WO2020192426A1 - 射频前端电路及移动终端 - Google Patents

射频前端电路及移动终端 Download PDF

Info

Publication number
WO2020192426A1
WO2020192426A1 PCT/CN2020/078864 CN2020078864W WO2020192426A1 WO 2020192426 A1 WO2020192426 A1 WO 2020192426A1 CN 2020078864 W CN2020078864 W CN 2020078864W WO 2020192426 A1 WO2020192426 A1 WO 2020192426A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
throw switch
radio frequency
antenna
circuit
Prior art date
Application number
PCT/CN2020/078864
Other languages
English (en)
French (fr)
Inventor
谢政男
林景球
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020192426A1 publication Critical patent/WO2020192426A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the embodiments of the present disclosure relate to the technical field of terminal applications, and in particular to a radio frequency front-end circuit and a mobile terminal.
  • the transmission rate from 4G is 100Mbps to 1Gbps, and the peak transmission rate of 5G New Radio (NR) can reach 20Gbps.
  • the increase in rate requires 5G to require 4*4 Multiple Input Multiple Output (MIMO) Key technology.
  • MIMO Multiple Input Multiple Output
  • FIG. 1 it is a schematic diagram of the structure of the radio frequency front-end circuit of 5G mobile terminal equipment.
  • the circuit architecture is used to implement one-transmit and four-receive 1T4R and two-transmit and four-receive 2T4R.
  • the layout and wiring of 5G mobile terminal equipment directly affects Path difference loss
  • the RF front-end circuit structure of related 5G mobile terminal equipment, and its long wiring leads to high path difference loss.
  • the RF front-end circuit structure of related 5G mobile terminal equipment often uses a three-pole three-throw switch.
  • the higher the signal transmission frequency the larger the bandwidth, resulting in greater component loss, and also increasing the output power to achieve the specification. Difficulty. Therefore, how to reduce the path difference loss, the component difference loss, and the complexity of the circuit design becomes an urgent problem to be solved.
  • the embodiments of the present disclosure provide a radio frequency front-end circuit and a mobile terminal to solve the problem of the radio frequency front-end circuit structure of related 5G mobile terminal equipment, which has a long wiring and high path loss.
  • an embodiment of the present disclosure provides a radio frequency front-end circuit, including:
  • the first double pole double throw switch The first double pole double throw switch
  • the first signal receiving circuit is connected to the first target antenna of the first antenna and the second antenna through the first double-pole double-throw switch, and receives signals through the first target antenna;
  • the second double pole double throw switch The second double pole double throw switch
  • the second signal receiving circuit is connected to the second target antenna of the third antenna and the fourth antenna through the second double-pole double-throw switch, and receives signals through the second target antenna;
  • the third double pole double throw switch is connected to the first double pole double throw switch and the second double pole double throw switch respectively;
  • the first radio frequency circuit connected to the third double-pole double-throw switch, includes: a signal receiving mode or a signal transmitting mode;
  • the second radio frequency circuit connected to the third double-pole double-throw switch, includes: a signal receiving mode or a signal transmitting mode.
  • the embodiments of the present disclosure also provide a mobile terminal, including:
  • the controller is used to control the opening and closing of the first double pole double throw switch, the opening and closing of the second double pole double throw switch, and/or the opening and closing of the third double pole double throw switch.
  • the third double-pole double-throw switch is connected to the first double-pole double-throw switch and the second double-pole double-throw switch respectively.
  • the first antenna, the second antenna are connected to the first signal receiving circuit, and the second double-pole double-throw switch is also connected to the third antenna, the fourth antenna, and the second signal receiving circuit respectively, so that they are connected to the third double-pole double-throw switch respectively.
  • the connected first radio frequency circuit and the second radio frequency circuit can flexibly receive signals and/or transmit signals through any antenna.
  • the circuit design is simple, and on the basis of realizing signal transmission and/or reception, the RF layout wiring can be shortened, Thereby reducing the path difference loss.
  • Figure 1 is a schematic diagram of the structure of a radio frequency front-end circuit in the related art.
  • FIG. 2 is a schematic structural diagram of a radio frequency front-end circuit provided by some embodiments of the disclosure.
  • the radio frequency front-end circuit includes: a first double-pole double-throw switch 1; a first signal receiving circuit 2, which is connected to the first target antenna of the first antenna 3 and the second antenna 4 through the first double-pole double-throw switch 1, And receive the signal through the first target antenna; the second double-pole double-throw switch 5; the second signal receiving circuit 6, through the second double-pole double-throw switch 5, and the third antenna 7 and the fourth antenna 8 of the second target
  • the antenna is connected and the signal is received through the second target antenna;
  • the third double-pole double-throw switch 9 is connected to the first double-pole double-throw switch 1 and the second double-pole double-throw switch 5;
  • the first radio frequency circuit 10 is connected to the
  • the three double-pole double-throw switches 9 are connected to include: signal receiving mode or signal transmitting mode; the second radio frequency circuit 11 is connected to the third double-pole double-throw switch 9 to include
  • the first target antenna is the first antenna 3 or the second antenna 4.
  • the second target antenna is the third antenna 7 or the fourth antenna 8.
  • the double-pole double-throw switch itself has small component loss and good isolation.
  • This disclosure uses double-pole double-throw switches, namely the first double-pole double-throw switch 1, the second double-pole double-throw switch 5, and the third double-pole double-throw switch.
  • the double-pole double-throw switch 9 can not only improve the transmitting performance of the RF front-end circuit, but also improve the receiving performance of the RF front-end circuit.
  • the third double-pole double-throw switch 9 is connected to the first double-pole double-throw switch 1 and the second double-pole double-throw switch 5 respectively, wherein the first double-pole double-throw switch 1 is also connected to the first antenna 3,
  • the second antenna 4 is connected to the first signal receiving circuit 2
  • the second double-pole double-throw switch 5 is also connected to the third antenna 7, the fourth antenna 8 and the second signal receiving circuit 6, so that they are connected to the third double-pole double-throw switch respectively.
  • the first radio frequency circuit 10 and the second radio frequency circuit 11 connected by the throw switch 9 can flexibly receive signals and/or transmit signals through any antenna. This circuit is simple in design and can be shortened based on the realization of signal transmission and/or reception. RF layout and routing, thereby reducing path loss.
  • the first double-pole double-throw switch 1 includes: a first movable end, a second movable end, a first fixed end and a second fixed end, wherein the first movable end is connected to the first signal receiving circuit 2, and the first fixed end The first antenna 3 is connected, and the second fixed end is connected to the second antenna 4.
  • the first double-pole double-throw switch 1 is used to connect the first movable end to the first fixed end or the second fixed end, and also to connect the second movable end to the first fixed end or the second fixed end.
  • the second double-pole double-throw switch 5 includes: a third movable end, a fourth movable end, a third fixed end and a fourth fixed end, wherein the third movable end is connected to the second signal receiving circuit 6, and the third fixed end is connected to the There are three antennas 7, and the fourth fixed end is connected to the fourth antenna 8.
  • the second double-pole double-throw switch 5 is used to connect the third movable end to the third fixed end or the fourth fixed end, and is also used to connect the fourth movable end to the third fixed end or the fourth fixed end.
  • the third double-pole double-throw switch 9 includes: a fifth movable end, a sixth movable end, a fifth fixed end, and a sixth fixed end, wherein the fifth movable end is connected to the first radio frequency circuit 10, and the sixth movable end is connected to the second In the radio frequency circuit 11, the fifth fixed end is connected to the second movable end, and the sixth fixed end is connected to the fourth movable end.
  • the third double-pole double-throw switch 9 is used to connect the fifth movable end to the fifth fixed end or the sixth fixed end, and also to connect the sixth movable end to the fifth fixed end or the sixth fixed end.
  • the first radio frequency circuit 10 includes: a first low-noise amplifier 12, a first power amplifier 13, a first switch 14 and a third double-pole double-throw switch 9 respectively.
  • the first filter 15 connected to the first switch 14 and the movable end.
  • the first low-noise amplifier 12 is connected to the first filter 15 through the first switch 14, and the fifth movable end of the third double-pole double-throw switch 9 is connected to its fifth fixed end, and the first double-pole double-throw switch
  • the second movable end of the throw switch 1 is connected to a certain end of the first fixed end and the second fixed end, the first radio frequency circuit 10 is in a signal receiving mode.
  • the first low-noise amplifier 12 is connected to the first filter 15 through the first switch 14, and the fifth movable end of the third double-pole double-throw switch 9 is connected to its sixth fixed end, and the second double-pole double-throw switch When the fourth movable end of the switch 5 is connected to a certain end of the third fixed end and the fourth fixed end, the first radio frequency circuit 10 is in the signal receiving mode.
  • the first low noise amplifier 12 when the first low noise amplifier 12 is connected to the first filter 15 through the first switch 14, the first low noise amplifier 12 and the first filter 15 form a signal receiving circuit.
  • the fifth movable end of the third double-pole double-throw switch 9 is connected to its fifth fixed end, and the second movable end of the first double-pole double-throw switch 1 is connected to the first fixed end and the second fixed end.
