WO2024016282A1 - 联动天线电路及终端 - Google Patents

联动天线电路及终端 Download PDF

Info

Publication number
WO2024016282A1
WO2024016282A1 PCT/CN2022/107175 CN2022107175W WO2024016282A1 WO 2024016282 A1 WO2024016282 A1 WO 2024016282A1 CN 2022107175 W CN2022107175 W CN 2022107175W WO 2024016282 A1 WO2024016282 A1 WO 2024016282A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
switch
circuit
connection end
broadband communication
Prior art date
Application number
PCT/CN2022/107175
Other languages
English (en)
French (fr)
Inventor
张远龙
冷鹏
金垚
吴泽玮
辛峰
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2022/107175 priority Critical patent/WO2024016282A1/zh
Publication of WO2024016282A1 publication Critical patent/WO2024016282A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present application relates to the field of communication technology, and specifically to a linkage antenna circuit and terminal.
  • the antenna provided for broadband communication is a built-in antenna, and the built-in antenna is divided into a main transmitting and receiving antenna and a diversity receiving antenna.
  • the main antenna is placed at the bottom of the terminal, and the diversity antenna is placed at the top of the terminal.
  • the antenna installed for narrowband communication is an external antenna. Due to terminal characteristics and structural stacking factors, the efficiency of the built-in antenna in the low-frequency band (729-960MHz) during broadband communication is low, especially the efficiency of the diversity antenna is even lower. Broadband communication of terminals is usually deployed in low frequency bands. When private network video is pulled up or big data is downloaded, the inefficiency of the terminal's built-in antenna will lead to poor rates and a decrease in the overall transceiver capability of the terminal.
  • This application proposes a linkage antenna circuit and terminal to improve the efficiency of broadband communication of the terminal and improve the overall transceiver capability of the terminal.
  • the linkage antenna circuit includes a first antenna, a second antenna, a third antenna, a first type filter circuit, and a second type filter circuit. , switch circuit, narrowband communication circuit and broadband communication circuit.
  • the first antenna is used for narrowband communication; the narrowband communication circuit is connected to the first antenna through a first type filter circuit to perform narrowband communication; the wideband communication circuit is connected to the first antenna through a switch circuit and a second type filter circuit, and is connected to the first antenna through a switch circuit and a second type filter circuit.
  • the switch circuit is connected to the second antenna and the third antenna to select the first antenna and the second antenna to perform broadband communication, or to select the first antenna and the third antenna to perform broadband communication, or to select the first antenna, the second antenna, and the third antenna.
  • the antenna performs broadband communication; wherein, when the first antenna and the second antenna are selected to perform broadband communication, the signal received by the first antenna transmits the narrowband signal to the narrowband communication circuit through the first type filter circuit, and the signal received by the first antenna The wideband signal therein is passed to the wideband communication circuit through the second type filter circuit.
  • the switch circuit when the second antenna performs the transmission and reception of the main set signal in broadband communication, the switch circuit is configured to select one of the first antenna and the third antenna with stronger receiving ability to connect to the broadband communication circuit to perform the broadband communication. Reception of diversity signals; when the first antenna performs the transmission and reception of the main set signal in broadband communication, the switch circuit is configured to select the one with stronger reception ability among the second antenna and the third antenna to connect to the broadband communication circuit to perform broadband communication. Reception of diversity signals in communications.
  • the working modes of the linked antenna circuit include a first mode, a second mode and a third mode; when the linked antenna circuit works in the first mode, the switch circuit is configured to enable the first antenna to transmit and receive narrowband signals in narrowband communications. , the second antenna is used to send and receive the main signal in broadband communication, and the third antenna is used to receive the diversity signal in broadband communication; when the linkage antenna circuit works in the second mode, the switch circuit is configured to make the first antenna use The second antenna is used to send and receive narrowband signals in narrowband communications, the second antenna is used to send and receive main signals in broadband communications, and the first antenna is also used to receive diversity signals in broadband communications; when the linkage antenna circuit works in the third mode, the switch The switch circuit is configured such that the first antenna is used to transmit and receive narrowband signals in narrowband communication, the first antenna is also used to transmit and receive main signals in wideband communication, and the second antenna is used to receive diversity signals in wideband communication.
