WO2021082970A1 - 像素驱动电路及其驱动方法、显示面板、显示装置 - Google Patents

像素驱动电路及其驱动方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2021082970A1
WO2021082970A1 PCT/CN2020/121912 CN2020121912W WO2021082970A1 WO 2021082970 A1 WO2021082970 A1 WO 2021082970A1 CN 2020121912 W CN2020121912 W CN 2020121912W WO 2021082970 A1 WO2021082970 A1 WO 2021082970A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit
node
signal
signal terminal
Prior art date
Application number
PCT/CN2020/121912
Other languages
English (en)
French (fr)
Other versions
WO2021082970A8 (zh
Inventor
岳晗
刘冬妮
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/603,686 priority Critical patent/US11610549B2/en
Publication of WO2021082970A1 publication Critical patent/WO2021082970A1/zh
Publication of WO2021082970A8 publication Critical patent/WO2021082970A8/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0833Several active elements per pixel in active matrix panels forming a linear amplifier or follower
    • G09G2300/0838Several active elements per pixel in active matrix panels forming a linear amplifier or follower with level shifting
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0259Details of the generation of driving signals with use of an analog or digital ramp generator in the column driver or in the pixel circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a pixel driving circuit and a driving method thereof, a display panel, and a display device.
  • Self-luminous devices have received widespread attention due to their high brightness and wide color gamut.
  • the photoelectric conversion characteristics of the self-luminous device for example, photoelectric conversion efficiency and color coordinates, etc.
  • the luminous efficiency of a self-luminous device will decrease as the current density decreases.
  • a pixel driving circuit including a signal control sub-circuit and a time control sub-circuit.
  • the signal control sub-circuit is connected to the first scan signal terminal, the first data signal terminal, the first power voltage signal terminal, and the enable signal terminal.
  • the signal control sub-circuit includes a first driving sub-circuit, and the first driving sub-circuit is connected to a first node.
  • the signal control sub-circuit is configured to: in response to receiving the first scan signal from the first scan signal terminal, at least write the first data signal provided by the first data signal terminal to the first node And in response to receiving the enable signal from the enable signal terminal, make the first driving sub-circuit according to the first data signal and the first power supply voltage signal provided by the first power supply voltage signal terminal, Output drive signal.
  • the time control sub-circuit is connected to the second scan signal terminal, the second data signal terminal, the enable signal terminal, the first voltage signal terminal, the second voltage signal terminal, the second power supply voltage signal terminal, and the third power supply voltage
  • the time control sub-circuit includes a second driving sub-circuit, and the second driving sub-circuit includes a first transistor.
  • the second driving sub-circuit is connected to the second node, the third node, and the fourth node.
  • the first transistor is connected to the second node and the signal control sub-circuit.
  • the time control sub-circuit is configured to: in response to receiving the second scan signal from the second scan signal terminal, write the second data signal provided by the second data signal terminal to the fourth node, And write the second voltage signal provided by the second voltage signal terminal to the third node; in response to the received enable signal from the enable signal terminal, the first voltage signal terminal is provided at A first voltage signal that changes within a set voltage range is written into the fourth node, and the voltage on the third node changes with the voltage change between the first voltage signal and the second data signal And in response to the voltage change on the third node, the second power supply voltage signal provided by the second power supply voltage signal terminal and the third power supply voltage provided by the third power supply voltage signal terminal are respectively in different stages The signal is transmitted to the second node to control the turn-on time of the first transistor, and the driving signal is transmitted to the element to be driven when the first transistor is turned on.
  • the signal control sub-circuit further includes a first data writing sub-circuit and a first control sub-circuit.
  • the first driving sub-circuit includes a driving transistor, and the gate of the driving transistor is connected to the first node.
  • the first data writing sub-circuit is connected to the first scan signal terminal, the first data signal terminal, and the driving transistor.
  • the first data writing sub-circuit is configured to write the first data signal and the threshold voltage of the driving transistor to the first node in response to the received first scan signal, and to The driving transistor performs threshold voltage compensation.
  • the first control sub-circuit is connected to the enable signal terminal, the first power supply voltage signal terminal, the driving transistor, and the first pole of the first transistor.
  • the first control sub-circuit is configured to, in response to the received enable signal, connect the driving transistor to the first power supply voltage signal terminal and the first pole of the first transistor, respectively.
  • the first driving sub-circuit is also connected to the first power supply voltage signal terminal.
  • the driving transistor is configured to output the driving signal to the first pole of the first transistor according to the first data signal and the first power supply voltage signal.
  • the first driver sub-circuit further includes a first capacitor. One end of the first capacitor is connected to the first power supply voltage signal terminal, and the other end of the first capacitor is connected to the first node.
  • the first data writing sub-circuit includes a second transistor and a third transistor.
  • the gate of the second transistor is connected to the first scan signal terminal, the first electrode of the second transistor is connected to the second electrode of the driving transistor, and the second electrode of the second transistor is connected to the The first node.
  • the gate of the third transistor is connected to the first scan signal terminal, the first electrode of the third transistor is connected to the first data signal terminal, and the second electrode of the third transistor is connected to the Drive the first pole of the transistor.
  • the first control sub-circuit includes a fourth transistor and a fifth transistor.
  • the gate of the fourth transistor is connected to the enable signal terminal, the first electrode of the fourth transistor is connected to the first power supply voltage signal terminal, and the second electrode of the fourth transistor is connected to the Drive the first pole of the transistor.
  • the gate of the fifth transistor is connected to the enable signal terminal, the first electrode of the fifth transistor is connected to the second electrode of the driving transistor, and the second electrode of the fifth transistor is connected to the The first pole of the first transistor.
  • the signal control sub-circuit further includes a reset sub-circuit.
  • the reset sub-circuit is connected to the initial signal terminal, the reset signal terminal and the first node.
  • the reset sub-circuit is configured to transmit the initial signal provided by the initial signal terminal to the first node in response to the received reset signal from the reset signal terminal.
  • the reset sub-circuit includes a sixth transistor.
  • the gate of the sixth transistor is connected to the reset signal terminal, the first electrode of the sixth transistor is connected to the initial signal terminal, and the second electrode of the sixth transistor is connected to the first node.
  • the time control sub-circuit further includes a second data writing sub-circuit, a second control sub-circuit, and a potential control sub-circuit.
  • the second driving sub-circuit further includes a second capacitor.
  • the gate of the first transistor is connected to the second node, and the first electrode of the first transistor is connected to the signal control sub-circuit.
  • One end of the second capacitor is connected to the third node, and the other end of the second capacitor is connected to the fourth node.
  • the second data writing sub-circuit is connected to the second scan signal terminal, the second data signal terminal, the second voltage signal terminal, the third node, and the fourth node.
  • the second data writing sub-circuit is configured to write the second data signal to the fourth node and write the second voltage signal to the fourth node in response to the received second scan signal.
  • the second control sub-circuit is connected to the enable signal terminal, the first voltage signal terminal, the second pole of the first transistor, the fourth node, and the component to be driven.
  • the second control sub-circuit is configured to write the first voltage signal to the fourth node in response to the received enable signal, and make the second electrode of the first transistor and the The components to be driven are connected.
  • the potential control sub-circuit is connected to the second node, the third node, the second power supply voltage signal terminal, and the third power supply voltage signal terminal.
  • the potential control sub-circuit is configured to respectively transmit the second power supply voltage signal and the third power supply voltage signal to the second node in different stages in response to a voltage change on the third node.
  • the second data writing sub-circuit includes a seventh transistor and an eighth transistor.
  • the gate of the seventh transistor is connected to the second scan signal terminal, the first electrode of the seventh transistor is connected to the second data signal terminal, and the second electrode of the seventh transistor is connected to the The fourth node.
  • the gate of the eighth transistor is connected to the second scan signal terminal, the first electrode of the eighth transistor is connected to the second voltage signal terminal, and the second electrode of the eighth transistor is connected to the The third node.
  • the second control sub-circuit includes a ninth transistor and a tenth transistor.
  • the gate of the ninth transistor is connected to the enable signal terminal, the first electrode of the ninth transistor is connected to the first voltage signal terminal, and the second electrode of the ninth transistor is connected to the first voltage signal terminal.
  • the gate of the tenth transistor is connected to the enable signal terminal, the first electrode of the tenth transistor is connected to the second electrode of the first transistor, and the second electrode of the tenth transistor is connected to the enable signal terminal. The components to be driven.
  • the potential control sub-circuit includes an eleventh transistor, a twelfth transistor, a thirteenth transistor, a fourteenth transistor, a fifteenth transistor, and a sixteenth transistor.
  • the gate of the eleventh transistor is connected to the third node, the first electrode of the eleventh transistor is connected to the second power supply voltage signal terminal, and the second electrode of the eleventh transistor is connected to The first pole of the twelfth transistor.
  • the gate of the twelfth transistor is connected to the third node, and the second electrode of the twelfth transistor is connected to the second node.
  • the gate of the thirteenth transistor is connected to the third node, the first electrode of the thirteenth transistor is connected to the third power supply voltage signal terminal, and the second electrode of the thirteenth transistor is connected to The first pole of the fourteenth transistor.
  • the gate of the fourteenth transistor is connected to the third node, and the second electrode of the fourteenth transistor is connected to the second node.
  • the gate of the fifteenth transistor is connected to the second node, the first electrode of the fifteenth transistor is connected to the third power supply voltage signal terminal, and the second electrode of the fifteenth transistor is connected to The second pole of the eleventh transistor and the first pole of the twelfth transistor.
  • the gate of the sixteenth transistor is connected to the second node, the first electrode of the sixteenth transistor is connected to the second power supply voltage signal terminal, and the second electrode of the sixteenth transistor is connected to The second pole of the thirteenth transistor and the first pole of the fourteenth transistor.
  • the eleventh transistor, the twelfth transistor, and the fifteenth transistor are all P-type transistors, and the thirteenth transistor, the fourteenth transistor, and the sixteenth transistor are all N-type transistors.
  • Transistor; or, the eleventh transistor, the twelfth transistor, and the fifteenth transistor are all N-type transistors, and the thirteenth transistor, the fourteenth transistor, and the sixteenth transistor All are P-type transistors.
  • a display panel which includes a plurality of pixel driving circuits as described above and a plurality of elements to be driven. Each component to be driven is connected to a corresponding pixel driving circuit.
  • the display panel has a plurality of sub-pixel regions, and each pixel driving circuit is disposed in one sub-pixel region.
  • the display panel further includes a plurality of first scan signal lines, a plurality of first data signal lines, a plurality of second scan signal lines, a plurality of second data signal lines, and a plurality of enable signal lines.
  • the first scan signal terminal connected to each pixel driving circuit located in the same row of sub-pixel regions is connected to a corresponding first scan signal line.
  • the first data signal terminal connected to each pixel driving circuit located in the sub-pixel area of the same column is connected to a corresponding first data signal line.
  • the second scan signal terminal connected to each pixel driving circuit located in the same row of sub-pixel regions is connected to a corresponding second scan signal line.
  • the second data signal terminal connected to each pixel driving circuit located in the sub-pixel area of the same column is connected to a corresponding second data signal line.
  • the enable signal terminal connected to each pixel driving circuit located in the same row of sub-pixel regions is connected to a corresponding enable signal line.
  • the element to be driven is a current-driven light-emitting device.
  • a display device including the display panel as described above.
  • a driving method of the pixel driving circuit as described above.
  • One frame period includes a scanning phase and a working phase, and the scanning phase includes a plurality of line scanning phases.
  • the driving method includes the following processes.
  • the signal control sub-circuit responds to the first scanning signal received from the first scanning signal terminal to write to the first node at least from The first data signal from the first data signal terminal;
  • the time control sub-circuit writes the data from the second data signal terminal to the fourth node in response to the received second scan signal from the second scan signal terminal A second data signal, and write a second voltage signal from the second voltage signal terminal to the third node.
  • the signal control sub-circuit responds to the received enable signal from the enable signal terminal to cause the first driving sub-circuit to respond according to the first data signal and the first power supply voltage.
  • the first power supply voltage signal provided by the signal terminal outputs a driving signal to the first transistor;
  • the time control sub-circuit writes to the fourth node in response to the enable signal received from the enable signal terminal A first voltage signal that changes within a set voltage range from the first voltage signal terminal, and causes the voltage on the third node to follow the voltage between the first voltage signal and the second data signal
  • the second power supply voltage signal provided by the second power supply voltage signal terminal and the third power supply voltage signal provided by the third power supply voltage signal terminal are respectively at different stages
  • the power supply voltage signal is transmitted to the second node to control the operating time of the element to be driven by controlling the turn-on time of the first transistor.
  • the signal control sub-circuit further includes a first data writing sub-circuit and a first control sub-circuit.
  • the first driving sub-circuit includes a driving transistor, and the gate of the driving transistor is connected to the first node.
  • the first data writing sub-circuit is connected to the first scan signal terminal, the first data signal terminal, and the driving transistor.
  • the first control sub-circuit is connected to the enable signal terminal, the first power supply voltage signal terminal, the driving transistor, and the first pole of the first transistor.
  • the signal control sub-circuit In each of the plurality of row scan stages, the signal control sub-circuit writes at least the first data signal to the first node in response to the received first scan signal, In the working phase, the signal control sub-circuit causes the first driving sub-circuit to output a driving signal according to the first data signal and the first power supply voltage signal in response to the received enable signal
  • the first transistor includes: in each of the plurality of row scan stages, the first data writing sub-circuit responds to the received first scan signal to send the first data to the first scan signal.
  • a node writes the first data signal and the threshold voltage of the drive transistor to compensate the threshold voltage of the drive transistor; in the working phase, the first control sub-circuit responds to the received use Enable signal to connect the driving transistor to the first power supply voltage signal terminal and the first pole of the first transistor respectively; the driving transistor is based on the first data signal and the first power supply voltage signal, The driving signal is output to the first pole of the first transistor.
  • the time control sub-circuit further includes a second data writing sub-circuit, a second control sub-circuit, and a potential control sub-circuit.
  • the second driving sub-circuit further includes a second capacitor.
  • the gate of the first transistor is connected to the second node, and the first electrode of the first transistor is connected to the signal control sub-circuit.
  • One end of the second capacitor is connected to the third node, and the other end of the second capacitor is connected to the fourth node.
  • the second data writing sub-circuit is connected to the second scan signal terminal, the second data signal terminal, the second voltage signal terminal, the third node, and the fourth node.
  • the second control sub-circuit is connected to the enable signal terminal, the first voltage signal terminal, the second pole of the first transistor, the fourth node, and the component to be driven.
  • the potential control sub-circuit is connected to the second node, the third node, the second power supply voltage signal terminal, and the third power supply voltage signal terminal.
  • the time control sub-circuit writes the second data signal to the fourth node in response to the received second scan signal, and Write the second voltage signal to the third node.
  • the time control sub-circuit writes the first voltage signal to the fourth node in response to the received enable signal.
  • the voltage signal causes the voltage on the third node to change with the voltage change between the first voltage signal and the second data signal, and in response to the voltage change on the third node,
  • the stages respectively transmitting the second power supply voltage signal and the third power supply voltage signal to the second node include: in each of the plurality of row scanning stages, the second data writing In response to the received second scan signal, the input sub-circuit writes the second data signal to the fourth node and writes the second voltage signal to the third node; In the phase, in response to the received enable signal, the second control sub-circuit writes the first voltage signal to the fourth node so that the voltage on the third node follows the first The voltage between the voltage signal and the second data signal changes, and the second pole of the first transistor is connected to the element to be driven; the potential control sub-circuit responds to the third node The second power supply voltage signal and the third power supply voltage signal are respectively transmitted to the second node at different stages.
  • FIG. 1 is a structural diagram of a display panel provided by some embodiments of the present disclosure
  • FIG. 2 is a connection diagram of a pixel driving circuit and a component to be driven according to some embodiments of the present disclosure
  • FIG. 3 is a structural block diagram of a pixel driving circuit provided by some embodiments of the present disclosure.
  • FIG. 4 is a structural block diagram of another pixel driving circuit provided by some embodiments of the present disclosure.
  • FIG. 5 is a circuit structure diagram of a pixel driving circuit provided by some embodiments of the present disclosure.
  • FIG. 6 is a circuit structure diagram of another pixel driving circuit provided by some embodiments of the present disclosure.
  • FIG. 7 is a timing diagram of a pixel driving circuit provided by some embodiments of the present disclosure.
  • FIG. 8 is a timing diagram of another pixel driving circuit provided by some embodiments of the present disclosure.
  • FIG. 9 is a circuit structure diagram of a pixel driving circuit in the related art.
  • FIG. 10 is a simulation test diagram of the pixel driving circuit shown in FIG. 9;
  • FIG. 11 is a simulation test diagram of a pixel driving circuit provided by some embodiments of the present disclosure.
  • FIG. 12 is another simulation test diagram of the pixel driving circuit provided by some embodiments of the disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection and its extensions may be used.
  • connection may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • Some embodiments of the present disclosure provide a display device including a display panel. As shown in FIG. 1, the display panel has a plurality of sub-pixel regions P.
  • the multiple sub-pixel regions P are arranged in an array with multiple rows and multiple columns, but the embodiments of the present disclosure are not limited thereto.
  • the display panel includes a plurality of pixel driving circuits and a plurality of elements L to be driven. As shown in FIG. 2, each element L to be driven is connected to a corresponding pixel driving circuit. Each pixel driving circuit and the component to be driven L connected to it are arranged in a sub-pixel area P. The pixel driving circuit is configured to drive the element L to be driven to work.
  • the first pole of the element L to be driven is connected to the pixel driving circuit, and the second pole of the element L to be driven is connected to the fourth power supply voltage signal terminal S4.
  • the first pole and the second pole of the element L to be driven are an anode and a cathode, respectively.
  • the element L to be driven is a current-driven light emitting device, such as a micro light emitting diode (Micro Light Emitting Diode, Micro LED), a mini light emitting diode (Mini Light Emitting Diode, Mini LED), or an organic electroluminescent diode ( Organic Light Emitting Diode, OLED).
  • a micro light emitting diode Micro Light Emitting Diode, Micro LED
  • mini light emitting diode mini Light emitting diode
  • OLED Organic Light Emitting Diode
  • the pixel driving circuit includes a signal control sub-circuit 10 and a time control sub-circuit 20.
  • the signal control sub-circuit 10 includes a first driving sub-circuit 101.
  • the time control sub-circuit 20 includes a second driving sub-circuit 201, and the second driving sub-circuit 201 includes a first transistor T1.
  • the signal control sub-circuit 10 is connected to the first scan signal terminal G1, the first data signal terminal D1, the first power voltage signal terminal S1, and the enable signal terminal EM.
  • the first driving sub-circuit 101 is connected to the first node A.
  • the signal control sub-circuit 10 is configured to: in response to receiving the first scan signal from the first scan signal terminal G1, write at least the first data signal provided by the first data signal terminal D1 to the first node A; and respond Upon receiving the enable signal from the enable signal terminal EM, the first driving sub-circuit 101 is enabled according to the first data signal provided by the first data signal terminal D1 and the first power voltage signal provided by the first power voltage signal terminal S1 , Output drive signal.
  • the time control sub-circuit 20 is connected to the second scan signal terminal G2, the second data signal terminal D2, the enable signal terminal EM, the first voltage signal terminal V1, the second voltage signal terminal V2, the second power supply voltage signal terminal S2, and the second power signal terminal S2.
  • the second driving sub-circuit 201 is connected to the second node B, the third node M, and the fourth node N, the gate of the first transistor T1 is connected to the second node B, and the first pole of the first transistor T1 is connected to the signal control sub Circuit 10.
  • the time control sub-circuit 20 is configured to: in response to the received second scan signal from the second scan signal terminal G2, write the second data signal provided by the second data signal terminal D2 to the fourth node N, and write The second voltage signal provided by the second voltage signal terminal V2 is written into the third node M; in response to the received enable signal from the enable signal terminal EM, the voltage signal provided by the first voltage signal terminal V1 is changed within the set voltage range The first voltage signal is written to the fourth node N, and the voltage on the third node M changes with the voltage change between the first voltage signal and the second data signal; and in response to the voltage on the third node M Change, the second power supply voltage signal provided by the second power supply voltage signal terminal S2 and the third power supply voltage signal provided by the third power supply voltage signal terminal S3 are respectively transmitted to the second node B at different stages to control the first transistor T1 When the first transistor T1 is turned on, the driving signal output by the signal control sub-circuit 10 is transmitted to the element L to be driven. That is, by controlling the turn-
  • the voltage on the fourth node N changes with the voltage of the first voltage signal. Variety.
  • the voltage difference on the fourth node N is the voltage difference between the first voltage signal and the second data signal.
  • the voltage on the third node M changes as the voltage between the first voltage signal and the second data signal changes.
  • the first node A, the second node B, the third node M, and the fourth node N do not represent actual components, but represent the junction of related electrical connections in the circuit diagram. In other words, these nodes are equivalent to the junction of related electrical connections in the circuit diagram.
  • the voltage of the second power supply voltage signal and the voltage of the third power supply voltage signal are both fixed voltages.
  • the voltage of the second power supply voltage signal is a high voltage
  • the voltage of the third power supply voltage signal is a low voltage.
  • the voltage of the second power supply voltage signal is a low voltage
  • the voltage of the third power supply voltage signal is a high voltage.
  • the high voltage and the low voltage in the embodiments of the present disclosure are relative, the relatively higher of the two is the high voltage, and the relatively lower is the low voltage.
  • the voltage of the second voltage signal is a fixed voltage.
  • the signal control sub-circuit 10 outputs a driving signal
  • the time control sub-circuit 20 controls the transmission time of the driving signal to the element L to be driven, so as to control the working time of the element L to be driven.
  • the signal control sub-circuit 10 outputs a driving signal, which can be understood as the signal control sub-circuit 10 outputs a driving current.
  • the time control sub-circuit 20 transmits the driving current to the current-driven light-emitting device, so that the current-driven light-emitting device emits light.
  • the size of the driving signal output by the signal control sub-circuit 10 to the first transistor T1 is controlled by controlling the size of the first data signal provided by the first data signal terminal D1.
  • the magnitudes of the first voltage signal provided by the first voltage signal terminal V1, the second voltage signal provided by the second voltage signal terminal V2, and the second data signal provided by the second data signal terminal D2 are controlled.
  • the turn-on time is to control the working time of the element L to be driven.
  • the element L to be driven displays different gray scales
  • the size of the drive signal of the element L to be driven and the light-emitting duration of the element L to be driven the brightness of the element L to be driven can be changed, thereby realizing the corresponding gray scale.
  • the pixel driving circuit outputs a larger driving current to the element L to be driven, and can control the element L to be driven
  • the luminescence duration of is the maximum luminescence duration.
  • the driving current output by the pixel drive circuit to the element L to be driven can be a larger value (for example, the current corresponding to a certain high gray scale).
  • the light-emitting duration that is, the first transistor T1 is controlled to turn on later, so that the brightness of the element L to be driven is reduced.
  • the driving current output by the pixel driving circuit to the element to be driven L is maintained in a higher value range (for example, the driving current in the higher value range is close to the higher gray scale.
  • the current during the step display by shortening the light-emitting time of the element L to be driven, the brightness of the element L to be driven is reduced.
  • the driving current is always large, so that the element L to be driven is always at a higher current density, and the luminous efficiency and brightness of the element L to be driven are higher. Stable, low power consumption, and better display effect.
  • the voltage value of the second power supply voltage signal and the voltage of the third power supply voltage signal can control the first transistor T1 to be in a completely closed and completely open state (for example, the second power supply voltage signal makes the first transistor T1 in a completely closed state, and the third power supply voltage signal makes the first transistor T1 completely closed.
  • the transistor T1 is in a fully-on state).
  • the precise control of the working time of the driving element L is realized, and the corresponding gray-scale display can be realized.
  • it can prevent the first transistor T1 from being in a state of incompletely turned on and incompletely turned off, resulting in gray-scale display.
  • the first data signal provided by the first data signal terminal D1 may be a fixed high-level signal that enables the element L to be driven to have a higher luminous efficiency.
  • the pixel driving circuit controls the gray scale by controlling the operating time of the element L to be driven through the time control sub-circuit 20.
