WO2021002223A1 - 車載装置及びその制御方法、並びに車両 - Google Patents

車載装置及びその制御方法、並びに車両 Download PDF

Info

Publication number
WO2021002223A1
WO2021002223A1 PCT/JP2020/024193 JP2020024193W WO2021002223A1 WO 2021002223 A1 WO2021002223 A1 WO 2021002223A1 JP 2020024193 W JP2020024193 W JP 2020024193W WO 2021002223 A1 WO2021002223 A1 WO 2021002223A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving support
vehicle
server
information
sub
Prior art date
Application number
PCT/JP2020/024193
Other languages
English (en)
French (fr)
Inventor
明紘 小川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021529961A priority Critical patent/JP7416067B2/ja
Priority to US17/616,423 priority patent/US20220250640A1/en
Priority to CN202080042042.5A priority patent/CN113924788B/zh
Publication of WO2021002223A1 publication Critical patent/WO2021002223A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • This disclosure relates to an in-vehicle device, its control method, and a vehicle.
  • This application claims priority based on Japanese Application No. 2019-122834 filed on July 1, 2019, and all the contents described in the Japanese application are incorporated herein by reference.
  • the vehicle uses wireless communication to connect to a nearby wireless base station and communicate with the server via that wireless base station.
  • a server is installed at a position close to the site where the vehicle travels, and the sensor data is processed by this server.
  • This server is called an edge server in the sense that it is installed near the site.
  • edge server Where to install the edge server depends on the design concept, but it is considered efficient to install the edge server near the wireless base station (mobile edge).
  • the driver assistance system 50 disclosed in Patent Document 1 described later covers, for example, radio base stations 60, 64, and 68 covering different areas 110, 112, and 114 of one highway, respectively.
  • edge servers 62, 66 and 70 installed at positions close to these radio base stations 60, 64 and 68, respectively, and connected to the radio base stations 60, 64 and 68, respectively.
  • the radio base stations 60, 64 and 68 are connected to the core network (core network) 82 by the backhaul 80.
  • the radio base station 60 and the radio base station 68 are connected to the backhaul 80 by an optical fiber 120 and an optical fiber 124, respectively.
  • the radio base station 64 is connected to the metal wire 122.
  • the backhaul 80 is further connected by an optical fiber 126 to the wider core network 82.
  • the core network 82 is connected to a wide range of servers and radio base stations by optical fibers 128 and 130.
  • Cameras 90 and LiDAR (light detection and ranking) 92 are provided at intersections in area 110, cameras 94 and LiDAR 96 are provided at intersections in area 112, and cameras 98 and LiDAR 100 are provided at intersections in area 114.
  • a driving support server that processes sensor data transmitted from vehicles existing in these and the areas 110, 112, and 114, respectively, is in operation.
  • the driving support information from each driving support server is transmitted from the edge servers 62, 66 and 70 to each vehicle via the radio base station 60, the radio base station 64, the radio base station 68 and the like.
  • the vehicle 140 existing in the area 110 is connected to the wireless base station 60 by wireless communication 102.
  • the vehicle 140 further communicates with the edge server 62 provided in the vicinity of the radio base station 60 via the radio base station 60, and receives driving support information.
  • the in-vehicle device includes a driving support device that receives driving support information from the driving support server and executes a predetermined process for driving support, and a subset of the functions of the driving support server.
  • a sub-driving support server that receives sensor data from an external sensor and outputs a subset of driving support information, and driving support from the driving support server in response to interruption of reception of driving support information from the driving support server.
  • the first switching device that gives the driving support device a subset of the driving support information from the sub-driving support server, and the sub-driving in response to the restoration of the reception of the driving support information from the driving support server.
  • a subset of the driving support information from the support server it includes a second switching device for giving the driving support information from the driving support server to the driving support device.
  • the vehicle according to the second aspect of this disclosure includes the above-mentioned in-vehicle device and the vehicle control device to be supported by the driving support device.
  • the method of controlling the in-vehicle device includes a step of receiving driving support information from the driving support server and executing a predetermined process for driving support, and a subset of the functions of the driving support server. , The step of starting the sub-driving support server that receives the sensor data from the external sensor and outputs a subset of the driving support information, and the driving support in response to the interruption of the reception of the driving support information from the driving support server.
  • the sub It includes a step of giving driving support information from the driving support server to the driving support device instead of a subset of the driving support information from the driving support server.
  • FIG. 1 is a schematic configuration diagram of a driving support system including a conventional in-vehicle device.
  • FIG. 2 is a schematic block diagram of the vehicle-mounted device and each part of the vehicle controlled by the vehicle-mounted device according to the embodiment of the disclosure.
  • FIG. 3 is a diagram showing an example of connection between the in-vehicle device and the edge server in the embodiment of this disclosure.
  • FIG. 4 is a functional block diagram of the mini-edge server of the embodiment of this disclosure.
  • FIG. 5 is a schematic diagram for explaining a method of selecting a cooperative node by the mini-edge server according to the embodiment of this disclosure.
  • FIG. 6 is a flowchart showing the control structure of the program showing the control structure of the program for installing the mini-edge server shown in FIG.
  • FIG. 7 is a flowchart showing a control structure of a program that causes a computer to function as the mini-edge server shown in FIG.
  • FIG. 8 is a block diagram showing a schematic hardware configuration of a computer for realizing the functions of the in-vehicle device shown in FIG.
  • FIG. 9 is a block diagram showing a functional configuration of the mini-edge server according to the second embodiment of the disclosure.
  • the purpose of this disclosure is to provide an in-vehicle device that can use driving support information, a control method thereof, and a vehicle even when the connection with the edge server cannot be performed.
  • the in-vehicle device is a subset of the functions of a driving support device that receives driving support information from a driving support server and executes a predetermined process for driving support, and a driving support server. From the sub-driving support server that receives sensor data from an external sensor and outputs a subset of the driving support information, and from the driving support server in response to the interruption of the reception of the driving support information from the driving support server.
  • a second switching device for giving driving support information from the driving support server to the driving support device instead of a subset of the driving support information from the sub-driving support server.
  • the first switching device gives the driving support device a subset of the driving support information output by the sub-driving support server. Even if the driving support information is not obtained, the driving support device operates using the subset. As a result, it is possible to provide an in-vehicle device that can use driving support information even when the connection with the edge server cannot be performed.
  • the sub-driving support server of the in-vehicle device includes a computer and a storage device for storing a program executed by the computer, and the in-vehicle device further responds to an installation instruction of the sub-driving support server. It also includes an installer for installing a program for realizing a sub-operation support server in a computer in a storage device.
  • the sub-driving support server includes a computer and a storage device, and is installed in the in-vehicle device in response to an installation instruction.
  • the in-vehicle device functions as an in-vehicle device that can use the driving support information even when the connection with the edge server cannot be established.
  • the in-vehicle device further includes a server restructuring device for reconstructing the sub-driving support server at predetermined time intervals.
  • the sub-driving support server is rebuilt at predetermined time intervals.
  • the sub-driving support server can provide the latest subset of driving support information at predetermined time intervals.
  • the in-vehicle device is equipped with a state storage device for storing the internal / external situation of the in-vehicle device and a cooperative state with other sensor-equipped devices based on the driving support information, and a state storage device. It further includes a server rebuilding device for rebuilding the sub-operation support server in response to changes in either the internal or external situation of the device or the state of coordination with other sensor-equipped devices.
  • the sub-driving support server is reconstructed when there is a change in either the internal or external situation of the in-vehicle device or the state of cooperation with other sensor-equipped devices. As a result, the sub-driving support server can provide the latest subset of driving support information in response to changes in the surrounding environment.
  • the in-vehicle device further includes a background processing execution device for starting the sub-driving support server at the same time as starting the in-vehicle device and operating in the background of receiving the driving support information from the driving support server. Including.
  • the sub-driving support server is running in the background. Therefore, even when the driving support information cannot be delivered from the driving support server, the switching by the first switching device can be seamlessly performed.
  • the vehicle can continue to be assisted by at least a subset of driving assistance information.
  • the sub-driving support server is set not to start when the in-vehicle device is started, and the in-vehicle device further responds to the interruption in receiving the driving support information from the driving support server.
  • the sub-driving support server does not operate in the background, but is started when the reception of driving support information from the driving support server is interrupted.
  • the load of the sub driving support server is not applied to the in-vehicle device. Therefore, this sub-driving support server can be used even in an in-vehicle device having a low processing capacity.
  • the vehicle according to the second aspect of this disclosure includes any of the above-mentioned in-vehicle devices and a vehicle control device to be supported by the driving support device.
  • the driving support device when the reception of the driving support information from the driving support server is interrupted, a subset of the driving support information output by the sub-driving support server by the first switching device is given to the driving support device. .. Even if driving support information is not obtained, the driving support device can provide driving support using a subset of the information. As a result, it is possible to provide a vehicle that can use the driving support information even when the connection with the edge server cannot be performed.
  • the method of controlling the in-vehicle device is a process in which the computer receives the driving support information from the driving support server and gives it to the driving support device that executes a predetermined process for driving support. And the step that the computer has a subset of the functions of the driving assistance server, receives sensor data from an external sensor, and starts the sub-driving assistance server that outputs a subset of the driving assistance information, and the computer In response to the interruption in receiving the driving support information from the driving support server, a process of giving a subset of the driving support information from the sub-driving support server to the driving support device instead of the driving support information from the driving support server is performed.
  • the driving assistance information from the driving assistance server replaces the subset of the driving assistance information from the sub-driving assistance server. Includes a step of resuming the process of giving the driving support device.
  • the driving support device when the reception of the driving support information from the driving support server is interrupted, a subset of the driving support information output by the sub driving support server is given to the driving support device. Even if driving support information is not obtained, the driving support device can provide driving support using a subset of the information. As a result, it is possible to provide a control method for the in-vehicle device so that the driving support information can be used even when the connection with the edge server cannot be performed.
  • FIG. 2 shows a schematic configuration diagram of the vehicle 160 according to the first embodiment of the disclosure.
  • the vehicle 160 includes various sensors such as LiDAR204, an in-vehicle camera 202, and a millimeter-wave radar 200, and an in-vehicle device 210 for collecting sensor data from these sensors and transmitting the sensor data to an edge server by wireless communication.
  • various ECUs 212 that are the targets of control by the in-vehicle device 210. Since the in-vehicle device 210 has a mini-edge server function as described later, the vehicle 160 receives sensor information from surrounding nodes and causes the mini-edge server to process the sensor information even if the distribution data from the edge server cannot be received. By doing so, you can enjoy driving support.
  • FIG. 3 shows the functional configuration of the vehicle 160 related to driving support in a block diagram format.
  • the vehicle 160 is connected to the in-vehicle device 210 that communicates with the edge server 62, the infrastructure equipment 232, and the other vehicle 230 via wireless communication, and the in-vehicle device 210, and carries various sensor data in the vehicle. It includes various sensors 270 for giving to the device 210, and various ECUs 212 connected to the vehicle-mounted device 210 and driving each part of the vehicle 160 according to information from the vehicle-mounted device 210.
  • the various ECUs 212 are an automatic driving ECU 272 for controlling each part of the vehicle 160 for driving support according to the driving support information given from the edge server 62, the driving support information also given from the edge server 62, and the driver. It includes various ECUs 274 for controlling each part of the vehicle for driving support according to instructions.
