WO2020241696A1 - 光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法 - Google Patents

光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法 Download PDF

Info

Publication number
WO2020241696A1
WO2020241696A1 PCT/JP2020/020942 JP2020020942W WO2020241696A1 WO 2020241696 A1 WO2020241696 A1 WO 2020241696A1 JP 2020020942 W JP2020020942 W JP 2020020942W WO 2020241696 A1 WO2020241696 A1 WO 2020241696A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core wire
tape core
fiber tape
fiber core
Prior art date
Application number
PCT/JP2020/020942
Other languages
English (en)
French (fr)
Inventor
佐藤 文昭
矩章 岩口
勝史 浜窪
健太 土屋
天野 亜夫
ディーヴァ オマルカ ヴァヤンティ スドゥワー
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019099147A external-priority patent/JP2020194065A/ja
Priority claimed from JP2019111801A external-priority patent/JP2020204687A/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP20812872.8A priority Critical patent/EP3978976A4/en
Priority to US17/614,137 priority patent/US20220252809A1/en
Priority to CN202080039072.0A priority patent/CN113892049A/zh
Publication of WO2020241696A1 publication Critical patent/WO2020241696A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • G02B6/4404Multi-podded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads

Definitions

  • the present disclosure relates to an optical fiber tape core wire, an optical fiber cable, and a method for manufacturing an optical fiber tape core wire.
  • This application claims priority based on Japanese Patent Application No. 2019-11801 filed on June 17, 2019 and Japanese Patent Application No. 2019-099147 filed on May 28, 2019, and is described in the application. All the contents described above are used.
  • Patent Document 1 describes an optical fiber tape core wire having a configuration in which the optical fiber core wires are arranged apart from each other so as not to contact each other and a bridge portion made of a connecting resin is provided between the optical fiber core wires.
  • Patent Documents 2 and 3 describe intermittently connected optical fiber tape core wires having a distance between the centers of the optical fiber core wires of about 250 ⁇ m by leaving a gap between the optical fiber core wires having a small diameter of 220 ⁇ m or less. Has been done.
  • the optical fiber tape core wire is It has a plurality of optical fiber core wires arranged in parallel, a connecting resin for connecting the plurality of optical fiber core wires, and a bridge portion formed of the connecting resin.
  • the plurality of optical fiber core wires are arranged so that the side surface of the optical fiber core wire is separated from or in contact with the side surface of another adjacent optical fiber core wire.
  • the bridge portion is provided between the optical fiber core wires arranged in the separated state.
  • the outer diameter of the optical fiber core wire is 220 ⁇ m or less.
  • the average distance between the centers of the plurality of optical fiber core wires is 220 ⁇ m or more and 280 ⁇ m or less.
  • optical fiber cable according to one aspect of the present disclosure is With the above optical fiber tape core wire, With the cable jacket, Have, The optical fiber tape core wire is mounted inside the cable jacket.
  • a process of arranging multiple optical fiber core wires with an outer diameter of 220 ⁇ m or less in parallel The plurality of optical fiber core wires arranged in parallel are arranged so that the side surface of the optical fiber core wire is separated from or in contact with the side surface of another adjacent optical fiber core wire, and the plurality of optical fiber core wires are arranged.
  • the optical fiber core wires are arranged without gaps using the optical fiber core wires with a small diameter of 220 ⁇ m or less in the optical fiber tape core wires, the distance between the centers of the optical fiber core wires becomes small, and the V groove of the existing fusion splicer It is difficult for the optical fiber core wire to be placed on the wire. Therefore, for example, like the optical fiber tape core wire described in Patent Document 1, the optical fiber core wires are arranged apart from each other so as not to come into contact with each other, and a bridge portion made of a connecting resin is also provided between the optical fiber core wires. It is conceivable to have a configuration.
  • the pitch of the V-groove of the existing fusion splicer is 250 ⁇ m
  • the width of the bridge portion becomes narrow and the flexibility of the optical fiber tape core wire is insufficient. May become. If the flexibility of the optical fiber tape core wire is insufficient, it is difficult to deform, which makes it difficult to mount the optical fiber cable at high density.
  • an intermittently connected optical fiber tape core wire has a gap between the optical fiber core wires having a small diameter of 220 ⁇ m or less so that the distance between the centers of the optical fiber core wires is about 250 ⁇ m. Is described. However, in the intermittently connected optical fiber tape core wire using the above-mentioned small-diameter optical fiber core wire, the gap between the optical fiber core wires is made constant, and intermittent processing is performed at high speed and with high accuracy in the longitudinal direction. It may be difficult to manufacture.
  • the present disclosure uses an optical fiber core wire having a small diameter of 220 ⁇ m or less, is easy to mount in a V-groove with a pitch of 250 ⁇ m of an existing fusion splicer, and is suitable for high-density mounting. It is an object of the present invention to provide a method for manufacturing a cable and an optical fiber tape core wire.
  • an optical fiber tape core wire having a small diameter of 220 ⁇ m or less, which is easy to mount in a V-groove with a pitch of 250 ⁇ m of an existing fusion machine and is suitable for high-density mounting, A method for manufacturing an optical fiber cable and an optical fiber tape core wire can be provided.
  • the optical fiber tape core wire according to one aspect of the present disclosure is (1) It has a plurality of optical fiber core wires arranged in parallel, a connecting resin for connecting the plurality of optical fiber core wires, and a bridge portion formed of the connecting resin.
  • the plurality of optical fiber core wires are arranged so that the side surface of the optical fiber core wire is separated from or in contact with the side surface of another adjacent optical fiber core wire.
  • the bridge portion is provided between the optical fiber core wires arranged in the separated state.
  • the outer diameter of the optical fiber core wire is 220 ⁇ m or less.
  • the average distance between the centers of the plurality of optical fiber core wires is 220 ⁇ m or more and 280 ⁇ m or less.
  • the optical fiber tape core wire having the above configuration even if an optical fiber core wire having a small diameter of 220 ⁇ m or less is used, by adjusting the width of the bridge portion, a V-groove with a pitch of 250 ⁇ m of an existing fusion machine is used. It can be easily placed on. Further, since the flexibility of the optical fiber tape core wire can be increased, it can be mounted on an optical fiber cable by, for example, rolling it, and it can be suitable for high-density mounting.
  • the N may be a multiple of 2.
  • the connecting resin may have a Young's modulus of 0.5 MPa or more and 200 MPa or less at room temperature. According to the optical fiber tape core wire having the above configuration, the rigidity of the optical fiber tape core wire is in an appropriate range. As a result, the optical fiber tape core wire has appropriate flexibility.
  • the optical fiber tape core wire is not too rigid, when the optical fiber cable accommodating the optical fiber tape core wire is bent, the optical fiber tape core wire is appropriately intersected in the width direction. Since it is deformed, an increase in transmission loss can be suppressed. Therefore, the optical fiber tape core wire can further suppress an increase in transmission loss in a low temperature environment.
  • the bridge portion may have a recessed portion. According to the optical fiber tape core wire having the above configuration, the optical fiber tape core wire can be easily deformed at the recessed portion. Further, since the optical fiber tape core wire can be easily torn from the recessed portion, the single core can be easily separated.
  • the bridge portion is
  • the optical fiber tape core wire may be provided unevenly on one side of one side or the other side of the parallel side. According to the optical fiber tape core wire having the above configuration, since the connecting resin is biased to one side of the parallel surface of the optical fiber tape core wire, it is easy to bend in a specific direction, and when it is mounted on the optical fiber cable, for example, it is rolled. Easy to implement in this way.
  • the bridge portion is The optical fiber tape core wire may have intermittently divided portions in the longitudinal direction. According to the optical fiber tape core wire having the above configuration, since the optical fiber tape core wire has an intermittently divided portion, the optical fiber tape core wire can be easily deformed. Further, since the optical fiber tape core wire can be easily torn from the divided portion as a starting point, single core separation becomes easy.
  • the connecting resin may contain a silicone-based lubricant.
  • the connecting resin is a resin containing a silicon-based lubricant, the friction coefficient can be reduced. Since the friction coefficient of the connecting resin is small, when a plurality of optical fiber tape core wires having the above configurations are mounted on the optical fiber cable, each optical fiber tape core wire easily moves in the longitudinal direction. Therefore, it is possible to suppress an increase in transmission loss in the optical fiber cable.
  • the peeling strength between the outermost layer of the optical fiber core wire and the connecting resin may be less than 0.1 N / mm. According to the optical fiber tape core wire having the above configuration, the connecting resin can be easily peeled off from the outermost layer of the optical fiber core wire.
  • the optical fiber core wire has a glass fiber and a coating that covers the outer periphery of the glass fiber.
  • the coating comprises two coating layers.
  • the outer coating layer of the two coating layers is A base resin containing a urethane acrylate oligomer or urethane methacrylate oligomer, a monomer having a phenoxy group, a photopolymerization initiator and a silane coupling agent, A cured product of a resin composition containing hydrophobic inorganic oxide particles.
  • the content of the inorganic oxide particles in the resin composition may be 1% by mass or more and 45% by mass or less based on the total amount of the resin composition.
  • the lateral pressure resistance of the optical fiber core wire is increased. Therefore, since it is possible to suppress an increase in transmission loss when mounted on an optical fiber cable, it can be further suitable for high-density mounting of an optical fiber tape core wire.
  • the optical fiber core wire may have a bending loss at a wavelength of 1550 nm of 0.5 dB or less in a bending diameter of ⁇ 15 mm ⁇ 1 turn and 0.1 dB or less in a bending diameter of ⁇ 20 mm ⁇ 1 turn. According to the optical fiber tape core wire having the above configuration, the lateral pressure characteristic can be improved and the low temperature loss characteristic can be improved.
  • the optical fiber cable according to one aspect of the present disclosure is (12) With the optical fiber tape core wire according to any one of (1) to (11) above, With the cable jacket, Have, The optical fiber tape core wire is mounted inside the cable jacket. According to the optical fiber cable having the above configuration, while using an optical fiber core wire having a small diameter of 220 ⁇ m or less, an optical fiber tape core wire that can be easily placed in a V-groove with a pitch of 250 ⁇ m of an existing fusion splicer is mounted at high density. can do.
  • a step of curing the connecting resin and providing a bridge portion between the optical fiber core wires arranged in a separated state, and a step of providing a bridge portion. including.
  • FIG. 1 is a cross-sectional view showing an optical fiber tape core wire 1A according to the first embodiment.
  • a plurality of (12 in this example) optical fiber core wires 11 are arranged in parallel in the optical fiber tape core wire 1A.
  • the twelve optical fiber core wires 11A to 11L are arranged in a state where the side surface of the optical fiber core wire is separated from or in contact with the side surface of another adjacent optical fiber core wire for each N core.
  • the side surface of the optical fiber core wire is repeatedly placed at a certain distance from the side surface of another adjacent optical fiber core wire and in contact with each other every two cores. Have been placed.
  • N may be a multiple of 2.
  • the 12 optical fiber core wires 11A to 11L arranged in parallel are all collectively connected by the connecting resin 21.
  • the connecting resin 21 is provided between the two optical fiber core wires so as to fill the gap between the optical fiber core wires arranged at a certain distance, and also covers the optical fiber core wires 11. Is provided around the optical fiber core wire 11.
  • the connecting resin 21 provided between the optical fiber cores constitutes a bridge portion 21a that bridges the adjacent optical fiber cores 11. Further, the connecting resin 21 provided around the optical fiber core wire 11 other than between the optical fiber core wires constitutes an outer peripheral covering portion 21b that covers the outer periphery of the optical fiber core wire 11.
  • the optical fiber tape core wire 1A is a bridge-like connection between predetermined (every two cores) optical fiber core wires in which the side surface of the optical fiber core wire is separated from the side surface of another adjacent optical fiber core wire. It is a bridge type optical fiber tape core wire having a portion.
  • a bridge portion 21a is provided between the M-th optical fiber core wire and the M + 1-th optical fiber core wire.
  • the bridge portion 21a is provided between the optical fiber core wires 11B and 11C, between 11D and 11E, between 11F and 11G, between 11H and 11I, and between 11J and 11K. Has been done.
  • the thickness t of the bridge portion 21a is larger than the sum of the outer diameter R of the optical fiber core wire 11 and the thickness s of the outer peripheral covering portion 21b. It is formed to be thin. Further, the bridge portion 21a is formed so that the position of the upper end of the bridge portion 21a does not exceed the position of the broken line A1 connecting the upper ends of the outer peripheral covering portions 21b coated around the optical fiber core wire 11. There is. Further, the bridge portion 21a is formed so that the position of the lower end of the bridge portion 21a does not exceed the position of the broken line A2 connecting the lower ends of the outer peripheral covering portion 21b. In the case of this example, the bridge portion 21a is formed so as to connect substantially the central portion of the adjacent optical fiber core wires 11.
  • the Young's modulus of the connecting resin 21 (bridge portion 21a and outer peripheral coating portion 21b) is 0.5 MPa or more and 200 MPa or less at room temperature (for example, 23 ° C.).
  • the connecting resin 21 for example, an ultraviolet curable resin, a thermosetting resin, or the like is used.
  • the outermost layer of the optical fiber core wire 11 and the connecting resin 21 have a small adhesion force.
  • the connecting resin 21 may be formed of a resin containing a silicon-based lubricant. By including the silicon-based lubricant in the connecting resin 21, the adhesive force is reduced, and the peelability of the connecting resin 21 is improved, which facilitates the work of separating the optical fiber core wires 11A to 11L into a single core.
  • the friction coefficient of the connecting resin 21 is smaller than that of the resin containing no silicon-based lubricant, for example, when a plurality of optical fiber tape core wires 1A are mounted on the optical fiber cable, each optical fiber tape core wire is mounted. 1A is easy to move in the longitudinal direction. Therefore, when the optical fiber tape core wire 1A is mounted on the optical fiber cable, it is possible to suppress an increase in transmission loss in, for example, a low temperature environment.
  • As an index of the adhesion force there is a peeling strength which is a force per unit length required to peel the connecting resin 21 from the outer peripheral surface of the optical fiber core wire 11. In order to cause peeling, it is desirable that the peeling strength between the outermost layer of the optical fiber core wire 11 and the connecting resin 21 is less than 0.1 N / mm.
  • the peeling strength between the outer peripheral surface of the optical fiber core wire 11 and the connecting resin 21 is measured as follows.
  • the connecting resins 21 at both ends of the optical fiber core wire 11 in the width direction are cut and separated with a knife or a razor.
  • the connecting resin 21 is separated vertically, one of them is grasped and pulled in the longitudinal direction and the width direction (90 degree direction) of the optical fiber core wire 11 at a speed of 100 mm / min, and the tensile force at that time.
  • the tensile force and the length of the peeled connecting resin 21 are converted into the peeling strength per unit length.
