WO2016184271A1 - 一种天线切换装置 - Google Patents

一种天线切换装置 Download PDF

Info

Publication number
WO2016184271A1
WO2016184271A1 PCT/CN2016/078823 CN2016078823W WO2016184271A1 WO 2016184271 A1 WO2016184271 A1 WO 2016184271A1 CN 2016078823 W CN2016078823 W CN 2016078823W WO 2016184271 A1 WO2016184271 A1 WO 2016184271A1
Authority
WO
WIPO (PCT)
Prior art keywords
diversity
antenna
switch
dpdt switch
main set
Prior art date
Application number
PCT/CN2016/078823
Other languages
English (en)
French (fr)
Inventor
李伟
Original Assignee
乐视控股(北京)有限公司
乐视移动智能信息技术(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐视控股(北京)有限公司, 乐视移动智能信息技术(北京)有限公司 filed Critical 乐视控股(北京)有限公司
Publication of WO2016184271A1 publication Critical patent/WO2016184271A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas

Definitions

  • Embodiments of the present invention relate to the field of communication devices, and in particular, to an antenna switching device.
  • mobile phones are developing in the direction of multi-function, miniaturization and low radiation loss.
  • the performance of mobile phone antennas receiving electromagnetic waves directly determines the performance of mobile phone radiation receiving electromagnetic wave signals and affects the communication capabilities of mobile phones.
  • the diversity technique is usually adopted in the design of the mobile phone to improve the correct decision rate of the signal to resist the adverse effects caused by signal fading.
  • the main set antenna is responsible for the transmission and reception of the RF signal;
  • the diversity antenna is only responsible for receiving the signal without transmitting, and the receiving opportunity combines the signals received from the two interfaces to obtain the diversity gain.
  • the main set antenna and the diversity antenna the two are often placed at different positions and the distance is far.
  • the DPDT (Double Pole Double Throw) switch is usually used to implement the function conversion of the main set antenna and the diversity antenna in some cases, in order to ensure the mobile phone launch.
  • Power DPDT switches are generally placed on the main antenna RF signal transmission path.
  • the main set antenna and the diversity antenna are relatively far apart in position, so the diversity antenna needs to use two signal lines to realize the connection of the diversity antenna and the DPDT switch, and the DPDT switch is connected with the diversity switch. Because of the potential difference between the diversity antenna and the DPDT switch, When the signal passes through the two signal lines, the insertion loss of the two signal lines is generated.
  • the diversity signal needs to pass through two signal lines to enter the diversity switch, which increases the insertion loss at the front end of the receiver, resulting in lower sensitivity of the received signal of the mobile phone.
  • FIG. 1 is a schematic diagram of a conventional linear connection operation of an antenna using a DPDT switch.
  • Figure 2 is Schematic diagram of the conventional cross-connect operation of antennas using DPDT switches.
  • a DPDT switch is generally disposed on the radio frequency signal transmission path of the main set antenna. At this time, the main set antenna and the diversity antenna share one DPDT switch.
  • FIG. 3 is a schematic illustration of the mode of operation without the use of a DPDT switch.
  • the DPDT switch is not set on the transmission path of the radio frequency signal.
  • the main set signal directly enters through the DPDT switch.
  • the diversity signal needs to be transmitted from the mobile phone's diversity antenna to the DPDT switch through a signal line, and then transmitted to the diversity switch through a signal line, which will cause the diversity signal to pass through two additional signal lines.
  • the insertion loss of the front end of the receiver is increased, and the radiation efficiency is lowered, resulting in a decrease in the sensitivity of the receiving signal of the mobile phone antenna, which affects the user's experience when using the mobile phone.
  • the prior art solution has a problem that the front end of the receiver has large insertion loss and the radiation efficiency is lowered. Therefore, it is necessary to propose improved technical means to solve the above problems.
  • the present invention provides an antenna switching device, which can reduce the insertion loss of the front end of the mobile phone antenna, improve the performance of the mobile phone antenna, and improve the sensitivity of the mobile phone antenna.
  • An embodiment of the present invention provides an antenna switching apparatus, which is used for a path composed of two front-end antennas and two back-end links, where the front-end antenna includes a diversity antenna and a main set antenna, and the back-end link includes The sub-link and the main link, the antenna switching device includes:
  • the switch matrix includes a first switch and a second switch; one end of the first switch is used to connect one of the diversity antenna and the main set antenna, and the other end of the first switch is in the Switching between the link and the primary link, one end of the second switch is connected to the other of the diversity antenna and the primary antenna, and the other end of the second switch is in the sub-link and the primary link Switch between
  • control circuit module respectively establishing a path of the main set antenna to the main link and a pass of the diversity antenna to the sub-link by controlling the first switch and the second switch Road back link.
  • An antenna switching apparatus provides a DPDT switch matrix on a radio frequency signal transmission path between an antenna and a back-end link, which is directly connected to the antenna in a conventional manner in which the DPDT switch is directly connected.
  • the working mode of the connection solves the problem that the traditional mobile phone diversity antenna needs to pass through a plurality of signal lines when transmitting the diversity signal, and the radiation loss efficiency is reduced due to the transmission of the plurality of transmission signal lines, thereby effectively reducing the radiation efficiency of the receiver.
  • the signal line through which the diversity signal passes when the direct connection mode of the antenna is reduced reduces the front end insertion loss of the receiver, improves the performance of the mobile phone antenna, and improves the sensitivity of the signal received by the mobile phone antenna, thereby greatly improving the user experience.
  • FIG. 1 is a schematic view showing a working manner of a straight line connection of an antenna conventionally using a DPDT switch in the prior art
  • FIG. 2 is a schematic diagram of an antenna cross-connect operation mode conventionally using a DPDT switch in the prior art
  • FIG. 3 is a schematic diagram of an antenna working mode in which a DPDT switch is not used in the prior art
  • Figure 4 is a schematic structural view of an apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an antenna linear connection working mode using a switch matrix according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an antenna cross-connect operation mode using a switch matrix according to an embodiment of the present invention.
  • Figure 7 is a schematic illustration of a single mode operation of a switch matrix in accordance with another embodiment of the present invention.
  • 311 the main set signal receiving the import end
  • 312 the main set signal receiving the output end
  • 313 the first set of the main set; 314: the second set of the main set; 315: the first exit end of the main set;
  • 322 diversity signal receiving and exiting end; 323: diversity first knife; 324: diversity second knife;
  • 325 diversity first exit endpoint
  • 326 diversity second exit endpoint
  • 50 single-pole switch matrix
  • 51 single-pole first switch
  • 52 single-pole second switch matrix
  • 511 a single-pole main set signal receiving an input end
  • 512 a single-pole main set signal receiving an output end
  • 513 a single knife main set first knife
  • 515 a single knife main set first exit end point
  • 516 the second exit end of the single-pole main set
  • 521 the single-pole diversity signal receives the input end
  • 522 single-pole diversity signal receiving outlet end; 523: single-pole diversity first knife; 525: single-pole diversity first exit end point; 526: single-pole diversity second exit end point.