  • the switch circuit when the first antenna works abnormally, the switch circuit is configured to make the linkage antenna circuit work in the first mode.
  • the switch circuit includes a first switch and a second switch.
  • the first switch includes a first connection end, a second connection end, a third connection end and a fourth connection end.
  • the first connection end of the first switch is used for Connect to the second type filter circuit, the second connection end of the first switch is used to connect the second antenna, the fourth connection end of the first switch is used to connect the broadband communication circuit;
  • the second switch includes a first connection end, a second connection end and a third connection end.
  • the first connection end of the second switch is used to connect to the third connection end of the first switch.
  • the second connection end of the second switch is used to connect the third antenna.
  • the third connection end of the second switch is used to connect to the third connection end of the second switch.
  • the first connection end of the first switch is connected to the fourth connection end of the first switch, so that the broadband communication circuit passes
  • the first switch is connected to the first antenna; when the second antenna performs transmission or reception of the main set signal of broadband communication, the second connection end of the first switch is connected to the fourth connection end of the first switch, so that the broadband communication
  • the circuit is connected to the second antenna through the first switch; when the first antenna performs reception of the diversity signal of broadband communication, the first connection end of the first switch is connected to the third connection end of the first switch, and the second connection end of the second switch is connected to the second antenna.
  • the first connection end is connected to the third connection end of the second switch, so that the broadband communication circuit is connected to the first antenna through the first switch and the second switch; when the second antenna performs reception of the diversity signal of broadband communication, the third connection end is connected to the third connection end of the second switch.
  • the second connection end of a switch is connected to the third connection end of the first switch, and the first connection end of the second switch is connected to the third connection end of the second switch, so that the broadband communication circuit passes through the first switch and the second connection end.
  • the switch is connected to the second antenna; when the third antenna performs reception of the diversity signal of broadband communication, the second connection end of the second switch is connected to the third connection end of the second switch, so that the broadband communication circuit passes through the second switch And connected to the third antenna.
  • the switching circuit further includes a coupling filter module, and the fourth connection end of the first switch is connected to the broadband communication circuit through the coupling filter module.
  • the switch circuit also includes a third switch and a second antenna switch.
  • the third switch includes a first connection end, a second connection end and a third connection end, wherein the first connection end of the third switch is connected to the coupling filter module, and the third connection end of the third switch is connected to the broadband communication circuit;
  • the two-antenna switching switch includes at least one transmitting and receiving terminal, an antenna terminal and a control power feedback terminal, wherein the second connection terminal of the first switch is connected to a transmitting and receiving terminal of the second antenna switching switch, and the second antenna is connected to the second antenna switching switch.
  • the antenna end is connected to the second antenna and the first switch through the second antenna switch, and the second connection end of the third switch is connected to the control power feedback end of the second antenna switch; the first antenna performs broadband communication.
  • the first connection end of the third switch is connected to the third connection end of the third switch, so that the broadband communication circuit is connected to the coupling filter module through the third switch; the main part of the broadband communication is performed on the second antenna.
  • the second connection end of the third switch is connected to the third connection end of the third switch, so that the broadband communication circuit is connected to the control power feedback end of the second antenna switching switch through the third switch.
  • the coupling filter module includes a coupler and a duplex filter.
  • the coupler includes a first connection end, a second connection end and a third connection end.
  • the first connection end of the coupler is connected to the fourth connection end of the first switch.
  • the second connection end of the coupler is connected to the first connection end of the third switch;
  • the duplex filter includes a first connection end, a second connection end and a third connection end, wherein the first connection end of the duplex filter is connected to To the third connection end of the coupler, the second connection end and the third connection end of the duplex filter are connected to the broadband communication circuit.