  • the driving support information may include any information that is useful for the subject who drives the vehicle to drive the vehicle safely. An example is the position and attributes of a dynamic object existing in the traveling direction of the vehicle 160 in a traffic environment. Attributes specifically include the classification of objects such as vehicles, pedestrians, and falling objects that are present in the direction of travel of the vehicle 160.
  • the in-vehicle device 210 is an edge server 62 based on sensor data collected by communication with an external communication device 262 for wireless communication with the outside and some nodes via the external communication device 262, as will be described later. It includes a mini-edge server 266 that realizes a subset of the functions provided by the above and generates a subset of driving support information output by the edge server 62.
  • the main function provided by the edge server 62 is to detect the position of a dynamic object in the traffic environment and its attributes by collecting sensor data from vehicles and infrastructure sensors and analyzing the sensor data.
  • the in-vehicle device 210 further switches communication between the various sensors 270, the automatic operation ECU 272 and the various ECUs 274, and the edge server 62 or the mini edge server 266, based on whether or not communication with the edge server 62 is possible. It includes an in-vehicle GW (gateway) 260 and an in-vehicle / out-of-vehicle cooperation unit 264 that is connected to the in-vehicle communication device 262 and the in-vehicle GW 260 and performs cooperation processing based on information between the inside and outside of the vehicle 160.
  • gateway gateway
  • the in-vehicle GW 260 gives driving support information from the edge server 62 to the automatic driving ECU 272, various ECUs 274, etc. when communication with the edge server 62 is possible, but when it becomes impossible, the driving support from the mini edge server 266
  • the communication path is switched so as to give information to the automatic operation ECU 272, various ECUs 274, and the like.
  • the vehicle-mounted GW 260 switches the communication path so as to resume the process of giving the driving support information from the edge server 62 to the automatic driving ECU 272, various ECUs 274, and the like.
  • the mini-edge server 266 follows the node information DB 302 that stores information about each node of the network with which the vehicle 160 communicates, and sensor data, vehicle information, and infrastructure equipment information received from the outside.
  • the node information updating unit 300 for updating the information stored in the node information DB 302, and the timer 312 for outputting a signal instructing to rebuild the mini-edge server 266 at regular intervals are included.
  • the reconstruction of the mini-edge server 266 means that the number of nodes for which the mini-edge server 266 collects sensor data is re-established in response to changes in the surrounding environment as the vehicle progresses and changes in the vehicle interior conditions as described later.
  • the node used by the mini-edge server 266 selected in this way is referred to as a "cooperative node”.
  • the mini-edge server 266 further includes a vehicle resource DB 310 for storing information on vehicle resources related to the vehicle 160 (computer capabilities, computer CPU load, memory pressure, communication speed, etc., which will be described later, which constitute the in-vehicle device 210).
  • vehicle resources related to the vehicle 160 computer capabilities, computer CPU load, memory pressure, communication speed, etc., which will be described later, which constitute the in-vehicle device 210.
  • the number of cooperative nodes determined by the node number determination unit 314 and the node information DB 302 are stored. It includes a node determination unit 316 for determining which node to communicate with and receive sensor data or the like used for updating the mini-edge server 266 based on the node information.
  • the mini-edge server 266 further realizes a subset of the functions provided by the edge server 62 based on the sensor data collected by communication with the cooperative node determined by the node determination unit 316, and the operation output by the edge server 62.
  • a sub-edge server 318 that outputs a subset of support information, a sensor data buffer 320 that receives sensor data from the outside and temporarily stores it received from the vehicle interior / external cooperation unit 264, and a sensor data analysis unit 352.
  • the output determination unit 322 for transferring only the driving support information not stored in the sensor data buffer to the automatic driving ECU 272 and various ECUs 274 via the vehicle-mounted GW 260 is included.
  • the function provided by the edge server 62 by the analysis process is the detection of the position and attribute of the dynamic object as described above.
  • the functions of the subset of the analysis process provided by the sub-edge server 318 are the detection of the position of a dynamic object in a limited range obtained from the cooperative node, and a part of the attributes detected by the edge server 62 by the analysis. Is to detect.
  • the sub-edge server 318 is an analysis process performed by the edge server 62 on the sensor data collection unit 350 that collects sensor data from the node instructed by the node determination unit 316 and the sensor data collected by the sensor data collection unit 350. It includes a sensor data analysis unit 352 that executes a subset and outputs the analysis result to the output determination unit 322.
  • the node number determination unit 314 determines the number of cooperative nodes and notifies the node determination unit 316, and the node determination unit 316 determines the number of cooperative nodes as many as the number of cooperative nodes. Determining and notifying the sensor data collection unit 350, the sensor data collection unit 350 starts collecting sensor data from the cooperation node notified from the node determination unit 316 instead of the cooperation node up to that point. And the sensor data analysis unit 352 executes a subset of the above-mentioned analysis processing on the sensor data newly started to be collected, and generates and updates the information stored in the node information DB 302 based on the result. Means to start.
  • the node number determination unit 314 includes data on the in-vehicle condition such as the processing capacity of the computer constituting the in-vehicle device 210, the current load, the memory pressure, and the bottleneck of the transfer speed of the data relay path in the in-vehicle network.
  • a certain number of cooperative nodes is selected based on the data related to the outside condition such as the line speed of communication with the outside of the vehicle and the predicted size of the received sensor data.
  • the number of cooperative nodes can be determined as a function of each of the above variables.
  • the node number determination unit 314 determines the number of cooperative nodes based on this function.
  • the node determination unit 316 determines the number of cooperative nodes determined by the node number determination unit 314 among the nodes that the out-of-vehicle communication device 262 can communicate with as follows.
  • the node number determination unit 314 can communicate with itself, and provides information on the infrastructure cameras 370, 372, etc. in the area along the planned travel path 374, and the vehicle 160 on the scheduled travel path 374. Information about vehicles 162, 164, etc. traveling in the same direction as the scheduled travel path 374 of the above is read from the node information DB 302.
  • the node determination unit 316 further scores the detection range of these sensor data according to the following criteria. (1) Give a higher score to the node of the infrastructure sensor such as the infrastructure camera than the node of the vehicle sensor. (2) A sensor having a detection range along the traveling direction of the vehicle 160, and a larger portion where the detection range and the detection range of the sensor of the vehicle 160 do not overlap is larger and closer, the higher the score. give. (3) A high score is given to a sensor that includes accident information (a sign of an accident or a post-accident site) in the detection range.
  • the reason why the infrastructure sensor is given a high score is that the infrastructure sensor is generally installed in a place with good visibility such as a high place, and the detection range of the sensor is wide.
  • the vehicle 162, the infrastructure cameras 370 and 372, and the vehicle 164 are candidates for the cooperative node. For example, when the number of cooperative nodes determined by the node number determination unit 314 is two, two must be selected from these four candidates.
  • the infrastructure cameras 370 and 372 and the vehicle 162 have a detection range that overlaps with the traveling direction of the vehicle 160, but the sensor (for example, an in-vehicle camera) of the vehicle 162 is not an infrastructure sensor.
  • the detection range of the vehicle 160 of the infrastructure camera 372 along the planned travel path 374 is narrower than the detection range of the infrastructure camera 370. Therefore, of these three, the infrastructure camera 370 is given the highest score, and the infrastructure camera 372 and the vehicle 162 are given only the smallest score.
  • the detection range of the sensor of the vehicle 164 (for example, the in-vehicle camera) does not overlap with the detection range of the sensor of the vehicle 160 due to the large area along the planned travel path 374 and the presence of the standing tree 378 and the building 376. The part is big. Therefore, the vehicle 164 is given a large score. From the above, in the case shown in FIG. 5, the infrastructure camera 370 and the vehicle 164 are selected as the cooperative nodes.
  • the above score can be calculated if the planned travel route 374 is determined, the detection range of each vehicle sensor and infrastructure sensor is known, and the range that cannot be seen from the vehicle 160 is known based on the high-precision map. ..
  • FIG. 6 is a flowchart showing the control structure of the installer program for installing the mini-edge server 266 described above in the in-vehicle device 210.
  • the installer program can be started manually or on a regular basis. Alternatively, the program can be started every day when the vehicle is first started. Further, when it is possible to communicate with the server, this program may be started by an instruction from the server.
  • this program determines in response to step 400, which determines whether or not the mini-edge server has been installed in the in-vehicle device 210 at the same time as startup, and the determination in step 400 is affirmative.
  • Step 402 to access the address (for example, the edge server 62 or the URL specified in advance by the vehicle seller) to check the latest version of the mini edge server, and the program of the mini edge server installed in the in-vehicle device 210.
  • step 404 which compares the version with the program of the mini-edge server existing at a predetermined address, determines whether or not the latest version of the program needs to be installed, and branches the control flow according to the determination.
  • this program downloads the program of the mini-edge server from a predetermined address, stores it in an auxiliary storage device 528 (see FIG. 8) or the like described later, and stores it in the in-vehicle device 210.
  • Step 408 to be installed after the execution of step 406, and when the determination in step 404 is negative, the program of the mini edge server 266 installed in the in-vehicle device 210 is started and the execution of this program is terminated. And include.
  • steps 406 and 408 are executed even when the determination of step 400 in FIG. 6 is negative.
  • the mini edge server is started, the sensor information is received from the surrounding nodes, and the inside of the mini edge server. You can enjoy driving support by processing with the sub-driving support server of.
  • FIG. 7 is a flowchart showing a control structure of a program for starting a mini-edge server according to the embodiment of this disclosure. This program is repeatedly started by the timer 312 shown in FIG. 4 at regular intervals. At that time, the previously executed program is canceled.
  • this program includes a step 450 for observing the situation inside and outside the vehicle immediately after the start, a step 452 for determining the number of cooperative nodes, and a step for determining the number of cooperative nodes determined in step 452. 454 and including.
  • step 450 referring to the vehicle resource DB 310 shown in FIG. 4, the processing power of the computer constituting the in-vehicle device 210, the current load, the memory pressure, the bottleneck of the transfer speed of the data relay path in the in-vehicle network, and the like are determined.
  • the data related to the in-vehicle condition and the data related to the outside condition such as the line speed of communication with the outside of the vehicle and the predicted size of the received sensor data are read out.
  • step 452 the number of cooperative nodes is determined according to a predetermined function based on the above information.
  • step 454 the information about the nodes such as the infrastructure sensor and the vehicle that the in-vehicle device 210 can communicate with is read from the node information DB 302 shown in the figure, and the information is coordinated according to the criteria already described and the number of nodes determined in step 452. Select a node.
  • This program further includes step 460 to execute the following process 462 for each of the analysis results generated in step 458.
  • the process 462 determines whether or not the analysis result of the processing target is included in the distribution information from the edge server 62, and if it is included, the determinations of step 480 and step 480 to end the execution of the process 462. When negative, it includes step 482 of transferring the analysis result of the processing target to the automatic operation ECU 272.
  • step 480 comparison is performed with the distribution information stored in the sensor data buffer 320 shown in FIG. 4 from the edge server 62.
  • the edge server 62 is operating normally, the analysis result of the processing target is also stored in the sensor data buffer. Therefore, the analysis result of the mini edge server 266 is not transferred to the automatic operation ECU 272.
  • the communication with the edge server 62 is interrupted, the analysis result by the mini edge server 266 is not stored in the sensor data buffer, and is therefore transferred to the automatic operation ECU 272.
  • the in-vehicle device 210 described above operates as follows.
  • Mini Edge Server 266 For example, when the vehicle 160 (see FIG. 2) is started, the program shown in FIG. 6 is executed by the in-vehicle device 210. If the mini-edge server 266 is already installed, the determination in step 404 is performed from step 400 in FIG. 6 through steps 402. If the latest version needs to be installed, the program is downloaded and installed on the in-vehicle device 210 in step 406. The program is started in step 408, and the mini edge server 266 starts processing.
  • step 406 If the latest version of the mini edge server 266 is already installed in the in-vehicle device 210, the program installation (step 406) is skipped and the mini edge server 266 is started (step 408).