  • the main idea of the embodiment of the present invention is to provide a switch matrix on a radio frequency signal transmission path between an antenna and a back-end link according to the technical solution of the embodiment of the present invention, by controlling a first switch and a second switch in the switch matrix.
  • the paths from the main set antenna to the main set switch and the diversity antenna to the diversity switch are respectively established.
  • the apparatus includes an antenna 10, a back end link 20, and a switch matrix.
  • the antenna 10 includes a main set antenna 11 and a diversity antenna 12.
  • the main set antenna 11 is for receiving and transmitting signals; the diversity antenna 12 is for receiving signals.
  • the back-end link 20 includes a main link (described for convenience of the following main set switch 21) and a sub-link (described for convenience of the following description by the diversity switch 22), and the main set switch 21 and the diversity switch 22 are respectively connected to the back-end radio frequency. link.
  • the switch matrix includes a first switch and a second switch.
  • One end of the first switch is connected to the main set antenna 11 , and the other end of the first switch may be connected to the main set switch 21 or may be connected to the diversity switch 22 .
  • the end of the first switch is between the main set switch 21 and the diversity switch 22 .
  • Switching, one end of the second switch is connected to the diversity antenna 12, and the other end of the second switch can be connected to the main set switch 21, or can be connected to the extension switch 22, and the end of the second switch is in the main set switch 21 and the diversity switch 22 Switch between.
  • the control circuit module 40 can establish a path of the main set antenna 11 to the main set switch 21 and a path of the diversity antenna 12 to the diversity switch 22 by controlling the first switch and the second switch of the switch matrix, respectively.
  • the switch matrix is a DPDT switch matrix 30
  • the first switch is a first DPDT switch 31
  • the second switch is a second DPDT switch 32.
  • the DPDT switch matrix 30 facilitates quick and easy change of a signal transmission path. It is convenient for the control circuit module 40 to implement control.
  • the first DPDT switch 31 includes a main set signal receiving inlet end 311 and a main set signal receiving outlet end 312, wherein the main set antenna 11 is in the path of the main set switch 21, the first DPDT switch 31 and the main set antenna 11 The connected end of the main set signal receiving inlet end 311, the first DPDT switch 31 and the main set switch 21 connected to the main set signal receiving outlet end 312;
  • the second DPDT switch 32 includes a diversity signal receiving inlet end 321 and a diversity signal receiving and outputting end 322, wherein the diversity antenna 12 is connected to the path of the diversity switch 22, and the end of the second DPDT switch 32 connected to the diversity antenna 12 is a diversity signal receiving inlet. At one end 321 , one end of the second DPDT switch 32 connected to the diversity switch 22 is a diversity signal receiving and outputting end 322 .
  • the main set signal receiving inlet end 311 of the first DPDT switch 31 includes two knives and the main set signal receiving outlet end 312 is provided with two outlet end points.
  • the first DPDT switch 31 is provided with a main set first blade 313 and a main set second blade 314, and the main set signal receiving outlet end 312 of the first DPDT switch 31 includes a main set first exit end point 315 and a main set second exit End point 316;
  • the diversity signal receiving inlet 321 of the second DPDT switch 32 includes two blades and a diversity signal receiving outlet end 322 is provided with two outlet terminals.
  • the second DPDT switch 32 is provided with a diversity first knife 323 and a diversity second knife 324, and the diversity signal receiving outlet end 322 of the second DPDT switch 32 includes a diversity first outlet end point 325 and a diversity second exit end point 326;
  • the main set first blade 313 of the first DPDT switch 31 is in communication with the main set first exit terminal 315 of the first DPDT switch 31, and the main set of the first DPDT switch 31 is the second blade 314 and the main of the first DPDT switch 31.
  • the second outlet end point 316 is connected to communicate, and the signal collected by the main set antenna 11 passes through the first DPDT switch 31 to enter the main set switch 21; the diversity of the second DPDT switch 32 is first and the diversity of the second DPDT switch 32 is first.
  • the outlet end point 325 is in communication, the diversity second knife 324 of the second DPDT switch 32 is in communication with the diversity second outlet end point 326 of the second DPDT switch 32, and the signal collected by the diversity antenna 12 passes through the second DPDT switch 32 to the diversity switch 22.
  • the DPDT switch is generally placed in the RF signal transmission path of the main antenna in order to ensure the transmission power of the mobile phone.
  • the main set antenna and the diversity antenna are relatively far apart in position, so the diversity antenna needs to use two signal lines to realize the connection of the diversity antenna and the DPDT switch, and the DPDT switch is connected with the diversity switch. Because of the potential difference between the diversity antenna and the DPDT switch, When the signal passes through the two signal lines, the insertion loss of the two signal lines is generated.
  • the diversity signal needs to go through two signal lines and a DPDT switch, and then enter the diversity switch.
  • the insertion loss value of one signal line is 0.9dB, and the insertion loss value of a DPDT switch is 0.5dB, so the traditional DPDT switch is used for direct connection work.
  • the main set signal enters the main set switch through a DPDT switch
  • the insertion loss value of the main set signal transmission is 0.5 dB
  • the main set signal collected by the main set antenna enters the main set switch through the first DPDT switch, and the insertion loss value of the main set signal transmission is 0.5 dB.
  • the diversity signal collected by the diversity antenna does not need to pass through the first DPDT switch and then fold back to the diversity switch, so that the diversity signal does not need to pass the redundant Two signal lines, compared with only one DPDT solution, reduce the front-end insertion loss of the two signal lines by 1.8dB, and the receiving sensitivity of the mobile phone can also be optimized by 1.8dB.
  • FIG. 6 is a schematic diagram of an antenna cross-connect operation using a switch matrix in accordance with an embodiment of the present invention.
  • control circuit module 40 also establishes a path of the main set antenna 11 to the diversity switch 22 and a path of the diversity antenna 12 to the main set switch 21 by controlling the first DPDT switch 31 and the second DPDT switch 32, respectively.
  • one end of the first DPDT switch 31 connected to the main set antenna 11 is a main set signal receiving inlet end 311, and the other end of the first DPDT switch 31 is a main set signal receiving.
  • one end of the second DPDT switch 32 connected to the diversity antenna 12 is a diversity signal receiving inlet end 321, and the other end of the second DPDT switch 32 is a diversity signal receiving and outputting end 322, and the main set signal receiving of the first DPDT switch 31 is received.
  • Outlet end 312 and second DPDT switch The diversity signal receiving input end 32 of 32 is coupled;
  • the diversity antenna 12 is connected to the path of the main set switch 21, the end of the second DPDT switch 32 connected to the diversity antenna 12 is a diversity signal receiving inlet end 321 , and the other end of the second DPDT switch 32 is a diversity signal receiving and outputting end 322, first One end of the DPDT switch 31 connected to the main set antenna 11 is a main set signal receiving inlet end 311, the other end of the first DPDT switch 31 is a main set signal receiving and outputting end 312, and the diversity signal receiving end 322 of the second DPDT switch 32 is The main set signal receiving inlet end 311 of the first DPDT switch 31 is coupled.