  • the voltage of the first data signal can be changed within a certain voltage interval, and the first data signal within the voltage interval can ensure that the element L to be driven has a higher luminous efficiency.
  • the pixel driving circuit controls the gray scale through the signal control sub-circuit 10 and the time control sub-circuit 20 together.
  • the display panel further includes: a plurality of first scan signal lines GL1(1) to GL1(n), and a plurality of first data signal lines DL1(1) to DL1(m) , A plurality of second scanning signal lines GL2 (1) ⁇ GL2 (n), a plurality of second data signal lines DL2 (1) ⁇ DL2 (m), and a plurality of enable signal lines E (1) ⁇ E (n) ).
  • the first scan signal line is configured to provide a first scan signal to the pixel driving circuit.
  • the second scan signal line is configured to provide a second scan signal to the pixel driving circuit.
  • the enable signal line is configured to provide an enable signal to the pixel driving circuit.
  • the first data signal line is configured to provide a first data signal to the pixel driving circuit.
  • the second data signal line is configured to provide a second data signal to the pixel driving circuit.
  • the pixel driving circuits located in the same row of sub-pixel regions P are connected to the same first scan signal line and the plurality of second scan signal lines GL1(1) to GL1(n).
  • Each pixel driving circuit located in the sub-pixel area P in the same column is connected to the same first data signal line and the second data signal lines DL2( 1) The same second data signal line in ⁇ DL2(m).
  • each pixel driving circuit located in the first row of sub-pixel regions P is connected to the first scan signal line GL1(1), the second scan signal line GL2(1), and the enable signal line E(1).
  • the pixel driving circuits located in the second row of sub-pixel regions P are connected to the first scan signal line GL1(2), the second scan signal line GL2(2), and the enable signal line E(2).
  • Each pixel driving circuit located in the sub-pixel area P of the nth row is connected to the first scan signal line GL1(n), the second scan signal line GL2(n), and the enable signal line E(n).
  • Each pixel driving circuit located in the sub-pixel area P of the first column is connected to the first data signal line DL1(1) and the second data signal line DL2(1).
  • Each pixel driving circuit located in the second column sub-pixel area P is connected to the first data signal line DL1(2) and the second data signal line DL2(2).
  • Each pixel driving circuit located in the sub-pixel area P of the m-th column is connected to the first data signal line DL1(m) and the second data signal line DL2(m). Both n and m are positive integers.
  • the first scan signal terminal G1 can be understood as an equivalent connection point after the first scan signal line is connected to the pixel driving circuit. That is to say, the first scan signal terminal G1 connected to each pixel driving circuit in the sub-pixel area P in the same row is connected to a corresponding first scan signal line.
  • the first data signal terminal D1 can be understood as an equivalent connection point after the first data signal line is connected to the pixel driving circuit. That is, the first data signal terminal D1 connected to each pixel driving circuit in the sub-pixel area P of the same column is connected to a corresponding first data signal line. The same is true for the second data signal terminal D2.
  • the enable signal terminal EM can be understood as an equivalent connection point after the enable signal line is connected to the pixel driving circuit. That is to say, the enable signal terminal EM connected to each pixel driving circuit in the sub-pixel area P in the same row is connected to a corresponding enable signal line.
  • the display panel further includes a plurality of first power supply voltage signal lines L S1 .
  • the first power supply voltage signal line L S1 is configured to provide a first power supply voltage signal to the pixel driving circuit.
  • each pixel driving circuit located in the sub-pixel region P of the same column is connected to the same first power supply voltage signal line L S1 among the plurality of first power supply voltage signal lines L S1 .
  • FIG. 1 FIG. 1
  • FIG. 1 illustrates that the pixel driving circuits located in any two columns of sub-pixel regions P are connected to different first power supply voltage signal lines L S1 , but the embodiment of the present disclosure is not limited to this, and may also be located in multiple columns ( For example, 4 columns) pixel driving circuits in the sub-pixel area P are connected to the same first power supply voltage signal line L S1 .
  • the display panel further includes a plurality of first voltage signal lines L V1 , a plurality of second voltage signal lines L V2 , a plurality of second power voltage signal lines L S2 , and a plurality of third power voltage signals Line L S3 .
  • the first voltage signal line L V1 is configured to provide a first voltage signal to the pixel driving circuit.
  • the second voltage signal line L V2 is configured to provide a second voltage signal to the pixel driving circuit.
  • the second power supply voltage signal line L S2 is configured to provide a second power supply voltage signal to the pixel driving circuit.
  • the third power supply voltage signal line L S3 is configured to provide a third power supply voltage signal to the pixel driving circuit.
  • each pixel driving circuit located in the sub-pixel region P in the same column is connected to the same first voltage signal line L V1 and the plurality of first voltage signal lines L V1 among the plurality of first voltage signal lines L V1.
  • the same second voltage signal line L V2 of the two voltage signal lines L V2 , the same second power supply voltage signal line L S2 of the plurality of second power supply voltage signal lines L S2 , and a plurality of third power supply voltage signal lines a third supply voltage with the signal line of L S3 L S3.
  • pixel driving circuits located in any two columns of sub-pixel regions P are connected to different first voltage signal lines L V1 , different second voltage signal lines L V2 , different second power supply voltage signal lines L S2 and different
  • the third power supply voltage signal line L S3 is illustrated, but the embodiment of the present disclosure is not limited to this.
  • the pixel drive circuits located in the sub-pixel area P of multiple columns are connected to the same first voltage signal line L V1
  • the pixel drive circuits located in the sub-pixel area P of multiple columns are connected to the same second voltage signal line L V2.
  • the pixel drive circuit located in the sub-pixel area P of the multiple columns is connected to the same second power supply voltage signal line L S2
  • the pixel drive circuit located in the sub-pixel area P of the multiple columns is connected to the same third power supply voltage signal line L S3 .
  • the understanding of the first voltage signal terminal V1, the second voltage signal terminal V2, the second power voltage signal terminal S2, and the third power voltage signal terminal S3 is similar to the above understanding of the first scan signal terminal G1, and will not be repeated here. .
  • the display panel further includes a plurality of fourth power supply voltage signal lines.
  • the fourth power supply voltage signal line is configured to provide a fourth power supply voltage signal to the element L to be driven.
  • the fourth power supply voltage signal terminal S4 to which each element L to be driven in the sub-pixel region P of the same column is connected is connected to a corresponding fourth power supply voltage signal line. That is to say, each element L to be driven in the sub-pixel region P in the same column is connected to the same fourth power voltage signal line (not shown in FIG. 1) among the plurality of fourth power voltage signal lines.
  • the fourth power supply voltage signal terminal S4 can be understood as an equivalent connection point after the fourth power supply voltage signal line is connected to the component L to be driven.
  • the signal control sub-circuit 10 includes a first driving sub-circuit 101, a first data writing sub-circuit 102, and a first control sub-circuit 103.
  • the first driving sub-circuit 101 includes a driving transistor Td, and the gate of the driving transistor Td is connected to the first node A.
  • the first data writing sub-circuit 102 is connected to the first scan signal terminal G1, the first data signal terminal D1, and the first pole and the second pole of the driving transistor Td.
  • the first data writing sub-circuit 102 is configured to write the first data signal provided by the first data signal terminal D1 and the threshold voltage of the driving transistor Td in response to the first scan signal received from the first scan signal terminal G1. Enter the first node A, and perform threshold voltage compensation on the driving transistor Td.
  • the first control sub-circuit 103 is connected to the enable signal terminal EM, the first power supply voltage signal terminal S1, the first pole and the second pole of the driving transistor Td, and the first pole of the first transistor T1.
  • the first control sub-circuit 103 is configured to, in response to the received enable signal from the enable signal terminal EM, connect the first pole of the driving transistor Td to the first power supply voltage signal terminal S1, and connect the first pole of the driving transistor Td to the first power supply voltage signal terminal S1.
  • the two poles are connected to the first pole of the first transistor T1.
  • the first driving sub-circuit 101 is also connected to the first power supply voltage signal terminal S1.
  • the driving transistor Td is configured to output a driving signal to the first electrode of the first transistor T1 according to the first data signal provided by the first data signal terminal D1 and the first power supply voltage signal provided by the first power supply voltage signal terminal S1.
  • the driving signal transmitted to the first transistor T1 is provided by the first power supply voltage signal provided by the first power supply voltage signal terminal S1 and the first power supply voltage signal provided by the first data signal terminal D1.
  • the data signal is OK. That is, the driving signal has nothing to do with the threshold voltage of the driving transistor Td, so that the threshold voltage compensation of the driving transistor Td in the first driving sub-circuit 101 is realized, and the influence of the threshold voltage of the driving transistor Td on the driving signal can be eliminated. In this way, when the to-be-driven element L is working, the brightness uniformity of the display panel can be improved.
  • the first driving sub-circuit 101 includes a driving transistor Td and a first capacitor C1.
  • One end of the first capacitor C1 is connected to the first power supply voltage signal terminal S1, and the other end of the first capacitor C1 is connected to the first node A.
  • the first data writing sub-circuit 102 includes a second transistor T2 and a third transistor T3.
  • the gate of the second transistor T2 is connected to the first scan signal terminal G1, the first electrode of the second transistor T2 is connected to the second electrode of the driving transistor Td, and the second electrode of the second transistor T2 is connected to the first node A.
  • the gate of the third transistor T3 is connected to the first scan signal terminal G1, the first electrode of the third transistor is connected to the first data signal terminal D1, and the second electrode of the third transistor T3 is connected to the first electrode of the driving transistor Td.
  • the first control sub-circuit 103 includes a fourth transistor T4 and a fifth transistor T5.
  • the gate of the fourth transistor T4 is connected to the enable signal terminal EM, the first electrode of the fourth transistor T4 is connected to the first power supply voltage signal terminal S1, and the second electrode of the fourth transistor T4 is connected to the first electrode of the driving transistor Td .
  • the gate of the fifth transistor T5 is connected to the enable signal terminal EM, the first electrode of the fifth transistor T5 is connected to the second electrode of the driving transistor Td, and the second electrode of the fifth transistor T5 is connected to the first electrode of the first transistor T1. pole.
  • the signal control sub-circuit 10 further includes a reset sub-circuit 104.
  • the reset sub-circuit 104 is connected to the initial signal terminal Init1, the reset signal terminal Rst1 and the first node A.
  • the reset sub-circuit 104 is configured to transmit the initial signal provided by the initial signal terminal Init1 to the first node A in response to the received reset signal from the reset signal terminal Rst1, so that the voltage of the first node A is reset to the value of the initial signal. Voltage.
  • the display panel further includes a plurality of reset signal lines R(1) to R(n) and a plurality of initial signal lines (not shown in FIG. 1) .
  • the reset signal line is configured to provide a reset signal to the pixel driving circuit.
  • the initial signal line is configured to provide an initial signal to the pixel driving circuit.
  • each pixel driving circuit located in the sub-pixel region P in the same row is connected to the same reset signal line among a plurality of reset signal lines R(1)-R(n).
  • Each pixel driving circuit located in the sub-pixel area P of the same column is connected to the same initial signal line among the plurality of initial signal lines.
  • the reset signal terminal Rst1 can be understood as an equivalent connection point after the reset signal line is connected to the pixel driving circuit.
  • the initial signal terminal Init1 can be understood as an equivalent connection point after the initial signal line is connected to the pixel driving circuit.
  • the reset sub-circuit 104 includes a sixth transistor T6.
  • the gate of the sixth transistor T6 is connected to the reset signal terminal Rst1, the first electrode of the sixth transistor T6 is connected to the initial signal terminal Init1, and the second electrode of the sixth transistor T6 is connected to the first node A.
  • the time control sub-circuit 20 includes a second data writing sub-circuit 202, a second driving sub-circuit 201, a second control sub-circuit 203 and a potential control sub-circuit 204.
  • the second driving sub-circuit 201 includes a first transistor T1 and a second capacitor C2.
  • the gate of the first transistor T1 is connected to the second node B, and the first electrode of the first transistor T1 is connected to the signal control sub-circuit 10.
  • One end of the second capacitor C2 is connected to the third node M, and the other end of the second capacitor C2 is connected to the fourth node N.
  • the second data writing sub-circuit 202 is connected to the second scan signal terminal G2, the second data signal terminal D2, the second voltage signal terminal V2, the third node M, and the fourth node N.
  • the second data writing sub-circuit 202 is configured to write the second data signal provided by the second data signal terminal D2 to the fourth node N in response to the received second scan signal from the second scan signal terminal G2, and The second voltage signal provided by the second voltage signal terminal V2 is written into the third node M.
  • the second control sub-circuit 203 is connected to the enable signal terminal EM, the first voltage signal terminal V1, the second pole of the first transistor T1, the fourth node N, and the element L to be driven.
  • the second control sub-circuit 203 is configured to, in response to the received enable signal from the enable signal terminal EM, write the first voltage signal provided by the first voltage signal terminal V1 to the fourth node N, and enable the first transistor The second pole of T1 is connected to the element L to be driven.
  • the potential control sub-circuit 204 is connected to the second node B, the third node M, the second power supply voltage signal terminal S2, and the third power supply voltage signal terminal S3.
  • the potential control sub-circuit 204 is configured to respond to the voltage change on the third node M, respectively at different stages to provide the second power supply voltage signal provided by the second power supply voltage signal terminal S2 and the third power supply voltage signal terminal S3 provided The power voltage signal is transmitted to the second node B.
  • the second data writing sub-circuit 202 writes the second data signal provided by the second data signal terminal D2 into the fourth node N, so that the voltage of the fourth node N is ,
  • the voltage at the other end of the second capacitor C2 is the voltage of the second data signal (denoted as V data2 ).
  • the second voltage signal provided by the second voltage signal terminal V2 is transmitted to the third node M, so that the voltage of the third node M and the voltage of one end of the second capacitor C2 are both the voltage of the second voltage signal (denoted as V V2 ).
  • the second control sub-circuit 203 writes the first voltage signal provided by the first voltage signal terminal V1 into the fourth node N, so that the voltage of the fourth node N changes from the voltage of the second data signal to the first voltage.
  • the voltage of the signal (denoted as V V1 ).
  • V V1 the voltage of the signal
  • the voltage difference between the two ends of the second capacitor C2 remains unchanged.
  • the potential control sub-circuit 204 can combine the second power supply voltage signal and the third power supply voltage signal One of them is transmitted to the second node B.
  • the potential control sub-circuit 204 can change the second power supply voltage signal and the third power supply voltage signal to another One is transmitted to the second node B.
  • the turn-on of the first transistor T1 determines whether the drive signal can be transmitted to the element L to be driven, the second power supply voltage signal and the third power supply voltage signal control whether the first transistor T1 is turned on or not, so as to realize the control of the element L to be driven. Control of working hours.
  • the voltage of the first voltage signal can be changed to control the transmission time of the second power voltage signal and the third power voltage signal to the gate of the first transistor T1 to control
  • the working time of the component L to be driven is used to control the gray scale.
  • the second data writing sub-circuit 202 includes a seventh transistor T7 and an eighth transistor T8.
  • the gate of the seventh transistor T7 is connected to the second scan signal terminal G2, the first electrode of the seventh transistor T7 is connected to the second data signal terminal D2, and the second electrode of the seventh transistor T7 is connected to the fourth node N.
  • the gate of the eighth transistor T8 is connected to the second scan signal terminal G2, the first electrode of the eighth transistor T8 is connected to the second voltage signal terminal V2, and the second electrode of the eighth transistor T8 is connected to the third node M.
  • the second control sub-circuit 203 includes a ninth transistor T9 and a tenth transistor T10.
  • the gate of the ninth transistor T9 is connected to the enable signal terminal EM, the first electrode of the ninth transistor T9 is connected to the first voltage signal terminal V1, and the second electrode of the ninth transistor T9 is connected to the fourth node N.
  • the gate of the tenth transistor T10 is connected to the enable signal terminal EM, the first electrode of the tenth transistor T10 is connected to the second electrode of the first transistor T1, and the second electrode of the tenth transistor T10 is connected to the element L to be driven.
  • the potential control sub-circuit 204 includes an eleventh transistor T11, a twelfth transistor T12, a thirteenth transistor T13, a fourteenth transistor T14, a fifteenth transistor T15, and a sixteenth transistor T15.
  • Transistor T16 is an eleventh transistor T11, a twelfth transistor T12, a thirteenth transistor T13, a fourteenth transistor T14, a fifteenth transistor T15, and a sixteenth transistor T15.
  • the gate of the eleventh transistor T11 is connected to the third node M, the first electrode of the eleventh transistor T11 is connected to the second power supply voltage signal terminal S2, and the second electrode of the eleventh transistor T11 is connected to the twelfth transistor T12 The first pole.
  • the gate of the twelfth transistor T12 is connected to the third node M, and the second electrode of the twelfth transistor T12 is connected to the second node B.
  • the gate of the thirteenth transistor T13 is connected to the third node M, the first pole of the thirteenth transistor T13 is connected to the third power supply voltage signal terminal S3, and the second pole of the thirteenth transistor T13 is connected to the fourteenth transistor T14 The first pole.
  • the gate of the fourteenth transistor T14 is connected to the third node M, and the second electrode of the fourteenth transistor T14 is connected to the second node B.
  • the gate of the fifteenth transistor T15 is connected to the second node B, the first electrode of the fifteenth transistor T15 is connected to the third power supply voltage signal terminal S3, and the second electrode of the fifteenth transistor T15 is connected to the eleventh transistor T11 The second pole of the twelfth transistor and the first pole of the twelfth transistor T12.
  • the gate of the sixteenth transistor T16 is connected to the second node B, the first electrode of the sixteenth transistor T16 is connected to the second power supply voltage signal terminal S2, and the second electrode of the sixteenth transistor T16 is connected to the thirteenth transistor T12 The second pole of the fourteenth transistor T14 and the first pole.
  • the eleventh transistor T11, the twelfth transistor T12, and the fifteenth transistor T15 are all P-type transistors
  • the thirteenth transistor T13, the fourteenth transistor T14, and the sixteenth transistor T16 are all N-type transistors.
  • the first transistor T1 is a P-type transistor
  • the voltage of the second power supply voltage signal is a fixed high voltage
  • the voltage of the third power supply voltage signal is a fixed low voltage.
  • the eleventh transistor T11, the twelfth transistor T12, and the fifteenth transistor T15 are all N-type transistors, and the thirteenth transistor T13, the fourteenth transistor T14, and the sixteenth transistor T15 are all N-type transistors.
  • the transistor T16 is a P-type transistor.
  • the first transistor T1 is a P-type transistor
  • the voltage of the second power supply voltage signal is a fixed low voltage
  • the voltage of the third power supply voltage signal is a fixed high voltage.
  • the embodiment of the present disclosure does not limit the types of the remaining transistors of the pixel driving circuit.
  • the first electrode of the transistor may be the drain, and the second electrode may be the source.
  • the first electrode of the transistor may be the source and the second electrode may be the drain.
  • the embodiments of the present disclosure do not limit this.
  • the driving transistor Td is a P-type transistor
  • the first electrode of the driving transistor Td has a source electrode and the second electrode has a drain electrode.
  • the driving transistor is an N-type transistor
  • the first electrode of the driving transistor Td has a drain and the second electrode has a source.
  • the thirteenth transistor T13, the fourteenth transistor T14, and the sixteenth transistor T16 are all N-type transistors, and the remaining transistors are all P-type transistors as an example.
  • the comparison is shown in FIG. The driving process of the pixel driving circuit is described.
  • a frame period includes a scanning phase (P1 to P5) and a working phase (P5 to P6), and the scanning phase (P1 to P5) includes multiple line scanning phases.
  • the plurality of row scanning stages includes n row scanning stages, and each row of the pixel driving circuit in the sub-pixel region corresponds to one Line scanning stage.
  • the n line scan stages are ts1 to tsn, the first line scan stage is ts1, the nth line scan stage is tsn, and n is a positive integer greater than 1.
  • the pixel driving circuits in the sub-pixel regions of each row are scanned row by row. That is, the pixel driving circuit in the sub-pixel area of the first row starts to scan row by row, and the first data signal and the second data signal are sequentially input to the pixel driving circuit in the sub-pixel area of each row until the first data signal and the second data signal are combined. Two data signals are input to each pixel driving circuit located in the sub-pixel area of the nth row.
  • the pixel driving circuits in the sub-pixel regions of each row may enter the working phase sequentially. That is, the pixel driving circuit in the sub-pixel area of the first row enters the working phase first, and then the pixel driving circuit in the sub-pixel area of the second row enters the working phase, until the pixel driving circuit in the sub-pixel area of the nth row enters the working phase.
  • the effective duration of the enable signal of the pixel driving circuit in the sub-pixel area of each row in the working phase is the same.
  • the pixel driving circuits in the sub-pixel regions of each row enter the working phase synchronously.
  • the pixel driving circuit in each row of the sub-pixel area enters the working phase after the corresponding row scanning phase ends.
  • each row scanning stage m pixel driving circuits located in m sub-pixel regions of the same row are synchronously written with different or the same first data signals.
  • the first data signal is a group of signals.
  • the m pixel driving circuits located in the m sub-pixel regions in the same row are synchronously written with different or the same second data signals.
  • the second data signal is a group of signals.
  • each pixel driving circuit located in the first row sub-pixel area includes the following driving process.
  • the sixth transistor T6 In the first stage (P1 ⁇ P2), in response to the received reset signal from the reset signal terminal Rst1, the sixth transistor T6 is turned on, and the initial signal provided by the initial signal terminal Init1 is transmitted to the first node A, so that the first node The voltage of A is reset to the voltage of the initial signal (denoted as V init1 ). Since the other end of the first capacitor C1 and the gate of the driving transistor Td are both connected to the first node A, the voltage of the other end of the first capacitor C1 and the gate voltage of the driving transistor Td are both reset to V init1 .
  • the initial signal provided by the initial signal terminal Init1 can eliminate the influence of the signal of the previous frame on the first node A.
  • the initial signal can be a low-level signal or a high-level signal.
  • the driving transistor Td is a P-type transistor, the initial signal is a voltage signal not less than zero.
  • the first scan signal terminal G1, the second scan signal terminal G2, and the enable signal terminal EM all input high-level signals, so that the second transistor T2 and the second transistor T2 in the signal control sub-circuit 10
  • the three transistors T3, the fourth transistor T4, the fifth transistor T5, and the transistors in the time control sub-circuit 20 are all in an off state. Therefore, in the first stage (P1 to P2), the element L to be driven does not work.
  • the third transistor T3 in response to the first scan signal received from the first scan signal terminal G1, the third transistor T3 is turned on to transmit the first data signal provided by the first data signal terminal D1 to the driver
  • the first electrode of the transistor Td makes the voltage of the first electrode of the driving transistor Td the voltage of the first data signal (denoted as V data1 ).
  • the second transistor T2 In response to receiving the first scan signal from the first scan signal terminal G1, the second transistor T2 is turned on, so that the gate of the driving transistor Td is connected to the second electrode thereof, and the driving transistor Td is in a saturated state.
  • the gate voltage of the driving transistor Td is the sum of the voltage of the first electrode and its threshold voltage (denoted as V thd ), that is, the gate voltage of the driving transistor Td is V data1 +V thd . Since the other end of the first capacitor C1 and the gate of the driving transistor Td are both connected to the first node A, the voltage of the other end of the first capacitor C1 is also V data1 +V thd .
  • the voltage of one end of the first capacitor C1 is the voltage of the first power supply voltage signal (denoted as V S1 ).
  • V S1 the voltage of the first power supply voltage signal
  • the enable signal terminal EM inputs a high-level signal, so that the fourth transistor T4 and the fifth transistor T5 are in an off state. Therefore, the first transistor T1 in the time control sub-circuit 20 is disconnected from the driving transistor Td, and the element L to be driven does not work.
  • both the reset signal terminal Rst1 and the second scan signal terminal G2 input a high-level signal, so that the sixth transistor T6 in the signal control sub-circuit 10 is in an off state.
  • each transistor in the time control sub-circuit 20 is in an off state.
  • the seventh transistor T7 in response to the second scan signal received from the second scan signal terminal G2, the seventh transistor T7 is turned on to transmit the second data signal provided by the second data signal terminal D2 to the first Four nodes N, so that the voltage of the fourth node N is the voltage V data2 of the second data signal. Since the other end of the second capacitor C2 is connected to the fourth node N, the voltage of the other end of the second capacitor C2 is also V data2 .
  • the eighth transistor T8 is turned on to transmit the second voltage signal provided by the second voltage signal terminal V2 to the third node M, so that the The voltage is the voltage V V2 of the second voltage signal.
  • the second voltage signal provided by the second voltage signal terminal V2 can reset the third node M to eliminate the influence of the signal of the previous frame on the third node M.
  • the second voltage signal may be a fixed high-level signal or a fixed low-level signal.
  • the enable signal terminal EM, the first scan signal terminal G1, and the first reset signal terminal Rst1 all input high-level signals, so that the second transistor T2, the third transistor T3, and the fourth transistor
  • the transistor T4, the fifth transistor T5, the sixth transistor T6, the ninth transistor T9, and the tenth transistor T10 are all in an off state. Therefore, the first transistor T1 and the driving transistor Td and the first transistor T1 and the element L to be driven are both disconnected, and the element L to be driven does not work.
  • the pixel driving circuit in the second row sub-pixel area is scanned until the nth row scan stage tsn, the nth row sub-pixel area is scanned.
  • the pixel drive circuit in the pixel area performs scanning. As shown in FIG. 7, starting from the end time (P4) of the first row scanning stage ts1, during the time period P4 to P5, the pixel drive circuits located in the sub-pixel regions from the second row to the nth row are progressively processed row by row. Perform a scan.
  • the driving process of the pixel driving circuit in the sub-pixel area from the second row to the nth row in the corresponding row scanning phase is the same as that of the pixel driving circuit in the sub-pixel area of the first row in the first row.
  • the driving process of the scanning phase ts1 is the same, and will not be repeated here. That is to say, in the entire scanning phase (P1 to P5), the above-mentioned driving process of the first to third phases needs to be executed n times.
