WO2021031771A1 - 射频前端电路及移动终端 - Google Patents

射频前端电路及移动终端 Download PDF

Info

Publication number
WO2021031771A1
WO2021031771A1 PCT/CN2020/103318 CN2020103318W WO2021031771A1 WO 2021031771 A1 WO2021031771 A1 WO 2021031771A1 CN 2020103318 W CN2020103318 W CN 2020103318W WO 2021031771 A1 WO2021031771 A1 WO 2021031771A1
Authority
WO
WIPO (PCT)
Prior art keywords
throw switch
pole
double
pole double
radio frequency
Prior art date
Application number
PCT/CN2020/103318
Other languages
English (en)
French (fr)
Inventor
盛雪锋
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022510157A priority Critical patent/JP7429770B2/ja
Priority to BR112022002270A priority patent/BR112022002270A2/pt
Priority to KR1020227004052A priority patent/KR102629887B1/ko
Priority to EP20854924.6A priority patent/EP4016855A4/en
Priority to AU2020332428A priority patent/AU2020332428B2/en
Priority to CA3151256A priority patent/CA3151256A1/en
Publication of WO2021031771A1 publication Critical patent/WO2021031771A1/zh
Priority to US17/671,851 priority patent/US11757485B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection

Definitions

  • the embodiments of the present disclosure relate to the field of communication technology, and in particular to a radio frequency front-end circuit and a mobile terminal.
  • FIG. 1 it is a schematic diagram of the structure of the radio frequency front-end circuit of the 5G mobile terminal equipment.
  • the circuit architecture can realize one-transmit and four-receive or two-transmit and four-receive, that is, one transmission and four reception or two transmission and four reception.
  • the RF front-end circuit in the related technology has the following disadvantages:
  • the three-pole three-throw switch (ie 3P3T) component has a large difference loss.
  • the radio frequency front-end circuit of the related 5G mobile terminal equipment shuttles the dotted lines in the two 3P3T components.
  • special wiring is required between the two modules.
  • the longer the trace the higher the frequency, the higher the path loss, and the need for layer penetration, which will increase the path loss;
  • the embodiments of the present disclosure provide a radio frequency front-end circuit and a mobile terminal to solve the problems of complex circuit design and large loss of the radio frequency front-end circuit structure of 5G mobile terminal equipment in the related art.
  • a radio frequency front-end circuit including:
  • First transmit path first receive path, second receive path, third receive path, fourth receive path, first single pole double throw switch, second single pole double throw switch, third single pole double throw switch, double pole four throw Switch and first antenna, second antenna, third antenna and fourth antenna;
  • the first movable end of the double pole four throw switch is connected to the movable end of the first single pole double throw switch, and the first fixed end and the second fixed end of the first single pole double throw switch are respectively connected to the The first transmitting path and the first receiving path, the second movable end of the double-pole four-throw switch is connected to the second receiving path, and the first fixed end of the double-pole four-throw switch is connected to the first Antenna connection, the second fixed end of the double-pole four-throw switch is connected to the second antenna;
  • the first fixed terminal of the second single pole double throw switch is connected with the third fixed terminal of the double pole four throw switch, and the second fixed terminal of the second single pole double throw switch is connected with the third receiving path, The movable end of the second single-pole double-throw switch is connected to the third antenna;
  • the first fixed terminal of the third single pole double throw switch is connected with the fourth fixed terminal of the double pole four throw switch, and the second fixed terminal of the third single pole double throw switch is connected with the fourth receiving path, The movable end of the second single-pole double-throw switch is connected to the fourth antenna.
  • a mobile terminal including: the above-mentioned radio frequency front-end circuit.
  • the RF front-end circuit realizes the switching of signal transmission and reception paths through one double-pole four-throw switch and two single-pole double-throw switches (ie, the second single-pole double-throw switch and the third single-pole double-throw switch) .
  • the radio frequency front-end circuit in some embodiments of the present disclosure does not need to deploy the line shown by the dashed line in FIG. 1, the line deployment is more compact, the line path is shorter, and the insertion loss of the line is reduced.
  • the circuit connection of the radio frequency front-end circuit is simpler, which reduces the complexity of circuit design and production cost.
  • the radio frequency front-end circuit in some embodiments of the present disclosure adopts double-pole four-throw switches and single-pole double-throw switches to replace the use of three-pole three-throw switches, which are compared with three-pole four-throw switches and single-pole double-throw switches.
  • the three-throw switch has lower cost and lower component insertion loss.
  • the isolation of the double-pole four-throw switch and the single-pole double-throw switch is better than that of the three-pole three-throw switch. Therefore, it can better isolate the transmitted signal and the received information, and reduce the interference of the transmitted signal to the received signal.
  • the RF front-end circuit design in some embodiments of the present disclosure may allow the device in the third receiving path and the second SPDT switch, and the device in the fourth receiving path and the third SPDT switch to approach the antenna It also saves the use of external radio frequency lines (i.e. RF cable). While saving the use of RF cable, it can also save the radio frequency socket used with RF cable, reducing layout area and production cost.
  • RF cable external radio frequency lines
  • Figure 1 shows a schematic diagram of a radio frequency front-end circuit architecture in the related art
  • Figure 2 shows one of the schematic structural diagrams of the radio frequency front-end circuit architecture provided by some embodiments of the present disclosure.
  • FIG. 3 shows the second structural diagram of the radio frequency front-end circuit architecture provided by some embodiments of the present disclosure.
  • the radio frequency front-end circuit includes: a first transmitting path 1, a first receiving path 2, a second receiving path 3, and a third receiving path 4.
  • Fourth receiving path 5 double pole four throw switch 6, first single pole double throw switch 7, second single pole double throw switch 8, third single pole double throw switch 9, and first antenna 10, second antenna 11, and third antenna 12.
  • the fourth antenna 13 The fourth antenna 13.
  • first movable end 601 of the double-pole four-throw switch 6 is connected to the movable end 703 of the first single-pole double-throw switch 7, and the first fixed end 701 and the second fixed end 702 of the first single-pole double-throw switch 7 are respectively Connect the first transmitting path 1 and the first receiving path 2.
  • the second movable end 602 of the double-pole four-throw switch 6 is connected to the second receiving path 3.
  • the first fixed end 603 of the double-pole four-throw switch 6 is connected to the first antenna 10
  • the second fixed end 604 of the double-pole four-throw switch 6 is connected to the second antenna 11
  • the third The fixed terminal 605 is connected to the first fixed terminal 801 of the second single pole double throw switch 8
  • the fourth fixed terminal 606 of the double pole four throw switch 6 is connected to the first fixed terminal 901 of the third single pole double throw switch 9.
  • the first fixed terminal of the second single-pole double-throw switch 8 is connected to the third fixed terminal 605 of the double-pole four-throw switch 6, and the second fixed terminal 802 of the second single-pole double-throw switch 8 is connected to the third receiving path 4
  • the movable end 803 of the second single-pole double-throw switch 8 is connected to the third antenna 12.
  • the first fixed terminal 901 of the third single-pole double-throw switch 9 is connected to the fourth fixed terminal 606 of the double-pole four-throw switch 6, and the second fixed terminal 902 of the third single-pole double-throw switch 9 is connected to the fourth receiving path. 5 is connected, and the movable end 803 of the second single-pole double-throw switch 8 is connected to the fourth antenna 13.
  • the blade on any one of the first movable end and the second movable end can be switched to any one of the first fixed end to the fourth fixed end Fixed end.
  • the first transmission path 1 can transmit signals through the first single pole double throw switch 7, the double pole four throw switch 6, the first antenna 10 or the second antenna 11, or the first single pole double throw switch 7 , Double-pole four-throw switch 6, the second single-pole double-throw switch 8, transmit signals through the third antenna 12, or through the first single-pole double-throw switch 7, double-pole four-throw switch 6, the third single-pole double-throw switch 9, pass The fourth antenna 13 transmits a signal.