  • the main set signal receiving inlet end 311 of the first DPDT switch 31 includes a main set first blade 313 and a main set second blade 314, and the main set signal receiving exit end 312 of the first DPDT switch 31 includes a main set An exit endpoint 315 and a primary set second exit endpoint 316;
  • the diversity signal receiving inlet 321 of the second DPDT switch 32 includes a diversity first knife 323 and a diversity second knife 324, and the diversity signal receiving outlet 322 of the second DPDT switch 32 includes a diversity first outlet terminal 325 and a diversity second Exit endpoint 326;
  • the main set first blade 313 of the first DPDT switch 31 is in communication with the main set second exit terminal 316 of the first DPDT switch 31, and the main set of the first DPDT switch 31 is the second blade 314 and the main of the first DPDT switch 31.
  • the first outlet end point 315 is in communication
  • the diversity first gate 323 of the second DPDT switch 32 is in communication with the diversity second outlet end point 326 of the second DPDT switch 32
  • the second DPDT switch 32 is divided into a second knife 324 and a second
  • the diversity first exit terminal 325 of the DPDT switch 32 is in communication, and the signal collected by the main set antenna 11 passes through the first DPDT switch 31, the connection between the first DPDT switch 31 and the second DPDT switch 32, and the second DPDT switch 32 enters
  • the diversity switch 22 the signal collected by the diversity antenna 12 passes through the connection between the second DPDT switch 32, the second DPDT switch 32 and the first DPDT switch 31, and the first DPDT switch 31 enters the main set switch 21.
  • the antenna cross-connection working mode using the DPDT switch matrix in the embodiment of the present invention can save the function of the diversity signal collected by the diversity antenna on the main set signal, and can also pass the control circuit in the case of external interference of the host antenna.
  • the module performs function switching of the main set antenna and the diversity antenna to maintain the sensitivity of the mobile phone signal and enhance the user experience.
  • the control circuit module 40 detects the main set antenna 11 The difference between the collected main set signal and the diversity signal collected by the diversity antenna 12 at the same time, when the difference exceeds the defined threshold, by switching the main set of the first DPDT switch 31, the first blade 313 and the main set second gate
  • the connection point of the knife 314, the diversity first gate 323 of the second DPDT switch 32, and the connection point of the diversity second blade 324 establish the path of the main set antenna 11 to the diversity switch 22 and the diversity antenna 12 to the main set switch 21, respectively. Pathway.
  • control circuit module 40 establishes the path of the main set antenna 11 to the main set switch 21 and the path of the diversity antenna 12 to the diversity switch 22 by controlling the first DPDT switch 31 and the second DPDT switch 32 by default.
  • the direct connection line of the main set antenna is the transmission path of the main signal collection and transmission of the mobile phone.
  • the functions of the main set antenna and the diversity antenna are switched by the control circuit to maintain the signal sensitivity of the mobile phone.
  • FIG. 7 Another embodiment is implemented by adjusting the switch matrix, as shown in FIG. 7 as follows:
  • the apparatus includes an antenna 10, a back end link 20, and a single pole switch matrix 50.
  • the antenna 10 includes a main set antenna 11 and a diversity antenna 12.
  • the main set antenna 11 is for receiving and transmitting signals; the diversity antenna 12 is for receiving signals.
  • the back end link 20 includes a main set switch 21 and a diversity switch 22, and the main set switch 21 and the diversity switch 22 are respectively connected to the back end radio frequency link.
  • the control circuit module 40 controls the path of the main set antenna 11 to the main set switch 21 and the path of the diversity antenna 12 to the diversity switch 22 by controlling the single-pole first switch and the single-pole second switch, respectively.
  • the single-pole switch matrix 50 includes a single-pole first switch 51 and a single-pole second switch 52.
  • the single-pole switch matrix 50 facilitates quick and easy change of the signal transmission path, and facilitates control circuit module 40 to achieve control.
  • the single-pole first switch 51 includes a single-pole main set signal receiving inlet end 511 and a single-pole main set signal receiving and outputting end 512, wherein the single-pole main set signal receiving inlet end 511 includes a single-pole main set first guillotine 513, and a single-pole main set signal
  • the receiving outlet end 512 includes a single pole main set first exit end point 515 and a single pole main set second exit end point 516.
  • the single-pole second switch 52 includes a single-pole diversity signal receiving inlet end 521 and a single-pole diversity signal receiving and outputting end 522, wherein the single-pole diversity signal receiving inlet end 521 includes a single-pole diversity first blade 523, and the single-pole diversity signal receiving and outputting end 522 A single knife diversity first exit endpoint 525 and a single knife diversity second exit endpoint 526 are included.
  • the single-pole main set first blade 513 When the single-pole main set first blade 513 is connected to the single-pole main set first exit end point 515, and the single-pole diversity first blade 523 is connected to the single-pole diversity first exit end point 525, the main set antenna 11 and the main set antenna 21 are directly connected, and the diversity antenna is 12 is directly connected to the diversity antenna 22, and the antenna 10 is in the direct communication mode of the antenna.
  • the diversity signal collected by the diversity antenna does not need to pass through the first DPDT switch and then fold back to the diversity switch, so that the diversity signal There is no need to pass the extra two signal lines, and the front end insertion loss of the two signal lines is reduced by 1.8 dB, and the receiving sensitivity of the mobile phone can also be optimized by 1.8 dB.
  • the single-pole main set first blade 513 When the single-pole main set first blade 513 is connected to the single-pole main set second exit end point 516, and the single-pole diversity first blade 523 is connected to the single-pole diversity second exit end point 526, the main set antenna 11 and the diversity antenna 22 are in cross-connection, and the diversity antenna 12 is connected.
  • the antenna 10 is in cross-connect with the main antenna 21, and the antenna 10 is in an antenna cross-connect mode.
  • the control circuit module performs function switching of the main set antenna and the diversity antenna to maintain the sensitivity of the mobile phone signal and enhance the user. The experience of using.
  • the DPDT switch matrix on the radio frequency signal transmission path between the antenna and the back end link, not only the function of supplementing the diversity signal collected by the diversity antenna to the main set signal is retained.
  • the function of the main set antenna and the diversity antenna can be switched through the control circuit module, the sensitivity of the mobile phone signal is maintained, and the user experience is enhanced, thereby solving the direct connection of the traditional mobile phone diversity antenna.
  • the transmission diversity signal needs to pass through a plurality of signal lines, and the invention effectively reduces the working mode of the direct connection of the antenna due to the problem that the front end of the receiver has large insertion loss and the radiation efficiency is reduced after passing through a plurality of transmission signal lines.
  • the signal line through which the signal is time-divided reduces the front-end insertion loss of the receiver.
  • the performance of the mobile phone antenna is improved, and the sensitivity of the signal received by the mobile phone antenna is improved, thereby greatly improving the user experience.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例提供了一种天线切换装置,包括:开关矩阵,所述开关矩阵包括第一开关和第二开关;所述第一开关的一端用于连接分集天线和主集天线中的一个,所述第一开关的另一端在分链路和主链路之间切换,所述第二开关的一端连接分集天线和主集天线中的另一个,所述第二开关的另一端在分链路和主链路之间切换;控制电路模块,所述控制电路模块通过控制所述第一开关、所述第二开关分别建立所述主集天线到主链路的通路及所述分集天线到分链路的通路。本发明有效地减少了在天线直接连接的工作方式时分集信号所经过的信号线,降低了接收机的前端插损,提高了手机天线的性能,提高了手机天线接收信号的灵敏度。