  • each of the n-line scanning stages includes the first to third stages mentioned above, so that the pixel driving circuit in the n-row sub-pixel area can be Write the first data signal and the second data signal, and store the first data signal and the second data signal to prepare for the working phase (P5 to P6).
  • each pixel driving circuit located in the sub-pixel area of the first row includes the following driving process.
  • the fourth transistor T4 in response to receiving the enable signal from the enable signal terminal EM, the fourth transistor T4 is turned on, and the first power supply voltage signal provided by the first power supply voltage signal terminal S1 is transmitted to the driving transistor Td
  • the first electrode of the driving transistor Td is the voltage of the first power supply voltage signal V S1 . That is, the source voltage of the driving transistor Td is V S1 .
  • the fifth transistor T5 is turned on, so that the second pole of the driving transistor Td is connected to the first pole of the first transistor T1 in the time control sub-circuit 20.
  • the voltage difference across the first capacitor C1 remains unchanged. Therefore, when the voltage at one end of the first capacitor C1 is maintained at the voltage V S1 of the first power supply voltage signal, the voltage at the other end of the first capacitor C1 is still V data1 +V thd , that is, the gate of the driving transistor Td The voltage is V data1 +V thd .
  • the gate-source voltage difference V gs of the driving transistor Td V data1 +V thd -V S1 .
  • the driving transistor Td is turned on when the gate-source voltage difference is smaller than its threshold voltage. That is, when V data1 +V thd -V S1 ⁇ V thd , the driving transistor Td is turned on and outputs a driving current.
  • the driving current is output from the second electrode of the driving transistor Td and transmitted to the first transistor T1 through the fifth transistor T5. The first pole.
  • the above parameter K is determined by the structure of the driving transistor Td. Therefore, the voltage V S1 of the first power supply voltage signal voltage V data1 first data signal I provided by the first end of the data signal D1 and the first power supply voltage driving current signal provided by terminal S1 is determined. That is, the driving current I has nothing to do with the threshold voltage of the driving transistor Td, thereby realizing the threshold voltage compensation of the driving transistor Td, avoiding the influence of the threshold voltage of the driving transistor Td on the light-emitting brightness of the driving element L, which is beneficial to improve the brightness of the driving element L to be driven.
  • the brightness uniformity of the element L is determined by the structure of the driving transistor Td. Therefore, the voltage V S1 of the first power supply voltage signal voltage V data1 first data signal I provided by the first end of the data signal D1 and the first power supply voltage driving current signal provided by terminal S1 is determined. That is, the driving current I has nothing to do with the threshold voltage of the driving transistor Td, thereby realizing the threshold voltage compensation of the driving transistor T
  • the size of the driving current I can be controlled by controlling the first data signal, and thus the gray scale can be controlled.
  • the ninth transistor T9 in response to receiving the enable signal from the enable signal terminal EM, the ninth transistor T9 is turned on to transmit the first voltage signal provided by the first voltage signal terminal V1 to the fourth node N,
  • the voltage of the fourth node N is changed from the voltage V data2 of the second data signal to the voltage V V1 of the first voltage signal. In this way, the voltage at the other end of the second capacitor C2 also changes from V data2 to V V1 .
  • the voltage difference across the second capacitor C2 remains unchanged.
  • the voltage difference between the two ends of the second capacitor C2 is V V2 ⁇ V data2 . Therefore, when the voltage at the other end of the second capacitor C2 changes from V data2 to V V1 , the voltage at one end of the second capacitor C2 is V V2 ⁇ V data2 +V V1 .
  • the voltage of the third node M connected to one end of the second capacitor C2 changes from V V2 to V V2 ⁇ V data2 +V V1 . Since the voltage V V1 of the first voltage signal changes within the set voltage range, the voltage of the third node M will change with the change of V V1 , and the change speed of the voltage of the third node M is the same as that of the first voltage signal. The voltage changes at the same speed.
  • the eleventh transistor T11, the twelfth transistor T12, and the fifteenth transistor T15 are all P-type transistors, and the thirteenth transistor T13, the fourteenth transistor T14, and the sixteenth transistor T16 are all N Type transistor.
  • the voltage of the second power supply voltage signal provided by the second power supply voltage signal terminal S2 is a high voltage
  • the voltage of the third power supply voltage signal provided by the third power supply voltage signal terminal S3 is a low voltage.
  • the sixteenth transistor T16 Since the voltage of the second power supply voltage signal is a high voltage, the sixteenth transistor T16 is turned on, and the second power supply voltage signal provided by the second power supply voltage signal terminal S2 is transmitted to the second pole and the tenth pole of the thirteenth transistor T13.
  • the first pole of the four transistor T14 makes the voltage of the second pole of the thirteenth transistor T13 and the voltage of the first pole of the fourteenth transistor T14 both the voltage V S2 of the second power supply voltage signal.
  • the voltage of the second electrode of the fourteenth transistor T14 is the voltage V S2 of the second power supply voltage signal. That is, the voltage of the first pole of the fourteenth transistor T14 and the voltage of the second pole of the fourteenth transistor T14 are both the voltage V S2 of the second power supply voltage signal. At this time, the voltage drop of the fourteenth transistor T14 is zero. In addition, the voltage drops of the eleventh transistor T11 and the twelfth transistor T12 are also zero.
  • the voltage of the first pole of the thirteenth transistor T13 is the voltage V S3 of the third power supply voltage signal provided by the third power supply voltage signal terminal S3, and the voltage of the second pole of the thirteenth transistor T13 is the voltage of the second power supply voltage signal V S2 makes the thirteenth transistor T13 bear a larger voltage drop. Therefore, the third power supply voltage signal will not be transmitted to the second node B through the thirteenth transistor T13 and the fourteenth transistor T14.
  • the eleventh transistor T11 and the twelfth transistor T12 are in the on state, even if the fourteenth transistor T14 and the thirteenth transistor T13 are in the transition state of incompletely off or incompletely on, the signal from the third power supply voltage signal terminal
  • the third power supply voltage signal of S3 will not be transmitted to the second node B through the thirteenth transistor T13 and the fourteenth transistor T14. That is, the third power supply voltage signal does not affect the second node B, so that the voltage of the second node B can be accurately maintained as the voltage of the second power supply voltage signal, so that the gate voltage of the first transistor T1 can be accurately controlled Is the voltage V S2 of the second power supply voltage signal.
  • the voltage of the third node M is a low voltage
  • the voltage of the second node B is a high voltage.
  • the P-type first transistor T1 is in an off state under the control of the high voltage of the second power supply voltage signal, and the element L to be driven does not work.
  • the thirteenth transistor T13 and the fourteenth transistor T14 are turned on, and the thirteenth transistor T13 will come from
  • the third power supply voltage signal of the third power supply voltage signal terminal S3 is transmitted to the first pole of the fourteenth transistor T14, and is transmitted to the second node B through the second pole of the fourteenth transistor T14, so that the voltage of the second node B is The voltage V S3 of the third power supply voltage signal.
  • the fifteenth transistor T15 is turned on, and the third power supply voltage signal provided by the third power supply voltage signal terminal S3 is transmitted to the second pole and the tenth pole of the eleventh transistor T11.
  • the first pole of the two transistors T12 makes the voltage of the second pole of the eleventh transistor T11 and the voltage of the first pole of the twelfth transistor T12 both the voltage V S3 of the third power supply voltage signal.
  • the voltage of the second electrode of the twelfth transistor T12 is the voltage V S3 of the third power supply voltage signal. That is, the voltage of the first pole of the twelfth transistor T12 and the voltage of the second pole of the twelfth transistor T12 are both the voltage V S3 of the third power supply voltage signal. At this time, the voltage drop of the twelfth transistor T12 is zero. In addition, the voltage drop of the thirteenth transistor T13 and the fourteenth body transistor T14 are also zero.
  • the voltage of the first pole of the eleventh transistor T11 is the voltage V S2 of the second power supply voltage signal
  • the voltage of the second pole of the eleventh transistor T11 is the voltage V S3 of the third power supply voltage signal, so that the eleventh transistor T11 Bear a greater pressure drop. Therefore, the second power supply voltage signal will not be transmitted to the second node B through the eleventh transistor T11 and the twelfth transistor T12.
  • the signal from the second power supply voltage signal terminal The second power supply voltage signal of S2 will not be transmitted to the second node B through the eleventh transistor T11 and the twelfth transistor T12. That is, the second power supply voltage signal does not affect the second node B, so that the voltage of the second node B can be accurately maintained as the voltage of the third power supply voltage signal, so that the gate voltage of the first transistor T1 can be accurately controlled Is the voltage V S3 of the third power supply voltage signal.
  • the voltage of the third node M is a high voltage
  • the voltage of the second node B is a low voltage.
  • the P-type first transistor T1 is in an on state under the control of the low voltage of the third power supply voltage signal.
  • the tenth transistor T10 is turned on in response to the received enable signal from the enable signal terminal EM, the first transistor T1 is connected to the element L to be driven, so that the driving current from the signal control sub-circuit 10 is transmitted to the element to be driven L, to drive the component L to be driven to work.
  • the fourth transistor T4, the fifth transistor T5, the ninth transistor T9, and the tenth transistor T10 are turned off at the same time, so that The element L to be driven does not work. Therefore, for each pixel driving circuit connected to the same enable signal line, the time when the connected elements L to be driven are turned on may be different, but the time when they are turned off are the same. Therefore, the time during which the driving current is transmitted to the element L to be driven can be controlled by controlling the turn-on time of the first transistor T1, thereby controlling the operating time of the element L to be driven.
  • the second power supply voltage signal and the voltage of the third power supply voltage signal determine whether the first transistor T1 is turned on, taking the first transistor T1 as a P-type transistor as an example, the second power supply voltage signal The voltage needs to ensure that the first transistor T1 can be completely turned off in each image frame, and the voltage of the third power supply voltage signal needs to ensure that the first transistor T1 can be completely turned on in each image frame.
  • FIG. 7 represents the signal timing of the third node M of an image frame
  • V M1 V V2 -V data2 +V V1
  • ⁇ V M1 V data2 -V V2 .
  • the value of ⁇ V M2 and the value of ⁇ V M1 are also different.
  • the voltage V M2 of the third node M changes so that the potential control sub-circuit 20 transmits to the second node B
  • the time of the third power supply voltage signal is greater than the time required for the voltage V M1 of the third node M to change to the third power supply voltage signal that the potential control sub-circuit 20 transmits to the second node B. That is, the first transistor T1 in an image frame shown in FIG.
  • the element L(1) is turned on earlier than the element L(2) to be driven under another image frame shown in FIG. 8, so that the light-emitting duration t1 of the element L(1) to be driven is relative to the element L(2) to be driven.
  • the light-emitting time t2 is longer.
  • the eleventh transistor T11, the twelfth transistor T12, and the fifteenth transistor T15 are all N-type transistors
  • the thirteenth transistor T13, the fourteenth transistor T14, and the sixteenth transistor T16 are all N-type transistors.
  • the voltage of the second power supply voltage signal provided by the second power supply voltage signal terminal S2 is a low voltage
  • the voltage of the third power supply voltage signal provided by the third power supply voltage signal terminal S3 is a high voltage.
  • the thirteenth transistor T13 transmits the third power supply voltage signal from the third power supply voltage signal terminal S3 to the third power supply voltage signal terminal S3.
  • the first pole of the fourteenth transistor T14 is transmitted to the second node B through the second pole of the fourteenth transistor T14, so that the voltage of the second node B is the voltage V S3 of the third power supply voltage signal.
  • the fifteenth transistor T15 is turned on, and the third power supply voltage signal provided by the third power supply voltage signal terminal S3 is transmitted to the second pole and the tenth pole of the eleventh transistor T11.
  • the first pole of the two transistors T12 makes the voltage of the second pole of the eleventh transistor T11 and the voltage of the first pole of the twelfth transistor T12 both the voltage V S3 of the third power supply voltage signal.
  • the voltage of the second electrode of the twelfth transistor T12 is the voltage V S3 of the third power supply voltage signal. That is, the voltage of the first pole of the twelfth transistor T12 and the voltage of the second pole of the twelfth transistor T12 are both the voltage V S3 of the third power supply voltage signal. At this time, the voltage drop of the twelfth transistor T12 is zero. The voltage drops of the thirteenth transistor T13 and the fourteenth transistor T14 are also zero.
  • the voltage of the first electrode of the eleventh transistor T11 is the voltage V S2 of the second power supply voltage signal provided by the second power supply voltage signal terminal S2, and the voltage of the second electrode of the eleventh transistor T11 is the voltage of the third power supply voltage signal V S3 makes the eleventh transistor T11 bear a larger voltage drop. Therefore, the second power supply voltage signal will not be transmitted to the second node B through the eleventh transistor T11 and the twelfth transistor T12.
  • the signal from the second power supply voltage signal terminal The second power supply voltage signal of S2 will not be transmitted to the second node B through the eleventh transistor T11 and the twelfth transistor T12. That is, the second power supply voltage signal does not affect the second node B, so that the voltage of the second node B can be accurately maintained as the voltage of the third power supply voltage signal, so that the gate voltage of the first transistor T1 can be accurately controlled Is the voltage V S3 of the third power supply voltage signal.
  • the P-type first transistor T1 is in an off state under the control of the high voltage of the third power supply voltage signal, so that the element L to be driven does not work.
  • the eleventh transistor T11 When the voltage of the third node M changes with the voltage of the first voltage signal to control the eleventh transistor T11 and the twelfth transistor T12 to turn on, the eleventh transistor T11 will be from the second power supply voltage signal terminal S2
  • the second power supply voltage signal is transmitted to the first pole of the twelfth transistor T12, and is transmitted to the second node B through the second pole of the twelfth transistor T12, so that the voltage of the second node B is the voltage V of the second power supply voltage signal S2 .
  • the sixteenth transistor T16 is turned on to transmit the second power supply voltage signal provided by the second power supply voltage signal terminal S2 to the second pole and the tenth pole of the thirteenth transistor T13.
  • the first pole of the four transistor T14 makes the voltage of the second pole of the thirteenth transistor T13 and the voltage of the first pole of the fourteenth transistor T14 both the voltage V S2 of the second power supply voltage signal.
  • the voltage of the second electrode of the fourteenth transistor T14 is the voltage V S2 of the second power supply voltage signal. That is, the voltage of the first pole of the fourteenth transistor T14 and the voltage of the second pole of the fourteenth transistor T14 are both the voltage V S2 of the second power supply voltage signal. At this time, the voltage drop of the fourteenth transistor T14 is zero. The voltage drop of the eleventh transistor T11 and the twelfth transistor T12 are also zero.
  • the voltage of the first pole of the thirteenth transistor T13 is the voltage V S3 of the third power supply voltage signal provided by the third power supply voltage signal terminal S3, and the voltage of the second pole of the thirteenth transistor T13 is the voltage of the second power supply voltage signal V S2 makes the thirteenth transistor T13 bear a larger voltage drop. Therefore, the third power supply voltage signal will not be transmitted to the second node B through the thirteenth transistor T13 and the fourteenth transistor T14.
  • the eleventh transistor T11 and the twelfth transistor T12 are in the on state, even if the fourteenth transistor T14 and the thirteenth transistor T13 are in the transition state of incompletely off or incompletely on, the signal from the third power supply voltage signal terminal
  • the third power supply voltage signal of S3 will not be transmitted to the second node B through the thirteenth transistor T13 and the fourteenth transistor T14. That is, the third power supply voltage signal does not affect the second node B, so that the voltage of the second node B can be accurately maintained as the voltage of the second power supply voltage signal, so that the gate voltage of the first transistor T1 can be accurately controlled Is the voltage V S2 of the second power supply voltage signal.
  • the P-type first transistor T1 is in the on state under the control of the low voltage of the second power supply voltage signal. Since the fifth transistor T5 and the tenth transistor T10 are turned on in response to the enable signal received from the enable signal terminal EM, the first transistor T1 is connected to the element L to be driven, so that the driving signal from the signal control sub-circuit 10 It is transmitted to the component L to be driven to drive the component L to be driven to work.
  • the time during which the driving signal is transmitted to the element L to be driven can be controlled by controlling the turn-on time of the first transistor T1, thereby controlling the operating time of the element L to be driven.
  • the third node M is directly connected to the second node B, so that the gate voltage of the first transistor T1 is the same as the voltage of the third node M (V V2 -V data2 +V V1 ) equal.
  • the voltage of the first voltage signal provided by the first voltage signal terminal V1 changes within the set voltage range, so that the gate voltage of the first transistor T1 changes with the change of V V1 .
  • the gate voltage of the first transistor T1 will be in a non-high voltage and non-low voltage state, so that the first transistor T1 is in a transition state of not being completely turned on or not being completely turned off.
  • the element L to be driven performs grayscale display under the driving signal of a higher value
  • the first transistor T1 in the transition state will transmit the driving signal of the lower value to the element L to be driven, so that the element to be driven
  • the element L works under a lower value drive signal.
  • the turn-on time of the to-be-driven element L cannot be accurately controlled, resulting in the inaccurate control of its working duration, on the other hand, the uniformity of the grayscale display is reduced, and color shift occurs.
  • the simulation test of the pixel driving circuit in FIG. 9 is performed, and the test result is shown in FIG. 10, the horizontal axis represents the voltage of the second node B, and the vertical axis represents the driving current input to the element L to be driven.
  • the voltage range of the second node B (that is, the third node M) is -10V ⁇ 10V
  • Q1 and Q4 represent the highest point and the lowest point of the voltage of the second node B, respectively
  • Q2 and Q3 represent that the voltage of the second node B is in a non- The state of high voltage and not low voltage.
  • the voltage of the second node B is in a non-high voltage and non-low voltage state, so that the first transistor T1 is in a transitional state of not being completely turned on or not being completely turned off, causing the element L to be driven that should have stopped working to return It will continue to work at a lower current density, so that the element L to be driven will be in a lower current density state for a period of time, which reduces the uniformity of grayscale display.
  • the simulation test of the pixel driving circuit in FIG. 5 is performed, and the test result is shown in FIG. 11, the horizontal axis represents the voltage of the second node B, and the vertical axis represents the driving current input to the element L to be driven.
  • the voltage of the third node M changes with the change of the voltage of the first voltage signal
  • FIG. 11 it can be seen from FIG. 11 that the voltage of the second node B is in a high voltage state and a low voltage state at different stages, and It will not be in a non-high voltage and non-low voltage state as shown in FIG. 10.
  • the turning on and off of the first transistor T1 can be accurately controlled, so that the driving current of the element L to be driven is maintained as the driving current from the signal control sub-circuit 10, thereby ensuring The uniformity of the gray scale and the stability of the color coordinate are analyzed.
  • the test result is shown in FIG. 12, the horizontal axis represents the voltage of the third node M, and the vertical axis represents the voltage of the second node B. It can be seen from FIG. 12 that when the voltage of the third node M gradually changes from a high voltage to a low voltage, the voltage of the second node B abruptly changes from a low voltage to a high voltage, and the voltage of the second node B only maintains a low voltage state or High voltage state, but not in a non-high voltage and non-low voltage state.
  • the non-high voltage and non-low voltage signal can be converted into a high voltage signal or a low voltage signal through the potential control sub-circuit 204, so that the first transistor T1 can be controlled to be in a fully turned on or fully turned off state, so as to realize the control of the element L to be driven. Precise control of working hours.
  • the first transistor T1 is controlled to be turned on or off, so as to realize precise control of the working time of the driving element L.
  • the element L to be driven displays different gray scales
  • the size of the driving signal of the element L to be driven and the light-emitting duration of the element L to be driven the brightness of the element L to be driven can be changed, and then the corresponding gray scale display can be realized. , Improve the display effect of the display panel.
  • a frame period includes a scanning phase (P1 to P5) and a working phase (P5 to P6), and a scanning phase (P1 to P5).
  • P5 includes multiple line scan stages (ts1 to tsn). Each line scan stage includes S10 to S20, and the work stage includes S30 to S40.
  • the driving method includes:
  • the signal control sub-circuit 10 In response to the received first scan signal from the first scan signal terminal G1, the signal control sub-circuit 10 writes at least the first data signal from the first data signal terminal D1 to the first node A;
  • the time control sub-circuit 20 In response to the second scan signal received from the second scan signal terminal G2, the time control sub-circuit 20 writes the second data signal from the second data signal terminal D2 to the fourth node N, and writes the second data signal from the second data signal terminal D2 to the third node. M writes the second voltage signal from the second voltage signal terminal V2;
  • the signal control sub-circuit 10 makes the first driving sub-circuit 101 according to the first data signal and the first power supply voltage signal terminal provided by the first data signal terminal D1
  • the first power supply voltage signal provided by S1 outputs a driving signal to the first transistor T1;
  • the time control sub-circuit 20 In response to the received enable signal from the enable signal terminal EM, the time control sub-circuit 20 writes the first voltage signal from the first voltage signal terminal that changes within the set voltage range to the fourth node N, and Make the voltage on the third node M change with the voltage change between the first voltage signal and the second data signal; and in response to the voltage change on the third node M, the second power voltage signal terminals are respectively connected at different stages
  • the second power supply voltage signal provided by S2 and the third power supply voltage signal provided by the third power supply voltage signal terminal S3 are transmitted to the second node B to control the operating time of the element L to be driven by controlling the turn-on time of the first transistor T1.
  • the signal control sub-circuit 10 includes a first driving sub-circuit 101, a first data writing sub-circuit 102, and a first control sub-circuit 103.
  • the first driving sub-circuit 101 includes a driving transistor Td, and the gate of the driving transistor Td is connected to the first node A.
  • the first data writing sub-circuit 102 is connected to the first scan signal terminal G1, the first data signal terminal D1, and the driving transistor Td.
  • the first control sub-circuit 103 is connected to the enable signal terminal EM, the first power supply voltage signal terminal S1, the driving transistor Td, and the first pole of the first transistor T1.
  • the above S10 and S30 include:
  • the first data writing sub-circuit 102 writes the first data signal from the first data signal terminal D1 and the driving transistor to the first node A.
  • the threshold voltage of Td performs threshold voltage compensation for the drive transistor Td.
  • the first control sub-circuit 103 in response to the received enable signal from the enable signal terminal EM, causes the driving transistor Td to be respectively connected to the first power supply voltage signal terminal S1 and the first pole of the first transistor T1; the driving transistor Td outputs a driving signal to the first electrode of the first transistor T1 according to the first data signal provided by the first data signal terminal D1 and the first power supply voltage signal provided by the first power supply voltage signal terminal S1.
  • the time control sub-circuit 20 includes a second data writing sub-circuit 202, a second driving sub-circuit 201, a second control sub-circuit 203, and a potential control sub-circuit 204.
  • the second driving sub-circuit 201 includes a first transistor T1 and a second capacitor C2.
  • the gate of the first transistor T1 is connected to the second node B, and the first electrode of the first transistor T1 is connected to the signal control sub-circuit 10.
  • One end of the second capacitor C2 is connected to the third node M, and the other end of the second capacitor C2 is connected to the fourth node N.
  • the second data writing sub-circuit 202 is connected to the second scan signal terminal G2, the second data signal terminal D2, the second voltage signal terminal V2, the third node M, and the fourth node N.
  • the second control sub-circuit 203 is connected to the enable signal terminal EM, the first voltage signal terminal V1, the second pole of the first transistor T1, the fourth node N, and the element L to be driven.
  • the potential control sub-circuit 204 is connected to the second node B, the third node M, the second power supply voltage signal terminal S2, and the third power supply voltage signal terminal S3.
  • the above S20 and S40 include:
  • the second data writing sub-circuit 202 In response to the second scan signal received from the second scan signal terminal G2, the second data writing sub-circuit 202 writes the second data signal from the second data signal terminal D2 to the fourth node N, and writes the second data signal from the second data signal terminal D2 to the fourth node N.
  • the third node M writes the second voltage signal from the second voltage signal terminal V2.
  • the second control sub-circuit 203 In response to the received enable signal from the enable signal terminal EM, the second control sub-circuit 203 writes the first voltage signal from the first voltage signal terminal V1 to the fourth node N, so that the third node M is The voltage changes with the voltage change between the first voltage signal and the second data signal, and connects the second electrode of the first transistor T1 to the element L to be driven; the potential control sub-circuit 204 responds to the third node M
  • the second power supply voltage signal provided by the second power supply voltage signal terminal S2 and the third power supply voltage signal provided by the third power supply voltage signal terminal S3 are respectively transmitted to the second node B at different stages.
  • the driving method of the pixel driving circuit provided by some embodiments of the present disclosure has the same beneficial effects as the above-mentioned pixel driving circuit, and therefore will not be described in detail.
  • the signal control sub-circuit 10 further includes a reset sub-circuit 104.
  • the reset sub-circuit 104 is connected to the initial signal terminal Init1, the reset signal terminal Rst1 and the first node A.
  • Each line scan stage also includes S00.
  • the driving method also includes:
  • the reset sub-circuit 104 transmits the initial signal provided by the initial signal terminal Init1 to the first node in response to the reset signal received from the reset signal terminal Rst1.
  • the reset sub-circuit 104 includes a sixth transistor T6.
  • the gate of the sixth transistor T6 is connected to the reset signal terminal Rst1
  • the first electrode of the sixth transistor T6 is connected to the initial signal terminal Init1
  • the second electrode of the sixth transistor T6 is connected to the first node A.
  • the above S00 includes:
  • the sixth transistor T6 is turned on, and the initial signal provided by the initial signal terminal Init1 is transmitted to the first node A, so that the voltage of the first node A is reset to the value of the initial signal. Voltage V init1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素驱动电路,包括信号控制子电路和时间控制子电路。信号控制子电路包括第一驱动子电路,第一驱动子电路连接到第一节点。信号控制子电路被配置为至少将第一数据信号端提供的第一数据信号写入第一节点,使第一驱动子电路根据第一数据信号和第一电源电压信号端提供的第一电源电压信号输出驱动信号。时间控制子电路包括第二驱动子电路,第二驱动子电路包括第一晶体管。第一晶体管连接到第二节点和信号控制子电路。时间控制子电路被配置为在不同阶段分别将第二电源电压信号端提供的第二电源电压信号和第三电源电压信号端提供的第三电源电压信号传输至第二节点,以控制第一晶体管的开启时间,并在第一晶体管开启时将驱动信号传输至待驱动元件。