  • the optical fiber core wire 11 has, for example, a glass fiber 12 composed of a core and a clad, and two coating layers 13 and 14 that cover the periphery of the glass fiber 12.
  • the optical fiber core wire 11 may have a colored layer.
  • the inner coating layer 13 of the two coating layers is formed of a cured product of the primary resin.
  • the outer coating layer 14 of the two coating layers is formed of a cured product of the secondary resin.
  • a soft resin having a relatively low Young's modulus is used as the buffer layer.
  • a hard resin having a relatively high Young's modulus is used as the protective layer.
  • the Young's modulus of the cured product of the secondary resin is 900 MPa or more, preferably 1000 MPa or more, and more preferably 1500 MPa or more at room temperature (for example, 23 ° C.).
  • the secondary resin constituting the outer coating layer 14 is a base resin containing a urethane acrylate oligomer or a urethane methacrylate oligomer, a monomer having a phenoxy group, a photopolymerization initiator and a silane coupling agent, and a hydrophobic inorganic substance. It is preferable that the resin composition contains oxide particles. The content of the inorganic oxide particles in the resin composition is 1% by mass or more and 45% by mass or less based on the total amount of the resin composition.
  • acrylate or the corresponding methacrylate is referred to as (meth) acrylate.
  • urethane (meth) acrylate oligomer an oligomer obtained by reacting a polyol compound, a polyisocyanate compound, and a hydroxyl group-containing (meth) acrylate compound can be used.
  • This oligomer can be obtained, for example, by reacting polypropylene glycol, isophorone diisocyanate, hydroxyethyl acrylate and methanol having a molecular weight of 4000.
  • the monomer having a phenoxy group a (meth) acrylate compound having a phenoxy group can be used.
  • the monomer having a phenoxy group is nonylphenol EO-modified acrylate (trade name "Aronix M-113" of Toagosei Co., Ltd.).
  • the photopolymerization initiator can be appropriately selected from known radical photopolymerization initiators and used.
  • the photopolymerization initiator is 2,4,6-trimethylbenzoyldiphenylphosphine oxide or the like.
  • the silane coupling agent is not particularly limited as long as it does not interfere with the curing of the resin composition.
  • the silane coupling agent is 3-mercaptopropyltrimethoxysilane or the like.
  • Hydrophobic inorganic oxide particles have a hydrophobic group introduced on the surface of the inorganic oxide particles.
  • the inorganic oxide particles are, for example, silica particles.
  • the hydrophobic group may be a reactive group such as a (meth) acryloyl group or a vinyl group, or a non-reactive group such as a hydrocarbon group (for example, an alkyl group) or an aryl group (for example, a phenyl group). Good.
  • the lateral pressure characteristics of the optical fiber core wire 11 are improved.
  • the primary resin and the secondary resin that form the inner coating layer 13 are formed of, for example, an ultraviolet curable resin, a thermosetting resin, or the like.
  • the optical fiber core wire 11 has a bending loss at a wavelength of 1550 nm of 0.5 dB or less in a bending diameter of ⁇ 15 mm ⁇ 1 turn and 0.1 dB or less in a bending diameter of ⁇ 20 mm ⁇ 1 turn. It is preferable that the bending loss is equivalent to 657A2.
  • the lateral pressure characteristic can be improved and the low temperature loss characteristic can be improved.
  • the outer diameter R of the optical fiber core wire 11 (11A to 11L) is 220 ⁇ m or less.
  • the center-to-center distance of the optical fiber core wires 11 is formed so that the center-to-center distance P1 in a state where the optical fiber core wires are in contact with each other is approximately 200 ⁇ m.
  • the center-to-center distance P2 in a state where the optical fiber core wires are separated from each other by a certain distance is formed to be approximately 300 ⁇ m.
  • the average distance P ((P1 + P2) / 2) between the centers of the optical fiber core wire 11 is formed to be 220 ⁇ m or more and 280 ⁇ m or less. Further, in the case of this example, the width W of the bridge portion 21a (the width in the same direction as the parallel direction of the optical fiber core wires 11) is formed to be approximately 100 ⁇ m.
  • the center-to-center distance P1 between the optical fiber cores 11A and 11B is approximately 200 ⁇ m
  • the center-to-center distance P2 between the optical fiber cores 11B and 11C is approximately 300 ⁇ m
  • the distance between the optical fiber cores 11B and 11C is approximately 100 ⁇ m.
  • the number of cores of the optical fiber tape core wire 1A is set to 12, but the number of cores is not limited to this.
  • the number of cores of the optical fiber tape core wire 1A may be a multiple of 4, for example, 24 cores, 48 cores, or the like.
  • the multi-core fusion splicer has a plurality of V-grooves 31A to 31L for arranging the optical fiber core wires (12 in the examples of FIGS. 2 to 4).
  • the V-groove base 30 is provided.
  • These V-grooves 31A to 31L are generally formed with a pitch P0 of 250 ⁇ m in accordance with the international standard for the diameter of the optical fiber core wire.
  • P0 the pitch
  • FIG. 2 shows fusion of the optical fiber tape core wires 100 of Reference Example 1 in which the optical fiber core wires 11A to 11L having an outer diameter dimension of about 200 ⁇ m are arranged in parallel with the center-to-center distance P3 of the optical fiber core wires being approximately 250 ⁇ m. The process is shown.
  • the pitch P0 of each of the V-grooves 31A to 31L in the V-groove base 30 of the multi-core fusion splicer is formed to be approximately 250 ⁇ m.
  • the optical fiber core wires 11A to 11L in a state where the connecting resin having a predetermined length at the tip is removed are arranged above the V-groove base 30.
  • the optical fiber core wires 11A to 11L are arranged so that, for example, the center position 32 of the V groove base 30 in the direction in which the V grooves are parallel coincides with the center position in the direction in which the optical fiber core wires 11A to 11L are parallel.
  • the clamp lid (not shown) of the multi-core fusion splicer is closed, and the optical fiber core wires 11A to 11L are pushed down from above by the clamp lid.
  • each optical fiber core wire 11A to 11L has each V-groove 31A. It is arranged so as to face each of ⁇ 31L. Therefore, the optical fiber core wires 11A to 11L are pushed down substantially vertically, and one of each is sequentially housed in the V-grooves 31A to 31L.
  • FIG. 3 shows fusion of the optical fiber tape core wires 200 of Reference Example 2 in which the optical fiber core wires 11A to 11L having an outer diameter dimension of about 200 ⁇ m are arranged in parallel with the center-to-center distance P4 of the optical fiber core wires being approximately 200 ⁇ m. The process is shown.
  • the pitch P0 of each of the V-grooves 31A to 31L in the V-groove base 30 is 250 ⁇ m.
  • the optical fiber core wires 11A to 11L are arranged above the V-groove base 30 so that the center positions are aligned in the same manner as in FIG.
  • the optical fiber tape core wire 200 having the configuration as in Reference Example 2
  • the optical fiber The core wires 11A to 11L are arranged so as to gather in the center position 32 direction of the V-groove base 30. Therefore, the optical fiber core wires 11A to 11L are pushed down along the groove wall of the V groove, for example, in the direction of the arrow. Therefore, the optical fiber core wires 11A to 11L cannot be accommodated in the V-grooves 31A to 31L in order. For example, there may be a case where the optical fiber core wire is not accommodated in the V-grooves 31A, 31L, etc. at the end.
  • FIG. 4 shows a fusion process of the optical fiber tape core wire 1A according to the first embodiment shown in FIG.
  • the pitch P0 of each V-groove 31A to 31L in the V-groove base 30 is 250 ⁇ m.
  • the optical fiber core wires 11A to 11L are arranged above the V-groove base 30 so that the center positions are aligned in the same manner as in FIG.
  • the distance between the centers of the optical fiber core wires P1 (approximately 200 ⁇ m) in the state where the optical fiber core wires are in contact with each other is formed to be smaller than the pitch P0 of the V groove.
  • the center-to-center distance P2 (approximately 300 ⁇ m) of the optical fiber core wire in the state where the bridge portion 21a is provided between the optical fiber core wires is formed to be larger than the pitch P0 of the V groove. Therefore, since the average distance P between the centers of the optical fiber core wire 11 of the optical fiber tape core wire 1A is approximately 250 ⁇ m, when it is pushed down by the clamp lid, it is shown in FIG. 4 along the groove wall of the V groove. Guided in the direction of the arrow. As a result, one optical fiber core wire 11A to 11L is sequentially housed in each V groove 31A to 31L.
  • the optical fiber core wire with the connecting resin removed is housed in the V-grooves 31A to 31L.
  • the coating layer is further removed, and only the glass fiber is used. It may be accommodated in the V-grooves 31A to 31L.
  • the optical fiber core wires 11A to 11L are produced by drawing so that the diameter of the glass fiber 12 is approximately 125 ⁇ m and the diameter of the outer coating layer 14 is approximately 200 ⁇ m.
  • the optical fiber core wires 11A to 11L may have a colored layer in order to have distinctiveness.
  • the coating die 41 of the manufacturing apparatus 40 is provided with a gap of a certain distance between the two cores. Let it pass.
  • the coating die 41 is formed with a hole in the die insertion portion so that the gap between the optical fiber core wires for each of the two cores is approximately 100 ⁇ m.
  • the coating die 41 provided the outer circumferences of the optical fiber core wires 11A and 11B, 11C and 11D, 11E and 11F, 11G and 11H, 11I and 11J, 11K and 11L in contact with each other, and a gap of a certain distance.
  • the connecting resin 21 is applied to the gaps between the optical fiber core wires 11B and 11C, 11D and 11E, 11F and 11G, 11H and 11I, 11J and 11K.
  • the optical fiber core wires 11A to 11L coated with the connecting resin 21 are irradiated with ultraviolet rays by the curing device 42 to cure the connecting resin 21.
  • the bridge portion 21a is formed by curing the connecting resin 21 applied to the gap between the optical fiber core wires.
  • the outer peripheral coating portion 21b is formed by applying the coating to the outer periphery of the contacted optical fiber core wires and curing the connecting resin 21.
  • the distance between the centers of the optical fiber cores 11A and 11B, 11C and 11D, 11E and 11F, 11G and 11H, 11I and 11J, 11K and 11L is approximately 200 ⁇ m
  • the optical fiber cores 11B and 11C and 11D The optical fiber tape core in which the center-to-center distance P2 of 11E, 11F and 11G, 11H and 11I, 11J and 11K is approximately 300 ⁇ m, and the average distance P between the centers of the optical fiber core wires 11A to 11L is 220 ⁇ m or more and 280 ⁇ m or less. Line 1A is made.
  • the connecting resin 21 constituting the bridge portion 21a and the outer peripheral coating portion 21b is applied by the coating die 41, but the present invention is not limited to this.
  • the connecting resin 21 constituting the outer peripheral covering portion 21b may be applied by the coating die 41, and then the connecting resin 21 constituting the bridge portion 21a may be applied by a coating device such as a dispenser.
  • the optical fiber tape core wire 1A manufactured as described above has each V-groove when the existing fusion splicer in which the pitch of the V-grooves 31A to 31L is set to 250 ⁇ m is used.
  • Each optical fiber core wire 11A to 11L is arranged at a position corresponding to 31A to 31L. Therefore, one optical fiber core wire 11A to 11L can be accommodated in each V groove 31A to 31L. Therefore, according to the optical fiber tape core wire 1A, while using the optical fiber core wire 11 having a small diameter of 220 ⁇ m or less, a bridge portion 21a is provided between the optical fiber core wires for every two cores, and the existing fusion splicer is used.
  • the optical fiber tape core wire 1A can be used as an optical fiber tape core wire suitable for high-density mounting.
  • the Young's modulus of the connecting resin 21 of the optical fiber tape core wire 1A is in the range of 0.5 MPa or more and 200 MPa or less, the rigidity of the optical fiber tape core wire 1A is in an appropriate range. Therefore, according to the optical fiber tape core wire 1A, the configuration can be configured to have appropriate flexibility, and the optical fiber tape core wire suitable for high-density mounting can be obtained.
  • the connecting resin 21 contains a silicon-based lubricant, the adhesion between the outermost layer of the optical fiber core wire 11 and the connecting resin 21 can be reduced, and the peeling strength can be reduced. Can be less than 0.1 N / mm. Further, since the friction coefficient of the connecting resin 21 is smaller than that of the resin containing no silicon, for example, when a plurality of optical fiber tape core wires 1A are mounted on the optical fiber cable, each optical fiber tape core wire 1A is mounted. Is easy to move in the longitudinal direction. Therefore, when mounted on an optical fiber cable, for example, an increase in transmission loss in a low temperature environment can be suppressed. For example, the loss fluctuation value of the loss temperature characteristic at ⁇ 40 ° C. can be reduced to about two-thirds as compared with the silicon-free optical fiber tape core wire.
  • the optical fiber tape core wire 1A by using a cured product of the above resin composition (resin containing inorganic oxide particles) as the outer coating layer 14 constituting the coating on the optical fiber core wire 11. , The lateral pressure resistance of the optical fiber core wire 11 can be increased. Therefore, if the optical fiber tape core wire 1A is configured by using such an optical fiber core wire 11, for example, an increase in transmission loss when mounted on an optical fiber cable can be further suppressed. Therefore, the optical fiber tape core wire more suitable for high-density mounting on the optical fiber cable can be obtained. For example, the transmission loss at ⁇ 40 ° C.
  • the bending loss at a wavelength of 1550 nm is 0.5 dB or less in a bending diameter of ⁇ 15 mm ⁇ 1 turn, and 0.1 dB or less in a bending diameter of ⁇ 20 mm ⁇ 1 turn.
  • the same effect can be obtained by using an optical fiber core wire equivalent to 657A2.
  • the manufacturing method of the optical fiber tape core wire 1A it is easy to mount the optical fiber core wire having a small diameter of 220 ⁇ m or less in the V-groove with a pitch of 250 ⁇ m of the existing fusion machine, and for high-density mounting.
  • a suitable optical fiber tape core wire 1A can be manufactured.
  • FIG. 6 is a cross-sectional view of a slot-type optical fiber cable 50 using the above-mentioned optical fiber tape core wire 1A.
  • the optical fiber cable 50 has a slot rod 52 having a plurality of slot grooves 51, a plurality of optical fiber tape core wires 1A, and a cable jacket 53.
  • the optical fiber cable 50 has a structure in which a plurality of slot grooves 51 are radially provided on a slot rod 52 having a tension member 54 in the center.
  • the plurality of slot grooves 51 may be provided in a spiral or SZ shape twisted in the longitudinal direction of the optical fiber cable 50.
  • Each of the slot grooves 51 accommodates a plurality of the optical fiber tape core wires 1A that have been rolled up from the parallel state into a dense state.
  • a presser foot tape 55 is wound around the slot rod 52, and a cable jacket 53 is formed around the presser foot tape 55.
  • the optical fiber cable 50 has, for example, a 3456-core optical fiber core wire having an outer diameter of 34 mm, having six slot grooves 51, and having 48 optical fiber tape core wires 1A housed in each slot groove 51. It is a cable having 11.
  • the core density calculated from the number of cores of the optical fiber cable and the cross-sectional area of the optical fiber cable is 3.81 cores / mm 2 .
  • the optical fiber cable is not limited to the slot type, and may be, for example, a slotless optical fiber cable.
  • the tape core wire 1A can be mounted at a high density.
  • optical fiber tape core wire 1B according to the second embodiment will be described with reference to FIG. 7.
  • the same components as those of the optical fiber tape core wire 1A according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 7 shows a cross-sectional view of the optical fiber tape core wire 1B.
  • the optical fiber tape core wire 1B is different from the optical fiber tape core wire 1A according to the first embodiment in that each bridge portion 21a has a recessed portion 22.
  • the recessed portion 22 has a triangular angle that narrows toward one surface of the bridge portion 21a (upper surface in FIG. 7), for example, toward a surface opposite to the surface (lower surface in FIG. 7). It is formed in a shape.
  • Other configurations are the same as those of the optical fiber tape core wire 1A.
  • the optical fiber tape core wire 1B having the above configuration, by providing the recessed portion 22 in the bridge portion 21a, the optical fiber tape core wire 1B can be easily deformed by the recessed portion 22. Further, since the bridge portion 21a can be easily torn from the recessed portion 22, the single core of the optical fiber core wire 11 in the optical fiber tape core wire 1B can be easily separated.