Description

一种天线切换装置
交叉引用
本申请引用于2015年5月20日递交的名称为“一种天线切换装置”的第201510259717.2号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明实施例涉及通信装置领域,尤其涉及一种天线切换装置。
背景技术
目前,手机正朝着多功能,小型化、低辐射损耗的方向发展,手机天线接收电磁波的性能直接决定手机辐射接收电磁波信号的性能,影响手机的通讯能力。
由于信号在传播过程中会发生衰减,所以在手机设计的时候通常采用分集技术,提高信号正确判决率,来抵抗信号衰落引起的不良影响。在手机上设置主集天线和分集天线。主集天线,负责射频信号的发送和接收;分集天线,只负责接收信号而不发送,接收机会把从两个接口收到的信号进行合并处理,从而获得分集增益。考虑到主集天线和分集天线的不同作用,二者往往被设置在不同的位置,且距离较远。
在目前的手机堆叠方案下,通常会使用DPDT(Double Pole Double Throw,双刀双掷)开关的工作方式来实现在某种情况下,使主集天线和分集天线的功能转换,为了保证手机发射功率,DPDT开关一般放在主天线射频信号传输路径上。主集天线和分集天线在位置上相对距离较远,所以分集天线需要使用两根信号线来实现分集天线与DPDT开关连接,DPDT开关与分集开关连接,由于分集天线和DPDT开关之间存在电势差,这样信号经过两条信号线时就产生了两条信号线的插损。在天线直连时,分集信号需要多经过两条信号线才会进入分集开关,这样会增加了接收机前端插损,导致降低手机接收信号灵敏度。
图1是传统使用DPDT开关的天线直线连接工作方式的示意图。图2是 传统使用DPDT开关的天线交叉连接工作方式的示意图。如图1和图2所示,在目前的手机堆叠方案下,在天线直接连接工作或交叉连接工作时,为了保证手机发射功率,一般在主集天线的射频信号传输路径上设置一个DPDT开关,此时主集天线和分集天线共用一个DPDT开关。
图3是未使用DPDT开关的工作方式的示意图。如图3所示,在该工作方式下,射频信号的传输路径上未设置DPDT开关。图3与图1、图2所示的工作方式相比较,可以看到在传统使用DPDT开关的天线连接工作方式下,尤其是在天线直线连接的工作方式时,主集信号直接通过DPDT开关进入到主集开关,而分集信号需要从手机的分集天线经过一条信号线传输到DPDT开关,然后再经过一条信号线传输到分集开关,这样将导致分集信号要额外经过两根信号线,这样走线会导致接收机前端插损增加,辐射效率降低,导致手机天线接收信号灵敏度下降,影响用户在使用手机时的体验。
综上,现有技术方案存在接收机前端插损大,辐射效率降低的问题。因此,有必要提出改进的技术手段解决上述问题。
发明内容
针对现有技术方案存在的问题,本发明实施例提供一种天线切换装置,可以实现在现有天线基础上,降低手机天线前端插损,提高手机天线的性能,提高手机天线灵敏度。
本发明实施例提供一种天线切换装置,用于由两个前端天线和两个后端链路组成的通路,其中,所述前端天线包括分集天线和主集天线,所述后端链路包括分链路和主链路,所述天线切换装置包括:
开关矩阵,所述开关矩阵包括第一开关和第二开关;所述第一开关的一端用于连接所述分集天线和主集天线中的一个,所述第一开关的另一端在所述分链路和主链路之间切换,所述第二开关的一端连接所述分集天线和主集天线中的另一个,所述第二开关的另一端在所述分链路和主链路之间切换;
控制电路模块,所述控制电路模块通过控制所述第一开关、所述第二开关分别建立所述主集天线到主链路的通路及所述分集天线到分链路的通 路后端链路。
根据本发明实施例提供的一种天线切换装置,通过在天线和后端链路之间的射频信号传输路径上设置DPDT开关矩阵,与传统使用DPDT开关直接连接的工作方式相比,在天线直接连接的工作方式时解决了传统手机分集天线传输分集信号时需要经过多条信号线,由于经过多条传输信号线从而导致接收机前端插损大,辐射效率降低的问题,本发明实施例有效地减少了天线直接连接的工作方式时分集信号所经过的信号线,降低了接收机的前端插损,提高了手机天线的性能,提高了手机天线接收信号的灵敏度,从而大大提升用户体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中传统使用DPDT开关的天线直线连接工作方式的示意图;
图2为现有技术中传统使用DPDT开关的天线交叉连接工作方式的示意图;
图3为现有技术中未使用DPDT开关的天线工作方式的示意图;
图4为本发明的一个实施例装置的结构示意图;
图5为本发明的一个实施例使用开关矩阵的天线直线连接工作方式的示意图;
图6为本发明的一个实施例使用开关矩阵的天线交叉连接工作方式的示意图;
图7为本发明的另一个实施例使用开关矩阵的单刀模式工作方式的示意图。
附图标记:
10:天线;11:主集天线;12:分集天线;
20:后端链路;21:主集开关;22:分集开关;
30:DPDT开关矩阵;31:第一DPDT开关;32:第二DPDT开关;
311:主集信号接收进口端;312:主集信号接收出口端;
313:主集第一闸刀;314:主集第二闸刀;315:主集第一出口端点;
316:主集第二出口端点;321:分集信号接收进口端;
322:分集信号接收出口端;323:分集第一闸刀;324:分集第二闸刀;
325:分集第一出口端点;326:分集第二出口端点;
40:控制电路模块;
50:单刀开关矩阵;51:单刀第一开关;52:单刀第二开关矩阵;
511:单刀主集信号接收进口端;512:单刀主集信号接收出口端;
513:单刀主集第一闸刀;515:单刀主集第一出口端点;
516:单刀主集第二出口端点;521:单刀分集信号接收进口端;