  • the signal receiving circuit can pass through the first antenna 3 and One of the second antennas 4 receives the signal.
  • the fifth movable end of the third double-pole double-throw switch 9 communicates with its sixth fixed end, and the fourth movable end of the second double-pole double-throw switch 5 communicates with one of its third and fourth fixed ends.
  • the signal receiving circuit can pass through the third antenna 7 and the fourth antenna 8.
  • One of the antennas receives the signal.
  • the signal receiving circuit of the first radio frequency circuit 10 can flexibly receive signals through any antenna through the third double-pole double-throw switch 9 respectively connected to the first double-pole double-throw switch 1 and the second double-pole double-throw switch 5 , Which can shorten the radio frequency layout and reduce the path loss.
  • the first signal receiving circuit is connected to the first antenna 3 through the first double pole double throw switch 1, and the second signal receiving circuit is connected to the third antenna 7 through the second double pole double throw switch 5, then
  • the signal receiving circuit formed by the first low noise amplifier 12 and the first filter 15 can be connected to the second antenna 4 through the third double pole double throw switch 9 and the first double pole double throw switch 1, or the first low noise
  • the signal receiving circuit formed by the amplifier 12 and the first filter 15 can also be connected to the fourth antenna 8 through the third double pole double throw switch 9 and the second double pole double throw switch 5.
  • the first power amplifier 13 is connected to the first filter 15 through the first switch 14, and the fifth movable end of the third double pole double throw switch 9 is connected to its fifth fixed end, and the first double pole double throw
  • the first radio frequency circuit 10 is in a signal transmission mode
  • the first power amplifier 13 is connected to the first filter 15 through the first switch 14, and the fifth movable end of the third double pole double throw switch 9 is connected to its sixth fixed end, and the second double pole double throw switch When the fourth movable end of 5 is connected to a certain end of the third fixed end and the fourth fixed end, the first radio frequency circuit 10 is in a signal transmission mode.
  • the first power amplifier 13 when the first power amplifier 13 is connected to the first filter 15 through the first switch 14, the first power amplifier 13 and the first filter 15 form a signal transmission circuit.
  • the fifth movable end of the third double-pole double-throw switch 9 is connected to its fifth fixed end, and the second movable end of the first double-pole double-throw switch 1 is connected to the first fixed end and the second fixed end.
  • the signal transmitting circuit can pass through the first antenna 3 and One of the second antennas 4 transmits a signal.
  • the fifth movable end of the third double-pole double-throw switch 9 communicates with its sixth fixed end, and the fourth movable end of the second double-pole double-throw switch 5 communicates with one of its third and fourth fixed ends.
  • the signal transmitting circuit can pass through the third antenna 7 and the fourth antenna 8.
  • One of the antennas emits a signal.
  • the signal transmitting circuit of the first radio frequency circuit 10 can flexibly transmit signals through any antenna through the third double-pole double-throw switch 9 connected to the first double-pole double-throw switch 1 and the second double-pole double-throw switch 5 respectively. , Which can shorten the radio frequency layout and reduce the path loss.
  • the first signal receiving circuit is connected to the first antenna 3 through the first double pole double throw switch 1, and the second signal receiving circuit is connected to the third antenna 7 through the second double pole double throw switch 5, then
  • the first power amplifier 13 and the first filter 15 form a signal transmitting circuit which can be connected to the second antenna 4 through the third double pole double throw switch 9 and the first double pole double throw switch 1, or the first power amplifier 13 and
  • the first filter 15 forms a signal transmitting circuit and can also be connected to the fourth antenna 8 through the third double pole double throw switch 9 and the second double pole double throw switch 5.
  • the first switch 14 is a single-pole double-throw switch, which includes a movable terminal and two fixed terminals. Among them, the movable end is connected to the first filter 15, a certain end is connected to the input end of the first low noise amplifier 12, and the other fixed end is connected to the output end of the first power amplifier 13.
  • the second radio frequency circuit 11 includes: a second low-noise amplifier 16, a second power amplifier 17, a second switch 18, and a third double-pole double-throw switch 9 respectively.
  • the second filter 19 is connected to the six movable ends and the second switch 18.
  • the second low noise amplifier 16 is connected to the second filter 19 through the second switch 18, and the sixth movable end of the third double-pole double-throw switch 9 is connected to its fifth fixed end, and the first double-pole double-throw switch
  • the second movable end of the throw switch 1 is connected to a certain end of the first fixed end and the second fixed end, the second radio frequency circuit 11 is in a signal receiving mode.
  • the second low noise amplifier 16 is connected to the second filter 19 through the second switch 18, and the sixth movable end of the third double pole double throw switch 9 is connected to its sixth fixed end, and the second double pole double throw
  • the fourth movable end of the switch 5 is connected to a certain end of the third fixed end and the fourth fixed end, the second radio frequency circuit 11 is in the signal receiving mode.
  • the second low noise amplifier 16 when the second low noise amplifier 16 is connected to the second filter 19 through the second switch 18, the second low noise amplifier 16 and the second filter 19 form a signal receiving circuit.
  • the sixth movable end of the third double-pole double-throw switch 9 is connected to its fifth fixed end, and the second movable end of the first double-pole double-throw switch 1 is connected to its first fixed end and the second fixed end.
  • the signal receiving circuit can pass through the first antenna One of the antennas 3 and 4 receives the signal.
  • the sixth movable end of the third double-pole double-throw switch 9 is connected with its sixth fixed end, and the fourth movable end of the second double-pole double-throw switch 5 is connected to a certain end of the third fixed end and the fourth fixed end.
  • the signal receiving circuit can pass through the third antenna 7 and the fourth antenna One of the antennas in 8 receives the signal.
  • the signal receiving circuit of the second radio frequency circuit 11 can flexibly receive signals through any antenna through the third double-pole double-throw switch 9 respectively connected to the first double-pole double-throw switch 1 and the second double-pole double-throw switch 5 , Which can shorten the radio frequency layout and reduce the path loss.
  • the first signal receiving circuit is connected to the first antenna 3 through the first double pole double throw switch 1
  • the second signal receiving circuit is connected to the third antenna 7 through the second double pole double throw switch 5, and the first The radio frequency circuit 10 is connected to the second antenna 4, and the signal receiving circuit is formed by the second low noise amplifier 16 and the second filter 19 through the third double pole double throw switch 9 and the second double pole double throw switch 5 and the fourth The antenna 8 is connected.
  • a radio frequency circuit 10 is connected to the fourth antenna 8 through the third double-pole double-throw switch 9 and the second double-pole double-throw switch 5.
  • the second low-noise amplifier 16 and the second filter 19 form a signal receiving circuit through the third
  • the double-pole double-throw switch 9 and the first double-pole double-throw switch 1 are connected to the second antenna 4.
  • the second power amplifier 17 is connected to the second filter 19 through the second switch 18, and the sixth movable end of the third double pole double throw switch 9 is connected to its fifth fixed end, and the first double pole double throw
  • the second movable end of the switch 1 is in communication with a certain end of the first fixed end and the second fixed end, the second radio frequency circuit 11 is in a signal transmission mode.
  • the second power amplifier 17 is connected to the second filter 19 through the second switch 18, and the sixth movable end of the third double-pole double-throw switch 9 is connected to its sixth fixed end, and the second double-pole double-throw switch When the fourth movable end of 5 is connected to a certain end of the third fixed end and the fourth fixed end, the second radio frequency circuit 11 is in the signal transmission mode.
  • the second power amplifier 17 when the second power amplifier 17 is connected to the second filter 19 through the second switch 18, the second power amplifier 17 and the second filter 19 form a signal transmission circuit.
  • the sixth movable end of the third double-pole double-throw switch 9 is connected to its fifth fixed end, and the second movable end of the first double-pole double-throw switch 1 is connected to the first fixed end and the second fixed end.
  • the signal transmitting circuit can pass through the first antenna 3 and One of the second antennas 4 transmits a signal.
  • the sixth movable end of the third double-pole double-throw switch 9 is connected with its sixth fixed end, and the fourth movable end of the second double-pole double-throw switch 5 is connected to a certain end of the third fixed end and the fourth fixed end.
  • the signal transmitting circuit can pass through the third antenna 7 and the fourth antenna One of the antennas in 8 transmits a signal.
  • the signal transmitting circuit of the second radio frequency circuit 11 can flexibly transmit signals through any antenna through the third double-pole double-throw switch 9 respectively connected to the first double-pole double-throw switch 1 and the second double-pole double-throw switch 5 , Which can shorten the radio frequency layout and reduce the path loss.
  • the first signal receiving circuit is connected to the first antenna 3 through the first double pole double throw switch 1
  • the second signal receiving circuit is connected to the third antenna 7 through the second double pole double throw switch 5, and the first
  • the radio frequency circuit 10 is connected to the second antenna 4, and then the second power amplifier 17 and the second filter 19 form a signal transmission circuit through the third double pole double throw switch 9 and the second double pole double throw switch 5 and the fourth antenna 8Connect.
