WO2021047295A1 - 一种一钢多级用结构钢坯料生产方法 - Google Patents

一种一钢多级用结构钢坯料生产方法 Download PDF

Info

Publication number
WO2021047295A1
WO2021047295A1 PCT/CN2020/103544 CN2020103544W WO2021047295A1 WO 2021047295 A1 WO2021047295 A1 WO 2021047295A1 CN 2020103544 W CN2020103544 W CN 2020103544W WO 2021047295 A1 WO2021047295 A1 WO 2021047295A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
smelting
structural steel
requirements
composition
Prior art date
Application number
PCT/CN2020/103544
Other languages
English (en)
French (fr)
Inventor
翟冬雨
洪君
吴俊平
方磊
姜金星
杜海军
刘帅
陈飞
刘汝营
张臣臣
严生平
丁叶
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to EP20863199.4A priority Critical patent/EP4015666A4/en
Publication of WO2021047295A1 publication Critical patent/WO2021047295A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the invention relates to the technical field of steel smelting, in particular to a method for producing multi-level structural steel billets for one steel.
  • Structural steel is the most widely used and the largest amount of production used by steel companies in the plate manufacturing process. Due to too many types of smelting, structural steel restricts the improvement of production efficiency of the company, and at the same time generates a large backlog of billets, which seriously affects the capital turnover of the company .
  • structural steel there are 115 types of structural steel in the enterprise, 50 of which are 345 grades.
  • each steel type requires a production process, and there is a casting sequence between the steel type and the steel type. Not only is the pressure of the production group steel very high, the continuous casting section is generally degraded and used, and the waste is serious, which restricts the development of productivity to a certain extent.
  • the present invention provides a method for producing multi-level structural steel billets for one steel, including
  • the smelting process is designed according to the order flaw detection requirements.
  • the smelting process of the flaw detection steel grade is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ RH vacuum treatment ⁇ CCM casting, and the smelting process of non-detection steel grades is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ CCM casting;
  • the production plan is based on the product order quantity and delivery time requirements for production scheduling
  • the remaining billet After smelting, the remaining billet shall be managed by the remaining billet, and it shall be preferentially used for subsequent order production.
  • the present invention uniformly adopts peritectic and medium carbon steel composition design, and at the same time uses C, Mn, Cr, Ni, Mo, Cu, V and other elements for carbon equivalent according to product requirements Adjust to meet product performance requirements, product performance is more stable, production scheduling is faster and smoother, and the remaining blank volume is significantly reduced.
  • the aforementioned method for producing multi-level structural steel billets for one steel includes
  • composition requirements of steel plate Q235GJ for building structure in the national standard GB/T 19799 are: C ⁇ 0.18%, Mn: 0.60% ⁇ 1.50%, Si ⁇ 0.35%, P ⁇ 0.020%, S ⁇ 0.010%, Al ⁇ 0.020% , Ni ⁇ 0.30%, Cr ⁇ 0.30%, Mo ⁇ 0.08%, Cu ⁇ 0.30%;
  • composition requirements of structural steel plate Q235FT for wind power towers in the national standard GB/T 28410 are: C ⁇ 0.18%, Mn: 0.50% ⁇ 1.40%, Si ⁇ 0.50%, P ⁇ 0.025%, S ⁇ 0.020%, Al ⁇ 0.015%, Nb ⁇ 0.050%, V ⁇ 0.060%, Ti ⁇ 0.050%, Ni ⁇ 0.30%, Cr ⁇ 0.30%, Mo ⁇ 0.10%, Cu ⁇ 0.30%, N ⁇ 0.012%;
  • composition requirements of the structural steel plate Q235q for bridges in the national standard GB/T 714 are: C ⁇ 0.17%, Mn ⁇ 1.40%, Si ⁇ 0.35%, P ⁇ 0.020%, S ⁇ 0.010%, Al ⁇ 0.015%, Ni ⁇ 0.30%, Cr ⁇ 0.30%, Cu ⁇ 0.30%, N ⁇ 0.012%;
  • the unified smelting grade J-1 is formulated for the above three grades of structural steel plates under the same rolling and heat treatment conditions.
  • the composition design is: C: 0.15% to 0.17%, Mn: 0.90% ⁇ 1.10%, Si: 0.20% ⁇ 0.30%, P ⁇ 0.015%, S ⁇ 0.005%, Nb ⁇ 0.020%, Al: 0.020% ⁇ 0.050%, N ⁇ 0.012%, V ⁇ 0.030%, Ni ⁇ 0.030 %, Cr ⁇ 0.050%, Mo ⁇ 0.030%, Cu ⁇ 0.050%, Ti: 0.006% ⁇ 0.020%, B ⁇ 0.0005%, Ca: 0.0008% ⁇ 0.00400%, Ceq: 0.26% ⁇ 0.33%;
  • the smelting process is designed according to the order flaw detection requirements.
  • the smelting process of the flaw detection steel grade is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ RH vacuum treatment ⁇ CCM casting, and the smelting process of non-detection steel grades is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ CCM casting;