  • the switch circuit also includes a third antenna switch and a filter module.
  • the third antenna switch includes at least one transmitting and receiving terminal and an antenna terminal, wherein one transmitting and receiving terminal of the third antenna switching switch is connected to the third terminal of the second switch.
  • the second connection end, the antenna end of the third antenna switching switch is connected to the third antenna;
  • the filter module is connected between the third connection end of the second switch and the broadband communication circuit.
  • the linkage antenna circuit further includes a microstrip coupling circuit, which is coupled to the first antenna and connected to the narrowband communication circuit.
  • another technical solution adopted by this application is to provide a terminal, which includes any one of the above-mentioned linkage antenna circuits.
  • the linkage antenna circuit of this application is based on the prior art by setting a first type filter circuit, a second type filter circuit and a switch circuit, so that the terminal can During broadband communication, the first antenna can be connected to the first antenna through the switch circuit, and the first antenna and the second antenna can be selected through the switch circuit to perform broadband communication, or the first antenna and the third antenna can be selected to perform broadband communication, or the first antenna and the third antenna can be selected.
  • the second antenna and the third antenna perform broadband communications.
  • the channels of the first antenna, the second antenna and the third antenna can be shared and switched in real time, thereby improving the bandwidth while ensuring dual-mode communication of broadband communication and narrowband communication at the same time. Communication efficiency and improve the overall sending and receiving capabilities of the terminal.
  • Figure 1 is a schematic structural diagram of the first embodiment of the linkage antenna circuit of the present application.
  • Figure 2 is a schematic structural diagram of the second embodiment of the linkage antenna circuit of the present application.
  • Figure 3 is a schematic structural diagram of the third embodiment of the linkage antenna circuit of the present application.
  • Figure 4 is a schematic structural diagram of an embodiment of the terminal of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of the linkage antenna circuit of this application.
  • the linkage antenna circuit 100 of this embodiment includes a first antenna 10, a second antenna 20, a third antenna 30, a first type filter circuit 40, a second type filter circuit 50, a switch circuit 60, a narrowband Communication circuit 70 and broadband communication circuit 80.
  • the first antenna 10 is used for narrowband communications.
  • narrowband communication is a communication technology before the emergence of broadband technology.
  • the theoretical channel bandwidth is small and can only meet the transmission of a small amount of voice and text information. It is unable to carry a large amount of video, audio, and image information, such as PDT, DMR and other communication technologies.
  • the narrowband signal of narrowband communication is a key control frequency band signal with a frequency lower than 470MHz.
  • Broadband communications refers to wireless technologies used in public land mobile networks, such as 3G, LTE, 4G, 5G and other wireless communication technologies.
  • the broadband signal of broadband communication refers to the cellular frequency band signal with a frequency of 699-960MHz.
  • the narrowband communication circuit 70 is connected to the first antenna 10 through the first type filter circuit 40 to perform narrowband communication.
  • the broadband communication circuit 80 is connected to the first antenna 10 through the switch circuit 60 and the second type filter circuit 50, and is connected to the second antenna 20 and the third antenna 30 through the switch circuit 60 to select the first antenna 10 and the second antenna 30.
  • the antenna 20 performs broadband communication, or the first antenna 10 and the third antenna 30 are selected to perform broadband communication, or the first antenna 10 , the second antenna 20 , and the third antenna 30 are selected to perform broadband communication.
  • the signal received by the first antenna 10 can pass through the first type filter circuit 40 to transfer the narrowband signal to the narrowband communication circuit 70.
  • the first antenna 10 The received signal can be passed through the second type filter circuit 50 to transfer the wideband signal to the wideband communication circuit 80, so that the first antenna 10 has the capability of simultaneous narrowband communication and wideband communication.
  • the first type filter circuit 40 can be configured as a multi-stage low-pass filter circuit.