  • a radio frequency circuit 10 is connected to the fourth antenna 8 through the third double-pole double-throw switch 9 and the second double-pole double-throw switch 5.
  • the second power amplifier 17 and the second filter 19 form a signal transmitting circuit through the third double-pole double-throw switch.
  • the pole double throw switch 9 and the first double pole double throw switch 1 are connected to the second antenna 4.
  • the second switch 18 is a single-pole double-throw switch, which includes a movable end and two fixed ends. Among them, the movable end is connected to the second filter 19, a certain end is connected to the input end of the second low-noise amplifier 16, and the other fixed end is connected to the output end of the second power amplifier 17.
  • the first signal receiving circuit 2 includes: a third low noise amplifier 20 and a third filter 21.
  • the third filter 21 is respectively connected to the input terminal of the third low noise amplifier 20 and the first movable end of the first double pole double throw switch 1; wherein, the first movable end of the first double pole double throw switch 1 When connected to one of the first fixed terminal and the second fixed terminal, the first signal receiving circuit 2 is turned on.
  • first signal receiving circuit 2 can receive signals through one of the first antenna 3 and the second antenna 4.
  • the double-pole double-throw switch itself has small component loss and good isolation, it can not only improve the receiving performance of the first signal receiving circuit 2, but also can pass through the third double-pole double-throw switch connected to the first double-pole double-throw switch 1.
  • the throw switch 9 improves the receiving performance or the transmitting performance of the first radio frequency circuit 10 or the second radio frequency circuit 11.
  • the second signal receiving circuit 6 includes: a fourth low noise amplifier 22 and a fourth filter 23.
  • the fourth filter 23 is respectively connected to the input end of the fourth low noise amplifier 22 and the third movable end of the second double pole double throw switch 5; wherein, the third movable end of the second double pole double throw switch 5 When connected to one of the third fixed terminal and the fourth fixed terminal, the second signal receiving circuit 6 is turned on.
  • the third movable end of the second double-pole double-throw switch 5 is connected to a certain end of the third fixed end and the fourth fixed end, because the third fixed end of the second double-pole double-throw switch 5 It is connected to the third antenna 7 and the fourth fixed terminal is connected to the fourth antenna 8, so the second signal receiving circuit 6 can receive signals through one of the third antenna 7 and the fourth antenna 8.
  • the double-pole double-throw switch has small component loss and good isolation, it can not only improve the receiving performance of the second signal receiving circuit 6, but also can pass through the third double-pole double-throw switch connected to the second double-pole double-throw switch 5.
  • the throw switch 9 improves the receiving performance or the transmitting performance of the first radio frequency circuit 10 or the second radio frequency circuit 11.
  • the radio frequency front-end circuit of some embodiments of the present disclosure further includes: a radio frequency transceiver (not shown in the figure), the radio frequency transceiver is respectively connected to the first signal receiving circuit 2, the second signal receiving circuit 6, and the first radio frequency The circuit 10 is connected to the second radio frequency circuit 11.
  • the radio frequency transceiver may include: a first signal receiving port, a second signal receiving port, a third signal receiving port, a fourth signal receiving port, a first signal transmitting port, and a second signal transmitting port.
  • the first signal receiving port is connected to the output terminal of the third low noise amplifier 20 in the first signal receiving circuit 2; the second signal receiving port is connected to the output terminal of the first low noise amplifier 12 in the first radio frequency circuit 10
  • the third signal receiving port is connected to the output end of the second low noise amplifier 16 in the second radio frequency circuit 11; the fourth signal receiving port is connected to the output end of the fourth low noise amplifier 22 in the second signal receiving circuit 6.
  • the first signal transmission port is connected to the input end of the first power amplifier 13 in the first radio frequency circuit 10; the second signal transmission port is connected to the input end of the second power amplifier 17 in the second radio frequency circuit 11.
  • the above-mentioned RF front-end circuit shown in Figure 2 can realize the 1T4R/2T4R function of the 5G NR system, ensuring the functions of 1 transmission and 4 reception; or, 2 transmission and 4 reception functions.
  • the first transmission signal can be amplified by the first power amplifier 13 after being sent by the radio frequency transceiver (not shown in the figure), after passing through the first switch 14, after being filtered by the first filter 15 , And after the third double-pole double-throw switch 9:
  • the signal After switching to the first double-pole double-throw switch 1, the signal is transmitted from the first antenna 3 or the second antenna 4;
  • the signal can be amplified by the second power amplifier 17, after passing through the second switch 18, and filtered by the second filter 19 , And after the third double-pole double-throw switch 9:
  • the signal After switching to the first double-pole double-throw switch 1, the signal is transmitted from the first antenna 3 or the second antenna 4;
  • the first transmission signal is transmitted through the third double pole double throw switch 9 and the first double pole double throw switch 1 through one of the first antenna 3 and the second antenna 4, the second The channel transmission signal is transmitted through the third antenna 7 or the fourth antenna 8 through the third double-pole double-throw switch 9 and the second double-pole double-throw switch 5.
  • the first received signal can be received through the first antenna 3, filtered by the first double-pole double-throw switch 1, and then filtered by the third filter 21, and then enters the third low-noise amplifier 20. Amplify the signal and transmit it to the radio frequency transceiver for subsequent processing.
  • the second received signal After the second received signal can be received through the second antenna 4, it is switched from the first double-pole double-throw switch 1 to the third double-pole double-throw switch 9, and then filtered through the first filter 15 path, and then passed through the first
  • the switch 14 is switched to the first low noise amplifier 12 to amplify the signal and transmit it to the radio frequency transceiver for subsequent processing.
  • the above-mentioned signal transmission path of the first received signal and the signal transmission path of the second received signal are only an example. That is to say, after the received signal passes through the first antenna 3 or the second antenna 4, it can be switched to the receiving path including the third low-noise amplifier according to the actual situation through the first double-pole double-throw switch 1; or,
  • the third double-pole double-throw switch 9 it is selected to switch to the receiving path including the first low noise amplifier or to the receiving path including the second low noise amplifier, which is not specifically limited here.
  • the third received signal can be received by the third antenna 7, after being filtered by the second double-pole double-throw switch 5, and then filtered by the fourth filter 23, it enters the fourth low-noise amplifier 22, and the signal is amplified and transmitted to the radio frequency transceiver Perform follow-up processing.
  • the fourth received signal can be received by the fourth antenna 8, after being switched from the second double-pole double-throw switch 5 to the third double-pole double-throw switch 9, and then filtered through the second filter 19 path, and then passed through the second
  • the switch 18 is switched to the second low-noise amplifier 16 to amplify the signal and transmit it to the radio frequency transceiver for subsequent processing.
  • the signal transmission path of the third received signal and the signal transmission path of the fourth received signal are only an example, that is, the received signal is received by the third antenna 7 or the fourth antenna 8, and then passes through the first antenna.
  • a double-pole double-throw switch 1 can choose to switch to the receiving path including the fourth low-noise amplifier according to the actual situation; or,
  • the third double-pole double-throw switch 9 it is selected to switch to the receiving path including the first low noise amplifier or to the receiving path including the second low noise amplifier, which is not specifically limited here.
  • the radio frequency front-end circuit of some embodiments of the present disclosure uses a third double-pole double-throw switch connected to the first double-pole double-throw switch and the second double-pole double-throw switch respectively, wherein the first double-pole double-throw switch is also connected to the The first antenna, the second antenna are connected to the first signal receiving circuit, and the second double-pole double-throw switch is also connected to the third antenna, the fourth antenna, and the second signal receiving circuit respectively, so that they are connected to the third double-pole double-throw switch respectively.
  • the connected first radio frequency circuit and the second radio frequency circuit can flexibly receive signals and/or transmit signals through any antenna.
  • the circuit design is simple, and on the basis of realizing signal transmission and/or reception, the RF layout wiring can be shortened, Thereby reducing the path difference loss.
  • the radio frequency front-end circuit of the present disclosure can also be integrated into an integrated circuit chip.
  • Some embodiments of the present disclosure also provide a mobile terminal, including: a controller; and the radio frequency front-end circuit as described in the above embodiments; wherein the controller is used to control the opening and closing of the first double-pole double-throw switch, and the second The opening and closing of the double pole double throw switch and/or the opening and closing of the third double pole double throw switch.
  • controller is also used to control the closing of the first switch and/or the opening and closing of the second switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本公开提供一种射频前端电路及移动终端。该电路包括:第一双刀双掷开关;第一信号接收电路,通过第一双刀双掷开关,与第一天线和第二天线中的一者连接,并通过相连接的天线接收信号;第二双刀双掷开关;第二信号接收电路,通过第二双刀双掷开关,与第三天线和第四天线中的一者连接,并通过相连接的天线接收信号;第三双刀双掷开关,分别与第一双刀双掷开关和第二双刀双掷开关连接;第一射频电路,与第三双刀双掷开关连接,包括:信号接收模式或者信号发射模式;第二射频电路,与第三双刀双掷开关连接,包括:信号接收模式或者信号发射模式。