  • step 400 If the mini-edge server 266 is not installed in the in-vehicle device 210, control moves from step 400 to step 406, and the program is downloaded and installed in the in-vehicle device 210 in step 406. The program is started in step 408, and the mini edge server 266 starts processing.
  • the mini-edge server 266 always operates in the background separately from the processing of the distribution information from the edge server 62.
  • This processing is realized by the background processing function which is a basic function of the OS (Operating System) of the mini edge server.
  • the distribution information is transmitted to the automatic driving ECU 272 via the external communication device 262, the in-vehicle / external cooperation unit 264, and the in-vehicle GW 260.
  • the automatic driving ECU 272 controls each part of the vehicle 160 according to this information.
  • This distribution information is also given to the mini edge server 266 from the vehicle interior / external cooperation unit 264.
  • information about the node is given to the node information update unit 300 and stored in the node information DB 302.
  • the sensor data is given to the sensor data buffer and temporarily stored.
  • the mini edge server 266 is regularly rebuilt. That is, the timer 312 shown in FIG. 4 periodically transmits a signal indicating that the mini-edge server 266 is to be reconstructed to the node number determination unit 314 and the node determination unit 316. In response to this signal, the node number determination unit 314 determines the number of cooperative nodes using the information stored in the vehicle resource DB 310. In response, the node determination unit 316 determines as many cooperative nodes as the number determined by the node number determination unit 314 according to the node information stored in the node information DB 302, and the sensor of the sub-edge server 318. Instruct the data collection unit 350.
  • the sensor data collection unit 350 collects sensor data from the node instructed by the node determination unit 316 and gives it to the sensor data analysis unit 352.
  • the sensor data analysis unit 352 executes a subset of the analysis processing performed by the edge server 62 on the collected sensor data, detects the position of a dynamic object existing in a limited range, and part of those attributes. Output the analysis result including.
  • the output determination unit 322 determines whether or not the analysis result output by the sensor data analysis unit 352 exists in the sensor data buffer 320. If the communication between the edge server 62 and the in-vehicle device 210 is normal, the output of the sensor data analysis unit 352 is also stored in the sensor data analysis unit 352. Therefore, the output determination unit 322 does not transfer the analysis result of the sensor data analysis unit 352 to the automatic operation ECU 272.
  • the flow chart of FIG. 7 shows the flow of control. After the processes from step 450 to step 458 are executed, the process 462 is executed for each analysis result in step 460. In process 462, the determination in step 480 is always affirmative. Therefore, the process of step 482 is not executed. That is, the analysis result of the sensor data analysis unit 352 is not distributed to the automatic operation ECU 272, and the automatic operation ECU 272 operates according to the distribution information from the edge server 62.
  • the vehicle-mounted device 210 When communication with the edge server 62 is not performed normally- When the vehicle-mounted device 210 cannot receive the distribution information of the edge server 62 for some reason, the vehicle-mounted device 210 operates as follows. Even in this case, the operation of the mini edge server 266 is basically the same as when the communication with the edge server 62 is normally performed. The difference is that the contents of the sensor data buffer shown in FIG. 4 are not updated because the distribution information from the edge server 62 cannot be received. As a result, when the analysis result of the sensor data analysis unit 352 is output, the same information is not stored in the sensor data buffer. Therefore, the output determination unit 322 transfers the analysis result of the sensor data analysis unit 352 to the automatic operation ECU 272. The automatic driving ECU 272 controls each part of the vehicle 160 according to the analysis result of the sensor data analysis unit 352.
  • step 450 the processes from step 450 to step 458 are the same as when the communication with the edge server 62 is normally performed. The difference is that the determination in step 480 is negative. As a result, the analysis result of the sensor data analysis unit 352 is transferred to the automatic operation ECU 272 in step 482.
  • the in-vehicle device 210 is substantially a processor including the computer 500, and is a transmission path of data and instructions between the CPU (Central Processing Unit) 520 and each part in the CPU 520 and the computer 500. Includes the bus 522 and The computer 500 further includes a non-volatile auxiliary storage device 528 composed of a ROM (Read-Only Memory) 524, a RAM (Random Access Memory) 526, a hard disk, an SSD (Solid State Drive), etc., all of which are connected to the bus 522, and a radio.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • SSD Solid State Drive
  • Wireless communication unit 530 that provides communication with the outside by communication, input / output interface (I / F) 532 connected to bus 522, voice processing I / F 540 for providing voice interaction with the user, and USB memory.
  • the 512 is removable and includes a USB memory port 534 that allows communication between the USB memory 512 and other parts of the computer 500.
  • the in-vehicle device 210 further includes a touch panel 502 connected to the bus 522 and a monitor 504 such as a liquid crystal display including a display control device.
  • the above-mentioned automatic operation ECU 272, various ECUs 274, and various sensors 270 are connected to the input / output I / F 532.
  • a speaker and a microphone 510 are connected to the voice processing I / F 540.
  • the start program of the computer 500 and the like are stored in the ROM 524.
  • the RAM 526 is used as a work area for storing various variables during processing by the CPU 520.
  • the node information DB 302, the vehicle resource DB 310, the sensor data buffer, and the sensor data storage unit (not shown) collected by the sensor data collection unit 350 (not shown) are all shown in FIG. It is realized by the auxiliary storage device 528 or RAM 526 shown in. Typically, these are stored in the RAM 526 when the vehicle-mounted device 210 is in operation, and are periodically stored in the auxiliary storage device 528 as a backup.
  • a computer program for operating the computer 500 as a function of the in-vehicle device 210 and its components is stored in the USB memory 512, the USB memory 512 is attached to the USB memory port 534, and the program is transferred to the auxiliary storage device 528. .. Alternatively, this program may be transmitted from another computer to the computer 500 via a network (not shown) via wireless communication by the wireless communication unit 530 and stored in the auxiliary storage device 528.
  • the program is loaded into RAM 526 at the time of execution.
  • the CPU 520 reads a program from the RAM 526 according to an address indicated by a register (not shown) called a program counter inside the CPU 520, interprets the instruction, and outputs data necessary for executing the instruction to the RAM 526 according to the address specified by the instruction. , Auxiliary storage device 528 or other devices such as input / output I / F 532 and voice processing I / F 540, and execute the instruction.
  • the CPU 520 stores the execution result data at an address designated by the program, such as a RAM 526, an auxiliary storage device 528, and a register in the CPU 520.
  • the computer program may be loaded directly into the RAM 526 from the USB memory 512 or via the network.
  • the program that realizes each function of the in-vehicle device 210 includes a plurality of instructions for causing the computer 500 to operate as the mini-edge server 266 according to the embodiment of the present disclosure, and a plurality of instructions for installing the mini-edge server 266 in the computer 500. Includes instructions for. Some of the basic functions required to perform this operation are provided by an operating system (OS) or third-party program running on the computer 500, or modules of various toolkits installed on the computer 500. Therefore, this program does not necessarily include all of the functions necessary to realize the system and method of this embodiment.
  • This program by calling the appropriate function or "programming tool kit" in an instruction in a controlled manner to obtain the desired result, as the mini-edge server 266 and its components as described above. It only needs to contain instructions to execute the operation.
  • the mini-edge server 266 is periodically reconstructed and always operates in the background regardless of whether or not communication with the edge server 62 is normally performed.
  • the analysis result by the mini edge server 266 is not used for driving support such as vehicle control. Only when the distribution information from the edge server 62 cannot be received, the analysis result by the mini edge server 266 is used for driving support in place of the distribution information from the edge server 62.
  • the analysis result by the mini edge server 266 is a subset of the analysis result by the edge server 62, and is generated based on the information from the node which is effective for driving support of the vehicle although it is limited. Therefore, even when a situation occurs in which the in-vehicle device 210 and the edge server 62 cannot communicate with each other temporarily, the vehicle can seamlessly use the analysis result of the mini edge server 266 and enjoy effective driving support.
  • the analysis result by the mini-edge server 266 is only a subset of the distribution by the edge server 62, and does not provide all the attributes provided by the edge server 62 by the analysis, for example. Therefore, the mini-edge server 266 cannot completely replace the edge server 62.
  • the in-vehicle device 210 can not obtain the distribution information from the edge server 62. Can provide effective driving support to the server.
  • the output determination unit 322 (see FIG. 4) of the mini edge server 266 suppresses the output of the mini edge server 266, so that the processing based on the update information of the edge server 62 is seamlessly restored. it can.
  • each node is scored according to a certain criterion, and a node with a high score is selected.
  • this disclosure is not limited to such embodiments.
  • a predetermined number of nodes may be selected in order from the one having the smallest distance from the own vehicle.
  • those having a smaller distance from the own vehicle may be selected in order.
  • those having a small distance from the own vehicle may be selected in order from those having a large overlap in the detection range.
  • various criteria can be considered as the node selection criteria.
  • the mini-edge server 266 is always running in the background and is periodically rebuilt by the timer 312.
  • this disclosure is not limited to such embodiments. You may rebuild the mini-edge server only when the surroundings change.
  • This second embodiment relates to such a mini-edge server.
  • FIG. 9 shows a block diagram of the mini edge server 600 according to the second embodiment of this disclosure.
  • this mini-edge server 600 is different from the mini-edge server 266 shown in FIG. 4 in that it is connected to the node information DB 302 and stored in the node information DB 302 instead of the timer 312 of FIG.
  • the number of nodes is determined by the node number determination unit 314 in order to rebuild the mini edge server 600. It is a point including a situation change detection unit 610 for outputting a signal instructing to perform.
  • the mini edge server 600 is the same as the mini edge server 266 according to the first embodiment.
  • the operation of the mini edge server 600 is the same as that of the mini edge server 266 except when the mini edge server 600 is rebuilt.
  • the node information update unit 300 receives the information and updates the node information DB 302 with new information.
  • the status change detection unit 610 detects it and gives a signal instructing the node determination unit 316 to determine the number of nodes.
  • the node determination unit 316 determines a new number of nodes, and the node determination unit 316 determines the number of nodes determined by the node number determination unit 314 based on the node information stored in the node information DB 302. Select as a cooperative node.
  • mini-edge server 600 Subsequent operations of the mini-edge server 600 are the same as those of the mini-edge server 266 according to the first embodiment.
  • the mini-edge server is not rebuilt periodically, but only when the node information (network configuration) is changed.
  • the node information network configuration
  • the operation is the same as in the first embodiment, but when the vehicle is traveling stably on the highway and there is little change in the surrounding vehicle configuration, etc.
  • the frequency of rebuilding the mini-edge server is reduced, and the same effect as that of the first embodiment can be obtained while reducing the load on the computer.
  • the minimum time from rebuilding the mini-edge server to the next rebuilding should be set. It may be provided. Alternatively, the rebuilding of the edge server may be started when changes in node information are accumulated to some extent. Furthermore, the cooperative node selection is performed only when there is a change in the surrounding conditions, and the sensor data collection from the cooperative node and the judgment as to whether or not the analysis result should be transferred to the ECU or the like are performed in a shorter cycle than the cooperative node selection. You may do it regularly.
  • the information for vehicle support can be obtained based on the sensor data from the nodes around the in-vehicle device. Can be done.
  • the analysis function of the mini-edge server it is possible to appropriately support the driving of the vehicle even while the distribution information from the edge server or the like cannot be received. Switching between the distribution information from the edge server and the analysis result of the mini edge server is seamlessly performed, and does not bother the driver.
  • the mini edge server is always running in the background.
  • the analysis result of the mini edge server can be used seamlessly when the distribution information from the edge server is no longer received, which is convenient for driving support.
  • this disclosure is not limited to such embodiments.
  • the mini-edge server may be started and rebuilt when the distribution information is no longer received from the edge server without operating in the background. In this case, the execution of the mini-edge server ends when the reception of the distribution information from the edge server is restored.
  • Such an implementation eliminates the load caused by the mini-edge server always operating in the background, which is particularly convenient when the computer capacity for realizing the in-vehicle device is not so large. Further, even when the power of the computer is considerably high and the mini-edge server is operated in the background, the operation of the mini-edge server may be stopped when the load applied to the in-vehicle device by other processing is large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