  • the production plan is based on the product order quantity and delivery time requirements for production scheduling
  • the remaining billet After smelting, the remaining billet shall be managed by the remaining billet, and it shall be preferentially used for subsequent order production.
  • the aforementioned method for producing multi-level structural steel billets for one steel includes
  • composition requirements of steel plate Q420GJ for building structure in the national standard GB/T 19799 are: C ⁇ 0.18%, Mn ⁇ 1.70%, Si ⁇ 0.55%, P ⁇ 0.020%, S ⁇ 0.010%, Nb ⁇ 0.070%, V ⁇ 0.20%, Ti ⁇ 0.030%, Al ⁇ 0.020%, Ni ⁇ 1.0%, Cr ⁇ 0.80%, Mo ⁇ 0.50%, Cu ⁇ 0.30%;
  • composition requirements of the structural steel plate Q420FT for wind power towers in the national standard GB/T 28410 are: C ⁇ 0.20%, Mn: 1.00% ⁇ 1.70%, Si ⁇ 0.50%, P ⁇ 0.020%, S ⁇ 0.010%, Al ⁇ 0.015%, Nb ⁇ 0.060%, V ⁇ 0.15%, Ti ⁇ 0.050%, Ni ⁇ 0.50%, Cr ⁇ 0.30%, Mo ⁇ 0.20%, Cu ⁇ 0.30%, N ⁇ 0.010%;
  • composition requirements of the structural steel plate Q420q for bridges in the national standard GB/T 714 are: C ⁇ 0.18%, Mn: 1.00% ⁇ 1.70%, Si ⁇ 0.55%, P ⁇ 0.020%, S ⁇ 0.010%, Nb ⁇ 0.060% , V ⁇ 0.08%, Ti ⁇ 0.030%, Al ⁇ 0.015%, Ni ⁇ 0.70%, Cr ⁇ 0.80%, Mo ⁇ 0.35%, Cu ⁇ 0.55%, B ⁇ 0.0040%, N ⁇ 0.012%;
  • composition requirements for low-alloy high-strength structural steel plate Q420 in the national standard GB/T 1591 are: C ⁇ 0.20%, Mn ⁇ 1.70%, Si ⁇ 0.50%, P ⁇ 0.025%, S ⁇ 0.020%, Al ⁇ 0.015%, Nb ⁇ 0.070%, V ⁇ 0.20%, Ti ⁇ 0.20%, Ni ⁇ 0.80%, Cr ⁇ 0.30%, Mo ⁇ 0.20%, Cu ⁇ 0.30%, N ⁇ 0.015%;
  • the uniform smelting grade J-19 is formulated for the above four grades of structural steel plates under the condition of the same rolling and heat treatment, and the composition design is: C: 0.060% ⁇ 0.080%, Mn: 1.30% ⁇ 1.50%, Si: 0.20% ⁇ 0.40%, P ⁇ 0.020%, S ⁇ 0.005%, Nb: 0.020% ⁇ 0.030%, V: 0.020% ⁇ 0.040%, Ti: 0.010% ⁇ 0.020%, Al: 0.020% ⁇ 0.050%, N ⁇ 0.0080%, Ni ⁇ 0.30%, Cr: 0.20% ⁇ 0.30%, Mo ⁇ 0.03%, Cu ⁇ 0.05%, B ⁇ 0.0010%, Ca: 0.0008% ⁇ 0.00400%, Ceq :0.36% ⁇ 0.46%;
  • the smelting process is designed according to the order flaw detection requirements.
  • the smelting process of the flaw detection steel grade is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ RH vacuum treatment ⁇ CCM casting, and the smelting process of non-detection steel grades is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ CCM casting;
  • the production plan is based on the product order quantity and delivery time requirements for production scheduling
  • the remaining billet After smelting, the remaining billet shall be managed by the remaining billet, and it shall be preferentially used for subsequent order production.
  • the present invention breaks the limitation of varieties, series and groups, formulates reasonable and unified smelting grades based on product performance and customer requirements, produces structural steel billets that meet multiple uses, and solves the problem of scattered orders that are not conducive to delivery. , The backlog of billets is not conducive to digestion of the disadvantages, which improves the operating rate of the continuous caster and the crude steel output of the enterprise, thereby improving the economic benefits of the enterprise;
  • the present invention reduces the number of structural steel types from the previous 115 to 65, optimizes the variety structure, reduces smelting costs, improves the market competitiveness of sheet products, and expands the market share of advantageous varieties;
  • the smelting and manufacturing standards are more unified, the smelting operation is more orderly, and the production quality is steadily improved;
  • the present invention improves the ability of an enterprise to accept orders of different varieties, shortens the delivery cycle of scattered orders, and improves customer satisfaction, which not only improves the economic benefits of the enterprise, but also improves the competitiveness of the enterprise.
  • the present embodiment provides a method for producing multi-level structural steel blanks for one steel, including:
  • composition requirements of steel plate Q235GJ for building structure in the national standard GB/T 19799 are: C ⁇ 0.18%, Mn: 0.60% ⁇ 1.50%, Si ⁇ 0.35%, P ⁇ 0.020%, S ⁇ 0.010%, Al ⁇ 0.020% , Ni ⁇ 0.30%, Cr ⁇ 0.30%, Mo ⁇ 0.08%, Cu ⁇ 0.30%;
  • composition requirements of structural steel plate Q235FT for wind power towers in the national standard GB/T 28410 are: C ⁇ 0.18%, Mn: 0.50% ⁇ 1.40%, Si ⁇ 0.50%, P ⁇ 0.025%, S ⁇ 0.020%, Al ⁇ 0.015%, Nb ⁇ 0.050%, V ⁇ 0.060%, Ti ⁇ 0.050%, Ni ⁇ 0.30%, Cr ⁇ 0.30%, Mo ⁇ 0.10%, Cu ⁇ 0.30%, N ⁇ 0.012%;
