WO2021062725A1 - 电机控制方法、电机及可移动平台 - Google Patents

电机控制方法、电机及可移动平台 Download PDF

Info

Publication number
WO2021062725A1
WO2021062725A1 PCT/CN2019/109635 CN2019109635W WO2021062725A1 WO 2021062725 A1 WO2021062725 A1 WO 2021062725A1 CN 2019109635 W CN2019109635 W CN 2019109635W WO 2021062725 A1 WO2021062725 A1 WO 2021062725A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
electrical angle
angle value
motor
preset
Prior art date
Application number
PCT/CN2019/109635
Other languages
English (en)
French (fr)
Inventor
陈旭
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/109635 priority Critical patent/WO2021062725A1/zh
Priority to CN201980034234.9A priority patent/CN112889213B/zh
Publication of WO2021062725A1 publication Critical patent/WO2021062725A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Definitions

  • the embodiments of the present application relate to the field of control, and in particular, to a motor control method, a motor, and a movable platform.
  • vector control can be used to start.
  • open-loop dragging is required to start. This method relies on a vector voltage with a higher amplitude to drive the motor rotor to rotate. After the rotor reaches a certain speed, it switches to other methods (such as back-EMF observer) to obtain position information and perform vector control.
  • This method of using open-loop dragging has low open-loop dragging efficiency and requires a larger starting power to ensure that it does not lose step.
  • the application provides a motor control method, a motor, and a movable platform, which realizes the use of a vector method for starting on a motor that does not have an absolute position.
  • the first aspect of the present application provides a motor control method, including:
  • the rotor of the motor is controlled to rotate in the preset first direction by the rotating first vector voltage, and when it is detected that the code disc provided on the rotor generates the nth signal edge, it is recorded
  • the first electrical angle value of the current first vector voltage; n is an odd number, and n ⁇ 1;
  • the rotor of the motor is controlled to rotate in a preset second direction with a rotating second vector voltage, and when it is detected that the code disc generates the nth signal edge, it is recorded
  • the second electrical angle value of the current second vector voltage wherein, the first direction and the second direction are opposite directions;
  • the current electrical angle value of the rotor is acquired according to the electrical angle offset value and the current signal edge count of the code disk, and the motor is controlled based on the electrical angle value of the rotor.
  • the second aspect of the present application provides a motor control method, which is applied to a motor, the motor includes a rotor, and an encoder is provided on the rotor, including:
  • the motor is controlled based on the electrical angle value of the rotor.
  • the third aspect of the present application provides a motor control method, which is applied to a motor, the motor includes a rotor, the rotor is provided with an encoder, and includes:
  • the motor is controlled based on the corrected electrical angle value.
  • the fourth aspect of the present application provides a motor control method applied to a motor, the motor includes a rotor, the rotor is provided with a position sensor, and the position sensor is used to detect the absolute mechanical position of the rotor, including :
  • the fifth aspect of the present application provides a motor control method, which is applied to a motor, the motor includes a rotor, and an encoder disk is provided on the rotor, including the steps:
  • the rotor is controlled to rotate to a preset target position by a vector voltage in a preset direction; the target position is correspondingly set with a preset initial electrical angle value;
  • the current electrical angle value of the rotor is acquired according to the initial electrical angle value and the current signal edge count of the encoder, and the motor is controlled based on the electrical angle value of the rotor.
  • a sixth aspect of the present application provides a motor control device, including a processor and a memory; the memory stores one or more computer program instructions;
  • the processor adjusts the one or more computer program instructions to execute the motor control method described in the first aspect.
  • a seventh aspect of the present application provides a motor control device, including a processor and a memory; the memory stores one or more computer program instructions;
  • the processor adjusts the one or more computer program instructions to execute the motor control method described in the second aspect.
  • An eighth aspect of the present application provides a motor control device, including a processor and a memory; the memory stores one or more computer program instructions;
  • the processor adjusts the one or more computer program instructions to execute the motor control method described in the third aspect.
  • a ninth aspect of the present application provides a motor control device, including a processor and a memory; the memory stores one or more computer program instructions;
  • the processor adjusts the one or more computer program instructions to execute the motor control method described in the fourth aspect.
  • a tenth aspect of the present application provides a motor control device, including a processor and a memory; the memory stores one or more computer program instructions;
  • the processor adjusts the one or more computer program instructions to execute the motor control method described in the fifth aspect.
  • the eleventh aspect of the present application provides a motor, including a rotor, a code disc, a memory, and a processor; the code disc is installed on the rotor and rotates with the rotor;
  • the memory stores one or more computer program instructions
  • the processor is used to call and execute the one or more computer program instructions to perform the following steps:
  • the rotor of the motor is controlled to rotate in the preset first direction by the rotating first vector voltage, and when it is detected that the code disc provided on the rotor generates the nth signal edge, it is recorded
  • the first electrical angle value of the current first vector voltage; n is an odd number, and n ⁇ 1;
  • the rotor of the motor is controlled to rotate in a preset second direction with a rotating second vector voltage, and when it is detected that the code disc generates the nth signal edge, it is recorded
  • the second electrical angle value of the current second vector voltage wherein, the first direction and the second direction are opposite directions;
  • the current electrical angle value of the rotor is acquired according to the electrical angle offset value and the current signal edge count of the code disk, and the motor is controlled based on the electrical angle value of the rotor.
  • the twelfth aspect of the present application provides a motor, including a rotor, a code disc, a memory, and a processor; the code disc is installed on the rotor and rotates with the rotor;
  • the memory stores one or more computer program instructions
  • the processor is used to call and execute the one or more computer program instructions to perform the following steps:
  • the motor is controlled based on the electrical angle value of the rotor.
  • the thirteenth aspect of the present application provides a motor, including a rotor, a code disc, a memory, and a processor; the code disc is installed on the rotor and rotates with the rotor;
  • the memory stores one or more computer program instructions
  • the processor is used to call and execute the one or more computer program instructions to perform the following steps:
  • the motor is controlled based on the corrected electrical angle value.
  • a fourteenth aspect of the present application provides a motor, including a rotor, a position sensor, a memory, and a processor; the position sensor is installed on the rotor;
  • the memory stores one or more computer program instructions
  • the processor is used to call and execute the one or more computer program instructions to perform the following steps:
  • the motor is controlled based on the corrected electrical angle value.
  • the fifteenth aspect of the present application provides a motor, including a rotor, a code disk, a memory, and a processor; the code disk is installed on the rotor and rotates with the rotor;
  • the memory stores one or more computer program instructions
  • the processor is used to call and execute the one or more computer program instructions to perform the following steps:
  • the rotor is controlled to rotate to a preset target position by a vector voltage in a preset direction; the target position is correspondingly set with a preset initial electrical angle value;
  • the current electrical angle value of the rotor is acquired according to the initial electrical angle value and the current signal edge count of the encoder, and the motor is controlled based on the electrical angle value of the rotor.
  • a fifteenth aspect of the present application provides a computer-readable storage medium that stores a computer program that, when executed by a computer, implements the motor control method described in any one of the first to fifth aspects.
  • the sixteenth aspect of this application provides a movable platform and a fuselage
  • the motor is installed on the fuselage and used to provide power
  • the controller is configured to execute the motor control method described in any one of the first aspect to the fifth aspect, and control the operation of the motor.
  • the rotor of the motor is controlled to rotate in the preset first direction with the rotating first vector voltage, and when it is detected that the code disc provided on the rotor produces the nth Record the first electrical angle value of the current first vector voltage when there are two signal edges; after recording the first electrical angle value, use the rotating second vector voltage to control the rotor of the motor in the preset second direction
  • the second electrical angle value of the current second vector voltage is recorded; the rotor's electrical angle value is obtained according to the first electrical angle value and the second electrical angle value.
  • FIG. 1 is a schematic flowchart of an embodiment of a motor control method provided by an embodiment of this application;
  • FIG. 2 is a schematic flowchart of another embodiment of a motor control method provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of another embodiment of a motor control method provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of another embodiment of a motor control method provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of another embodiment of a motor control method provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a motor control device provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a motor control device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of an embodiment of a motor control device provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a motor control device provided by an embodiment of this application.
  • Fig. 10 is a schematic structural diagram of an embodiment of a motor control device provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of an embodiment of a motor provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another embodiment of a motor provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another embodiment of a motor provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of another embodiment of a motor provided by an embodiment of this application.
  • 15 is a schematic structural diagram of another embodiment of a motor provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of an embodiment of a movable platform provided by an embodiment of this application.
  • a permanent magnet synchronous motor is a synchronous motor that generates a synchronous rotating magnetic field by permanent magnet excitation.
  • the permanent magnet acts as a rotor to generate a rotating magnetic field.
  • the three-phase stator winding reacts through the armature under the action of the rotating magnetic field to induce a three-phase symmetrical current.
  • encoders To control the motor, it is necessary to know the position of the rotor.
  • resolvers To control the motor, it is necessary to know the position of the rotor.
  • Hall sensors are commonly used sensors to detect the position of the rotor.
  • the electrical angle also refers to the electrical position.
  • the position of the rotor is described in the concept of angle below.
  • the electrical angle is obtained by multiplying the mechanical angle by the number of poles of the motor, and the mechanical angle is also obtained by the detection of the position sensor.
  • the mechanical angle is also obtained by the detection of the position sensor.
  • FIG. 1 is a flowchart of an embodiment of a motor control method provided by an embodiment of the application.
  • the motor may be a permanent magnet synchronous motor, and the method may include a calibration step and a control step;
  • the calibration step includes:
  • the rotor of the motor is controlled to rotate in the preset first direction with the rotating first vector voltage, and when the n-th signal edge generated by the code disc set on the rotor is detected, record The current first electrical angle value of the first vector voltage, where n is an odd number and n ⁇ 1.
