考图23,电路板100-2上包括被封装部200-2覆盖的发光芯片、支架15、至少一个驱动芯片400-2和一些***电路元件700-2。
因此,电路板上还包括多个第二焊盘,反光层还包括多个暴露第二焊盘的第三开口。每个驱动芯片400-2和***电路元件700-2的位置与每个第二焊盘一一对应,第二焊盘将驱动芯片400-2与***电路元件700-2与电路板中的线路层进行了电连接。驱动芯片400-2给电路板内的线路层提供驱动信号,再由线路层中的导电线路传递至各个发光芯片,用以控制发光芯片的亮度。
***电路元件700-2包括电容、电阻等元器件,***电路元件700-2的设置保证了驱动芯片400-2运行的可靠性,提高了显示装置的稳定性。
在本申请实施例中,由于各个发光芯片的出光角度增大,因此可以减小发光芯片的设置数量,从而可以在发光芯片之间的间隔距离设置驱动芯片400-2和***电路元件700-2。由此,驱动芯片和***电路元件位于电路板设置有发光芯片的一侧。电路板使用单面的印制电路板。用于控制发光芯片的驱动芯片400-2的引脚的数量也显著减少,降低了端子成本及线材成本。并且,由于发光芯片的数量减少了,每个发光芯片可以直接与驱动芯片400-2的各个引脚通过线路层电连接,避免通过端子、转接线路转接到电路板端造成信号传输的不稳定,提高了信号传输的稳定性,从而提升了显示装置的可靠性。
另一方面,本申请实施例提供一种上述任一显示装置的制作方法,图24为本申请实施例提供的显示装置的制作方法的流程图。
参考图24,本申请实施例提供的显示装置的制作方法包括:
S111、在电路板上连接多个发光芯片;
S112、对各发光芯片进行封装,在个发光芯片的表面形成封装部;
S113、在封装部内部注入反射材料,形成反射部。
本申请实施例提供一种通过在发光芯片的封装部内部注入反射材料的制作方法。而已有技术中,因发光芯片的出光角度大概为145°,背光模组受限制于发光芯片的出光角度,需要使用大量的微型发光二极管;若减少发光芯片的使用数量,则会产生出光亮暗不均的问题。相对于已有技术,本申请实施例提供的制作方法可以增大发光芯片的出光角度,减少显示装置中发光芯片的使用数量,避免出现亮暗不均的问题。
本申请实施例中,电路板的制作可以使用目前成熟的电路板制作工艺进行制作。电路板可以为单面板,只有一面有线路,另一面为基板或者直接使用绝缘的油墨覆盖。其横截面只有有线路的一面含有铜箔,可以有效的降低成本。
本申请实施例中,制作完电路板后,需在电路板上连接多个发光芯片。在具体实施时,需要在衬底上使用化学气相沉积法依次生长第一布拉格反射层、第一掺杂层、发光层、第二掺杂层和第二布拉格反射层。其中,第一掺杂层和第二掺杂层可以采用相同的材料,例如氮化镓等,分别进行P型掺杂和N型掺杂得到;再使用电子束蒸发电极及光刻技术在第二布拉格反射层上形成两个电极;最后通过刻蚀法形成多个发光芯片。
之后,使用目前的巨量转移技术将各发光芯片转移至电路板上,将各发光芯片与电路板电连接。
在对发光芯片进行转移的同时,可以将支架一并转移,使支架与电路板焊接固定,简化了工艺流程,提高了制备效率。
在本申请实施例中,在电路板上连接多个发光芯片之后,需对各发光芯片进行封装,在个发光芯片的表面点胶形成封装部。封装部可以采用透明的有机硅材料,通过点胶设备在发光芯片表面形成。封装部的形成为发光芯片提供了弹性保护,可用于防止发光芯片在各个工艺流程中被磕碰而失效,提高了显示装置的制备良率。
在形成了封装部之后,在封装部内部注入反射材料,形成反射部。反射部位于所述发光芯片的出光侧,用于反射光线。反射材料可以为二氧化钛。反射部可以通过点胶设备在封装部中二次注胶形成。反射部中的反射材料具有反射光线的性质。因此,发光芯片的出射光线入射到反射部中,会被反射部中的反射材料反射到电路板上,被电路板进行再次反射后,形成向四周分散的出射光线,由此增大了发光芯片的出光角度,使背光模组的出光更加均匀,减少了显示装置中发光芯片的使用数量,避免出现亮暗不均的问题。
在上述实施例中,反射部具有遮挡作用。
为了进一步提高出光均一性,本申请还提供了一种显示装置。
图25为本申请某些实施例提供的背光模组的局部截面结构示意图。图26为本申请某些实施例提供的背光模组的局部截面结构示意图。
参照图25和图26,背光模组还包括:角度选择膜16。