Description

像素驱动电路及其驱动方法、显示面板、显示装置
本申请要求于2019年11月1日提交的、申请号为201911061474.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种像素驱动电路及其驱动方法、显示面板、显示装置。
背景技术
自发光器件,因其亮度高,色域广的特点,受到广泛关注。然而,由于自发光器件的光电转换特性(例如,光电转换效率和色坐标等)会随着流过该自发光器件的电流的变化而发生改变。例如,自发光器件的发光效率会随着电流密度降低而降低。
发明内容
第一方面,提供一种像素驱动电路,包括信号控制子电路和时间控制子电路。所述信号控制子电路连接到第一扫描信号端、第一数据信号端、第一电源电压信号端、以及使能信号端。所述信号控制子电路包括第一驱动子电路,所述第一驱动子电路连接到第一节点。所述信号控制子电路被配置为:响应于接收到的来自所述第一扫描信号端的第一扫描信号,至少将所述第一数据信号端提供的第一数据信号写入所述第一节点;以及响应于接收到的来自所述使能信号端的使能信号,使所述第一驱动子电路根据所述第一数据信号和所述第一电源电压信号端提供的第一电源电压信号,输出驱动信号。
所述时间控制子电路连接到第二扫描信号端、第二数据信号端、所述使能信号端、第一电压信号端、第二电压信号端、第二电源电压信号端、第三电源电压信号端、所述信号控制子电路以及待驱动元件。所述时间控制子电路包括第二驱动子电路,所述第二驱动子电路包括第一晶体管。所述第二驱动子电路连接到第二节点、第三节点和第四节点。所述第一晶体管连接到所述第二节点和所述信号控制子电路。所述时间控制子电路被配置为:响应于接收到的来自所述第二扫描信号端的第二扫描信号,将所述第二数据信号端提供的第二数据信号写入所述第四节点,并将所述第二电压信号端提供的第二电压信号写入所述第三节点;响应于接收到的来自所述使能信号端的使能信号,将所述第一电压信号端提供的在设定电压范围内变化的第一电压信号写入所述第四节点,并使所述第三节点上的电压随着所述第一电压信号与所述第二数据信号之间的电压变化而变化;以及响应于所述第三节点上的电压 变化,在不同阶段分别将所述第二电源电压信号端提供的第二电源电压信号和所述第三电源电压信号端提供的第三电源电压信号传输至所述第二节点,以控制所述第一晶体管的开启时间,并在所述第一晶体管开启时将所述驱动信号传输至所述待驱动元件。
在一些实施例中,所述信号控制子电路还包括第一数据写入子电路以及第一控制子电路。所述第一驱动子电路包括驱动晶体管,所述驱动晶体管的栅极连接到所述第一节点。所述第一数据写入子电路连接到所述第一扫描信号端、所述第一数据信号端、以及所述驱动晶体管。所述第一数据写入子电路被配置为响应于接收到的所述第一扫描信号,将所述第一数据信号和所述驱动晶体管的阈值电压写入所述第一节点,对所述驱动晶体管进行阈值电压补偿。所述第一控制子电路连接到所述使能信号端、所述第一电源电压信号端、所述驱动晶体管、以及所述第一晶体管的第一极。所述第一控制子电路被配置为响应于接收到的所述使能信号,使所述驱动晶体管分别与所述第一电源电压信号端和所述第一晶体管的第一极连接。所述第一驱动子电路还连接到第一电源电压信号端。所述驱动晶体管被配置为根据所述第一数据信号和所述第一电源电压信号,输出所述驱动信号至所述第一晶体管的第一极。
在一些实施例中,所述第一驱动子电路还包括第一电容器。所述第一电容器的一端连接到所述第一电源电压信号端,所述第一电容器的另一端连接到所述第一节点。
在一些实施例中,所述第一数据写入子电路包括第二晶体管和第三晶体管。所述第二晶体管的栅极连接到所述第一扫描信号端,所述第二晶体管的第一极连接到所述驱动晶体管的第二极,所述第二晶体管的第二极连接到所述第一节点。所述第三晶体管的栅极连接到所述第一扫描信号端,所述第三晶体管的第一极连接到所述第一数据信号端,所述第三晶体管的第二极连接到所述驱动晶体管的第一极。
在一些实施例中,所述第一控制子电路包括第四晶体管和第五晶体管。所述第四晶体管的栅极连接到所述使能信号端,所述第四晶体管的第一极连接到所述第一电源电压信号端,所述第四晶体管的第二极连接到所述驱动晶体管的第一极。所述第五晶体管的栅极连接到所述使能信号端,所述第五晶体管的第一极连接到所述驱动晶体管的第二极,所述第五晶体管的第二极连接到所述第一晶体管的第一极。
在一些实施例中,所述信号控制子电路还包括复位子电路。所述复位子电路连接到初始信号端、复位信号端以及所述第一节点。所述复位子电路被 配置为响应于接收到的来自所述复位信号端的复位信号,将所述初始信号端提供的初始信号传输至所述第一节点。
在一些实施例中,所述复位子电路包括第六晶体管。所述第六晶体管的栅极连接到所述复位信号端,所述第六晶体管的第一极连接到所述初始信号端,所述第六晶体管的第二极连接到所述第一节点。
在一些实施例中,所述时间控制子电路还包括第二数据写入子电路、第二控制子电路以及电位控制子电路。所述第二驱动子电路还包括第二电容器。所述第一晶体管的栅极连接到所述第二节点,所述第一晶体管的第一极连接到所述信号控制子电路。所述第二电容器的一端连接到所述第三节点,所述第二电容器的另一端连接到所述第四节点。所述第二数据写入子电路连接到所述第二扫描信号端、所述第二数据信号端、所述第二电压信号端、所述第三节点和所述第四节点。所述第二数据写入子电路被配置为响应于接收到的所述第二扫描信号,将所述第二数据信号写入所述第四节点,并将所述第二电压信号写入所述第三节点。所述第二控制子电路连接到所述使能信号端、所述第一电压信号端、所述第一晶体管的第二极、所述第四节点、以及所述待驱动元件。所述第二控制子电路被配置为响应于接收到的所述使能信号,将所述第一电压信号写入所述第四节点,并使所述第一晶体管的第二极与所述待驱动元件连接。所述电位控制子电路连接到所述第二节点、所述第三节点、所述第二电源电压信号端、以及所述第三电源电压信号端。所述电位控制子电路被配置为响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号和所述第三电源电压信号传输至所述第二节点。
在一些实施例中,所述第二数据写入子电路包括第七晶体管和第八晶体管。所述第七晶体管的栅极连接到所述第二扫描信号端,所述第七晶体管的第一极连接到所述第二数据信号端,所述第七晶体管的第二极连接到所述第四节点。所述第八晶体管的栅极连接到所述第二扫描信号端,所述第八晶体管的第一极连接到所述第二电压信号端,所述第八晶体管的第二极连接到所述第三节点。
在一些实施例中,所述第二控制子电路包括第九晶体管和第十晶体管。所述第九晶体管的栅极连接到所述使能信号端,所述第九晶体管的第一极连接到所述第一电压信号端,所述第九晶体管的第二极连接到所述第四节点。所述第十晶体管的栅极连接到所述使能信号端,所述第十晶体管的第一极连接到所述第一晶体管的第二极,所述第十晶体管的第二极连接到所述待驱动元件。
在一些实施例中,所述电位控制子电路包括第十一晶体管、第十二晶体管、第十三晶体管、第十四晶体管、第十五晶体管和第十六晶体管。所述第十一晶体管的栅极连接到所述第三节点,所述第十一晶体管的第一极连接到所述第二电源电压信号端,所述第十一晶体管的第二极连接到所述第十二晶体管的第一极。所述第十二晶体管的栅极连接到所述第三节点,所述第十二晶体管的第二极连接到所述第二节点。所述第十三晶体管的栅极连接到所述第三节点,所述第十三晶体管的第一极连接到所述第三电源电压信号端,所述第十三晶体管的第二极连接到所述第十四晶体管的第一极。所述第十四晶体管的栅极连接到所述第三节点,所述第十四晶体管的第二极连接到所述第二节点。所述第十五晶体管的栅极连接到所述第二节点,所述第十五晶体管的第一极连接到所述第三电源电压信号端,所述第十五晶体管的第二极连接到所述第十一晶体管的第二极和所述第十二晶体管的第一极。所述第十六晶体管的栅极连接到所述第二节点,所述第十六晶体管的第一极连接到所述第二电源电压信号端,所述第十六晶体管的第二极连接到所述第十三晶体管的第二极和所述第十四晶体管的第一极。所述第十一晶体管、所述第十二晶体管和所述第十五晶体管均为P型晶体管,所述第十三晶体管、所述第十四晶体管和所述第十六晶体管均为N型晶体管;或者,所述第十一晶体管、所述第十二晶体管和所述第十五晶体管均为N型晶体管,所述第十三晶体管、所述第十四晶体管和所述第十六晶体管均为P型晶体管。
第二方面,提供一种显示面板,包括多个如上所述的像素驱动电路以及多个待驱动元件。每个待驱动元件与对应的一个像素驱动电路连接。
在一些实施例中,所述显示面板具有多个亚像素区,每个像素驱动电路设置于一个亚像素区中。所述显示面板还包括多条第一扫描信号线、多条第一数据信号线、多条第二扫描信号线、多条第二数据信号线以及多条使能信号线。位于同一行亚像素区中的各像素驱动电路连接的第一扫描信号端与对应的一条第一扫描信号线连接。位于同一列亚像素区中的各像素驱动电路连接的第一数据信号端与对应的一条第一数据信号线连接。位于同一行亚像素区中的各像素驱动电路连接的第二扫描信号端与对应的一条第二扫描信号线连接。位于同一列亚像素区中的各像素驱动电路连接的第二数据信号端与对应的一条第二数据信号线连接。位于同一行亚像素区中的各像素驱动电路连接的使能信号端与对应的一条使能信号线连接。
在一些实施例中,所述待驱动元件为电流驱动型发光器件。
第三方面,提供一种显示装置,包括如上所述的显示面板。
第四方面,提供一种如上所述的像素驱动电路的驱动方法。一个帧周期包括扫描阶段和工作阶段,所述扫描阶段包括多个行扫描阶段。所述驱动方法,包括如下过程。在所述多个行扫描阶段中的每个行扫描阶段,所述信号控制子电路响应于接收到的来自所述第一扫描信号端的第一扫描信号,向所述第一节点至少写入来自第一数据信号端的第一数据信号;所述时间控制子电路响应于接收到的来自所述第二扫描信号端的第二扫描信号,向所述第四节点写入来自所述第二数据信号端的第二数据信号,并向所述第三节点写入来自所述第二电压信号端的第二电压信号。在所述工作阶段,所述信号控制子电路响应于接收到的来自所述使能信号端的使能信号,使所述第一驱动子电路根据所述第一数据信号和所述第一电源电压信号端提供的第一电源电压信号,输出驱动信号至所述第一晶体管;所述时间控制子电路响应于接收到的来自所述使能信号端的使能信号,向所述第四节点写入来自所述第一电压信号端的在设定电压范围内变化的第一电压信号,并使所述第三节点上的电压随着所述第一电压信号与所述第二数据信号之间的电压变化而变化;以及响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号端提供的第二电源电压信号和所述第三电源电压信号端提供的第三电源电压信号传输至所述第二节点,以通过控制所述第一晶体管的开启时间来控制所述待驱动元件的工作时长。
在一些实施例中,所述信号控制子电路还包括第一数据写入子电路以及第一控制子电路。所述第一驱动子电路包括驱动晶体管,所述驱动晶体管的栅极连接到所述第一节点。所述第一数据写入子电路连接到所述第一扫描信号端、所述第一数据信号端、以及所述驱动晶体管。所述第一控制子电路连接到所述使能信号端、所述第一电源电压信号端、所述驱动晶体管、以及所述第一晶体管的第一极。
在所述多个行扫描阶段中的每个行扫描阶段,所述信号控制子电路响应于接收到的所述第一扫描信号,向所述第一节点至少写入所述第一数据信号,在所述工作阶段,所述信号控制子电路响应于接收到的所述使能信号,使所述第一驱动子电路根据所述第一数据信号和所述第一电源电压信号,输出驱动信号至所述第一晶体管,包括:在所述多个行扫描阶段中的每个行扫描阶段,所述第一数据写入子电路响应于接收到的所述第一扫描信号,向所述第一节点写入所述第一数据信号和所述驱动晶体管的阈值电压,对所述驱动晶体管进行阈值电压补偿;在所述工作阶段,所述第一控制子电路响应于接收到的所述使能信号,使所述驱动晶体管分别与所述第一电源电压信号端和所 述第一晶体管的第一极连接;所述驱动晶体管根据所述第一数据信号和所述第一电源电压信号,输出所述驱动信号至所述第一晶体管的第一极。
在一些实施例中,所述时间控制子电路还包括第二数据写入子电路、第二控制子电路以及电位控制子电路。所述第二驱动子电路还包括第二电容器。所述第一晶体管的栅极连接到所述第二节点,所述第一晶体管的第一极连接到所述信号控制子电路。所述第二电容器的一端连接到所述第三节点,所述第二电容器的另一端连接到所述第四节点。所述第二数据写入子电路连接到所述第二扫描信号端、所述第二数据信号端、所述第二电压信号端、所述第三节点和所述第四节点。所述第二控制子电路连接到所述使能信号端、所述第一电压信号端、所述第一晶体管的第二极、所述第四节点、以及所述待驱动元件。所述电位控制子电路连接到所述第二节点、所述第三节点、所述第二电源电压信号端、以及所述第三电源电压信号端。
在所述多个行扫描阶段中的每个行扫描阶段,所述时间控制子电路响应于接收到的所述第二扫描信号,向所述第四节点写入所述第二数据信号,并向所述第三节点写入所述第二电压信号,在所述工作阶段,所述时间控制子电路响应于接收到的所述使能信号,向所述第四节点写入所述第一电压信号,使所述第三节点上的电压随着所述第一电压信号与所述第二数据信号之间的电压变化而变化,并响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号和所述第三电源电压信号传输至所述第二节点,包括:在所述多个行扫描阶段中的每个行扫描阶段,所述第二数据写入子电路响应于接收到的所述第二扫描信号,向所述第四节点写入所述第二数据信号,并向所述第三节点写入所述第二电压信号;在所述工作阶段,所述第二控制子电路响应于接收到的所述使能信号,向所述第四节点写入所述第一电压信号,使所述第三节点上的电压随着所述第一电压信号与所述第二数据信号之间的电压变化而变化,并使所述第一晶体管的第二极与所述待驱动元件连接;所述电位控制子电路响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号和所述第三电源电压信号传输至所述第二节点。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对本公开一些实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及 的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为本公开一些实施例提供的一种显示面板的结构图;
图2为本公开一些实施例提供的一种像素驱动电路与待驱动元件的连接图;
图3为本公开一些实施例提供的一种像素驱动电路的结构框图;
图4为本公开一些实施例提供的另一种像素驱动电路的结构框图;
图5为本公开一些实施例提供的一种像素驱动电路的电路结构图;
图6为本公开一些实施例提供的另一种像素驱动电路的电路结构图;
图7为本公开一些实施例提供的一种像素驱动电路的时序图;
图8为本公开一些实施例提供的另一种像素驱动电路的时序图;
图9为相关技术中的一种像素驱动电路的电路结构图;
图10为图9所示像素驱动电路的仿真测试图;
图11为本公开一些实施例提供的像素驱动电路的仿真测试图;
图12为本公开一些实施例提供的像素驱动电路的另一仿真测试图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件的过程、步骤、计算或其他动作,在实践中可以基于额外条件。
如本文所使用的那样,“约”或“接近”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。
本公开一些实施例提供一种显示装置,包括显示面板。如图1所示,显示面板具有多个亚像素区P。
在一些实施例中,如图1所示,多个亚像素区P以多行多列的阵列形式排列,但本公开实施例不限于此。
该显示面板包括多个像素驱动电路和多个待驱动元件L。如图2所示,每个待驱动元件L与对应的一个像素驱动电路连接。每个像素驱动电路和与其连接的待驱动元件L设置于一个亚像素区P中。像素驱动电路被配置为驱动待驱动元件L工作。
在一些实施例中,待驱动元件L的第一极连接到像素驱动电路,待驱动元件L的第二极连接到第四电源电压信号端S4。
在一些示例中,待驱动元件L的第一极和第二极分别为阳极和阴极。
在一些实施例中,待驱动元件L为电流驱动型发光器件,如微型发光二极管(Micro Light Emitting Diode,Micro LED)、迷你发光二极管(Mini Light Emitting Diode,Mini LED)或者有机电致发光二极管(Organic Light Emitting Diode,OLED)。在这种情况下,待驱动元件L工作可以被理解为电流驱动型发光器件发光。
在上述的基础上,本公开一些实施例提供一种像素驱动电路。如图3所示,该像素驱动电路包括信号控制子电路10和时间控制子电路20。信号控制子电路10包括第一驱动子电路101。时间控制子电路20包括第二驱动子电路201,第二驱动子电路201包括第一晶体管T1。
信号控制子电路10连接到第一扫描信号端G1、第一数据信号端D1、第一电源电压信号端S1、使能信号端EM。第一驱动子电路101连接到第一节点A。
信号控制子电路10被配置为:响应于接收到的来自第一扫描信号端G1的第一扫描信号,至少将第一数据信号端D1提供的第一数据信号写入第一节点A;以及响应于接收到的来自使能信号端EM的使能信号,使第一驱动子电路101根据第一数据信号端D1提供的第一数据信号和第一电源电压信号端S1提供的第一电源电压信号,输出驱动信号。
时间控制子电路20连接到第二扫描信号端G2、第二数据信号端D2、使能信号端EM、第一电压信号端V1、第二电压信号端V2、第二电源电压信号端S2、第三电源电压信号端S3、信号控制子电路10以及待驱动元件L。第二驱动子电路201连接到第二节点B、第三节点M和第四节点N,第一晶体管T1的栅极连接到第二节点B,第一晶体管T1的第一极连接到信号控制子电路10。
时间控制子电路20被配置为:响应于接收到的来自第二扫描信号端G2的第二扫描信号,将第二数据信号端D2提供的第二数据信号写入第四节点N,并将第二电压信号端V2提供的第二电压信号写入第三节点M;响应于接收到的来自使能信号端EM的使能信号,将第一电压信号端V1提供的在设定电压范围内变化的第一电压信号写入第四节点N,并使第三节点M上的电压随着第一电压信号与第二数据信号之间的电压变化而变化;以及响应于第三节点M上的电压变化,在不同阶段分别将第二电源电压信号端S2提供的第二电源电压信号和第三电源电压信号端S3提供的第三电源电压信号传输至第二节点B,以控制第一晶体管T1的开启时间,并在第一晶体管T1开启时将信号控制子电路10输出的驱动信号传输至待驱动元件L。即,通过控制第一晶体管T1的开启时间,来控制待驱动元件L的工作时长。
这里,由于第一电压信号的电压在设定电压范围内变化,因此,当第一电压信号写入第四节点N时,第四节点N上的电压随着第一电压信号的电压的变化而变化。第四节点N上的电压差为第一电压信号与第二数据信号之间的电压差。相应的,第三节点M上的电压随着第一电压信号与第二数据信号之间的电压变化而变化。
在本公开的实施例提供的像素驱动电路中,第一节点A、第二节点B、第三节点M、第四节点N并非表示实际存在的部件,而是表示电路图中相关电连接的汇合点,也就是说,这些节点是由电路图中相关电连接的汇合点等效 而成的节点。
在一些实施例中,第二电源电压信号的电压和第三电源电压信号的电压均为固定电压。在一些示例中,第二电源电压信号的电压为高电压,第三电源电压信号的电压为低电压。在另一些示例中,第二电源电压信号的电压为低电压,第三电源电压信号的电压为高电压。
需要说明的是,本公开实施例中的高电压和低电压是相对的,两者中相对较高的为高电压,相对较低的则为低电压。
在一些实施例中,第二电压信号的电压为固定电压。
由上述描述可知,信号控制子电路10输出驱动信号,时间控制子电路20控制驱动信号传输至待驱动元件L的时间,以控制待驱动元件L的工作时长。这里,在待驱动元件L为电流驱动型发光器件的情况下,信号控制子电路10输出驱动信号,可以被理解为信号控制子电路10输出驱动电流。时间控制子电路20将驱动电流传输至电流驱动型发光器件,使电流驱动型发光器件发光。
在上述的信号控制子电路10中,通过控制第一数据信号端D1提供的第一数据信号的大小,来控制信号控制子电路10输出至第一晶体管T1的驱动信号的大小。在时间控制子电路20中,通过控制第一电压信号端V1提供的第一电压信号、第二电压信号端V2提供的第二电压信号和第二数据信号端D2提供的第二数据信号的大小,以在不同阶段分别将第二电源电压信号端S2提供的第二电源电压信号和第三电源电压信号端S3提供的第三电源电压信号传输至第二节点B,从而通过控制第一晶体管T1的开启时间来控制待驱动元件L的工作时长。在第一晶体管T1开启时,驱动信号通过第一晶体管T1传输至待驱动元件L,并驱动待驱动元件L工作。
这样,在待驱动元件L进行不同灰阶的显示时,通过控制待驱动元件L的驱动信号的大小以及待驱动元件L的发光时长,可实现待驱动元件L的亮度改变,进而实现对应的灰阶显示。在待驱动元件L为电流驱动型发光器件的情况下,在待驱动元件L进行较高灰阶显示时,像素驱动电路向待驱动元件L输出较大的驱动电流,并且可以控制待驱动元件L的发光时长为最大发光时长。在待驱动元件L进行较低灰阶显示时,像素驱动电路向待驱动元件L输出的驱动电流可以为一个较大值(例如某一高灰阶对应的电流),通过缩短待驱动元件L的发光时长,即控制第一晶体管T1较晚开启,使待驱动元件L的亮度降低。或者,在待驱动元件L进行较低灰阶显示时,像素驱动电路向待驱动元件L输出的驱动电流维持在较高值范围内(例如,该较高值范围内的驱动电流接近较高灰阶显示时的电流),通过缩短待驱动元件L的发光 时长,使待驱动元件L的亮度降低。由此,无论待驱动元件L进行高灰阶显示还是低灰阶显示,驱动电流始终较大,使得待驱动元件L始终处于较高电流密度下,待驱动元件L的发光效率较高、亮度较稳定、功耗较低,且显示效果较好。