  • the position sensor provided on the rotor of the motor is a code disc
  • the signal edge may refer to a pulse signal edge or a transition edge.
  • the code disc is an incremental encoder (Incremental encoder).
  • the rotating first vector voltage may be specifically used to control the motor to rotate in the preset first direction without losing step.
  • the amplitude of the first vector voltage and the speed of rotation can be controlled to avoid the out-of-step problem.
  • the first vector voltage can be selected to ensure that the rotor of the motor can rotate without losing step.
  • the rotor can be controlled to rotate slowly at a preset rotation speed through the first vector voltage.
  • the first electrical angle value refers to the vector angle currently applied to the rotor by the first vector voltage.
  • the target position can be obtained by pre-positioning the rotor of the motor. Therefore, before starting from the preset target position and controlling the rotor of the motor with the rotating first vector voltage, the calibration step may further include:
  • the rotor is controlled to rotate to the preset target position through the third vector voltage in the preset direction.
  • the second direction is opposite to the first direction.
  • the rotating second vector voltage may be specifically used to control the rotor of the motor to rotate in the preset second direction without losing step.
  • the problem that the prior art is prone to out-of-step through open-loop dragging can be solved.
  • the second vector voltage can be selected to ensure that the rotor of the motor can rotate without losing the minimum vector voltage.
  • the method may further include:
  • the first vector voltage is used to continue to control the rotor to rotate in the first direction, and to control the rotor to stop rotating in the first direction before the code wheel generates a next signal edge.
  • the electrical angle offset value is the electrical angle value of the (n+1)/2th code wheel scale in the first direction starting from the preset target position (that is, the rotor is in the first direction or the first direction).
  • the middle code wheel scale passed in the two directions), which corresponds to the electrical angle value when the mechanical angle is zero.
  • the traditional direct pre-positioning method can only obtain a rough relationship between the relative position and the absolute position, and the one-way drag method will be affected by friction, and thus cannot obtain an accurate relationship between the relative position and the absolute position.
  • the method of dragging in the opposite direction can compensate for the influence of friction and obtain the precise relationship between relative position and absolute position. Therefore, obtaining the electrical angle offset value through the operations of step 101 to step 103 can eliminate the influence of friction and improve the accuracy of the electrical angle offset value.
  • the corresponding relationship between the mechanical position and the electrical position can be obtained through the above slow dragging method, that is, the relationship between the relative mechanical position of the encoder and the absolute electrical position of the motor can be established. Therefore, based on this as a feedback, the vector control method can be used to start the motor.
  • control steps include:
  • the signal edge count can be set to a preset value to start counting, for example, set to (n-1)/2.
  • the signal edge count it is not necessary to set the signal edge count to a preset value to record the signal edge count after the calibration step is completed, and then subtract the recorded value from the detected signal edge count to obtain the signal edge count of the current code disc.
  • the electrical angle value of the rotor may be used as an angle feedback value to implement vector control of the motor.
  • the electrical angle value of the rotor is calculated based on the signal edge count of the encoder and the electrical angle offset value.
  • the electrical angle offset value can compensate for the deviation caused by the initial installation position of the position sensor, thereby obtaining an accurate electrical angle. Realize accurate control of the motor.
  • the electrical angle of the rotor can be obtained as feedback on a motor that does not have an absolute position, so that the vector control mode is used for starting.
  • the obtaining the current electrical angle value of the rotor according to the electrical angle offset value and the current signal edge count of the code disc specifically includes:
  • the electrical angle value of the rotor is generated according to the initial electrical angle value and the electrical angle offset value.
  • the initial electrical angle value is added to the electrical angle offset value to generate the electrical angle value of the rotor.
  • the electrical angle value of the rotor can be calculated according to the following formula:
  • EleAngle represents the electrical angle value of the rotor
  • Index represents the signal edge count of the current code disc
  • Resolution EleAngel represents the electrical angle resolution of the code disc
  • the electrical angle resolution of the encoder is 360° (degree) divided by the resolution of the encoder, and then multiplied by the number of poles of the motor to obtain.
  • the electrical angle resolution is:
  • the initial electrical angle value is obtained by multiplying the current signal edge count of the code disc and the preset electrical angle resolution, that is, the angle value obtained by multiplying the relative angle and the number of poles of the motor.
  • the initial electrical angle value is directly used as the electrical angle value. Due to the deviation caused by the initial installation position of the position sensor and other factors, the initial electrical angle value is not accurate. The electrical angle value is corrected, and the obtained electrical angle value can correct the angle deviation, which improves the accuracy of the electrical angle value.
  • the electrical angle error range is (0°, 90°) or (-90°, 0°], at this time the motor
  • the lower limit of torque is:
  • K T is a parameter used to calculate the output torque, which is related to the inherent characteristics of the motor; I q is the current value corresponding to the q axis of the motor rotating, and EleAngleError is the electrical angle error.
  • the obtaining the current electrical angle value of the rotor according to the electrical angle offset value and the current signal edge count of the code disc may include:
  • the motor is controlled based on the electrical angle value of the rotor.
  • the electrical angle value can be calculated according to the following formula
  • EleAngle represents the electrical angle value of the rotor
  • Index represents the signal edge count of the current code disc
  • Resolution EleAngel represents the electrical angle resolution of the code disc
  • EleAngle_Offset represents the electrical angle offset value.
  • the preset coefficient may be greater than 0 and less than 1. In an actual application, the preset coefficient may be one-half.
  • the angle error range of the encoder becomes (-45°, 45°), and the lower limit of the motor torque at this time is:
  • the direction of rotation of the rotor is a third direction;
  • the signal edge count plus or minus a preset coefficient to generate the modified signal edge count is specifically:
  • the signal edge count is added to a preset coefficient to generate a modified signal edge count.
  • the direction of rotation of the rotor is the third direction; the acquisition of the signal edge count of the code disk, and the signal The edge count adds or subtracts a preset coefficient to generate a modified signal.
  • the edge count is specifically:
  • the signal edge count is subtracted by a preset coefficient to generate a modified signal edge count.
  • the obtaining the current electrical angle value of the rotor according to the electrical angle offset value and the current signal edge count of the code disc includes:
  • the electrical angle value of the rotor is generated according to the initial electrical angle value, the electrical angle offset value, and a preset electrical angle compensation value.
  • the electrical angle value can be calculated according to the following formula
  • EleAngle represents the electrical angle value of the rotor
  • Index represents the signal edge count of the current code disc
  • Resolution EleAngel represents the electrical angle resolution of the code disc
  • EleAngle_Offset represents the electrical angle offset value.
  • EleAngle compensate indicates the electrical angle compensation value.
  • the preset electrical angle compensation value is less than the electrical angle resolution of the code disc.
  • the electrical angle compensation value can be one-half of the electrical angle resolution, so that the midpoint of adjacent edges is used as electrical angle feedback, which can be effective Optimize the lower limit of motor torque.
  • the initial electrical angle value and the electrical angle offset value may be added, and a preset electrical angle compensation value is added or subtracted to obtain the electrical angle value of the rotor.
  • the direction of rotation of the rotor is the third direction
  • the preset electrical angle compensation value is added on the basis of the addition of the initial electrical angle value and the electrical angle offset value To obtain the electrical angle value of the rotor;
  • the preset electrical angle compensation value is subtracted to obtain the rotor Electrical angle value.
  • FIG. 2 is a flowchart of another embodiment of a motor control method according to an embodiment of the application. The method is applied to a motor, the motor includes a rotor, and an encoder is provided on the rotor.
  • the method can include the following steps:
  • the obtaining the current electrical angle value of the rotor according to the correction signal edge count and a preset electrical angle offset value of the rotor may include:
  • the electrical angle value of the rotor is generated according to the initial electrical angle value and the electrical angle offset value.
  • the motor may not start normally, nor can it achieve effective and accurate control of the motor. Therefore, it can be counted on the signal edge of the encoder
  • the basis adds or subtracts a preset coefficient to generate a modified signal edge count.
  • the electrical angle value of the rotor obtained by the electrical angle offset value of the rotor preset by the modified signal edge count, that is, the motor can be started normally, and the effective control of the motor can be realized to avoid the occurrence of the above-mentioned electrical angle resolution Unable to start caused by too low.
  • the electrical angle offset value can be pre-configured, of course, it can also be obtained in other ways.
  • the method may also include:
  • the rotor is controlled to rotate to a preset target position by a vector voltage in a preset direction; the target position is correspondingly set with a preset initial electrical angle value;
  • the initial electrical angle value is used as the electrical angle offset value of the rotor.
  • the rotor is positioned to the target position in advance, and the preset initial electrical angle value corresponding to the target position is used as the electrical angle offset value, so that the calibration step in the above-mentioned embodiment 1 can be omitted, which enables the motor to start faster.
  • the method may further include:
  • the rotor of the motor is controlled to rotate in the preset first direction with the rotating first vector voltage, and when it is detected that the code disc provided on the rotor generates the nth signal edge, it is recorded The first electrical angle value of the current first vector voltage;
  • the rotor of the motor is controlled to rotate in a preset second direction with a rotating second vector voltage, and when it is detected that the code disc generates the nth signal edge, it is recorded The second electrical angle value of the current second vector voltage;
  • the electrical angle offset value is calculated by using the method in the embodiment shown in FIG. 1.
  • the related content has been described in detail in the embodiment shown in FIG. 1, and will not be repeated here.
  • the obtaining the signal edge count of the code disc, and adding or subtracting a preset coefficient to the signal edge count to generate the modified signal edge count specifically includes:
  • the signal edge count is subtracted by a preset coefficient to generate a modified signal edge count.
  • Fig. 3 is a flowchart of another embodiment of a motor control method provided by an embodiment of the application. The method is applied to a motor, the motor includes a rotor, and an encoder is provided on the rotor.
  • the method can include the following steps:
  • the initial electrical angle value is obtained by multiplying the signal edge count and the preset electrical angle resolution
  • the electrical angle value of the rotor is generated according to the initial electrical angle value and the electrical angle offset value.
  • the initial electrical angle value is added to the electrical angle offset value to generate the electrical angle value of the rotor.