522:单刀分集信号接收出口端;523:单刀分集第一闸刀;525:单刀分集第一出口端点;526:单刀分集第二出口端点。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的主要思想在于,根据本发明实施例的技术方案,在天线和后端链路之间的射频信号传输路径上设置开关矩阵,通过控制开关矩阵中的第一开关、第二开关分别建立主集天线到主集开关的通路及分集天线到分集开关的通路。
为使本发明的目的、技术方案和优点更加清楚,以下结合附图及具体实施例,对本发明作进一步地详细说明。
图4是根据本发明实施例的使用开关矩阵的天线直线连接工作方式的示意图。如图5所示,根据本发明的实施例,该装置包括天线10、后端链路20和开关矩阵。
天线10包括主集天线11和分集天线12。主集天线11用于接收和发射信号;分集天线12用于接收信号。
后端链路20包括主链路(为了方便以下用主集开关21进行描述)和分链路(为了方便以下用分集开关22进行描述),主集开关21和分集开关22分别连接后端射频链路。
开关矩阵包括第一开关和第二开关。第一开关的一端连接主集天线11,第一开关的另一端可以连接在主集开关21,也可以连接在分集开关22,第一开关的该端在主集开关21和分集开关22之间切换,第二开关的一端连接分集天线12,第二开关的另一端可以连接在主集开关21,也可以连接在分机开关22,第二开关的该端在主集开关21和分集开关22之间切换。
控制电路模块40可以通过控制开关矩阵的第一开关、第二开关分别建立主集天线11到主集开关21的通路以及分集天线12到分集开关22的通路。
图5是根据本发明实施例的使用开关矩阵的天线直线连接工作方式的示意图。如图5所示,优选地,开关矩阵为DPDT开关矩阵30,第一开关为第一DPDT开关31,第二开关为第二DPDT开关32,DPDT开关矩阵30便于快速便捷地改变信号的传输路径,便于控制电路模块40实现控制。
优选地,第一DPDT开关31包括主集信号接收进口端311和主集信号接收出口端312,其中,主集天线11到主集开关21的通路中,第一DPDT开关31与主集天线11连接的一端为主集信号接收进口端311,第一DPDT开关31与主集开关21连接的一端为主集信号接收出口端312;
第二DPDT开关32包括分集信号接收进口端321和分集信号接收出口端322,其中,分集天线12到分集开关22的通路中,第二DPDT开关32与分集天线12连接的一端为分集信号接收进口端321,第二DPDT开关32与分集开关22连接的一端为分集信号接收出口端322。
优选地,第一DPDT开关31的主集信号接收进口端311包括两个闸刀和主集信号接收出口端312处设置两个出口端点。第一DPDT开关31设有主集第一闸刀313和主集第二闸刀314,第一DPDT开关31的主集信号接收出口端312包括主集第一出口端点315和主集第二出口端点316;
第二DPDT开关32的分集信号接收进口端321包括两个闸刀和分集信号接收出口端322处设置两个出口端点。第二DPDT开关32设有分集第一闸刀323和分集第二闸刀324,第二DPDT开关32的分集信号接收出口端322包括分集第一出口端点325和分集第二出口端点326;
第一DPDT开关31的主集第一闸刀313与第一DPDT开关31的主集第一出口端点315连通,第一DPDT开关31的主集第二闸刀314与第一DPDT开关31的主集第二出口端点316连通,主集天线11收集的信号经过第一DPDT开关31进入到主集开关21;第二DPDT开关32的分集第一闸刀323与第二DPDT开关32的分集第一出口端点325连通,第二DPDT开关32的分集第二闸刀324与第二DPDT开关32的分集第二出口端点326连通,分集天线12收集的信号经过第二DPDT开关32进入到分集开关22。
如图1所示,传统使用DPDT开关的天线直接连接的工作方式,为了保证手机发射功率,DPDT开关一般放在主天线射频信号传输路径上。主集天线和分集天线在位置上相对距离较远,所以分集天线需要使用两根信号线来实现分集天线与DPDT开关连接,DPDT开关与分集开关连接,由于分集天线和DPDT开关之间存在电势差,这样信号经过两条信号线时就产生了两条信号线的插损。分集信号需要经过两根信号线和一个DPDT开关,然后进入到分集开关,一根信号线的插损值为0.9dB,一个DPDT开关的插损值为0.5dB,这样传统使用DPDT开关直接连接工作方式,分集信号传输时的插损值为:0.9+0.5+0.9=2.3bB,主集信号经过一个DPDT开关进入主集开关,主集信号传输时的插损值为:0.5dB,主集和分集信号传输时总的插损值为2.3+0.5=2.8dB。如图4所示,手机在本发明天线直接连接工作方式的场景下,主集天线收集的主集信号通过第一DPDT开关进入主集开关,主集信号传输时的插损值为:0.5dB。分集信号通过第二DPDT开关进入分集开关,分集信号传输时的插损值为:0.5dB,主集和分集信号传输时总的插损值为0.5+0.5=1.0dB。相比传统使用DPDT开关的天线直接连接的工作方式,在手机正常收集信号的时候,分集天线收集的分集信号不需要通过第一DPDT开关后再折返回分集开关,这样分集信号不需要通过多余的两条信号线,相比只有一个DPDT的方案,减少了两条信号线的前端插损1.8dB,手机接收灵敏度也能够优化1.8dB。
图6是根据本发明实施例的使用开关矩阵的天线交叉连接工作方式的示意图。
优选地,控制电路模块40还通过控制第一DPDT开关31、第二DPDT开关32分别建立主集天线11到分集开关22的通路及分集天线12到主集开关21的通路。
优选地,主集天线11到分集开关22的通路中,第一DPDT开关31与主集天线11连接的一端为主集信号接收进口端311,第一DPDT开关31的另一端为主集信号接收出口端312,第二DPDT开关32与分集天线12连接的一端为分集信号接收进口端321,第二DPDT开关32的另一端为分集信号接收出口端322,第一DPDT开关31的主集信号接收出口端312与第二DPDT开关 32的分集信号接收进口端321相耦接;