  • composition requirements of the structural steel plate Q235q for bridges in the national standard GB/T 714 are: C ⁇ 0.17%, Mn ⁇ 1.40%, Si ⁇ 0.35%, P ⁇ 0.020%, S ⁇ 0.010%, Al ⁇ 0.015%, Ni ⁇ 0.30%, Cr ⁇ 0.30%, Cu ⁇ 0.30%, N ⁇ 0.012%;
  • the unified smelting grade J-1 is formulated for the above three grades of structural steel plates under the same rolling and heat treatment conditions.
  • the composition design is: C: 0.15% to 0.17%, Mn: 0.90% ⁇ 1.10%, Si: 0.20% ⁇ 0.30%, P ⁇ 0.015%, S ⁇ 0.005%, Nb ⁇ 0.020%, Al: 0.020% ⁇ 0.050%, N ⁇ 0.012%, V ⁇ 0.030%, Ni ⁇ 0.030 %, Cr ⁇ 0.050%, Mo ⁇ 0.030%, Cu ⁇ 0.050%, Ti: 0.006% ⁇ 0.020%, B ⁇ 0.0005%, Ca: 0.0008% ⁇ 0.00400%, Ceq: 0.26% ⁇ 0.33%;
  • the smelting process is designed according to the order flaw detection requirements.
  • the smelting process of the flaw detection steel grade is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ RH vacuum treatment ⁇ CCM casting, and the smelting process of non-detection steel grades is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ CCM casting;
  • the production plan is based on the product order quantity and delivery time requirements for production scheduling
  • the remaining billet After smelting, the remaining billet shall be managed by the remaining billet, and it shall be preferentially used for subsequent order production.
  • the present embodiment provides a method for producing multi-level structural steel blanks for one steel, including:
  • composition requirements of steel plate Q420GJ for building structure in the national standard GB/T 19799 are: C ⁇ 0.18%, Mn ⁇ 1.70%, Si ⁇ 0.55%, P ⁇ 0.020%, S ⁇ 0.010%, Nb ⁇ 0.070%, V ⁇ 0.20%, Ti ⁇ 0.030%, Al ⁇ 0.020%, Ni ⁇ 1.0%, Cr ⁇ 0.80%, Mo ⁇ 0.50%, Cu ⁇ 0.30%;
  • composition requirements of the structural steel plate Q420FT for wind power towers in the national standard GB/T 28410 are: C ⁇ 0.20%, Mn: 1.00% ⁇ 1.70%, Si ⁇ 0.50%, P ⁇ 0.020%, S ⁇ 0.010%, Al ⁇ 0.015%, Nb ⁇ 0.060%, V ⁇ 0.15%, Ti ⁇ 0.050%, Ni ⁇ 0.50%, Cr ⁇ 0.30%, Mo ⁇ 0.20%, Cu ⁇ 0.30%, N ⁇ 0.010%;
  • composition requirements of the structural steel plate Q420q for bridges in the national standard GB/T 714 are: C ⁇ 0.18%, Mn: 1.00% ⁇ 1.70%, Si ⁇ 0.55%, P ⁇ 0.020%, S ⁇ 0.010%, Nb ⁇ 0.060% , V ⁇ 0.08%, Ti ⁇ 0.030%, Al ⁇ 0.015%, Ni ⁇ 0.70%, Cr ⁇ 0.80%, Mo ⁇ 0.35%, Cu ⁇ 0.55%, B ⁇ 0.0040%, N ⁇ 0.012%;
  • composition requirements for low-alloy high-strength structural steel plate Q420 in the national standard GB/T 1591 are: C ⁇ 0.20%, Mn ⁇ 1.70%, Si ⁇ 0.50%, P ⁇ 0.025%, S ⁇ 0.020%, Al ⁇ 0.015%, Nb ⁇ 0.070%, V ⁇ 0.20%, Ti ⁇ 0.20%, Ni ⁇ 0.80%, Cr ⁇ 0.30%, Mo ⁇ 0.20%, Cu ⁇ 0.30%, N ⁇ 0.015%;
  • the uniform smelting grade J-19 is formulated for the above four grades of structural steel plates under the condition of the same rolling and heat treatment, and the composition design is: C: 0.060% ⁇ 0.080%, Mn: 1.30% ⁇ 1.50%, Si: 0.20% ⁇ 0.40%, P ⁇ 0.020%, S ⁇ 0.005%, Nb: 0.020% ⁇ 0.030%, V: 0.020% ⁇ 0.040%, Ti: 0.010% ⁇ 0.020%, Al: 0.020% ⁇ 0.050%, N ⁇ 0.0080%, Ni ⁇ 0.30%, Cr: 0.20% ⁇ 0.30%, Mo ⁇ 0.03%, Cu ⁇ 0.05%, B ⁇ 0.0010%, Ca: 0.0008% ⁇ 0.00400%, Ceq :0.36% ⁇ 0.46%;
  • the smelting process is designed according to the order flaw detection requirements.
  • the smelting process of the flaw detection steel grade is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ RH vacuum treatment ⁇ CCM casting, and the smelting process of non-detection steel grades is: molten iron desulfurization ⁇ BOF smelting ⁇ LF refining ⁇ CCM casting;
  • the production plan is based on the product order quantity and delivery time requirements for production scheduling
  • the remaining billet After smelting, the remaining billet shall be managed by the remaining billet, and it shall be preferentially used for subsequent order production.
  • peritectic and medium-carbon steel composition design is uniformly adopted.
  • C, Mn, Cr, Ni, Mo, Cu, V and other elements are used to adjust carbon equivalent according to product requirements to meet product requirements.
  • Mechanical performance requirements, product performance is more stable, production scheduling is faster and smoother, and the remaining blank volume is significantly reduced.
  • the number of structural steel grades has been reduced from 115 to 65.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种一钢多级用结构钢坯料生产方法,涉及钢铁冶炼技术领域,对结构用钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,并在此基础上调整其他合金,满足产品性能要求;依据订单的制造标准及规范,结合产品性能要求,按钢级对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢进行统一成分设计,并制定冶炼代码。根据结构用钢制造标准及产品力学性能要求,统一采用包晶及中碳钢成分设计,同时根据产品要求采用C、Mn、Cr、Ni、Mo、Cu、V等元素进行碳当量调整,满足产品性能要求,产品性能更加稳定,生产排产更加快速流畅,余坯量显著下降。