  • optical fiber tape core wire 1C according to the third embodiment will be described with reference to FIG.
  • the same components as those of the optical fiber tape core wire 1A according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 8 shows a plan view of the optical fiber tape core wire 1C.
  • the optical fiber tape core wire 1C is different from the optical fiber tape core wire 1A according to the first embodiment in that the bridge portion 21a has a dividing portion 23.
  • the dividing portion 23 is formed intermittently in the longitudinal direction of the optical fiber tape core wire 1C.
  • the dividing portion 23 is formed in each bridge portion 21a, and the length of the dividing portion 23 in the longitudinal direction of the optical fiber tape core wire 1C is formed to be longer than the length of the bridge portion 21a.
  • the optical fiber tape core wire 1C is an intermittently connected optical fiber tape core wire in which a bridge portion 21a and a dividing portion 23 are intermittently provided in the longitudinal direction for each of the two optical fiber core wires. Other configurations are the same as those of the optical fiber tape core wire 1A.
  • the plan view of FIG. 8 shows a state in which the dividing portion 23 is opened in the parallel direction of the optical fiber core wire 11.
  • the optical fiber tape core wire 1C having the above configuration, since the dividing portion 23 is intermittently provided in the bridge portion 21a provided for every two cores, the optical fiber tape core wire 1C can be easily deformed. Therefore, when the optical fiber tape core wire 1C is mounted on the optical fiber cable, it can be easily rolled and mounted, so that the optical fiber tape core wire suitable for high-density mounting can be obtained. Further, since the bridge portion 21a can be easily split from the dividing portion 23 as a starting point, the single core of the optical fiber core wire 11 in the optical fiber tape core wire 1B can be easily separated.
  • the width W of the bridge portion 21a can be widened as compared with the configuration in which the bridge portion is provided between the core wires. Therefore, it becomes easy to provide the dividing portion 23 in the bridge portion 21a in the optical fiber tape core wire 1C.
  • optical fiber tape core wire 1D according to the fourth embodiment will be described with reference to FIG.
  • the same components as those of the optical fiber tape core wire 1A according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 9 shows a cross-sectional view of the optical fiber tape core wire 1D.
  • each bridge portion 121a is provided unevenly on one side or one side of the parallel surface formed by the parallel optical fiber core wires 11A to 11L. In that respect, it differs from the optical fiber tape core wire 1A according to the first embodiment.
  • the position of the upper end of the bridge portion 121a is the same as the position of the broken line A1 connecting the upper ends of the outer peripheral covering portions 21b, or the lower end of the bridge portion 121a.
  • the position is formed to be the same as the position of the broken line A2 connecting the lower ends of the outer peripheral covering portion 21b.
  • the bridge portion 121a between the optical fiber core wires 11B and 11C is provided unevenly toward the lower parallel surface side in FIG. 9, so that the position of the lower end of the bridge portion 121a is the same as the position of the broken line A2. Is formed in. Further, the bridge portion 121a between the optical fiber core wires 11D and 11E is provided unevenly toward the upper parallel surface side in FIG. 9, so that the position of the upper end of the bridge portion 121a is the same as the position of the broken line A1. Is formed in. In this example, the side where the bridge portion 121a is biased is formed so as to alternate between the lower side and the upper side, but the present invention is not limited to this. For example, each of the two bridge portions 121a may be formed so as to be biased toward the lower side and the upper side. Other configurations are the same as those of the optical fiber tape core wire 1A.
  • the connecting resin 21 constituting the bridge portion 121a is alternately biased to one side of the parallel surface of the optical fiber tape core wire 1D, so that the optical fiber in each bridge portion 121a It is easy to bend in the direction intersecting the width direction of the tape core wire 1D. Therefore, when mounting the optical fiber tape core wire 1D on the optical fiber cable, it is easy to mount it by, for example, rolling it. Therefore, the optical fiber tape core wire 1D can be made suitable for high-density mounting. Further, the optical fiber tape core wire 1D is excellent in batch connectivity because the optical fiber tape core wire 1D is less likely to warp than the structure biased to one surface side.
  • optical fiber tape core wire 1E according to the fifth embodiment will be described with reference to FIG.
  • the same components as those of the optical fiber tape core wire 1D according to the fourth embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 10 shows a cross-sectional view of the optical fiber tape core wire 1E.
  • all the bridge portions 221a are provided unevenly on one surface side of the parallel surface formed by the parallel optical fiber core wires 11A to 11L. It is different from the optical fiber tape core wire 1D according to the form.
  • the position of the lower end of the bridge portion 221a is the same as the position of the broken line A2 connecting the lower ends of the outer peripheral covering portions 21b, or the bridge portion 221a.
  • the position of the upper end of the outer peripheral covering portion 21b is formed to be the same as the position of the broken line A1 connecting the upper ends of the outer peripheral covering portion 21b.
  • all the bridge portions 221a are provided unevenly toward the lower parallel surface side in FIG. 10, and are formed so that the position of the lower end of the bridge portion 221a is the same as the position of the broken line A2.
  • the optical fiber tape core wire 1E having the above configuration, since the connecting resin 21 constituting all the bridge portions 221a is biased to one surface side of the parallel surface of the optical fiber tape core wire 1E, the light is applied to the bridge portion 221a. It is easy to bend in a specific direction (upward in FIG. 10) intersecting the width direction of the fiber optic tape core wire 1E. Therefore, when mounting the optical fiber tape core wire 1E on the optical fiber cable, it is easy to mount the optical fiber tape core wire 1E by, for example, rolling it in one direction. Therefore, the optical fiber tape core wire 1E can be made suitable for high-density mounting.
  • optical fiber tape core wire 1F (Sixth Embodiment)
  • the optical fiber tape core wire 1F according to the sixth embodiment will be described with reference to FIG.
  • the same components as those of the optical fiber tape core wire 1A according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 11 shows a cross-sectional view of the optical fiber tape core wire 1F.
  • the optical fiber tape core wire 1F is different from the optical fiber tape core wire 1A according to the first embodiment in that the bridge portion 321a is provided every four cores.
  • 12 optical fiber core wires 11A to 11L are arranged in a state where the side surface of the optical fiber core wire is separated from or in contact with the side surface of another adjacent optical fiber core wire every four cores. ..
  • the center-to-center distance of the optical fiber core wires 11 is formed so that the center-to-center distance P1 in a state where the optical fiber core wires are in contact with each other is approximately 200 ⁇ m.
  • the center-to-center distance P2 in a state where the optical fiber core wires are separated from each other by a certain distance is formed to be approximately 400 ⁇ m. Therefore, in the optical fiber tape core wire 1F, the average distance P ((3P1 + P2) / 4) between the centers of the optical fiber core wire 11 is formed to be 250 ⁇ m.
  • the width W (width in the same direction as the parallel direction of the optical fiber core wires) of the bridge portion 321a is formed to be approximately 200 ⁇ m.
  • Other configurations are the same as those of the optical fiber tape core wire 1A.
  • optical fiber tape core wire 1F having the above configuration, the same effect as that of the optical fiber tape core wire 1A of the first embodiment can be obtained.
  • FIG. 12 is a cross-sectional view showing the optical fiber tape core wire 1G according to the seventh embodiment.
  • the same components as those of the optical fiber tape core wire 1A according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 12 shows a cross-sectional view of the optical fiber tape core wire 1G.
  • the optical fiber tape core wire 1G is different from the optical fiber tape core wire 1A according to the first embodiment in that the bridge portion 421a is provided for each core.
  • 12 optical fiber core wires 11A to 11L are arranged so that the side surface of the optical fiber core wire is separated from the side surface of another adjacent optical fiber core wire.
  • the center-to-center distance F of the optical fiber core wire 11 is the outer diameter R of the optical fiber core wire 11 and the width W of the bridge portion 421a (width in the same direction as the parallel direction of the optical fiber core wires). ) And the sum of the lengths.
  • the outer diameter R of the optical fiber core wires 11 (11A to 11L) is 220 ⁇ m or less.
  • the distance F between the centers of the optical fiber core wire 11 is 220 ⁇ m or more and 280 ⁇ m or less.
  • Other configurations are the same as those of the optical fiber tape core wire 1A.
  • the maximum thickness D of the optical fiber tape core wire 1G is, in this example, the outer diameter R of the optical fiber core wire 11 and the thickness s of the upper and lower outer peripheral covering portions 21b of the optical fiber core wire 11.
  • the bridge width W is the width W of the bridge portion 421a, which is the distance between the outer circumferences of the optical fiber core wire 11.
  • the present inventors considered the deformation parameter P as an index indicating the deformability of the optical fiber tape core wire.
  • the deformation parameter P is represented by the following equation (1) by the maximum thickness D of the optical fiber tape core wire, the width W of the bridge portion, the thickness t of the bridge portion, and the Young's modulus E of the connecting resin.
  • P D ⁇ E ⁇ t 2 / W equation (1)
  • the above-mentioned deformation parameter P is an index that the larger the value, the less easily the optical fiber tape core wire is deformed, and the smaller the value, the more easily the optical fiber tape core wire is deformed.
  • the bridge width W is set so that the value obtained by adding the maximum thickness D of the optical fiber tape core wire and the bridge width W in each sample is 270 ⁇ m.
  • the above sample No. Nos. 1 to 27 are those in which inorganic oxide particles are not blended in the secondary resin of the optical fiber core wire.
  • each sample was evaluated for transmission loss in a low temperature (-40 ° C) environment. Table 1 below shows sample numbers. The evaluation results of the transmission loss for 1 to 27 are shown.
  • the evaluation for each sample was performed by accommodating the optical fiber tape core wire of each sample in the evaluation optical fiber cable 60 having the configuration shown in FIG.
  • the slot-type evaluation optical fiber cable 60 includes a slot rod 62 having six slot grooves 61, and a plurality of optical fiber tape core wires 1G housed in the slot grooves 61.
  • FIG. 13 in order to explain the inside of the slot groove 61, one slot groove 61 is enlarged and its internal configuration is shown for convenience. Since the internal configuration of each slot groove 61 is the same, the other five slot grooves 61 are hatched and the internal configuration is omitted.
  • the slot rod 62 has a tension member 64 in the center, and has a structure in which six slot grooves 61 are provided radially.
  • Each optical fiber tape core wire 1G is laminated and mounted in the slot groove 61.
  • a presser foot tape 65 is wound around the slot rod 62, and a jacket 63 is formed around the presser foot tape 65.
  • the evaluation optical fiber cable 60 has an outer diameter of 34 mm and accommodates 48 samples (optical fiber tape core wires) in each slot groove so that the mounting density is 50%, and 3456 core optical fiber core wires. It was made into an optical fiber cable having.
  • each evaluation fiber cable 60 containing each sample was placed in a low temperature (-40 ° C) environment, it was judged whether or not the wavelength of the signal light was 1.55 ⁇ m and the transmission loss satisfied 0.5 dB / km or less. .. If the transmission loss is 0.5 dB / km or less, it is judged that the transmission loss is good, and if the transmission loss is larger than 0.3 dB / km and 0.5 dB / km or less is evaluated B, the transmission loss is 0.
  • the evaluation A was 3 dB / km or less. Further, if the transmission loss exceeds 0.5 dB / km, it is judged that the transmission loss is inferior and evaluated as C. That is, the sample of evaluation A or evaluation B is an optical fiber tape core wire having good transmission loss characteristics.
  • FIG. 14 The relationship between the deformation parameter P of each sample shown in Table 1 and the transmission loss in an environment of ⁇ 40 ° C. is shown in FIG. 14 as a graph of transmission loss characteristics in a low temperature environment.
  • the region below the broken line L1 is the region where the evaluation of the transmission loss is A
  • the region between the broken line L1 and the broken line L2 is the region where the evaluation of the transmission loss is B.
  • the region above the broken line L2 is the region where the evaluation of transmission loss is C.
  • the samples with good transmission loss are No. It was 1-27.
  • the sample having a particularly good transmission loss is No. 4-9, No. 12-18, No. It was 21-26. From this, it was found that the transmission loss is particularly good when the deformation parameter P is 0.035 or more and 14.2 or less in the optical fiber tape core wire 1G.
  • the deformation parameter P is too small (less than 0.035), the rigidity of the optical fiber tape core wire 1G becomes small, and when the optical fiber cable contracts in a low temperature environment, it sits on the optical fiber tape core wire 1G. It was found that bending occurs and transmission loss increases.
  • the deformation parameter P is too large (more than 14.2), the rigidity of the optical fiber tape core wire 1G becomes large. For example, when the optical fiber cable is drum-wound and bent, the optical fiber tape core wire 1G becomes large. It was found that the transmission loss increases because the light is less likely to be deformed in the direction intersecting the width direction.
  • the maximum thickness D of the optical fiber tape core wire 1G is 235 ⁇ m or less.
  • a secondary resin for the optical fiber core wire was examined. Therefore, the sample No. A sample in which the optical fiber core wire was changed to a secondary resin mixed with inorganic oxide particles having the same configuration as No. 1 was separately prepared, and the sample No. The transmission loss in a low temperature (-40 ° C) environment was evaluated in the same manner as in 1 to 27. As a result, the transmission loss of 0.5 dB / km (Sample No. 1) in the transmission loss under the environment of ⁇ 40 ° C. in Table 1 could be reduced to 0.3 dB / km. Sample No. The transmission loss of No. 1 is No. Since it is the largest among 1 to 27, when inorganic oxide particles are mixed with the secondary resin, No. The transmission loss is 0.3 dB / km or less for all the samples from 1 to 27.
  • each optical fiber tape core wire 1G contains silicon, the friction coefficient of the connecting resin is smaller than that of the resin containing no silicon. Therefore, in a low temperature environment, each optical fiber tape core wire 1G has a small frictional force with other members arranged around it, so that it can easily move in the longitudinal direction.
  • a sample in which the connecting resin is changed to a connecting resin to which silicon is not added is separately prepared, and sample No.
  • the transmission loss in a low temperature (-40 ° C) environment was evaluated in the same manner as in 1 to 27. According to the evaluation, the sample changed to the connecting resin to which silicon was not added was the sample No. to which silicon was added.
  • the transmission loss in a low temperature environment increased by about 1.5 times as compared with 1 to 27. That is, it was found that when silicon was added to the connecting resin, the transmission loss characteristics in a low temperature environment were improved and the transmission loss could be suppressed to about 2/3 as compared with the case where silicon was not added.
  • Optical fiber tape core wire 11 (11A to 11L): Optical fiber core wire 12: Glass fiber 13: Inner coating layer 14: Outer coating layer 21: Connecting resin 21a, 121a, 221a, 321a, 421a: Bridge part 21b: Outer peripheral coating part 22: Recessed part 23: Divided part 31A to 31L: V groove 40: Manufacturing equipment 41: Coating die 42: Hardening equipment 50: Optical fiber cable 60: Optical fiber cable for evaluation 51,61: Slot Grooves 52,62: Slot rods 53,63: Cable outer cover 54,64: Tension members 55,65: Hold-down tape