  • the electrical angle value of the rotor can be calculated according to the following formula:
  • EleAngle represents the electrical angle value of the rotor
  • Index represents the signal edge count of the current code disc
  • Resolution EleAngel represents the electrical angle resolution of the code disc
  • EleAngle_Offset represents the electrical angle offset value.
  • the motor may not start normally, nor can it achieve effective and accurate control of the motor. Therefore, it can be compensated by the angle compensation value. That is, the motor can be started normally, and effective and accurate control of the motor can be realized.
  • the angle compensation value is less than the electrical angle resolution of the encoder.
  • adding or subtracting a preset angle compensation value to the electrical angle value of the rotor to generate the corrected electrical angle value may include:
  • the electrical angle offset value can be pre-configured, of course, it can also be obtained in other ways.
  • the method may also include:
  • the initial electrical angle value is used as the electrical angle offset value of the rotor.
  • the rotor is positioned to the target position in advance, and the initial electrical angle value corresponding to the target position is used as the electrical angle offset value, so that the calibration step in the above-mentioned embodiment 1 can be omitted, which enables the motor to start faster.
  • the method may further include:
  • the rotor of the motor is controlled to rotate in the preset first direction with the rotating first vector voltage, and when it is detected that the code disc provided on the rotor generates the nth signal edge, it is recorded The first electrical angle value of the current first vector voltage;
  • the rotor of the motor is controlled to rotate in a preset second direction with a rotating second vector voltage, and when it is detected that the code disc generates the nth signal edge, it is recorded The second electrical angle value of the current second vector voltage;
  • the electrical angle offset value is calculated by using the method in the embodiment shown in FIG. 1.
  • the related content has been described in detail in the embodiment shown in FIG. 1, and will not be repeated here.
  • the absolute position detected by the position sensor can be corrected by a preset angle compensation value to avoid the above-mentioned problem of inability to start due to low accuracy.
  • FIG. 4 is a flowchart of another embodiment of a motor control method provided by an embodiment of the application.
  • the method is applied to a motor, the motor includes a rotor, and a position sensor is provided on the rotor.
  • the position sensor is used for The absolute mechanical position of the rotor is detected.
  • the method can include the following steps:
  • the angle compensation value can be used to compensate at this time to ensure that the motor can be started to achieve effective control of the motor.
  • the angle compensation value can be used for correction to obtain the corrected electrical angle value of the rotor, so as to avoid the situation that the motor cannot be started.
  • the absolute mechanical position of the rotor is acquired by the position sensor, and the electrical angle value of the rotor is acquired according to a preset correspondence between the absolute mechanical position of the rotor and the electrical angle value Can include:
  • the absolute mechanical position of the rotor is obtained by the position sensor, and the electrical angle value of the rotor is obtained according to the absolute mechanical position of the rotor and a preset electrical angle offset value.
  • the absolute mechanical position may be multiplied by the number of poles of the motor, and the preset electrical angle offset value is added to obtain the electrical angle value of the rotor.
  • the preset electrical angle offset value may be preset according to actual application conditions.
  • Figure 5 is a flowchart of another embodiment of a motor control method provided by an embodiment of the application.
  • the method is applied to a motor, the motor includes a rotor, and an encoder is provided on the rotor.
  • the method may include the following Steps:
  • the initial electrical angle value can be set by the user or automatically set by the system.
  • the electrical angle value of the rotor can be calculated according to the following formula:
  • EleAngle Direction*Index*Resolution EleAngel +EleAngle_initial;
  • EleAngle represents the electrical angle value of the rotor
  • Index represents the signal edge count of the current code disk
  • Resolution EleAngel represents the electrical angle resolution of the code disk
  • EleAngle_initial represents the initial electrical angle value
  • the rotor is positioned to the target position in advance, and the preset initial electrical angle value corresponding to the target position is used as the electrical angle offset value, so that the calibration step in the above embodiment 1 can be omitted, which makes the motor faster Start.
  • EleAngleError in formula (2) is the corresponding electrical angle error range between the two scale edges of the code wheel, for example, For encoders with electrical angle resolution of 90°, the range of EleAngleError is (0°, 90°) or (-90°, 0°].
  • FIG. 6 is a schematic structural diagram of an embodiment of a motor control device provided by an embodiment of the application, including a memory 601 and a processor 602;
  • the memory 601 stores one or more computer program instructions
  • the one or more computer program instructions of the processor 602 are used to execute the motor control method according to any one of claims 1-10.
  • the motor control device described in FIG. 6 can specifically execute the motor control method described in the embodiment shown in FIG. 1, and its implementation principles and technical effects will not be repeated.
  • FIG. 7 is a schematic structural diagram of another embodiment of a motor control device provided by an embodiment of the application.
  • the device may include a memory 701 and a processor 702;
  • the memory 701 stores one or more computer program instructions
  • the processor 702 adjusts the one or more computer program instructions to execute the motor control method according to any one of claims 11-13.
  • the motor control device described in FIG. 7 can execute the motor control method described in the embodiment shown in FIG. 2, and its implementation principles and technical effects will not be repeated.
  • FIG. 8 is a schematic structural diagram of another embodiment of a motor control device provided by an embodiment of the application.
  • the device may include a memory 801 and a processor 802;
  • the memory 801 stores one or more computer program instructions
  • the processor 802 adjusts the one or more computer program instructions to execute the motor control method according to any one of claims 14-16.
  • the motor control device described in FIG. 8 can execute the motor control method described in the embodiment shown in FIG. 3, and its implementation principles and technical effects will not be repeated.
  • FIG. 9 is a schematic structural diagram of another embodiment of a motor control device provided by an embodiment of the application.
  • the device may include a memory 901 and a processor 902;
  • the memory stores one or more computer program instructions
  • the processor adjusts the one or more computer program instructions to execute the motor control method according to any one of claims 17-18.
  • the motor control device described in FIG. 9 can execute the motor control method described in the embodiment shown in FIG. 4, and its implementation principles and technical effects will not be repeated.
  • FIG. 10 is a schematic structural diagram of another embodiment of a motor control device provided by an embodiment of the application.
  • the device may include a memory 1001 and a processor 1002;
  • the memory 1001 stores one or more computer program instructions
  • the processor 1002 adjusts the one or more computer program instructions to execute the motor control method according to claim 19 above.
  • the motor control device described in FIG. 10 can execute the motor control method described in the embodiment shown in FIG. 5, and its implementation principles and technical effects will not be repeated.
  • the embodiment of the present application also provides a motor.
  • the motor may include a rotor 1101, an encoder 1102, a memory 1103, and a processor 1104; wherein, the encoder 1102 is installed on the rotor 1101, and follow the rotor 1101 to rotate;
  • the memory 1103 stores one or more computer program instructions
  • the processor 1104 is configured to call and execute the one or more computer program instructions to perform the following steps:
  • the rotor 1201 of the motor is controlled to rotate in the preset first direction by the rotating first vector voltage.
  • the encoder 1202 provided on the rotor 1201 When detecting that the encoder 1202 provided on the rotor 1201 generates the n-th signal edge
  • n is an odd number, and n ⁇ 1;
  • the rotor 1201 of the motor is controlled to rotate in the preset second direction with the second vector voltage of rotation.
  • the code disk 1202 generates the nth signal edge .
  • the current electrical angle value of the rotor is acquired according to the electrical angle offset value and the current signal edge count of the code disk, and the motor is controlled based on the electrical angle value of the rotor.
  • the motor may include a rotor 1201, an encoder 1202, a memory 1203, and a processor 1204; wherein the encoder 1202 is installed on the rotor 1201 , And follow the rotor 1201 to rotate;
  • the memory 1203 stores one or more computer program instructions
  • the processor 1204 is configured to call and execute the one or more computer program instructions to perform the following steps:
  • the motor is controlled based on the electrical angle value of the rotor 1201.
  • the embodiment of the present application also provides a motor.
  • the motor may include a rotor 1301, an encoder 1302, a memory 1303, and a processor 1304; wherein the encoder 1302 is mounted on the rotor 1301 , And follow the rotor 1301 to rotate;
  • the memory 1303 stores one or more computer program instructions
  • the processor 1304 is configured to call and execute the one or more computer program instructions to perform the following steps:
  • the motor is controlled based on the corrected electrical angle value.
  • the embodiment of the present application also provides a motor.
  • the motor may include a rotor 1401, a position sensor 1402, a memory 1403, and a processor 1404; wherein the position sensor 1402 is installed on the rotor 1401 , And follow the rotor 1401 to rotate;
  • the memory 1403 stores one or more computer program instructions
  • the processor 1404 is configured to call and execute the one or more computer program instructions to perform the following steps:
  • the motor is controlled based on the corrected electrical angle value.
  • the motor may include a rotor 1501, an encoder 1502, a memory 1503, and a processor 1504; wherein the encoder 1502 is mounted on the rotor 1501 , And follow the rotor 1501 to rotate;
  • the rotor is controlled to rotate to a preset target position by a vector voltage in a preset direction; the target position is correspondingly set with a preset initial electrical angle value;
  • the current electrical angle value of the rotor is acquired according to the initial electrical angle value and the current signal edge count of the encoder, and the motor is controlled based on the electrical angle value of the rotor.
  • the above-mentioned related motors must also include other necessary components for realizing the functions of the motor, such as the stator and other components.
  • the aforementioned processor may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processing device (DSPD), a programmable logic device (PLD), or a field A programmable gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable logic device
  • FPGA field A programmable gate array
  • the memory is configured to store various types of data to support corresponding operations.
  • the memory can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and programmable Read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and programmable Read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • an embodiment of the present application also provides a computer-readable storage medium that stores a computer program that, when executed by a computer, realizes the motor control described in any of the above-mentioned embodiments shown in FIGS. 1 to 6 method.
  • the embodiment of the present application also provides a movable platform.
  • the movable platform may include a fuselage 1601;
  • the motor 1602 is installed on the fuselage and used to provide power
  • the controller 1603 executes the motor control method described in any one of the embodiments in FIGS. 1 to 5 to control the operation of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种电机控制方法、装置及设备,其中,由预设的目标位置开始,以第一矢量电压控制电机的转子以第一方向进行转动,当检测到设于转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;在记录第一电角度值后,以第二矢量电压控制电机的转子以第二方向进行转动,当检测到码盘产生第n个信号沿时,记录当前的第二矢量电压的第二电角度值;根据第一电角度值和第二电角度值获取转子的电角度偏移值;根据电角度偏移值和当前码盘的信号沿计数获取当前转子的电角度值,基于转子的电角度值对电机进行控制,实现了在不具备绝对位置信息的电机上采用矢量方式进行启动。