  • the first receiving path 2 can receive signals via the first antenna 10 or the second antenna 11, via the double pole four throw switch 6, the first single pole double throw switch 7, or via the third antenna 12 via the Two single-pole double-throw switches 8, double-pole four-throw switch 6, first single-pole double-throw switch 7 receive signals, or through the fourth antenna 13, through the third single-pole double-throw switch 9, double-pole four-throw switch 6, first single-pole The double throw switch 7 receives the signal.
  • the second receiving path 3 can receive signals via the first antenna 10 or the second antenna 11, via the double pole four throw switch 6, or via the third antenna 12, via the second single pole double throw switch 8, double The pole four throw switch 6 receives the signal, or the fourth antenna 13 receives the signal via the third single pole double throw switch 9 and the double pole four throw switch 6.
  • the third receiving path 4 can pass through the third antenna 12 and receive signals via the second single-pole double-throw switch 8.
  • the fourth receiving path 5 can receive signals through the fourth antenna 13 and the third single-pole double-throw switch 9.
  • the radio frequency front-end circuit implemented in some embodiments of the present disclosure implements signal transmission and reception paths through one double-pole four-throw switch and two single-pole double-throw switches (ie, the second single-pole double-throw switch 8 and the third single-pole double-throw switch 9) Switch. It can be seen from FIG. 2 that the radio frequency front-end circuit in some embodiments of the present disclosure does not need to deploy the line shown by the dashed line in FIG. 1, the line deployment is more compact, the line path is shorter, and the insertion loss of the line is reduced. In some embodiments of the radio frequency front-end circuit, the circuit connection is simpler, which reduces the complexity of circuit design and production cost.
  • the radio frequency front-end circuit in some embodiments of the present disclosure adopts double-pole four-throw switches and single-pole double-throw switches to replace the use of three-pole three-throw switches, which are compared with three-pole four-throw switches and single-pole double-throw switches.
  • the three-throw switch has lower cost and lower component insertion loss.
  • the isolation of the double-pole four-throw switch and the single-pole double-throw switch is better than that of the three-pole three-throw switch. Therefore, it can better isolate the transmitted signal and the received information, and reduce the interference of the transmitted signal to the received signal.
  • the RF front-end circuit design in some embodiments of the present disclosure may allow the devices in the third receiving path 4 and the second single pole double throw switch 8 and the devices in the fourth receiving path 5 to interact with the third single pole double throw
  • the switch 9 is placed close to the antenna end to improve the receiving performance.
  • it can also save the use of external radio frequency lines (i.e. RFcable). While saving the use of RFcable, it can also save the radio frequency socket used with RFcable, reducing the layout area and Cost of production.
  • the radio frequency front-end circuit includes: a first transmitting path 1, a first receiving path 2, a second receiving path 3, and a third receiving path 4.
  • Fourth receiving path 5 double pole four throw switch 6, first single pole double throw switch 7, second single pole double throw switch 8, third single pole double throw switch 9, and first antenna 10, second antenna 11, and third antenna 12.
  • the fourth antenna 13 The connection relationship between the foregoing structures is the same as that described in the first embodiment, and will not be repeated here.
  • the first transmission path 1 at least includes: a first power amplifier 101 connected to the first fixed terminal 701 of the first single-pole double-throw switch 7.
  • the first receiving path 2 includes at least: a first low noise amplifier 201 connected to the second fixed terminal 702 of the first single-pole double-throw switch 7.
  • the movable end of the first single pole double throw is connected to the first movable end 601 of the double pole four throw switch 6.
  • the first transmission path 1 can transmit a signal; when the first single pole double throw switch 7 is active When the blade at the end is switched to the second fixed end of the first single-pole double-throw switch 7, the first receiving path 2 can receive a signal.
  • the first transmitting path 1 can transmit signals through the first antenna 10, and the first receiving path 2 can pass through the first antenna 10 receives the signal;
  • the blade of the first movable end 601 of the double-pole four-throw switch 6 is switched to the second fixed end 604 of the double-pole four-throw switch 6, the first transmission path 1 can transmit the signal through the second antenna 11.
  • a receiving path 2 can receive signals through the second antenna 11; when the blade of the first movable end 601 of the double pole four throw switch 6 is switched to the third fixed end 605 of the double pole four throw switch 6, the second single pole double throw switch 8 When the blade of the movable end 803 is switched to the first fixed end 801 of the second single-pole double-throw switch 8, the first transmitting path 1 can transmit signals through the third antenna 12, and the first receiving path 2 can receive signals through the third antenna 12.
  • the blade of the first movable end 601 of the double pole four throw switch 6 is switched to the fourth fixed end 606 of the double pole four throw switch 6, the blade of the movable end 903 of the third single pole double throw switch 9 is switched to the third single pole double
  • the first transmitting path 1 can transmit signals through the fourth antenna 13, and the first receiving path 2 can receive signals through the fourth antenna 13.
  • the radio frequency front-end circuit further includes: a first filter 14.
  • the first filter 14 is arranged between the first single-pole double-throw switch 7 and the double-pole four-throw switch 6. Specifically, the first filter 14 is connected to the movable end 703 and the double-pole four-throw switch 7 of the first single-pole double-throw switch 7 respectively. The first movable end 601 of the four-throw switch 6 is connected.
  • the second receiving path 3 includes at least: a second low noise amplifier 301 connected to the second movable end 602 of the double-pole four-throw switch 6.
  • the second receiving path can receive the signal through the first antenna 10;
  • the blade of the second movable end 602 of the double-pole four-throw switch 6 is switched to the second fixed end 604 of the double-pole four-throw switch 6, the second receiving path can receive the signal through the second antenna 11;
  • the second movable end of the double-pole four-throw switch 6 When the blade of 602 is switched to the third fixed end 605 of the double-pole four-throw switch 6, and the blade of the movable end 803 of the second single-pole double-throw switch 8 is switched to the first fixed end 801 of the second single-pole double-throw switch 8, the second The receiving path can receive signals through the third antenna 12; when the blade of the second movable end 602 of the double-pole four-throw switch 6 is switched to the fourth fixed end 606 of the double-pole four-
  • the radio frequency front-end circuit further includes: a second filter 15.
  • the second filter 15 is disposed between the second low noise amplifier 301 and the double pole four throw switch 6. Specifically, the second filter 15 is connected to the second low noise amplifier 301 and the second pole four throw switch 6 respectively. The two movable ends 602 are connected.
  • the radio frequency front-end circuit further includes: a second transmission path 16.
  • the radio frequency front-end circuit in this embodiment mode can not only realize one transmission and four reception (that is, one transmission and four reception), but also two transmission and four reception (that is, two transmission and four reception).
  • the second transmitting path 16 and the second receiving path 3 are connected to the second movable end 602 of the double-pole four-throw switch 6 through the fourth single-pole double-throw switch 17 and the second filter 15.
  • the second filter 15 is connected to the The movable end 1703 of the four single pole double throw switch 17 is connected to the second movable end 602 of the double pole four throw switch 6.
  • the second transmitting path can transmit signals, and the second receiving path 3 can receive signals;
  • the blade at the movable end of the double-throw switch 17 is switched to the second fixed end of the fourth single-pole double-throw switch 17, the second receiving path can receive signals.
