WO2020211170A1 - 绕线式无感电阻器检测装置及检测方法 - Google Patents

绕线式无感电阻器检测装置及检测方法 Download PDF

Info

Publication number
WO2020211170A1
WO2020211170A1 PCT/CN2019/089291 CN2019089291W WO2020211170A1 WO 2020211170 A1 WO2020211170 A1 WO 2020211170A1 CN 2019089291 W CN2019089291 W CN 2019089291W WO 2020211170 A1 WO2020211170 A1 WO 2020211170A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
resistor
detection
groove
wire
Prior art date
Application number
PCT/CN2019/089291
Other languages
English (en)
French (fr)
Inventor
胡德霖
胡醇
王林
曹坚
李�杰
Original Assignee
苏州电器科学研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州电器科学研究院股份有限公司 filed Critical 苏州电器科学研究院股份有限公司
Priority to DE112019000253.8T priority Critical patent/DE112019000253T5/de
Publication of WO2020211170A1 publication Critical patent/WO2020211170A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/18Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring depth

Definitions

  • the invention belongs to the field of electrical component detection, and particularly relates to a winding type non-inductive resistor detection device and a detection method.
  • Medium and high voltage wire wound non-inductive resistors are widely used in power systems, high voltage measurement and high voltage testing. In order to prevent various undesirable problems caused by high-frequency oscillation or resistance flashover along the surface, this type of wire-wound non-inductive resistor should have the smallest possible inductance and the highest possible withstand voltage level.
  • medium and high voltage wire-wound non-inductive resistors generally use the non-inductive winding method to reduce inductance. This winding method is usually made by directly winding the resistance wire on the surface of the insulating support, so that the resistance withstand voltage level depends on the turn When the withstand voltage level is high, the turn-to-turn distance is large, resulting in an increase in the residual inductance of the resistance. At the same time, the increase in the turn-to-turn distance makes the resistance volume larger.
  • the utility model patent No. 201320049893.X discloses a medium and high voltage cylindrical wound type non-inductive resistor. It has the advantages of high withstand voltage level, small residual inductance, light weight, small size, not easy to damage and convenient installation.
  • the rectangular horizontal groove of the insulating cylinder has the same depth as the rectangular vertical groove, and the width of the rectangular vertical groove is greater than twice the depth of the rectangular horizontal groove and the distance between the grooves. Half of the sum, and the existing resistor testing equipment cannot detect it.
  • the present invention proposes a winding type non-inductive resistor detection device and detection method.
  • Wire-wound non-inductive resistor detection device including: detection platform, also includes:
  • a carrier a plurality of carrier slots are provided on the carrier, the carrier slots are used to carry the resistor to be tested, and one carrier slot corresponds to one resistor to be tested;
  • Conveying mechanism used to convey the carrier
  • the testing organization is set on the testing platform.
  • the testing organization includes:
  • Positioning component for positioning the vehicle
  • the compression component is used to fix the resistor to be detected
  • the measuring component is used to measure the depth of the rectangular horizontal groove, the width of the rectangular horizontal groove, the groove distance between adjacent rectangular horizontal grooves and the depth of the rectangular vertical groove of the insulating cylinder of the resistor to be tested.
  • the invention discloses a wire-wound type non-inductive resistor detection device, which has a simple structure and can effectively control the depth of the rectangular horizontal groove, the width of the rectangular horizontal groove, the groove distance between adjacent rectangular horizontal grooves and the rectangular vertical groove of the resistor insulation cylinder If there is any problem, it can be detected and solved in time, which greatly improves the yield rate of the finished wire wound non-inductive resistor and reduces the scrap rate of the finished product.
  • the conveying mechanism includes: a conveying track provided on the detection platform, a chute provided at the bottom of the carrier and matched with the conveying track, and a carrier driving device connected to the carrier in transmission, and the carrier driving device drives the carrier Move along the conveyor track.
  • the structure is simple and the cost is low.
  • the positioning component includes: a positioning slot provided on the detection platform, a positioning block rotatably connected to the wall of the positioning slot, and a positioning block driving device connected to the positioning block in a transmission manner.
  • the positioning block driving device is used to drive the positioning block to rotate .
  • the carrier can be accurately positioned and will not interfere with the transportation of the carrier.
  • the compression assembly includes:
  • the pressing rod is inserted in the guide hole on the top of the detection bracket;
  • Press block which is fixed at the lower end of the press rod
  • the spring is sleeved on the pressure rod, and the spring is located between the top of the detection bracket and the pressure block;
  • the pressing rod driving device is in a transmission connection with the pressing rod, and the pressing rod driving device drives the pressing rod to rise and fall.
  • the insulating cylinder of the resistor to be tested is well fixed to prevent movement of the insulating cylinder of the resistor to be tested during the measurement process, which causes measurement errors.
  • annular groove matching the top of the insulating cylinder of the resistor to be detected is provided on the pressure block, and one or more grooves are provided on the side wall of the annular groove along the circumference thereof.
  • the insulating cylinder of the resistor to be detected can be effectively fixed, and the groove opened on the side wall of the annular groove can prevent the negative pressure from being generated inside.
  • the measurement components include:
  • Ranging sensor set on the lifting pole
  • the image sensor is set on the lifting rod
  • the lifting rod driving device is in a transmission connection with the lifting rod, and the lifting rod driving device drives the lifting rod to lift.
  • the lifting rod is used to drive the ranging sensor and the image sensor to rise and fall to ensure multi-directional data collection and to ensure the diversity of data collection.
  • the data collected by the ranging sensor and the image sensor can be sent to the control device, and the control device will perform modeling and analysis on it.