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

光ファイバテープ心線(1)は、並列に配置された複数の光ファイバ心線(11)と、前記複数の光ファイバ心線(11)を接続する連結樹脂(21)と、前記連結樹脂(21)で形成されたブリッジ部(21a)と、を有する。前記複数の光ファイバ心線(11)は、前記光ファイバ心線(11)の側面が、隣接する別の光ファイバ心線(11)の側面と離れた状態または接した状態で配置され、前記ブリッジ部(21a)は、前記離れた状態で配置された前記光ファイバ心線(11)の間に設けられ、前記光ファイバ心線(11)の外径は、220μm以下であり、前記複数の光ファイバ心線(11)の中心間の平均距離は、220μm以上280μm以下である。

Description

光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法
 本開示は、光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法に関する。
 本出願は、2019年6月17日出願の日本国特許出願2019-111801号、2019年5月28日出願の日本国特許出願2019-099147号に基づく優先権を主張し、当該出願に記載された全ての記載内容を援用するものである。
 特許文献1には、光ファイバ心線を互いに接触しないように離れて配置させて、光ファイバ心線間に連結樹脂によるブリッジ部を設けた構成の光ファイバテープ心線が記載されている。
 特許文献2、3には、220μm以下の細径の光ファイバ心線の間に隙間を空けて、光ファイバ心線の中心間距離を約250μmとする間欠連結型の光ファイバテープ心線が記載されている。
日本国特開2010-117592号公報 日本国特開2015-52704号公報 日本国特開2013-88617号公報
 本開示の一態様に係る光ファイバテープ心線は、
 並列に配置された複数の光ファイバ心線と、前記複数の光ファイバ心線を接続する連結樹脂と、前記連結樹脂で形成されたブリッジ部と、を有し、
 前記複数の光ファイバ心線は、前記光ファイバ心線の側面が、隣接する別の光ファイバ心線の側面と離れた状態または接した状態で配置され、
 前記ブリッジ部は、前記離れた状態で配置された前記光ファイバ心線の間に設けられ、
 前記光ファイバ心線の外径は、220μm以下であり、
 前記複数の光ファイバ心線の中心間の平均距離は、220μm以上280μm以下である。
 また、本開示の一態様に係る光ファイバケーブルは、
 上記の光ファイバテープ心線と、
 ケーブル外被と、
 を有し、
 前記光ファイバテープ心線が、前記ケーブル外被の内側に実装されている。
 また、本開示の一態様に係る光ファイバテープ心線の製造方法は、
 外径が220μm以下の複数の光ファイバ心線を並列させる工程と、
 並列された前記複数の光ファイバ心線を、前記光ファイバ心線の側面が隣接する別の光ファイバ心線の側面と離れた状態または接した状態で配置し、前記複数の光ファイバ心線の中心間の平均距離を220μm以上280μm以下としてダイスを通過させて、前記離れた状態の箇所および前記接した状態の前記複数の光ファイバ心線の外周に連結樹脂を塗布する工程と、
 前記連結樹脂を硬化させて、前記離れた状態で配置された前記光ファイバ心線の間にブリッジ部を設ける工程と、
 を含む。
第一実施形態に係る光ファイバテープ心線を示す断面図である。 融着工程における参考例1の光ファイバテープ心線のピッチと融着機のV溝との関係を示す模式図である。 融着工程における参考例2の光ファイバテープ心線のピッチと融着機のV溝との関係を示す模式図である。 融着工程における本実施形態に係る光ファイバテープ心線のピッチと融着機のV溝との関係を示す模式図である。 本実施形態に係る光ファイバテープ心線の製造方法を説明する図である。 本実施形態に係る光ファイバケーブルを示す断面図である。 第二実施形態に係る光ファイバテープ心線を示す断面図である。 第三実施形態に係るファイバテープ心線を示す平面図である。 第四実施形態に係る光ファイバテープ心線を示す断面図である。 第五実施形態に係る光ファイバテープ心線を示す断面図である。 第六実施形態に係る光ファイバテープ心線を示す断面図である。 第七実施形態に係る光ファイバテープ心線を示す断面図である。 実施例に係る光ファイバテープ心線を収容する評価用光ファイバケーブルを示す断面図である。 実施例に係る光ファイバテープ心線の変形パラメータと低温環境下における伝送損失との関係を示すグラフである。
[本開示が解決しようとする課題]
 光ファイバテープ心線において220μm以下の細径の光ファイバ心線を用いて隙間なく光ファイバ心線を並べた場合、光ファイバ心線の中心間距離が小さくなり、既存の融着機のV溝に光ファイバ心線が載り難い。
 このため、例えば特許文献1に記載された光ファイバテープ心線のように、光ファイバ心線を互いに接触しないように離れて配置させて、光ファイバ心線間に連結樹脂によるブリッジ部も設けた構成とすることが考えられる。ところが、既存の融着機のV溝のピッチは250μmであるので、光ファイバテープ心線をこれに合わせようとすると、ブリッジ部の幅が狭くなり、光ファイバテープ心線の柔軟性が不十分になる場合がある。光ファイバテープ心線の柔軟性が不十分だと、変形しにくいため、光ファイバケーブルの高密度実装が難しくなる。
 一方、特許文献2、3には、220μm以下の細径の光ファイバ心線の間に隙間を空けて、光ファイバ心線の中心間距離を約250μmとする間欠連結型の光ファイバテープ心線が記載されている。ところが、上記のような細径の光ファイバ心線を用いた間欠連結型の光ファイバテープ心線は、光ファイバ心線間の隙間を一定にして、長手方向に高速かつ精度良く間欠加工を施して製造することが難しい場合がある。
 本開示は、220μm以下の細径の光ファイバ心線を用いて、既存の融着機の250μmのピッチのV溝に載せ易く、かつ高密度実装に適した、光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法を提供することを目的とする。
[本開示の効果]
 本開示によれば、220μm以下の細径の光ファイバ心線を用いて、既存の融着機の250μmのピッチのV溝に載せ易く、かつ高密度実装に適した、光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法を提供することができる。
(本開示の実施形態の説明)
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る光ファイバテープ心線は、
 (1)並列に配置された複数の光ファイバ心線と、前記複数の光ファイバ心線を接続する連結樹脂と、前記連結樹脂で形成されたブリッジ部と、を有し、
 前記複数の光ファイバ心線は、前記光ファイバ心線の側面が、隣接する別の光ファイバ心線の側面と離れた状態または接した状態で配置され、
 前記ブリッジ部は、前記離れた状態で配置された前記光ファイバ心線の間に設けられ、
 前記光ファイバ心線の外径は、220μm以下であり、
 前記複数の光ファイバ心線の中心間の平均距離は、220μm以上280μm以下である。
 上記構成の光ファイバテープ心線によれば、220μm以下の細径の光ファイバ心線を用いたとしても、ブリッジ部の幅を調整することで、既存の融着機の250μmのピッチのV溝に載せ易くすることができる。また、光ファイバテープ心線の柔軟性を上げることができるので、光ファイバケーブルに実装する際に、例えば丸めるようにして実装でき、高密度実装に適したものとすることができる。
 (2)前記接した状態で配置される前記光ファイバ心線がN本であり、
 前記Nは、2の倍数であってもよい。
 (3)前記連結樹脂は、常温でのヤング率が0.5MPa以上200MPa以下であってもよい。
 上記構成の光ファイバテープ心線によれば、光ファイバテープ心線の剛性が適度な範囲となる。これにより、上記光ファイバテープ心線は、適度な柔軟性を有する。
 (4)前記光ファイバ心線を含む前記光ファイバテープ心線の最大厚Dが、235μm以下であり、
 前記ブリッジ部の幅をW、前記ブリッジ部の厚みをt、前記連結樹脂の常温ヤング率をEとすると、P=D×E×t/Wで示される変形パラメータPが0.035以上14.2以下であってもよい。
 上記光ファイバテープ心線は、変形パラメータPが0.035以上14.2以下であるので、適度な剛性が得られる。上記光ファイバテープ心線は、剛性が適度に大きいため温度収縮による長手方向での座屈がしにくい。また、上記光ファイバテープ心線は、剛性が大き過ぎないため光ファイバテープ心線が収容された光ファイバケーブルが曲げられた際に、光ファイバテープ心線が適度に幅方向に交差する方向に変形するので伝送損失の増加を抑制できる。したがって、上記光ファイバテープ心線は、低温の環境下における伝送損失の増加をさらに抑制できる。
 (5)前記ブリッジ部に凹み部を有してもよい。
 上記構成の光ファイバテープ心線によれば、凹み部で光ファイバテープ心線を変形し易くできる。また、凹み部から光ファイバテープ心線を容易に裂くことができるので、単心分離が容易になる。
 (6)前記ブリッジ部は、
 当該光ファイバテープ心線の並列面の一方の面或いは他方の面の何れか片面側に偏って設けられていてもよい。
 上記構成の光ファイバテープ心線によれば、連結樹脂が光ファイバテープ心線の並列面の片面側に偏っているので、特定の方向に曲げ易く、光ファイバケーブルに実装する際に、例えば丸めるようにして実装し易い。
 (7)前記ブリッジ部は、
 当該光ファイバテープ心線の長手方向に間欠的に分断部を有してもよい。
 上記構成の光ファイバテープ心線によれば、間欠的に分断部を有するので光ファイバテープ心線を変形し易くできる。また、分断部を起点として光ファイバテープ心線を容易に裂くことができるので、単心分離が容易になる。
 (8)前記連結樹脂は、シリコン系滑剤を含んでもよい。
 上記構成の光ファイバテープ心線によれば、連結樹脂は、シリコン系滑剤を含む樹脂であるので、摩擦係数を小さくすることができる。連結樹脂の摩擦係数が小さいので、複数の上記構成の光ファイバテープ心線を光ファイバケーブルに実装した際に、各光ファイバテープ心線が長手方向で移動し易い。したがって、光ファイバケーブルにおける、伝送損失の増加を抑制できる。
 (9)前記光ファイバ心線の最外層と、前記連結樹脂間のピーリング強度が0.1N/mm未満であってもよい。
 上記構成の光ファイバテープ心線によれば、連結樹脂を光ファイバ心線の最外層から容易に剥離させることができる。
 (10)前記光ファイバ心線は、ガラスファイバと、当該ガラスファイバの外周を覆う被覆とを有し、
 前記被覆は、二層の被覆層を含み、
 前記二層の被覆層のうちの外側の被覆層は、
 ウレタンアクリレートオリゴマーまたはウレタンメタアクリレートオリゴマー、フェノキシ基を有するモノマー、光重合開始剤及びシランカップリング剤を含有するベース樹脂と、
 疎水性の無機酸化物粒子と、を含む樹脂組成物の硬化物であり、
 前記樹脂組成物における前記無機酸化物粒子の含有量が、前記樹脂組成物の総量を基準として1質量%以上45質量%以下であってもよい。
 上記構成の光ファイバテープ心線によれば、光ファイバ心線の耐側圧性が強くなる。このため、光ファイバケーブルに実装したときの伝送損失の増加を抑えることができるので、光ファイバテープ心線の高密度実装に、さらに適したものとすることができる。
 (11)前記光ファイバ心線は、波長1550nmの曲げ損失が、曲げ直径φ15mm×1ターンで0.5dB以下、曲げ直径φ20mm×1ターンで0.1dB以下であってもよい。
 上記構成の光ファイバテープ心線によれば、側圧特性が改善され、また、低温損失特性を改善させることができる。
 また、本開示の一態様に係る光ファイバケーブルは、
 (12)上記(1)から(11)のいずれかの光ファイバテープ心線と、
 ケーブル外被と、
 を有し、
 前記光ファイバテープ心線が、前記ケーブル外被の内側に実装されている。
 上記構成の光ファイバケーブルによれば、220μm以下の細径の光ファイバ心線を用いつつ、既存の融着機の250μmのピッチのV溝に載せ易い光ファイバテープ心線を、高密度に実装することができる。
 また、本開示の一態様に係る光ファイバテープ心線の製造方法は、
 (13)外径が220μm以下の複数の光ファイバ心線を並列させる工程と、
 並列された前記複数の光ファイバ心線を、前記光ファイバ心線の側面が隣接する別の光ファイバ心線の側面と離れた状態または接した状態で配置し、前記複数の光ファイバ心線の中心間の平均距離を220μm以上280μm以下としてダイスを通過させて、前記離れた状態の箇所および前記接した状態の前記複数の光ファイバ心線の外周に連結樹脂を塗布する工程と、
 前記連結樹脂を硬化させて、前記離れた状態で配置された前記光ファイバ心線の間にブリッジ部を設ける工程と、
 を含む。