  • the second transmitting path can transmit signals through the first antenna 10, and the second receiving path can pass The first antenna 10 receives the signal; when the blade of the second movable end 602 of the double-pole four-throw switch 6 is switched to the second fixed end 604 of the double-pole four-throw switch 6, the second transmission path can transmit the signal through the second antenna 11 , The second receiving path can receive signals through the second antenna 11; when the blade of the second movable end 602 of the double pole four throw switch 6 is switched to the third fixed end 605 of the double pole four throw switch 6, the second single pole double throw switch When the blade of the movable end 803 of 8 is switched to the first fixed end 801 of the second single-pole double-throw switch 8, the second transmitting path can transmit signals through the third antenna 12, and the second receiving path can receive signals through the third antenna 12; When the blade at the second movable end 602 of the double-pole four-throw switch 6 is switched to the first fixed end 603 of the double-pole four-throw switch 6, the second transmitting path can
  • the second transmission path 16 includes at least: a second power amplifier 1601 connected to the first fixed terminal 1701 of the fourth single-pole double-throw switch 17.
  • the second low noise amplifier 301 in the second receiving path 3 is connected to the second fixed terminal 1702 of the fourth single-pole double-throw switch 17.
  • the radio frequency front-end circuit further includes a power combiner 18 (ie, Power Combiner).
  • a power combiner 18 ie, Power Combiner
  • the first power amplifier 101 is connected to the power combiner 18 through the fifth single pole double throw switch 19, the movable end 1903 of the fifth single pole double throw switch 19 is connected to the first power amplifier 101, and the fifth single pole double throw switch 19 is connected to the first power amplifier 101.
  • the fixed terminal 1901 is connected to the second fixed terminal 702 of the first single pole double throw switch 7, the second fixed terminal 1902 of the fifth single pole double throw switch 19 is connected to the first input terminal 1801 of the power combiner 18, and the second power amplifier It is connected to the second input terminal 1802 of the power combiner 18; the output terminal 1803 of the power combiner 18 is connected to the first fixed terminal 1701 of the fourth single-pole double-throw switch 17.
  • a power synthesizer 18 is provided in the radio frequency front-end circuit, which can synthesize the power of the first power amplifier 101 and the power of the second power amplifier 1601 to generate higher power, so as to achieve high power terminals (High Power UE, HPUE for short).
  • the third receiving path 4 at least includes: a third low noise amplifier 401 connected to the second fixed terminal of the second single-pole double-throw switch 8.
  • the third receiving path 4 can receive signals through the third antenna 12.
  • the radio frequency front-end circuit further includes: a third filter 20.
  • the third filter 20 is arranged between the third low noise amplifier 401 and the second SPDT switch 8. Specifically, the third filter 20 is connected with the third low noise amplifier 401 and the second SPDT switch 8 respectively. The second fixed end connection.
  • the fourth receiving path 5 at least includes: a fourth low noise amplifier 501 connected to the second fixed end of the third single-pole double-throw switch 9.
  • the fourth receiving path 5 can receive signals through the fourth antenna 13.
  • the radio frequency front-end circuit further includes: a fourth filter 21.
  • the fourth filter 21 is arranged between the fourth low noise amplifier 501 and the third SPDT switch 9. Specifically, the fourth filter 21 is connected with the fourth low noise amplifier 501 and the third SPDT switch 9 respectively. The second fixed end connection.
  • the RF front-end circuit design in some embodiments of the present disclosure may allow the third low noise amplifier 401 and the second single pole double throw switch 8 and the fourth low noise amplifier 501 and the third single pole double throw switch 9 to be close to the antenna end. place.
  • NF total NF 1 +(NF 2 -1)/G 1 + (NF 3 -1)/G 1 G 2 +(NF 4 -1)/G 1 G 2 G 3 +... It can be seen that the closer the low noise amplifier is to the antenna, the larger G 1 is, and the larger G 1 is, the more NF Smaller, the better the receiving performance, so you can save RF cable, reduce costs, and the receiving performance will be well improved.
  • Sen (dBm) represents the sensitivity of the receiver
  • NF represents the noise figure
  • B represents the bandwidth
  • SNR represents the signal ratio
  • NF total represents the total noise figure
  • NF 1 , NF 2 , NF 3 , NF 4 ... represent the noise figure of each stage
  • G 1 , G 2 , G 3 ... represent the gain of the low noise amplifier of each stage.
  • the radio frequency front-end circuit implemented in some embodiments of the present disclosure implements signal transmission and reception paths through one double-pole four-throw switch and two single-pole double-throw switches (ie, the second single-pole double-throw switch 8 and the third single-pole double-throw switch 9) Switch.
  • the radio frequency front-end circuit in some embodiments of the present disclosure does not need to deploy the line shown by the dashed line in FIG. 1, the line deployment is more compact, the line path is shorter, and the insertion loss of the line is reduced.
  • the circuit connection of the radio frequency front-end circuit is simpler, which reduces the complexity of circuit design and production cost.
  • the radio frequency front-end circuit in some embodiments of the present disclosure adopts double-pole four-throw switches and single-pole double-throw switches to replace the use of three-pole three-throw switches, which are compared with three-pole four-throw switches and single-pole double-throw switches.
  • the three-throw switch has lower cost and lower component insertion loss.
  • the isolation of the double-pole four-throw switch and the single-pole double-throw switch is better than that of the three-pole three-throw switch. Therefore, it can better isolate the transmitted signal and the received information, and reduce the interference of the transmitted signal to the received signal.
  • the RF front-end circuit design in some embodiments of the present disclosure may allow the devices in the third receiving path 4 and the second single pole double throw switch 8 and the devices in the fourth receiving path 5 to interact with the third single pole double throw
  • the switch 9 is placed close to the antenna end to improve the receiving performance.
  • it can also save the use of external radio frequency lines (i.e. RFcable). While saving the use of RFcable, it can also save the radio frequency socket used with RFcable, reducing the layout area and Cost of production.
  • a mobile terminal including: the above-mentioned radio frequency front-end circuit.
  • the radio frequency front-end circuit further includes a controller for controlling the first single pole double throw switch 7, the second single pole double throw switch 8, the third single pole double throw switch 9, and the fourth single pole double throw switch 17, Switching of the fifth single-pole double-throw switch 19 and the double-pole four-throw switch 6.
  • the radio frequency front-end circuit in the mobile terminal uses one double-pole four-throw switch and two single-pole double-throw switches (that is, the second single-pole double-throw switch 8 and the third single-pole double-throw switch 9), Realize the switching of signal transmission and reception paths.
  • the radio frequency front-end circuit in some embodiments of the present disclosure does not need to deploy the line shown by the dashed line in FIG. 1, the line deployment is more compact, the line path is shorter, and the insertion loss of the line is reduced.
  • the circuit connection of the radio frequency front-end circuit is simpler, which reduces the complexity of circuit design and production cost.
  • the RF front-end circuit in some embodiments of the present disclosure adopts a double-pole four-throw switch and a single-pole double-throw switch to replace the use of a three-pole three-throw switch, and the double-pole four-throw switch 6 and the single-pole double-throw switch are compared with the three-pole double-throw switch.
  • Pole three-throw switch, lower cost, and component insertion loss is smaller.
  • the isolation of the double-pole four-throw switch and the single-pole double-throw switch is better than that of the three-pole three-throw switch. Therefore, it can better isolate the transmitted signal and the received information, and reduce the interference of the transmitted signal to the received signal.
  • the RF front-end circuit design in some embodiments of the present disclosure may allow the devices in the third receiving path 4 and the second single pole double throw switch 8 and the devices in the fourth receiving path 5 to interact with the third single pole double throw
  • the switch 9 is placed close to the antenna end to improve the receiving performance.
  • it can also save the use of external radio frequency lines (i.e. RFcable). While saving the use of RFcable, it can also save the radio frequency socket used with RFcable, reducing the layout area and Cost of production.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, "a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected, or it can be electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components.
  • installed may be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected, or it can be electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components.
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Details Of Aerials (AREA)