角度选择膜16位于扩散板13靠近灯板12一侧,该角度选择膜16可以对0°-70°范围的光线增反,同时对70°-90°范围的光线增透。其中,0°-70°范围是指光源122出射的小角度光线,70°-90°范围是指光源122出射的大角度光线。
虽然光源122背离背板11一侧的出光面设置有遮挡部1223,遮挡部1223对至少部分入射光线具有反射的作用,但仍然有部分小角度光线透过遮挡部1223。角度选择膜16可以使透过遮挡部1223出射的小角度光线被增反,光线被角度选择膜16反射回灯板12的方向,而出射大角度光线被增透出射;被反射回灯板12方向的小角度光线再经过反射层123的散射或漫反射之后又会形成一部分大角度光线,从而被角度选择膜16增透出射,由此减小了靠近出射中心的小角度光线的出射强度,增大了远离出射中心的大角度光线的出射强度,使得最终的出射照度一致,提高光源122出射光的均一性。
具体地,角度选择膜16的形状与扩散板13的形状相同,角度选择膜16的厚度范围为30-60μm,由于角度选择膜16的厚度较薄,因此在本申请提供的实施例中,角度选择膜16形成在扩散板13靠近灯板12一侧的表面上,从而保证角度选择膜16自身的平整,进而保证角度选择膜16的光学效果。
本申请实施例提供的角度选择膜16利用薄膜干涉原理对可以对特定入射角度的光线增反或增透,而对于光线的增反或增透作用取决于光线入射到膜层的入射角度,膜层的折射率以及膜层的厚度,因此为了不影响对膜层厚度的计算,应该避免将折射率相等的两个膜层相邻设置。并且单层膜层对入射光线的增反或增透作用有限,在具体实施时,可以采用多个膜层为一组,多组膜层叠层设置的方式来提高角度选择片的增反或增透的效果。
下面对角度选择膜16中的膜层反射小角度光线,同时透射大角度光线的 原理进行具体说明。
如图27所示,当光线以入射角i由折射率为n1的介质入射到折射率为n2的薄膜表面时,在n1和n2两种介质的界面发生光的反射和折射,反射角与入射角相等仍为i,折射角为γ;而折射光线在入射到薄膜的下表面时,会在该下表面也发生光的反射和折射,其中反射光线会穿过薄膜的上表面向n1介质中折射,由此在薄膜的上表面和下表面形成两束反射光线(1)和(2)。反射光线(1)和反射光线(2)两者的光程差δ’为:
Figure PCTCN2022095745-appb-000001
若折射率为n2的薄膜厚度为d,且为厚度均匀的薄膜时,由于
Figure PCTCN2022095745-appb-000002
Figure PCTCN2022095745-appb-000003
因此可以得到:
Figure PCTCN2022095745-appb-000004
由折射定律可知:
n 1sin i=n 2sin r
因此,可得:
Figure PCTCN2022095745-appb-000005
由上式可见,若设置多层膜结构,光线在每一层介质的上限表面的反射光的光程差,只与该层的折射率、厚度以及从空气层的入射角度有关(由折射定律n 1sin i=n 2sin r可知入射角度确定后为定值)。
Figure PCTCN2022095745-appb-000006
其中n2为某一层介质的折射率,i为从空气层入射的角度。
Figure PCTCN2022095745-appb-000007
Figure PCTCN2022095745-appb-000008
利用上述原理,设计多层膜结构,通过设置针对不同角度设置不同层数的增反或者增透膜,可以控制不用角度的反射率或者透过率。本申请实施例提供的角度选择膜16可以将原本照射在光源122正上方位置的一部分小角度 光线,经过反射后,转移到光源122与光源122交界的位置,从而提高背光模组薄型化后背光亮度的均匀性。
本申请实施例提供的角度选择膜16对0°入射光线的反射率为70%-90%,并且角度选择膜16对0°-70°入射光线的反射率依次降低,透过率依次提高。
理论上在光源122背离背板11一侧的出光面设置遮挡部1223,可以增大光源122的出光角度,同时结合角度选择膜16可以最大程度增大单颗光源122的照射范围,进一步降低背光H/P值。然而实际由于遮挡部1223限制了光源122上方也就是小角度出光强度,同时角度选择膜16对小角度光线反射率达到了90%,因此两者结合后会过分降低光源122上方出射光的强度,从而造成光源122上方出现黑影,影响显示装置的显示效果。
有鉴于此,本申请提供的实施例经多次光学模拟实验得到:当遮挡部1223包括基质和反射粒子,反射粒子的含量与角度选择膜对0°入射光线的反射率满足以下关系:
75%<(a+b)<115%
其中,a表示反射粒子的含量,b表示角度选择膜16对0°入射光线的反射率;且反射粒子的含量a的范围为5%-25%,角度选择膜16对0°入射光线的反射率的范围为70%-90%时,既可以减弱光源122顶部的出射光强度,增大光源122的出光角度,又可以避免遮挡部1223与角度选择膜16结合后会过分降低光源122上方出射光的强度,造成光源122上方出现黑影的现象。当本申请实施例提供的反射粒子的含量a与角度选择膜对0°入射光线的反射率b满足上述关系时,可保证显示装置背光出光的均匀程度,如图5所示,使单颗光源122的出光范围由D1增大到D2,实现H/P值的大幅降低,达到0.2以下;在不增加制作成本(不改变光源122数量)的前提下,满足显示装置薄型化的发展需求。
如果(a+b)>115%,由于遮挡部1223的遮挡程度和角度选择膜16反射率过大造成光源122上方光强不足,出现黑影的现象;如果(a+b)<75%,由于遮挡部1223的遮挡程度和角度选择膜16反射率不足,无法解决背光H/P减小 后出现的灯影现象。因此本申请实施例将反射粒子的含量a与角度选择膜16对0°入射光线的反射率设置在75%<(a+b)<115%范围内。
在本申请提供的实施例中,经公式拟合得到:反射粒子的含量、角度选择膜对0°入射光线的反射率、混光距离及相邻两个光源之间的间隔距离满足以下关系:
Figure PCTCN2022095745-appb-000009
其中,a表示反射粒子的含量,b表示角度选择膜对0°入射光线的反射率,H表示混光距离(线路层到扩散板下表面的距离),P表示相邻两个光源之间的间隔距,A表示遮挡部1223的浓度系数,B表示角度选择膜16的反射率系数;且遮挡部1223的浓度系数A的取值范围为6.8-7.0;角度选择膜16的反射率系数B的取值范围为4.5-4.7。由此,本申请实施例可根据上述关系对混光距离及相邻两个光源之间的间隔距离的大小进行调整,满足不同显示装置的需求。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种显示装置,包括:
    显示面板,用于图像显示;
    背光模组,位于所述显示面板的入光侧,用于提供背光;
    所述背光模组包括:
    背板,具有支撑和承载作用;
    灯板,位于所述背板的一侧;所述灯板包括光源;
    所述光源背离所述背板一侧的出光面设置有遮挡部,所述遮挡部对至少部分入射光线具有反射作用。
  2. 如权利要求1所述的显示装置,所述光源还包括:
    发光芯片,位于所述背板的一侧;
    封装部,位于所述发光芯片的表面,用于封装保护所述发光芯片;
    所述遮挡部位于所述封装部背离所述背板的一侧,相对于所述发光芯片设置,所述遮挡部的几何中心与所述发光芯片的发光轴重合,用于遮挡所述发光芯片发射出的小于设定出射角度的光束。
  3. 如权利要求1-2任一项所述的显示装置,所述背光模组还包括:
    角度选择膜,位于所述光源的出光侧;所述角度选择膜用于增加0°-70°入射角度的光线的反射,增加70°-90°入射角度的光线的透射。
  4. 如权利要求3所述的显示装置,所述角度选择膜对0°入射光线的反射率为70%-90%。
  5. 如权利要求4所述的显示装置,所述遮挡部包括基质和反射粒子,所述反射粒子的含量为5%-25%。
  6. 如权利要求5所述的显示装置,所述反射粒子的含量与所述角度选择膜对0°入射光线的反射率满足以下关系:
    75%<(a+b)<115%
    其中,a表示所述反射粒子的含量,b表示所述角度选择膜对0°入射光 线的反射率。
  7. 如权利要求5所述的显示装置,所述反射粒子为二氧化钛。
  8. 如权利要求4所述的显示装置,所述遮挡部为扩散层。
  9. 如权利要求5所述的显示装置,所述反射粒子的含量、所述角度选择膜对0°入射光线的反射率、混光距离及相邻两个所述光源之间的间隔距离满足以下关系:
    Figure PCTCN2022095745-appb-100001
    其中,a表示所述反射粒子的含量,b表示所述角度选择膜对0°入射光线的反射率,H表示混光距离,P表示相邻两个所述光源之间的间隔距,A表示所述遮挡部的浓度系数,B表示所述角度选择膜的反射率系数;