Description

射频前端电路及移动终端
相关申请的交叉引用
本申请主张在2019年3月22日在中国提交的中国专利申请号No.201910222066.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及终端应用技术领域,尤其涉及一种射频前端电路及移动终端。
背景技术
随着互联网通信技术的快速发展,以及移动智能终端的不断普及,用户对数据流量的需求也在不断增加。从4G的传输速率为100Mbps~1Gbps,到5G新空口(New Radio,NR)的峰值传输速率可达20Gbps,速率的提升要求5G必备4*4多入多出(Multiple Input Multiple Output,MIMO)关键技术。
如图1所示,为5G移动终端设备的射频前端电路的结构示意图,该电路架构用于实现一发四收1T4R与二发四收2T4R,其中,5G移动终端设备的布局走线直接影响到路径差损,如图1所示,相关5G移动终端设备的射频前端电路结构,其走线长,导致路径差损高。另外,相关5G移动终端设备的射频前端电路结构常使用三刀三掷开关,信号传输频率越高,频宽越大,导致元件差损越大,而且也增大了使输出功率达到规范的实现难度。因此,如何降低路径差损、元件差损以及降低电路设计的复杂度成为亟待解决的问题。
发明内容
本公开实施例提供一种射频前端电路及移动终端,以解决相关5G移动终端设备的射频前端电路结构,其走线长,导致路径差损高的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开的实施例提供了一种射频前端电路,包括:
第一双刀双掷开关;
第一信号接收电路,通过所述第一双刀双掷开关,与第一天线和第二天线中的第一目标天线连接,并通过所述第一目标天线接收信号;
第二双刀双掷开关;
第二信号接收电路,通过所述第二双刀双掷开关,与第三天线和第四天线中的第二目标天线连接,并通过所述第二目标天线接收信号;
第三双刀双掷开关,分别与所述第一双刀双掷开关和所述第二双刀双掷开关连接;
第一射频电路,与所述第三双刀双掷开关连接,包括:信号接收模式或者信号发射模式;
第二射频电路,与所述第三双刀双掷开关连接,包括:信号接收模式或者信号发射模式。
第二方面,本公开的实施例还提供了一种移动终端,包括:
控制器;以及,
如上述实施例所述的射频前端电路;
其中,所述控制器用于控制第一双刀双掷开关的开闭、第二双刀双掷开关的开闭和/或第三双刀双掷开关的开闭。
本公开的一些实施例的上述方案中,通过分别与第一双刀双掷开关和第二双刀双掷开关连接的第三双刀双掷开关,其中第一双刀双掷开关还分别与第一天线、第二天线和第一信号接收电路连接,第二双刀双掷开关还分别与第三天线、第四天线和第二信号接收电路连接,使得分别与第三双刀双掷开关连接的第一射频电路和第二射频电路能够灵活地通过任一天线接收信号和/或发射信号,此电路设计简单,在实现信号发射和/或接收的基础上,能够缩短射频布局走线,从而降低路径差损。
附图说明
图1为相关技术中的射频前端电路的结构示意图;以及
图2为本公开的一些实施例提供的射频前端电路的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图2所示,为本公开的一些实施例提供的射频前端电路的结构示意图。该射频前端电路包括:第一双刀双掷开关1;第一信号接收电路2,通过第一双刀双掷开关1,与第一天线3和第二天线4中的第一目标天线连接,并通过第一目标天线接收信号;第二双刀双掷开关5;第二信号接收电路6,通过第二双刀双掷开关5,与第三天线7和第四天线8中的第二目标天线连接,并通过第二目标天线接收信号;第三双刀双掷开关9,分别与第一双刀双掷开关1和第二双刀双掷开关5连接;第一射频电路10,与第三双刀双掷开关9连接,包括:信号接收模式或者信号发射模式;第二射频电路11,与第三双刀双掷开关9连接,包括:信号接收模式或者信号发射模式。
这里,第一目标天线为第一天线3或第二天线4。第二目标天线为第三天线7或第四天线8。
需要说明的是,双刀双掷开关本身元件差损小且隔离度好,本公开选用双刀双掷开关,即第一双刀双掷开关1、第二双刀双掷开关5和第三双刀双掷开关9,不仅能够提升射频前端电路的发射性能,还能够提升射频前端电路的接收性能。
这里,通过分别与第一双刀双掷开1和第二双刀双掷开关5连接的第三双刀双掷开关9,其中第一双刀双掷开关1还分别与第一天线3、第二天线4和第一信号接收电路2连接,第二双刀双掷开关5还分别与第三天线7、第四天线8和第二信号接收电路6连接,使得分别与第三双刀双掷开关9连接的第一射频电路10和第二射频电路11能够灵活地通过任一天线接收信号和/或发射信号,此电路设计简单,在实现信号发射和/或接收的基础上,能够缩短射频布局走线,从而降低路径差损。
这里,第一双刀双掷开关1包括:第一活动端、第二活动端、第一定端和第二定端,其中,第一活动端连接第一信号接收电路2,第一定端连接第一天线3,第二定端连接第二天线4。
这里,第一双刀双掷开关1用于使第一活动端与第一定端或者第二定端连接,还用于使第二活动端与第一定端或者第二定端连接。
第二双刀双掷开关5包括:第三活动端、第四活动端、第三定端和第四定端,其中,第三活动端连接第二信号接收电路6,第三定端连接第三天线7,第四定端连接第四天线8。
这里,第二双刀双掷开关5用于使第三活动端与第三定端或者第四定端连接,还用于第四活动端与第三定端或者第四定端连接。
第三双刀双掷开关9包括:第五活动端、第六活动端、第五定端和第六定端,其中,第五活动端连接第一射频电路10,第六活动端连接第二射频电路11,第五定端连接第二活动端,第六定端连接第四活动端。
这里,第三双刀双掷开关9用于使第五活动端与第五定端或者第六定端连接,还用于使第六活动端与第五定端或者第六定端连接。
可选地,如图2所示,所述第一射频电路10包括:第一低噪声放大器12、第一功率放大器13、第一切换开关14以及分别与第三双刀双掷开关9的第五活动端和第一切换开关14连接的第一滤波器15。
具体的,第一低噪声放大器12通过第一切换开关14与第一滤波器15连接,且第三双刀双掷开关9的第五活动端与其第五定端连通,且第一双刀双掷开关1的第二活动端与其第一定端和第二定端中的其中一定端连通时,第一射频电路10处于信号接收模式。
或者,第一低噪声放大器12通过第一切换开关14与第一滤波器15连接,且第三双刀双掷开关9的第五活动端与其第六定端连通,且第二双刀双掷开关5的第四活动端与其第三定端和第四定端中其中一定端连通时,第一射频电路10处于信号接收模式。
需要说明的是,第一低噪声放大器12通过第一切换开关14与第一滤波器15连接时,第一低噪声放大器12与第一滤波器15形成信号接收电路。
基于此,在第三双刀双掷开关9的第五活动端与其第五定端连通,且第一双刀双掷开关1的第二活动端与其第一定端和第二定端中的其中一定端连通时,由于第一双刀双掷开关1的第一定端与第一天线3连接,第二定端与第二天线4连接,所以该信号接收电路可通过第一天线3和第二天线4中的其中一 天线接收信号。
在第三双刀双掷开关9的第五活动端与其第六定端连通,且第二双刀双掷开关5的第四活动端与其第三定端和第四定端中其中一定端连通时,由于第二双刀双掷开关5的第三定端与第三天线7连接,第四定端与第四天线8连接,所以该信号接收电路可通过第三天线7和第四天线8中的其中一天线接收信号。