此外,在本公开一些实施例提供的像素驱动电路中,在第二电源电压信号的电压和第三电源电压信号的电压均为固定电压的情况下,通过控制第二电源电压信号的电压值和第三电源电压信号的电压值,可以控制第一晶体管T1处于完全关闭和完全开启的状态(例如,第二电源电压信号使第一晶体管T1处于完全关闭的状态,第三电源电压信号使第一晶体管T1处于完全开启的状态)。这样,一方面实现对待驱动元件L的工作时长的精确控制,进而实现对应的灰阶显示,另一方面,可以避免第一晶体管T1处于不完全开启和不完全关闭的状态下,导致灰阶显示的均一性下降以及色偏的问题。
在一些实施例中,第一数据信号端D1提供的第一数据信号可以为使待驱动元件L能够具有较高的发光效率的固定的高电平信号。在此情况下,像素驱动电路通过时间控制子电路20控制待驱动元件L的工作时长来控制灰阶。在另一些实施例中,第一数据信号的电压可以在一定的电压区间范围内变化,该电压区间范围内的第一数据信号能够保证待驱动元件L具有较高的发光效率。在此情况下,像素驱动电路通过信号控制子电路10和时间控制子电路20共同控制灰阶。
在上述基础上,如图1所示,上述显示面板还包括:多条第一扫描信号线GL1(1)~GL1(n)、多条第一数据信号线DL1(1)~DL1(m)、多条第二扫描信号线GL2(1)~GL2(n)、多条第二数据信号线DL2(1)~DL2(m)、以及多条使能信号线E(1)~E(n)。该第一扫描信号线被配置为向像素驱动电路提供第一扫描信号。该第二扫描信号线被配置为向像素驱动电路提供第二扫描信号。该使能信号线被配置为向像素驱动电路提供使能信号。该第一数据信号线被配置为向像素驱动电路提供第一数据信号。该第二数据信号线被配置为向像素驱动电路提供第二数据信号。
在一些示例中,位于同一行亚像素区P中的各像素驱动电路连接到多条第一扫描信号线GL1(1)~GL1(n)中的同一条第一扫描信号线、多条第二扫描信号线GL2(1)~GL2(n)中的同一条第二扫描信号线、以及多条使能信号线E(1)~E(n)中的同一条使能信号线。位于同一列亚像素区P中的各像素驱动电路连接到多条第一数据信号线DL1(1)~DL1(m)中的同一条第一数据信号线、多条第二数据信号线DL2(1)~DL2(m)中的同一条第二数据信号线。
示例的,如图1所示,位于第一行亚像素区P中的各像素驱动电路连接到第一扫描信号线GL1(1)、第二扫描信号线GL2(1)、以及使能信号线E(1)。位于第二行亚像素区P中的各像素驱动电路连接到第一扫描信号线GL1(2)、第二扫描信号线GL2(2)、以及使能信号线E(2)。位于第n行亚像素区P中的各像素驱动电路连接到第一扫描信号线GL1(n)、第二扫描信号线GL2(n)、以及使能信号线E(n)。位于第一列亚像素区P中的各像素驱动电路连接到第一数据信号线DL1(1)、以及第二数据信号线DL2(1)。位于第二列亚像素区P中的各像素驱动电路连接到第一数据信号线DL1(2)、以及第二数据信号线DL2(2)。位于第m列亚像素区P中的各像素驱动电路连接到第一数据信号线DL1(m)、以及第二数据信号线DL2(m)。n和m均为正整数。
第一扫描信号端G1可以理解为:第一扫描信号线与像素驱动电路连接后等效的连接点。也就是说,位于同一行亚像素区P中的各像素驱动电路连接的第一扫描信号端G1与对应的一条第一扫描信号线连接。第二扫描信号端G2同理。第一数据信号端D1可以理解为:第一数据信号线与像素驱动电路连接后等效的连接点。也就是说,位于同一列亚像素区P中的各像素驱动电路连接的第一数据信号端D1与对应的一条第一数据信号线连接。第二数据信号端D2同理。使能信号端EM可以理解为:使能信号线与像素驱动电路连接后等效的连接点。也就是说,位于同一行亚像素区P中的各像素驱动电路连接的使能信号端EM与对应的一条使能信号线连接。
如图1所示,该显示面板还包括多条第一电源电压信号线L S1。该第一电源电压信号线L S1被配置为向像素驱动电路提供第一电源电压信号。在一些示例中,位于同一列亚像素区P中的各像素驱动电路连接到多条第一电源电压信号线L S1中的同一条第一电源电压信号线L S1。这里,图1以位于任意两列亚像素区P中的像素驱动电路连接到不同的第一电源电压信号线L S1进行示意,但本公开实施例并不限于此,也可以是位于多列(例如4列)亚像素区P中的像素驱动电路连接到同一条第一电源电压信号线L S1
如图1所示,该显示面板还包括多条第一电压信号线L V1、多条第二电压信号线L V2、多条第二电源电压信号线L S2、以及多条第三电源电压信号线L S3。该第一电压信号线L V1被配置为向像素驱动电路提供第一电压信号。该第二电压信号线L V2被配置为向像素驱动电路提供第二电压信号。该第二电源电压信号线L S2被配置为向像素驱动电路提供第二电源电压信号。该第三电源电压信号线L S3被配置为向像素驱动电路提供第三电源电压信号。
在一些示例中,如图1所示,位于同一列亚像素区P中的各像素驱动电 路连接到多条第一电压信号线L V1中的同一条第一电压信号线L V1、多条第二电压信号线L V2中的同一条第二电压信号线L V2、多条第二电源电压信号线L S2中的同一条第二电源电压信号线L S2、以及多条第三电源电压信号线L S3中的同一条第三电源电压信号线L S3。图1以位于任意两列亚像素区P中的像素驱动电路连接到不同的第一电压信号线L V1、不同的第二电压信号线L V2、不同的第二电源电压信号线L S2和不同的第三电源电压信号线L S3进行示意,但本公开实施例并不限于此。示例的,位于多列亚像素区P中的像素驱动电路连接到同一条第一电压信号线L V1、位于多列亚像素区P中的像素驱动电路连接到同一条第二电压信号线L V2、位于多列亚像素区P中的像素驱动电路连接到同一条第二电源电压信号线L S2、位于多列亚像素区P中的像素驱动电路连接到同一条第三电源电压信号线L S3
对第一电压信号端V1、第二电压信号端V2、第二电源电压信号端S2、第三电源电压信号端S3的理解与上述对第一扫描信号端G1的理解类似,在此不再赘述。
在一些实施例中,显示面板还包括多条第四电源电压信号线。该第四电源电压信号线被配置为向待驱动元件L提供第四电源电压信号。示例的,位于同一列亚像素区P中的各待驱动元件L连接的第四电源电压信号端S4与对应的一条第四电源电压信号线连接。也就是说,位于同一列亚像素区P中的各待驱动元件L连接到多条第四电源电压信号线中的同一条第四电源电压信号线(图1中未示出)。这里,第四电源电压信号端S4可以理解为:第四电源电压信号线与待驱动元件L连接后等效的连接点。
需要说明的是,以上所述的显示面板所包括的多条信号线的排布,以及图1示出的显示面板的布线图仅是一些示例,本公开实施例不限于此。
基于上述的像素驱动电路,在一些实施例中,如图4所示,信号控制子电路10包括第一驱动子电路101、第一数据写入子电路102、以及第一控制子电路103。
第一驱动子电路101包括驱动晶体管Td,驱动晶体管Td的栅极连接到第一节点A。
第一数据写入子电路102连接到第一扫描信号端G1、第一数据信号端D1、以及驱动晶体管Td的第一极和第二极。
第一数据写入子电路102被配置为响应于接收到的来自第一扫描信号端G1的第一扫描信号,将第一数据信号端D1提供的第一数据信号和驱动晶体管Td的阈值电压写入第一节点A,对驱动晶体管Td进行阈值电压补偿。
第一控制子电路103连接到使能信号端EM、第一电源电压信号端S1、驱动晶体管Td的第一极和第二极、以及第一晶体管T1的第一极。
第一控制子电路103被配置为响应于接收到的来自使能信号端EM的使能信号,使驱动晶体管Td的第一极与第一电源电压信号端S1连接,并使驱动晶体管Td的第二极与第一晶体管T1的第一极连接。
第一驱动子电路101还连接到第一电源电压信号端S1。
驱动晶体管Td被配置为根据第一数据信号端D1提供的第一数据信号和第一电源电压信号端S1提供的第一电源电压信号,输出驱动信号至第一晶体管T1的第一极。
在本公开一些实施例提供的信号控制子电路10中,传输至第一晶体管T1的驱动信号由第一电源电压信号端S1提供的第一电源电压信号和第一数据信号端D1提供的第一数据信号确定。即,驱动信号与驱动晶体管Td的阈值电压无关,从而实现了对第一驱动子电路101中的驱动晶体管Td的阈值电压补偿,可以消除驱动晶体管Td的阈值电压对驱动信号的影响。这样,在待驱动元件L工作时,可以提高显示面板的亮度均匀性。
在一些示例中,如图5所示,第一驱动子电路101包括驱动晶体管Td和第一电容器C1。
第一电容器C1的一端连接到第一电源电压信号端S1,第一电容器C1的另一端连接到第一节点A。
在一些示例中,如图5所示,第一数据写入子电路102包括第二晶体管T2和第三晶体管T3。
第二晶体管T2的栅极连接到第一扫描信号端G1,第二晶体管T2的第一极连接到驱动晶体管Td的第二极,第二晶体管T2的第二极连接到第一节点A。
第三晶体管T3的栅极连接到第一扫描信号端G1,第三晶体管的第一极连接到第一数据信号端D1,第三晶体管T3的第二极连接到驱动晶体管Td的第一极。
在一些示例中,如图5所示,第一控制子电路103包括第四晶体管T4和第五晶体管T5。
第四晶体管T4的栅极连接到使能信号端EM,第四晶体管T4的第一极连接到第一电源电压信号端S1,第四晶体管T4的第二极连接到驱动晶体管Td的第一极。
第五晶体管T5的栅极连接到使能信号端EM,第五晶体管T5的第一极 连接到驱动晶体管Td的第二极,第五晶体管T5的第二极连接到第一晶体管T1的第一极。
在一些实施例中,如图4所示,信号控制子电路10还包括复位子电路104。
复位子电路104连接到初始信号端Init1、复位信号端Rst1以及第一节点A。
复位子电路104被配置为响应于接收到的来自复位信号端Rst1的复位信号,将初始信号端Init1提供的初始信号传输至第一节点A,使第一节点A的电压被复位为初始信号的电压。
在此基础上,在一些实施例中,如图1所示,显示面板还包括多条复位信号线R(1)~R(n)、以及多条初始信号线(图1中未示出)。该复位信号线被配置为向像素驱动电路提供复位信号。该初始信号线被配置为向像素驱动电路提供初始信号。
在一些示例中,如图1所示,位于同一行亚像素区P中的各像素驱动电路连接到多条复位信号线R(1)~R(n)中的同一条复位信号线。位于同一列亚像素区P中的各像素驱动电路连接到多条初始信号线中的同一条初始信号线。
复位信号端Rst1可以理解为:复位信号线与像素驱动电路连接后等效的连接点。初始信号端Init1可以理解为:初始信号线与像素驱动电路连接后等效的连接点。
由于第一电容器C1的另一端和驱动晶体管Td的栅极均连接到第一节点A,因此,在复位子电路104工作时,第一电容器C1的另一端的电压和驱动晶体管Td的栅极电压均被复位为初始信号的电压,从而实现了对第一驱动子电路101的降噪。
在一些示例中,如图5所示,复位子电路104包括第六晶体管T6。
第六晶体管T6的栅极连接到复位信号端Rst1,第六晶体管T6的第一极连接到初始信号端Init1,第六晶体管T6的第二极连接到第一节点A。
在一些实施例中,如图4所示,时间控制子电路20包括第二数据写入子电路202、第二驱动子电路201、第二控制子电路203以及电位控制子电路204。
第二驱动子电路201包括第一晶体管T1和第二电容器C2。第一晶体管T1的栅极连接到第二节点B,第一晶体管T1的第一极连接到信号控制子电路10。第二电容器C2的一端连接到第三节点M,第二电容器C2的另一端连接到第四节点N。
第二数据写入子电路202连接到第二扫描信号端G2、第二数据信号端D2、第二电压信号端V2、第三节点M和第四节点N。
第二数据写入子电路202被配置为响应于接收到的来自第二扫描信号端G2的第二扫描信号,将第二数据信号端D2提供的第二数据信号写入第四节点N,并将第二电压信号端V2提供的第二电压信号写入第三节点M。
第二控制子电路203连接到使能信号端EM、第一电压信号端V1、第一晶体管T1的第二极、第四节点N、以及待驱动元件L。
第二控制子电路203被配置为响应于接收到的来自使能信号端EM的使能信号,将第一电压信号端V1提供的第一电压信号写入第四节点N,并使第一晶体管T1的第二极与待驱动元件L连接。
电位控制子电路204连接到第二节点B、第三节点M、第二电源电压信号端S2、以及第三电源电压信号端S3。
电位控制子电路204被配置为响应于第三节点M上的电压变化,在不同阶段分别将第二电源电压信号端S2提供的第二电源电压信号和第三电源电压信号端S3提供的第三电源电压信号传输至第二节点B。
在本公开一些实施例提供的时间控制子电路20中,第二数据写入子电路202将第二数据信号端D2提供的第二数据信号写入第四节点N,使得第四节点N的电压、第二电容器C2的另一端的电压均为第二数据信号的电压(记为V data2)。并且,将第二电压信号端V2提供的第二电压信号传输至第三节点M,使得第三节点M的电压和第二电容器C2的一端的电压均为第二电压信号的电压(记为V V2)。
在此基础上,第二控制子电路203将第一电压信号端V1提供的第一电压信号写入第四节点N,使得第四节点N的电压由第二数据信号的电压变为第一电压信号的电压(记为V V1)。根据电容的电荷保持定律,第二电容器C2的两端的电压差保持不变,当第四节点N的电压由V data2变为V V1时,第三节点M的电压会随着第一电压信号与第二数据信号之间的电压变化而变化。即,第三节点M的电压变为V V2+(V V1-V data2)。
由于第一电压信号的电压在设定电压范围内变化,因此,当第一电压信号的电压在某一范围内时,电位控制子电路204可将第二电源电压信号和第三电源电压信号中的一者传输至第二节点B。当第一电压信号的电压达到特定值时,即第三节点M的电压由V V2变化到某一值时,电位控制子电路204可将第二电源电压信号和第三电源电压信号中的另一者传输至第二节点B。由于第一晶体管T1的开启与否决定了驱动信号是否能传输到待驱动元件L,因而通过第二电源电压信号和第三电源电压信号控制第一晶体管T1开启与否,实现对待驱动元件L的工作时长的控制。
综上,当待驱动元件L进行灰阶显示时,可以通过改变第一电压信号的电压,控制第二电源电压信号和第三电源电压信号传输至第一晶体管T1的栅极的时间,以控制待驱动元件L的工作时长,进而控制灰阶。
在一些示例中,如图5所示,第二数据写入子电路202包括第七晶体管T7和第八晶体管T8。
第七晶体管T7的栅极连接到第二扫描信号端G2,第七晶体管T7的第一极连接到第二数据信号端D2,第七晶体管T7的第二极连接到第四节点N。
第八晶体管T8的栅极连接到第二扫描信号端G2,第八晶体管T8的第一极连接到第二电压信号端V2,第八晶体管T8的第二极连接到第三节点M。
在一些示例中,如图5所示,第二控制子电路203包括第九晶体管T9和第十晶体管T10。
第九晶体管T9的栅极连接到使能信号端EM,第九晶体管T9的第一极连接到第一电压信号端V1,第九晶体管T9的第二极连接到第四节点N。
第十晶体管T10的栅极连接到使能信号端EM,第十晶体管T10的第一极连接到第一晶体管T1的第二极,第十晶体管T10的第二极连接到待驱动元件L。
在一些示例中,如图5所示,电位控制子电路204包括第十一晶体管T11、第十二晶体管T12、第十三晶体管T13、第十四晶体管T14、第十五晶体管T15和第十六晶体管T16。
第十一晶体管T11的栅极连接到第三节点M,第十一晶体管T11的第一极连接到第二电源电压信号端S2,第十一晶体管T11的第二极连接到第十二晶体管T12的第一极。
第十二晶体管T12的栅极连接到第三节点M,第十二晶体管T12的第二极连接到第二节点B。
第十三晶体管T13的栅极连接到第三节点M,第十三晶体管T13的第一极连接到第三电源电压信号端S3,第十三晶体管T13的第二极连接到第十四晶体管T14的第一极。
第十四晶体管T14的栅极连接到第三节点M,第十四晶体管T14的第二极连接到第二节点B。
第十五晶体管T15的栅极连接到第二节点B,第十五晶体管T15的第一极连接到第三电源电压信号端S3,第十五晶体管T15的第二极连接到第十一晶体管T11的第二极和第十二晶体管T12的第一极。
第十六晶体管T16的栅极连接到第二节点B,第十六晶体管T16的第一 极连接到第二电源电压信号端S2,第十六晶体管T16的第二极连接到第十三晶体管T12的第二极和第十四晶体管T14的第一极。
在一些示例中,如图5所示,第十一晶体管T11、第十二晶体管T12和第十五晶体管T15均为P型晶体管,第十三晶体管T13、第十四晶体管T14和第十六晶体管T16均为N型晶体管。在此情况下,示例的,第一晶体管T1为P型晶体管,第二电源电压信号的电压为固定高电压,第三电源电压信号的电压为固定低电压。
在另一些示例中,如图6所示,第十一晶体管T11、第十二晶体管T12和第十五晶体管T15均为N型晶体管,第十三晶体管T13、第十四晶体管T14和第十六晶体管T16均为P型晶体管。在此情况下,示例的,第一晶体管T1为P型晶体管,第二电源电压信号的电压为固定低电压,第三电源电压信号的电压为固定高电压。
需要说明的是,除了电位控制子电路204中的各晶体管之外,本公开实施例对像素驱动电路其余的晶体管的类型不作限制。
晶体管的第一极可以是漏极,第二极可以是源极。或者,晶体管的第一极可以是源极,第二极可以是漏极。本公开实施例对此不作限制。例如,驱动晶体管Td为P型晶体管,则驱动晶体管Td的第一极为源极,第二极为漏极。又例如,驱动晶体管为N型晶体管,则驱动晶体管Td的第一极为漏极,第二极为源极。
以下,以第十三晶体管T13、第十四晶体管T14和第十六晶体管T16均为N型晶体管,其余各晶体管均为P型晶体管为例,结合图7所示时序图,对图5所示的像素驱动电路的驱动过程进行描述。
如图7所示,一个帧周期包括扫描阶段(P1~P5)和工作阶段(P5~P6),扫描阶段(P1~P5)包括多个行扫描阶段。在显示面板中的多个像素驱动电路设置在n行m列的亚像素区中的情况下,该多个行扫描阶段包括n个行扫描阶段,每行亚像素区中的像素驱动电路对应一个行扫描阶段。该n个行扫描阶段为ts1~tsn,第一个行扫描阶段为ts1,第n个行扫描阶段为tsn,且n为大于1的正整数。
在扫描阶段(P1~P5),对各行亚像素区中的像素驱动电路逐行进行扫描。即,从位于第一行亚像素区中的像素驱动电路开始逐行扫描,依次向各行亚像素区中的像素驱动电路输入第一数据信号和第二数据信号,直至将第一数据信号和第二数据信号输入位于第n行亚像素区中的各像素驱动电路。
在一些实施例中,对各行亚像素区中的像素驱动电路逐行进行扫描后, 进入工作阶段(P5~P6)。在一些示例中,各行亚像素区中的像素驱动电路可以依次进入工作阶段。即,第一行亚像素区中的像素驱动电路首先进入工作阶段,之后第二行亚像素区中的像素驱动电路进入工作阶段,直至第n行亚像素区中的像素驱动电路进入工作阶段。每行亚像素区中的像素驱动电路在工作阶段的使能信号的有效时长相同。在另一些示例中,各行亚像素区中的像素驱动电路同步进入工作阶段。
在另一些实施例中,每行亚像素区中的像素驱动电路在相应的行扫描阶段结束后,进入工作阶段。
在每个行扫描阶段,位于同一行的m个亚像素区中的m个像素驱动电路被同步写入不同的或者相同的第一数据信号。也就是说,第一数据信号为一组信号。位于同一行的m个亚像素区中的m个像素驱动电路被同步写入不同的或者相同的第二数据信号。也就是说,第二数据信号为一组信号。
如图7所示,在第一个行扫描阶段ts1,位于第一行亚像素区中的每个像素驱动电路包括如下驱动过程。
在第一阶段(P1~P2),响应于接收到的来自复位信号端Rst1的复位信号,第六晶体管T6开启,将初始信号端Init1提供的初始信号传输至第一节点A,使第一节点A的电压复位为初始信号的电压(记为V init1)。由于第一电容器C1的另一端、以及驱动晶体管Td的栅极均连接到第一节点A,因此,第一电容器C1的另一端的电压、以及驱动晶体管Td的栅极电压均复位为V init1
初始信号端Init1提供的初始信号能够消除上一帧的信号对第一节点A的影响。该初始信号可以为低电平信号,也可以为高电平信号。在驱动晶体管Td为P型晶体管的情况下,初始信号为不小于0的电压信号。
在第一阶段(P1~P2),第一扫描信号端G1、第二扫描信号端G2和使能信号端EM均输入高电平信号,使得信号控制子电路10中的第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、以及时间控制子电路20中的各晶体管均处于截止状态。因此,在第一阶段(P1~P2),待驱动元件L不工作。
在第二阶段(P2~P3),响应于接收到的来自第一扫描信号端G1的第一扫描信号,第三晶体管T3开启,将第一数据信号端D1提供的第一数据信号传输至驱动晶体管Td的第一极,使得驱动晶体管Td的第一极的电压为第一数据信号的电压(记为V data1)。
响应于接收到的来自第一扫描信号端G1的第一扫描信号,第二晶体管 T2开启,使驱动晶体管Td的栅极和其第二极连接,驱动晶体管Td处于饱和状态。此时,驱动晶体管Td的栅极电压为其第一极的电压与其阈值电压(记为V thd)之和,即驱动晶体管Td的栅极电压为V data1+V thd。由于第一电容器C1的另一端和驱动晶体管Td的栅极均连接到第一节点A,因此,第一电容器C1的另一端的电压也为V data1+V thd