Description

一种一钢多级用结构钢坯料生产方法 技术领域
本发明涉及钢铁冶炼技术领域,特别是涉及一种一钢多级用结构钢坯料生产方法。
背景技术
结构钢是钢铁企业在板材制造过程中用途最广泛、生产用量也最大的,结构钢因冶炼品种太多而制约着企业生产效率的提高,同时会产生大量的坯料积压,严重影响企业的***。目前,企业结构钢钢种共115个,其中345级别的钢种有50个,在连铸浇铸过程中,每个钢种都需要一种生产工艺,钢种与钢种之间存在浇铸顺序,不但生产组钢压力很大,连浇段一般降级使用,浪费严重,在一定程度上制约了生产力的发展。
发明内容
为了解决以上技术问题,本发明提供一种一钢多级用结构钢坯料生产方法,包括
S1、依据订单产品的制造标准及规范,对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,按钢级进行统一成分设计并制定冶炼代码,在此基础上调整其他合金含量,满足产品力学性能要求;
S2、冶炼过程针对订单探伤要求进行冶炼流程设计,探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→RH真空处理→CCM浇铸,非探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→CCM浇铸;
S3、生产计划根据产品订单量、交货期需求进行生产排产,
S4、冶炼后余坯进行余坯管理,优先用于后续订单生产。
技术效果:本发明根据结构用钢制造标准及产品性能要求,统一采用包晶 及中碳钢成分设计,同时根据产品要求采用C、Mn、Cr、Ni、Mo、Cu、V等元素进行碳当量调整,满足产品性能要求,产品性能更加稳定,生产排产更加快速流畅,余坯量显著下降。
本发明进一步限定的技术方案是:
前所述的一种一钢多级用结构钢坯料生产方法,包括
S1、依据订单产品的制造标准及规范,对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,按钢级进行统一成分设计并制定冶炼代码,在此基础上调整其他合金含量,满足产品力学性能要求,具体:
国家标准GB/T 19879中对建筑结构用钢板Q235GJ的成分要求为:C≤0.18%,Mn:0.60%~1.50%,Si≤0.35%,P≤0.020%,S≤0.010%,Al≥0.020%,Ni≤0.30%,Cr≤0.30%,Mo≤0.08%,Cu≤0.30%;
国家标准GB/T 28410中对风力发电塔用结构钢板Q235FT的成分要求为:C≤0.18%,Mn:0.50%~1.40%,Si≤0.50%,P≤0.025%,S≤0.020%,Al≥0.015%,Nb≤0.050%,V≤0.060%,Ti≤0.050%,Ni≤0.30%,Cr≤0.30%,Mo≤0.10%,Cu≤0.30%,N≤0.012%;
国家标准GB/T 714中对桥梁用结构钢板Q235q的成分要求为:C≤0.17%,Mn≤1.40%,Si≤0.35%,P≤0.020%,S≤0.010%,Al≥0.015%,Ni≤0.30%,Cr≤0.30%,Cu≤0.30%,N≤0.012%;
根据产品力学性能及订单量情况,对以上三种牌号的结构用钢板在轧制及热处理一致的情况下,制定统一冶炼牌号J-1,成分设计为:C:0.15%~0.17%,Mn:0.90%~1.10%,Si:0.20%~0.30%,P≤0.015%,S≤0.005%,Nb≤0.020%,Al:0.020%~0.050%,N≤0.012%,V≤0.030%,Ni≤0.030%,Cr≤0.050%,Mo≤0.030%,Cu≤0.050%,Ti:0.006%~0.020%,B≤0.0005%,Ca:0.0008%~ 0.00400%,Ceq:0.26%~0.33%;
S2、冶炼过程针对订单探伤要求进行冶炼流程设计,探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→RH真空处理→CCM浇铸,非探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→CCM浇铸;
S3、生产计划根据产品订单量、交货期需求进行生产排产,
S4、冶炼后余坯进行余坯管理,优先用于后续订单生产。
前所述的一种一钢多级用结构钢坯料生产方法,包括
S1、依据订单产品的制造标准及规范,对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,按钢级进行统一成分设计并制定冶炼代码,在此基础上调整其他合金含量,满足产品力学性能要求,具体:
国家标准GB/T 19879中对建筑结构用钢板Q420GJ的成分要求为:C≤0.18%,Mn≤1.70%,Si≤0.55%,P≤0.020%,S≤0.010%,Nb≤0.070%,V≤0.20%,Ti≤0.030%,Al≥0.020%,Ni≤1.0%,Cr≤0.80%,Mo≤0.50%,Cu≤0.30%;
国家标准GB/T 28410中对风力发电塔用结构钢板Q420FT的成分要求为:C≤0.20%,Mn:1.00%~1.70%,Si≤0.50%,P≤0.020%,S≤0.010%,Al≥0.015%,Nb≤0.060%,V≤0.15%,Ti≤0.050%,Ni≤0.50%,Cr≤0.30%,Mo≤0.20%,Cu≤0.30%,N≤0.010%;
国家标准GB/T 714中对桥梁用结构钢板Q420q的成分要求为:C≤0.18%,Mn:1.00%~1.70%,Si≤0.55%,P≤0.020%,S≤0.010%,Nb≤0.060%,V≤0.08%,Ti≤0.030%,Al≥0.015%,Ni≤0.70%,Cr≤0.80%,Mo≤0.35%,Cu≤0.55%,B≤0.0040%,N≤0.012%;
国家标准GB/T 1591中对低合金高强度结构钢板Q420的成分要求为:C≤ 0.20%,Mn≤1.70%,Si≤0.50%,P≤0.025%,S≤0.020%,Al≥0.015%,Nb≤0.070%,V≤0.20%,Ti≤0.20%,Ni≤0.80%,Cr≤0.30%,Mo≤0.20%,Cu≤0.30%,N≤0.015%;
根据产品力学性能及每月订单量情况,对以上四种牌号的结构用钢板在轧制及热处理一致的情况下,制定统一冶炼牌号J-19,成分设计为:C:0.060%~0.080%,Mn:1.30%~1.50%,Si:0.20%~0.40%,P≤0.020%,S≤0.005%,Nb:0.020%~0.030%,V:0.020%~0.040%,Ti:0.010%~0.020%,Al:0.020%~0.050%,N≤0.0080%,Ni≤0.30%,Cr:0.20%~0.30%,Mo≤0.03%,Cu≤0.05%,B≤0.0010%,Ca:0.0008%~0.00400%,Ceq:0.36%~0.46%;
S2、冶炼过程针对订单探伤要求进行冶炼流程设计,探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→RH真空处理→CCM浇铸,非探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→CCM浇铸;