車載装置は、運転支援サーバから運転支援情報を受信し、運転支援のための所定の処理を実行する運転支援装置と、運転支援サーバの機能のサブセットを備え、外部のセンサからセンサデータを受信し、運転支援情報のサブセットを出力するサブ運転支援サーバと、運転支援サーバからの運転支援情報の受信が中断したことに応答して、運転支援サーバからの運転支援情報に代えて、サブ運転支援サーバからの運転支援情報のサブセットを運転支援装置に与える第1の切替装置と、運転支援サーバからの運転支援情報の受信が復旧したことに応答して、サブ運転支援サーバからの運転支援情報のサブセットに代えて、運転支援サーバからの運転支援情報を運転支援装置に与えるための第2の切替装置とを含む。

Description

車載装置及びその制御方法、並びに車両
 この開示は、車載装置及びその制御方法、並びに車両に関する。この出願は、2019年 7月 1日出願の日本出願第2019―122834号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容をここに参照により援用する。
 車両に各種のセンサを搭載し、路側等にもインフラストラクチャ設備のセンサ(以下「インフラセンサ」という)を設置して、サーバでそれらからのセンサデータを集約し解析して運転支援に利用するシステムが普及しつつある。そうしたシステムでは、車両は無線通信を使って近傍の無線基地局に接続し、その無線基地局を介してサーバと通信を行う。
 運転支援システムの場合には、通信による遅延が問題となる。車両-サーバ間の無線通信の低遅延化を目的に、車両が走行する現場に近い位置にサーバを設置してこのサーバによりセンサデータを処理することが行われる。現場に近い位置に設置されるサーバという意味で、このサーバをエッジサーバと呼ぶ。
 エッジサーバをどこに設置するかは設計思想により異なるが、無線基地局(モバイルエッジ)の付近にエッジサーバを設置することが効率的と考えられる。
 図1を参照して、後掲の特許文献1に開示された運転支援システム50は、例えば一本の幹線道路の異なるエリア110、112、及び114をそれぞれカバーする無線基地局60、64及び68と、これら無線基地局60、64及び68にそれぞれ近い位置に設置され、無線基地局60、64及び68にそれぞれ接続されているエッジサーバ62、66及び70とを含む。無線基地局60、64及び68は、バックホール80により基幹ネットワーク(コアネットワーク)82に接続されている。
 例えば無線基地局60及び無線基地局68はそれぞれ光ファイバ120及び光ファイバ124でバックホール80に接続されている。一方、無線基地局64はメタル線122に接続されている。バックホール80はさらに光ファイバ126によって、より広範囲なコアネットワーク82に接続されている。またコアネットワーク82は、光ファイバ128及び130により、広範囲に存在するサーバ及び無線基地局に接続されている。
 エリア110内の交差点にはカメラ90及びLiDAR(light detection and ranging)92が、エリア112内の交差点にはカメラ94及びLiDAR96が、エリア114内の交差点にはカメラ98及びLiDAR100が、それぞれ設けられており、エッジサーバ62、66及び70では、それぞれこれら、及び各エリア110、112及び114に存在する車両から送信されてくるセンサデータを処理する運転支援サーバが稼働している。各運転支援サーバからの運転支援情報は、エッジサーバ62、66及び70から無線基地局60、無線基地局64、及び無線基地局68等を介して各車両に送信される。
 例えば特許文献1に開示された技術では、エリア110に存在する車両140は無線通信102により無線基地局60に接続する。車両140はさらにこの無線基地局60を介してこの無線基地局60に近接して設けられたエッジサーバ62と通信し、運転支援情報を受信する。
特開2018-18284号公報
 この開示の第1の局面に係る車載装置は、運転支援サーバから運転支援情報を受信し、運転支援のための所定の処理を実行する運転支援装置と、運転支援サーバの機能のサブセットを備え、外部のセンサからセンサデータを受信し、運転支援情報のサブセットを出力するサブ運転支援サーバと、運転支援サーバからの運転支援情報の受信が中断したことに応答して、運転支援サーバからの運転支援情報に代えて、サブ運転支援サーバからの運転支援情報のサブセットを運転支援装置に与える第1の切替装置と、運転支援サーバからの運転支援情報の受信が復旧したことに応答して、サブ運転支援サーバからの運転支援情報のサブセットに代えて、運転支援サーバからの運転支援情報を運転支援装置に与えるための第2の切替装置とを含む。
 この開示の第2の局面に係る車両は、上記した車載装置と、運転支援装置による支援の対象となる車両制御装置とを含む。
 この開示の第3の局面に係る車載装置の制御方法は、運転支援サーバから運転支援情報を受信し、運転支援のための所定の処理を実行するステップと、運転支援サーバの機能のサブセットを備え、外部のセンサからセンサデータを受信し、運転支援情報のサブセットを出力するサブ運転支援サーバを起動するステップと、運転支援サーバからの運転支援情報の受信が中断したことに応答して、運転支援サーバからの運転支援情報に代えて、サブ運転支援サーバからの運転支援情報のサブセットを運転支援装置に与えるステップと、運転支援サーバからの運転支援情報の受信が復旧したことに応答して、サブ運転支援サーバからの運転支援情報のサブセットに代えて、運転支援サーバからの運転支援情報を運転支援装置に与えるステップとを含む。
 この開示の目的、構成、及び効果は、この明細書と添付の図面とにより明らかとなるだろう。
図1は、従来の車載装置を含む運転支援システムの概略構成図である。 図2は、この開示の実施の形態に係る車載装置及び車載装置が制御する車両各部の概略ブロック図である。 図3は、この開示の実施の形態における車載装置とエッジサーバとの接続例を示す図である。 図4は、この開示の実施の形態のミニエッジサーバの機能的ブロック図である。 図5は、この開示の実施の形態に係るミニエッジサーバによる協調ノードの選択方法を説明するための模式図である。 図6は、図4に示すミニエッジサーバを車載装置にインストールするプログラムの制御構造を示すプログラムの制御構造を示すフローチャートである。 図7は、コンピュータを、図4に示すミニエッジサーバとして機能させるプログラムの制御構造を示すフローチャートである。 図8は、図4に示す車載装置の機能を実現するためのコンピュータの概略ハードウェア構成を示すブロック図である。 図9は、この開示の第2の実施の形態に係るミニエッジサーバの機能的構成を示すブロック図である。
 [開示が解決しようとする課題]
 ところが、こうしたシステムで、何らかの原因により車両140がエッジサーバ62と通信できなくなると、車両140が運転支援装置を持っていてもそれが役に立たなくなるという問題がある。他のエッジサーバ66、70等に接続することも考えられるが、これらエッジサーバが管理しているエリア112及び114は、車両140が存在している領域から離れており、それらから運転支援情報を受信できたとしても、車両140には役に立たない可能性が高い。
 車両140の近くにカメラ90及びLiDAR92があったとしても、それらからのセンサデータを車両140が利用することはできず、車両140が十分な運転支援を受けることができないという問題がある。
 したがってこの開示は、エッジサーバとの接続ができないときにも、運転支援情報を利用可能な車載装置及びその制御方法、並びに車両を提供することを目的とする。
 [開示の効果]
 以上のようにこの開示によれば、エッジサーバとの接続ができないときにも、運転支援情報を利用可能な車載装置及びその制御方法、並びに車両を提供することができる。
 [この開示の実施の形態の説明]
 以下の説明及び図面では、同一の部品には同一の参照番号を付してある。したがって、それらについての詳細な説明は繰返さない。なお、以下の開示の少なくとも一部を任意に組合せても良い。
 (1)この開示の第1の局面に係る車載装置は、運転支援サーバから運転支援情報を受信し、運転支援のための所定の処理を実行する運転支援装置と、運転支援サーバの機能のサブセットを備え、外部のセンサからセンサデータを受信し、運転支援情報のサブセットを出力するサブ運転支援サーバと、運転支援サーバからの運転支援情報の受信が中断したことに応答して、運転支援サーバからの運転支援情報に代えて、サブ運転支援サーバからの運転支援情報のサブセットを運転支援装置に与える第1の切替装置と、運転支援サーバからの運転支援情報の受信が復旧したことに応答して、サブ運転支援サーバからの運転支援情報のサブセットに代えて、運転支援サーバからの運転支援情報を運転支援装置に与えるための第2の切替装置とを含む。
 運転支援サーバからの運転支援情報の受信が中断すると、第1の切替装置により、サブ運転支援サーバが出力する、運転支援情報のサブセットが運転支援装置に与えられる。運転支援情報が得られなくても、そのサブセットを用いて運転支援装置が動作する。その結果、エッジサーバとの接続ができないときにも、運転支援情報を利用可能な車載装置が提供できる。
 (2)好ましくは、車載装置のサブ運転支援サーバは、コンピュータと、コンピュータが実行するプログラムを記憶するための記憶装置と、を含み、車載装置はさらに、サブ運転支援サーバのインストール指示に応答して、コンピュータにサブ運転支援サーバを実現させるためのプログラムを記憶装置にインストールするためのインストーラとを含む。
 サブ運転支援サーバはコンピュータと記憶装置とを含み、インストール指示に応答して車載装置にインストールされる。コンピュータにサブ運転支援サーバをインストールすることで、車載装置が、エッジサーバとの接続ができないときにも、運転支援情報を利用可能な車載装置として機能する。
 (3)より好ましくは、車載装置は、サブ運転支援サーバを、所定の時間間隔で再構築するためのサーバ再構築装置をさらに含む。
 サブ運転支援サーバが所定の時間間隔で再構築される。その結果、サブ運転支援サーバは、所定の時間間隔で最新の運転支援情報のサブセットを提供できるようになる。
 (4)さらに好ましくは、車載装置は、運転支援情報に基づき、車載装置の内外の状況と他のセンサ装備装置との協調状態とを記憶するための状態記憶装置と、状態記憶装置により、車載装置の内外の状況及び他のセンサ装備装置との協調状態とのいずれかが変化したことに応答して、サブ運転支援サーバを再構築するためのサーバ再構築装置をさらに含む。
 車載装置の内外の状況、及び他のセンサ装備装置との協調状態とのいずれかに変化が生じると、サブ運転支援サーバが再構築される。その結果、サブ運転支援サーバは、周囲の環境の変化に応じて最新の運転支援情報のサブセットを提供できるようになる。
 (5)好ましくは、車載装置は、サブ運転支援サーバを、車載装置の起動と同時に起動し、運転支援サーバからの運転支援情報の受信のバックグラウンドで動作させるためのバックグラウンド処理実行装置をさらに含む。
 サブ運転支援サーバがバックグラウンドで実行されている。そのため、運転支援サーバから運転支援情報の配信が受けられなくなったときにも、第1の切替装置による切替がシームレスに行える。車両は、少なくとも運転支援情報のサブセットによる支援を引き続き受けることができる。
 (6)より好ましくは、サブ運転支援サーバは、車載装置の起動時には起動しないようにされており、車載装置はさらに、運転支援サーバからの運転支援情報の受信が中断したことに応答して、サブ運転支援サーバを起動し、再構築するためのサーバ起動装置を含む。
 サブ運転支援サーバはバックグラウンドで動作するのではなく、運転支援サーバからの運転支援情報の受信が中断したときに起動される。運転支援サーバから運転支援情報が受信できているときに車載装置にサブ運転支援サーバによる負荷が加わることがない。そのため、処理能力の低い車載装置でもこのサブ運転支援サーバを利用できる。