这里,第一射频电路10的信号接收电路通过分别与第一双刀双掷开关1和第二双刀双掷开关5连接的第三双刀双掷开关9能够灵活地通过任一天线接收信号,从而能够缩短射频布局走线,降低路径差损。
在一示例中,若第一信号接收电路通过第一双刀双掷开关1与第一天线3连接,第二信号接收电路通过第二双刀双掷开关5与第三天线7连接,则由第一低噪声放大器12与第一滤波器15形成的信号接收电路可通过第三双刀双掷开关9及第一双刀双掷开关1与第二天线4连接,或者,由第一低噪声放大器12与第一滤波器15形成的信号接收电路还可通过第三双刀双掷开关9及第二双刀双掷开关5与第四天线8连接。
具体的,第一功率放大器13通过第一切换开关14与第一滤波器15连接,且第三双刀双掷开关9的第五活动端与其第五定端连通,且第一双刀双掷开关1的第二活动端与其第一定端和第二定端中的其中一定端连通时,第一射频电路10处于信号发射模式;
或者,第一功率放大器13通过第一切换开关14与第一滤波器15连接,且第三双刀双掷开关9的第五活动端与其第六定端连通,且第二双刀双掷开关5的第四活动端与其第三定端和第四定端中的其中一定端连通时,第一射频电路10处于信号发射模式。
需要说明的是,第一功率放大器13通过第一切换开关14与第一滤波器15连接时,第一功率放大器13与第一滤波器15形成信号发射电路。
基于此,在第三双刀双掷开关9的第五活动端与其第五定端连通,且第一双刀双掷开关1的第二活动端与其第一定端和第二定端中的其中一定端连通时,由于第一双刀双掷开关1的第一定端与第一天线3连接,第二定端与第二天线4连接,所以该信号发射电路可通过第一天线3和第二天线4中的其中一天线发射信号。
在第三双刀双掷开关9的第五活动端与其第六定端连通,且第二双刀双掷开关5的第四活动端与其第三定端和第四定端中其中一定端连通时,由于第二双刀双掷开关5的第三定端与第三天线7连接,第四定端与第四天线8连接,所以该信号发射电路可通过第三天线7和第四天线8中的其中一天线发射信号。
这里,第一射频电路10的信号发射电路通过分别与第一双刀双掷开关1和第二双刀双掷开关5连接的第三双刀双掷开关9能够灵活地通过任一天线发射信号,从而能够缩短射频布局走线,降低路径差损。
在一示例中,若第一信号接收电路通过第一双刀双掷开关1与第一天线3连接,第二信号接收电路通过第二双刀双掷开关5与第三天线7连接,则由第一功率放大器13与第一滤波器15形成信号发射电路可通过第三双刀双掷开关9及第一双刀双掷开关1与第二天线4连接,或者,由第一功率放大器13与第一滤波器15形成信号发射电路还可通过第三双刀双掷开关9及第二双刀双掷开关5与第四天线8连接。
这里,可选地,第一切换开关14为单刀双掷开关,包括一活动端和两个定端。其中,其活动端与第一滤波器15连接,其中一定端与第一低噪声放大器12的输入端连接,另一定端与第一功率放大器13的输出端连接。
可选地,如图2所示,所述第二射频电路11包括:第二低噪声放大器16、第二功率放大器17、第二切换开关18以及分别与第三双刀双掷开关9的第六活动端和第二切换开关18连接的第二滤波器19。
具体的,第二低噪声放大器16通过第二切换开关18与第二滤波器19连接,且第三双刀双掷开关9的第六活动端与其第五定端连通,且第一双刀双掷开关1的第二活动端与其第一定端和所述第二定端中的其中一定端连通时,第二射频电路11处于信号接收模式。
或者,第二低噪声放大器16通过第二切换开关18与第二滤波器19连接,且第三双刀双掷开关9的第六活动端与其第六定端连通,且第二双刀双掷开关5的第四活动端与其第三定端和第四定端中的其中一定端连通时,第二射频电路11处于信号接收模式。
需要说明的,第二低噪声放大器16通过第二切换开关18与第二滤波器19连接时,第二低噪声放大器16与第二滤波器19形成信号接收电路。
基于此,在第三双刀双掷开关9的第六活动端与其第五定端连通,且第一双刀双掷开关1的第二活动端与其第一定端和所述第二定端中的其中一定端连通时,由于第一双刀双掷开关1的第一定端与第一天线3连接,第二定端与第二天线4连接,所以该信号接收电路可通过第一天线3和第二天线4中的其中一天线接收信号。
在第三双刀双掷开关9的第六活动端与其第六定端连通,且第二双刀双掷开关5的第四活动端与其第三定端和第四定端中的其中一定端连通时,由于第二双刀双掷开关5的第三定端与第三天线7连接,第四定端与第四天线8连接,所以该信号接收电路可通过第三天线7和第四天线8中的其中一天线接收信号。
这里,第二射频电路11的信号接收电路通过分别与第一双刀双掷开关1和第二双刀双掷开关5连接的第三双刀双掷开关9能够灵活地通过任一天线接收信号,从而能够缩短射频布局走线,降低路径差损。
在一示例中,若第一信号接收电路通过第一双刀双掷开关1与第一天线3连接,第二信号接收电路通过第二双刀双掷开关5与第三天线7连接,第一射频电路10通过与第二天线4连接,则由第二低噪声放大器16与第二滤波器19形成信号接收电路通过第三双刀双掷开关9及第二双刀双掷开关5与第四天线8连接。
在又一示例中,若第一信号接收电路通过第一双刀双掷开关1与第一天线3连接,第二信号接收电路通过第二双刀双掷开关5与第三天线7连接,第一射频电路10通过第三双刀双掷开关9及第二双刀双掷开关5与第四天线8连接,则由第二低噪声放大器16与第二滤波器19形成信号接收电路通过第三双刀双掷开关9及第一双刀双掷开关1与第二天线4连接。
具体的,第二功率放大器17通过第二切换开关18与第二滤波器19连接,且第三双刀双掷开关9的第六活动端与其第五定端连通,且第一双刀双掷开关1的第二活动端与其第一定端和第二定端中的其中一定端连通时,第二射频电路11处于信号发射模式。
或者,第二功率放大器17通过第二切换开关18与第二滤波器19连接,且第三双刀双掷开关9的第六活动端与其第六定端连通,且第二双刀双掷开关5的第四活动端与其第三定端和第四定端中的其中一定端连通时,第二射频电 路11处于信号发射模式。
需要说明的是,第二功率放大器17通过第二切换开关18与第二滤波器19连接时,第二功率放大器17与第二滤波器19形成信号发射电路。
基于此,在第三双刀双掷开关9的第六活动端与其第五定端连通,且第一双刀双掷开关1的第二活动端与其第一定端和第二定端中的其中一定端连通时,由于第一双刀双掷开关1的第一定端与第一天线3连接,第二定端与第二天线4连接,所以该信号发射电路可通过第一天线3和第二天线4中的其中一天线发射信号。
在第三双刀双掷开关9的第六活动端与其第六定端连通,且第二双刀双掷开关5的第四活动端与其第三定端和第四定端中的其中一定端连通时,由于第二双刀双掷开关5的第三定端与第三天线7连接,第四定端与第四天线8连接,所以该信号发射电路可通过第三天线7和第四天线8中的其中一天线发射信号。
这里,第二射频电路11的信号发射电路通过分别与第一双刀双掷开关1和第二双刀双掷开关5连接的第三双刀双掷开关9能够灵活地通过任一天线发射信号,从而能够缩短射频布局走线,降低路径差损。
在一示例中,若第一信号接收电路通过第一双刀双掷开关1与第一天线3连接,第二信号接收电路通过第二双刀双掷开关5与第三天线7连接,第一射频电路10通过与第二天线4连接,则由第二功率放大器17与第二滤波器19形成信号发射电路通过第三双刀双掷开关9及第二双刀双掷开关5与第四天线8连接。