分集天线12到主集开关21的通路中,第二DPDT开关32与分集天线12连接的一端为分集信号接收进口端321,第二DPDT开关32的另一端为分集信号接收出口端322,第一DPDT开关31与主集天线11连接的一端为主集信号接收进口端311,第一DPDT开关31的另一端为主集信号接收出口端312,第二DPDT开关32的分集信号接收出口端322与第一DPDT开关31的主集信号接收进口端311相耦接。
优选地,第一DPDT开关31的主集信号接收进口端311包括主集第一闸刀313和主集第二闸刀314,第一DPDT开关31的主集信号接收出口端312包括主集第一出口端点315和主集第二出口端点316;
第二DPDT开关32的分集信号接收进口端321包括分集第一闸刀323和分集第二闸刀324,第二DPDT开关32的分集信号接收出口端322包括分集第一出口端点325和分集第二出口端点326;
第一DPDT开关31的主集第一闸刀313与第一DPDT开关31的主集第二出口端点316连通,第一DPDT开关31的主集第二闸刀314与第一DPDT开关31的主集第一出口端点315连通,第二DPDT开关32的分集第一闸刀323与第二DPDT开关32的分集第二出口端点326连通,第二DPDT开关32的分集第二闸刀324与第二DPDT开关32的分集第一出口端点325连通,主集天线11收集的信号经过第一DPDT开关31、第一DPDT开关31和第二DPDT开关32之间的连线以及第二DPDT开关32进入到分集开关22,分集天线12收集的信号经过第二DPDT开关32、第二DPDT开关32和第一DPDT开关31之间的连线以及第一DPDT开关31进入到主集开关21。
本发明实施例的使用DPDT开关矩阵的天线交叉连接工作方式,在保留了分集天线收集的分集信号对主集信号增补的功能的基础上,同时可以在主机天线在外界干扰情况下,通过控制电路模块进行主集天线和分集天线的功能切换,保持手机信号的灵敏度,增强用户的使用体验。
在本发明的一个实施例中,优选地,控制电路模块40,检测主集天线11 收集的主集信号和分集天线12同时收集的分集信号之间的差值,当差值超过限定的门限时,通过切换第一DPDT开关31的主集第一闸刀313和主集第二闸刀314的连接点、第二DPDT开关32的分集第一闸刀323和分集第二闸刀324的连接点,分别建立主集天线11到分集开关22的通路及分集天线12到主集开关21的通路。
优选地,控制电路模块40,在默认情况下,通过控制第一DPDT开关31、第二DPDT开关32,建立主集天线11到主集开关21的通路及分集天线12到分集开关22的通路。
在默认情况下,主集天线的直连线路是手机的主要信号收集和发射的传输路径,当主集天线收集的信号与分集天线收集的信号之间产生差值时,且差值超过了限定的门限时,主集天线和分集天线的功能就会通过控制电路进行切换,来保持手机的信号灵敏度。
基于本发明的思想,通过对开关矩阵的调整,实现又一实施例,如图7所示如下:
该装置包括天线10、后端链路20和单刀开关矩阵50。
天线10包括主集天线11和分集天线12。主集天线11用于接收和发射信号;分集天线12用于接收信号。
后端链路20包括主集开关21和分集开关22,主集开关21和分集开关22分别连接后端射频链路。
控制电路模块40,控制电路模块通过控制单刀第一开关、单刀第二开关分别建立主集天线11到主集开关21的通路及分集天线12到分集开关22的通路。
单刀开关矩阵50中包括单刀第一开关51,单刀第二开关52,单刀开关矩阵50便于快速便捷地改变信号的传输路径,便于控制电路模块40实现控制。
单刀第一开关51中包括单刀主集信号接收进口端511和单刀主集信号接收出口端512,其中,单刀主集信号接收进口端511中包括单刀主集第一闸刀513,单刀主集信号接收出口端512中包括单刀主集第一出口端点515和单刀主集第二出口端点516。
单刀第二开关52中包括单刀分集信号接收进口端521和单刀分集信号接收出口端522,其中,单刀分集信号接收进口端521中包括单刀分集第一闸刀523,单刀分集信号接收出口端522中包括单刀分集第一出口端点525和单刀分集第二出口端点526。
当单刀主集第一闸刀513连通单刀主集第一出口端点515,单刀分集第一闸刀523连通单刀分集第一出口端点525时,主集天线11与主集天线21直接连通,分集天线12与分集天线22直接连通,天线10处于天线直接连通工作方式,比较传统使用DPDT开关直接连通工作方式,分集天线收集的分集信号不需要通过第一DPDT开关后再折返回分集开关,这样分集信号不需要通过多余的两条信号线,减少了两条信号线的前端插损1.8dB,手机接收灵敏度也能够优化1.8dB。
当单刀主集第一闸刀513连通单刀主集第二出口端点516,单刀分集第一闸刀523连通单刀分集第二出口端点526时,主集天线11与分集天线22交叉连通,分集天线12与主集天线21交叉连通,天线10处于天线交叉连通工作方式,这样在主机天线在外界干扰情况下,通过控制电路模块进行主集天线和分集天线的功能切换,保持手机信号的灵敏度,增强用户的使用体验。
综上所述,根据本发明的技术方案,通过在天线和后端链路之间的射频信号传输路径上设置DPDT开关矩阵,不仅保留了分集天线收集的分集信号对主集信号增补的功能的基础,同时可以在主机天线在外界干扰情况下,通过控制电路模块进行主集天线和分集天线的功能切换,保持手机信号的灵敏度,增强用户的使用体验,进而解决了传统手机分集天线在直接连接的工作方式时的传输分集信号时需要经过多条信号线,由于经过多条传输信号线从而导致接收机前端插损大,辐射效率降低的问题,本发明有效地减少了天线直接连接的工作方式时分集信号所经过的信号线,降低了接收机的前端插损, 提高了手机天线的性能,提高了手机天线接收信号的灵敏度,从而大大提升用户体验。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