Description

电机控制方法、电机及可移动平台 技术领域
本申请实施例涉及控制领域,尤其涉及一种电机控制方法、电机及可移动平台。
背景技术
对于配置有绝对位置传感器的电机,可以采用矢量控制方式启动。而对于不具备绝对位置的电机,需采用开环拖动启动。这种方法依靠一个幅值较高的矢量电压拖动电机转子转动,待转子达到一定速度后,再切换成其余方法(例如反电动势观测器)来获取位置信息,并进行矢量控制。这种使用开环拖动的方法开环拖动效率较低,需要较大的启动功率来保证不失步。
因此,在不具备绝对位置的电机上直接采用矢量控制方式进行启动为亟需解决的难题。
发明内容
本申请提供了一种电机控制方法、电机及可移动平台,实现了在不具备绝对位置的电机上采用矢量方式进行启动。
本申请的第一方面提供了一种电机控制方法,包括:
由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动,当检测到设于所述转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;n为奇数,且n≥1;
在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动,当检测到所述码盘产生第n个信号沿时,记录当前的第二矢量电压的第二电角度值;其中,所述第一方向和所述第二方 向为相反方向;
根据所述第一电角度值和第二电角度值获取所述转子的电角度偏移值;
根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
本申请的第二方面提供了一种电机控制方法,应用于一电机,所述电机包括转子,所述转子上设***盘,包括:
获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数;
根据所述修正信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值;
基于所述转子的电角度值对所述电机进行控制。
本申请的第三方面提供了一种电机控制方法,应用于一电机,所述电机包括转子,所述转子上设***盘,包括:
获取所述码盘的信号沿计数,根据所述信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值;
将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
基于所述修正电角度值对所述电机进行控制。
本申请的第四方面提供了一种电机控制方法,应用于一电机,所述电机包括转子,所述转子上设有位置传感器,所述位置传感器用于检测所述转子的绝对机械位置,包括:
通过所述位置传感器获取所述转子的绝对机械位置,根据预设的所述转子的绝对机械位置和电角度值的对应关系,获取所述转子的电角度值;
将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电 角度值;
本申请的第五方面提供了一种电机控制方法,应用于一电机,所述电机包括转子,所述转子上设***盘,包括步骤:
通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
从所述目标位置开始,根据所述初始电角度值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
本申请的第六方面提供了一种电机控制装置,包括处理器和存储器;所述存储器存储一条或多条计算机程序指令;
所述处理器调整所述一条或多条计算机程序指令用以执行上述第一方面所述的电机控制方法。
本申请的第七方面提供了一种电机控制装置,包括处理器和存储器;所述存储器存储一条或多条计算机程序指令;
所述处理器调整所述一条或多条计算机程序指令用以执行上述第二方面所述的电机控制方法。
本申请的第八方面提供了一种电机控制装置,包括处理器和存储器;所述存储器存储一条或多条计算机程序指令;
所述处理器调整所述一条或多条计算机程序指令用以执行上述第三方面所述的电机控制方法。
本申请的第九方面提供了一种电机控制装置,包括处理器和存储器;所述存储器存储一条或多条计算机程序指令;
所述处理器调整所述一条或多条计算机程序指令用以执行上述第四方面所述的电机控制方法。
本申请的第十方面提供了一种电机控制装置,包括处理器和存储器;所述存储器存储一条或多条计算机程序指令;
所述处理器调整所述一条或多条计算机程序指令用以执行上述第五方面所述的电机控制方法。
本申请的第十一方面提供了一种电机,包括转子、码盘、存储器和处理器;所述码盘安装在所述转子上,并跟随所述转子转动;
所述存储器存储一条或多条计算机程序指令;
所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动,当检测到设于所述转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;n为奇数,且n≥1;
在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动,当检测到所述码盘产生第n个信号沿时,记录当前的第二矢量电压的第二电角度值;其中,所述第一方向和所述第二方向为相反方向;
根据所述第一电角度值和第二电角度值获取所述转子的电角度偏移值;
根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
本申请的第十二方面提供了一种电机,包括转子、码盘、存储器和处理器;所述码盘安装在所述转子上,并跟随所述转子转动;
所述存储器存储一条或多条计算机程序指令;
所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数;
根据所述修正信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值;
基于所述转子的电角度值对所述电机进行控制。
本申请的第十三方面提供了一种电机,包括转子、码盘、存储器和处理器;所述码盘安装在所述转子上,并跟随所述转子转动;
所述存储器存储一条或多条计算机程序指令;
所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
获取所述码盘的信号沿计数,根据所述信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值;
将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
基于所述修正电角度值对所述电机进行控制。
本申请的第十四方面提供了一种电机,包括转子、位置传感器、存储器和处理器;所述位置传感器安装在所述转子上;
所述存储器存储一条或多条计算机程序指令;
所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
通过所述位置传感器获取所述转子的绝对机械位置,根据预设的所述转子的绝对机械位置和电角度值的对应关系,获取所述转子的电角度值;
将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
基于所述修正电角度值对所述电机进行控制。
本申请的第十五方面提供了一种电机,包括转子、码盘、存储器和处理器;所述码盘安装在所述转子上,并跟随所述转子转动;
所述存储器存储一条或多条计算机程序指令;
所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
从所述目标位置开始,根据所述初始电角度值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
本申请的第十五方面提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被计算机执行时实现上述第一方面~第五方面中任一方面所述的电机控制方法。
本申请的第十六方面提供了一种可移动平台,机身;
电机,安装在所述机身,用于提供动力;
控制器,用于执行上述第一方面~第五方面中任一方面所述的电机控制方法,控制所述电机的运行。
本申请实施例中,由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动,当检测到设于所述转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动,当检测到所述码盘产生第n信号沿时,记录当前的第二矢量电压的第二电角度值;根据所述第一电角度值和第二电角度值获取所述转子 的电角度偏移值;根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制,通过本申请实施例的技术方案实现了在不具备绝对位置的电机上采用矢量方式进行启动。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种电机控制方法一个实施例的流程示意图;
图2为本申请实施例提供的一种电机控制方法的又一个实施例的流程示意图;
图3为本申请实施例提供的一种电机控制方法的又一个实施例的流程示意图;
图4为本申请实施例提供的一种电机控制方法的又一个实施例的流程示意图;
图5为本申请实施例提供的一种电机控制方法的又一个实施例的流程示意图;
图6为本申请实施例提供的一种电机控制装置的一个实施例的结构示意图;
图7为本申请实施例提供的一种电机控制装置的一个实施例的结构示意图;
图8为本申请实施例提供的一种电机控制装置的一个实施例的结构示意图;
图9为本申请实施例提供的一种电机控制装置的一个实施例的结构示意图;
图10为本申请实施例提供的一种电机控制装置的一个实施例的结构示意 图;
图11为本申请实施例提供的一种电机一个实施例的结构示意图;
图12为本申请实施例提供的一种电机又一个实施例的结构示意图;
图13为本申请实施例提供的一种电机又一个实施例的结构示意图;
图14为本申请实施例提供的一种电机又一个实施例的结构示意图;
图15为本申请实施例提供的一种电机又一个实施例的结构示意图;
图16为本申请实施例提供的一种可移动平台一个实施例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请实施例的技术方案可应用于永磁同步电机(英文:permanent magnet synchronous motor,简称:PMSM)的控制场景中,包括电机启动及运行等。其中,永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,永磁体作为转子产生旋转磁场,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流。
对电机进行控制需要获知转子位置,目前码盘、旋转变压器、霍尔等是常用的检测转子位置的传感器。
若想对电机实现矢量控制,需要获知转子的电角度,其中,对于转子而言,电角度也即是指电位置,下文多以角度概念描述转子的位置。通常而言,电角度是由机械角度乘以电机对极数获得,机械角度也即由位置传感器检测 获得。然而,由于位置传感器的初始安装位置存在不同,因此,转子的实际电角度和通过以上方式计算得到的电角度存在偏差,这会影响电机的矢量控制。
为了对电机实现有效、准确的控制,发明人经过一系列研究提出了本申请的技术方案。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例提供的一种电机控制方法一个实施例的流程图,该电机可以是指永磁同步电机,该方法可以包括标定步骤以及控制步骤;
所述标定步骤包括:
101:由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动,当检测到设于转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值,其中,n为奇数,且n≥1。
本实施例中,电机的转子上设置的位置传感器为码盘,信号沿可以是指脉冲信号沿或跳变沿。优选地,所述码盘为增量式编码器(Incremental encoder)。
可选地,可以具体是以旋转的第一矢量电压控制电机在不失步的情况下以预设的第一方向进行转动。例如,可以通过控制第一矢量电压的幅值和旋转的速度来避免失步问题的产生。
该第一矢量电压可以选择保证电机的转子能够转动且不失步情况下的最小矢量电压,通过第一矢量电压可以控制转子以预设的转动速度缓慢转动。
其中,该第一电角度值即是指第一矢量电压当前施加给转子的矢量角度。
其中,该目标位置可以对电机的转子进行预定位获得,因此,所述由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子之前,所述标定 步骤还可以包括:
通过预设方向的第三矢量电压控制所述转子转动至预设的所述目标位置。
102:在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动,当检测到所述码盘产生第n个信号沿时,记录当前的第二矢量电压的第二电角度值。