 上記光ファイバテープ心線の製造方法によれば、220μm以下の細径の光ファイバ心線を用いつつ、既存の融着機の250μmのピッチのV溝に載せ易く、かつ高密度実装に適した、光ファイバテープ心線を製造することができる。
(本開示の実施形態の詳細)
 本開示の実施形態に係る光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法の具体例を、以下に図面を参照しつつ説明する。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(第一実施形態)
 図1は、第一実施形態に係る光ファイバテープ心線1Aを示す断面図である。
 図1に示すように、光ファイバテープ心線1Aは、複数(本例では12本)の光ファイバ心線11(本例では11A~11L)が並列に配置されている。12本の光ファイバ心線11A~11Lは、N心毎に光ファイバ心線の側面が隣接する別の光ファイバ心線の側面と離れた状態または接した状態で配置されている。本例の光ファイバ心線11A~11Lは、光ファイバ心線の側面が隣接する別の光ファイバ心線の側面と一定の距離を置いた状態と互いに接した状態とを2心毎に繰り返して配置されている。なお、Nは、2の倍数であればよい。並列に配置された12本の光ファイバ心線11A~11Lは、全体が一括して連結樹脂21により接続されている。
 連結樹脂21は、一定の距離を置いた状態で配置されている光ファイバ心線同士の隙間を充填するように2心の光ファイバ心線間に設けられるとともに、光ファイバ心線11を覆うように光ファイバ心線11の周囲に設けられている。上記光ファイバ心線間に設けられている連結樹脂21は、隣接する光ファイバ心線11を橋渡しするブリッジ部21aを構成している。また、上記光ファイバ心線間以外の光ファイバ心線11の周囲に設けられている連結樹脂21は、光ファイバ心線11の外周を覆う外周被覆部21bを構成している。光ファイバテープ心線1Aは、光ファイバ心線の側面が隣接する別の光ファイバ心線の側面と離れた状態となっている所定(2心毎)の光ファイバ心線間にブリッジ状の接続部を有するブリッジ型の光ファイバテープ心線である。
 光ファイバテープ心線1Aにおいて、例えば、Mを偶数とした場合、M番目の光ファイバ心線とM+1番目の光ファイバ心線との間にブリッジ部21aが設けられている。本例の場合、ブリッジ部21aは、光ファイバ心線11Bと11Cとの間、11Dと11Eとの間、11Fと11Gとの間、11Hと11Iとの間、11Jと11Kとの間に設けられている。
 ブリッジ部21aの厚みt(光ファイバ心線の並列方向に直交する方向の厚み)は、光ファイバ心線11の外径Rと、外周被覆部21bの厚みsと、を足し合わせた厚みよりも薄くなるように形成されている。また、ブリッジ部21aは、ブリッジ部21aの上端の位置が、光ファイバ心線11の周囲に塗布されている外周被覆部21bの上端同士を結んだ破線A1の位置を越えないように形成されている。また、ブリッジ部21aは、ブリッジ部21aの下端の位置が、外周被覆部21bの下端同士を結んだ破線A2の位置を越えないように形成されている。本例の場合、ブリッジ部21aは、隣接する光ファイバ心線11同士のほぼ中央部を接続するように形成されている。
 連結樹脂21(ブリッジ部21aおよび外周被覆部21b)のヤング率は、常温(例えば、23℃)において0.5MPa以上200MPa以下である。連結樹脂21には、例えば、紫外線硬化型樹脂、熱硬化型樹脂等が用いられている。また、光ファイバ心線11の最外層と連結樹脂21の密着力は小さい方が好ましく、例えば、連結樹脂21を、シリコン系滑剤を含む樹脂で形成しても良い。連結樹脂21にシリコン系滑剤を含ませることで、密着力が小さくなり、これにより、連結樹脂21の剥離性が良くなるため、光ファイバ心線11A~11Lを単心分離させる作業を容易にすることも可能である。また、連結樹脂21の摩擦係数は、シリコン系滑剤を含まない樹脂と比較して小さいので、例えば、複数の光ファイバテープ心線1Aを光ファイバケーブルに実装した際に、各光ファイバテープ心線1Aが長手方向で移動し易い。したがって、光ファイバテープ心線1Aは、光ファイバケーブルに実装された際に、例えば低温の環境下における伝送損失の増加を抑制することができる。
 密着力の指標としては、連結樹脂21を光ファイバ心線11の外周面から剥離させるのに必要な、単位長さあたりの力であるピーリング強度が挙げられる。剥離を生じさせるためには、光ファイバ心線11の最外層と連結樹脂21の間のピーリング強度を0.1N/mm未満とすることが望ましい。
 なお、光ファイバ心線11の外周面と連結樹脂21とのピーリング強度は、次のようにして測定する。
 光ファイバテープ心線1Aにおいて、光ファイバ心線11の幅方向両端の連結樹脂21を、ナイフやカミソリで切り込み、切り離す。すると、連結樹脂21が上下に分離するので、その一方を掴み、光ファイバ心線11の長手方向および幅方向と垂直方向(90度方向)に速度100mm/分で引っ張って、そのときの引張力を測定する。引張力と、ピールした連結樹脂21の長さから、単位長当たりのピーリング強度に換算する。
 光ファイバ心線11は、例えばコアとクラッドとからなるガラスファイバ12と、ガラスファイバ12の周囲を覆う二層の被覆層13,14と、を有する。なお、光ファイバ心線11は、着色層を有していてもよい。二層の被覆層のうちの内側の被覆層13はプライマリ樹脂の硬化物で形成されている。また、二層の被覆層のうちの外側の被覆層14はセカンダリ樹脂の硬化物で形成されている。
 ガラスファイバ12と接触する内側の被覆層13を構成するプライマリ樹脂には、バッファ層として比較的ヤング率が低い軟質の樹脂が用いられている。また、外側の被覆層14を構成するセカンダリ樹脂には、保護層として比較的ヤング率が高い硬質の樹脂が用いられている。セカンダリ樹脂の硬化物のヤング率は、常温(例えば、23℃)において、900Mpa以上であり、好ましくは1000MPa以上、さらに好ましくは1500MPa以上である。
 外側の被覆層14を構成することになるセカンダリ樹脂は、ウレタンアクリレートオリゴマーまたはウレタンメタアクリレートオリゴマー、フェノキシ基を有するモノマー、光重合開始剤及びシランカップリング剤を含有するベース樹脂と、疎水性の無機酸化物粒子と、を含む樹脂組成物であることが好ましい。樹脂組成物における無機酸化物粒子の含有量は、樹脂組成物の総量を基準として1質量%以上45質量%以下である。
 以下、アクリレート又はそれに対応するメタアクリレートのことを、(メタ)アクリレートと称する。
 ウレタン(メタ)アクリレートオリゴマーとしては、ポリオール化合物、ポリイソシアネート化合物及び水酸基含有(メタ)アクリレート化合物を反応させて得られるオリゴマーを用いることができる。このオリゴマーは、例えば、分子量4000のポリプロピレングリコール、イソホロンジイソシアネート、ヒドロキシエチルアクリレート及びメタノールを反応させることなどによって得られる。
 フェノキシ基を有するモノマーとしては、フェノキシ基を有する(メタ)アクリレート化合物を用いることができる。例えば、フェノキシ基を有するモノマーは、ノニルフェノールEO変性アクリレート(東亞合成株式会社の商品名「アロニックスM-113」)などである。
 光重合開始剤としては、公知のラジカル光重合開始剤の中から適宜選択して使用することができ、例えば、光重合開始剤は、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドなどである。
 シランカップリング剤としては、樹脂組成物の硬化の妨げにならなければ、特に限定されない。例えば、シランカップリング剤は、3-メルカプトプロピルトリメトキシシランなどである。
 疎水性の無機酸化物粒子は、無機酸化物粒子の表面に疎水性の基が導入されている。無機酸化物粒子は、例えばシリカ粒子である。疎水性の基は、(メタ)アクリロイル基、ビニル基等の反応性基、又は、炭化水素基(例えば、アルキル基)、アリール基(例えば、フェニル基)等の非反応性基であってもよい。
 外側の被覆層14を構成することになるセカンダリ樹脂に無機酸化物粒子を配合することで、光ファイバ心線11の側圧特性が改善される。内側の被覆層13を構成することになるプライマリ樹脂および上記セカンダリ樹脂は、例えば紫外線硬化型樹脂、熱硬化型樹脂等で形成されている。また、光ファイバ心線11は、波長1550nmの曲げ損失が、曲げ直径φ15mm×1ターンで0.5dB以下、曲げ直径φ20mm×1ターンで0.1dB以下の、ITU-T G.657A2相当の曲げ損失であることが好ましい。このような光ファイバ心線を用いることでも、側圧特性が改善され、また、低温損失特性を改善させることができる。
 このように構成される光ファイバテープ心線1Aにおいて、光ファイバ心線11(11A~11L)の外径Rは、220μm以下である。また、光ファイバ心線11の中心間距離は、本例の場合、光ファイバ心線同士が互いに接した状態の中心間距離P1が略200μmとなるように形成されている。また、光ファイバ心線同士が一定の距離を置いた状態の中心間距離P2が略300μmとなるように形成されている。したがって、光ファイバテープ心線1Aにおいて、光ファイバ心線11の中心間の平均距離P((P1+P2)/2)は、220μm以上280μm以下となるように形成されている。また、本例の場合、ブリッジ部21aの幅W(光ファイバ心線11の並列方向と同方向の幅)は、略100μmとなるように形成されている。
 すなわち、図1において、光ファイバ心線11Aと11Bとの中心間距離P1が略200μm、光ファイバ心線11Bと11Cとの中心間距離P2が略300μm、光ファイバ心線11Bと11Cとの間に設けられているブリッジ部21aの幅Wが略100μmとなるように形成されている。
 なお、本例では光ファイバテープ心線1Aの心線数を12心にしているが、これに限定されない。光ファイバテープ心線1Aの心線数は、4の倍数心であればよく、例えば24心、48心等であってもよい。
 次に、光ファイバテープ心線の融着について図2~図4を参照しつつ説明する。
 光ファイバテープ心線を接続する場合、多心融着機(図示省略)を用いることにより、複数の光ファイバ心線を一括して融着接続することが可能である。多心融着機には、図2~図4に示されるように、各光ファイバ心線を配列させるための複数(図2~図4の例では12個)のV溝31A~31Lを有したV溝ベース30が設けられている。これらのV溝31A~31Lは、光ファイバ心線の径の国際規格に合わせて、そのピッチP0が250μmに形成されていることが一般的である。複数の光ファイバ心線を一括して融着接続するためには、V溝ベース30の各V溝31A~31Lに対して、各光ファイバ心線が1本ずつ順番に配列されることが必要である。
 図2は、外径寸法略200μmの光ファイバ心線11A~11Lが、光ファイバ心線の中心間距離P3を略250μmにして並列されている参考例1の光ファイバテープ心線100の融着工程を示す。なお、多心融着機のV溝ベース30における各V溝31A~31LのピッチP0は略250μmに形成されている。
 融着接続の際、図2に示すように、V溝ベース30の上方に、先端の所定長の連結樹脂が除去された状態の光ファイバ心線11A~11Lが配置される。光ファイバ心線11A~11Lは、例えばV溝が並列する方向におけるV溝ベース30のセンター位置32に、光ファイバ心線11A~11Lが並列する方向におけるセンター位置が一致するように配置される。この状態において、多心融着機のクランプ蓋(図示省略)が閉じられ、クランプ蓋により光ファイバ心線11A~11Lが上方側から押し下げられる。
 当該参考例1のような構成の光ファイバテープ心線100の場合、中心間距離P3がV溝のピッチP0に等しく形成されているので、各光ファイバ心線11A~11Lは、各V溝31A~31Lにそれぞれ対向するように配置される。このため、光ファイバ心線11A~11Lは、略垂直に押し下げられ、V溝31A~31L内にそれぞれ1本ずつ順番に収容される。
 図3は、外径寸法略200μmの光ファイバ心線11A~11Lが、光ファイバ心線の中心間距離P4を略200μmにして並列されている参考例2の光ファイバテープ心線200の融着工程を示す。なお、V溝ベース30における各V溝31A~31LのピッチP0は250μmである。
 融着接続の際、図3に示すように、V溝ベース30の上方に、上記図2と同様にして、センター位置が合わさるように光ファイバ心線11A~11Lが配置される。
 当該参考例2のような構成の光ファイバテープ心線200の場合、光ファイバ心線11A~11Lの中心間距離P4がV溝31A~31LのピッチP0よりも小さく形成されているので、光ファイバ心線11A~11Lは、V溝ベース30のセンター位置32方向へ集合するように配置される。このため、光ファイバ心線11A~11Lは、V溝の溝壁に沿って例えば矢印の方向へ押し下げられる。したがって、光ファイバ心線11A~11Lを順番にV溝31A~31L内に収容させることができない。例えば、端のV溝31A,31L等内に光ファイバ心線が収容されない場合が発生する。