  • the low-pass filter circuit is used to deeply suppress the cellular frequency band signal of broadband communication to control the frequency band signal through the transmit button with a frequency lower than 470 MHz.
  • the second type filter circuit 50 can be set as a multi-order high-pass filter circuit.
  • the high-pass filter circuit is used to deeply suppress the transmit button control frequency band signal of narrow-band communication to pass the cellular frequency band signal with a frequency of 699-960MHz.
  • the first antenna 10 is respectively The first type filter circuit 40 and the second type filter circuit 50 are connected to the narrowband communication circuit 70 and the broadband communication circuit 80 respectively.
  • the first antenna 10 may have the ability to perform narrowband communication and broadband communication at the same time.
  • the first type filter circuit 40 is provided.
  • the second type filter circuit 50 can prevent other signals from interfering with the first antenna 10 when performing wide/narrowband communication.
  • the narrowband communication circuit 70 includes a narrowband transmitting/receiving unit, a standing wave ratio detection unit and a control unit
  • the broadband communication circuit 80 includes a power amplifier, a broadband transceiver and a control unit.
  • This embodiment also provides a switch circuit 60.
  • the switch circuit 60 is respectively connected to the second type filter circuit 50, the second antenna 20, the third antenna 30 and the broadband communication circuit 80.
  • the first antenna 10 and the second antenna 20 can be selected to perform broadband communication based on the switch circuit 60, or the first antenna 10 and the third antenna 30 can be selected to perform broadband communication, or the first antenna 10, the second antenna 20, and the third antenna can be selected to perform broadband communication.
  • Antenna 30 performs wideband communication.
  • the first antenna 10 is an external antenna
  • the second antenna 20 is a built-in main antenna
  • the third antenna 30 is a built-in diversity antenna.
  • the built-in main antenna is generally placed at the bottom of the terminal
  • the built-in diversity antenna The antenna is generally placed on the top of the terminal. Due to the stacking factors of the terminal structure, the efficiency of the built-in antenna in the low-frequency band is low, especially the efficiency of the built-in diversity antenna is even lower. Comparing antenna efficiency, the efficiency of the external antenna is greater than the efficiency of the built-in main antenna, and the efficiency of the built-in main antenna is greater than the efficiency of the built-in diversity antenna.
  • the first antenna 10 and the second antenna 20 can be selected to perform broadband communication, or the first antenna 10 and the third antenna 30 can be selected to perform broadband communication, or the first antenna can be selected 10.
  • the second antenna 20 and the third antenna 30 perform broadband communication, thereby improving the efficiency of broadband communication and thereby improving the overall transceiver capability of the terminal.
  • the linkage antenna circuit 100 of the present application is based on the prior art by providing the first type filter circuit 40, the second type filter circuit 50 and the switch circuit 60, so that the terminal can perform broadband communication.
  • the first antenna 10 can be connected to the first antenna 10 through the switching circuit 60, and the first antenna 10 and the second antenna 20 can be selected to perform broadband communication, or the first antenna 10 and the third antenna 30 can be selected to perform broadband communication, or the first antenna 10 can be selected to perform broadband communication.
  • the antenna 10, the second antenna 20, and the third antenna 30 perform broadband communication.
  • the channels of the first antenna 10, the second antenna 20 and the third antenna 30 can be shared and switched in real time, so as to ensure that dual-mode communication of broadband communication and narrowband communication can be carried out at the same time. , improve the efficiency of broadband communication and improve the overall sending and receiving capabilities of the terminal.
  • the working modes of the linked antenna circuit include a first mode, a second mode and a third mode.
  • the first mode is the default working mode
  • the second mode is the diversity capability improvement mode
  • the third mode is the main set capability enhancement mode.
  • the switch circuit 60 is configured to enable the first antenna 10 to transmit and receive narrowband signals in narrowband communications, and the second antenna 20 to transmit and receive broadband communications.
  • the third antenna 30 is used to receive the diversity signal in broadband communication.