其中,所述第二方向与所述第一方向相反。
可选地,可以具体是以旋转的第二矢量电压控制电机的转子在不失步的情况下以预设的第二方向进行转动。通过这种方式,可以解决现有技术通过开环拖动容易产生失步的问题。
该第二矢量电压可以选择保证电机的转子能够转动且不失步情况下的最小矢量电压。
可选地,在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动前,所述方法还可以包括:
以所述第一矢量电压继续控制所述转子以所述第一方向进行转动,在所述码盘产生下一个信号沿前控制所述转子停止在所述第一方向上的转动。
通过以上步骤,可以保证转子以第二方向转动时,可以经过转子以第一方向转动时经过的同一个码盘刻度。
103:根据所述第一电角度值和第二电角度值获取所述转子的电角度偏移值。
可选地,该电角度偏移值可以具体为第一电角度值以及第二电角度值的和值的二分之一,也即电角度偏移值=(第一电角度值+第二角度值)/2。实际上,该电角度偏移值为由预设的目标位置开始,在第一方向上第(n+1)/2个码盘刻度的电角度值(即所述转子在第一方向或第二方向上经过的中间码盘刻度),其对应为机械角度为零时所对应的电角度值。
传统直接预定位方法只能得到粗略的相对位置和绝对位置的关系,单向拖动的方法会受到摩擦力的影响,进而无法得到准确的相对位置和绝对位置的关系。相反方向的拖动方法可以补偿摩擦力的影响,得到精确的相对位置和绝对位置的关系。因此,通过步骤101~步骤103的操作获得电角度偏移值可以消除摩擦力影响,提高电角度偏移值的准确度。
另外,通过以上缓慢拖动的方法可以获取机械位置和电位置的对应关系,也就是建立了码盘相对机械位置和电机绝对电位置的关系。因此,基于此作为反馈,可以采用矢量控制的方法启动电机。
在一优选实施例中,n=1,即转子以第一方向转动,码盘产生第一个信号沿时,记录当前第一矢量电压的第一电角度值;转子以第二方向转动,码盘产生第一个信号沿时,记录当前第二矢量电压的第二电角度。
所述控制步骤包括:
104:根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
在上述控制步骤中,可将所述信号沿计数设置为预设值开始计数,例如,设置为(n-1)/2。
当然,也可以不将信号沿计数设置为预设值记录标定步骤完成之后的信号沿计数,之后检测得到的信号沿计数减去该记录数值,可以得到当前码盘的信号沿计数。
此外,也可以是将信号计数清零,标定步骤开始时码盘重新计数。
其中,可以是将所述转子的电角度值作为角度反馈值,对所述电机实现矢量控制。
本实施例中,转子的电角度值基于码盘的信号沿计数以及电角度偏移值计算获得,电角度偏移值可以补偿位置传感器的初始安装位置造成的偏差,从而获得准确的电角度,实现对电机准确控制。通过实施本发明实施例,可 以在不具备绝对位置的电机上获取转子的电角度作为反馈,从而采用矢量控制方式进行启动。
在某些实施例中,所述根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值具体为:
根据当前所述码盘的信号沿计数与预设的电角度分辨率相乘得到初始电角度值;
根据所述初始电角度值与所述电角度偏移值生成所述转子的电角度值。
可以是将初始电角度值加上所述电角度偏移值,生成所述转子的电角度值。
具体的,转子的电角度值可以按照如下公式计算获得:
EleAngle=Direction*Index*Resolution EleAngel+EleAngle_Offset---------公式(1)
其中,EleAngle表示转子的电角度值,Index表示当前码盘的信号沿计数,Resolution EleAngel表示码盘的电角度分辨率,EleAngle_Offset表示电角度偏移值。Ditection=±1表示转子的旋转方向。
其中,码盘的电角度分辨率为360°(度)除以码盘分辨率之后,再与电机对极数相乘获得。例如,对于设置有40线码盘的10对极电机,电角度分辨率为:
Figure PCTCN2019109635-appb-000001
因此,根据当前所述码盘的信号沿计数与预设的电角度分辨率相乘得到初始电角度值,也即是相对角度与电机对极数的相乘得到的角度值。现有技术中,直接将初始电角度值作为电角度值,由于位置传感器的初始安装位置导致的偏差等因素,初始电角度值并不准确,本申请实施例中基于电角度偏移值对初始电角度值进行修正,获得的电角度值可以修正角度偏差,提高了电角度值的准确性。
此外,对于电角度分辨率低的码盘,比如电角度分辨率为90°的码盘, 电角度误差范围为(0°,90°]或(-90°,0°],这时的电机扭矩下限为:
T min=K T*I q*cos min(EleAngleError)=K T*I q*cos(90°)=0---------公式(2)
其中,K T为计算输出扭矩使用的参数,与电机固有特性有关;I q为电机旋转q轴对应的电流值,EleAngleError为电角度误差。
电机扭矩为0Nm(牛米),则无法启动电机。
为了可以正常启动电机,作为一种可选方式,所述根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值可以包括:
获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数;
根据所述修正信号沿计数和所述电角度偏移值获取当前所述转子的电角度值;
基于所述转子的电角度值对所述电机进行控制。
具体地,该电角度值可以按照如下公式计算获得;
EleAngle=Direction*(Index±α)*Resolution EleAngel+EleAngle_Offset-----公式(3)
其中,EleAngle表示转子的电角度值,Index表示当前码盘的信号沿计数,Resolution EleAngel表示码盘的电角度分辨率,EleAngle_Offset表示电角度偏移值。Direction=±1表示转子的旋转方向,α表示预设的系数。
其中,该预设的系数可以大于0且小于1,在一个实际应用中,该预设的系数可以为二分之一。
通过加上或减去一个预设的系数之后,假设预设的系数为二分之一,则码盘的角度误差范围变为(-45°,45°],这时的电机扭矩下限为:
Figure PCTCN2019109635-appb-000002
此时,电机就可以以正常扭矩T=K T*I q
Figure PCTCN2019109635-appb-000003
倍的扭矩进行启动,可以实现启动。因此,在本实施例中,使用相邻沿的中点作为电角度反馈,可以有 效优化电机扭矩的下限。
其中,在某些实施例中,基于所述转子的电角度值对所述电机进行控制时,所述转子转动的方向为第三方向;所述获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数具体为:
当所述第一方向与所述第三方向相反时,将所述信号沿计数加上一个预设的系数后生成修正信号沿计数。
在某些实施例中,基于所述转子的电角度值对所述电机进行控制时,所述转子转动的方向为第三方向;所述获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数具体为:
当所述第一方向与所述第三方向相同时,将所述信号沿计数减去一个预设的系数后生成修正信号沿计数。
作为另一种可选方式,所述根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值包括:
根据当前所述码盘的信号沿计数与预设的电角度分辨率相乘得到初始电角度值;
根据所述初始电角度值、所述电角度偏移值和预设的电角度补偿值生成所述转子的电角度值。
具体地,该电角度值可以按照如下公式计算获得;
EleAngle=Direction*Index*Resolution EleAngel+EleAngle Offset+EleAngle compensate--------------------------------------------------------------------------------------公式(5)
其中,EleAngle表示转子的电角度值,Index表示当前码盘的信号沿计数,Resolution EleAngel表示码盘的电角度分辨率,EleAngle_Offset表示电角度偏移值。Direction=±1表示转子的旋转方向,EleAngle compensate表示电角度补偿值。
该预设的电角度补偿值小于码盘的电角度分辨率,例如该电角度补偿值可以为电角度分辨率的二分之一,实现使用相邻沿的中点作为电角度反馈, 可以有效优化电机扭矩的下限。
可选地,可以是将所述初始电角度值与所述电角度偏移值相加,再加上或减去预设的电角度补偿值,获得所述转子的电角度值。
具体的,基于所述转子的基于所述转子的电角度值对所述电机进行控制时,所述转子转动的方向为第三方向;
优选地,当所述第一方向与所述第三方向相反时,在所述初始电角度值与所述电角度偏移值相加的基础上,再加上该预设的电角度补偿值,获得转子的电角度值;
当所述第一方向与所述第三方向相同时,在所述初始电角度值与所述电角度偏移值相加的基础上,减去该预设的电角度补偿值,获得转子的电角度值。
图2为本申请实施例提供的一种电机控制方法又一个实施例的流程图,该方法应用于一电机,所述电机包括转子,所述转子上设***盘。
该方法可以包括以下几个步骤:
201:获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数。
202:根据所述修正信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值。可选地,所述根据所述修正信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值可以包括:
根据所述修正信号沿计数与预设的电角度分辨率相乘得到初始电角度值;
根据所述初始电角度值与所述电角度偏移值生成所述转子的电角度值。
可以是将初始电角度值与电角度偏移值相加获得所述转子的电角度值。具体计算过程可以详见上述的公式(3)。
203:基于所述转子的电角度值对所述电机进行控制。
本实施例中,对于电角度分辨率低的码盘,结合上文描述可知,电机有可能无法正常启动,也无法实现对电机的有效、准确的控制,因此,可以在码盘的信号沿计数基础加上或减去一个预设的系数后生成修正信号沿计数。利用修改信号沿计数预设的所述转子的电角度偏移值获取的转子的电角度值,即可以正常启动电机,实现对电机的有效的控制,避免发生上述提及的由于电角度分辨率太低导致的无法启动的情况。
其中,电角度偏移值可以预先配置,当然也可以采用其它方式获得。
作为一种可选方式,该方法还可以包括:
通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
将所述初始电角度值作为所述转子的电角度偏移值。
预先将转子定位至目标位置,将目标位置对应预设的初始电角度值作为电角度偏移值,从而可以省略了上述实施例1中的标定步骤,这使得电机能够更快的启动。
作为另一种可选方式,该方法还可以包括:
由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动,当检测到设于所述转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;
在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动,当检测到所述码盘产生第n个信号沿时,记录当前的第二矢量电压的第二电角度值;
根据所述第一电角度值和第二电角度值获取所述转子的电角度偏移值;
也即采用图1所示实施例中的方式,计算获得电角度偏移值,相关内容已在图1所示实施例中进行了详细描述,在此将不再赘述。
在某些实施例中,所述获取所述码盘的信号沿计数,将所述信号沿计数 加上或减去一个预设的系数后生成修正信号沿计数具体为:
获取所述码盘的信号沿计数;
当所述转子对应电角度变化方向为正时,将所述信号沿计数加上一个预设的系数后生成修正信号沿计数;
当所述转子对应电角度变化方向为负时,将将所述信号沿计数减去一个预设的系数后生成修正信号沿计数。
图3为本申请实施例提供的一种电机控制方法又一个实施例的流程图,该方法应用于一电机,所述电机包括转子,所述转子上设***盘。
该方法可以包括以下几个步骤:
301:获取所述码盘的信号沿计数,根据所述信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值。
具体地,根据所述信号沿计数与预设的电角度分辨率相乘得到初始电角度值;
根据所述初始电角度值与所述电角度偏移值生成所述转子的电角度值。
可以是将初始电角度值加上所述电角度偏移值,生成所述转子的电角度值。
具体的,转子的电角度值可以按照如下公式计算获得:
EleAngle=Direction*Index*Resolution EleAngel+EleAngle_Offset---------公式(1)
其中,EleAngle表示转子的电角度值,Index表示当前码盘的信号沿计数,Resolution EleAngel表示码盘的电角度分辨率,EleAngle_Offset表示电角度偏移值。Direction=±1表示转子的旋转方向。
302:将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值。
303:基于所述修正电角度值对所述电机进行控制。
本实施例中,对于电角度分辨率低的码盘,结合上文描述可知,电机有可能无法正常启动,也无法实现对电机的有效、准确的控制,因此,可以通过角度补偿值进行补偿,即可以正常启动电机,实现对电机的有效、准确的控制。
该角度补偿值小于码盘的电角度分辨率。
在某些实施例中,所述将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值可以包括:
当所述转子对应电角度变化方向为正时,即所述Direction为正时,将所述转子的电角度值加上一个预设的角度补偿值后生成修正电角度值;
当所述转子对应电角度变化方向为负时,即所述Direction为负时,将所述转子的电角度值减去一个预设的角度补偿值后生成修正电角度值。
其中,电角度偏移值可以预先配置,当然也可以采用其它方式获得。
作为一种可选方式,该方法还可以包括:
预通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
将所述初始电角度值作为所述转子的电角度偏移值。
预先将转子定位至目标位置,将目标位置对应初始电角度值作为电角度偏移值,从而可以省略了上述实施例1中的标定步骤,这使得电机能够更快的启动。
作为另一种可选方式,该方法还可以包括:
由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动,当检测到设于所述转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;
在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动,当检测到所述码盘产生第n个信号沿时,记 录当前的第二矢量电压的第二电角度值;
根据所述第一电角度值和第二电角度值获取所述转子的电角度偏移值;
也即采用图1所示实施例中的方式,计算获得电角度偏移值,相关内容已在图1所示实施例中进行了详细描述,在此将不再赘述。
对于能获取绝对位置,但是精度低的位置传感器,可通过一预设的角度补偿值对该位置传感器检测得到的绝对位置进行修正,以避免上述由于精度低而导致的无法启动的问题。
图4为本申请实施例提供的一种电机控制方法又一个实施例的流程图,该方法应用于一电机,所述电机包括转子,所述转子上设有位置传感器,所述位置传感器用于检测所述转子的绝对机械位置。
该方法可以包括以下几个步骤:
401:通过所述位置传感器获取所述转子的绝对机械位置,根据预设的所述转子的绝对机械位置和电角度值的对应关系,获取所述转子的电角度值。
402:将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值。
403:基于所述修正电角度值对所述电机进行控制。
若位置传感器可以检测绝对机械位置,但是位置传感器的分辨率低,此时可以通过角度补偿值进行补偿,以保证电机可以启动,实现对电机的有效的控制。
上述实施例中,可以通过角度补偿值进行修正,获得修正后的转子的电角度值,避免发生电机的无法启动的情况。
在某些实施例中,所述通过所述位置传感器获取所述转子的绝对机械位置,根据预设的所述转子的绝对机械位置和电角度值的对应关系,获取所述转子的电角度值可以包括:
通过所述位置传感器获取所述转子的绝对机械位置,根据所述转子的绝 度机械位置和预设的电角度偏移值,获取所述转子的电角度值。
可选地,可以是将绝对机械位置乘以电机对极数,再加上所述预设的电角度偏移值,获得转子的电角度值。
其中,该预设的电角度偏移值可以是结合实际应用情况进行预先设定。
图5为本申请实施例提供的一种电机控制方法又一个实施例的流程图,该方法应用于一电机,所述电机包括转子,所述转子上设***盘,该方法可以包括以下几个步骤:
501:通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值。
优选地,该初始电角度值可由用户进行设定或者***自动设定。
502:从所述目标位置开始,根据所述初始电角度值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
具体地,转子的电角度值可以按照如下公式计算获得:
EleAngle=Direction*Index*Resolution EleAngel+EleAngle_initial;
其中,EleAngle表示转子的电角度值,Index表示当前码盘的信号沿计数,Resolution EleAngel表示码盘的电角度分辨率,EleAngle_initial表示初始电角度值,Direction=±1表示转子的旋转方向。
在本实施例中,预先将转子定位至目标位置,将目标位置对应预设的初始电角度值作为电角度偏移值,从而可以省略上述实施例1中的标定步骤,这使得电机能够更快的启动。需要说明的是,由于电角度偏移值由用户进行设定,因此存在一定的误差,这时公式(2)中的EleAngleError为码盘两个刻度沿之间对应的电角度误差范围,例如,电角度分辨率为90°的码盘,EleAngleError的范围为(0°,90°]或(-90°,0°]。
图6为本申请实施例提供的一种电机控制装置一个实施例的结构示意图, 包括存储器601和处理器602;
所述存储器601存储一条或多条计算机程序指令;
所述处理器602所述一条或多条计算机程序指令用以执行如上权利要求1-10任一项所述的电机控制方法。
图6所述的电机控制装置具体可以执行图1所示实施例所述的电机控制方法,其实现原理和技术效果不再赘述。
图7为本申请实施例提供的一种电机控制装置又一个实施例的结构示意图,该装置可以包括存储器701以及处理器702;
所述存储器701存储一条或多条计算机程序指令;
所述处理器702调整所述一条或多条计算机程序指令用以执行如上权利要求11-13任一项所述的电机控制方法。
图7所述的电机控制装置可以执行图2所示实施例所述的电机控制方法,其实现原理和技术效果不再赘述。
图8为本申请实施例提供的一种电机控制装置又一个实施例的结构示意图,该装置可以包括存储器801以及处理器802;
所述存储器801存储一条或多条计算机程序指令;
所述处理器802调整所述一条或多条计算机程序指令用以执行如上权利要求14-16任一项所述的电机控制方法。
图8所述的电机控制装置可以执行图3所示实施例所述的电机控制方法,其实现原理和技术效果不再赘述。
图9为本申请实施例提供的一种电机控制装置又一个实施例的结构示意图,该装置可以包括存储器901以及处理器902;
所述存储器存储一条或多条计算机程序指令;
所述处理器调整所述一条或多条计算机程序指令用以执行如上权利要求17-18任一项所述的电机控制方法。
图9所述的电机控制装置可以执行图4所示实施例所述的电机控制方法,其实现原理和技术效果不再赘述。
图10为本申请实施例提供的一种电机控制装置又一个实施例的结构示意图,该装置可以包括存储器1001以及处理器1002;
所述存储器1001存储一条或多条计算机程序指令;
所述处理器1002调整所述一条或多条计算机程序指令用以执行如上权利要求19所述的电机控制方法。
图10所述的电机控制装置可以执行图5所示实施例所述的电机控制方法,其实现原理和技术效果不再赘述。
此外,本申请实施例还提供了一种电机,如图11中所示,该电机可以包括转子1101、码盘1102、存储器1103和处理器1104;其中,所述码盘1102安装在所述转子1101上,并跟随所述转子1101转动;
所述存储器1103存储一条或多条计算机程序指令;
所述处理器1104用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子1201以预设的第一方向进行转动,当检测到设于所述转子1201上的码盘1202产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;n为奇数,且n≥1;
在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子1201以预设的第二方向进行转动,当检测到所述码盘1202产生第n个信号沿时,记录当前的第二矢量电压的第二电角度值;其中,所述第一方向和所述第二方向为相反方向;
根据所述第一电角度值和第二电角度值获取所述转子1201的电角度偏移值;
根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
本申请实施例还提供了一种电机,如图12中所示,该电机可以包括转子1201、码盘1202、存储器1203和处理器1204;其中,所述码盘1202安装在所述转子1201上,并跟随所述转子1201转动;
所述存储器1203存储一条或多条计算机程序指令;
所述处理器1204用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
获取所述码盘1202的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数;
根据所述修正信号沿计数和预设的所述转子1201的电角度偏移值获取当前所述转子的电角度值;
基于所述转子1201的电角度值对所述电机进行控制。
本申请实施例还提供了一种电机,如图13中所示,该电机可以包括转子1301、码盘1302、存储器1303和处理器1304;其中,所述码盘1302安装在所述转子1301上,并跟随所述转子1301转动;
所述存储器1303存储一条或多条计算机程序指令;
所述处理器1304用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
获取所述码盘1302的信号沿计数,根据所述信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子1301的电角度值;
将所述转子1301的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
基于所述修正电角度值对所述电机进行控制。
本申请实施例还提供了一种电机,如图14中所示,该电机可以包括转子1401、位置传感器1402、存储器1403和处理器1404;其中,所述位置传感器1402安装在所述转子1401上,并跟随所述转子1401转动;
所述存储器1403存储一条或多条计算机程序指令;
所述处理器1404用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
通过所述位置传感器1402获取所述转子的绝对机械位置,根据预设的所述转子的绝对机械位置和电角度值的对应关系,获取所述转子的电角度值;
将所述转子1401的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
基于所述修正电角度值对所述电机进行控制。
本申请实施例还提供了一种电机,如图15中所示,该电机可以包括转子1501、码盘1502、存储器1503和处理器1504;其中,所述码盘1502安装在所述转子1501上,并跟随所述转子1501转动;
通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
从所述目标位置开始,根据所述初始电角度值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
可以理解的,上述涉及电机中必须还包括实现电机功能的其它一些必要部件,比如定子等部件。
其中,上述涉及的处理器可以为中央处理器(CPU),或者专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微 处理器或其他电子元件实现,用于执行上述方法。
存储器被配置为存储各种类型的数据以支持相应操作。存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
此外,本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被计算机执行时实现如上述图1~图6所示任一实施例中所述的电机控制方法。
此外,本申请实施例还提供了一种可移动平台,如图16中所示,该可移动平台可以包括机身1601;
电机1602,安装在所述机身,用于提供动力;
控制器1603,执行上述图1~图5任一实施例中所述的电机控制方法,控制所述电机的运行。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (31)