在另一示例中,若第一信号接收电路通过第一双刀双掷开关1与第一天线3连接,第二信号接收电路通过第二双刀双掷开关5与第三天线7连接,第一射频电路10通过第三双刀双掷开关9及第二双刀双掷开关5与第四天线8连接,则由第二功率放大器17与第二滤波器19形成信号发射电路通过第三双刀双掷开关9及第一双刀双掷开关1与第二天线4连接。
这里,可选地,第二切换开关18为单刀双掷开关,包括一活动端和两个定端。其中,其活动端与第二滤波器19连接,其中一定端与第二低噪声放大器16的输入端连接,另一定端与第二功率放大器17的输出端连接。
可选地,第一信号接收电路2包括:第三低噪声放大器20和第三滤波器 21。
具体的,第三滤波器21分别与第三低噪声放大器20的输入端和第一双刀双掷开关1的第一活动端连接;其中,第一双刀双掷开关1的第一活动端与其第一定端和第二定端中的其中一定端连通时,第一信号接收电路2导通。
需要说明的是,第一双刀双掷开关1的第一活动端与其第一定端和第二定端中的其中一定端连通时,由于第一双刀双掷开关1的第一定端与第一天线3连接,第二定端与第二天线4连接,所以第一信号接收电路2可通过第一天线3和第二天线4中的其中一天线接收信号。
这里,由于双刀双掷开关本身元件差损小且隔离度好,不仅能够提升第一信号接收电路2的接收性能,还能够通过与第一双刀双掷开关1连接的第三双刀双掷开关9提升第一射频电路10或者第二射频电路11的接收性能或者发射性能。
可选地,第二信号接收电路6包括:第四低噪声放大器22和第四滤波器23。
具体的,第四滤波器23分别与第四低噪声放大器22的输入端和第二双刀双掷开关5的第三活动端连接;其中,第二双刀双掷开关5的第三活动端与其第三定端和第四定端中的其中一定端连接时,第二信号接收电路6导通。
需要说明的是,第二双刀双掷开关5的第三活动端与其第三定端和第四定端中的其中一定端连通时,由于第二双刀双掷开关5的第三定端与第三天线7连接,第四定端与第四天线8连接,所以第二信号接收电路6可通过第三天线7和第四天线8中的其中一天线接收信号。
这里,由于双刀双掷开关本身元件差损小且隔离度好,不仅能够提升第二信号接收电路6的接收性能,还能够通过与第二双刀双掷开关5连接的第三双刀双掷开关9提升第一射频电路10或者第二射频电路11的接收性能或者发射性能。
进一步地,本公开的一些实施例的射频前端电路,还包括:射频收发器(图中未显示),该射频收发器分别与第一信号接收电路2、第二信号接收电路6、第一射频电路10和第二射频电路11连接。
具体的,射频收发器可包括:第一信号接收端口、第二信号接收端口、第 三信号接收端口、第四信号接收端口、第一信号发射端口以及第二信号发射端口。
其中,第一信号接收端口与第一信号接收电路2中的第三低噪声放大器20的输出端连接;第二信号接收端口与第一射频电路10中的第一低噪声放大器12的输出端连接;第三信号接收端口与第二射频电路11中的第二低噪声放大器16的输出端连接;第四信号接收端口与第二信号接收电路6中的第四低噪声放大器22的输出端连接。
第一信号发射端口与第一射频电路10中的第一功率放大器13的输入端连接;第二信号发射端口与第二射频电路11中的第二功率放大器17的输入端连接。
上述如图2所示的射频前端电路能够实现5G NR***的1T4R/2T4R功能,保证1路发射,4路接收功能;或者,2路发射,4路接收功能。
下面结合图2简要说明信号在本公开的射频前端电路中的传输过程。
对于发射通路:
一、例如,第一路发射信号由射频收发器(图中未显示)发出后可通过第一功率放大器13将信号放大后,经过第一切换开关14后,经过第一滤波器15进行滤波后,再经第三双刀双掷开关9后:
1)可选择切换至第一双刀双掷开关1后,将信号从第一天线3或第二天线4发射出去;
2)可选择切换至第二双刀双掷开关5后,将信号从第三天线7或第四天线8发射出去。
二、例如,第二路发射信号由射频收发器(图中未显示)发出后可通过第二功率放大器17将信号放大后,经过第二切换开关18后,经第二滤波器19进行滤波后,再经第三双刀双掷开关9后:
1)可选择切换至第一双刀双掷开关1后,将信号从第一天线3或第二天线4发射出去;
2)可选择切换至第二双刀双掷开关5后,将信号从第三天线7或第四天线8发射出去。
需要说明的是,若第一路发射信号通过第三双刀双掷开关9以及第一双刀 双掷开关1,经由第一天线3和第二天线4中的一者发射出去,则第二路发射信号通过第三双刀双掷开关9以及第二双刀双掷开关5,经由第三天线7或第四天线8发射出去。
对于接收通路:
由于5G NR***需支持4路同时接收,第一接收信号可通过第一天线3接收后,经第一双刀双掷开关1,再由第三滤波器21滤波后,进入第三低噪声放大器20,将信号放大后传送至射频收发器进行后续处理。
第二接收信号可通过第二天线4接收后,由第一双刀双掷开关1切换至第三双刀双掷开关9后,再经过第一滤波器15通路进行滤波后,再经第一切换开关14切换至第一低噪声放大器12将信号放大后传送至射频收发器进行后续处理。
应当理解的是,上述第一接收信号的信号传输路径以及第二接收信号的信号传输路径仅为一示例而已。也就是说,接收信号通过第一天线3或者第二天线4后,经过第一双刀双掷开关1可根据实际情况选择切换至包括第三低噪声放大器的接收通路;或者,
再经过第三双刀双掷开关9选择切换至包括第一低噪声放大器的接收通路,或者切换至包括第二低噪声放大器的接收通路,这里不做具体限定。
第三接收信号可通过第三天线7接收后,经第二双刀双掷开关5,再由第四滤波器23滤波后,进入第四低噪声放大器22,将信号放大后传送至射频收发器进行后续处理。
第四接收信号可通过第四天线8接收后,由第二双刀双掷开关5切换至第三双刀双掷开关9后,再经第二滤波器19通路进行滤波后,再经第二切换开关18切换至第二低噪声放大器16将信号放大后传送至射频收发器进行后续处理。
应当理解的是,上述第三接收信号的信号传输路径以及第四接收信号的信号传输路径仅为一示例而已,也就是说,接收信号通过第三天线7或第四天线8接收后,经过第一双刀双掷开关1可根据实际情况选择切换至包括第四低噪声放大器的接收通路;或者,
再经过第三双刀双掷开关9选择切换至包括第一低噪声放大器的接收通 路,或者切换至包括第二低噪声放大器的接收通路,这里不做具体限定。
本公开的一些实施例的射频前端电路,通过分别与第一双刀双掷开关和第二双刀双掷开关连接的第三双刀双掷开关,其中第一双刀双掷开关还分别与第一天线、第二天线和第一信号接收电路连接,第二双刀双掷开关还分别与第三天线、第四天线和第二信号接收电路连接,使得分别与第三双刀双掷开关连接的第一射频电路和第二射频电路能够灵活地通过任一天线接收信号和/或发射信号,此电路设计简单,在实现信号发射和/或接收的基础上,能够缩短射频布局走线,从而降低路径差损。
另外,还需要说明的是,为了缩短生产商的电路设计时间,同时降低成本,本公开的射频前端电路还可整合成一个集成电路芯片。
本公开的一些实施例还提供一种移动终端,包括:控制器;以及,如上述实施例所述的射频前端电路;其中,控制器用于控制第一双刀双掷开关的开闭、第二双刀双掷开关的开闭和/或第三双刀双掷开关的开闭。
还有,控制器还用于控制第一切换开关的关闭和/或第二切换开关的开闭。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护范围之内。