在此基础上,由于第一电容器C1的一端连接到第一电源电压信号端S1,因此,第一电容器C1的一端的电压为第一电源电压信号的电压(记为V S1)。这样,第一电容器C1的两端存在电压差V S1-(V data1+V thd),因此,实现了对第一电容器C1的充电。
在第二阶段(P2~P3),使能信号端EM输入高电平信号,使得第四晶体管T4和第五晶体管T5处于截止状态。因此,时间控制子电路20中的第一晶体管T1与驱动晶体管Td断开,待驱动元件L不工作。
此外,复位信号端Rst1、第二扫描信号端G2均输入高电平信号,使得信号控制子电路10中的第六晶体管T6处于截止状态。在第二阶段(P2~P3),时间控制子电路20中的各晶体管均处于截止状态。
在第三阶段(P3~P4),响应于接收到的来自第二扫描信号端G2的第二扫描信号,第七晶体管T7开启,将第二数据信号端D2提供的第二数据信号传输至第四节点N,使得第四节点N的电压为第二数据信号的电压V data2。由于第二电容器C2的另一端连接到第四节点N,因此,第二电容器C2的另一端的电压也为V data2
响应于接收到的来自第二扫描信号端G2的第二扫描信号,第八晶体管T8开启,将第二电压信号端V2提供的第二电压信号传输至第三节点M,使得第三节点M的电压为第二电压信号的电压V V2
由于第二电容器C2的一端连接到第三节点M,因此,第二电容器C2的一端的电压也为V V2。这样,第二电容器C2的两端存在电压差V V2-V data2,因此,实现了对第二电容器C2的充电。
第二电压信号端V2提供的第二电压信号可以对第三节点M进行复位,以消除上一帧的信号对第三节点M的影响。该第二电压信号可以为固定的高电平信号,也可以为固定的低电平信号。
在第三阶段(P3~P4),使能信号端EM、第一扫描信号端G1、以及第一复位信号端Rst1均输入高电平信号,使得第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6、第九晶体管T9和第十晶体管T10均处于截止状态。因此,第一晶体管T1与驱动晶体管Td之间以及第 一晶体管T1与待驱动元件L之间均断开,待驱动元件L不工作。
需要说明的是,在不考虑各信号之间可能会存在信号干扰的情况下,上述第二阶段(P2~P3)和第三阶段(P3~P4)可以同步进行。
在第一个行扫描阶段ts1结束之后,在第二个行扫描阶段ts2,对第二行亚像素区中的像素驱动电路进行扫描,直至在第n个行扫描阶段tsn,对第n行亚像素区中的像素驱动电路进行扫描。如图7所示,从第一个行扫描阶段ts1的结束时刻(P4)开始,在P4~P5时间段内,对位于第二行至第n行的亚像素区中的像素驱动电路逐行进行扫描。
需要说明的是,位于第二行至第n行的亚像素区中的像素驱动电路在相应的行扫描阶段的驱动过程与位于第一行的亚像素区中的像素驱动电路在第一个行扫描阶段ts1的驱动过程一致,在此不再赘述。也就是说,在整个扫描阶段(P1~P5),上述的第一阶段~第三阶段的驱动过程需执行n次。
综上,在整个扫描阶段(P1~P5),n个行扫描阶段中的每个行扫描阶段均包括上述的第一阶段~第三阶段,从而可向n行亚像素区中的像素驱动电路写入第一数据信号和第二数据信号,并对第一数据信号和第二数据信号进行存储,为工作阶段(P5~P6)做好准备。
在一些实施例中,在对n行亚像素区中的像素驱动电路逐行进行扫描后,各行亚像素区中的像素驱动电路进入工作阶段(P5~P6)。在工作阶段(P5~P6),位于第一行亚像素区中的每个像素驱动电路包括如下驱动过程。
在信号控制子电路10中,响应于接收到的来自使能信号端EM的使能信号,第四晶体管T4开启,将第一电源电压信号端S1提供的第一电源电压信号传输至驱动晶体管Td的第一极,使得驱动晶体管Td的第一极的电压为第一电源电压信号的电压V S1。即,驱动晶体管Td的源极电压为V S1。响应于接收到的来自使能信号端EM的使能信号,第五晶体管T5开启,使驱动晶体管Td的第二极与时间控制子电路20中的第一晶体管T1的第一极连接。
根据电容的电荷保持定律,第一电容器C1的两端的电压差保持不变。因此,在第一电容器C1的一端的电压保持为第一电源电压信号的电压V S1的情况下,第一电容器C1的另一端的电压仍为V data1+V thd,即驱动晶体管Td的栅极电压为V data1+V thd
这样,驱动晶体管Td的栅源电压差V gs=V data1+V thd-V S1。在此情况下,驱动晶体管Td在其栅源电压差小于其阈值电压时开启。即,V data1+V thd-V S1<V thd时,驱动晶体管Td开启,并输出驱动电流,该驱动电流从驱动晶体管Td的第二极输出,经第五晶体管T5传输至第一晶体管T1的第一极。这样,流过 驱动晶体管Td的驱动电流I=K×(V gs-V thd) 2=K×(V data1+V thd-V S1-V thd) 2=K×(V data1-V S1) 2,K=1/2×W/L×C×u,W/L为驱动晶体管Td的宽长比,C为沟道绝缘层电容,u为沟道载流子迁移率。
由此可知,上述参数K由驱动晶体管Td的结构确定。因此,驱动电流I由第一数据信号端D1提供的第一数据信号的电压V data1和第一电源电压信号端S1提供的第一电源电压信号的电压V S1确定。也就是说,驱动电流I与驱动晶体管Td的阈值电压无关,从而实现了对驱动晶体管Td的阈值电压补偿,避免驱动晶体管Td的阈值电压对待驱动元件L的发光亮度的影响,有利于提高待驱动元件L的亮度均一性。
在此基础上,当各亚像素区中的待驱动元件L进行不同灰阶的显示时,由于可向各亚像素区中的像素驱动电路输入相同的第一电源电压信号,并且可将第一电源电压信号设置为固定的电平信号,因此,可以通过控制第一数据信号来控制驱动电流I的大小,进而控制灰阶。
在时间控制子电路20中,响应于接收到的来自使能信号端EM的使能信号,第九晶体管T9开启,将第一电压信号端V1提供的第一电压信号传输至第四节点N,使得第四节点N的电压由第二数据信号的电压V data2变为第一电压信号的电压V V1。这样,第二电容器C2的另一端的电压也由V data2变为V V1
根据电容的电荷保持定律,第二电容器C2的两端的电压差保持不变。在第一电压信号传输至第四节点N之前,如前所述,第二电容器C2的两端的电压差为V V2-V data2。因此,当第二电容器C2的另一端的电压由V data2变为V V1时,第二电容器C2的一端的电压为V V2-V data2+V V1
在此情况下,与第二电容器C2的一端连接的第三节点M的电压由V V2变为V V2-V data2+V V1。由于第一电压信号的电压V V1在设定电压范围内变化,因此,第三节点M的电压会随着V V1的变化而变化,且第三节点M的电压的变化速度与第一电压信号的电压的变化速度相同。
如图5所示,第十一晶体管T11、第十二晶体管T12、第十五晶体管T15均为P型晶体管,第十三晶体管T13、第十四晶体管T14、以及第十六晶体管T16均为N型晶体管。在此情况下,第二电源电压信号端S2提供的第二电源电压信号的电压为高电压,第三电源电压信号端S3提供的第三电源电压信号的电压为低电压。
在此基础上,如图7所示,当第三节点M的电压(V V2-V data2+V V1)为低电压时,第十一晶体管T11和第十二晶体管T12开启,第十一晶体管T11将第二电源电压信号端S2提供的第二电源电压信号传输至第十二晶体管T12的 第一极,通过第十二晶体管T12的第二极传输至第二节点B,使得第二节点B的电压为第二电源电压信号的电压V S2。由于第二电源电压信号的电压为高电压,因此,第十六晶体管T16开启,将第二电源电压信号端S2提供的第二电源电压信号传输至第十三晶体管T13的第二极和第十四晶体管T14的第一极,使得第十三晶体管T13的第二极的电压和第十四晶体管T14的第一极的电压均为第二电源电压信号的电压V S2
由于第十四晶体管T14的第二极连接到第二节点B,因此,第十四晶体管T14的第二极的电压为第二电源电压信号的电压V S2。即,第十四晶体管T14的第一极的电压和其第二极的电压均为第二电源电压信号的电压V S2,此时,第十四晶体管T14的压降为零。并且,第十一晶体管T11和第十二晶体管T12的压降也均为零。
第十三晶体管T13的第一极的电压为第三电源电压信号端S3提供的第三电源电压信号的电压V S3,第十三晶体管T13的第二极的电压为第二电源电压信号的电压V S2,使得第十三晶体管T13承担了较大的压降。因此,第三电源电压信号不会通过第十三晶体管T13和第十四晶体管T14传输至第二节点B。
这样,在第十一晶体管T11和第十二晶体管T12处于开启状态时,即使第十四晶体管T14和第十三晶体管T13处于不完全关闭或者不完全开启的过渡状态,来自第三电源电压信号端S3的第三电源电压信号也不会通过第十三晶体管T13和第十四晶体管T14传输至第二节点B。即,第三电源电压信号不会对第二节点B产生影响,使得第二节点B的电压可以精确地保持为第二电源电压信号的电压,从而可以精确地控制第一晶体管T1的栅极电压为第二电源电压信号的电压V S2
当第三节点M的电压为低电压时,在电位控制子电路204的作用下,第二节点B的电压为高电压。P型的第一晶体管T1在第二电源电压信号的高电压的控制下处于截止状态,待驱动元件L不工作。
如图7所示,当第三节点M的电压随着第一电压信号的电压升高而升高至高电压时,第十三晶体管T13和第十四晶体管T14开启,第十三晶体管T13将来自第三电源电压信号端S3的第三电源电压信号传输至第十四晶体管T14的第一极,通过第十四晶体管T14的第二极传输至第二节点B,使得第二节点B的电压为第三电源电压信号的电压V S3
由于第三电源电压信号为低电平信号,因此,第十五晶体管T15开启,将第三电源电压信号端S3提供的第三电源电压信号传输至第十一晶体管T11的第二极和第十二晶体管T12的第一极,使得第十一晶体管T11的第二极的 电压和第十二晶体管T12的第一极的电压均为第三电源电压信号的电压V S3
由于第十二晶体管T12的第二极连接到第二节点B,因此,第十二晶体管T12的第二极的电压为第三电源电压信号的电压V S3。即,第十二晶体管T12的第一极的电压和其第二极的电压均为第三电源电压信号的电压V S3,此时,第十二晶体管T12的压降为零。并且,第十三晶体管T13和第十四体管T14的压降也均为零。
第十一晶体管T11的第一极的电压为第二电源电压信号的电压V S2,第十一晶体管T11的第二极的电压为第三电源电压信号的电压V S3,使得第十一晶体管T11承担了较大的压降。因此,第二电源电压信号不会通过第十一晶体管T11和第十二晶体管T12传输至第二节点B。
这样,在第十三晶体管T13和第十四晶体管T14处于开启状态时,即使第十一晶体管T11和第十二晶体管T12处于不完全关闭或者不完全开启的过渡状态,来自第二电源电压信号端S2的第二电源电压信号也不会通过第十一晶体管T11和第十二晶体管T12传输至第二节点B。即,第二电源电压信号不会对第二节点B产生影响,使得第二节点B的电压可以精确地保持为第三电源电压信号的电压,从而可以精确地控制第一晶体管T1的栅极电压为第三电源电压信号的电压V S3
当第三节点M的电压为高电压时,在电位控制子电路204的作用下,第二节点B的电压为低电压。此时,P型的第一晶体管T1在第三电源电压信号的低电压的控制下处于开启状态。
由于第十晶体管T10响应于接收到的来自使能信号端EM的使能信号开启,使得第一晶体管T1与待驱动元件L连接,从而使来自信号控制子电路10的驱动电流传输至待驱动元件L,以驱动待驱动元件L工作。
在工作阶段的结束时刻,使能信号端EM输入的使能信号由低电压变为高电压时,第四晶体管T4、第五晶体管T5、第九晶体管T9和第十晶体管T10同时截止,从而使得待驱动元件L不工作。因此,对于连接到同一条使能信号线的各像素驱动电路,其连接的各待驱动元件L开启的时刻可能不同,但关闭的时刻是相同的。因此,可以通过控制第一晶体管T1的开启时间,来控制驱动电流传输至待驱动元件L的时间,从而控制待驱动元件L的工作时长。
需要说明的是,由于第二电源电压信号的电压和第三电源电压信号的电压决定了第一晶体管T1是否开启,因此,以第一晶体管T1为P型晶体管为例,第二电源电压信号的电压需要保证在各图像帧下,第一晶体管T1可以完全关闭,第三电源电压信号的电压需要保证在各图像帧下,第一晶体管T1可 以完全开启。
位于第二行至第n行的亚像素区中的像素驱动电路在工作阶段(P5~P6)的驱动过程,可参考位于第一行的亚像素区中的像素驱动电路在工作阶段(P5~P6)的驱动过程,在此不再赘述。
图7和图8示意出了同一个像素驱动电路在两个图像帧下的时序、以及与该像素驱动电路连接的待驱动元件L的工作时长。图7中的M(1)表示一图像帧的第三节点M的信号时序,第三节点M的电压(记为V M1)由第一电压信号的电压V V1减去变化量ΔV M1而得,即第三节点M的电压为V M1=V V1-ΔV M1,经变换得到ΔV M1=V V1-V M1。如前所述,V M1=V V2-V data2+V V1,则ΔV M1=V data2-V V2。图8中的M(2)表示另一图像帧的第三节点M的信号时序,第三节点M的电压(记为V M2)由第一电压信号的电压V V1减去变化量ΔV M2而得,即第三节点M的电压为V M2=V V1-ΔV M2,经变换得到ΔV M2=V V1-V M2。如前所述,V M2=V V2-V data2+V V1,则ΔV M2=V data2-V V2。在该两个图像帧中第二数据信号端D2提供的第二数据信号的电压V data2不同的情况下,ΔV M2的值与ΔV M1的值也不同。在此情况下,当ΔV M2的值大于ΔV M1的值时,在图5所示的像素驱动电路中,第三节点M的电压V M2变化至使电位控制子电路20向第二节点B传输的第三电源电压信号的时间,大于第三节点M的电压V M1变化至使电位控制子电路20向第二节点B传输的第三电源电压信号的时间。即,图7所示的一图像帧下的第一晶体管T1相对于图8所示的一图像帧下的第一晶体管T1更早开启,因此,图7所示的一图像帧下的待驱动元件L(1)相对于图8所示的另一图像帧下的待驱动元件L(2)更早开启,使得待驱动元件L(1)的发光时长t1相对于待驱动元件L(2)的发光时长t2更长。
如图6所示,在第十一晶体管T11、第十二晶体管T12、第十五晶体管T15均为N型晶体管,第十三晶体管T13、第十四晶体管T14、以及第十六晶体管T16均为P型晶体管的情况下,第二电源电压信号端S2提供的第二电源电压信号的电压为低电压,第三电源电压信号端S3提供的第三电源电压信号的电压为高电压。
在此基础上,当第三节点M的电压控制第十三晶体管T13和第十四晶体管T14开启时,第十三晶体管T13将来自第三电源电压信号端S3的第三电源电压信号传输至第十四晶体管T14的第一极,通过第十四晶体管T14的第二极传输至第二节点B,使得第二节点B的电压为第三电源电压信号的电压V S3
由于第三电源电压信号的电压为高电压,因此,第十五晶体管T15开启,将第三电源电压信号端S3提供的第三电源电压信号传输至第十一晶体管T11 的第二极和第十二晶体管T12的第一极,使得第十一晶体管T11的第二极的电压和第十二晶体管T12的第一极的电压均为第三电源电压信号的电压V S3
由于第十二晶体管T12的第二极连接到第二节点B,因此,第十二晶体管T12的第二极的电压为第三电源电压信号的电压V S3。即,第十二晶体管T12的第一极的电压和其第二极的电压均为第三电源电压信号的电压V S3,此时,第十二晶体管T12的压降为零。第十三晶体管T13和第十四晶体管T14的压降也均为零。
第十一晶体管T11的第一极的电压为第二电源电压信号端S2提供的第二电源电压信号的电压V S2,第十一晶体管T11的第二极的电压为第三电源电压信号的电压V S3,使得第十一晶体管T11承担了较大的压降。因此,第二电源电压信号不会通过第十一晶体管T11和第十二晶体管T12传输至第二节点B。
这样,在第十三晶体管T13和第十四晶体管T14处于开启状态时,即使第十一晶体管T11和第十二晶体管T12处于不完全关闭或者不完全开启的过渡状态,来自第二电源电压信号端S2的第二电源电压信号也不会通过第十一晶体管T11和第十二晶体管T12传输至第二节点B。即,第二电源电压信号不会对第二节点B产生影响,使得第二节点B的电压可以精确地保持为第三电源电压信号的电压,从而可以精确地控制第一晶体管T1的栅极电压为第三电源电压信号的电压V S3
此时,P型的第一晶体管T1在第三电源电压信号的高电压的控制下处于截止状态,使得待驱动元件L不工作。
当第三节点M的电压随着第一电压信号的电压变化而变化至可以控制第十一晶体管T11和第十二晶体管T12开启时,第十一晶体管T11将来自第二电源电压信号端S2的第二电源电压信号传输至第十二晶体管T12的第一极,通过第十二晶体管T12的第二极传输至第二节点B,使得第二节点B的电压为第二电源电压信号的电压V S2
由于第二电源电压信号的电压为低电压,因此,第十六晶体管T16开启,将第二电源电压信号端S2提供的第二电源电压信号传输至第十三晶体管T13的第二极和第十四晶体管T14的第一极,使得第十三晶体管T13的第二极的电压和第十四晶体管T14的第一极的电压均为第二电源电压信号的电压V S2
由于第十四晶体管T14的第二极连接到第二节点B,因此,第十四晶体管T14的第二极的电压为第二电源电压信号的电压V S2。即,第十四晶体管T14的第一极的电压和其第二极的电压均为第二电源电压信号的电压V S2,此时,第十四晶体管T14的压降为零。第十一晶体管T11和第十二晶体管T12 的压降也均为零。
第十三晶体管T13的第一极的电压为第三电源电压信号端S3提供的第三电源电压信号的电压V S3,第十三晶体管T13的第二极的电压为第二电源电压信号的电压V S2,使得第十三晶体管T13承担了较大的压降。因此,第三电源电压信号不会通过第十三晶体管T13和第十四晶体管T14传输至第二节点B。
这样,在第十一晶体管T11和第十二晶体管T12处于开启状态时,即使第十四晶体管T14和第十三晶体管T13处于不完全关闭或者不完全开启的过渡状态,来自第三电源电压信号端S3的第三电源电压信号也不会通过第十三晶体管T13和第十四晶体管T14传输至第二节点B。即,第三电源电压信号不会对第二节点B产生影响,使得第二节点B的电压可以精确地保持为第二电源电压信号的电压,从而可以精确地控制第一晶体管T1的栅极电压为第二电源电压信号的电压V S2
此时,P型的第一晶体管T1在第二电源电压信号的低电压的控制下处于开启状态。由于第五晶体管T5和第十晶体管T10响应于接收到的来自使能信号端EM的使能信号开启,使得第一晶体管T1与待驱动元件L连接,从而使来自信号控制子电路10的驱动信号传输至待驱动元件L,以驱动待驱动元件L工作。
因此,可以通过控制第一晶体管T1的开启时间,来控制驱动信号传输至待驱动元件L的时间,从而控制待驱动元件L的工作时长。
在如图9所示的像素驱动电路中,第三节点M与第二节点B直接连接,使得第一晶体管T1的栅极电压与第三节点M的电压(V V2-V data2+V V1)相等。第一电压信号端V1提供的第一电压信号的电压在设定电压范围内变化,使得第一晶体管T1的栅极电压会随着V V1的变化而变化,当变化至其阈值电压附近时,由于制备工艺问题,第一晶体管T1的栅极电压会处于非高电压且非低电压的状态,使得第一晶体管T1处于不完全开启或者不完全关闭的过渡状态。在此情况下,当待驱动元件L在较高值的驱动信号下进行灰阶显示时,处于过渡状态的第一晶体管T1会将较低值的驱动信号传输至待驱动元件L,使得待驱动元件L在较低值的驱动信号下工作。这样,一方面使得待驱动元件L的开启时间无法精确控制,导致其工作时长无法精确控制,另一方面,导致灰阶显示的均一性下降,出现色偏。
对图9中的像素驱动电路进行仿真测试,测试结果如图10所示,横轴表示第二节点B的电压为,纵轴表示输入待驱动元件L的驱动电流。第二节点B(即第三节点M)的电压范围为-10V~10V,Q1和Q4分别表示第二节点B 的电压的最高点和最低点,Q2和Q3表示第二节点B的电压处于非高电压且非低电压的状态。第二节点B的电压在随着第一电压信号的电压的变化而逐渐变化的过程中,从图10可以看出,会出现非高电压且非低电压的状态。在此情况下,第二节点B的电压处于非高电压且非低电压的状态,使得第一晶体管T1处于不完全开启或者不完全关闭的过渡状态,导致原本应该停止工作的待驱动元件L还会在较低电流密度下继续工作,使得待驱动元件L会有一段时间处于较低电流密度状态,降低灰阶显示的均一性。
对图5中的像素驱动电路的进行仿真测试,测试结果如图11所示,横轴表示第二节点B的电压为,纵轴表示输入待驱动元件L中的驱动电流。在第三节点M的电压随着第一电压信号的电压的变化而变化的过程中,从图11可以看出,第二节点B的电压在不同阶段分别处于高电压状态和低电压状态,而不会处于如图10所示的非高电压且非低电压的状态。在此情况下,在待驱动元件L进行灰阶显示时,可以精确控制第一晶体管T1的开启以及关闭,使得待驱动元件L的驱动电流保持为来自信号控制子电路10的驱动电流,从而保证了灰阶的均一性以及色坐标的稳定性。
对图5中的像素驱动电路的仿真测试,测试结果如图12所示,横轴表示第三节点M的电压,纵轴表示第二节点B的电压。从图12可以看出,当第三节点M的电压从高电压逐渐变化至低电压时,第二节点B的电压从低电压突变至高电压,并且第二节点B的电压只保持低电压状态或者高电压状态,而不会处于非高电压且非低电压的状态。因此,通过电位控制子电路204可以将非高电压且非低电压信号转化为高电压信号或者低电压信号,从而能够控制第一晶体管T1处于完全开启或者完全关闭的状态,实现对待驱动元件L的工作时长的精确控制。