  1. 一种电机控制方法,其特征在于,包括:
    由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动,当检测到设于所述转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;n为奇数,且n≥1;
    在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动,当检测到所述码盘产生第n个信号沿时,记录当前的第二矢量电压的第二电角度值;其中,所述第一方向和所述第二方向为相反方向;
    根据所述第一电角度值和第二电角度值获取所述转子的电角度偏移值;
    根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值具体为:
    根据当前所述码盘的信号沿计数与预设的电角度分辨率相乘得到初始电角度值;
    根据所述初始电角度值与所述电角度偏移值生成所述转子的电角度值。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值包括:
    获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数;
    根据所述修正信号沿计数和所述电角度偏移值获取当前所述转子的电角度值;
    基于所述转子的电角度值对所述电机进行控制。
  4. 根据权利要求3所述的方法,其特征在于,基于所述转子的电角度值对所述电机进行控制时,所述转子转动的方向为第三方向;所述获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数具体为:
    当所述第一方向与所述第三方向相反时,将所述信号沿计数加上一个预设的系数后生成修正信号沿计数。
  5. 根据权利要求3所述的方法,其特征在于,基于所述转子的基于所述转子的电角度值对所述电机进行控制时,所述转子转动的方向为第三方向;所述获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数具体为:
    当所述第一方向与所述三方向相同时,将所述信号沿计数减去一个预设的系数后生成修正信号沿计数。
  6. 根据权利要求3所述的方法,其特征在于,所述根据所述修正信号沿计数和所述电角度偏移值获取当前所述转子的电角度值具体为:
    根据所述修正信号沿计数与预设的电角度分辨率相乘得到初始电角度值;
    根据所述初始电角度值与所述电角度偏移值生成所述转子的电角度值。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值包括:
    根据当前所述码盘的信号沿计数与预设的电角度分辨率相乘得到初始电角度值,根据所述初始电角度值、所述电角度偏移值和预设的电角度补偿值生成所述转子的电角度值。
  8. 根据权利要求1所述的方法,其特征在于,所述由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子之前,还包括:
    通过预设方向的第三矢量电压控制所述转子转动至预设的所述目标位置。
  9. 根据权利要求1所述的方法,其特征在于,所述以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动包括:
    以旋转的第一矢量电压控制电机在不失步的情况下以预设的第一方向进行转动;
    所述以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动包括:
    以旋转的第二矢量电压控制电机的转子在不失步的情况下以预设的第二方向进行转动。
  10. 根据权利要求1所述的方法,其特征在于,所述以所述第一矢量电压继续控制所述转子以所述第一方向进行转动,在所述码盘产生下一个信号沿前控制所述转子停止在所述第一方向上的转动包括:
    以所述第一矢量电压继续控制所述转子在不失步情况下以所述第一方向进行转动,在所述码盘产生下一个信号沿前控制所述转子停止在所述第一方向上的转动。
  11. 一种电机控制方法,其特征在于,应用于一电机,所述电机包括转子,所述转子上设***盘,包括:
    获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数;
    根据所述修正信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值;
    基于所述转子的电角度值对所述电机进行控制。
  12. 根据权利要求1所述的方法,其特征在于,还包括:
    通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
    将所述初始电角度值作为所述转子的电角度偏移值。
  13. 根据权利要求12所述的方法,其特征在于,所述获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数具体为:
    获取所述码盘的信号沿计数;
    当所述转子对应电角度变化方向为正时,将所述信号沿计数加上一个预设的系数后生成修正信号沿计数;
    当所述转子对应电角度变化方向为负时,将将所述信号沿计数减去一个预设的系数后生成修正信号沿计数。
  14. 一种电机控制方法,其特征在于,应用于一电机,所述电机包括转子,所述转子上设***盘,包括:
    获取所述码盘的信号沿计数,根据所述信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值;
    将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
    基于所述修正电角度值对所述电机进行控制。
  15. 根据权利要求14所述的方法,其特征在于,还包括:
    通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
    将所述初始电角度值作为所述转子的电角度偏移值。
  16. 根据权利要求14所述的方法,其特征在于,所述将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值包括:
    当所述转子对应电角度变化方向为正时,将所述转子的电角度值加上一个预设的角度补偿值后生成修正电角度值;
    当所述转子对应电角度变化方向为负时,将所述转子的电角度值减去一个预设的角度补偿值后生成修正电角度值。
  17. 一种电机控制方法,其特征在于,应用于一电机,所述电机包括转子,所述转子上设有位置传感器,所述位置传感器用于检测所述转子的绝对机械位置,包括:
    通过所述位置传感器获取所述转子的绝对机械位置,根据预设的所述转子的绝对机械位置和电角度值的对应关系,获取所述转子的电角度值;
    将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
    基于所述修正电角度值对所述电机进行控制。
  18. 根据权利要求17所述的方法,其特征在于,所述通过所述位置传感器获取所述转子的绝对机械位置,根据预设的所述转子的绝对机械位置和电角度值的对应关系,获取所述转子的电角度值包括:
    通过所述位置传感器获取所述转子的绝对机械位置,根据所述转子的绝度机械位置和预设的电角度偏移值,获取所述转子的电角度值。
  19. 一种电机控制方法,其特征在于,应用于一电机,所述电机包括转子,所述转子上设***盘,包括步骤:
    通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
    从所述目标位置开始,根据所述初始电角度值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
  20. 一种电机控制装置,其特征在于,其特征在于,包括处理器和存储器;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器调整所述一条或多条计算机程序指令用以执行如上权利要求1-10任一项所述的电机控制方法。
  21. 一种电机控制装置,其特征在于,其特征在于,包括处理器和存储器;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器调整所述一条或多条计算机程序指令用以执行如上权利要求11-13任一项所述的电机控制方法。
  22. 一种电机控制装置,其特征在于,其特征在于,包括处理器和存储器;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器调整所述一条或多条计算机程序指令用以执行如上权利要求14-16任一项所述的电机控制方法。
  23. 一种电机控制装置,其特征在于,其特征在于,包括处理器和存储器;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器调整所述一条或多条计算机程序指令用以执行如上权利要求17-18任一项所述的电机控制方法。
  24. 一种电机控制装置,其特征在于,其特征在于,包括处理器和存储器;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器调整所述一条或多条计算机程序指令用以执行如上权利要求19所述的电机控制方法。
  25. 一种电机,其特征在于,包括转子、码盘、存储器和处理器;所述码盘安装在所述转子上,并跟随所述转子转动;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
    由预设的目标位置开始,以旋转的第一矢量电压控制电机的转子以预设的第一方向进行转动,当检测到设于所述转子上的码盘产生第n个信号沿时,记录当前的第一矢量电压的第一电角度值;n为奇数,且n≥1;
    在记录所述第一电角度值后,以旋转的第二矢量电压控制所述电机的转子以预设的第二方向进行转动,当检测到所述码盘产生第n个信号沿时,记录当前的第二矢量电压的第二电角度值;其中,所述第一方向和所述第二方向为相反方向;
    根据所述第一电角度值和第二电角度值获取所述转子的电角度偏移值;
    根据所述电角度偏移值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。。
  26. 一种电机,其特征在于,包括转子、码盘、存储器和处理器;所述码盘安装在所述转子上,并跟随所述转子转动;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
    获取所述码盘的信号沿计数,将所述信号沿计数加上或减去一个预设的系数后生成修正信号沿计数;
    根据所述修正信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值;
    基于所述转子的电角度值对所述电机进行控制。
  27. 一种电机,其特征在于,包括转子、码盘、存储器和处理器;所述码盘安装在所述转子上,并跟随所述转子转动;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
    获取所述码盘的信号沿计数,根据所述信号沿计数和预设的所述转子的电角度偏移值获取当前所述转子的电角度值;
    将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
    基于所述修正电角度值对所述电机进行控制。
  28. 一种电机,其特征在于,包括转子、位置传感器、存储器和处理器;所述位置传感器安装在所述转子上;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
    通过所述位置传感器获取所述转子的绝对机械位置,根据预设的所述转子的绝对机械位置和电角度值的对应关系,获取所述转子的电角度值;
    将所述转子的电角度值加上或减去一个预设的角度补偿值后生成修正电角度值;
    基于所述修正电角度值对所述电机进行控制。
  29. 一种电机,其特征在于,包括转子、码盘、存储器和处理器;所述码盘安装在所述转子上,并跟随所述转子转动;
    所述存储器存储一条或多条计算机程序指令;
    所述处理器用于调用并执行所述一条或多条计算机程序指令用以执行以下步骤:
    通过预设方向的矢量电压控制所述转子转动至预设的目标位置;所述目标位置对应设置有预设的初始电角度值;
    从所述目标位置开始,根据所述初始电角度值和当前所述码盘的信号沿计数获取当前所述转子的电角度值,基于所述转子的电角度值对所述电机进行控制。
  30. 一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序被计算机执行时实现如权利要求1~19任一项所述的电机控制方法。
  31. 一种可移动平台,其特征在于,包括机身;
    电机,安装在所述机身,用于提供动力;
    控制器,用于执行如权利要求1~19任一项所述的电机控制方法,控制所述电机的运行。
PCT/CN2019/109635 2019-09-30 2019-09-30 电机控制方法、电机及可移动平台 WO2021062725A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109635 WO2021062725A1 (zh) 2019-09-30 2019-09-30 电机控制方法、电机及可移动平台
CN201980034234.9A CN112889213B (zh) 2019-09-30 2019-09-30 电机控制方法、电机及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109635 WO2021062725A1 (zh) 2019-09-30 2019-09-30 电机控制方法、电机及可移动平台