 (7)この開示の第2の局面に係る車両は、上記したいずれかの車載装置と、運転支援装置による支援の対象となる車両制御装置とを含む。
 この車両では、(1)と同様、運転支援サーバからの運転支援情報の受信が中断すると、第1の切替装置によりサブ運転支援サーバが出力する、運転支援情報のサブセットが運転支援装置に与えられる。運転支援情報が得られなくても、そのサブセットを用いて運転支援装置が運転支援を行える。その結果、エッジサーバとの接続ができないときにも、運転支援情報を利用可能な車両が提供できる。
 (8)この開示の第3の局面に係る車載装置の制御方法は、コンピュータが、運転支援サーバから運転支援情報を受信し、運転支援のための所定の処理を実行する運転支援装置に与える処理を実行するステップと、コンピュータが、運転支援サーバの機能のサブセットを備え、外部のセンサからセンサデータを受信し、運転支援情報のサブセットを出力するサブ運転支援サーバを起動するステップと、コンピュータが、運転支援サーバからの運転支援情報の受信が中断したことに応答して、運転支援サーバからの運転支援情報に代えて、サブ運転支援サーバからの運転支援情報のサブセットを運転支援装置に与える処理を開始するステップと、コンピュータが、運転支援サーバからの運転支援情報の受信が復旧したことに応答して、サブ運転支援サーバからの運転支援情報のサブセットに代えて、運転支援サーバからの運転支援情報を運転支援装置に与える処理を再開するステップとを含む。
 この方法によれば、運転支援サーバからの運転支援情報の受信が中断すると、サブ運転支援サーバが出力する、運転支援情報のサブセットが運転支援装置に与えられる。運転支援情報が得られなくても、そのサブセットを用いて運転支援装置が運転支援を行える。その結果、エッジサーバとの接続ができないときにも、運転支援情報を利用できるような、車載装置の制御方法が提供できる。
 [この開示の実施の形態の詳細]
 この開示の実施の形態に係る車載装置及びその制御方法、並びに車両の具体例を、以下に図面を参照しながら説明する。なお、この開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、以下の開示の一部を任意に組合せてもよい。
 〈構成〉
 図2に、この開示の第1の実施の形態に係る車両160の概略構成図を示す。図2を参照して、車両160は、LiDAR204、車載カメラ202、及びミリ波レーダ200等の各種のセンサ、及びこれらセンサからセンサデータを収集しエッジサーバに無線通信により送信するための車載装置210と、車載装置210による制御の対象である各種ECU212とを含む。車載装置210が後述するようにミニエッジサーバの機能を持つため、この車両160は、エッジサーバからの配信データが受信できなくなっても周囲のノードからセンサ情報を受信してミニエッジサーバに処理させることにより、運転支援を享受できる。
 図3に、車両160の構成の中で、運転支援に関するものの機能的構成をブロック図形式で示す。図3を参照して、車両160は、無線通信を介してエッジサーバ62、インフラ設備232、及び他車両230と通信を行う車載装置210と、車載装置210に接続され、各種のセンサデータを車載装置210に与えるための各種センサ270と、車載装置210に接続され、車載装置210による情報にしたがって車両160の各部を駆動する各種ECU212とを含む。
 各種ECU212は、エッジサーバ62から与えられる運転支援情報にしたがって、運転支援のために車両160の各部を制御するための自動運転ECU272と、同じくエッジサーバ62から与えられる運転支援情報、及び運転者の指示にしたがって運転支援のために車両各部を制御するための各種ECU274とを含む。運転支援情報は、車両を運転する主体にとって車両を安全に運転するために有益な情報であればどのようなものを含んでもよい。交通環境における車両160の進行方向に存在する動的物体の位置及び属性がその例である。属性は、具体的には、車両160の進行方向に存在する車両、歩行者、及び落下物等のような物体の分類を含む。
 車載装置210は、外部との無線通信を行うための車外通信機262と、後述するように、車外通信機262を介した一部のノードとの通信により収集したセンサデータに基づき、エッジサーバ62の提供する機能のサブセットの機能を実現し、エッジサーバ62が出力する運転支援情報のサブセットを生成するミニエッジサーバ266とを含む。エッジサーバ62の提供する主たる機能は、車両及びインフラセンサからのセンサデータの収集とそのセンサデータに対する解析処理による交通環境上の動的物体の位置及びその属性の検出である。
 車載装置210はさらに、エッジサーバ62との通信が可能か否かに基づいて、各種センサ270、自動運転ECU272及び各種ECU274と、エッジサーバ62又はミニエッジサーバ266との通信を切替えて行うための車載GW(ゲートウェイ)260と、車外通信機262及び車載GW260に接続され、車両160の車内と車外との情報に基づく連携処理を行うための車内外連携部264とを含む。
 車載GW260は、エッジサーバ62との通信が可能であるときにはエッジサーバ62からの運転支援情報を自動運転ECU272及び各種ECU274等に与えるが、不可能になったときには、ミニエッジサーバ266からの運転支援情報を自動運転ECU272及び各種ECU274等に与えるよう通信経路を切替える。エッジサーバ62との通信が復旧したときには、車載GW260はエッジサーバ62からの運転支援情報を自動運転ECU272及び各種ECU274等に与える処理を再開するよう通信経路を切替える。
 図4を参照して、ミニエッジサーバ266は、車両160が通信しているネットワークの各ノードに関する情報を記憶するノード情報DB302と、外部から受信したセンサデータ、車両情報、及びインフラ設備情報にしたがって、ノード情報DB302に記憶されている情報を更新するためのノード情報更新部300と、一定周期でミニエッジサーバ266を再構築することを指示する信号を出力するためのタイマ312とを含む。ここで、ミニエッジサーバ266の再構築とは、車両の進行に伴う周囲の環境変化と後述するような車内状況の変化とに応じて、ミニエッジサーバ266がセンサデータを収集するノード数を再決定しノードを選択し直し、これらノードからのセンサデータに基づいて、ノード情報DB302に記憶されている情報の更新を開始することをいう。なお、このようにして選択された、ミニエッジサーバ266が利用するノードを「協調ノード」という。
 ミニエッジサーバ266はさらに、車両160に関する車両リソースに関する情報(車載装置210を構成する後述するコンピュータの能力、コンピュータのCPUの負荷、メモリプレシャ、及び通信速度等)を記憶するための車両リソースDB310と、タイマ312からの信号に応答して、ミニエッジサーバ266を再構築するために、車両リソースDB310に記憶されている車両リソースに基づいて、ミニエッジサーバ266が通信すべきノード数を決定するためのノード数決定部314と、同じくタイマ312からの信号に応答し、ミニエッジサーバ266を再構築するために、ノード数決定部314が決定した協調ノード数と、ノード情報DB302に記憶されているノード情報とに基づいて、どのノードと通信してミニエッジサーバ266の更新に使用するセンサデータ等を受信するかを決定するためのノード決定部316とを含む。
 ミニエッジサーバ266はさらに、ノード決定部316により決定された協調ノードとの通信により収集したセンサデータに基づき、エッジサーバ62の提供する機能のサブセットの機能を実現し、エッジサーバ62が出力する運転支援情報のサブセットを出力するサブエッジサーバ318と、車内外連携部264から受信した、外部からのセンサデータを受信して一時記憶しておくためのセンサデータバッファ320と、センサデータ解析部352が出力する運転支援情報の中で、センサデータバッファに記憶されていない運転支援情報のみを車載GW260を介して自動運転ECU272及び各種ECU274等に転送するための出力判定部322とを含む。
 なお、エッジサーバ62が解析処理により提供する機能は、上記したとおり動的物体の位置及び属性の検出である。サブエッジサーバ318の提供するその解析処理のサブセットの機能とは、協調ノードから得られる、限定された範囲での動的物体の位置の検出、及びエッジサーバ62が解析により検出する属性の一部を検出することをいう。
 サブエッジサーバ318は、ノード決定部316により指示されたノードからセンサデータを収集するセンサデータ収集部350と、センサデータ収集部350により収集されたセンサデータに対し、エッジサーバ62が行う解析処理のサブセットを実行し、解析結果を出力判定部322に出力するセンサデータ解析部352とを含む。
 上記したミニエッジサーバの再構築は、具体的には、ノード数決定部314が協調ノード数を決定してノード決定部316に通知すること、ノード決定部316が協調ノード数だけの協調ノードを決定してセンサデータ収集部350に通知すること、センサデータ収集部350が、それまでの協調ノードに代えて、ノード決定部316から通知された協調ノードからのセンサデータの収集を開始すること、及びセンサデータ解析部352が、このように新たに収集が開始されたセンサデータに対して上記した解析処理のサブセットを実行し、その結果に基づいてノード情報DB302に記憶される情報を生成し更新を開始することを意味する。
 ここで、図5を参照して、図4に示すノード数決定部314による協調ノード数の決定、及びノード決定部316による協調ノードの決定方法について説明する。
 一般に、車載装置210の処理能力はエッジサーバ62の処理能力と比較してはるかに低い。したがって、あまり大量のセンサデータを処理することはできない。ノード数決定部314はこのため、車載装置210を構成するコンピュータの処理能力、現在の負荷、メモリプレシャ、及び車内ネットワーク内のデータ中継経路の転送速度のボトルネック等の、車内状況に関するデータと、車外との通信の回線速度及び受信するセンサデータの予測サイズ等の車外状況に関するデータとに基づいて、ある協調ノード数を選択する。この協調ノード数は、上記した各変数の関数として定めることができる。ノード数決定部314はこの関数に基づいて協調ノード数を決定する。
 ノード決定部316は、車外通信機262が通信可能なノードの中で、ノード数決定部314により決定されたノード数の協調ノードを以下のようにして定める。
 図5を参照して、ノード数決定部314は、自己と通信可能で、自己の予定進行経路374に沿った領域にあるインフラカメラ370及び372等に関する情報、及び予定進行経路374上を車両160の予定進行経路374と同じ方向に進行している車両162、164等に関する情報をノード情報DB302から読出す。ノード決定部316はさらに、これらのセンサデータの検知範囲を以下の基準にしたがってスコアリングする。(1)インフラカメラ等のインフラセンサのノードには車両センサのノードより高いスコアを与える。(2)車両160の進行方向に沿った検知範囲を持つセンサであってかつその検知範囲と車両160のセンサの検知範囲とが重複していない部分が大きなものほど、かつ近いものほど、高いスコアを与える。(3)事故情報(事故の予兆又は事後現場)を検知範囲に含むセンサには高いスコアを与える。
 インフラセンサに高いスコアを与えるのは、一般的にインフラセンサが高所等の見通しの良い場所に設置され、センサの検知範囲が広いためである。
 図5に示すような配置の場合、車両162、インフラカメラ370及び372、車両164が協調ノードの候補になる。例えばノード数決定部314の決定した協調ノード数が2個である場合、これら4個の候補から2個を選択しなければならない。