  • the diversity capability enhancement mode means that the linkage antenna circuit 100 improves the efficiency of diversity reception signals in broadband communications to ensure the quality of the received signals.
  • the switch circuit 60 is configured such that the first antenna 10 is used to transmit and receive narrowband signals in narrowband communications, the second antenna 20 is used to transmit and receive main signals in wideband communications, and the first antenna 10 is also used to receive signals in wideband communications. diversity signal.
  • the main set capability improvement mode means that the linkage antenna circuit 100 improves the efficiency of main set reception and reflection signals in broadband communications to ensure that the main set signal Quality of reception and transmission.
  • the switch circuit 60 is configured such that the first antenna 10 is used to transmit and receive narrowband signals in narrowband communications, and the first antenna 10 is also used to transmit and receive main set signals in wideband communications, and the second antenna 20 is used to receive signals in wideband communications. diversity signal.
  • the switch circuit 60 When the first antenna 10 is working abnormally, the switch circuit 60 is configured to make the linkage antenna circuit 100 work in the first mode, that is, the default working mode.
  • the default operating mode is that the switch circuit 60 is configured such that the first antenna 10 is used to transmit and receive narrowband signals in narrowband communications, the second antenna 20 is used to transmit and receive main signals in broadband communications, and the third antenna 30 is used to receive broadband signals. Diversity signals in communications.
  • the linked antenna circuit 100 of the present application can not only achieve simultaneous wide- and narrow-band communications, but also can essentially achieve simultaneous simultaneous communication by switching the switch circuit 60 by setting the second mode (diversity capability improvement mode) and the third mode (main set capability enhancement mode).
  • the transmission and reception performance of the main set signal and the reception performance of the diversity signal of the broadband communication of the linked antenna circuit 100 are improved, thereby improving the user experience.
  • Figure 2 is a schematic structural diagram of a second embodiment of the linkage antenna circuit of the present application.
  • the switch circuit 60 of the linkage antenna circuit 100 of this embodiment includes a first switch 61 and Second switch 62.
  • the first switch 61 includes a first connection terminal RF1, a second connection terminal RF2, a third connection terminal RF3 and a fourth connection terminal RF4, wherein the first connection terminal RF1 of the first switch 61 is used to connect the second type filter circuit 50 , the second connection terminal RF2 of the first switch 61 is used to connect the second antenna 20 , and the fourth connection terminal RF4 of the first switch 61 is used to connect the broadband communication circuit 80 .
  • the first switch 61 can be a general-purpose input/output (GPIO) logic control device, and can be set as a double-pole double-throw switch.
  • the main function of the first switch 61 is to control instructions according to high and low levels.
  • the connection between the first connection end RF1 and the third connection end RF3/the fourth connection end RF4 is switched, and the connection between the second connection end RF2 and the third connection end RF3/the fourth connection end RF4 is switched.
  • the specific switching path is determined by the logic of the terminal itself. Table decision.
  • the first switch 61 can also be other logic control devices, as long as it meets the above-mentioned functions of the first switch 61 , which is not limited here.
  • the second switch 62 includes a first connection terminal RF5, a second connection terminal RF6 and a third connection terminal ANT1.
  • the first connection terminal RF5 of the second switch is used to connect to the third connection terminal RF3 of the first switch 61.
  • the second switch 62 The second connection terminal RF6 is used to connect the third antenna 30
  • the third connection terminal ANT1 of the second switch 62 is used to connect the broadband communication circuit 80 .
  • the second switch 62 can also be a GPIO logic control device and can be set as a single-pole double-throw switch. Its main function is to connect the first connection terminal RF5 of the second switch 62 with the third connection terminal ANT1 according to the high and low level control instructions. The connection with the second connection terminal RF6 and the third connection terminal ANT1 of the second switch 62 performs switching, and the specific switching path is determined by the logic table of the terminal itself.