    所述遮挡部的浓度系数A的取值范围为6.8-7.0;所述角度选择膜的反射率系数B的取值范围为4.5-4.7。
  10. 一种显示装置,包括:
    显示面板,用于图像显示;
    背光模组,位于所述显示面板的入光侧,用于提供背光;所述背光模组包括:多个光源;
    所述光源包括:
    发光芯片;
    两个反射层,分别位于所述发光芯片的出光侧和背离出光侧的表面;
    封装部,包围所述发光芯片设置,用于对所述发光芯片封装保护;
    遮挡部,位于所述光源的出光侧,所述遮挡部对至少部分入射光线具有反射作用。
  11. 如权利要求10所述的显示装置,所述反射层包括:
    第一反射层,位于所述发光芯片背离出光侧的表面;
    第二反射层,位于所述发光芯片出光侧的表面;所述第一反射层的反射率大于所述第二反射层的反射率;所述第一反射层的反射率大于或等于90%;
    所述反射层为布拉格反射层;所述布拉格反射层包括多层交替堆叠的第一介质层和第二介质层,
    所述遮挡部呈中心对称结构。
  12. 一种显示装置,包括:
    背光模组,用于提供背光;
    显示面板,位于所述背光模组的出光侧,用于图像显示;
    所述背光模组包括;
    电路板,用于提供驱动信号;
    发光芯片,位于所述电路板上,所述发光芯片与所述电路板电连接;
    封装部,覆盖在所述发光芯片上;
    反射部,位于所述封装层内部,所述反射部位于所述发光芯片的出光侧,用于反射光线。
  13. 如权利要求12所述的显示装置,所述封装部具有覆盖在各所述发光芯片表面的相互分立的图形;所述封装部为半球体。
  14. 如权利要求12所述的显示装置,所述反射部的中心点在所述电路板的正投影与所述发光芯片的中心点在所述电路板的正投影重合。
  15. 如权利要求12所述的显示装置,所述反射部为球体,所述反射部的直径为所述发光芯片宽度的3/4。
  16. 如权利要求12所述的显示装置,所述反射部包括基质和分散在所述基质中的反射材料;
    所述反射材料为二氧化钛。
  17. 如权利要求2所述的显示装置,所述封装部背离所述光源一侧具有凹槽,所述遮挡部位于所述凹槽中;或者,所述遮挡部位于所述封装部之上。
  18. 如权利要求17所述的显示装置,所述遮挡部靠近所述光源一侧的表面为圆形。
  19. 如权利要求17所述的显示装置,当所述遮挡部位于所述封装部之上时,所述设定出射角度满足如下:
    tanθ=k/d;
    L≤k;
    其中,θ为所述设定出射角度,k为所述遮挡部靠近所述光源一侧的表面圆的半径,d为所述遮挡部靠近所述发光芯片的一侧到所述发光芯片的距离,L为所述遮挡部的侧面的任一点到所述发光轴的距离。
  20. 如权利要求17所述的显示装置,当所述遮挡部位于所述凹槽中时,所述设定出射角度满足如下:
    tanθ=k/d;
    L≤p*tanθ;
    其中,θ为所述设定出射角度,k为所述遮挡部背离所述发光芯片一侧的表面圆的半径,d为所述遮挡部背离所述发光芯片的一侧到所述发光芯片的距离,L为所述遮挡部的侧面的任一点到所述发光轴的距离,p为所述任一点到所述发光芯片上靠近所述遮挡部的一侧的平面的距离。
PCT/CN2022/095745 2021-05-28 2022-05-27 一种显示装置 WO2022247941A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202110590520.2A CN115407547B (zh) 2021-05-28 2021-05-28 一种显示装置
CN202110593057.7A CN115407551B (zh) 2021-05-28 2021-05-28 一种显示装置
CN202110593057.7 2021-05-28
CN202110590520.2 2021-05-28
CN202122019685.2U CN215416207U (zh) 2021-08-25 2021-08-25 一种显示装置
CN202122019685.2 2021-08-25
CN202110984187.3A CN115732525A (zh) 2021-08-25 2021-08-25 一种显示装置及其制作方法
CN202110984187.3 2021-08-25