 図4は、図1に示した第一実施形態に係る光ファイバテープ心線1Aの融着工程を示す。なお、V溝ベース30における各V溝31A~31LのピッチP0は250μmである。融着接続の際、図4に示すように、V溝ベース30の上方に、上記図2と同様にして、センター位置が合わさるように光ファイバ心線11A~11Lが配置される。
 第一実施形態に係る光ファイバテープ心線1Aの場合、光ファイバ心線が互いに接した状態における光ファイバ心線の中心間距離P1(略200μm)はV溝のピッチP0よりも小さく形成されている。しかしながら、光ファイバ心線間にブリッジ部21aが設けられた状態の光ファイバ心線の中心間距離P2(略300μm)はV溝のピッチP0よりも大きく形成されている。このため、光ファイバテープ心線1Aは、光ファイバ心線11の中心間の平均距離Pが略250μmとなるので、クランプ蓋で押し下げられた場合、V溝の溝壁に沿って図4に示す矢印の方向へ導かれる。これにより、光ファイバ心線11A~11Lは、それぞれ1本ずつ各V溝31A~31L内に順番に収容される。
 なお、上記構成では連結樹脂が除去された状態の光ファイバ心線がV溝31A~31L内に収容されているが、例えば、連結樹脂に加えてさらに被覆層が除去されて、ガラスファイバのみがV溝31A~31L内に収容されるようにしてもよい。
 次に、光ファイバテープ心線1Aの製造方法について図5を参照しつつ説明する。
 先ず、ガラスファイバ12の径が略125μm、外側の被覆層14の径が略200μmになるように線引きを行って、光ファイバ心線11A~11Lを作製する。なお、識別性を持たせるために、光ファイバ心線11A~11Lは、着色層を有していてもよい。
 12本の光ファイバ心線11A~11Lを用意し、2心ずつ接触させるとともに、2心毎に光ファイバ心線間に一定の距離の隙間を設けた状態で、製造装置40の塗布ダイス41を通過させる。塗布ダイス41は、光ファイバテープ心線1Aを製造する場合、2心毎の光ファイバ心線間の隙間が略100μmとなるように、ダイス入線部の孔が形成されている。塗布ダイス41により、接触された状態の光ファイバ心線11Aと11B,11Cと11D,11Eと11F,11Gと11H,11Iと11J,11Kと11Lの外周、および一定の距離の隙間が設けられた状態の光ファイバ心線11Bと11C,11Dと11E,11Fと11G,11Hと11I,11Jと11Kの隙間に連結樹脂21が塗布される。
 連結樹脂21が塗布された光ファイバ心線11A~11Lに対して、例えば連結樹脂21に紫外線硬化型樹脂を用いた場合には、硬化装置42により、紫外線を照射して、連結樹脂21を硬化させる。上記光ファイバ心線同士の隙間に塗布された連結樹脂21が硬化されることによってブリッジ部21aが形成される。上記接触された光ファイバ心線同士の外周に塗布され連結樹脂21が硬化されることによって外周被覆部21bが形成される。これにより、光ファイバ心線11Aと11B,11Cと11D,11Eと11F,11Gと11H,11Iと11J,11Kと11Lの中心間距離P1が略200μmで、光ファイバ心線11Bと11C,11Dと11E,11Fと11G,11Hと11I,11Jと11Kの中心間距離P2が略300μmであって、光ファイバ心線11A~11Lの中心間の平均距離Pが220μm以上280μm以下となる光ファイバテープ心線1Aが作製される。
 なお、上記製造方法においては、ブリッジ部21aおよび外周被覆部21bを構成する連結樹脂21を塗布ダイス41によって塗布したが、これに限定されない。例えば、先ず、外周被覆部21bを構成する連結樹脂21のみを塗布ダイス41によって塗布し、次に、ブリッジ部21aを構成する連結樹脂21をディスペンサなどの塗布装置によって塗布するようにしてもよい。
 上記のように製造された光ファイバテープ心線1Aは、図4で示したように、V溝31A~31Lのピッチが250μmに設定された既存の融着機を使用した際に、各V溝31A~31Lに対応した位置に各光ファイバ心線11A~11Lが配置される。このため、各V溝31A~31Lに光ファイバ心線11A~11Lを1本ずつ収容させることができる。したがって、光ファイバテープ心線1Aによれば、220μm以下の細径の光ファイバ心線11を用いつつ、2心毎の光ファイバ心線間にブリッジ部21aを設けて、既存の融着機の250μmピッチのV溝に載せ易くすることができる。よって、光ファイバテープ心線1Aの柔軟性を上げることができるので、光ファイバケーブルに実装する際に、例えばブリッジ部21aを曲げて光ファイバテープ心線1Aの全体を丸めるように集合させて実装できる。したがって、光ファイバテープ心線1Aを高密度実装に適した光ファイバテープ心線とすることができる。
 また、光ファイバテープ心線1Aは、連結樹脂21のヤング率が0.5MPa以上200MPa以下の範囲とされているので、光ファイバテープ心線1Aの剛性が適度な範囲となる。このため、光ファイバテープ心線1Aによれば、適度な柔軟性を有する構成とすることができ、さらに高密度実装に適した光ファイバテープ心線とすることができる。
 また、光ファイバテープ心線1Aによれば、連結樹脂21にシリコン系滑剤が含まれているので、光ファイバ心線11の最外層と連結樹脂21の密着力を小さくすることができ、ピーリング強度を0.1N/mm未満とすることができる。また、連結樹脂21の摩擦係数は、例えばシリコンを含まない樹脂と比較して小さいので、例えば、複数の光ファイバテープ心線1Aを光ファイバケーブルに実装した際に、各光ファイバテープ心線1Aが長手方向で移動し易い。したがって、光ファイバケーブルに実装された際に、例えば低温の環境下における伝送損失の増加を抑制することができる。例えば、-40℃における損失温度特性の損失変動値が、シリコン無添加の光ファイバテープ心線と比べて、2/3程度まで低下させることができる。
 また、光ファイバテープ心線1Aによれば、光ファイバ心線11における被覆を構成する外側の被覆層14として、上記の樹脂組成物(無機酸化物粒子を含む樹脂)の硬化物を用いることにより、光ファイバ心線11の耐側圧性を強くすることができる。このため、このような光ファイバ心線11を用いて、光ファイバテープ心線1Aを構成すれば、例えば、光ファイバケーブルに実装したときの伝送損失の増加をさらに抑えることができる。よって、光ファイバケーブルへの高密度実装に、さらに適した光ファイバテープ心線とすることができる。例えば、-40℃における伝送損失が、上記の樹脂組成物を用いない光ファイバ心線の最大伝送損失0.5dB/kmと比べて、0.3dB/kmまで改善できる。
 また、波長1550nmの曲げ損失が、曲げ直径φ15mm×1ターンで0.5dB以下、曲げ直径φ20mm×1ターンで0.1dB以下の、ITU-T G.657A2相当の光ファイバ心線を使用しても、同様の効果を上げることができる。
 また、光ファイバテープ心線1Aの製造方法によれば、220μm以下の細径の光ファイバ心線を用いて、既存の融着機の250μmのピッチのV溝に載せ易く、かつ高密度実装に適した、光ファイバテープ心線1Aを製造することができる。
 次に、実施形態に係る光ファイバケーブルの一例について、図6を参照して説明する。
 図6は、上述した光ファイバテープ心線1Aを使用するスロット型の光ファイバケーブル50の断面図である。
 光ファイバケーブル50は、複数のスロット溝51を有するスロットロッド52と、複数の光ファイバテープ心線1Aと、ケーブル外被53とを有する。光ファイバケーブル50は、中央にテンションメンバ54を有するスロットロッド52に、放射状に複数のスロット溝51が設けられた構造となっている。なお、複数のスロット溝51は、光ファイバケーブル50の長手方向に螺旋状またはSZ状などに撚られた形状で設けられていてもよい。各スロット溝51には、並列状態から丸められて密集状態にされた上記光ファイバテープ心線1Aがそれぞれ複数収容されている。スロットロッド52の周囲には押さえ巻きテープ55が巻かれ、押さえ巻きテープ55の周囲にケーブル外被53が形成されている。
 光ファイバケーブル50は、例えば、外径が34mmであり、6本のスロット溝51を有し、各スロット溝51に48枚の光ファイバテープ心線1Aが収容された3456心の光ファイバ心線11を有するケーブルである。この場合、当該光ファイバケーブルの心数と当該光ファイバケーブルの断面積とから算出される心密度は、3.81心/mmである。
 なお、光ファイバケーブルは、上記スロット型のものに限定されず、例えば、スロットレス型の光ファイバケーブルであってもよい。
 上記構成の光ファイバケーブル50によれば、外径が220μm以下の細径の光ファイバ心線11を用いて、既存の融着機の250μmのピッチのV溝に載せ易い構成とされた光ファイバテープ心線1Aを、高密度に実装することができる。
(第二実施形態)
 次に、図7を参照して、第二実施形態に係る光ファイバテープ心線1Bについて説明する。なお、上記第一実施形態に係る光ファイバテープ心線1Aと同様の構成については同じ符号を付しその説明を省略する。
 図7は、光ファイバテープ心線1Bの断面図を示す。光ファイバテープ心線1Bは、各ブリッジ部21aに凹み部22を有している点で、上記第一実施形態に係る光ファイバテープ心線1Aと相違している。凹み部22は、ブリッジ部21aの一方側の面(図7では上側の面)に、例えば、当該面とは反対側の面(図7の下側の面)に向かって角度が狭くなる三角形状に形成されている。その他の構成は、光ファイバテープ心線1Aと同様である。
 上記構成の光ファイバテープ心線1Bによれば、ブリッジ部21aに凹み部22を設けることにより、当該凹み部22で光ファイバテープ心線1Bを変形し易くできる。また、凹み部22からブリッジ部21aを容易に裂くことができるので、光ファイバテープ心線1Bにおける光ファイバ心線11の単心分離が容易になる。
(第三実施形態)
 図8を参照して、第三実施形態に係る光ファイバテープ心線1Cについて説明する。なお、上記第一実施形態に係る光ファイバテープ心線1Aと同様の構成については同じ符号を付しその説明を省略する。
 図8は、光ファイバテープ心線1Cの平面図を示す。光ファイバテープ心線1Cは、ブリッジ部21aに分断部23を有している点で、上記第一実施形態に係る光ファイバテープ心線1Aと相違している。分断部23は、光ファイバテープ心線1Cの長手方向に間欠的に形成されている。本例では、各ブリッジ部21aに分断部23が形成されており、光ファイバテープ心線1Cの長手方向における分断部23の長さは、ブリッジ部21aの長さよりも長くなるように形成されている。光ファイバテープ心線1Cは、2本の光ファイバ心線毎に、ブリッジ部21aと分断部23とが長手方向に間欠的に設けられた間欠連結型の光ファイバテープ心線である。その他の構成は、光ファイバテープ心線1Aと同様である。なお、図8の平面図では、分断部23を光ファイバ心線11の並列方向に開いた状態を示している。
 上記構成の光ファイバテープ心線1Cによれば、2心毎に設けられたブリッジ部21aに分断部23が間欠的に設けられているので光ファイバテープ心線1Cを変形し易くできる。よって、光ファイバテープ心線1Cを光ファイバケーブルに実装する際に、容易に丸めて実装できるので、高密度実装に適した光ファイバテープ心線とすることができる。また、分断部23を起点としてブリッジ部21aを容易に裂くことができるので、光ファイバテープ心線1Bにおける光ファイバ心線11の単心分離が容易になる。
 また、2心毎にブリッジ部21aを設けた構成なので、各心線間にブリッジ部を設けた構成のものに比べて、ブリッジ部21aの幅Wを広くすることができる。したがって、光ファイバテープ心線1Cにおけるブリッジ部21aに分断部23を設けることが容易になる。
(第四実施形態)
 図9を参照して、第四実施形態に係る光ファイバテープ心線1Dについて説明する。なお、上記第一実施形態に係る光ファイバテープ心線1Aと同様の構成については同じ符号を付しその説明を省略する。
 図9は、光ファイバテープ心線1Dの断面図を示す。光ファイバテープ心線1Dは、各ブリッジ部121aが、並列された光ファイバ心線11A~11Lで形成される並列面の一方の面あるいは他方の面の何れか片面側に偏って設けられている点で、上記第一実施形態に係る光ファイバテープ心線1Aと相違している。片面側に偏って設けられた各ブリッジ部121aは、ブリッジ部121aの上端の位置が外周被覆部21bの上端同士を結んだ破線A1の位置と同じになるように、あるいはブリッジ部121aの下端の位置が外周被覆部21bの下端同士を結んだ破線A2の位置と同じになるように形成されている。