  • the depth of the rectangular transverse groove on the insulating cylinder of the resistor, the width of the rectangular transverse groove, and the width of the adjacent rectangular transverse groove are to be detected.
  • the groove spacing and the depth of the rectangular vertical groove are measured.
  • one or more illuminating mechanisms connected to it in rotation are provided on the top of the detection bracket.
  • the light direction and intensity of the lighting mechanism can be adjusted to ensure a good lighting effect.
  • a rotating shaft, an upper rotating disk and a lower fixed disk are arranged in the carrier slot, the upper rotating disk is rotatably connected with the rotating shaft, the lower fixed disk is fixedly connected with the rotating shaft, and the edge position of the upper rotating disk is evenly distributed along its circumference
  • the adjacent permanent magnets have opposite polarities.
  • the edge of the lower fixed plate is provided with a plurality of electromagnets evenly distributed along its circumference, and the electromagnets are electrically connected with the polarity adjustment device to adjust the polarity. The device is used to adjust the polarity of the electromagnet.
  • the polarity adjustment device changes the polarity of the electromagnet to cause the upper turntable to drive the resistor to be tested in the carrier slot to rotate a certain angle, ensuring that the measuring component can measure the resistor to be tested from different angles , The measurement result is more accurate.
  • the upper turntable and the lower fixed disk are slidably connected by a groove and convex structure.
  • the upper turntable rotates more stably.
  • the wire-wound non-inductive resistor detection method uses a wire-wound non-inductive resistor detection device for detection, which specifically includes the following steps:
  • the conveying mechanism conveys the carrier to the inspection station
  • the positioning component in the testing mechanism first locates the position of the carrier, and then the compression component compresses the resistor to be tested carried by the carrier, and finally the measuring component insulates the resistor to be tested Measure the depth of the rectangular horizontal groove of the cylinder, the width of the rectangular horizontal groove, the groove spacing between adjacent rectangular horizontal grooves and the depth of the rectangular vertical groove, and send the test values to the control device;
  • the conveying mechanism conveys the carrier away from the inspection station.
  • the invention also discloses a method for detecting a wire-wound non-inductive resistor.
  • the steps are simple, and the depth of the rectangular horizontal groove, the width of the rectangular horizontal groove, the groove spacing between adjacent rectangular horizontal grooves and the rectangular vertical groove of the insulating cylinder of the resistor can be quickly treated. The depth is measured.
  • Fig. 1 is a top view of a wire-wound non-inductive resistor detection device provided by an embodiment of the present invention.
  • Figure 2 is a side view of a wire wound non-inductive resistor detection device provided by an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a positioning assembly provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the pressing assembly and the measuring assembly provided by an embodiment of the present invention.
  • Figure 5 is a partial cross-sectional view of a carrier provided by an embodiment of the present invention.
  • Figure 6 is a top view of a lower fixing plate provided by an embodiment of the present invention.
  • 1 detection platform 11 through holes, 2 carriers, 21 carrier slots, 3 conveying mechanisms, 4 detection mechanisms, 41 detection brackets, 411 guide holes, 42 positioning components, 421 positioning slots, 422 positioning blocks, 43 compression Components, 431 pressure bar, 432 pressure block, 4321 ring groove, 4322 groove, 433 spring, 44 measuring component, 441 lifting rod, 442 distance measuring sensor, 443 image sensor, 5 resistors to be detected, 6 lighting mechanism, 71 shaft , 72 upper turntable, 73 lower fixed disk, 74 permanent magnet, 75 electromagnet.
  • the wire-wound non-inductive resistor detection device includes: a detection platform 1, a carrier 2, a conveying mechanism 3, and a detection mechanism 4.
  • the carrier 2 is provided with six carrier slots 21, the carrier slots 21 are used to carry the resistors to be tested, and one carrier slot 21 corresponds to a resistor 5 to be tested;
  • the conveying mechanism 3 is used for loading the carrier 2 Transport;
  • the detection mechanism 4 is set on the detection platform 1, the detection mechanism 4 includes: a detection bracket 41, a positioning assembly 42, a compression assembly 43, and a measurement assembly 44.
  • the positioning component 42 is used for positioning the carrier 2; the pressing component 43 is used for fixing the resistor 5 to be tested; the measuring component 44 is used for the depth and width of the rectangular groove of the insulating cylinder of the resistor 5 to be tested , The groove spacing of adjacent rectangular horizontal grooves and the depth of rectangular vertical grooves are measured.
  • the wire-wound non-inductive resistor detection method uses a wire-wound non-inductive resistor detection device for detection, which specifically includes the following steps:
  • the conveying mechanism 3 conveys the carrier 2 to the inspection station
  • the positioning component 42 in the detection mechanism 4 first locates the position of the carrier 2, and then the compression component 43 compresses the resistor 5 to be tested carried by the carrier 2, and finally measures
  • the component 44 measures the depth of the rectangular horizontal groove, the width of the rectangular horizontal groove, the groove distance between adjacent rectangular horizontal grooves, and the depth of the rectangular vertical groove of the insulating cylinder of the resistor 5 to be tested, and sends the test value to the control device;
  • the conveying mechanism 3 conveys the carrier 2 away from the inspection station.
  • the invention discloses a winding type non-inductive resistor detection device and a detection method.
  • the detection device has simple structure and simple detection method steps, and can effectively check the depth of the rectangular transverse groove, the width of the rectangular transverse groove, and the adjacent The groove spacing of the rectangular horizontal groove and the depth of the rectangular vertical groove are measured. If there is a problem, it can be found and solved in time, which greatly improves the yield of the wound non-inductive resistor and reduces the scrap rate.
  • the conveying mechanism 3 includes: a conveying track (not shown in the figure) arranged on the detection platform 1, and At the bottom of the carrier 2 a chute (not shown in the figure) matched with the conveying track and a carrier drive device (not shown in the figure) connected to the carrier 2 in a transmission, the carrier drive device drives the carrier 2 along the transport Orbital movement.