 インフラカメラ370及び372、並びに車両162は、車両160の進行方向と重複した検知範囲を持つが、車両162の持つセンサ(例えば車載カメラ)はインフラセンサではない。インフラカメラ372の車両160の予定進行経路374に沿った検知範囲は、インフラカメラ370の検知範囲より狭い。したがってこれら3つの中ではインフラカメラ370に最も大きなスコアが与えられ、インフラカメラ372及び車両162には小さなスコアしか与えられない。一方、車両164のセンサ(例えば車載カメラ)の検知範囲は、予定進行経路374に沿った領域が大きく、かつ立木378及びビル376の存在等によって、車両160のセンサの検知範囲と重複していない部分が大きい。したがって、車両164には大きなスコアが与えられる。以上から、図5のような場合にはインフラカメラ370及び車両164が協調ノードとして選択される。
 なお、以上のようなスコアは、予定進行経路374が定まっており、各車両センサ及びインフラセンサの検知範囲が分かり、かつ高精度マップに基づいて車両160から見通せない範囲が分かっていれば計算できる。
 図6は、車載装置210に上記したミニエッジサーバ266をインストールするインストーラプログラムの制御構造を示すフローチャートである。このインストーラプログラムは手動でも起動できるし、定期的にも起動できる。又は、毎日、最初に車両が起動されたときにもこのプログラムを起動できる。さらに、サーバと通信可能なときに、サーバからの指示によってこのプログラムを起動してもよい。
 図6を参照して、このプログラムは、起動と同時にミニエッジサーバが車載装置210にインストール済か否かを判定するステップ400と、ステップ400の判定が肯定であることに応答して、所定のアドレス(例えばエッジサーバ62又は予め車両の販売者から指定されたURL等)にアクセスしてミニエッジサーバの最新版のバージョンを確認するステップ402と、車載装置210にインストール済のミニエッジサーバのプログラムと所定のアドレスに存在するミニエッジサーバのプログラムとのバージョンを比較し、最新版のプログラムのインストールが必要か否かを判定し判定に応じて制御の流れを分岐させるステップ404とを含む。
 このプログラムはさらに、ステップ404の判定が肯定であることに応答して、ミニエッジサーバのプログラムを所定アドレスからダウンロードし、後述する補助記憶装置528(図8参照)等に保存し車載装置210にインストールするステップ406と、ステップ406の実行後、及びステップ404の判定が否定であるときに、車載装置210にインストールされたミニエッジサーバ266のプログラムを起動してこのプログラムの実行を終了するステップ408とを含む。
 図6のステップ400の判定が否定のときにもステップ406及び408の処理が実行される。このプログラムを利用することで、この車載装置を搭載した車両が運転支援サーバから配信情報を受信できなくなっても、ミニエッジサーバを起動し、周囲のノードからセンサ情報を受信してミニエッジサーバ内のサブ運転支援サーバで処理することにより、運転支援を享受できる。
 図7は、この開示の実施の形態に係る、ミニエッジサーバの起動を行うためのプログラムの制御構造を示すフローチャートである。このプログラムは、図4に示すタイマ312により一定期間ごとに繰返し起動される。その際、前に実行されていたプログラムはキャンセルされる。
 図7を参照して、このプログラムは、起動直後に車内外の状況を観測するステップ450と、協調ノード数を決定するステップ452と、ステップ452で決定された数だけの協調ノードを決定するステップ454とを含む。
 ステップ450では、図4に示す車両リソースDB310を参照し、車載装置210を構成するコンピュータの処理能力、現在の負荷、メモリプレシャ、及び車内ネットワーク内のデータ中継経路の転送速度のボトルネック等の、車内状況に関するデータと、車外との通信の回線速度及び受信するセンサデータの予測サイズ等の車外状況に関するデータとを読出す。
 ステップ452では、上記した情報に基づき、予め定められた関数にしたがって協調ノード数を決定する。
 ステップ454では、図に示すノード情報DB302から、車載装置210が通信可能なインフラセンサ及び車両等のノードに関する情報を読出し、既に述べた基準と、ステップ452において決定されたノード数とにしたがって、協調ノードを選択する。
 このプログラムはさらに、ステップ452で決定された協調ノードの各々から、それらのセンサデータを収集するステップ456と、ステップ456で収集されたセンサデータをエッジサーバ62の機能のサブセットを用いて解析し、エッジサーバ62が生成する情報のサブセットを出力するステップ458とを含む。ステップ458で行われる処理は、エッジサーバ62の処理のサブセットである。車載装置210の処理能力はエッジサーバ62の処理能力と比較して低いため、このようにエッジサーバ62の処理の一部のみを実行する。例えば移動体の属性の検出処理等のように複雑で大量の計算が必要な処理については車載装置210は実行しない。
 このプログラムはさらに、ステップ458で生成された解析結果の各々について、以下の処理462を実行するステップ460を含む。
 処理462は、処理対象の解析結果がエッジサーバ62からの配信情報に含まれるか否かを判定し、含まれている場合には処理462の実行を終了するステップ480と、ステップ480の判定が否定のときに、処理対象の解析結果を自動運転ECU272に転送するステップ482とを含む。ステップ480では図4に示すセンサデータバッファ320に記憶されている、エッジサーバ62からの配信情報との比較が行われる。エッジサーバ62が正常に動作している場合には、処理対象の解析結果はセンサデータバッファにも記憶されている。したがってミニエッジサーバ266の解析結果は自動運転ECU272には転送されない。しかしエッジサーバ62との通信が中断していると、ミニエッジサーバ266による解析結果はセンサデータバッファには保存されておらず、したがって自動運転ECU272に転送されることになる。
 〈動作〉
 上記した車載装置210は以下のように動作する。
 -ミニエッジサーバ266のインストール-
 例えば車両160(図2を参照)を起動すると、図6に示すプログラムが車載装置210により実行される。既にミニエッジサーバ266がインストールされていれば、図6のステップ400からステップ402を経てステップ404の判定が行われる。最新版をインストールする必要があれば、ステップ406でそのプログラムが車載装置210にダウンロードされインストールされる。ステップ408でそのプログラムが起動され、ミニエッジサーバ266が処理を開始する。
 車載装置210に既に最新版のミニエッジサーバ266がインストールされていればプログラムのインストール(ステップ406)はスキップされ、ミニエッジサーバ266が起動される(ステップ408)。
 車載装置210にミニエッジサーバ266がインストールされていなければ、ステップ400からステップ406に制御が移動し、ステップ406でそのプログラムが車載装置210にダウンロードされインストールされる。ステップ408でそのプログラムが起動され、ミニエッジサーバ266が処理を開始する。
 したがってこの実施の形態では、ミニエッジサーバ266はエッジサーバ62からの配信情報の処理とは別に常にバックグラウンドで動作することになる。この処理は、ミニエッジサーバのOS(Operating System)の基本機能であるバックグラウンド処理機能により実現される。
 -エッジサーバ62との通信が正常に行われている時-
 図3を参照して、車載装置210がエッジサーバ62からの配信情報を正常に受信しているときには、この配信情報は車外通信機262、車内外連携部264及び車載GW260を介して自動運転ECU272に与えられる。自動運転ECU272はこの情報にしたがって車両160の各部を制御する。この配信情報は、車内外連携部264からミニエッジサーバ266にも与えられる。この情報の中で、ノードに関する情報はノード情報更新部300に与えられ、ノード情報DB302に保存される。センサデータはセンサデータバッファに与えられ一時的に保存される。
 一方、ミニエッジサーバ266は定期的に再構築される。すなわち、図4に示すタイマ312が、定期的にノード数決定部314及びノード決定部316にミニエッジサーバ266を再構築することを示す信号を送信する。この信号に応答して、ノード数決定部314が車両リソースDB310に記憶された情報を用いて協調ノードの数を決定する。応答して、ノード決定部316が、ノード情報DB302に記憶されたノード情報にしたがい、前述した方法により、ノード数決定部314により決定された数だけの協調ノードを決定しサブエッジサーバ318のセンサデータ収集部350に指示する。
 センサデータ収集部350は、ノード決定部316により指示されたノードからセンサデータを収集しセンサデータ解析部352に与える。センサデータ解析部352は、収集されたセンサデータに対し、エッジサーバ62が行う解析処理のサブセットを実行し、限定された範囲に存在する動的物体の位置の検出、及びそれらの属性の一部を含む解析結果を出力する。出力判定部322は、センサデータ解析部352の出力する解析結果がセンサデータバッファ320に存在するか否かを判定する。エッジサーバ62と車載装置210との通信が正常であれば、センサデータ解析部352の出力はセンサデータ解析部352にも格納されている。したがって出力判定部322はセンサデータ解析部352の解析結果は自動運転ECU272には転送しない。
 図7のフローチャートで制御の流れを示すと、ステップ450からステップ458までの処理が実行された後、ステップ460で処理462が各解析結果に対して実行される。処理462ではステップ480の判定が常に肯定となる。したがってステップ482の処理は実行されない。つまり、センサデータ解析部352の解析結果は自動運転ECU272には配信されず、自動運転ECU272はエッジサーバ62からの配信情報にしたがって動作する。
 -エッジサーバ62との通信が正常に行われていない場合-
 何らかの原因で車載装置210がエッジサーバ62の配信情報を受信できない場合、車載装置210は以下のように動作する。この場合でも、基本的にミニエッジサーバ266の動作はエッジサーバ62との通信が正常に行われているときと同様である。異なるのは、エッジサーバ62からの配信情報が受信できないため、図4に示すセンサデータバッファの内容が更新されないことである。その結果、センサデータ解析部352の解析結果が出力されたときに、同じ情報がセンサデータバッファに保存されていることはない。したがって出力判定部322はセンサデータ解析部352の解析結果を自動運転ECU272に転送する。自動運転ECU272は、センサデータ解析部352の解析結果にしたがって車両160の各部を制御する。
 図7のフローチャートで考えると、ステップ450からステップ458までの処理はエッジサーバ62との通信が正常に行われているときと同一である。異なるのは、ステップ480の判定が否定となることである。その結果、ステップ482でセンサデータ解析部352の解析結果が自動運転ECU272に転送される。
 〈コンピュータによる実現〉
 図8を参照して、車載装置210は実質的にはコンピュータ500を含むプロセッサであって、CPU(Central Processing Unit)520と、CPU520とコンピュータ500内の各部との間のデータ及び命令の伝送経路となるバス522とを含む。コンピュータ500はさらに、いずれもバス522に接続されたROM(Read-Only Memory)524、RAM(Random Access Memory)526、ハードディスク又はSSD(Solid State Drive)等からなる不揮発性の補助記憶装置528、無線通信により外部との通信を提供する無線通信部530、バス522に接続された入出力インターフェイス(I/F)532、ユーザとの音声によるインタラクションを提供するための音声処理I/F540、及びUSBメモリ512が着脱可能で、USBメモリ512とコンピュータ500内の他の各部との通信を可能にするUSBメモリポート534を含む。