  • the second switch 62 can also be other logic control devices, as long as it meets the above-mentioned functions of the second switch 62 , which is not limited here.
  • the first connection terminal RF1 of the first switch 61 is connected to the fourth connection terminal RF4 of the first switch 61 so that the broadband communication circuit 80 passes through the first
  • the switch 61 is connected to the first antenna 10 .
  • the first switch 61 makes the first connection end RF1 of the first switch 61 and the fourth connection of the first switch 61 based on the first switching path control instruction. Terminal RF4 is connected, thereby realizing that the broadband communication circuit 80 is connected to the first antenna 10 through the first switch 61.
  • the first antenna 10 is used for transmitting or receiving the main signal of broadband communication. Since the first antenna 10 is an external antenna, it is relatively Compared with the built-in antenna, the second antenna 20 and the third antenna 30 are more efficient, thereby improving the main set transceiver performance of broadband communication.
  • the second connection terminal RF2 of the first switch 61 is connected to the fourth connection terminal RF4 of the first switch 61 so that the broadband communication circuit passes through the first switch. 61 and connected to the second antenna 20.
  • the first connection terminal RF1 of the first switch 61 is connected to the third connection terminal RF3 of the first switch 61 , and the first connection terminal RF5 of the second switch 62 is connected to The third connection terminal ANT1 of the second switch 62 is connected, so that the broadband communication circuit is connected to the first antenna 10 through the first switch 61 and the second switch 62 .
  • the first connection terminal RF1 of the first switch 61 is connected to the third connection terminal RF3 of the first switch 61 based on the first switching path control signal, and based on the second switching path
  • the control signal, the first connection terminal RF5 of the second switch 62 is connected to the third connection terminal ANT1 of the second switch 62, so that the first antenna 10 is used for receiving the diversity signal of broadband communication, because the first antenna 10 is external Compared with the built-in antenna, the second antenna 20 and the third antenna 30 are more efficient, thereby improving the diversity reception performance of broadband communications.
  • the second connection terminal RF2 of the first switch 61 is connected to the third connection terminal RF3 of the first switch 61 , and the first connection terminal RF5 of the second switch 62 is connected to The third connection terminal ANT1 of the second switch 62 is connected, so that the broadband communication circuit is connected to the second antenna 20 through the first switch 61 and the second switch 62 .
  • the second connection terminal RF2 of the first switch 61 is connected to the third connection terminal RF3 of the first switch 61 based on the first switching path control signal.
  • the control signal, the first connection terminal RF5 of the second switch 62 is connected to the third connection terminal ANT1 of the second switch 62, so that the second antenna 20 is applied to the reception of the diversity signal of broadband communication, because the second antenna 20 is compared with The third antenna 30 has higher efficiency, thereby improving the diversity reception performance of broadband communication.
  • the second connection terminal RF6 of the second switch 62 is connected to the third connection terminal ANT1 of the second switch 62 so that the broadband communication circuit is connected through the second switch 62 to the third antenna 30.
  • the narrowband communication circuit 70 transmits and receives narrowband signals through the first type filter circuit 40 to connect to the first antenna 10 for narrowband processing.
  • Communication when the broadband communication circuit 80 is transmitting and receiving the main signal, the second connection terminal RF2 of the first switch 61 is connected to the fourth connection terminal RF4, and the broadband communication circuit 80 is connected to the second antenna 20 through the first switch 61 to perform the main signal.
  • the wideband communication circuit 80 When receiving diversity signals, the wideband communication circuit 80 connects the second connection end RF6 of the second switch 62 to its third connection end ANT1, and the wideband communication circuit 80 connects to the third antenna 30 through the second switch 62 to perform diversity. Signal reception.
  • the narrowband communication circuit 70 is connected to the first antenna 10 through the first type filter circuit 40 when transmitting and receiving narrowband signals, and the broadband communication circuit 80 is transmitting and receiving the main set signal.