  • the structure is simple and the cost is low.
  • the positioning component 42 includes: a positioning slot 421 provided on the detection platform 1, and The positioning block 422 rotatably connected to the wall of the positioning slot 421 and a positioning block driving device (not shown in the figure) drivingly connected to the positioning block 422, the positioning block driving device is used to drive the positioning block 422 to rotate.
  • the control device controls the positioning block driving device to move.
  • the positioning block 422 originally placed horizontally in the positioning slot 421 rotates 90 degrees, the positioning block 422 is in an upright state, and the carrier 2
  • the positioning component 42 accurately positions the carrier 2.
  • the control device controls the positioning block driving device to move, the positioning block 422 is placed in the positioning slot 421 again, the carrier 2 continues to move forward, and the positioning block 422 will not interfere with the transportation of the carrier 2.
  • the pressing assembly 43 includes:
  • the pressing rod 431 passes through the guide hole 411 on the top of the detection bracket 41;
  • the pressing block 432 is fixed to the lower end of the pressing rod 431;
  • the spring 433 is sleeved on the pressing rod 431, and the spring 433 is located between the top of the detection bracket 41 and the pressing block 432;
  • the pressing rod driving device (not shown in the figure) is drivingly connected to the pressing rod 431, and the pressing rod driving device drives the pressing rod 431 to rise and fall.
  • the above-mentioned preferred solution is adopted to properly fix the insulating cylinder of the resistor 5 to be tested, so as to prevent the insulating cylinder of the resistor 5 to be tested from moving during the measurement process, causing measurement errors.
  • a pressure block 432, a pressure rod 431, and a spring 433 correspond to a resistor 5 to be detected.
  • six pressure rod driving devices may be provided, and one pressure rod driving device is in transmission connection with one pressure rod 431.
  • one, two, or three pressure rod driving devices may also be provided, and one pressure rod driving device is drivingly connected to a plurality of pressure rods 431, which reduces the power source and reduces the cost.
  • the pressing block 432 is provided with an annular groove 4321 matching the top of the insulating cylinder of the resistor 5 to be detected, and one or more grooves 4322 are provided on the side wall of the annular groove 4321 along the circumference thereof.
  • the insulating cylinder of the resistor 5 to be detected can be effectively fixed, and the groove 4322 opened on the side wall of the annular groove 4321 can prevent negative pressure from being generated inside.
  • the remaining characteristic technologies are the same, except that the measurement component 44 includes:
  • the distance measuring sensor 442 is arranged on the lifting rod 441;
  • the image sensor 443 is arranged on the lifting rod 441;
  • the lifting rod driving device (not shown in the figure), the lifting rod driving device is in transmission connection with the lifting rod 441, and the lifting rod driving device drives the lifting rod 441 to lift.
  • the lifting rod 441 is used to drive the ranging sensor 442 and the image sensor 443 up and down to ensure multi-directional data collection and to ensure the diversity of data collection.
  • the data collected by the distance measuring sensor 442 and the image sensor 443 can be sent to the control device, and the control device performs modeling and analysis on it, and the depth of the rectangular transverse groove, the width of the rectangular transverse groove, and the adjacent rectangle on the insulating cylinder of the resistor 5 are to be detected.
  • the groove spacing of the horizontal groove and the depth of the rectangular vertical groove are measured.
  • the measuring components 44 can be arranged in six groups, one group of measuring components 44 corresponds to one resistor 5 to be tested, and each group of measuring components Each 44 has its unique code.
  • the data collected by the ranging sensor 442 and the image sensor 443 are bound to the corresponding measurement component 44 code and sent to the control device.
  • the control device can find out which resistor 5 to be tested has a problem in time.
  • the measuring component 44 when the measuring component 44 is arranged in a group, the measuring component 44 is arranged on the moving component, and the moving component can drive the measuring component 44 to move in a horizontal position.
  • the measurement component 44 also includes a scanner and a barcode arranged beside the carrier slot 21 of the carrier 2.
  • the moving component drives the measurement component 44 to move.
  • the scanner scans the barcode first, and then the ranging sensor 442 and the image sensor 443 collect data, bind the collected data and the barcode value and send it to the control device.
  • the control device can find out in time. A problem with the resistor 5 to be detected.
  • the remaining feature technology is the same, the difference is that one or more illuminators connected to it in rotation are provided on the top of the detection bracket 41 Institution 6.
  • the light direction and intensity of the lighting mechanism 6 can be adjusted to ensure a good lighting effect, thereby improving the detection accuracy of the detection mechanism 4.
  • the carrier groove 21 is provided with a rotating shaft 71, an upper turntable 72 and The lower fixed disc 73, the upper rotary disc 72 and the rotary shaft 71 are rotatably connected, and the lower fixed disc 73 is fixedly connected with the rotary shaft 71.
  • a plurality of permanent magnets 74 evenly distributed along the circumference of the upper rotary disc 72 are provided on the edge of the upper rotary disc 72. The polarity of the magnet 74 is opposite.
  • a plurality of electromagnets 75 evenly distributed along the circumference of the lower fixed plate 73 are provided at the edge position, and the electromagnets 75 are electrically connected with a polarity adjustment device, which is used to adjust the electromagnets.
  • the polarity is used to adjust the electromagnets.
  • the polarity adjustment device changes the polarity of the electromagnet 75 to cause the upper turntable 72 to drive the resistor 5 in the carrier slot 21 to rotate to a certain angle, ensuring that the measuring assembly 44 can be treated from different angles.
  • the detection resistor 5 performs measurement, and the measurement result is more accurate.
  • the upper rotating disc 72 and the lower fixed disc 73 are slidably connected by a groove and convex structure.
  • the upper turntable 72 rotates more stably.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