Abstract

本公开实施例提供了一种射频前端电路及移动终端。该射频前端电路包括:第一发射通路、第一接收通路、第二接收通路、第三接收通路、第四接收通路、双刀四掷开关、第一单刀双掷开关、第二单刀双掷开关、第三单刀双掷开关以及第一天线、第二天线、第三天线、第四天线。

Description

射频前端电路及移动终端
相关申请的交叉引用
本申请主张在2019年8月16日在中国提交的中国专利申请号No.201910757149.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种射频前端电路及移动终端。
背景技术
随着互联网通信技术的快速发展以及智能移动终端的不断普及,用户对数据流量的需求也在不断增加。从4G的传输速率为100Mbps~1Gbps,到5G新空口(New Radio,NR)的峰值传输速率可达20Gbps,大大满足了人们对数据传输速率的需求。而速率的提升要求5G必备4*4多输入多输出(Multiple Input Multiple Output,MIMO)关键技术。
如图1所示,为5G移动终端设备的射频前端电路的结构示意图。该电路架构可实现一发四收或二发四收,即一路发射四路接收或两路发射四路接收。相关技术中的射频前端电路,存在以下缺点:
1、对于高频率、大频宽而言,三刀三掷开关(即3P3T)元件的差损大,频率越高,3P3T的线损就越大。
2、由于3P3T切换的路径较多,因此3P3T隔离度不够,导致发射信号干扰接收信号。
3、为了改善3P3T的本身架构的缺点,差损大,隔离度差,导致设计适用在5G NR***上的3P3T,困难度大大提升,这导致市场价格3P3T的成本比DPDT来得高许多,对于成本来说也是一大隐忧;
4、如图1中的两条虚线所示,相关5G移动终端设备的射频前端电路,穿梭在两颗3P3T元件中的虚线,对于现有元件需要两个模组之间还需要特地绕线,在电路板上,走线越长,频率越高,路径损失越高,还需要做穿层的 需求,这些会增加路径损失;
5、受两个3P3T布局限制,且位置离天线端口会比较远,接收性能的损耗会增加2-3dB(信号强度衰减约一半)。
发明内容
本公开实施例提供了一种射频前端电路及移动终端,以解决相关技术中的5G移动终端设备的射频前端电路结构电路设计复杂、损耗大的问题。
为了解决上述技术问题,本公开采用如下技术方案:
第一方面,提供了一种射频前端电路,包括:
第一发射通路、第一接收通路、第二接收通路、第三接收通路、第四接收通路、第一单刀双掷开关、第二单刀双掷开关、第三单刀双掷开关、双刀四掷开关以及第一天线、第二天线、第三天线和第四天线;
其中,所述双刀四掷开关的第一活动端与所述第一单刀双掷开关的活动端连接,所述第一单刀双掷开关的第一定端和第二定端分别连接所述第一发射通路和所述第一接收通路,所述双刀四掷开关的第二活动端与所述第二接收通路连接,所述双刀四掷开关的第一定端与所述第一天线连接,所述双刀四掷开关的第二定端与所述第二天线连接;
所述第二单刀双掷开关的第一定端与所述双刀四掷开关的第三定端连接,所述第二单刀双掷开关的第二定端与所述第三接收通路连接,所述第二单刀双掷开关的活动端与所述第三天线连接;
所述第三单刀双掷开关的第一定端与所述双刀四掷开关的第四定端连接,所述第三单刀双掷开关的第二定端与所述第四接收通路连接,所述第二单刀双掷开关的活动端与所述第四天线连接。
第二方面,提供了一种移动终端,包括:如上所述的射频前端电路。
本公开的一些实施例中提供的射频前端电路,通过一个双刀四掷开关和两个单刀双掷开关(即第二单刀双掷开关和第三单刀双掷开关),实现信号收发路径的切换。本公开的一些实施例中的射频前端电路,不需要再部署图1中虚线所示的线路,线路部署更加紧凑,线路路径更短,降低了线路的插损,且本公开的一些实施例中的射频前端电路,线路连接更加简单,降低了电路 设计的复杂度和生产成本。另外,本公开的一些实施例中的射频前端电路,采用双刀四掷开关和单刀双掷开关替换三刀三掷开关的使用,而双刀四掷开关和单刀双掷开关相比于三刀三掷开关,成本更低,且元件插损更小。进一步地双刀四掷开关和单刀双掷开关的隔离度相比三刀三掷开关隔离度更好,因此,还能够更好的隔离发射信号和接收信息,降低发射信号对接收信号的干扰。
更进一步地,本公开的一些实施例中的射频前端电路设计,可以允许第三接收通路中的器件与第二单刀双掷开关以及第四接收通路中的器件与第三单刀双掷开关靠近天线端放置,提升接收性能,同时还可以节省外界射频线路(即RF cable)的使用,在节省RF cable使用的同时,还可以节省与RF cable配套使用的射频座,降低布局面积和生产成本。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示相关技术中的射频前端电路构架的示意图;
图2表示本公开的一些实施例提供的射频前端电路构架的结构示意图之一;以及
图3表示本公开的一些实施例提供的射频前端电路构架的结构示意图之二。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例一
本公开的一些实施例提供了一种射频前端电路,如图2所示,该射频前端电路包括:第一发射通路1、第一接收通路2、第二接收通路3、第三接收通路4、第四接收通路5、双刀四掷开关6、第一单刀双掷开关7、第二单刀双掷开关8、第三单刀双掷开关9以及第一天线10、第二天线11、第三天线12、第四天线13。
其中,该双刀四掷开关6的第一活动端601与第一单刀双掷开关7的活动端703连接,该第一单刀双掷开关7的第一定端701和第二定端702分别连接第一发射通路1和第一接收通路2。该双刀四掷开关6的第二活动端602与第二接收通路3连接。该双刀四掷开关6的第一定端603与第一天线10连接,该双刀四掷开关6的第二定端604与第二天线11连接,该双刀四掷开关6的第三定端605与第二单刀双掷开关8的第一定端801连接,该双刀四掷开关6的第四定端606与第三单刀双掷开关9的第一定端901连接。
其中,该第二单刀双掷开关8的第一定端与双刀四掷开关6的第三定端605连接,该第二单刀双掷开关8的第二定端802与第三接收通路4连接,该第二单刀双掷开关8的活动端803与第三天线12连接。
其中,该第三单刀双掷开关9的第一定端901与双刀四掷开关6的第四定端606连接,该第三单刀双掷开关9的第二定端902与第四接收通路5连接,第二单刀双掷开关8的活动端803与第四天线13连接。
需要说明的是,对于双刀四掷开关6,其第一活动端和第二活动端中的任意一个活动端上的刀片,均可以切换至第一定端至第四定端中的任意一个定端上。
如图2所示,第一发射通路1可经由第一单刀双掷开关7、双刀四掷开关6,通过第一天线10或第二天线11发射信号,或经由第一单刀双掷开关7、双刀四掷开关6、第二单刀双掷开关8,通过第三天线12发射信号,或经由第一单刀双掷开关7、双刀四掷开关6、第三单刀双掷开关9,通过第四天线13发射信号。