Claims (12)

  1. 一种射频前端电路,包括:
    第一双刀双掷开关;
    第一信号接收电路,通过所述第一双刀双掷开关,与第一天线和第二天线中的第一目标天线连接,并通过所述第一目标天线接收信号;
    第二双刀双掷开关;
    第二信号接收电路,通过所述第二双刀双掷开关,与第三天线和第四天线中的第二目标天线连接,并通过所述第二目标天线接收信号;
    第三双刀双掷开关,分别与所述第一双刀双掷开关和所述第二双刀双掷开关连接;
    第一射频电路,与所述第三双刀双掷开关连接,包括:信号接收模式或者信号发射模式;
    第二射频电路,与所述第三双刀双掷开关连接,包括:信号接收模式或者信号发射模式。
  2. 根据权利要求1所述的射频前端电路,其中,
    所述第一双刀双掷开关包括:第一活动端、第二活动端、第一定端和第二定端;其中,所述第一活动端连接所述第一信号接收电路,所述第一定端连接所述第一天线,所述第二定端连接所述第二天线;
    所述第二双刀双掷开关包括:第三活动端、第四活动端、第三定端和第四定端;其中,所述第三活动端连接所述第二信号接收电路,所述第三定端连接所述第三天线,所述第四定端连接所述第四天线;
    所述第三双刀双掷开关包括:第五活动端、第六活动端、第五定端和第六定端;其中,所述第五活动端连接所述第一射频电路,所述第六活动端连接所述第二射频电路,所述第五定端连接所述第二活动端,所述第六定端连接所述第四活动端。
  3. 根据权利要求2所述的射频前端电路,其中,所述第一射频电路包括:第一低噪声放大器、第一功率放大器、第一切换开关以及分别与所述第五活动端和所述第一切换开关连接的第一滤波器。
  4. 根据权利要求3所述的射频前端电路,其中,所述第一低噪声放大器通过所述第一切换开关与所述第一滤波器连接,且所述第五活动端与所述第五定端连通,且所述第二活动端与所述第一定端和所述第二定端中的其中一定端连通时,所述第一射频电路处于信号接收模式;
    或者,所述第一低噪声放大器通过所述第一切换开关与所述第一滤波器连接,且所述第五活动端与所述第六定端连通,且所述第四活动端与所述第三定端和所述第四定端中的其中一定端连通时,所述第一射频电路处于信号接收模式。
  5. 根据权利要求3所述的射频前端电路,其中,所述第一功率放大器通过所述第一切换开关与所述第一滤波器连接,且所述第五活动端与所述第五定端连通,且所述第二活动端与所述第一定端和所述第二定端中的其中一定端连通时,所述第一射频电路处于信号发射模式;
    或者,所述第一功率放大器通过所述第一切换开关与所述第一滤波器连接,且所述第五活动端与所述第六定端连通,且所述第四活动端与所述第三定端和所述第四定端中的其中一定端连通时,所述第一射频电路处于信号发射模式。
  6. 根据权利要求2所述的射频前端电路,其中,所述第二射频电路包括:第二低噪声放大器、第二功率放大器、第二切换开关以及分别与所述第六活动端和所述第二切换开关连接的第二滤波器。
  7. 根据权利要求6所述的射频前端电路,其中,所述第二低噪声放大器通过所述第二切换开关与所述第二滤波器连接,且所述第六活动端与所述第五定端连通,且所述第二活动端与所述第一定端和所述第二定端中的其中一定端连通时,所述第二射频电路处于信号接收模式;
    或者,所述第二低噪声放大器通过所述第二切换开关与所述第二滤波器连接,且所述第六活动端与所述第六定端连通,且所述第四活动端与所述第三定端和所述第四定端中的其中一定端连通时,所述第二射频电路处于信号接收模式。
  8. 根据权利要求6所述的射频前端电路,其中,所述第二功率放大器通过所述第二切换开关与所述第二滤波器连接,且所述第六活动端与所述第五定端连通,且所述第二活动端与所述第一定端和所述第二定端中的其中一定端连 通时,所述第二射频电路处于信号发射模式;
    或者,所述第二功率放大器通过所述第二切换开关与所述第二滤波器连接,且所述第六活动端与所述第六定端连通,且所述第四活动端与所述第三定端和所述第四定端中的其中一定端连通时,所述第二射频电路处于信号发射模式。
  9. 根据权利要求2所述的射频前端电路,其中,所述第一信号接收电路包括:第三低噪声放大器和第三滤波器;
    所述第三滤波器分别与所述第三低噪声放大器的输入端和所述第一活动端连接;
    其中,所述第一活动端与所述第一定端和所述第二定端中的其中一定端连通时,所述第一信号接收电路导通。
  10. 根据权利要求2所述的射频前端电路,其中,所述第二信号接收电路包括:第四低噪声放大器和第四滤波器;
    所述第四滤波器分别与所述第四低噪声放大器的输入端和所述第三活动端连接;
    其中,所述第三活动端与所述第三定端和所述第四定端中的其中一定端连接时,所述第二信号接收电路导通。
  11. 根据权利要求1所述的射频前端电路,还包括:
    射频收发器,所述射频收发器分别与所述第一信号接收电路、所述第二信号接收电路、所述第一射频电路和所述第二射频电路连接。
  12. 一种移动终端,包括:
    控制器;以及,
    如权利要求1~11中任一项所述的射频前端电路;
    其中,所述控制器用于控制第一双刀双掷开关的开闭、第二双刀双掷开关的开闭和/或第三双刀双掷开关的开闭。
PCT/CN2020/078864 2019-03-22 2020-03-11 射频前端电路及移动终端 WO2020192426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910222066.8A CN109861735B (zh) 2019-03-22 2019-03-22 一种射频前端电路及移动终端
CN201910222066.8 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020192426A1 true WO2020192426A1 (zh) 2020-10-01