 例えば、光ファイバ心線11Bと11Cの間のブリッジ部121aは、図9において下の並列面側に偏って設けられており、ブリッジ部121aの下端の位置が破線A2の位置と同じになるように形成されている。また、光ファイバ心線11Dと11Eの間のブリッジ部121aは、図9において上の並列面側に偏って設けられており、ブリッジ部121aの上端の位置が破線A1の位置と同じになるように形成されている。なお、本例では、ブリッジ部121aが偏る側が下側と上側とに交互になるように形成されているが、これに限定されない。例えば、2つのブリッジ部121a毎に下側と上側とに偏るように形成されていてもよい。その他の構成は、光ファイバテープ心線1Aと同様である。
 上記構成の光ファイバテープ心線1Dによれば、ブリッジ部121aを構成する連結樹脂21が光ファイバテープ心線1Dの並列面の片面側に交互に偏っているので、各ブリッジ部121aにおいて光ファイバテープ心線1Dの幅方向に交差する方向に曲げ易い。このため、光ファイバテープ心線1Dを光ファイバケーブルに実装する際に、例えば丸めるようにして実装しやすい。よって、光ファイバテープ心線1Dを高密度実装に適したものとすることができる。さらに、光ファイバテープ心線1Dは、一方の面側に偏っている構造より光ファイバテープ心線の反りが発生し難いので、一括接続性に優れる。
(第五実施形態)
 図10を参照して、第五実施形態に係る光ファイバテープ心線1Eについて説明する。なお、上記第四実施形態に係る光ファイバテープ心線1Dと同様の構成については同じ符号を付しその説明を省略する。
 図10は、光ファイバテープ心線1Eの断面図を示す。光ファイバテープ心線1Eは、全てのブリッジ部221aが、並列された光ファイバ心線11A~11Lで形成される並列面の一方の面側に偏って設けられている点で、上記第四実施形態に係る光ファイバテープ心線1Dと相違している。一方の並列面側に偏って設けられた各ブリッジ部221aは、ブリッジ部221aの下端の位置が外周被覆部21bの下端同士を結んだ破線A2の位置と同じになるように、あるいはブリッジ部221aの上端の位置が外周被覆部21bの上端同士を結んだ破線A1の位置と同じになるように形成されている。本例では、全てのブリッジ部221aが、図10において下の並列面側に偏って設けられており、ブリッジ部221aの下端の位置が破線A2の位置と同じになるように形成されている。
 上記構成の光ファイバテープ心線1Eによれば、全てのブリッジ部221aを構成する連結樹脂21が光ファイバテープ心線1Eの並列面の一方の面側に偏っているので、ブリッジ部221aにおいて光ファイバテープ心線1Eの幅方向に交差する特定の方向(図10において上方向)に曲げ易い。このため、光ファイバテープ心線1Eを光ファイバケーブルに実装する際に、例えば一方向へ丸めるようにして実装しやすい。よって、光ファイバテープ心線1Eを高密度実装に適したものとすることができる。
(第六実施形態)
 図11を参照して、第六実施形態に係る光ファイバテープ心線1Fについて説明する。なお、上記第一実施形態に係る光ファイバテープ心線1Aと同様の構成については同じ符号を付しその説明を省略する。
 図11は、光ファイバテープ心線1Fの断面図を示す。光ファイバテープ心線1Fは、ブリッジ部321aが4心毎に設けられている点で、2心毎に設けられている上記第一実施形態に係る光ファイバテープ心線1Aと相違している。本例では、12本の光ファイバ心線11A~11Lが、4心毎に光ファイバ心線の側面が隣接する別の光ファイバ心線の側面と離れた状態または接した状態で配置されている。
 光ファイバ心線11の中心間距離は、本例の場合、光ファイバ心線同士が互いに接した状態の中心間距離P1が略200μmとなるように形成されている。光ファイバ心線同士が一定の距離を置いた状態の中心間距離P2が略400μmとなるように形成されている。したがって、光ファイバテープ心線1Fにおいて、光ファイバ心線11の中心間の平均距離P((3P1+P2)/4)は、250μmとなるように形成されている。また、本例の場合、ブリッジ部321aの幅W(光ファイバ心線の並列方向と同方向の幅)は、略200μmとなるように形成されている。その他の構成は、光ファイバテープ心線1Aと同様である。
 上記構成の光ファイバテープ心線1Fによれば、上記第一実施形態の光ファイバテープ心線1Aと同様の効果を得ることができる。
(第七実施形態)
 図12は、第七実施形態に係る光ファイバテープ心線1Gを示す断面図である。なお、上記第一実施形態に係る光ファイバテープ心線1Aと同様の構成については同じ符号を付しその説明を省略する。
 図12は、光ファイバテープ心線1Gの断面図を示す。光ファイバテープ心線1Gは、ブリッジ部421aが1心毎に設けられている点で、2心毎に設けられている第一実施形態に係る光ファイバテープ心線1Aと相違している。本例では、12本の光ファイバ心線11A~11Lが、光ファイバ心線の側面が隣接する別の光ファイバ心線の側面と離れた状態で配置されている。
 光ファイバテープ心線1Gでは、光ファイバ心線11の中心間距離Fは、光ファイバ心線11の外径Rと、ブリッジ部421aの幅W(光ファイバ心線の並列方向と同方向の幅)と、を足し合わせた長さである。このように構成される光ファイバテープ心線1において、光ファイバ心線11(11A~11L)の外径Rは、220μm以下である。光ファイバ心線11の中心間距離Fは、220μm以上280μm以下である。その他の構成は、光ファイバテープ心線1Aと同様である。
 図12に示すように、光ファイバテープ心線1Gの最大厚Dは、本例では、光ファイバ心線11の外径Rに、光ファイバ心線11の上下の外周被覆部21bの厚みsを加えた厚さである。ブリッジ幅Wは、ブリッジ部421aの幅Wであり、光ファイバ心線11の外周間の距離となっている。
 本発明者らは、光ファイバテープ心線の変形しやすさを示す指標として、変形パラメータPを考えた。変形パラメータPは、光ファイバテープ心線の最大厚D、ブリッジ部の幅W、ブリッジ部の厚みt、および連結樹脂のヤング率Eによって、下記の式(1)によって表される。
 P=D×E×t/W       式(1)
 上記の変形パラメータPは、値が大きくなるほど光ファイバテープ心線が変形しにくくなり、値が小さくなるほど光ファイバテープ心線が変形しやすくなる指標である。
(実施例)
 以下、変形パラメータPについて考察した実施例について説明する。
 図12に示す光ファイバテープ心線1Gのような、1心毎にブリッジ部を設けた光ファイバテープ心線において、光ファイバテープ心線の最大厚D、ブリッジ厚t、およびヤング率Eを変えることで、変形パラメータPが異なるように設定したサンプルNo.1~27を用意した。サンプルNo.1~27の光ファイバ心線の外径Rは、220μm以下である。また、サンプルNo.1~27の連結樹脂にはシリコンが含まれている。また、本実施例では、ブリッジ幅Wは、各サンプルにおいて光ファイバテープ心線の最大厚Dとブリッジ幅Wとを足し合わせた値が270μmとなるように設定した。なお、上記サンプルNo.1~27は、光ファイバ心線のセカンダリ樹脂に無機酸化物粒子が配合されていないものである。
 本実施例では、各サンプルに対して、低温(-40℃)環境下における伝送損失の評価を行った。以下の表1に、サンプルNo.1~27に対する、伝送損失の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 各サンプルに対する評価は、図13に示す構成の評価用光ファイバケーブル60に、各サンプルの光ファイバテープ心線を収容して行った。
 スロット型の評価用光ファイバケーブル60は、6つのスロット溝61を有するスロットロッド62と、スロット溝61内に収容された複数の光ファイバテープ心線1Gと、を備えている。図13では、スロット溝61の内部を説明するため、便宜上、1つのスロット溝61を拡大してその内部構成を図示している。なお、各スロット溝61の内部構成は同様の構成であるため、他の5つのスロット溝61については、ハッチングを施して内部構成の図示を省略した。スロットロッド62は、中央にテンションメンバ64を有し、放射状に6つのスロット溝61が設けられた構造になっている。各光ファイバテープ心線1Gは、積層されてスロット溝61内に実装されている。スロットロッド62の周囲には押さえ巻きテープ65が巻かれ、押さえ巻きテープ65の周囲には外被63が形成されている。
 評価用光ファイバケーブル60は、外径が34mmであり、実装密度が50%となるように、各スロット溝に48枚のサンプル(光ファイバテープ心線)を収容し3456心の光ファイバ心線を有する光ファイバケーブルとした。各サンプルを収容した各評価用ファイバケーブル60を低温(-40℃)環境下においたとき、信号光の波長が1.55μmで伝送損失が0.5dB/km以下を満たすか否かで判断した。伝送損失が0.5dB/km以下であれば伝送損失が良好であると判断し、伝送損失が0.3dB/kmよりも大きく0.5dB/km以下のものを評価B、伝送損失が0.3dB/km以下のものを評価Aとした。また、伝送損失が0.5dB/kmを超えるものを伝送損失が劣ると判断し評価Cとした。すなわち、評価Aまたは評価Bのサンプルが、伝送損失の特性が良好な光ファイバテープ心線である。
 表1に示される各サンプルの変形パラメータPと-40℃の環境下の伝送損失との関係を、図14に低温環境下における伝送損失特性のグラフとして示す。図14において、破線L1よりも下側の領域が伝送損失の評価がAの領域であり、破線L1と破線L2の間の領域が伝送損失の評価がBの領域である。また、破線L2よりも上側の領域が伝送損失の評価がCの領域である。
 表1の評価結果によれば、伝送損失が良好なサンプル(評価Aまたは評価Bのサンプル)は、No.1~27であった。そして、その中で特に伝送損失が良好なサンプル(評価Aのサンプル)は、No.4~9、No.12~18、No.21~26であった。これにより、光ファイバテープ心線1Gにおいて、変形パラメータPが0.035以上14.2以下である場合に、伝送損失が特に良好であることが分かった。
 また、変形パラメータPが小さすぎる(0.035未満になる)と、光ファイバテープ心線1Gの剛性が小さくなり、光ファイバケーブルが低温環境下で収縮した際に光ファイバテープ心線1Gに座屈が生じて伝送損失が増加することが分かった。一方、変形パラメータPが大きすぎる(14.2を超える)と、光ファイバテープ心線1Gの剛性が大きくなり、例えば、光ファイバケーブルをドラム巻きして曲げた際に、光ファイバテープ心線1Gがその幅方向に交差する方向に変形しにくいために伝送損失が増加することが分かった。
 なお、光ファイバケーブルに実装される光ファイバテープ心線1Gの心密度を高めようとする場合、光ファイバテープ心線1Gの最大厚Dは、235μm以下であることが望ましい。
 また、さらに伝送損失を向上させるために、光ファイバ心線のセカンダリ樹脂について検討した。そのために、サンプルNo.1と同じ構成で、光ファイバ心線をセカンダリ樹脂に無機酸化物粒子を配合したものに変更したサンプルを別途用意して、サンプルNo.1~27と同様に低温(-40℃)環境下における伝送損失の評価を行った。その結果、表1の-40℃環境下の伝送損失における、0.5dB/kmの伝送損失(サンプルNo.1)を0.3dB/kmまで下げることができた。
 サンプルNo.1の伝送損失は、No.1~27のうちで、一番大きいので、セカンダリ樹脂に無機酸化物粒子を配合した場合、No.1~27の全てのサンプルで伝送損失が0.3dB/km以下となる。
 また、光ファイバテープ心線1Gの連結樹脂にシリコンが含まれていれば、連結樹脂の摩擦係数は、シリコンを含まない樹脂と比較して小さくなる。このため、低温の環境下において、各光ファイバテープ心線1Gは周囲に配置される他部材との摩擦力が小さいので長手方向で移動し易くなる。
 連結樹脂にシリコンを含むことにより、低温環境下における伝送損失特性が改善することを検証するために、連結樹脂をシリコンが添加されていない連結樹脂に変更したサンプルを別途用意して、サンプルNo.1~27と同様に低温(-40℃)環境下における伝送損失の評価を行った。評価により、シリコンが添加されていない連結樹脂に変更したサンプルは、シリコンが添加されているサンプルNo.1~27よりも、低温環境下における伝送損失が1.5倍程度増加した。すなわち、連結樹脂にシリコンを添加した場合は、シリコンを添加していない場合と比較して、低温環境下における伝送損失特性が改善され、伝送損失を2/3程度まで抑制できることが分かった。
 以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。
 1A~1G:光ファイバテープ心線
 11(11A~11L):光ファイバ心線
 12:ガラスファイバ
 13:内側の被覆層
 14:外側の被覆層
 21:連結樹脂
 21a,121a,221a,321a,421a:ブリッジ部
 21b:外周被覆部
 22:凹み部
 23:分断部
 31A~31L:V溝
 40:製造装置
 41:塗布ダイス
 42:硬化装置
 50:光ファイバケーブル
 60:評価用光ファイバケーブル
 51,61:スロット溝
 52,62:スロットロッド
 53,63:ケーブル外被
 54,64:テンションメンバ
 55,65:押さえ巻きテープ