本发明公开绕线式无感电阻器检测装置及检测方法,该检测装置包括:检测平台;载具,载具上设有多个载具槽,载具槽用于对待检测电阻器进行承载;输送机构,用于对载具进行输送;检测机构,设置于检测平台上,检测机构包括:检测支架;定位组件,用于对载具进行定位;压紧组件,用于对待检测电阻器进行固定;测量组件,用于对待检测电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量。本发明可以有效对电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量,若有问题可以及时发现并解决,大大提高了绕线式无感电阻器成品的良率,降低成品报废率。

Description

绕线式无感电阻器检测装置及检测方法 技术领域
本发明属于电器元件检测领域,具体涉及一种绕线式无感电阻器检测装置及检测方法。
背景技术
中高压绕线式无感电阻器广泛应用在电力***、高压测量和高压试验领域中。为了防止产生高频振荡或电阻沿面闪络引起的各种不良问题,这种绕线式无感电阻器应具有尽可能小的电感和尽可能高的耐受电压等级。目前,中高压绕线式无感电阻器一般采用无感绕法来减小电感,这种绕法通常是将电阻丝直接绕在绝缘支架的表面制成的,使得电阻耐受电压等级依靠匝间距离(沿面放电距离)来控制,当耐受电压等级高时,匝间距离就大,导致电阻残余电感增大,同时,匝间距离的增加使得电阻体积变大。
为了解决绕线式无感电阻器残余电感与电压耐受等级之间的矛盾,专利号为201320049893.X的实用新型专利公开了一种中高压圆柱形绕线式无感电阻器,该电阻器具有耐受电压等级高,残余电感小,重量轻,体积小,不易损坏且安装方便的优点。
中高压圆柱形绕线式无感电阻器在制作的过程中要求绝缘筒的矩形横槽与矩形竖槽的深度相等,该矩形竖槽的宽度大于两倍的矩形横槽深度与槽间隔距离之和的一半,而现有的电阻器检测设备无法对其进行检测。
发明内容
为了解决上述技术问题,本发明提出了一种绕线式无感电阻器检测装置及检测方法。
为了达到上述目的,本发明的技术方案如下:
绕线式无感电阻器检测装置,包括:检测平台,还包括:
载具,载具上设有多个载具槽,载具槽用于对待检测电阻器进行承载,且一个载具槽与一个待检测电阻器对应;
输送机构,用于对载具进行输送;
检测机构,设置于检测平台上,检测机构包括:
检测支架;
定位组件,用于对载具进行定位;
压紧组件,用于对待检测电阻器进行固定;
测量组件,用于对待检测电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量。
本发明公开一种绕线式无感电阻器检测装置,结构简单,可以有效对电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量,若有问题可以及时发现并解决,大大提高了绕线式无感电阻器成品的良率,降低成品报废率。
在上述技术方案的基础上,还可做如下改进:
作为优选的方案,输送机构包括:设置于检测平台上的输送轨道、设置于载具底部与输送轨道相匹配的滑槽以及与载具传动连接的载具驱动装置,载具驱动装置驱动载具沿输送轨道运动。
采用上述优选的方案,结构简单,成本低。
作为优选的方案,定位组件包括:设置于检测平台上的定位槽、与定位槽槽壁转动连接的定位块以及与定位块传动连接的定位块驱动装置,定位块驱动装置用于驱动定位块转动。
采用上述优选的方案,对载具进行精确的定位,且不会对载具的输送造成干涉。
作为优选的方案,压紧组件包括:
压杆,压杆穿设于检测支架顶部的导向孔内;
压块,压块固定于压杆下端;
弹簧,弹簧套设于压杆上,且弹簧位于检测支架顶部与压块之间;
压杆驱动装置,压杆驱动装置与压杆传动连接,压杆驱动装置带动压杆升降。
采用上述优选的方案,对待检测电阻器绝缘筒进行良好的固定,防止在测量的过程中,待检测电阻器绝缘筒出现移动,造成测量误差。
作为优选的方案,在压块上设有与待检测电阻器绝缘筒顶部相匹配的环形槽,且在环形槽的侧壁上沿其周向开设有一圈或多圈凹槽。
采用上述优选的方案,可以有效对待检测电阻器绝缘筒进行固定,且环形槽侧壁上开设的凹槽可以防止其内部产生负压。
作为优选的方案,测量组件包括:
升降杆,升降杆穿设于检测平台的通孔内;
测距传感器,设置于升降杆上;
图像传感器,设置于升降杆上;
升降杆驱动装置,升降杆驱动装置与升降杆传动连接,升降杆驱动装置带动升降杆升降。
采用上述优选的方案,采用升降杆带动测距传感器和图像传感器升降,保证多方位的采集数据,保证数据采集的多样性。测距传感器和图像传感器采集的数据可以发送给控制装置,控制装置对其进行建模分析,对待检测电阻器绝缘筒上的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量。