 車載装置210はさらに、いずれもバス522に接続されたタッチパネル502及び表示制御装置を含む液晶等のモニタ504とを含む。
 入出力I/F532には、前述の自動運転ECU272、各種ECU274及び各種センサ270が接続される。音声処理I/F540には、スピーカ及びマイク510が接続される。ROM524にはコンピュータ500の起動プログラム等が記憶されている。RAM526はCPU520による処理の際に様々な変数を記憶するための作業領域として使用される。
 上記開示の第1の実施の形態では、図4に示すノード情報DB302、車両リソースDB310、センサデータバッファ、及び図示しないがセンサデータ収集部350が収集したセンサデータの記憶部は、いずれも図8に示す補助記憶装置528又はRAM526により実現される。典型的には、これらは車載装置210の稼働時にはRAM526に記憶されており、定期的にバックアップとして補助記憶装置528に保存される。
 このコンピュータ500を車載装置210及びその構成要素の機能として動作させるためのコンピュータプログラムは、USBメモリ512に記憶され、USBメモリ512をUSBメモリポート534に装着し、プログラムを補助記憶装置528に転送する。又は、このプログラムは無線通信部530による無線通信を介して図示しないネットワークを介して他のコンピュータからコンピュータ500に送信され補助記憶装置528に記憶されてもよい。
 プログラムは実行の際にRAM526にロードされる。CPU520は、その内部のプログラムカウンタと呼ばれるレジスタ(図示せず)により示されるアドレスにしたがってRAM526からプログラムを読出して命令を解釈し、命令の実行に必要なデータを命令により指定されるアドレスにしたがってRAM526、補助記憶装置528又はそれ以外の入出力I/F532及び音声処理I/F540等の機器から読出して命令を実行する。CPU520は、実行結果のデータを、RAM526、補助記憶装置528、CPU520内のレジスタ等、プログラムにより指定されるアドレスに格納する。コンピュータプログラムは、USBメモリ512から、又はネットワークを介して、直接にRAM526にロードしてもよい。
 車載装置210の各機能を実現するプログラムは、コンピュータ500にこの開示の実施の形態に係るミニエッジサーバ266として動作を行なわせる複数の命令、及びミニエッジサーバ266をコンピュータ500にインストールするための複数の命令を含む。この動作を行なわせるのに必要な基本的機能のいくつかはコンピュータ500上で動作するオペレーティングシステム(OS)若しくはサードパーティのプログラム、又はコンピュータ500にインストールされる各種ツールキットのモジュールにより提供される。したがって、このプログラムはこの実施の形態のシステム及び方法を実現するのに必要な機能の全てを必ずしも含まなくてよい。このプログラムは、命令の中で、所望の結果が得られるように制御されたやり方で適切な機能又は「プログラミング・ツール・キット」を呼出すことにより、上記したミニエッジサーバ266及びその構成要素としての動作を実行する命令のみを含んでいればよい。
 この実施の形態では、ミニエッジサーバ266が定期的に再構築され、エッジサーバ62との通信が正常に行われているか否かにかかわらず、常にバックグラウンドで動作している。エッジサーバ62からの配信情報が正常に受信されている場合には、ミニエッジサーバ266による解析結果は車両の制御等の運転支援には使用されない。エッジサーバ62からの配信情報が受信できなくなったときに限り、ミニエッジサーバ266による解析結果がエッジサーバ62からの配信情報に代わって運転支援に利用される。
 ミニエッジサーバ266による解析結果は、エッジサーバ62による解析結果のサブセットであり、しかも限定された範囲ではあるが車両の運転支援のために有効なノードからの情報に基づいて生成される。そのため、車載装置210とエッジサーバ62との通信が一時的にできない状況が発生したときも、車両はシームレスにミニエッジサーバ266の解析結果を利用でき、有効な運転支援を享受できる。ミニエッジサーバ266による解析結果はあくまでエッジサーバ62による配信上のサブセットであり、例えばエッジサーバ62が解析により提供する属性の全てを提供するわけではない。そのため、ミニエッジサーバ266によってエッジサーバ62を完全に代替することはできない。しかし、ミニエッジサーバ266の処理機能をエッジサーバ62の処理機能の中で特に必要なサブセットとし、必要な属性を検出することで、エッジサーバ62からの配信情報が得られないときでも車載装置210に対して有効な運転支援を提供できる。
 またエッジサーバ62との通信が復旧すると、ミニエッジサーバ266の出力判定部322(図4参照)がミニエッジサーバ266の出力を抑制するので、エッジサーバ62の更新情報に基づく処理にシームレスに復帰できる。
 なお、上記実施の形態では、ノードを選択するときには一定の基準にしたがって各ノードをスコアリングし、高いスコアのノードを選択している。しかしこの開示はそのような実施の形態には限定されない。例えば、単に自車両からの距離が小さなものから順番に所定数だけノードを選択してもよい。又は、自車両の進行方向に沿って存在しているものの中で、自車両からの距離が小さいものを順番に選択してもよい。さらには、自車両の進行予定方向に沿って存在しているものの中で、自車両からの距離が小さいものから順番に、検知範囲が大きく重複するものを除いて選択してもよい。これ以外にもノードの選択基準には様々な基準が考えられる。
 [第2の実施の形態]
 上記第1の実施の形態では、ミニエッジサーバ266が常にバックグラウンドで動作しており、タイマ312により定期的に再構築される。しかしこの開示はそのような実施の形態には限定されない。周囲の状況が変化したときのみ、ミニエッジサーバを再構築してもよい。この第2の実施の形態はそのようなミニエッジサーバに関する。
 図9に、この開示の第2の実施の形態に係るミニエッジサーバ600のブロック図を示す。図9を参照して、このミニエッジサーバ600が図4に示すミニエッジサーバ266と異なるのは、図4のタイマ312に代えて、ノード情報DB302に接続され、ノード情報DB302に記憶されているノード情報に変化があったとき(例えば新たなノードが追加されたり、ノードが削除されたりしたとき)に、ミニエッジサーバ600を再構築するためにノード数決定部314に対してノード数決定を行うように指示する信号を出力するための状況変化検出部610を含む点である。
 この他の点では、ミニエッジサーバ600は第1の実施の形態に係るミニエッジサーバ266と同じである。
 またミニエッジサーバ600の動作は、ミニエッジサーバ600がいつ再構築されるかという点を除きミニエッジサーバ266と同様である。ミニエッジサーバ266では、エッジサーバ62から周囲のノードに関する情報が配信されたときに、ノード情報更新部300がそれを受信し、ノード情報DB302を新たな情報で更新する。ノードの追加又は削除等があると、状況変化検出部610がそれを検出し、ノード決定部316に対してノード数を決定することを指示する信号を与える。この信号に応答して、ノード決定部316が新たなノード数を決定し、ノード決定部316がノード情報DB302に記憶されたノード情報に基づき、ノード数決定部314が決定した数だけのノードを協調ノードとして選択する。
 以後のミニエッジサーバ600の動作は第1の実施の形態に係るミニエッジサーバ266と同じである。
 この実施の形態によれば、定期的にミニエッジサーバを再構築するのではなく、ノード情報(ネットワーク構成)に変更があったときのみ、ミニエッジサーバを再構築する。例えば市街地のようにノード構成に変化が頻繁にあるときには第1の実施の形態と同様に動作するが、高速道路を安定して走行しており、周囲の車両構成にも変化が少ないとき等には、ミニエッジサーバの再構築の頻度は低くなり、コンピュータに対する負荷を小さくしながら、第1の実施の形態と同様の効果を得ることができる。
 なお、ノード情報の変化があまり短期間に頻発するためにミニエッジサーバが頻繁に再構築されてしまう場合には、ミニエッジサーバを再構築してから次の再構築を行うまでの最低時間を設けるようにしてもよい。又は、ノード情報の変化がある程度蓄積されたときにエッジサーバの再構築を開始してもよい。さらに、協調ノード選択は周囲の状況に変化があった場合のみ行い、協調ノードからのセンサデータ収集と解析結果をECU等に転送すべきか否かに関する判断については、協調ノードの選択よりも短い周期で定期的に行うようにしてもよい。
 以上のようにこの開示によれば、車載装置がエッジサーバ等からの配信情報を受信できなくなったときでも、車載装置の周囲のノードからのセンサデータに基づいて車両支援のための情報を得ることができる。ミニエッジサーバの解析機能を適切に設定しておくことで、エッジサーバ等からの配信情報が受信できない間も適切に車両の運転支援を行うことができる。エッジサーバからの配信情報とミニエッジサーバの解析結果との切替はシームレスに行われ、運転者を煩わすことはない。
 上記開示では、ミニエッジサーバは常にバックグラウンドで動作している。このようにバックグラウンドで動作していると、エッジサーバからの配信情報の受信がされなくなったときにシームレスにミニエッジサーバの解析結果を利用できるので、運転支援のためには都合がよい。しかしこの開示はそのような実施の形態には限定されない。例えば、バックグラウンドでは動作させず、エッジサーバからの配信情報の受信がされなくなったときにミニエッジサーバを起動し再構築させるようにしてもよい。この場合、エッジサーバからの配信情報の受信が復旧した時点でミニエッジサーバの実行を終了する。
 こうした実装を行うと、ミニエッジサーバが常にバックグラウンドで動作することによる負荷がなくなるので、特に車載装置を実現するコンピュータの能力にあまり余裕がないときに都合がよい。また、コンピュータの能力がかなり高く、ミニエッジサーバをバックグラウンドで動作させる場合でも、他の処理により車載装置にかかる負荷が大きいときにはミニエッジサーバの動作を停止させてもよい。
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。この開示の範囲は、開示の詳細な説明の記載により示されるわけではなく、請求の範囲の各請求項によって示され、請求の範囲の文言と均等の意味及び範囲内での全ての変更が含まれることが意図される。
50 運転支援システム
60、64、68 無線基地局
62、66、70 エッジサーバ
80 バックホール
82 コアネットワーク
90、94、98 カメラ
92、96、100、204 LiDAR
110、112、114 エリア
120、124、126、128、130 光ファイバ
122 メタル線
140、160、162、164 車両
200 ミリ波レーダ
202 車載カメラ
210 車載装置
212、274 各種ECU
230 他車両
232 インフラ設備
260 車載GW
262 車外通信機
264 車内外連携部
266、600 ミニエッジサーバ
270 各種センサ
272 自動運転ECU
300 ノード情報更新部
302 ノード情報DB
310 車両リソースDB
312 タイマ
314 ノード数決定部
316 ノード決定部
318 サブエッジサーバ
320 センサデータバッファ
322 出力判定部
350 センサデータ収集部
352 センサデータ解析部
370、372 インフラカメラ
374 予定進行経路
376 ビル
378 立木
400、402、404、406、408、450、452、454、456、458、460、480、482 ステップ
462 処理
500 コンピュータ
502 タッチパネル
504 モニタ
510 スピーカ及びマイク
512 USBメモリ
520 CPU
522 バス
524 ROM
526 RAM
528 補助記憶装置
530 無線通信部
532 入出力I/F
534 USBメモリポート
540 音声処理I/F
610 状況変化検出部