S3、生产计划根据产品订单量、交货期需求进行生产排产,
S4、冶炼后余坯进行余坯管理,优先用于后续订单生产。
本发明的有益效果是:
(1)本发明打破了品种系列和组别限制,以产品性能及客户要求为依据,制定合理统一的冶炼牌号,生产了满足多种使用用途的结构钢坯料,解决了零散订单不利于交货、坯料积压不利于消化的弊端,提高了连铸机作业率,提高了企业粗钢产量,从而提高了企业的经济效益;
(2)本发明使得结构钢钢种数量由以前的115个降低至65个,优化了品种结构,降低了冶炼成本,提高了板材产品的市场竞争力,拓展了优势品种的市场占有率;
(3)本发明中冶炼制造标准更加统一,冶炼操作更加有序,生产质量获得稳步提升;
(4)本发明中连浇段、余坯数量降低,减少了资源浪费,企业资金利用率得到提升,产能获得解放,全年度冶炼产量及效益获得提升;
(5)本发明提升了企业对不同品种订单的接单能力,缩短了零散订单交货周期,客户满意度提升,不但提高了企业的经济效益,还提高了企业竞争力。
具体实施方式
实施例1
本实施例提供的一种一钢多级用结构钢坯料生产方法,包括
S1、依据订单产品的制造标准及规范,对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,按钢级进行统一成分设计并制定冶炼代码,在此基础上调整其他合金含量,满足产品力学性能要求,具体:
国家标准GB/T 19879中对建筑结构用钢板Q235GJ的成分要求为:C≤0.18%,Mn:0.60%~1.50%,Si≤0.35%,P≤0.020%,S≤0.010%,Al≥0.020%,Ni≤0.30%,Cr≤0.30%,Mo≤0.08%,Cu≤0.30%;
国家标准GB/T 28410中对风力发电塔用结构钢板Q235FT的成分要求为:C≤0.18%,Mn:0.50%~1.40%,Si≤0.50%,P≤0.025%,S≤0.020%,Al≥0.015%,Nb≤0.050%,V≤0.060%,Ti≤0.050%,Ni≤0.30%,Cr≤0.30%,Mo≤0.10%,Cu≤0.30%,N≤0.012%;
国家标准GB/T 714中对桥梁用结构钢板Q235q的成分要求为:C≤0.17%,Mn≤1.40%,Si≤0.35%,P≤0.020%,S≤0.010%,Al≥0.015%,Ni≤0.30%,Cr≤0.30%,Cu≤0.30%,N≤0.012%;
根据产品力学性能及订单量情况,对以上三种牌号的结构用钢板在轧制及热处理一致的情况下,制定统一冶炼牌号J-1,成分设计为:C:0.15%~0.17%,Mn:0.90%~1.10%,Si:0.20%~0.30%,P≤0.015%,S≤0.005%,Nb≤0.020%, Al:0.020%~0.050%,N≤0.012%,V≤0.030%,Ni≤0.030%,Cr≤0.050%,Mo≤0.030%,Cu≤0.050%,Ti:0.006%~0.020%,B≤0.0005%,Ca:0.0008%~0.00400%,Ceq:0.26%~0.33%;
S2、冶炼过程针对订单探伤要求进行冶炼流程设计,探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→RH真空处理→CCM浇铸,非探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→CCM浇铸;
S3、生产计划根据产品订单量、交货期需求进行生产排产,
S4、冶炼后余坯进行余坯管理,优先用于后续订单生产。
实施例2
本实施例提供的一种一钢多级用结构钢坯料生产方法,包括
S1、依据订单产品的制造标准及规范,对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,按钢级进行统一成分设计并制定冶炼代码,在此基础上调整其他合金含量,满足产品力学性能要求,具体:
国家标准GB/T 19879中对建筑结构用钢板Q420GJ的成分要求为:C≤0.18%,Mn≤1.70%,Si≤0.55%,P≤0.020%,S≤0.010%,Nb≤0.070%,V≤0.20%,Ti≤0.030%,Al≥0.020%,Ni≤1.0%,Cr≤0.80%,Mo≤0.50%,Cu≤0.30%;
国家标准GB/T 28410中对风力发电塔用结构钢板Q420FT的成分要求为:C≤0.20%,Mn:1.00%~1.70%,Si≤0.50%,P≤0.020%,S≤0.010%,Al≥0.015%,Nb≤0.060%,V≤0.15%,Ti≤0.050%,Ni≤0.50%,Cr≤0.30%,Mo≤0.20%,Cu≤0.30%,N≤0.010%;
国家标准GB/T 714中对桥梁用结构钢板Q420q的成分要求为:C≤0.18%,Mn:1.00%~1.70%,Si≤0.55%,P≤0.020%,S≤0.010%,Nb≤0.060%,V≤0.08%, Ti≤0.030%,Al≥0.015%,Ni≤0.70%,Cr≤0.80%,Mo≤0.35%,Cu≤0.55%,B≤0.0040%,N≤0.012%;
国家标准GB/T 1591中对低合金高强度结构钢板Q420的成分要求为:C≤0.20%,Mn≤1.70%,Si≤0.50%,P≤0.025%,S≤0.020%,Al≥0.015%,Nb≤0.070%,V≤0.20%,Ti≤0.20%,Ni≤0.80%,Cr≤0.30%,Mo≤0.20%,Cu≤0.30%,N≤0.015%;
根据产品力学性能及每月订单量情况,对以上四种牌号的结构用钢板在轧制及热处理一致的情况下,制定统一冶炼牌号J-19,成分设计为:C:0.060%~0.080%,Mn:1.30%~1.50%,Si:0.20%~0.40%,P≤0.020%,S≤0.005%,Nb:0.020%~0.030%,V:0.020%~0.040%,Ti:0.010%~0.020%,Al:0.020%~0.050%,N≤0.0080%,Ni≤0.30%,Cr:0.20%~0.30%,Mo≤0.03%,Cu≤0.05%,B≤0.0010%,Ca:0.0008%~0.00400%,Ceq:0.36%~0.46%;
S2、冶炼过程针对订单探伤要求进行冶炼流程设计,探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→RH真空处理→CCM浇铸,非探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→CCM浇铸;
S3、生产计划根据产品订单量、交货期需求进行生产排产,
S4、冶炼后余坯进行余坯管理,优先用于后续订单生产。
根据结构用钢制造标准及产品力学性能要求,统一采用包晶及中碳钢成分设计,同时根据产品要求采用C、Mn、Cr、Ni、Mo、Cu、V等元素进行碳当量调整,满足产品力学性能要求,产品性能更加稳定,生产排产更加快速流畅,余坯量显著下降。结构钢钢种数量由以前的115个降低至65个,优化了品种结构,降低了冶炼成本,生产了满足多种使用用途的结构钢坯料,解决了零散订单不利于交货、坯料积压不利于消化的弊端,提高了连铸机作业率,提高了企业粗钢产量,从而提高了企业的经济效益。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (3)