Family

ID=66901631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078864 WO2020192426A1 (zh) 2019-03-22 2020-03-11 射频前端电路及移动终端

Country Status (2)

Country Link
CN (1) CN109861735B (zh)
WO (1) WO2020192426A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978201A (zh) * 2021-02-25 2022-08-30 Oppo广东移动通信有限公司 射频前端模组及电子设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861735B (zh) * 2019-03-22 2022-07-15 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110518932B (zh) * 2019-08-16 2022-06-07 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110808757A (zh) * 2019-10-29 2020-02-18 Tcl移动通信科技(宁波)有限公司 射频前端电路及终端设备
CN110890900A (zh) * 2019-11-29 2020-03-17 维沃移动通信有限公司 射频电路及电子设备
CN110943757B (zh) * 2019-11-29 2021-08-27 维沃移动通信有限公司 射频电路及电子设备
CN111181620B (zh) * 2020-01-06 2023-04-25 维沃移动通信有限公司 一种射频电路和电子设备
CN111294081B (zh) * 2020-01-22 2022-01-11 Oppo广东移动通信有限公司 射频***和电子设备
CN111510180B (zh) * 2020-04-23 2022-02-01 维沃移动通信有限公司 天线模组、电子设备及控制方法
CN111756388B (zh) * 2020-06-28 2022-06-07 维沃移动通信有限公司 一种射频电路及电子设备
CN112187311B (zh) * 2020-09-27 2022-08-09 Oppo广东移动通信有限公司 射频***和通信设备
CN112397876A (zh) * 2020-11-05 2021-02-23 深圳市锐尔觅移动通信有限公司 天线模组和终端
CN114584168A (zh) * 2020-11-17 2022-06-03 ***通信有限公司研究院 一种信号输出装置及电子设备
CN115694522B (zh) * 2023-01-03 2023-05-23 荣耀终端有限公司 射频模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656248A (zh) * 2016-11-28 2017-05-10 维沃移动通信有限公司 一种天线切换装置和移动终端
US20170179997A1 (en) * 2015-12-22 2017-06-22 Asustek Computer Inc. Wireless communication device
CN207266019U (zh) * 2017-09-19 2018-04-20 珠海市魅族科技有限公司 一种天线切换装置及移动终端
US20180248811A1 (en) * 2017-02-28 2018-08-30 Apple Inc. Electronic Devices Having Antenna Diversity Capabilities
CN108768434A (zh) * 2018-06-06 2018-11-06 维沃移动通信有限公司 一种射频电路、终端及信号发射控制方法
CN109861735A (zh) * 2019-03-22 2019-06-07 维沃移动通信有限公司 一种射频前端电路及移动终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100547941C (zh) * 2003-12-11 2009-10-07 日立金属株式会社 多频带高频电路、多频带高频电路部件及多频带通信装置
KR101840879B1 (ko) * 2011-12-26 2018-03-22 한국전자통신연구원 고주파 수동 소자를 이용한 rf 송수신기의 전치단 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170179997A1 (en) * 2015-12-22 2017-06-22 Asustek Computer Inc. Wireless communication device
CN106656248A (zh) * 2016-11-28 2017-05-10 维沃移动通信有限公司 一种天线切换装置和移动终端
US20180248811A1 (en) * 2017-02-28 2018-08-30 Apple Inc. Electronic Devices Having Antenna Diversity Capabilities
CN207266019U (zh) * 2017-09-19 2018-04-20 珠海市魅族科技有限公司 一种天线切换装置及移动终端
CN108768434A (zh) * 2018-06-06 2018-11-06 维沃移动通信有限公司 一种射频电路、终端及信号发射控制方法
CN109861735A (zh) * 2019-03-22 2019-06-07 维沃移动通信有限公司 一种射频前端电路及移动终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978201A (zh) * 2021-02-25 2022-08-30 Oppo广东移动通信有限公司 射频前端模组及电子设备
CN114978201B (zh) * 2021-02-25 2024-02-02 Oppo广东移动通信有限公司 射频前端模组及电子设备

Also Published As

Publication number Publication date
CN109861735A (zh) 2019-06-07
CN109861735B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2020192426A1 (zh) 射频前端电路及移动终端
WO2020192527A1 (zh) 射频前端电路及移动终端
WO2020192427A1 (zh) 射频前端电路及移动终端
WO2021104429A1 (zh) 射频电路及电子设备
WO2017113693A1 (zh) 天线复用装置以及移动终端
WO2021031771A1 (zh) 射频前端电路及移动终端
WO2021104456A1 (zh) 射频电路及电子设备
US20090253384A1 (en) Dual Mode Radio Frequency Front End Circuit
WO2021031713A1 (zh) 射频前端电路及移动终端
WO2020220886A1 (zh) 射频装置及终端设备
KR20130074585A (ko) 고주파 수동 소자를 이용한 rf 송수신기의 전치단 장치
WO2016184271A1 (zh) 一种天线切换装置
WO2012079411A1 (zh) 共用天线的无线通信设备及采用所述设备的通信方法
WO2023061090A1 (zh) 一种覆盖多频段的射频前端模块及无线通信设备
KR100889562B1 (ko) 모바일 rfid 기능을 갖는 이동통신 단말을 위한 전력증폭기 공유 시스템
US20090251221A1 (en) Radio Frequency Front-End Circuit
WO2022143453A1 (zh) 射频电路及电子设备
WO2024114180A1 (zh) 5g射频前端模组和5g通信芯片
WO2023236530A1 (zh) 射频PA Mid器件、射频***和通信设备
WO2023098244A1 (zh) 射频前端器件和射频***
JP2009033598A (ja) 高周波回路及びこれを用いた高周波モジュール、通信機器、高周波回路の制御方法
RU2791910C1 (ru) Высокочастотная схема входного каскада и мобильный терминал
RU2784458C1 (ru) Радиочастотная входная схема и мобильный терминал
CN220307210U (zh) 一种基于时分双工的射频放大电路、射频收发通信***
WO2024016282A1 (zh) 联动天线电路及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779900

Country of ref document: EP

Kind code of ref document: A1