Claims (8)

  1. 運転支援サーバから運転支援情報を受信し、運転支援のための所定の処理を実行する運転支援装置と、
     前記運転支援サーバの機能のサブセットを備え、外部のセンサからセンサデータを受信し、前記運転支援情報のサブセットを出力するサブ運転支援サーバと、
     前記運転支援サーバからの運転支援情報の受信が中断したことに応答して、前記運転支援サーバからの運転支援情報に代えて、前記サブ運転支援サーバからの前記運転支援情報のサブセットを前記運転支援装置に与える第1の切替装置と、
     前記運転支援サーバからの運転支援情報の受信が復旧したことに応答して、前記サブ運転支援サーバからの前記運転支援情報のサブセットに代えて、前記運転支援サーバからの前記運転支援情報を前記運転支援装置に与えるための第2の切替装置とを含む、車載装置。
  2. 前記サブ運転支援サーバは、
     コンピュータと、
     前記コンピュータが実行するプログラムを記憶するための記憶装置と、を含み、
     前記車載装置はさらに、前記サブ運転支援サーバのインストール指示に応答して、前記コンピュータに前記サブ運転支援サーバを実現させるためのプログラムを前記記憶装置にインストールするためのインストーラとを含む、請求項1に記載の車載装置。
  3. 前記サブ運転支援サーバを、所定の時間間隔で再構築するためのサーバ再構築装置をさらに含む、請求項1又は請求項2に記載の車載装置。
  4. 前記運転支援情報に基づき、前記車載装置の内外の状況と他のセンサ装備装置との協調状態とを記憶するための状態記憶装置と、
     前記状態記憶装置により、前記車載装置の内外の状況及び前記他のセンサ装備装置との協調状態とのいずれかが変化したことに応答して、前記サブ運転支援サーバを再構築するためのサーバ再構築装置をさらに含む、請求項1又は請求項2に記載の車載装置。
  5. 前記サブ運転支援サーバを、前記車載装置の起動とともに起動し、前記運転支援サーバからの運転支援情報の受信のバックグラウンドで動作させるためのバックグラウンド処理実行装置をさらに含む、請求項1から請求項4のいずれか1項に記載の車載装置。
  6. 前記サブ運転支援サーバは、前記車載装置の起動時には起動しないようにされており、
     前記車載装置はさらに、前記運転支援サーバからの運転支援情報の受信が中断したことに応答して、前記サブ運転支援サーバを起動するためのサーバ起動装置を含む、請求項1から請求項4のいずれか1項に記載の車載装置。
  7. 請求項1から請求項6のいずれか1項に記載の車載装置と
     前記運転支援装置による支援の対象となる車両制御装置とを含む、車両。
  8. コンピュータが、運転支援サーバから運転支援情報を受信し、運転支援のための所定の処理を実行する運転支援装置に与える処理を実行するステップと、
     コンピュータが、前記運転支援サーバの機能のサブセットを備え、外部のセンサからセンサデータを受信し、前記運転支援情報のサブセットを出力するサブ運転支援サーバを起動するステップと、
     コンピュータが、前記運転支援サーバからの運転支援情報の受信が中断したことに応答して、前記運転支援サーバからの前記運転支援情報に代えて、前記サブ運転支援サーバからの前記運転支援情報の前記サブセットを前記運転支援装置に与える処理を開始するステップと、
     コンピュータが、前記運転支援サーバからの運転支援情報の受信が復旧したことに応答して、前記サブ運転支援サーバからの前記運転支援情報のサブセットに代えて、前記運転支援サーバからの前記運転支援情報を前記運転支援装置に与える処理を再開するステップとを含む、車載装置の制御方法。
PCT/JP2020/024193 2019-07-01 2020-06-19 車載装置及びその制御方法、並びに車両 WO2021002223A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021529961A JP7416067B2 (ja) 2019-07-01 2020-06-19 車載装置及びその制御方法、並びに車両
US17/616,423 US20220250640A1 (en) 2019-07-01 2020-06-19 Vehicle-mounted device, control method therefor, and vehicle
CN202080042042.5A CN113924788B (zh) 2019-07-01 2020-06-19 车载装置及其控制方法和车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019122834 2019-07-01
JP2019-122834 2019-07-01

Publications (1)

Publication Number Publication Date
WO2021002223A1 true WO2021002223A1 (ja) 2021-01-07

Family

ID=74101029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024193 WO2021002223A1 (ja) 2019-07-01 2020-06-19 車載装置及びその制御方法、並びに車両

Country Status (4)

Country Link
US (1) US20220250640A1 (ja)
JP (1) JP7416067B2 (ja)
CN (1) CN113924788B (ja)
WO (1) WO2021002223A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276431A1 (ja) * 2021-07-02 2023-01-05 住友電気工業株式会社 車載装置、方法、コンピュータプログラム、運転支援サーバ及び運転支援方法
WO2023276434A1 (ja) * 2021-07-01 2023-01-05 住友電気工業株式会社 車載装置及びその動作方法、並びに車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056318A (ja) * 1991-06-27 1993-01-14 Fujitsu Ltd Posコントローラ内アプリケーシヨンプログラムのダイナミツクロード方式
JP2005337744A (ja) * 2004-05-24 2005-12-08 Oki Joho Systems:Kk カーナビゲーションシステム
JP2016036067A (ja) * 2014-08-01 2016-03-17 株式会社ビートソニック スマートパーキングアシストシステム
JP2017167646A (ja) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 車両用のソフトウェア管理システム、管理サーバ及び車両
JP2019020782A (ja) * 2017-07-11 2019-02-07 株式会社デンソー 車両制御装置、車両制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147925A (ja) 1999-11-18 2001-05-29 Toyota Motor Corp 車上情報検索装置、経路データ圧縮装置及び経路データ復元装置
JP4430914B2 (ja) * 2003-10-02 2010-03-10 昭彦 ▲吉▼田 水生生態系再生工法
US8468244B2 (en) * 2007-01-05 2013-06-18 Digital Doors, Inc. Digital information infrastructure and method for security designated data and with granular data stores
US20090047964A1 (en) * 2007-08-17 2009-02-19 Qualcomm Incorporated Handoff in ad-hoc mobile broadband networks
JP2013003049A (ja) * 2011-06-20 2013-01-07 Sony Corp 経路比較装置、経路比較方法、及びプログラム
DE102011084275A1 (de) * 2011-10-11 2013-04-11 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrerassistenzsystems und Verfahren zum Bearbeiten von Fahrzeugumfelddaten
WO2014075211A1 (en) * 2012-11-13 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Service node selection in a communications network based on application server information
JP6129406B2 (ja) * 2014-03-27 2017-05-17 三菱電機株式会社 運転支援情報生成システム及び運転支援情報提供装置及び運転支援情報生成方法及び運転支援情報生成プログラム
WO2017154092A1 (ja) * 2016-03-08 2017-09-14 三菱電機株式会社 運転支援装置、運転支援システムおよび運転支援方法
CN113395155A (zh) * 2016-06-21 2021-09-14 三星电子株式会社 减少车辆对车辆通信的中断的***和方法
KR102594900B1 (ko) * 2016-07-13 2023-10-27 엘지전자 주식회사 디스플레이 디바이스 및 모바일 디바이스
JP6614178B2 (ja) * 2017-02-16 2019-12-04 トヨタ自動車株式会社 車両通信システム及び車両制御装置
CN107613533B (zh) * 2017-09-12 2020-10-23 华为技术有限公司 Tcu切换方法、消息同步方法及装置
CN109041006A (zh) * 2018-08-23 2018-12-18 北京新能源汽车股份有限公司 一种获取车辆数据的方法
CN109466474A (zh) * 2018-11-23 2019-03-15 北京车和家信息技术有限公司 行车安全辅助驾驶***、车载设备及车辆
JP2023022405A (ja) * 2021-08-03 2023-02-15 トヨタ自動車株式会社 情報処理装置、情報処理方法、およびシステム
JP2023064442A (ja) * 2021-10-26 2023-05-11 トヨタ自動車株式会社 サーバ、情報処理システムおよび情報処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056318A (ja) * 1991-06-27 1993-01-14 Fujitsu Ltd Posコントローラ内アプリケーシヨンプログラムのダイナミツクロード方式
JP2005337744A (ja) * 2004-05-24 2005-12-08 Oki Joho Systems:Kk カーナビゲーションシステム
JP2016036067A (ja) * 2014-08-01 2016-03-17 株式会社ビートソニック スマートパーキングアシストシステム
JP2017167646A (ja) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 車両用のソフトウェア管理システム、管理サーバ及び車両
JP2019020782A (ja) * 2017-07-11 2019-02-07 株式会社デンソー 車両制御装置、車両制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, SHAOSHAN ET AL.: "Edge Computing for Autonomous Driving: Opportunities and Challenges", PROCEEDINGS OF THE IEEE, vol. 107, no. 8, 24 June 2019 (2019-06-24), pages 1697 - 1716, XP011738426, ISSN: 0018-9219, DOI: 10.1109/JPROC.2019.2915983 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276434A1 (ja) * 2021-07-01 2023-01-05 住友電気工業株式会社 車載装置及びその動作方法、並びに車両
WO2023276431A1 (ja) * 2021-07-02 2023-01-05 住友電気工業株式会社 車載装置、方法、コンピュータプログラム、運転支援サーバ及び運転支援方法

Also Published As

Publication number Publication date
US20220250640A1 (en) 2022-08-11
CN113924788A (zh) 2022-01-11
CN113924788B (zh) 2023-12-01
JP7416067B2 (ja) 2024-01-17
JPWO2021002223A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2021002223A1 (ja) 車載装置及びその制御方法、並びに車両
JP4935704B2 (ja) 駐車場混雑状態判定装置、駐車場混雑状態判定方法及びコンピュータプログラム
JP4234062B2 (ja) ソフトウェア管理装置
JP6733997B2 (ja) 車両を制御する方法、装置およびシステム
JP6841263B2 (ja) 走行計画生成装置、走行計画生成方法、及び制御プログラム
JP2017090092A (ja) 車載用ダウンロード制御装置、及びダウンロード制御方法
EP3726374A1 (en) Automobile software upgrading method
EP4148526A1 (en) Simulation method for autonomous vehicle and method for controlling autonomous vehicle
CN114348025A (zh) 一种车辆驾驶监控***、方法、设备及存储介质
JP4075649B2 (ja) 車両用情報通信装置
KR101986698B1 (ko) 적응적 경로 관련 정보 제공 서비스 장치
WO2022097545A1 (ja) 車載装置の動作方法、運転支援システムの動作方法、車載装置、運転支援システム及びコンピュータプログラム
JP6905454B2 (ja) ナビゲーションシステム、ナビゲーション方法
CN103903454A (zh) 一种传感器组网控制方法及装置
JP2021071753A (ja) 管理システム、管理方法、及び管理プログラム
CN108475185B (zh) 工程机械的镜像控制方法及镜像***
JP6816989B2 (ja) 制御装置
JP2020004227A (ja) 情報提供システム、車載装置、管理装置及びプログラム
WO2023276431A1 (ja) 車載装置、方法、コンピュータプログラム、運転支援サーバ及び運転支援方法
KR20220157494A (ko) 자율 주행 방법 및 디바이스
JP2022114971A (ja) 走行支援制御装置、走行支援方法、走行支援プログラム
JP4074549B2 (ja) 車載端末
JP2021034018A (ja) 車両環境に関するデータの送信のための制御装置および制御方法
CN112596764A (zh) 一种基于NB-IoT远程升级的物联网监测方法和装置
KR20050116524A (ko) 디지털 지도 데이터를 동적으로 업데이트하는 경로 안내시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834473

Country of ref document: EP

Kind code of ref document: A1