综上所述,通过将第二节点B的电压控制为第二电源电压信号的电压或者第三电源电压信号的电压,并且控制第二节点B的电压仅为高电压或者低电压,从而能够精确控制第一晶体管T1的开启或关闭,实现对待驱动元件L的工作时长的精确控制。在待驱动元件L进行不同灰阶的显示时,通过控制待驱动元件L的驱动信号的大小以及待驱动元件L的发光时长,可实现待驱动元件L的亮度改变,进而实现对应的灰阶显示,提高显示面板的显示效果。
本公开一些实施例还提供了一种上述的像素驱动电路的驱动方法,如图7所示,一个帧周期包括扫描阶段(P1~P5)和工作阶段(P5~P6),扫描阶段(P1~P5)包括多个行扫描阶段(ts1~tsn)。每个行扫描阶段包括S10~S20,工作阶段包括S30~S40。
该驱动方法,包括:
S10、信号控制子电路10响应于接收到的来自第一扫描信号端G1的第一扫描信号,向第一节点A至少写入来自第一数据信号端D1的第一数据信号;
S20、时间控制子电路20响应于接收到的来自第二扫描信号端G2的第二扫描信号,向第四节点N写入来自第二数据信号端D2的第二数据信号,并向第三节点M写入来自第二电压信号端V2的第二电压信号;
S30、信号控制子电路10响应于接收到的来自使能信号端EM的使能信号,使第一驱动子电路101根据第一数据信号端D1提供的第一数据信号和第一电源电压信号端S1提供的第一电源电压信号,输出驱动信号至第一晶体管T1;
S40、时间控制子电路20响应于接收到的来自使能信号端EM的使能信号,向第四节点N写入来自第一电压信号端的在设定电压范围内变化的第一电压信号,并使第三节点M上的电压随着第一电压信号与第二数据信号之间的电压变化而变化;以及响应于第三节点M上的电压变化,在不同阶段分别将第二电源电压信号端S2提供的第二电源电压信号和第三电源电压信号端S3提供的第三电源电压信号传输至第二节点B,以通过控制第一晶体管T1的开启时间来控制待驱动元件L的工作时长。
在一些实施例中,参考图4,信号控制子电路10包括第一驱动子电路101、第一数据写入子电路102、以及第一控制子电路103。第一驱动子电路101包括驱动晶体管Td,驱动晶体管Td的栅极连接到第一节点A。第一数据写入子电路102连接到第一扫描信号端G1、第一数据信号端D1、以及驱动晶体管Td。第一控制子电路103连接到使能信号端EM、第一电源电压信号端S1、驱动晶体管Td、以及第一晶体管T1的第一极。
上述S10和S30,包括:
S101、第一数据写入子电路102响应于接收到的来自第一扫描信号端G1的第一扫描信号,向第一节点A写入来自第一数据信号端D1的第一数据信号和驱动晶体管Td的阈值电压,对驱动晶体管Td进行阈值电压补偿。
S301、第一控制子电路103响应于接收到的来自使能信号端EM的使能信号,使驱动晶体管Td分别与第一电源电压信号端S1和第一晶体管T1的第一极连接;驱动晶体管Td根据第一数据信号端D1提供的第一数据信号和第一电源电压信号端S1提供的第一电源电压信号,输出驱动信号至第一晶体管T1的第一极。
在另一些实施例中,参考图4,时间控制子电路20包括第二数据写入子 电路202、第二驱动子电路201、第二控制子电路203以及电位控制子电路204。第二驱动子电路201包括第一晶体管T1和第二电容器C2。第一晶体管T1的栅极连接到第二节点B,第一晶体管T1的第一极连接到信号控制子电路10。第二电容器C2的一端连接到第三节点M,第二电容器C2的另一端连接到第四节点N。第二数据写入子电路202连接到第二扫描信号端G2、第二数据信号端D2、第二电压信号端V2、第三节点M和第四节点N。第二控制子电路203连接到使能信号端EM、第一电压信号端V1、第一晶体管T1的第二极、第四节点N、以及待驱动元件L。电位控制子电路204连接到第二节点B、第三节点M、第二电源电压信号端S2、以及第三电源电压信号端S3。
上述S20和S40,包括:
S201、第二数据写入子电路202响应于接收到的来自第二扫描信号端G2的第二扫描信号,向第四节点N写入来自第二数据信号端D2的第二数据信号,并向第三节点M写入来自第二电压信号端V2的第二电压信号。
S401、第二控制子电路203响应于接收到的来自使能信号端EM的使能信号,向第四节点N写入来自第一电压信号端V1的第一电压信号,使第三节点M上的电压随着第一电压信号与第二数据信号之间的电压变化而变化,并使第一晶体管T1的第二极与待驱动元件L连接;电位控制子电路204响应于第三节点M上的电压变化,在不同阶段分别将第二电源电压信号端S2提供的第二电源电压信号和第三电源电压信号端S3提供的第三电源电压信号传输至第二节点B。
本公开一些实施例提供的像素驱动电路的驱动方法具有与上述的像素驱动电路相同的有益效果,因此不再赘述。
在此基础上,在本公开的一些实施例中,参考图4,信号控制子电路10还包括复位子电路104。复位子电路104连接到初始信号端Init1、复位信号端Rst1以及第一节点A。每个行扫描阶段还包括S00。
该驱动方法,还包括:
S00、在如图7所示的第一阶段(P1~P2),复位子电路104响应于接收到的来自复位信号端Rst1的复位信号,将初始信号端Init1提供的初始信号传输至第一节点A。
在一些示例中,如图5所示,复位子电路104包括第六晶体管T6。第六晶体管T6的栅极连接到复位信号端Rst1,第六晶体管T6的第一极连接到初始信号端Init1,第六晶体管T6的第二极连接到第一节点A。
上述S00,包括:
S01、响应于接收到的来自复位信号端Rst1的复位信号,第六晶体管T6开启,将初始信号端Init1提供的初始信号传输至第一节点A,使第一节点A的电压复位为初始信号的电压V init1
在此情况下,由于第一电容器C1的另一端、以及驱动晶体管Td的栅极均连接到第一节点A,因此,第一电容器C1的另一端的电压、以及驱动晶体管Td的栅极电压均复位为V init1
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种像素驱动电路,包括:
    信号控制子电路,连接到第一扫描信号端、第一数据信号端、第一电源电压信号端、以及使能信号端;所述信号控制子电路包括第一驱动子电路,所述第一驱动子电路连接到第一节点;所述信号控制子电路被配置为:响应于接收到的来自所述第一扫描信号端的第一扫描信号,至少将所述第一数据信号端提供的第一数据信号写入所述第一节点;以及响应于接收到的来自所述使能信号端的使能信号,使所述第一驱动子电路根据所述第一数据信号和所述第一电源电压信号端提供的第一电源电压信号,输出驱动信号;
    时间控制子电路,连接到第二扫描信号端、第二数据信号端、所述使能信号端、第一电压信号端、第二电压信号端、第二电源电压信号端、第三电源电压信号端、所述信号控制子电路以及待驱动元件;所述时间控制子电路包括第二驱动子电路,所述第二驱动子电路包括第一晶体管;所述第二驱动子电路连接到第二节点、第三节点和第四节点,所述第一晶体管连接到所述第二节点和所述信号控制子电路;所述时间控制子电路被配置为:响应于接收到的来自所述第二扫描信号端的第二扫描信号,将所述第二数据信号端提供的第二数据信号写入所述第四节点,并将所述第二电压信号端提供的第二电压信号写入所述第三节点;响应于接收到的来自所述使能信号端的使能信号,将所述第一电压信号端提供的在设定电压范围内变化的第一电压信号写入所述第四节点,并使所述第三节点上的电压随着所述第一电压信号与所述第二数据信号之间的电压变化而变化;以及响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号端提供的第二电源电压信号和所述第三电源电压信号端提供的第三电源电压信号传输至所述第二节点,以控制所述第一晶体管的开启时间,并在所述第一晶体管开启时将所述驱动信号传输至所述待驱动元件。
  2. 根据权利要求1所述的像素驱动电路,其中,所述信号控制子电路还包括第一数据写入子电路以及第一控制子电路;所述第一驱动子电路包括驱动晶体管,所述驱动晶体管的栅极连接到所述第一节点;
    所述第一数据写入子电路连接到所述第一扫描信号端、所述第一数据信号端、以及所述驱动晶体管;所述第一数据写入子电路被配置为响应于接收到的所述第一扫描信号,将所述第一数据信号和所述驱动晶体管的阈值电压写入所述第一节点,对所述驱动晶体管进行阈值电压补偿;
    所述第一控制子电路连接到所述使能信号端、所述第一电源电压信号端、所述驱动晶体管、以及所述第一晶体管的第一极;所述第一控制子电路被配 置为响应于接收到的所述使能信号,使所述驱动晶体管分别与所述第一电源电压信号端和所述第一晶体管的第一极连接;
    所述第一驱动子电路还连接到第一电源电压信号端;所述驱动晶体管被配置为根据所述第一数据信号和所述第一电源电压信号,输出所述驱动信号至所述第一晶体管的第一极。
  3. 根据权利要求2所述的像素驱动电路,其中,所述第一驱动子电路还包括第一电容器;
    所述第一电容器的一端连接到所述第一电源电压信号端,所述第一电容器的另一端连接到所述第一节点。
  4. 根据权利要求2或3所述的像素驱动电路,其中,所述第一数据写入子电路包括第二晶体管和第三晶体管;
    所述第二晶体管的栅极连接到所述第一扫描信号端,所述第二晶体管的第一极连接到所述驱动晶体管的第二极,所述第二晶体管的第二极连接到所述第一节点;
    所述第三晶体管的栅极连接到所述第一扫描信号端,所述第三晶体管的第一极连接到所述第一数据信号端,所述第三晶体管的第二极连接到所述驱动晶体管的第一极。
  5. 根据权利要求2-4任一项所述的像素驱动电路,其中,所述第一控制子电路包括第四晶体管和第五晶体管;
    所述第四晶体管的栅极连接到所述使能信号端,所述第四晶体管的第一极连接到所述第一电源电压信号端,所述第四晶体管的第二极连接到所述驱动晶体管的第一极;
    所述第五晶体管的栅极连接到所述使能信号端,所述第五晶体管的第一极连接到所述驱动晶体管的第二极,所述第五晶体管的第二极连接到所述第一晶体管的第一极。
  6. 根据权利要求2-5任一项所述的像素驱动电路,其中,所述信号控制子电路还包括复位子电路;
    所述复位子电路连接到初始信号端、复位信号端以及所述第一节点;所述复位子电路被配置为响应于接收到的来自所述复位信号端的复位信号,将所述初始信号端提供的初始信号传输至所述第一节点。
  7. 根据权利要求6所述的像素驱动电路,其中,所述复位子电路包括第六晶体管;
    所述第六晶体管的栅极连接到所述复位信号端,所述第六晶体管的第一 极连接到所述初始信号端,所述第六晶体管的第二极连接到所述第一节点。
  8. 根据权利要求1-7任一项所述的像素驱动电路,其中,所述时间控制子电路还包括第二数据写入子电路、第二控制子电路以及电位控制子电路;
    所述第二驱动子电路还包括第二电容器;所述第一晶体管的栅极连接到所述第二节点,所述第一晶体管的第一极连接到所述信号控制子电路;所述第二电容器的一端连接到所述第三节点,所述第二电容器的另一端连接到所述第四节点;
    所述第二数据写入子电路连接到所述第二扫描信号端、所述第二数据信号端、所述第二电压信号端、所述第三节点和所述第四节点;所述第二数据写入子电路被配置为响应于接收到的所述第二扫描信号,将所述第二数据信号写入所述第四节点,并将所述第二电压信号写入所述第三节点;
    所述第二控制子电路连接到所述使能信号端、所述第一电压信号端、所述第一晶体管的第二极、所述第四节点、以及所述待驱动元件;所述第二控制子电路被配置为响应于接收到的所述使能信号,将所述第一电压信号写入所述第四节点,并使所述第一晶体管的第二极与所述待驱动元件连接;
    所述电位控制子电路连接到所述第二节点、所述第三节点、所述第二电源电压信号端、以及所述第三电源电压信号端;所述电位控制子电路被配置为响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号和所述第三电源电压信号传输至所述第二节点。
  9. 根据权利要求8所述的像素驱动电路,其中,所述第二数据写入子电路包括第七晶体管和第八晶体管;
    所述第七晶体管的栅极连接到所述第二扫描信号端,所述第七晶体管的第一极连接到所述第二数据信号端,所述第七晶体管的第二极连接到所述第四节点;
    所述第八晶体管的栅极连接到所述第二扫描信号端,所述第八晶体管的第一极连接到所述第二电压信号端,所述第八晶体管的第二极连接到所述第三节点。
  10. 根据权利要求8或9所述的像素驱动电路,其中,所述第二控制子电路包括第九晶体管和第十晶体管;
    所述第九晶体管的栅极连接到所述使能信号端,所述第九晶体管的第一极连接到所述第一电压信号端,所述第九晶体管的第二极连接到所述第四节点;
    所述第十晶体管的栅极连接到所述使能信号端,所述第十晶体管的第一 极连接到所述第一晶体管的第二极,所述第十晶体管的第二极连接到所述待驱动元件。
  11. 根据权利要求8-10任一项所述的像素驱动电路,其中,所述电位控制子电路包括第十一晶体管、第十二晶体管、第十三晶体管、第十四晶体管、第十五晶体管和第十六晶体管;
    所述第十一晶体管的栅极连接到所述第三节点,所述第十一晶体管的第一极连接到所述第二电源电压信号端,所述第十一晶体管的第二极连接到所述第十二晶体管的第一极;
    所述第十二晶体管的栅极连接到所述第三节点,所述第十二晶体管的第二极连接到所述第二节点;
    所述第十三晶体管的栅极连接到所述第三节点,所述第十三晶体管的第一极连接到所述第三电源电压信号端,所述第十三晶体管的第二极连接到所述第十四晶体管的第一极;
    所述第十四晶体管的栅极连接到所述第三节点,所述第十四晶体管的第二极连接到所述第二节点;
    所述第十五晶体管的栅极连接到所述第二节点,所述第十五晶体管的第一极连接到所述第三电源电压信号端,所述第十五晶体管的第二极连接到所述第十一晶体管的第二极和所述第十二晶体管的第一极;
    所述第十六晶体管的栅极连接到所述第二节点,所述第十六晶体管的第一极连接到所述第二电源电压信号端,所述第十六晶体管的第二极连接到所述第十三晶体管的第二极和所述第十四晶体管的第一极;
    所述第十一晶体管、所述第十二晶体管和所述第十五晶体管均为P型晶体管,所述第十三晶体管、所述第十四晶体管和所述第十六晶体管均为N型晶体管;
    或者,
    所述第十一晶体管、所述第十二晶体管和所述第十五晶体管均为N型晶体管,所述第十三晶体管、所述第十四晶体管和所述第十六晶体管均为P型晶体管。
  12. 一种显示面板,包括:
    多个如权利要求1-11任一项所述的像素驱动电路;以及
    多个待驱动元件,每个待驱动元件与对应的一个像素驱动电路连接。
  13. 根据权利要求12所述的显示面板,其中,所述显示面板具有多个亚像素区,每个像素驱动电路设置于一个亚像素区中;
    所述显示面板还包括:
    多条第一扫描信号线,位于同一行亚像素区中的各像素驱动电路连接的第一扫描信号端与对应的一条第一扫描信号线连接;
    多条第一数据信号线,位于同一列亚像素区中的各像素驱动电路连接的第一数据信号端与对应的一条第一数据信号线连接;
    多条第二扫描信号线,位于同一行亚像素区中的各像素驱动电路连接的第二扫描信号端与对应的一条第二扫描信号线连接;以及
    多条第二数据信号线,位于同一列亚像素区中的各像素驱动电路连接的第二数据信号端与对应的一条第二数据信号线连接;
    多条使能信号线,位于同一行亚像素区中的各像素驱动电路连接的使能信号端与对应的一条使能信号线连接。
  14. 根据权利要求12所述的显示面板,其中,所述待驱动元件为电流驱动型发光器件。
  15. 一种显示装置,包括如权利要求12-14任一项所述的显示面板。
  16. 一种如权利要求1所述的像素驱动电路的驱动方法,一个帧周期包括扫描阶段和工作阶段,所述扫描阶段包括多个行扫描阶段;
    所述驱动方法,包括:
    在所述多个行扫描阶段中的每个行扫描阶段:
    所述信号控制子电路响应于接收到的来自所述第一扫描信号端的第一扫描信号,向所述第一节点至少写入来自第一数据信号端的第一数据信号;
    所述时间控制子电路响应于接收到的来自所述第二扫描信号端的第二扫描信号,向所述第四节点写入来自所述第二数据信号端的第二数据信号,并向所述第三节点写入来自所述第二电压信号端的第二电压信号;
    在所述工作阶段:
    所述信号控制子电路响应于接收到的来自所述使能信号端的使能信号,使所述第一驱动子电路根据所述第一数据信号和所述第一电源电压信号端提供的第一电源电压信号,输出驱动信号至所述第一晶体管;
    所述时间控制子电路响应于接收到的来自所述使能信号端的使能信号,向所述第四节点写入来自所述第一电压信号端的在设定电压范围内变化的第一电压信号,并使所述第三节点上的电压随着所述第一电压信号与所述第二数据信号之间的电压变化而变化;以及响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号端提供的第二电源电压信号和所述第三电源电压信号端提供的第三电源电压信号传输至所述第二节点,以通过 控制所述第一晶体管的开启时间来控制所述待驱动元件的工作时长。
  17. 根据权利要求16所述的像素驱动电路的驱动方法,其中,所述信号控制子电路还包括第一数据写入子电路以及第一控制子电路;所述第一驱动子电路包括驱动晶体管,所述驱动晶体管的栅极连接到所述第一节点;所述第一数据写入子电路连接到所述第一扫描信号端、所述第一数据信号端、以及所述驱动晶体管;所述第一控制子电路连接到所述使能信号端、所述第一电源电压信号端、所述驱动晶体管、以及所述第一晶体管的第一极;
    在所述多个行扫描阶段中的每个行扫描阶段,所述信号控制子电路响应于接收到的所述第一扫描信号,向所述第一节点至少写入所述第一数据信号,在所述工作阶段,所述信号控制子电路响应于接收到的所述使能信号,使所述第一驱动子电路根据所述第一数据信号和所述第一电源电压信号,输出驱动信号至所述第一晶体管,包括:
    在所述多个行扫描阶段中的每个行扫描阶段:
    所述第一数据写入子电路响应于接收到的所述第一扫描信号,向所述第一节点写入所述第一数据信号和所述驱动晶体管的阈值电压,对所述驱动晶体管进行阈值电压补偿;
    在所述工作阶段:
    所述第一控制子电路响应于接收到的所述使能信号,使所述驱动晶体管分别与所述第一电源电压信号端和所述第一晶体管的第一极连接;
    所述驱动晶体管根据所述第一数据信号和所述第一电源电压信号,输出所述驱动信号至所述第一晶体管的第一极。
  18. 根据权利要求16或17所述的像素驱动电路的驱动方法,其中,所述时间控制子电路还包括第二数据写入子电路、第二控制子电路以及电位控制子电路;所述第二驱动子电路还包括第二电容器;所述第一晶体管的栅极连接到所述第二节点,所述第一晶体管的第一极连接到所述信号控制子电路;所述第二电容器的一端连接到所述第三节点,所述第二电容器的另一端连接到所述第四节点;所述第二数据写入子电路连接到所述第二扫描信号端、所述第二数据信号端、所述第二电压信号端、所述第三节点和所述第四节点;所述第二控制子电路连接到所述使能信号端、所述第一电压信号端、所述第一晶体管的第二极、所述第四节点、以及所述待驱动元件;所述电位控制子电路连接到所述第二节点、所述第三节点、所述第二电源电压信号端、以及所述第三电源电压信号端;
    在所述多个行扫描阶段中的每个行扫描阶段,所述时间控制子电路响应 于接收到的所述第二扫描信号,向所述第四节点写入所述第二数据信号,并向所述第三节点写入所述第二电压信号,在所述工作阶段,所述时间控制子电路响应于接收到的所述使能信号,向所述第四节点写入所述第一电压信号,使所述第三节点上的电压随着所述第一电压信号与所述第二数据信号之间的电压变化而变化,并响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号和所述第三电源电压信号传输至所述第二节点,包括:
    在所述多个行扫描阶段中的每个行扫描阶段:
    所述第二数据写入子电路响应于接收到的所述第二扫描信号,向所述第四节点写入所述第二数据信号,并向所述第三节点写入所述第二电压信号;
    在所述工作阶段:
    所述第二控制子电路响应于接收到的所述使能信号,向所述第四节点写入所述第一电压信号,使所述第三节点上的电压随着所述第一电压信号与所述第二数据信号之间的电压变化而变化,并使所述第一晶体管的第二极与所述待驱动元件连接;
    所述电位控制子电路响应于所述第三节点上的电压变化,在不同阶段分别将所述第二电源电压信号和所述第三电源电压信号传输至所述第二节点。
PCT/CN2020/121912 2019-11-01 2020-10-19 像素驱动电路及其驱动方法、显示面板、显示装置 WO2021082970A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/603,686 US11610549B2 (en) 2019-11-01 2020-10-19 Pixel driving circuit and driving method therefor, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911061474.6A CN112837649B (zh) 2019-11-01 2019-11-01 像素驱动电路及其驱动方法、显示面板、显示装置
CN201911061474.6 2019-11-01