  • the second connection terminal RF2 of the first switch 61 is connected to the fourth connection terminal RF4
  • the broadband communication circuit 80 is connected to the second antenna 20 through the first switch 61 to transmit and receive the main set signal
  • the broadband communication circuit 80 receives the diversity signal when , the first connection terminal RF1 of the first switch 61 is connected to the third connection terminal RF3, the first connection terminal RF5 of the second switch 62 is connected to its third connection terminal ANT1, and the broadband communication circuit 80 passes through the first switch 61 and the second switch 62 is connected to the first antenna 10 to receive the diversity signal to improve the reception capability of the diversity signal.
  • the broadband communication circuit 80 when the broadband communication circuit 80 transmits and receives the main set signal through the second antenna 20 and receives the diversity signal, the receiving capabilities of the first antenna 10 and the third antenna 30 can be compared, and the first antenna 10 can be selected. and the third antenna 30 with better reception ability is connected; when the broadband communication circuit 80 transmits and receives the main set signal through the first antenna 10, and when receiving the diversity signal, the second antenna 20 and the third antenna 30 can be compared. According to the receiving ability, select the one with better receiving ability among the second antenna 20 and the third antenna 30 to access.
  • the narrowband communication circuit 70 still connects to the first antenna 10 through the first type filter circuit 40 to perform narrowband communication when transmitting and receiving narrowband signals, and the wideband communication circuit 80 performs main set signal processing.
  • the first connection terminal RF1 of the first switch 61 is connected to the fourth connection terminal RF4, and the broadband communication circuit 80 is connected to the first antenna 10 through the first switch 61 to transmit and receive main set signals.
  • the linkage antenna circuit 100 of the present application optimizes the circuit design by setting the switch circuit switch 60 and integrates the business logic correlation, so that each antenna channel can be fully shared and switched in real time.
  • the antenna coverage efficiency during broadband communications is improved, and the overall transceiver capability of the terminal is improved, thus improving the user experience.
  • Figure 3 is a schematic structural diagram of a third embodiment of a linkage antenna circuit of the present application.
  • the switch circuit 60 of this embodiment also includes a coupling filter module 63 and a third switch 64. and a second antenna switch 65.
  • the fourth connection terminal RF4 of the first switch 61 is connected to the broadband communication circuit 80 through the coupling filter module 63 .
  • the third switch 64 includes a first connection terminal RF7, a second connection terminal RF8 and a third connection terminal ANT2, wherein the first connection terminal RF7 of the third switch 64 is connected to the coupling filter module 63, and the third connection terminal of the third switch 64 Terminal ANT2 is connected to the broadband communication circuit 80 .
  • the third switch 64 and the second switch 62 are both single-pole double-throw switches, which will not be described again.
  • the second antenna switching switch 65 includes at least one transmitting and receiving terminal TRX1, an antenna terminal ANT_IN1 and a control power feedback terminal CPL, wherein the second connection terminal RF2 of the first switch 61 is connected to a transmitting and receiving terminal TRX1 of the second antenna switching switch 65,
  • the second antenna 20 is connected to the antenna terminal ANT_IN1 of the second antenna switch 65 to connect the second antenna 20 and the first switch 61 through the second antenna switch 65.
  • the second connection terminal RF8 of the third switch 64 is connected to the second antenna terminal ANT_IN1.
  • the control power feedback terminal CPL of the two-antenna switching switch 65 is.
  • the second antenna switch 65 is a Mobile Industry Processor Interface (MIPI) logic control device, which is set as the main antenna switch. Its main function is to switch the antenna terminal ANT_IN1 according to the control instruction. The signal is switched to a certain sending and receiving end at a certain moment, and the specific switching channel instructions are determined by the logic table of the device itself.
  • MIPI Mobile Industry Processor Interface
  • the first connection terminal RF7 of the third switch 64 is connected to the third connection terminal ANT2 of the third switch 64 , so that the broadband communication circuit 80 passes through the third switch 64 It is connected to the coupling filter module 63 to perform transmit power wave detection.