作为优选的方案,在检测支架的顶部设有一个或多个与其转动连接的照明机构。
采用上述优选的方案,照明机构的光照方向和强度可调节,保证照明效果良好。
作为优选的方案,在载具槽内设有转轴、上转盘和下固定盘,上转盘与转轴转动连接,下固定盘与转轴固定连接,在上转盘的边缘位 置设有沿其周向均匀分布的多个永磁石,且相邻永磁石的极性相反,在下固定盘的边缘位置设有沿其周向均匀分布的多个电磁石,且电磁石与极性调节装置电连接,极性调节装置用于调节电磁石的极性。
采用上述优选的方案,极性调节装置通过改变电磁石的极性来促使上转盘带动载具槽内的待检测电阻器旋转一定的角度,保证测量组件可以从不同的角度对待检测电阻器进行测量,测量结果更精准。
作为优选的方案,上转盘与下固定盘之间通过凹槽凸起结构滑动连接。
采用上述优选的方案,上转盘转动更稳定。
绕线式无感电阻器检测方法,利用绕线式无感电阻器检测装置进行检测,具体包括以下步骤:
(1)将待检测电阻器放置于载具的载具槽内;
(2)输送机构将载具输送到检测工位上;
(3)在检测工位上,检测机构内的定位组件先对载具的位置进行定位,然后压紧组件将载具所承载的待检测电阻器进行压紧,最后测量组件对待检测电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量,将测试值发送给控制装置;
(4)测量结束后,输送机构将载具输送离开检测工位。
本发明还公开绕线式无感电阻器检测方法,步骤简单,可以快速对待检测电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量。
附图说明
图1为本发明实施例提供的绕线式无感电阻器检测装置的俯视图。
图2为本发明实施例提供的绕线式无感电阻器检测装置的侧视 图。
图3为本发明实施例提供的定位组件的结构示意图。
图4为本发明实施例提供的压紧组件和测量组件的结构示意图。
图5为本发明实施例提供的载具局部剖视图。
图6为本发明实施例提供的下固定盘俯视图。
其中:1检测平台、11通孔、2载具、21载具槽、3输送机构、4检测机构、41检测支架、411导向孔、42定位组件、421定位槽、422定位块、43压紧组件、431压杆、432压块、4321环形槽、4322凹槽、433弹簧、44测量组件、441升降杆、442测距传感器、443图像传感器、5待检测电阻器、6照明机构、71转轴、72上转盘、73下固定盘、74永磁石、75电磁石。
具体实施方式
下面结合附图详细说明本发明的优选实施方式。
为了达到本发明的目的,一种绕线式无感电阻器检测装置及检测方法的其中一些实施例中,
如图1和2所示,绕线式无感电阻器检测装置,包括:检测平台1、载具2、输送机构3以及检测机构4。
载具2上设有六个载具槽21,载具槽21用于对待检测电阻器进行承载,且一个载具槽21与一个待检测电阻器5对应;输送机构3用于对载具2进行输送;检测机构4设置于检测平台1上,检测机构4包括:检测支架41、定位组件42、压紧组件43以及测量组件44。
定位组件42用于对载具2进行定位;压紧组件43用于对待检测电阻器5进行固定;测量组件44用于对待检测电阻器5绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量。
绕线式无感电阻器检测方法,利用绕线式无感电阻器检测装置进 行检测,具体包括以下步骤:
(1)将待检测电阻器5放置于载具2的载具槽21内;
(2)输送机构3将载具2输送到检测工位上;
(3)在检测工位上,检测机构4内的定位组件42先对载具2的位置进行定位,然后压紧组件43将载具2所承载的待检测电阻器5进行压紧,最后测量组件44对待检测电阻器5绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量,将测试值发送给控制装置;
(4)测量结束后,输送机构3将载具2输送离开检测工位。
本发明公开一种绕线式无感电阻器检测装置及检测方法,检测装置结构简单,检测方法步骤简单,可以有效对电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量,若有问题可以及时发现并解决,大大提高了绕线式无感电阻器成品的良率,降低报废率。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,输送机构3包括:设置于检测平台1上的输送轨道(图中未示出)、设置于载具2底部与输送轨道相匹配的滑槽(图中未示出)以及与载具2传动连接的载具驱动装置(图中未示出),载具驱动装置驱动载具2沿输送轨道运动。
采用上述优选的方案,结构简单,成本低。