Publications (2)

Publication Number Publication Date
WO2021082970A1 true WO2021082970A1 (zh) 2021-05-06
WO2021082970A8 WO2021082970A8 (zh) 2021-06-24

Family

ID=75715685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121912 WO2021082970A1 (zh) 2019-11-01 2020-10-19 像素驱动电路及其驱动方法、显示面板、显示装置

Country Status (3)

Country Link
US (1) US11610549B2 (zh)
CN (1) CN112837649B (zh)
WO (1) WO2021082970A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11688347B2 (en) * 2020-11-03 2023-06-27 Boe Technology Group Co., Ltd. Pixel circuit having control circuit for controlling a light emitting element and driving method thereof, display panel and display apparatus
CN114038393B (zh) * 2021-07-16 2022-10-21 重庆康佳光电技术研究院有限公司 一种像素电路和显示面板
CN113867061A (zh) * 2021-09-30 2021-12-31 上海天马微电子有限公司 一种阵列基板、阵列基板的驱动方法及显示装置
CN115662343B (zh) * 2022-11-09 2023-05-26 惠科股份有限公司 像素驱动电路及其驱动方法、显示面板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578404A (zh) * 2012-07-18 2014-02-12 群康科技(深圳)有限公司 有机发光二极管像素电路与显示器
CN103996379A (zh) * 2014-06-16 2014-08-20 深圳市华星光电技术有限公司 有机发光二极管的像素驱动电路及像素驱动方法
CN104021756A (zh) * 2014-05-29 2014-09-03 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104778923A (zh) * 2015-04-28 2015-07-15 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN107564478A (zh) * 2017-10-18 2018-01-09 京东方科技集团股份有限公司 一种显示面板及其显示方法、显示装置
CN108172172A (zh) * 2017-12-22 2018-06-15 武汉华星光电半导体显示技术有限公司 像素驱动电路及具有该像素驱动电路的显示装置
EP3343552A1 (en) * 2016-12-29 2018-07-04 LG Display Co., Ltd. Electroluminescent display
CN108874195A (zh) * 2017-05-12 2018-11-23 京东方科技集团股份有限公司 触控式像素驱动电路及驱动方法、触控显示装置
CN109192140A (zh) * 2018-09-27 2019-01-11 武汉华星光电半导体显示技术有限公司 像素驱动电路和显示装置
CN109545147A (zh) * 2018-12-14 2019-03-29 昆山国显光电有限公司 显示面板、像素电路及其驱动方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100520888C (zh) * 2005-09-06 2009-07-29 精工爱普生株式会社 发光装置及其驱动方法和图像形成装置
US8044984B2 (en) * 2008-03-27 2011-10-25 Himax Technologies Limited Methods for driving an OLED panel
KR101097325B1 (ko) * 2009-12-31 2011-12-23 삼성모바일디스플레이주식회사 화소 회로 및 유기 전계 발광 표시 장치
US9747834B2 (en) * 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
KR102072795B1 (ko) * 2013-08-12 2020-02-04 삼성디스플레이 주식회사 유기 전계 발광 표시 장치 및 이의 구동 방법
JP2015049335A (ja) * 2013-08-30 2015-03-16 三星ディスプレイ株式會社Samsung Display Co.,Ltd. El表示装置及びel表示装置の駆動方法
CN104064140B (zh) * 2014-06-09 2016-09-21 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN106652908B (zh) * 2017-01-05 2019-03-12 上海天马有机发光显示技术有限公司 有机发光显示面板及其驱动方法、有机发光显示装置
EP3389037B1 (en) * 2017-04-11 2020-12-09 Samsung Electronics Co., Ltd. Pixel circuit of display panel
CN107068058B (zh) * 2017-04-28 2019-12-03 深圳市华星光电技术有限公司 像素驱动电路、显示面板及像素驱动方法
CN106910466A (zh) * 2017-04-28 2017-06-30 深圳市华星光电技术有限公司 像素驱动电路、显示面板及像素驱动方法
CN106910467A (zh) * 2017-04-28 2017-06-30 深圳市华星光电技术有限公司 像素驱动电路、显示面板及像素驱动方法
WO2019023962A1 (en) * 2017-08-02 2019-02-07 Boe Technology Group Co., Ltd. PIXEL CIRCUIT, ACTIVE MATRIX ORGANIC LIGHT EMITTING DISPLAY PANEL, DISPLAY APPARATUS, AND ATTACK TRANSISTOR THRESHOLD VOLTAGE COMPENSATION METHOD
KR102503730B1 (ko) * 2017-12-11 2023-02-27 삼성디스플레이 주식회사 표시 장치 및 표시 장치 구동 방법
WO2020034140A1 (en) * 2018-08-16 2020-02-20 Boe Technology Group Co., Ltd. A method for driving a pixel circuit with feedback compensation, a circuit for driving a light-emitting device, and a display apparatus
CN110021264B (zh) * 2018-09-07 2022-08-19 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN109545142B (zh) * 2018-12-28 2020-10-20 上海天马微电子有限公司 像素驱动电路、方法、显示面板和显示装置
WO2020151007A1 (zh) * 2019-01-25 2020-07-30 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板
CN109872680B (zh) * 2019-03-20 2020-11-24 京东方科技集团股份有限公司 像素电路及驱动方法、显示面板及驱动方法、显示装置
CN112259041B (zh) * 2019-07-04 2022-09-09 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
US11615747B2 (en) * 2019-08-14 2023-03-28 Boe Technology Group Co., Ltd. Pixel circuit and driving method thereof, array substrate and display apparatus
WO2021042271A1 (zh) * 2019-09-03 2021-03-11 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法、显示面板及显示装置
TWI716120B (zh) * 2019-09-25 2021-01-11 友達光電股份有限公司 畫素電路與顯示面板
CN110648630B (zh) * 2019-09-26 2021-02-05 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法、显示面板和显示装置
GB201914186D0 (en) * 2019-10-01 2019-11-13 Barco Nv Driver for LED or OLED display
CN112750392B (zh) * 2019-10-30 2022-04-15 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板、显示装置
CN112820236B (zh) * 2019-10-30 2022-04-12 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板、显示装置
CN110782831B (zh) * 2019-11-05 2021-02-26 京东方科技集团股份有限公司 像素驱动电路、显示设备和像素驱动电路驱动方法
KR20210108742A (ko) * 2020-02-26 2021-09-03 삼성전자주식회사 디스플레이 모듈 및 디스플레이 장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578404A (zh) * 2012-07-18 2014-02-12 群康科技(深圳)有限公司 有机发光二极管像素电路与显示器
CN104021756A (zh) * 2014-05-29 2014-09-03 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN103996379A (zh) * 2014-06-16 2014-08-20 深圳市华星光电技术有限公司 有机发光二极管的像素驱动电路及像素驱动方法
CN104778923A (zh) * 2015-04-28 2015-07-15 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
EP3343552A1 (en) * 2016-12-29 2018-07-04 LG Display Co., Ltd. Electroluminescent display
CN108874195A (zh) * 2017-05-12 2018-11-23 京东方科技集团股份有限公司 触控式像素驱动电路及驱动方法、触控显示装置
CN107564478A (zh) * 2017-10-18 2018-01-09 京东方科技集团股份有限公司 一种显示面板及其显示方法、显示装置
CN108172172A (zh) * 2017-12-22 2018-06-15 武汉华星光电半导体显示技术有限公司 像素驱动电路及具有该像素驱动电路的显示装置
CN109192140A (zh) * 2018-09-27 2019-01-11 武汉华星光电半导体显示技术有限公司 像素驱动电路和显示装置
CN109545147A (zh) * 2018-12-14 2019-03-29 昆山国显光电有限公司 显示面板、像素电路及其驱动方法

Also Published As

Publication number Publication date
US20220157247A1 (en) 2022-05-19
US11610549B2 (en) 2023-03-21
CN112837649B (zh) 2022-10-11
CN112837649A (zh) 2021-05-25
WO2021082970A8 (zh) 2021-06-24

Similar Documents

Publication Publication Date Title
CN113838421B (zh) 像素电路及其驱动方法、显示面板
US11881164B2 (en) Pixel circuit and driving method thereof, and display panel
WO2021082970A1 (zh) 像素驱动电路及其驱动方法、显示面板、显示装置
CN109872692B (zh) 像素电路及其驱动方法、显示装置
US11551606B2 (en) LED driving circuit, display panel, and pixel driving device
CN109859692B (zh) 显示驱动电路及其驱动方法、显示面板及显示装置
EP3736800A1 (en) Pixel circuit and driving method therefor, and display device
US11615738B2 (en) Pixel driving circuit and driving method therefor, display panel, and display apparatus
US10424249B2 (en) Pixel driving circuit and driving method thereof, array substrate, and display device
US11127342B2 (en) Pixel circuit for driving light emitting diode to emit light and method of controlling the pixel circuit
WO2021135971A1 (zh) 像素驱动电路及其驱动方法、显示面板
WO2021082840A1 (zh) 像素驱动电路及其驱动方法、显示面板
CN113223461A (zh) 显示设备和驱动该显示设备的方法
KR20220092813A (ko) 픽셀 구동 회로 및 그 구동 방법, 디스플레이 패널 및 디스플레이 디바이스
US11620939B2 (en) Pixel driving circuit and driving method therefor, display panel, and display apparatus
US11514844B2 (en) Pixel drive circuit, pixel unit, driving method, array substrate, and display apparatus
GB2620507A (en) Pixel circuit and driving method therefor and display panel
CN112086068A (zh) 显示装置及其驱动方法
KR20230001618A (ko) 화소 및 표시 장치
WO2021042271A1 (zh) 像素驱动电路、像素驱动方法、显示面板及显示装置
CN114550655B (zh) 显示装置
KR20140041046A (ko) 유기발광 표시장치와 그 게이트 신호 전압 변조 방법
CN112735339A (zh) 一种数据电流产生电路、驱动方法、驱动芯片和显示面板
CN117672139A (zh) 像素电路及其驱动方法、显示面板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881571

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20881571

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20881571

Country of ref document: EP

Kind code of ref document: A1