Publications (1)

Publication Number Publication Date
WO2022247941A1 true WO2022247941A1 (zh) 2022-12-01

Family

ID=84228427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095745 WO2022247941A1 (zh) 2021-05-28 2022-05-27 一种显示装置

Country Status (1)

Country Link
WO (1) WO2022247941A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344723A (zh) * 2023-05-31 2023-06-27 硅能光电半导体(广州)有限公司 一种蝙蝠翼光型led灯珠结构及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175946A (zh) * 2005-04-01 2008-05-07 索尼株式会社 背光装置、液晶显示装置和光偏转片
JP2010062305A (ja) * 2008-09-03 2010-03-18 Hitachi Displays Ltd 照明装置、及び液晶表示装置
CN103939793A (zh) * 2013-01-23 2014-07-23 Lg电子株式会社 面状照明装置
CN106526973A (zh) * 2016-12-30 2017-03-22 深圳Tcl新技术有限公司 直下式背光模组和液晶显示装置
CN108461611A (zh) * 2017-12-15 2018-08-28 华灿光电(浙江)有限公司 一种背光源及其制作方法
CN110176448A (zh) * 2018-08-03 2019-08-27 海迪科(南通)光电科技有限公司 面光源模组
CN112162428A (zh) * 2020-08-28 2021-01-01 福州大学 一种Mini-LED通孔调光结构背光源及其制造方法
CN112666757A (zh) * 2020-12-31 2021-04-16 广东晶科电子股份有限公司 一种多层结构的发光器件及背光模组
CN215416207U (zh) * 2021-08-25 2022-01-04 海信视像科技股份有限公司 一种显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175946A (zh) * 2005-04-01 2008-05-07 索尼株式会社 背光装置、液晶显示装置和光偏转片
JP2010062305A (ja) * 2008-09-03 2010-03-18 Hitachi Displays Ltd 照明装置、及び液晶表示装置
CN103939793A (zh) * 2013-01-23 2014-07-23 Lg电子株式会社 面状照明装置
CN106526973A (zh) * 2016-12-30 2017-03-22 深圳Tcl新技术有限公司 直下式背光模组和液晶显示装置
CN108461611A (zh) * 2017-12-15 2018-08-28 华灿光电(浙江)有限公司 一种背光源及其制作方法
CN110176448A (zh) * 2018-08-03 2019-08-27 海迪科(南通)光电科技有限公司 面光源模组
CN112162428A (zh) * 2020-08-28 2021-01-01 福州大学 一种Mini-LED通孔调光结构背光源及其制造方法
CN112666757A (zh) * 2020-12-31 2021-04-16 广东晶科电子股份有限公司 一种多层结构的发光器件及背光模组
CN215416207U (zh) * 2021-08-25 2022-01-04 海信视像科技股份有限公司 一种显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344723A (zh) * 2023-05-31 2023-06-27 硅能光电半导体(广州)有限公司 一种蝙蝠翼光型led灯珠结构及其制备方法
CN116344723B (zh) * 2023-05-31 2023-08-29 硅能光电半导体(广州)有限公司 一种蝙蝠翼光型led灯珠结构及其制备方法

Similar Documents

Publication Publication Date Title
CN111399280B (zh) 一种显示装置
WO2021051787A1 (zh) 一种显示装置及背光模组
CN113126363A (zh) 一种显示装置
CN211979375U (zh) 一种显示装置
WO2019223202A1 (zh) 面光源背光模组及液晶显示面板
CN113777826B (zh) 一种显示装置
US11309293B2 (en) Backlight module and manufacturing method thereof, and display device
CN215416207U (zh) 一种显示装置
WO2022088590A1 (zh) 一种显示装置
CN214098031U (zh) 一种显示装置
CN112882282A (zh) 一种显示装置
CN113777825B (zh) 一种显示装置
CN211786492U (zh) 一种显示装置
WO2021190414A1 (zh) 一种显示装置
US20190129251A1 (en) Lighting device and image display device
US20190361294A1 (en) Planar backlight module and lcd panel
CN115407551B (zh) 一种显示装置
CN114089561A (zh) 一种显示装置
WO2023155527A1 (zh) 背光模组及显示装置
WO2022247941A1 (zh) 一种显示装置
WO2021190399A1 (zh) 一种显示装置
CN214751236U (zh) 一种显示装置
WO2021248970A1 (zh) 一种显示装置
CN114428421B (zh) 一种显示装置
CN113820886B (zh) 一种显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810665

Country of ref document: EP

Kind code of ref document: A1