如图3所示,为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,定位组件42包括:设置于检测平台1上的定位槽421、与定位槽421槽壁转动连接的定位块422以及与定位块422传动连接的定位块驱动装置(图中未示出),定位块驱动装置用于驱动定位块422转动。
采用上述优选的方案,当输送机构3开始运动时,控制装置控制定位块驱动装置动作,原先置于定位槽421内水平放置的定位块422 转动90度,定位块422呈直立状态,载具2在前进中遇到定位块422后,停止运动。定位组件42对载具2进行精确的定位。当检测机构4完成检测后,控制装置控制定位块驱动装置动作,定位块422重新置于定位槽421内,载具2继续前行,定位块422不会对载具2的输送造成干涉。
如图4所示,为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,压紧组件43包括:
压杆431,压杆431穿设于检测支架41顶部的导向孔411内;
压块432,压块432固定于压杆431下端;
弹簧433,弹簧433套设于压杆431上,且弹簧433位于检测支架41顶部与压块432之间;
压杆驱动装置(图中未示出),压杆驱动装置与压杆431传动连接,压杆驱动装置带动压杆431升降。
采用上述优选的方案对待检测电阻器5绝缘筒进行良好的固定,防止在测量的过程中,待检测电阻器5绝缘筒出现移动,造成测量误差。
其中,一个压块432、压杆431、弹簧433与一个待检测电阻器5对应,在一些实施例中,可以设置六个压杆驱动装置,一个压杆驱动装置与一个压杆431传动连接,在另外一些实施例中,也可以设置一个、两个或三个压杆驱动装置,一个压杆驱动装置与多个压杆431传动连接,减少动力源,降低成本。
进一步,在压块432上设有与待检测电阻器5绝缘筒顶部相匹配的环形槽4321,且在环形槽4321的侧壁上沿其周向开设有一圈或多圈凹槽4322。
采用上述优选的方案,可以有效对待检测电阻器5绝缘筒进行固定且环形槽4321侧壁上开设的凹槽4322可以防止其内部产生负压。
如图4所示,为了进一步地优化本发明的实施效果,在另外一些 实施方式中,其余特征技术相同,不同之处在于,测量组件44包括:
升降杆441,升降杆441穿设于检测平台1的通孔11内;
测距传感器442,设置于升降杆441上;
图像传感器443,设置于升降杆441上;
升降杆驱动装置(图中未示出),升降杆驱动装置与升降杆441传动连接,升降杆驱动装置带动升降杆441升降。
采用上述优选的方案,采用升降杆441带动测距传感器442和图像传感器443升降,保证多方位的采集数据,保证数据采集的多样性。测距传感器442和图像传感器443采集的数据可以发送给控制装置,控制装置对其进行建模分析,对待检测电阻器5绝缘筒上的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量。
当载具2上放置有六个待检测电阻器5时,在一些实施例中,测量组件44可设置为六组,一组测量组件44与一个待检测电阻器5相对应,每组测量组件44均有其唯一的代码,测距传感器442和图像传感器443采集的数据与对应的测量组件44代码绑定一起发送给控制装置,控制装置可以及时发现是哪一个待检测电阻器5发生问题。
在另外一些实施例中,当测量组件44设置为一组时,该测量组件44设置于移动组件上,移动组件可带动测量组件44进行水平位置的移动。同时,测量组件44还包括:扫描器以及设置于载具2载具槽21旁的条码。移动组件带动测量组件44移动,扫描器先扫描条码,然后测距传感器442和图像传感器443再采集数据,将采集的数据和条码值绑定后一起发送给控制装置,控制装置可以及时发现是哪一个待检测电阻器5发生问题。
如图4所示,为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,在检测支架41的顶部设有一个或多个与其转动连接的照明机构6。
采用上述优选的方案,照明机构6的光照方向和强度可调节,保证照明效果良好,从而提高检测机构4的检测精度。
如图5和6所示,为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,在载具槽21内设有转轴71、上转盘72和下固定盘73,上转盘72与转轴71转动连接,下固定盘73与转轴71固定连接,在上转盘72的边缘位置设有沿其周向均匀分布的多个永磁石74,且相邻永磁石74的极性相反,在下固定盘73的边缘位置设有沿其周向均匀分布的多个电磁石75,且电磁石75与极性调节装置电连接,极性调节装置用于调节电磁石的极性。