如图2所示,第一接收通路2可通过第一天线10或第二天线11,经由双刀四掷开关6、第一单刀双掷开关7接收信号,或通过第三天线12,经由第二单刀双掷开关8、双刀四掷开关6、第一单刀双掷开关7接收信号,或通 过第四天线13,经由第三单刀双掷开关9、双刀四掷开关6、第一单刀双掷开关7接收信号。
如图2所示,第二接收通路3可通过第一天线10或第二天线11,经由双刀四掷开关6接收信号,或通过第三天线12,经由第二单刀双掷开关8、双刀四掷开关6接收信号,或通过第四天线13,经由第三单刀双掷开关9、双刀四掷开关6接收信号。
如图2所示,第三接收通路4可通过第三天线12,经由第二单刀双掷开关8接收信号。
如图2所示,第四接收通路5可通过第四天线13,经由第三单刀双掷开关9接收信号。
本公开的一些实施例中提供的射频前端电路,通过一个双刀四掷开关和两个单刀双掷开关(即第二单刀双掷开关8和第三单刀双掷开关9),实现信号收发路径的切换。由图2可知,本公开的一些实施例中的射频前端电路,不需要再部署图1中虚线所示的线路,线路部署更加紧凑,线路路径更短,降低了线路的插损,且本公开的一些实施例中的射频前端电路,线路连接更加简单,降低了电路设计的复杂度和生产成本。另外,本公开的一些实施例中的射频前端电路,采用双刀四掷开关和单刀双掷开关替换三刀三掷开关的使用,而双刀四掷开关和单刀双掷开关相比于三刀三掷开关,成本更低,且元件插损更小。进一步地双刀四掷开关和单刀双掷开关的隔离度相比三刀三掷开关隔离度更好,因此,还能够更好的隔离发射信号和接收信息,降低发射信号对接收信号的干扰。
更进一步地,本公开的一些实施例中的射频前端电路设计,可以允许第三接收通路4中的器件与第二单刀双掷开关8以及第四接收通路5中的器件与第三单刀双掷开关9靠近天线端放置,提升接收性能,同时还可以节省外界射频线路(即RF cable)的使用,在节省RF cable使用的同时,还可以节省与RF cable配套使用的射频座,降低布局面积和生产成本。
第二实施例
本公开的一些实施例提供了一种射频前端电路,如图2所示,该射频前端电路包括:第一发射通路1、第一接收通路2、第二接收通路3、第三接收 通路4、第四接收通路5、双刀四掷开关6、第一单刀双掷开关7、第二单刀双掷开关8、第三单刀双掷开关9以及第一天线10、第二天线11、第三天线12、第四天线13。前述各结构之间的连接关系与实施例一中所述相同,此处便不再进行赘述。
如图2所示,第一发射通路1至少包括:与第一单刀双掷开关7的第一定端701连接的第一功率放大器101。第一接收通路2至少包括:与第一单刀双掷开关7的第二定端702连接的第一低噪声放大器201。而第一单刀双掷的活动端与双刀四掷开关6的第一活动端601连接。
当第一单刀双掷开关7的活动端703上的刀片切换至第一单刀双掷开关7的第一定端时,第一发射通路1可发射信号;当第一单刀双掷开关7的活动端的刀片切换至第一单刀双掷开关7的第二定端时,第一接收通路2可接收信号。
当双刀四掷开关的第一活动端的刀片切换至双刀四掷开关的第一定端时,第一发射通路1可通过第一天线10发射信号,第一接收通路2可通过第一天线10接收信号;当双刀四掷开关6的第一活动端601的刀片切换至双刀四掷开关6的第二定端604时,第一发射通路1可通过第二天线11发射信号,第一接收通路2可通过第二天线11接收信号;当双刀四掷开关6的第一活动端601的刀片切换至双刀四掷开关6的第三定端605,第二单刀双掷开关8的活动端803的刀片切换至第二单刀双掷开关8的第一定端801时,第一发射通路1可通过第三天线12发射信号,第一接收通路2可通过第三天线12接收信号;当双刀四掷开关6的第一活动端601的刀片切换至双刀四掷开关6的第四定端606,第三单刀双掷开关9的活动端903的刀片切换至第三单刀双掷开关9的第一定端901时,第一发射通路1可通过第四天线13发射信号,第一接收通路2可通过第四天线13接收信号。
可选地,为了滤除干扰信号,如图2所示,该射频前端电路还包括:第一滤波器14。
该第一滤波器14设置与第一单刀双掷开关7于双刀四掷开关6之间,具体地,该第一滤波器14分别与第一单刀双掷开关7的活动端703和双刀四掷开关6的第一活动端601连接。
可选地,如图2所示,第二接收通路3至少包括:与双刀四掷开关6的第二活动端602连接的第二低噪声放大器301。
当双刀四掷开关6的第二活动端602的刀片切换至双刀四掷开关6的第一定端603时,第二接收通路可通过第一天线10接收信号;当双刀四掷开关6的第二活动端602的刀片切换至双刀四掷开关6的第二定端604时,第二接收通路可通过第二天线11接收信号;当双刀四掷开关6的第二活动端602的刀片切换至双刀四掷开关6的第三定端605,第二单刀双掷开关8的活动端803的刀片切换至第二单刀双掷开关8的第一定端801时,第二接收通路可通过第三天线12接收信号;当双刀四掷开关6的第二活动端602的刀片切换至双刀四掷开关6的第四定端606,第三单刀双掷开关9的活动端903的刀片切换至第三单刀双掷开关9的第一定端901时,第二接收通路可通过第四天线13接收信号。
可选地,为了滤除干扰信号,如图2所示,该射频前端电路还包括:第二滤波器15。
该第二滤波器15设置于第二低噪声放大器301与双刀四掷开关6之间,具体地,该第二滤波器15分别与第二低噪声放大器301和双刀四掷开关6的第二活动端602连接。
可选地,如图3所示,在本公开的一些实施例的另一个实施方式中,该射频前端电路还包括:第二发射通路16。在该实施例方式中的射频前端电路,不仅可以实现一发四收(即一路发射四路接收),还可以实现二发四收(即两路发射四路接收)。
其中,第二发射通路16和第二接收通路3通过第四单刀双掷开关17和第二滤波器15连接至双刀四掷开关6的第二活动端602,第二滤波器15分别与第四单刀双掷开关17的活动端1703和双刀四掷开关6的第二活动端602连接。
当第四单刀双掷开关的活动端上的刀片切换至第四单刀双掷开关17的第一定端时,第二发射通路可发射信号,第二接收通路3可接收信号;当第四单刀双掷开关17的活动端的刀片切换至第四单刀双掷开关17的第二定端时,第二接收通路可接收信号。
当双刀四掷开关6的第二活动端602的刀片切换至双刀四掷开关6的第一定端603时,第二发射通路可通过第一天线10发射信号,第二接收通路可通过第一天线10接收信号;当双刀四掷开关6的第二活动端602的刀片切换至双刀四掷开关6的第二定端604时,第二发射通路可通过第二天线11发射信号,第二接收通路可通过第二天线11接收信号;当双刀四掷开关6的第二活动端602的刀片切换至双刀四掷开关6的第三定端605,第二单刀双掷开关8的活动端803的刀片切换至第二单刀双掷开关8的第一定端801时,第二发射通路可通过第三天线12发射信号,第二接收通路可通过第三天线12接收信号;当双刀四掷开关6的第二活动端602的刀片切换至双刀四掷开关6的第四定端606,第三单刀双掷开关9的活动端903的刀片切换至第三单刀双掷开关9的第一定端901时,第二发射通路可通过第四天线13发射信号,第二接收通路可通过第四天线13接收信号。