  1. 一种天线切换装置,用于两个前端天线和两个后端链路组成的通路,其中,所述前端天线包括分集天线和主集天线,所述后端链路包括分链路和主链路,其特征在于,所述天线切换装置包括:
    开关矩阵,所述开关矩阵包括第一开关和第二开关;所述第一开关的一端用于连接所述分集天线和主集天线中的一个,所述第一开关的另一端在所述分链路和主链路之间切换,所述第二开关的一端连接所述分集天线和主集天线中的另一个,所述第二开关的另一端在所述分链路和主链路之间切换;
    控制电路模块,所述控制电路模块通过控制所述第一开关、所述第二开关分别建立所述主集天线到主链路的通路及所述分集天线到分链路的通路。
  2. 根据权利要求1所述的天线切换装置,其特征在于,
    所述开关矩阵为DPDT开关矩阵,所述第一开关为第一DPDT开关,所述第二开关为第二DPDT开关。
  3. 根据权利要求2所述的天线切换装置,其特征在于,
    所述主集天线到所述主链路的通路中,所述第一DPDT开关与所述主集天线连接的一端为主集信号接收进口端,所述第一DPDT开关与所述主链路连接的一端为主集信号接收出口端;
    所述分集天线到所述分链路的通路中,所述第二DPDT开关与所述分集天线连接的一端为分集信号接收进口端,所述第二DPDT开关与所述分链路连接的一端为分集信号接收出口端。
  4. 根据权利要求3所述的天线切换装置,其特征在于,
    所述第一DPDT开关的所述主集信号接收进口端包括主集第一闸刀和主集第二闸刀,所述第一DPDT开关的所述主集信号接收出口端包括主集第一出口端点和主集第二出口端点;
    所述第二DPDT开关的所述分集信号接收进口端包括分集第一闸刀和分集第二闸刀,所述第二DPDT开关的所述分集信号接收出口端包括分集第一出口端点和分集第二出口端点;
    所述第一DPDT开关的所述主集第一闸刀与所述第一DPDT开关的所述主集第一出口端点连通,所述第一DPDT开关的所述主集第二闸刀与所述第一DPDT开关的所述主集第二出口端点连通,所述主集天线收集的信号经过所述第一DPDT开关进入到所述主链路;所述第二DPDT开关的所述分集第一闸刀与所述第二DPDT开关的所述分集第一出口端点连通,所述第二DPDT开关的所述分集第二闸刀与所述第二DPDT开关的所述分集第二出口端点连通,所述分集天线收集的信号经过所述第二DPDT开关进入到所述分链路。
  5. 根据权利要求2所述的天线切换装置,其特征在于,
    所述控制电路模块,还通过控制所述第一DPDT开关、所述第二DPDT开关分别建立所述主集天线到所述分链路的通路及所述分集天线到所述主链路的通路。
  6. 根据权利要求5所述的天线切换装置,其特征在于,
    所述主集天线到所述分链路的通路中,所述第一DPDT开关与所述主集天线连接的一端为主集信号接收进口端,所述第一DPDT开关的另一端为主集信号接收出口端,所述第二DPDT开关与所述分集天线连接的一端为分集信号接收进口端,所述第二DPDT开关的另一端为分集信号接收出口端,所述第一DPDT开关的所述主集信号接收出口端与所述第二DPDT开关的所述分集信号接收进口端相耦接;
    所述分集天线到所述主链路的通路中,所述第二DPDT开关与所述分集天线连接的一端为分集信号接收进口端,所述第二DPDT开关的另一端为分集信号接收出口端,所述第一DPDT开关与所述主集天线连接的一端为主集信号接收进口端,所述第一DPDT开关的另一端为主集信号接收出口端,所述第二DPDT开关的所述分集信号接收出口端与所述第一DPDT开关的所述主集信号接收进口端相耦接。
  7. 根据权利要求6所述的天线切换装置,其特征在于,
    所述第一DPDT开关的所述主集信号接收进口端包括主集第一闸刀和主集第二闸刀,所述第一DPDT开关的所述主集信号接收出口端包括主集第一出口端点和主集第二出口端点;
    所述第二DPDT开关的所述分集信号接收进口端包括分集第一闸刀和分集第二闸刀,所述第二DPDT开关的所述分集信号接收出口端包括分集第一出口端点和分集第二出口端点;
    所述第一DPDT开关的所述主集第一闸刀与所述第一DPDT开关的所述主集第二出口端点连通,所述第一DPDT开关的所述主集第二闸刀与所述第一DPDT开关的所述主集第一出口端点连通,所述第二DPDT开关的所述分集第一闸刀与所述第二DPDT开关的所述分集第二出口端点连通,所述第二DPDT开关的所述分集第二闸刀与所述第二DPDT开关的所述分集第一出口端点连通,所述主集天线收集的信号经过所述第一DPDT开关、所述第一DPDT开关和所述第二DPDT开关之间的连线以及所述第二DPDT开关进入到所述分链路,所述分集天线收集的信号经过所述第二DPDT开关、所述第二DPDT开关和所述第一DPDT开关之间的连线以及所述第一DPDT开关进入到所述主链路。
  8. 根据权利要求2或5所述的天线切换装置,其特征在于,
    所述控制电路模块,检测所述主集天线收集的主集信号和所述分集天线同时收集的分集信号之间的差值,当差值超过限定的门限时,通过切换所述第一DPDT开关的所述主集第一闸刀和所述主集第二闸刀的连接点、所述第二DPDT开关的所述分集第一闸刀和所述分集第二闸刀的连接点,分别建立所述主集天线到分链路的通路及所述分集天线到主链路的通路。
  9. 根据权利要求2所述的天线切换装置,其特征在于,
    所述控制电路模块,在默认情况下,通过控制所述第一DPDT开关、所述第二DPDT开关,建立所述主集天线到所述主链路的通路及所述分集天线到所述分链路的通路。
PCT/CN2016/078823 2015-05-20 2016-04-08 一种天线切换装置 WO2016184271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510259717.2A CN105720963A (zh) 2015-05-20 2015-05-20 一种天线切换装置
CN201510259717.2 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016184271A1 true WO2016184271A1 (zh) 2016-11-24