采用上述优选的方案,极性调节装置通过改变电磁石75的极性来促使上转盘72带动载具槽21内的待检测电阻器5旋转一定的角度,保证测量组件44可以从不同的角度对待检测电阻器5进行测量,测量结果更精准。
进一步,上转盘72与下固定盘73之间通过凹槽凸起结构滑动连接。
采用上述优选的方案,上转盘72转动更稳定。
对于本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 绕线式无感电阻器检测装置,包括:检测平台,其特征在于,还包括:
    载具,所述载具上设有多个载具槽,所述载具槽用于对待检测电阻器进行承载,且一个载具槽与一个待检测电阻器对应;
    输送机构,用于对所述载具进行输送;
    检测机构,设置于所述检测平台上,所述检测机构包括:
    检测支架;
    定位组件,用于对所述载具进行定位;
    压紧组件,用于对待检测电阻器进行固定;
    测量组件,用于对待检测电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量。
  2. 根据权利要求1所述的绕线式无感电阻器检测装置,其特征在于,所述输送机构包括:设置于所述检测平台上的输送轨道、设置于所述载具底部与所述输送轨道相匹配的滑槽以及与所述载具传动连接的载具驱动装置,所述载具驱动装置驱动所述载具沿所述输送轨道运动。
  3. 根据权利要求1所述的绕线式无感电阻器检测装置,其特征在于,所述定位组件包括:设置于所述检测平台上的定位槽、与所述定位槽槽壁转动连接的定位块以及与所述定位块传动连接的定位块驱动装置,所述定位块驱动装置用于驱动所述定位块转动。
  4. 根据权利要求1所述的绕线式无感电阻器检测装置,其特征在于,所述压紧组件包括:
    压杆,所述压杆穿设于所述检测支架顶部的导向孔内;
    压块,所述压块固定于所述压杆下端;
    弹簧,所述弹簧套设于所述压杆上,且所述弹簧位于所述检测支架顶部与压块之间;
    压杆驱动装置,所述压杆驱动装置与所述压杆传动连接,所述压杆 驱动装置带动所述压杆升降。
  5. 根据权利要求4所述的绕线式无感电阻器检测装置,其特征在于,在所述压块上设有与待检测电阻器绝缘筒顶部相匹配的环形槽,且在所述环形槽的侧壁上沿其周向开设有一圈或多圈凹槽。
  6. 根据权利要求1所述的绕线式无感电阻器检测装置,其特征在于,所述测量组件包括:
    升降杆,所述升降杆穿设于所述检测平台的通孔内;
    测距传感器,设置于所述升降杆上;
    图像传感器,设置于所述升降杆上;
    升降杆驱动装置,所述升降杆驱动装置与所述升降杆传动连接,所述升降杆驱动装置带动所述升降杆升降。
  7. 根据权利要求1所述的绕线式无感电阻器检测装置,其特征在于,在所述检测支架的顶部设有一个或多个与其转动连接的照明机构。
  8. 根据权利要求1-7任一项所述的绕线式无感电阻器检测装置,其特征在于,在所述载具槽内设有转轴、上转盘和下固定盘,所述上转盘与所述转轴转动连接,所述下固定盘与所述转轴固定连接,在所述上转盘的边缘位置设有沿其周向均匀分布的多个永磁石,且相邻永磁石的极性相反,在所述下固定盘的边缘位置设有沿其周向均匀分布的多个电磁石,且所述电磁石与极性调节装置电连接,所述极性调节装置用于调节所述电磁石的极性。
  9. 根据权利要求8所述的绕线式无感电阻器检测装置,其特征在于,所述上转盘与下固定盘之间通过凹槽凸起结构滑动连接。
  10. 绕线式无感电阻器检测方法,其特征在于,利用如权利要求1-9任一项所述的绕线式无感电阻器检测装置进行检测,具体包括以下步骤:
    (1)将待检测电阻器放置于载具的载具槽内;
    (2)输送机构将载具输送到检测工位上;
    (3)在检测工位上,检测机构内的定位组件先对载具的位置进行定 位,然后压紧组件将载具所承载的待检测电阻器进行压紧,最后测量组件对待检测电阻器绝缘筒的矩形横槽的深度、矩形横槽的宽度、相邻矩形横槽的槽间距以及矩形竖槽的深度进行测量,将测试值发送给控制装置;
    (4)测量结束后,输送机构将载具输送离开检测工位。
PCT/CN2019/089291 2019-04-15 2019-05-30 绕线式无感电阻器检测装置及检测方法 WO2020211170A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019000253.8T DE112019000253T5 (de) 2019-04-15 2019-05-30 Erfassungsvorrichtung und Erfassungsverfahren eines nicht-induktiven Drahtwickelwiderstands