  1. 一种一钢多级用结构钢坯料生产方法,其特征在于:包括
    S1、依据订单产品的制造标准及规范,对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,按钢级进行统一成分设计并制定冶炼代码,在此基础上调整其他合金含量,满足产品力学性能要求;
    S2、冶炼过程针对订单探伤要求进行冶炼流程设计,探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→RH真空处理→CCM浇铸,非探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→CCM浇铸;
    S3、生产计划根据产品订单量、交货期需求进行生产排产,
    S4、冶炼后余坯进行余坯管理,优先用于后续订单生产。
  2. 根据权利要求1所述的一种一钢多级用结构钢坯料生产方法,其特征在于:包括
    S1、依据订单产品的制造标准及规范,对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,按钢级进行统一成分设计并制定冶炼代码,在此基础上调整其他合金含量,满足产品力学性能要求,具体:
    国家标准GB/T 19879中对建筑结构用钢板Q235GJ的成分要求为:C≤0.18%,Mn:0.60%~1.50%,Si≤0.35%,P≤0.020%,S≤0.010%,Al≥0.020%,Ni≤0.30%,Cr≤0.30%,Mo≤0.08%,Cu≤0.30%;
    国家标准GB/T 28410中对风力发电塔用结构钢板Q235FT的成分要求为:C≤0.18%,Mn:0.50%~1.40%,Si≤0.50%,P≤0.025%,S≤0.020%,Al≥0.015%,Nb≤0.050%,V≤0.060%,Ti≤0.050%,Ni≤0.30%,Cr≤0.30%,Mo≤0.10%,Cu≤0.30%,N≤0.012%;
    国家标准GB/T 714中对桥梁用结构钢板Q235q的成分要求为:C≤0.17%,Mn≤1.40%,Si≤0.35%,P≤0.020%,S≤0.010%,Al≥0.015%,Ni≤0.30%,Cr ≤0.30%,Cu≤0.30%,N≤0.012%;
    根据产品力学性能及订单量情况,对以上三种牌号的结构用钢板在轧制及热处理一致的情况下,制定统一冶炼牌号J-1,成分设计为:C:0.15%~0.17%,Mn:0.90%~1.10%,Si:0.20%~0.30%,P≤0.015%,S≤0.005%,Nb≤0.020%,Al:0.020%~0.050%,N≤0.012%,V≤0.030%,Ni≤0.030%,Cr≤0.050%,Mo≤0.030%,Cu≤0.050%,Ti:0.006%~0.020%,B≤0.0005%,Ca:0.0008%~0.00400%,Ceq:0.26%~0.33%;
    S2、冶炼过程针对订单探伤要求进行冶炼流程设计,探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→RH真空处理→CCM浇铸,非探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→CCM浇铸;
    S3、生产计划根据产品订单量、交货期需求进行生产排产,
    S4、冶炼后余坯进行余坯管理,优先用于后续订单生产。
  3. 根据权利要求1所述的一种一钢多级用结构钢坯料生产方法,其特征在于:包括
    S1、依据订单产品的制造标准及规范,对建筑结构用钢、风塔钢、桥梁用结构钢、低合金高强度结构钢采用0.08%≤C<0.22%包晶及中碳类成分体系设计,按钢级进行统一成分设计并制定冶炼代码,在此基础上调整其他合金含量,满足产品力学性能要求,具体:
    国家标准GB/T 19879中对建筑结构用钢板Q420GJ的成分要求为:C≤0.18%,Mn≤1.70%,Si≤0.55%,P≤0.020%,S≤0.010%,Nb≤0.070%,V≤0.20%,Ti≤0.030%,Al≥0.020%,Ni≤1.0%,Cr≤0.80%,Mo≤0.50%,Cu≤0.30%;
    国家标准GB/T 28410中对风力发电塔用结构钢板Q420FT的成分要求为:C≤0.20%,Mn:1.00%~1.70%,Si≤0.50%,P≤0.020%,S≤0.010%,Al≥0.015%,Nb≤0.060%,V≤0.15%,Ti≤0.050%,Ni≤0.50%,Cr≤0.30%,Mo≤0.20%,Cu≤0.30%,N≤0.010%;
    国家标准GB/T 714中对桥梁用结构钢板Q420q的成分要求为:C≤0.18%,Mn:1.00%~1.70%,Si≤0.55%,P≤0.020%,S≤0.010%,Nb≤0.060%,V≤0.08%,Ti≤0.030%,Al≥0.015%,Ni≤0.70%,Cr≤0.80%,Mo≤0.35%,Cu≤0.55%,B≤0.0040%,N≤0.012%;
    国家标准GB/T 1591中对低合金高强度结构钢板Q420的成分要求为:C≤0.20%,Mn≤1.70%,Si≤0.50%,P≤0.025%,S≤0.020%,Al≥0.015%,Nb≤0.070%,V≤0.20%,Ti≤0.20%,Ni≤0.80%,Cr≤0.30%,Mo≤0.20%,Cu≤0.30%,N≤0.015%;
    根据产品力学性能及每月订单量情况,对以上四种牌号的结构用钢板在轧制及热处理一致的情况下,制定统一冶炼牌号J-19,成分设计为:C:0.060%~0.080%,Mn:1.30%~1.50%,Si:0.20%~0.40%,P≤0.020%,S≤0.005%,Nb:0.020%~0.030%,V:0.020%~0.040%,Ti:0.010%~0.020%,Al:0.020%~0.050%,N≤0.0080%,Ni≤0.30%,Cr:0.20%~0.30%,Mo≤0.03%,Cu≤0.05%,B≤0.0010%,Ca:0.0008%~0.00400%,Ceq:0.36%~0.46%;
    S2、冶炼过程针对订单探伤要求进行冶炼流程设计,探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→RH真空处理→CCM浇铸,非探伤钢种冶炼流程为:铁水脱硫→BOF冶炼→LF精炼→CCM浇铸;
    S3、生产计划根据产品订单量、交货期需求进行生产排产,
    S4、冶炼后余坯进行余坯管理,优先用于后续订单生产。
PCT/CN2020/103544 2019-09-10 2020-07-22 一种一钢多级用结构钢坯料生产方法 WO2021047295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20863199.4A EP4015666A4 (en) 2019-09-10 2020-07-22 METHOD FOR PRODUCING A MULTI-STAGE STRUCTURAL STEEL BLANK FOR A STEEL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910850212.1A CN110656285A (zh) 2019-09-10 2019-09-10 一种一钢多级用结构钢坯料生产方法
CN201910850212.1 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021047295A1 true WO2021047295A1 (zh) 2021-03-18