Claims (13)

  1.  並列に配置された複数の光ファイバ心線と、前記複数の光ファイバ心線を接続する連結樹脂と、前記連結樹脂で形成されたブリッジ部と、を有し、
     前記複数の光ファイバ心線は、前記光ファイバ心線の側面が、隣接する別の光ファイバ心線の側面と離れた状態または接した状態で配置され、
     前記ブリッジ部は、前記離れた状態で配置された前記光ファイバ心線の間に設けられ、
     前記光ファイバ心線の外径は、220μm以下であり、
     前記複数の光ファイバ心線の中心間の平均距離は、220μm以上280μm以下である、
     光ファイバテープ心線。
  2.  前記接した状態で配置される前記光ファイバ心線がN本であり、
     前記Nは、2の倍数である、
     請求項1に記載の光ファイバテープ心線。
  3.  前記連結樹脂は、常温でのヤング率が0.5MPa以上200MPa以下である、
     請求項1または請求項2に記載の光ファイバテープ心線。
  4.  前記光ファイバ心線を含む前記光ファイバテープ心線の最大厚Dが、235μm以下であり、
     前記ブリッジ部の幅をW、前記ブリッジ部の厚みをt、前記連結樹脂の常温ヤング率をEとすると、P=D×E×t/Wで示される変形パラメータPが0.035以上14.2以下である、
     請求項1から請求項3のいずれか一項に記載の光ファイバテープ心線。
  5.  前記ブリッジ部に凹み部を有する、
     請求項1から請求項4のいずれか一項に記載の光ファイバテープ心線。
  6.  前記ブリッジ部は、
     当該光ファイバテープ心線の並列面の一方の面或いは他方の面の何れか片面側に偏って設けられている、
     請求項1から請求項5のいずれか一項に記載の光ファイバテープ心線。
  7.  前記ブリッジ部は、
     当該光ファイバテープ心線の長手方向に間欠的に分断部を有する、
     請求項1から請求項6のいずれか一項に記載の光ファイバテープ心線。
  8.  前記連結樹脂は、シリコン系滑剤を含む、
     請求項1から請求項7のいずれか一項に記載の光ファイバテープ心線。
  9.  前記光ファイバ心線の最外層と、前記連結樹脂間のピーリング強度が0.1N/mm未満である、
     請求項1から請求項8のいずれか一項に記載の光ファイバテープ心線。
  10.  前記光ファイバ心線は、ガラスファイバと、当該ガラスファイバの外周を覆う被覆とを有し、
     前記被覆は、二層の被覆層を含み、
     前記二層の被覆層のうちの外側の被覆層は、
     ウレタンアクリレートオリゴマーまたはウレタンメタアクリレートオリゴマー、フェノキシ基を有するモノマー、光重合開始剤及びシランカップリング剤を含有するベース樹脂と、
     疎水性の無機酸化物粒子と、を含む樹脂組成物の硬化物であり、
     前記樹脂組成物における前記無機酸化物粒子の含有量が、前記樹脂組成物の総量を基準として1質量%以上45質量%以下である、
     請求項1から請求項9のいずれか一項に記載の光ファイバテープ心線。
  11.  前記光ファイバ心線は、波長1550nmの曲げ損失が、曲げ直径φ15mm×1ターンで0.5dB以下、曲げ直径φ20mm×1ターンで0.1dB以下である、
     請求項1から請求項10のいずれか一項に記載の光ファイバテープ心線。
  12.  請求項1から請求項11のいずれか一項に記載の光ファイバテープ心線と、
     ケーブル外被と、
     を有し、
     前記光ファイバテープ心線が、前記ケーブル外被の内側に実装された、
     光ファイバケーブル。
  13.  外径が220μm以下の複数の光ファイバ心線を並列させる工程と、
     並列された前記複数の光ファイバ心線を、前記光ファイバ心線の側面が隣接する別の光ファイバ心線の側面と離れた状態または接した状態で配置し、前記複数の光ファイバ心線の中心間の平均距離を220μm以上280μm以下としてダイスを通過させて、前記離れた状態の箇所および前記接した状態の前記複数の光ファイバ心線の外周に連結樹脂を塗布する工程と、
     前記連結樹脂を硬化させて、前記離れた状態で配置された前記光ファイバ心線の間にブリッジ部を設ける工程と、
     を含む、
     光ファイバテープ心線の製造方法。
PCT/JP2020/020942 2019-05-28 2020-05-27 光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法 WO2020241696A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20812872.8A EP3978976A4 (en) 2019-05-28 2020-05-27 OPTICAL FIBER BAND CORE WIRE, OPTICAL FIBER CABLE AND METHOD OF MAKING OPTICAL FIBER BAND CORE WIRE
US17/614,137 US20220252809A1 (en) 2019-05-28 2020-05-27 Optical fiber tape core wire, optical fiber cable, and method of manufacturing optical fiber tape core wire
CN202080039072.0A CN113892049A (zh) 2019-05-28 2020-05-27 光纤带状芯线、光缆及光纤带状芯线的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-099147 2019-05-28
JP2019099147A JP2020194065A (ja) 2019-05-28 2019-05-28 光ファイバテープ心線および光ファイバケーブル
JP2019-111801 2019-06-17
JP2019111801A JP2020204687A (ja) 2019-06-17 2019-06-17 光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法

Publications (1)

Publication Number Publication Date
WO2020241696A1 true WO2020241696A1 (ja) 2020-12-03

Family

ID=73552252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020942 WO2020241696A1 (ja) 2019-05-28 2020-05-27 光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法

Country Status (4)

Country Link
US (1) US20220252809A1 (ja)
EP (1) EP3978976A4 (ja)
CN (1) CN113892049A (ja)
WO (1) WO2020241696A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113946025A (zh) * 2021-12-20 2022-01-18 长飞光纤光缆股份有限公司 一种柔性光纤带、高密度光缆及固化树脂应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306147A (ja) * 1992-04-16 1993-11-19 Borden Inc 光ファイバー用紫外線硬化可能なコーティングおよび該コーティングを被覆した光ファイバー
JP2005301237A (ja) * 2004-03-15 2005-10-27 Jsr Corp 液状硬化性樹脂組成物
JP2010117592A (ja) 2008-11-13 2010-05-27 Nippon Telegr & Teleph Corp <Ntt> 光ファイバテープ及び光ファイバケーブル
JP2013088617A (ja) 2011-10-18 2013-05-13 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2015052704A (ja) 2013-09-06 2015-03-19 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
JP2016075746A (ja) * 2014-10-03 2016-05-12 住友電気工業株式会社 間欠型光ファイバテープ心線及びその製造方法
WO2017094560A1 (ja) * 2015-12-01 2017-06-08 古河電気工業株式会社 光ファイバテープ心線及び光ファイバケーブル
WO2017145955A1 (ja) * 2016-02-23 2017-08-31 住友電気工業株式会社 間欠連結型光ファイバテープ心線、間欠連結型光ファイバテープ心線の製造方法、光ファイバケーブルおよび光ファイバコード
WO2017175414A1 (ja) * 2016-04-08 2017-10-12 株式会社フジクラ 光ファイバテープの製造方法、光ファイバテープ及び光ケーブル
WO2018105424A1 (ja) * 2016-12-06 2018-06-14 住友電気工業株式会社 間欠連結型光ファイバテープ心線、その製造方法、光ファイバケーブルおよび光ファイバコード
WO2018220605A1 (en) * 2017-06-02 2018-12-06 Dsm Ip Assets Bv Thermally resistant radiation curable coatings for optical fiber
JP2019099147A (ja) 2017-12-01 2019-06-24 ゴゴロ インク ハブ装置および関連システム
JP2019111801A (ja) 2017-12-25 2019-07-11 株式会社神戸製鋼所 撥水性透明フィルム、撥水性透明フィルムの製造方法、ディスプレイ及び光学調整フィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629889B2 (ja) * 1985-08-19 1994-04-20 日本大洋海底電線株式会社 海底光ケーブル
US6054217A (en) * 1995-08-01 2000-04-25 Dsm N.V. Ribbon unit, a method of making the ribbon unit, and a method of providing mid-span access
JP2008247982A (ja) * 2007-03-29 2008-10-16 Jsr Corp 液状硬化性樹脂組成物
JP2013134342A (ja) * 2011-12-26 2013-07-08 Sumitomo Electric Ind Ltd コネクタ付き多芯光ファイバ
US20150030296A1 (en) * 2012-10-03 2015-01-29 Sumitomo Electric Industries, Ltd. Optical fiber ribbon
JP6106253B1 (ja) * 2015-12-04 2017-03-29 株式会社フジクラ 光ファイバテープ、光ファイバテープの製造方法、及び間欠固定型光ファイバテープの連結部の形成に用いられる紫外線硬化樹脂組成物
JP6163273B1 (ja) * 2016-04-08 2017-07-12 株式会社フジクラ 光ファイバテープの製造方法、光ファイバテープ及び光ケーブル
WO2018022031A1 (en) * 2016-07-27 2018-02-01 Prysmian S.P.A. Flexible optical-fiber ribbon
WO2019137628A1 (en) * 2018-01-15 2019-07-18 Prysmian S.P.A. A method for producing a flexible optical fiber ribbon and said ribbon.
CN113678044A (zh) * 2019-04-12 2021-11-19 住友电气工业株式会社 光纤带芯线、模具及光纤带芯线的制造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306147A (ja) * 1992-04-16 1993-11-19 Borden Inc 光ファイバー用紫外線硬化可能なコーティングおよび該コーティングを被覆した光ファイバー
JP2005301237A (ja) * 2004-03-15 2005-10-27 Jsr Corp 液状硬化性樹脂組成物
JP2010117592A (ja) 2008-11-13 2010-05-27 Nippon Telegr & Teleph Corp <Ntt> 光ファイバテープ及び光ファイバケーブル
JP2013088617A (ja) 2011-10-18 2013-05-13 Fujikura Ltd 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2015052704A (ja) 2013-09-06 2015-03-19 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
JP2016075746A (ja) * 2014-10-03 2016-05-12 住友電気工業株式会社 間欠型光ファイバテープ心線及びその製造方法
WO2017094560A1 (ja) * 2015-12-01 2017-06-08 古河電気工業株式会社 光ファイバテープ心線及び光ファイバケーブル
WO2017145955A1 (ja) * 2016-02-23 2017-08-31 住友電気工業株式会社 間欠連結型光ファイバテープ心線、間欠連結型光ファイバテープ心線の製造方法、光ファイバケーブルおよび光ファイバコード
WO2017175414A1 (ja) * 2016-04-08 2017-10-12 株式会社フジクラ 光ファイバテープの製造方法、光ファイバテープ及び光ケーブル
WO2018105424A1 (ja) * 2016-12-06 2018-06-14 住友電気工業株式会社 間欠連結型光ファイバテープ心線、その製造方法、光ファイバケーブルおよび光ファイバコード
WO2018220605A1 (en) * 2017-06-02 2018-12-06 Dsm Ip Assets Bv Thermally resistant radiation curable coatings for optical fiber
JP2019099147A (ja) 2017-12-01 2019-06-24 ゴゴロ インク ハブ装置および関連システム
JP2019111801A (ja) 2017-12-25 2019-07-11 株式会社神戸製鋼所 撥水性透明フィルム、撥水性透明フィルムの製造方法、ディスプレイ及び光学調整フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978976A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113946025A (zh) * 2021-12-20 2022-01-18 长飞光纤光缆股份有限公司 一种柔性光纤带、高密度光缆及固化树脂应用

Also Published As

Publication number Publication date
US20220252809A1 (en) 2022-08-11
EP3978976A1 (en) 2022-04-06
EP3978976A4 (en) 2022-07-27
CN113892049A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
JP7156181B2 (ja) 光ファイバケーブル
EP3179286A1 (en) Fiber optic cables and methods for forming the same
WO2012011311A1 (ja) 光ファイバ素線、光ファイバテープ心線および光ファイバケーブル
WO2004008215A1 (ja) 光ファイバテープ心線およびその製造方法
JP2009163045A (ja) 光ファイバテープ心線およびその分割方法
CN105518498B (zh) 光纤带
EP3923052A1 (en) Intermittent connection-type optical fiber tape core wire, optical fiber cable, and method for manufacturing intermittent connection-type optical fiber tape core wire
JP6273847B2 (ja) 光ファイバおよび光ケーブル
JP2011232733A (ja) 光ファイバテープ心線、光ファイバケーブル、及び光ファイバテープ心線の製造方法
JP3902201B2 (ja) 光ファイバ素線及び光ファイバテープ心線
WO2020241696A1 (ja) 光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法
JP2004206048A (ja) 光ファイバテープ心線及びその製造方法
US7186031B2 (en) Optical interconnect device
US20050084221A1 (en) Apparatus and method for transitioning fiber optic cables
WO2022054940A1 (ja) 光ファイバテープ心線および光ファイバテープ心線の製造方法
JP2020204687A (ja) 光ファイバテープ心線、光ファイバケーブルおよび光ファイバテープ心線の製造方法
JP2020194065A (ja) 光ファイバテープ心線および光ファイバケーブル
JP4850732B2 (ja) 光ファイバテープおよび光ケーブル
KR20170138350A (ko) 플라스틱 광파이버 리본
JP7156178B2 (ja) 光ファイバケーブル
WO2022085598A1 (ja) 光ファイバテープ心線
JPH04166808A (ja) 薄型光ファイバテープ心線
JP2023084740A (ja) 多心光フェルールおよび光コネクタ
JP2006078913A (ja) 光ファイバテープおよび光ファイバケーブル
JP2004045937A (ja) 光ファイバテープ心線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020812872

Country of ref document: EP

Effective date: 20220103