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910292840.2 2019-04-15
CN201910292840.2A CN110068294B (zh) 2019-04-15 2019-04-15 绕线式无感电阻器检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2020211170A1 true WO2020211170A1 (zh) 2020-10-22

Family

ID=67367577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089291 WO2020211170A1 (zh) 2019-04-15 2019-05-30 绕线式无感电阻器检测装置及检测方法

Country Status (3)

Country Link
CN (1) CN110068294B (zh)
DE (2) DE112019000253T5 (zh)
WO (1) WO2020211170A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115931258A (zh) * 2022-11-16 2023-04-07 江苏明科精密橡塑科技有限公司 一种注塑密封件检测装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092860B (zh) * 2019-12-23 2023-09-12 神讯电脑(昆山)有限公司 电阻阻值检测装置
CN111426292B (zh) * 2020-04-27 2022-01-28 珠海格力大金机电设备有限公司 功率器件安装高度自动测量设备及其加工方法、电路板测量***
CN117233599B (zh) * 2023-09-11 2024-05-10 浙江科恩特电机科技有限公司 一种径向磁力轴承定子测试装置及定子测试***
CN117225749A (zh) * 2023-10-20 2023-12-15 深圳市利和兴股份有限公司 一种基于电容的绝缘性电阻测试工装

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253875C (zh) * 1999-11-18 2006-04-26 索尼公司 光盘驱动装置和记录与重放装置
CN202676742U (zh) * 2012-06-01 2013-01-16 常丰(无锡)金属制品有限公司 一种电热丝米电阻测试装置用夹具
CN104535035A (zh) * 2014-12-12 2015-04-22 长沙中联消防机械有限公司 用于零件的外形尺寸检测装置和外形尺寸检测***
CN108957138A (zh) * 2018-06-29 2018-12-07 德京集团股份有限公司 一种高散热线缆电阻率检测仪
CN109188161A (zh) * 2018-11-06 2019-01-11 苏州电器科学研究院股份有限公司 电容器检测设备及其检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2498755A (en) * 1946-08-21 1950-02-28 Westinghouse Electric Corp Noninductive resistor especially adapted for high - frequency power
CN102109437B (zh) * 2010-12-31 2012-12-26 平高集团有限公司 用于检验绝缘筒的组合测试机
CN102514359B (zh) * 2011-12-28 2014-01-01 广东风华高新科技股份有限公司 全自动双工位丝印机
CN207571216U (zh) * 2017-11-24 2018-07-03 长兴衡鑫仪表科技有限公司 一种片式电阻器测试工装
CN208076641U (zh) * 2018-03-21 2018-11-09 成都新诚华创电子有限公司 电位器测试机
CN108550449A (zh) * 2018-05-29 2018-09-18 惠州嘉科实业有限公司 芯片输送预压机构及其热敏电阻芯片编带设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253875C (zh) * 1999-11-18 2006-04-26 索尼公司 光盘驱动装置和记录与重放装置
CN202676742U (zh) * 2012-06-01 2013-01-16 常丰(无锡)金属制品有限公司 一种电热丝米电阻测试装置用夹具
CN104535035A (zh) * 2014-12-12 2015-04-22 长沙中联消防机械有限公司 用于零件的外形尺寸检测装置和外形尺寸检测***
CN108957138A (zh) * 2018-06-29 2018-12-07 德京集团股份有限公司 一种高散热线缆电阻率检测仪
CN109188161A (zh) * 2018-11-06 2019-01-11 苏州电器科学研究院股份有限公司 电容器检测设备及其检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115931258A (zh) * 2022-11-16 2023-04-07 江苏明科精密橡塑科技有限公司 一种注塑密封件检测装置
CN115931258B (zh) * 2022-11-16 2023-11-07 江苏明科精密橡塑科技有限公司 一种注塑密封件检测装置

Also Published As

Publication number Publication date
DE112019000253T5 (de) 2020-12-24
CN110068294A (zh) 2019-07-30
CN110068294B (zh) 2020-09-15
DE202019106976U1 (de) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2020211170A1 (zh) 绕线式无感电阻器检测装置及检测方法
CN204453789U (zh) 一种自动贴标和发放真空采血管装置
CN103972138B (zh) 用于拾取,放置和压迫半导体元件的装置
CN204480264U (zh) 自动旋转条码扫描结构
CN210742099U (zh) 一种可测六面的检测机
CN107632245A (zh) 一种用于热焊检测设备的专用耐压测试装置
CN107826819A (zh) 一种自动升降送料装置与方法
CN207042870U (zh) 一种电芯ocv测试机
CN109387165A (zh) 一种薄板工件自动检测装置及方法
CN108562796A (zh) 一种日用陶瓷电阻测试装置
CN207249085U (zh) 一种永磁体连续极性自动检测装置
CN207366694U (zh) 一种pcb板测试治具的多工位旋转机构
CN111983531B (zh) 一种磁铁充磁检测装置及检测方法
CN218452401U (zh) 电池检测设备以及电池生产线
CN207832946U (zh) 汽车接插件pin针检测机
CN209167523U (zh) 一种精密磁组件流水线极性检测装置
CN107907036B (zh) 用于圆轴检测的装置
CN204556569U (zh) 一种全自动钢管涡流探伤装置
CN113814189B (zh) 一种大磁环自动测试设备及其实现方法
CN112649762B (zh) 一种变压器检测装置
CN211768717U (zh) 电子元件性能自动检测机
CN205620120U (zh) 一种精密减速机自动检测装置
CN108917627B (zh) 一种马达线圈高度及绝缘耐压检测设备
CN209167109U (zh) 一种木材高光谱无损检测仪
CN208255325U (zh) 一种emc检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924766

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19924766

Country of ref document: EP

Kind code of ref document: A1