Family

ID=69036832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103544 WO2021047295A1 (zh) 2019-09-10 2020-07-22 一种一钢多级用结构钢坯料生产方法

Country Status (3)

Country Link
EP (1) EP4015666A4 (zh)
CN (1) CN110656285A (zh)
WO (1) WO2021047295A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114369753A (zh) * 2022-01-07 2022-04-19 鞍钢股份有限公司 一种基于柔性轧制技术生产多强度级别合金结构钢的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656285A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级用结构钢坯料生产方法
CN112795834B (zh) * 2020-11-19 2021-12-03 唐山钢铁集团有限责任公司 一种中碳中硅高铝双相钢连铸坯的生产方法
CN113528939A (zh) * 2021-06-10 2021-10-22 江苏利淮钢铁有限公司 一种高性能汽车转向***中横拉杆接头用钢

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586750A (zh) * 2004-08-20 2005-03-02 钢铁研究总院 一种低碳钢螺纹钢筋的轧制方法
CN101419139A (zh) * 2008-05-06 2009-04-29 首钢总公司 一种防止探伤专用钢板产生氢致裂纹的方法
JP2011202237A (ja) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp 構造部材用高強度および高延性オーステナイト系ステンレス鋼板およびその製造方法
CN102676947A (zh) * 2012-05-17 2012-09-19 莱芜钢铁集团有限公司 一种焊接结构钢及其制造方法
CN103589954A (zh) * 2013-11-29 2014-02-19 东北大学 一种一钢多级的热轧钢板及其制造方法
CN106929758A (zh) * 2017-03-03 2017-07-07 唐山钢铁集团有限责任公司 一钢多级冷轧低合金高强钢带及其生产方法
CN109778069A (zh) * 2019-03-29 2019-05-21 武汉钢铁有限公司 一种屈服强度覆盖240~270Mpa级别的一钢多级冷轧低合金高强度钢及其制造方法
CN110656275A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级用低温容器钢坯料生产方法
CN110656285A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级用结构钢坯料生产方法
CN110656284A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级坯料生产方法
CN110656274A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级用船板坯料生产方法
CN110735080A (zh) * 2019-10-10 2020-01-31 南京钢铁股份有限公司 一种一钢多级用特殊容器钢坯料生产方法
CN110735079A (zh) * 2019-10-10 2020-01-31 南京钢铁股份有限公司 一种一钢多级用高强钢坯料生产方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001752A (ja) * 1998-06-17 2000-01-07 Nippon Steel Corp 耐食性および疲労強度に優れた溶接継手
CN104328356A (zh) * 2014-09-29 2015-02-04 南京钢铁股份有限公司 一种炉卷轧机生产薄规格高强结构钢板的制造方法
CN107012307A (zh) * 2017-04-07 2017-08-04 荆楚理工学院 一种可作为多个类别钢板使用的多能钢板生产方法
CN107385324B (zh) * 2017-06-08 2019-02-12 江阴兴澄特种钢铁有限公司 一种大厚度q500gjcd高强度建筑结构用钢板及其制造方法
CN108531816B (zh) * 2018-05-24 2019-12-10 南京钢铁股份有限公司 一种500MPa级工程机械用钢及其制造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586750A (zh) * 2004-08-20 2005-03-02 钢铁研究总院 一种低碳钢螺纹钢筋的轧制方法
CN101419139A (zh) * 2008-05-06 2009-04-29 首钢总公司 一种防止探伤专用钢板产生氢致裂纹的方法
JP2011202237A (ja) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp 構造部材用高強度および高延性オーステナイト系ステンレス鋼板およびその製造方法
CN102676947A (zh) * 2012-05-17 2012-09-19 莱芜钢铁集团有限公司 一种焊接结构钢及其制造方法
CN103589954A (zh) * 2013-11-29 2014-02-19 东北大学 一种一钢多级的热轧钢板及其制造方法
CN106929758A (zh) * 2017-03-03 2017-07-07 唐山钢铁集团有限责任公司 一钢多级冷轧低合金高强钢带及其生产方法