可选地,如图3所示,第二发射通路16至少包括:与第四单刀双掷开关17的第一定端1701连接的第二功率放大器1601。第二接收通路3中的第二低噪声放大器301与第四单刀双掷开关17的第二定端1702连接。
可选地,如图2和图3所示,该射频前端电路还包括:功率合成器18(即Power Combiner)。
其中,第一功率放大器101通过第五单刀双掷开关19与功率合成器18连接,第五单刀双掷开关19的活动端1903与第一功率放大器101连接,第五单刀双掷开关19的第一定端1901与第一单刀双掷开关7的第二定端702连接,第五单刀双掷开关19的第二定端1902与功率合成器18的第一输入端1801连接,第二功率放大器与功率合成器18的第二输入端1802连接;功率合成器18的输出端1803与第四单刀双掷开关17的第一定端1701连接。
该实施方式中,在射频前端电路中设置功率合成器18,可以将第一功率放大器101的功率与第二功率放大器1601的功率进行合成,生成更高的功率,以便实现高功率终端(High Power UE,简称HPUE)。
可选地,如图2和图3所示,第三接收通路4至少包括:与第二单刀双掷开关8的第二定端端连接的第三低噪声放大器401。
当第二单刀双掷开关8的活动端803的刀片切换至第二单刀双掷开关8 的第二定端802时,第三接收通路4可通过第三天线12接收信号。
可选的,为了滤除干扰信号,如图2和图3所示,该射频前端电路还包括:第三滤波器20。
该第三滤波器20设置与第三低噪声放大器401与第二单刀双掷开关8之间,具体地,该第三滤波器20分别与第三低噪声放大器401和第二单刀双掷开关8的第二定端连接。
可选地,如图2和图3所示,第四接收通路5至少包括:与第三单刀双掷开关9的第二定端连接的第四低噪声放大器501。
当第三单刀双掷开关9的活动端903的刀片切换至第三单刀双掷开关9的第二定端902时,第四接收通路5可通过第四天线13接收信号。
可选的,为了滤除干扰信号,如图2和图3所示,该射频前端电路还包括:第四滤波器21。
该第四滤波器21设置与第四低噪声放大器501与第三单刀双掷开关9之间,具体地,该第四滤波器21分别与第四低噪声放大器501和第三单刀双掷开关9的第二定端连接。
进一步地,本公开的一些实施例中的射频前端电路设计,可以允许第三低噪声放大器401与第二单刀双掷开关8以及第四低噪声放大器501与第三单刀双掷开关9靠近天线端放置。
由接收机灵敏度计算公式:Sen(dBm)=-174dBm/Hz+NF+10logB+SNR可知,NF越大,接收性能越差,而本公开的一些实施例中,第三低噪声放大器401与第二单刀双掷开关8以及第四低噪声放大器501与第三单刀双掷开关9可以靠近天线端放置,则根据NF的计算公式:NF total=NF 1+(NF 2-1)/G 1+(NF 3-1)/G 1G 2+(NF 4-1)/G 1G 2G 3+…可知,低噪声放大器越靠近天线放置,则G 1越大,G 1越大则NF越小,接收性能越好,因此可以节省RF cable,降低成本,而接收性能也会有很好的改善。
其中,Sen(dBm)表示接收机的灵敏度,NF表示噪声系数,B表示带宽,SNR表示信号比。NF total表示总的噪声系数,NF 1、NF 2、NF 3、NF 4……表示各级的噪声系数,G 1、G 2、G 3……表示各级的低噪声放大器增益。
本公开的一些实施例中提供的射频前端电路,通过一个双刀四掷开关和 两个单刀双掷开关(即第二单刀双掷开关8和第三单刀双掷开关9),实现信号收发路径的切换。本公开的一些实施例中的射频前端电路,不需要再部署图1中虚线所示的线路,线路部署更加紧凑,线路路径更短,降低了线路的插损,且本公开的一些实施例中的射频前端电路,线路连接更加简单,降低了电路设计的复杂度和生产成本。另外,本公开的一些实施例中的射频前端电路,采用双刀四掷开关和单刀双掷开关替换三刀三掷开关的使用,而双刀四掷开关和单刀双掷开关相比于三刀三掷开关,成本更低,且元件插损更小。进一步地双刀四掷开关和单刀双掷开关的隔离度相比三刀三掷开关隔离度更好,因此,还能够更好的隔离发射信号和接收信息,降低发射信号对接收信号的干扰。
更进一步地,本公开的一些实施例中的射频前端电路设计,可以允许第三接收通路4中的器件与第二单刀双掷开关8以及第四接收通路5中的器件与第三单刀双掷开关9靠近天线端放置,提升接收性能,同时还可以节省外界射频线路(即RF cable)的使用,在节省RF cable使用的同时,还可以节省与RF cable配套使用的射频座,降低布局面积和生产成本。
依据本公开的一些实施例的另一个方面,提供了一种移动终端,包括:如上所述的射频前端电路。
可选地,该射频前端电路还包括控制器,该控制器用于控制第一单刀双掷开关7、第二单刀双掷开关8、第三单刀双掷开关9、第四单刀双掷开关17、第五单刀双掷开关19以及双刀四掷开关6的切换。
本公开的一些实施例中提供的移动终端中的射频前端电路,通过一个双刀四掷开关和两个单刀双掷开关(即第二单刀双掷开关8和第三单刀双掷开关9),实现信号收发路径的切换。本公开的一些实施例中的射频前端电路,不需要再部署图1中虚线所示的线路,线路部署更加紧凑,线路路径更短,降低了线路的插损,且本公开的一些实施例中的射频前端电路,线路连接更加简单,降低了电路设计的复杂度和生产成本。另外,本公开的一些实施例中的射频前端电路,采用双刀四掷开关和单刀双掷开关替换三刀三掷开关的使用,而双刀四掷开关6和单刀双掷开关相比于三刀三掷开关,成本更低,且元件插损更小。进一步地双刀四掷开关和单刀双掷开关的隔离度相比三刀 三掷开关隔离度更好,因此,还能够更好的隔离发射信号和接收信息,降低发射信号对接收信号的干扰。
更进一步地,本公开的一些实施例中的射频前端电路设计,可以允许第三接收通路4中的器件与第二单刀双掷开关8以及第四接收通路5中的器件与第三单刀双掷开关9靠近天线端放置,提升接收性能,同时还可以节省外界射频线路(即RF cable)的使用,在节省RF cable使用的同时,还可以节省与RF cable配套使用的射频座,降低布局面积和生产成本。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、 “下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本公开的一些实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本公开的一些实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (13)