Publications (1)

Publication Number Publication Date
WO2021062725A1 true WO2021062725A1 (zh) 2021-04-08

Family

ID=75336314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109635 WO2021062725A1 (zh) 2019-09-30 2019-09-30 电机控制方法、电机及可移动平台

Country Status (2)

Country Link
CN (1) CN112889213B (zh)
WO (1) WO2021062725A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391551A (zh) * 2021-06-01 2021-09-14 佛山市顺德区乐普达电机有限公司 电机电角度补偿方法、装置、电子设备及存储介质
CN116915118A (zh) * 2023-07-14 2023-10-20 苏州利氪科技有限公司 电机的零位学习方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114499290A (zh) * 2021-12-22 2022-05-13 上海微创医疗机器人(集团)股份有限公司 位置偏差标定方法、电机驱动方法、***和设备
CN117220563B (zh) * 2023-11-07 2024-02-13 深圳市杰美康机电有限公司 电机控制方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351278A (ja) * 1993-06-07 1994-12-22 Fuji Electric Co Ltd 誘導電動機のベクトル制御装置
CN105871162A (zh) * 2016-04-13 2016-08-17 上海信耀电子有限公司 永磁同步电机伺服***以及定位和偏差消除方法
CN106685298A (zh) * 2017-01-18 2017-05-17 凡己科技(苏州)有限公司 一种用于电动叉车的低分辨率编码器位置计算方法
CN108199636A (zh) * 2017-12-28 2018-06-22 江苏集萃智能制造技术研究所有限公司 一种基于矢量控制策略的电机初始角度定位方法
CN108923711A (zh) * 2018-07-02 2018-11-30 沈阳新松智能驱动股份有限公司 一种伺服***零点校对的绝对值编码器调零方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080079142A (ko) * 2007-02-26 2008-08-29 창원대학교 산학협력단 홀센서가 없는 오디디용 브러시리스 직류전동기의 기동방법
JP6331188B2 (ja) * 2014-01-27 2018-05-30 株式会社デンソー モータ制御装置
CN104779852B (zh) * 2015-03-23 2017-12-01 四川长虹电器股份有限公司 一种电机启动控制方法
CN106533308B (zh) * 2016-12-31 2019-10-29 深圳市优必选科技有限公司 永磁同步电机角度检测方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351278A (ja) * 1993-06-07 1994-12-22 Fuji Electric Co Ltd 誘導電動機のベクトル制御装置
CN105871162A (zh) * 2016-04-13 2016-08-17 上海信耀电子有限公司 永磁同步电机伺服***以及定位和偏差消除方法
CN106685298A (zh) * 2017-01-18 2017-05-17 凡己科技(苏州)有限公司 一种用于电动叉车的低分辨率编码器位置计算方法
CN108199636A (zh) * 2017-12-28 2018-06-22 江苏集萃智能制造技术研究所有限公司 一种基于矢量控制策略的电机初始角度定位方法
CN108923711A (zh) * 2018-07-02 2018-11-30 沈阳新松智能驱动股份有限公司 一种伺服***零点校对的绝对值编码器调零方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391551A (zh) * 2021-06-01 2021-09-14 佛山市顺德区乐普达电机有限公司 电机电角度补偿方法、装置、电子设备及存储介质
CN113391551B (zh) * 2021-06-01 2023-08-01 佛山市顺德区乐普达电机有限公司 电机电角度补偿方法、装置、电子设备及存储介质
CN116915118A (zh) * 2023-07-14 2023-10-20 苏州利氪科技有限公司 电机的零位学习方法及装置

Also Published As

Publication number Publication date
CN112889213B (zh) 2022-07-05
CN112889213A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2021062725A1 (zh) 电机控制方法、电机及可移动平台
US10666171B2 (en) Motor System
CN111245306B (zh) 信号处理装置以及信号处理方法
CN107919830B (zh) 一种电机位置传感器的标定方法及装置
KR20180021660A (ko) Pmsm 모터의 무센서 제어 방법
JP2002034278A (ja) 電動機の磁極位置検出装置
US20140354271A1 (en) Rotation angle detector, rotation angle detection method, and image forming apparatus
JP2018033301A (ja) 無鉄pmsmモータのロータの配向をセンサフリーで決定する為の方法
CN107834914A (zh) 基于霍尔的无刷电机转子角度计算方法
JP6186824B2 (ja) ブラシレスモータの制御装置、ブラシレスモータの電気角推定方法、および記憶媒体
KR102166814B1 (ko) 모터 위치 센서 오차 보상 장치 및 방법
JP2541169B2 (ja) レゾルバ検出誤差補正方式
US20080180046A1 (en) Method and device for estimating the angular position of the rotor of a brushless motor
JP6962957B2 (ja) 直流励磁方式の磁極初期位置検出装置及び磁極位置検出装置
CN110932615B (zh) 确定永磁同步电机转子角度位置的方法、装置及电机
JP2006017725A (ja) 電動機の回転数を測定する方法
JP4284435B2 (ja) サーボモータの磁極検出方法
CN115811260A (zh) 一种电机的旋变零点辨识方法、装置及计算机存储介质
US10686392B2 (en) Driving permanent magnet motor based on neutral point voltage
JP4718401B2 (ja) モータ制御装置
CN114172414A (zh) 伺服电机初始电角度确定方法、装置及可读存储介质
JPH0787779A (ja) ブラシレスモータの駆動回路
CN112398373B (zh) 一种无刷直流电机的控制方法、装置及存储介质
CN110492818B (zh) 电机的零位校正方法和校正装置、电机控制***
JP3546862B2 (ja) 永久磁石型ブラシレスモータ用の制御装置及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947852

Country of ref document: EP

Kind code of ref document: A1