CN109778069A (zh) * 2019-03-29 2019-05-21 武汉钢铁有限公司 一种屈服强度覆盖240~270Mpa级别的一钢多级冷轧低合金高强度钢及其制造方法
CN110656275A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级用低温容器钢坯料生产方法
CN110656285A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级用结构钢坯料生产方法
CN110656284A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级坯料生产方法
CN110656274A (zh) * 2019-09-10 2020-01-07 南京钢铁股份有限公司 一种一钢多级用船板坯料生产方法
CN110735080A (zh) * 2019-10-10 2020-01-31 南京钢铁股份有限公司 一种一钢多级用特殊容器钢坯料生产方法
CN110735079A (zh) * 2019-10-10 2020-01-31 南京钢铁股份有限公司 一种一钢多级用高强钢坯料生产方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAO DAYONG: "Research on the Cost Control Optimizing of Qinhuangdao Shougang Plate Co., Ltd.", CHINESE MASTER'S THESES FULL-TEXT DATABASE, SHAANXI NORMAL UNIVERSITY, CN, 15 January 2019 (2019-01-15), CN, XP055791756, ISSN: 1674-0246 *
See also references of EP4015666A4 *
ZHANG, LING ET AL.: "Design Concept of Grouped Steel Grades to Integrate and Simplify Slab Steel Grades", NISCO TECHNOLOGY AND MANAGEMENT, 15 June 2020 (2020-06-15), pages 5 - 8, XP009526759 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114369753A (zh) * 2022-01-07 2022-04-19 鞍钢股份有限公司 一种基于柔性轧制技术生产多强度级别合金结构钢的方法
CN114369753B (zh) * 2022-01-07 2023-03-03 鞍钢股份有限公司 一种基于柔性轧制技术生产多强度级别合金结构钢的方法

Also Published As

Publication number Publication date
CN110656285A (zh) 2020-01-07
EP4015666A1 (en) 2022-06-22
EP4015666A4 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2021047295A1 (zh) 一种一钢多级用结构钢坯料生产方法
CN100435987C (zh) 一种基于薄板坯连铸连轧流程采用Ti微合金化工艺生产700MPa级高强耐候钢的方法
AU2020442274B2 (en) 690 MPa-graded easy-to-weld corrosion-resisting high-strength steel and manufacturing method therefor
CN101147920A (zh) 含钒汽车梁用热轧钢板表面氧化铁皮控制方法
CN102179407A (zh) 一种可避免轧制极薄带钢边裂的热轧带钢的制备方法
CN111534740A (zh) 一种550MPa抗疲劳高强高韧钢板及其制造方法
CN101397634B (zh) 耐大气腐蚀的08CrNiCu低合金高强度免退火冷镦钢及生产工艺
CN112210719A (zh) 一种低成本高性能q500桥梁钢及生产方法
CN100345982C (zh) Nak80模具钢的预硬化处理方法
CN105834212A (zh) 热轧卷板生产工艺及热轧卷板
CN101413091A (zh) 新型易切削不锈钢303b及其制造方法
CN103045936A (zh) 一种合金减量化生产q345级中厚钢板的方法
CN102978538A (zh) 一种生产ⅱ级热轧螺纹钢筋的冶炼工艺
CN104152805A (zh) 一种合金钢及其热处理方法
CN110735080A (zh) 一种一钢多级用特殊容器钢坯料生产方法
CN110735079A (zh) 一种一钢多级用高强钢坯料生产方法
CN102517428A (zh) 一种低压缩比探伤厚板的生产方法
CN109972058B (zh) 一种汽车用冷轧低合金高强度空冷强化钢及制备方法
CN110656275A (zh) 一种一钢多级用低温容器钢坯料生产方法
CN108728740B (zh) 一种低屈强比铁道车辆用热轧钢带及其生产方法
CN110656284A (zh) 一种一钢多级坯料生产方法
CN110656274A (zh) 一种一钢多级用船板坯料生产方法
CN110643884A (zh) 一种一钢多级用管线钢坯料生产方法
WO2022142101A1 (zh) 一种高韧性高时效冲击钢板及其制造方法
CN113913674A (zh) 一种经济型焊管用热轧钢带q355b的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020863199

Country of ref document: EP

Effective date: 20220317