  1. 一种射频前端电路,包括:
    第一发射通路、第一接收通路、第二接收通路、第三接收通路、第四接收通路、第一单刀双掷开关、第二单刀双掷开关、第三单刀双掷开关、双刀四掷开关以及第一天线、第二天线、第三天线和第四天线;
    其中,所述双刀四掷开关的第一活动端与所述第一单刀双掷开关的活动端连接,所述第一单刀双掷开关的第一定端和第二定端分别连接所述第一发射通路和所述第一接收通路,所述双刀四掷开关的第二活动端与所述第二接收通路连接,所述双刀四掷开关的第一定端与所述第一天线连接,所述双刀四掷开关的第二定端与所述第二天线连接;
    所述第二单刀双掷开关的第一定端与所述双刀四掷开关的第三定端连接,所述第二单刀双掷开关的第二定端与所述第三接收通路连接,所述第二单刀双掷开关的活动端与所述第三天线连接;
    所述第三单刀双掷开关的第一定端与所述双刀四掷开关的第四定端连接,所述第三单刀双掷开关的第二定端与所述第四接收通路连接,所述第二单刀双掷开关的活动端与所述第四天线连接。
  2. 根据权利要求1所述的射频前端电路,其中,所述第一发射通路至少包括:与所述第一单刀双掷开关的第一定端连接的第一功率放大器;
    所述第一接收通路至少包括:与所述第一单刀双掷开关的第二定端连接的第一低噪声放大器。
  3. 根据权利要求1或2所述的射频前端电路,还包括:第一滤波器,所述第一滤波器分别与所述第一单刀双掷开关的活动端和所述双刀四掷开关的第一活动端连接。
  4. 根据权利要求2所述的射频前端电路,其中,所述第二接收通路至少包括:与所述双刀四掷开关的第二活动端连接的第二低噪声放大器。
  5. 根据权利要求4所述的射频前端电路,还包括:第二滤波器,所述第二滤波器分别与所述第二低噪声放大器和所述双刀四掷开关的第二活动端连接。
  6. 根据权利要求5所述的射频前端电路,还包括:第二发射通路;
    所述第二发射通路和所述第二接收通路通过第四单刀双掷开关和所述第二滤波器连接至所述双刀四掷开关的第二活动端;所述第二滤波器分别与所述第四单刀双掷开关的活动端和所述双刀四掷开关的第二活动端连接。
  7. 根据权利要求6所述的射频前端电路,其中,所述第二发射通路至少包括:与所述第四单刀双掷开关的第一定端连接的第二功率放大器;
    其中,所述第二接收通路中的第二低噪声放大器与所述第四单刀双掷开关的第二定端连接。
  8. 根据权利要求7所述的射频前端电路,还包括:功率合成器;
    所述第一功率放大器通过第五单刀双掷开关与所述功率合成器连接;
    其中,所述第五单刀双掷开关的活动端与所述第一功率放大器连接,所述第五单刀双掷开关的第一定端与所述第一单刀双掷开关的第二定端连接,所述第五单刀双掷开关的第二定端与所述功率合成器的第一输入端连接;
    所述第二功率放大器与所述功率合成器的第二输入端连接;
    所述功率合成器的输出端与所述第四单刀双掷开关的第一定端连接。
  9. 根据权利要求1所述的射频前端电路,其中,所述第三接收通路至少包括:与所述第二单刀双掷开关的第二定端连接的第三低噪声放大器。
  10. 根据权利要求9所述的射频前端电路,还包括:第三滤波器,所述第三滤波器分别与所述第三低噪声放大器和所述第二单刀双掷开关的第二定端连接。
  11. 根据权利要求1所述的射频前端电路,其中,所述第四接收通路至少包括:与所述第三单刀双掷开关的第二定端连接的第四低噪声放大器。
  12. 根据权利要求11所述的射频前端电路,还包括:第四滤波器,所述第四滤波器分别与所述第四低噪声放大器和所述第三单刀双掷开关的第二定端连接。
  13. 一种移动终端,包括:如权利要求1至12任一项所述的射频前端电路。
PCT/CN2020/103318 2019-08-16 2020-07-21 射频前端电路及移动终端 WO2021031771A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022510157A JP7429770B2 (ja) 2019-08-16 2020-07-21 無線周波数フロントエンド回路及び移動端末
BR112022002270A BR112022002270A2 (pt) 2019-08-16 2020-07-21 Circuito front-end de rádio frequência e terminal móvel.
KR1020227004052A KR102629887B1 (ko) 2019-08-16 2020-07-21 무선 주파수 프론트엔드 회로 및 이동 단말
EP20854924.6A EP4016855A4 (en) 2019-08-16 2020-07-21 RADIO FREQUENCY FRONT END CIRCUIT AND MOBILE TERMINAL
AU2020332428A AU2020332428B2 (en) 2019-08-16 2020-07-21 Radio frequency front-end circuit and mobile terminal
CA3151256A CA3151256A1 (en) 2019-08-16 2020-07-21 Radio frequency front-end circuit and mobile terminal
US17/671,851 US11757485B2 (en) 2019-08-16 2022-02-15 Radio frequency front-end circuit and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910757149.7A CN110504982B (zh) 2019-08-16 2019-08-16 一种射频前端电路及移动终端
CN201910757149.7 2019-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/671,851 Continuation US11757485B2 (en) 2019-08-16 2022-02-15 Radio frequency front-end circuit and mobile terminal