Family

ID=56144749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078823 WO2016184271A1 (zh) 2015-05-20 2016-04-08 一种天线切换装置

Country Status (2)

Country Link
CN (1) CN105720963A (zh)
WO (1) WO2016184271A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441881A (zh) * 2022-07-21 2022-12-06 海能达通信股份有限公司 联动天线电路及终端
CN116599542A (zh) * 2022-10-27 2023-08-15 荣耀终端有限公司 一种实现天线复用的控制方法和电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478906B (zh) * 2016-11-04 2021-03-30 华为技术有限公司 一种天线***及终端设备、天线切换控制方法及装置
WO2018082334A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种天线***及终端设备、天线切换控制方法及装置
CN106910983A (zh) * 2017-03-16 2017-06-30 宇龙计算机通信科技(深圳)有限公司 天线***及具有该天线***的通信终端
CN107580124B (zh) * 2017-08-30 2020-09-04 努比亚技术有限公司 一种切换天线的方法、通信终端及计算机可读存储介质
CN110445497B (zh) * 2019-07-30 2021-08-06 维沃移动通信有限公司 一种天线模组及终端
CN111162818B (zh) * 2019-12-31 2021-11-23 上海微波技术研究所(中国电子科技集团公司第五十研究所) 适用于超短波电台在tdma网络下的天线共用器
CN111600616B (zh) * 2020-07-10 2020-12-04 锐石创芯(深圳)科技有限公司 一种射频前端架构、天线装置及通信终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428917A (en) * 2005-08-04 2007-02-07 Motorola Inc Antenna diversity arrangement for an rf transceiver
CN101267666A (zh) * 2007-03-13 2008-09-17 三星电子株式会社 在便携式通信***中收发的方法和装置
CN201199687Y (zh) * 2008-04-21 2009-02-25 鸿富锦精密工业(深圳)有限公司 双模天线装置
US20100225414A1 (en) * 2009-03-03 2010-09-09 Oleksandr Gorbachov Multi-channel radio frequency front end circuit with full transmit and receive diversity for multi-path mitigation
CN104283592A (zh) * 2014-09-25 2015-01-14 联想(北京)有限公司 信息处理方法及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4017347B2 (ja) * 2000-01-04 2007-12-05 三菱電機株式会社 携帯電話機
WO2003071713A1 (en) * 2002-02-21 2003-08-28 Kyocera Wireless Corporation System and method for providing gps-enabled wireless communications
US7079816B2 (en) * 2003-04-25 2006-07-18 Broadcom Corporation On chip diversity antenna switch
KR100693039B1 (ko) * 2004-10-01 2007-03-12 삼성전자주식회사 이동 통신 단말 장치 및 그 제어방법
US9154174B1 (en) * 2007-02-02 2015-10-06 Microsoft Technology Licensing, Llc Systems and methods for closed-loop and open-loop wireless communications
CN101741441A (zh) * 2008-11-12 2010-06-16 华为终端有限公司 无线终端、天线切换控制方法及装置
CN103596296B (zh) * 2013-11-18 2018-04-10 惠州Tcl移动通信有限公司 天线切换方法以及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428917A (en) * 2005-08-04 2007-02-07 Motorola Inc Antenna diversity arrangement for an rf transceiver
CN101267666A (zh) * 2007-03-13 2008-09-17 三星电子株式会社 在便携式通信***中收发的方法和装置
CN201199687Y (zh) * 2008-04-21 2009-02-25 鸿富锦精密工业(深圳)有限公司 双模天线装置
US20100225414A1 (en) * 2009-03-03 2010-09-09 Oleksandr Gorbachov Multi-channel radio frequency front end circuit with full transmit and receive diversity for multi-path mitigation
CN104283592A (zh) * 2014-09-25 2015-01-14 联想(北京)有限公司 信息处理方法及电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441881A (zh) * 2022-07-21 2022-12-06 海能达通信股份有限公司 联动天线电路及终端
CN115441881B (zh) * 2022-07-21 2024-01-16 海能达通信股份有限公司 联动天线电路及终端
CN116599542A (zh) * 2022-10-27 2023-08-15 荣耀终端有限公司 一种实现天线复用的控制方法和电子设备

Also Published As

Publication number Publication date
CN105720963A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2016184271A1 (zh) 一种天线切换装置
WO2020192527A1 (zh) 射频前端电路及移动终端
WO2020192426A1 (zh) 射频前端电路及移动终端
WO2022001746A1 (zh) 射频电路及电子设备
US9209855B2 (en) Bluetooth and WLAN coexistence architecture having a shared low noise amplifier
WO2017113693A1 (zh) 天线复用装置以及移动终端
US11569850B2 (en) Radio frequency front-end circuit and controller
WO2021037057A1 (zh) 天线切换电路及终端
WO2021031771A1 (zh) 射频前端电路及移动终端
WO2021238536A1 (zh) 射频PA Mid器件、射频收发装置和通信设备
CN104579411A (zh) 兼容tdd和fdd的无线接收与发射电路
CN102833010B (zh) 一种移动通信***基站信号的无源互调改善方法
CN207099068U (zh) 一种tdd、fdd双信道多模式收发装置
CN212324099U (zh) 射频电路和电子设备
WO2020052406A1 (zh) 开关控制电路、载波聚合方法及装置、通信设备
KR20130055537A (ko) 무선 통신 단말기에서의 에너지 소비를 감소시키는 방법 및 상기 방법을 구현하는 통신 단말기
CN114640367B (zh) 射频器件、射频前端电路、射频***和通信设备
CN101432974A (zh) 具有优化性能的多输入多输出信号接收设备
RU2791910C1 (ru) Высокочастотная схема входного каскада и мобильный терминал
RU2784458C1 (ru) Радиочастотная входная схема и мобильный терминал
WO2024016282A1 (zh) 联动天线电路及终端
CN115441881B (zh) 联动天线电路及终端
CN113162639B (zh) 射频模组与电子设备
CN113489499A (zh) 射频架构和电子设备
KR101314610B1 (ko) 다이버시티를 위한 무선신호 처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795758

Country of ref document: EP

Kind code of ref document: A1