Publications (1)

Publication Number Publication Date
WO2021031771A1 true WO2021031771A1 (zh) 2021-02-25

Family

ID=68588187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103318 WO2021031771A1 (zh) 2019-08-16 2020-07-21 射频前端电路及移动终端

Country Status (9)

Country Link
US (1) US11757485B2 (zh)
EP (1) EP4016855A4 (zh)
JP (1) JP7429770B2 (zh)
KR (1) KR102629887B1 (zh)
CN (1) CN110504982B (zh)
AU (1) AU2020332428B2 (zh)
BR (1) BR112022002270A2 (zh)
CA (1) CA3151256A1 (zh)
WO (1) WO2021031771A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504982B (zh) 2019-08-16 2022-01-28 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110890900A (zh) * 2019-11-29 2020-03-17 维沃移动通信有限公司 射频电路及电子设备
CN111277295A (zh) * 2020-01-23 2020-06-12 维沃移动通信有限公司 一种射频前端电路及电子设备
CN111769851B (zh) * 2020-06-28 2022-04-19 深圳市锐尔觅移动通信有限公司 射频装置以及移动终端
CN112886973B (zh) * 2021-01-28 2022-08-26 维沃移动通信有限公司 射频电路及电子设备
CN115529849A (zh) * 2021-04-25 2022-12-27 华为技术有限公司 开关电路、通信装置和终端设备
CN113541725B (zh) * 2021-09-14 2021-12-07 上海豪承信息技术有限公司 一种分集开关组件、射频装置以及通信设备
EP4293921A1 (en) * 2022-05-02 2023-12-20 Samsung Electronics Co., Ltd. Fem comprising switch, and electronic device comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109639311A (zh) * 2018-12-26 2019-04-16 维沃移动通信有限公司 一种信号收发装置和移动终端
WO2019151528A1 (ja) * 2018-02-05 2019-08-08 株式会社村田製作所 高周波フロントエンドモジュールおよび通信装置
CN110504982A (zh) * 2019-08-16 2019-11-26 维沃移动通信有限公司 一种射频前端电路及移动终端

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472952B1 (en) 1998-11-10 2002-10-29 Matsushita Electric Industrial Co., Ltd. Antenna duplexer circuit with a phase shifter on the receive side
EP2421171B1 (en) * 2010-08-17 2015-10-14 Broadcom Corporation WiMAX/WiFi coexistence
CN102545946A (zh) * 2010-12-14 2012-07-04 深圳富泰宏精密工业有限公司 射频前端电路
JP5735863B2 (ja) 2011-06-13 2015-06-17 キヤノン株式会社 無線通信装置、送信方法、及びプログラム
CN206211999U (zh) * 2016-09-06 2017-05-31 珠海市魅族科技有限公司 时分双工***的射频电路及移动终端
CN106656248A (zh) * 2016-11-28 2017-05-10 维沃移动通信有限公司 一种天线切换装置和移动终端
US10211860B2 (en) * 2016-12-13 2019-02-19 Skyworks Solutions, Inc. Apparatus and methods for front-end systems with reactive loopback
US10165513B1 (en) * 2017-12-13 2018-12-25 OctoTech, Inc. Transmit wake-up architectures in RF front-ends
US11088720B2 (en) * 2017-12-20 2021-08-10 Murata Manufacturing Co., Ltd. High-frequency module
CN108462506B (zh) * 2018-03-16 2020-06-23 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108923791B (zh) * 2018-06-29 2020-09-25 Oppo广东移动通信有限公司 多路选择开关及相关产品
CN109039345B (zh) * 2018-06-29 2021-05-04 Oppo广东移动通信有限公司 多路选择开关及相关产品
CN109274397B (zh) 2018-11-30 2020-09-29 维沃移动通信有限公司 一种射频结构及终端设备
CN109490757A (zh) * 2018-12-04 2019-03-19 深圳市万普拉斯科技有限公司 无线射频电路、电子设备及测试***
CN109873664B (zh) * 2019-03-22 2021-01-08 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110011691A (zh) * 2019-03-29 2019-07-12 联想(北京)有限公司 电子设备及用于电子设备的通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151528A1 (ja) * 2018-02-05 2019-08-08 株式会社村田製作所 高周波フロントエンドモジュールおよび通信装置
CN109639311A (zh) * 2018-12-26 2019-04-16 维沃移动通信有限公司 一种信号收发装置和移动终端
CN110504982A (zh) * 2019-08-16 2019-11-26 维沃移动通信有限公司 一种射频前端电路及移动终端

Also Published As

Publication number Publication date
CN110504982B (zh) 2022-01-28
CA3151256A1 (en) 2021-02-25
US11757485B2 (en) 2023-09-12
JP7429770B2 (ja) 2024-02-08
AU2020332428B2 (en) 2023-06-22
JP2022545409A (ja) 2022-10-27
AU2020332428A1 (en) 2022-04-07
KR102629887B1 (ko) 2024-01-25
EP4016855A4 (en) 2022-10-19
CN110504982A (zh) 2019-11-26
US20220173764A1 (en) 2022-06-02
KR20220031674A (ko) 2022-03-11
BR112022002270A2 (pt) 2022-04-19
EP4016855A1 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
WO2021031771A1 (zh) 射频前端电路及移动终端
CN109861735B (zh) 一种射频前端电路及移动终端
WO2021031713A1 (zh) 射频前端电路及移动终端
WO2020192527A1 (zh) 射频前端电路及移动终端
JP7271706B2 (ja) 無線周波数フロントエンド回路及び移動端末
CN108880602B (zh) 多路选择开关以及相关产品
JP2021503223A (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
KR20200096618A (ko) 멀티 웨이 스위치, 무선 주파수 시스템 및 무선 통신 장치
JP2021507611A (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
WO2022001746A1 (zh) 射频电路及电子设备
WO2020220886A1 (zh) 射频装置及终端设备
JP2021510040A (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
JP2021506171A (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
WO2021147279A1 (zh) 射频前端电路及电子设备
CN110545112A (zh) 一种天线切换电路及终端
CN212324099U (zh) 射频电路和电子设备
RU2791910C1 (ru) Высокочастотная схема входного каскада и мобильный терминал
RU2784458C1 (ru) Радиочастотная входная схема и мобильный терминал
CN116388793A (zh) 射频前端电路和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227004052

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3151256

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022002270

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022510157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854924

Country of ref document: EP

Effective date: 20220316

ENP Entry into the national phase

Ref document number: 2020332428

Country of ref document: AU

Date of ref document: 20200721

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022002270

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220207