  • the second connection terminal RF8 of the third switch 64 is connected to the third connection terminal ANT2 of the third switch 64 , so that the broadband communication circuit 80 passes through the third switch 64 It is connected to the control power feedback terminal CPL of the second antenna switching switch 65 to perform transmission power wave detection.
  • the detection signal unit in the broadband communication circuit 80 detects when the main set signal is transmitted.
  • the detection signal unit passes through the third switch 64, and the third switch of the third switch 64
  • the third connection terminal ANT2 is connected to the second connection terminal RF8, and the path is connected to the control power feedback terminal CPL of the second antenna switching switch.
  • the detection signal unit passes through the third switch 64.
  • the third connection terminal ANT2 of the third switch 64 is connected to the first connection terminal RF7, and the path is connected to the coupling filter module 63, that is, the third switch 64. Select a certain detection path to access the broadband transceiver in the broadband communication circuit 80 according to the logic control instruction.
  • the coupling filter module 63 of this embodiment includes a coupler 631 and a duplex filter 632.
  • the coupler 631 includes a first connection terminal 1, a second connection terminal 2 and a third connection terminal 3.
  • the first connection end 1 of the coupler 631 is connected to the fourth connection end RF4 of the first switch 61
  • the third connection end 3 of the coupler 631 is connected to the first connection end RF7 of the third switch 64;
  • the duplex filter 632 includes The first connection terminal 4, the second connection terminal 5 and the third connection terminal 6, wherein the first connection terminal 4 of the duplex filter 632 is connected to the second connection terminal 2 of the coupler 631, and the third connection terminal of the duplex filter 632
  • the second connection terminal 5 and the third connection terminal 6 are connected to the broadband communication circuit 80 to respectively transmit the filtered reception signal to the broadband communication circuit 80 or to receive the transmission signal from the broadband communication circuit 80 and filter it before transmitting it to the coupler 631 .
  • the coupler 631 is a passive device whose main function is to couple a channel of power to the control unit in the broadband communication circuit 80 through the control power feedback terminal CPL after the transmission power is transferred from input to output.
  • the control unit determines the transmission power. the size of.
  • the duplex filter 632 is a passive component. In this embodiment, its main function is to filter the transmitted and received signals and send the filtered signals to the next unit.
  • the switch circuit 60 of this embodiment also includes a third antenna switch 66 and a filter module 67 .
  • the third antenna switching switch 66 includes at least one transmitting and receiving terminal TRX2 and an antenna terminal ANT_IN2, wherein one transmitting and receiving terminal TRX2 of the third antenna switching switch 66 is connected to the second connection terminal RF6 of the second switch 62.
  • the third antenna switching switch The antenna terminal ANT_IN2 of 66 is connected to the third antenna 30 to connect the third antenna 30 and the second switch 62 through the third antenna switching switch 66 .
  • the third antenna switching switch 66 is also a MIPI logic control device, configured as a diversity antenna switching switch, and has the same function as the second antenna switching switch 65, which will not be described again.
  • the filter module 67 is connected between the third connection terminal ANT1 of the second switch 62 and the broadband communication circuit 80 .
  • the filter module 67 can be set as a filter.
  • the main function of the filter is to filter the received signal before sending it to the next unit.
  • the switch circuit 60 is configured to select the one with stronger reception capability among the first antenna 10 and the third antenna 30 to connect to the broadband communication circuit 80, To perform reception of diversity signals in wideband communications.
  • the switch circuit 60 is configured to select the one with stronger reception ability among the second antenna 20 and the third antenna 30 to connect to the broadband communication circuit 80 to perform broadband communication. Reception of diversity signals in communications.
  • the linked antenna circuit 100 further includes a microstrip coupling circuit 90 .
  • the microstrip coupling circuit 90 is coupled to the first antenna 10 and connected to the narrowband communication circuit 70 to perform narrowband communication on the first antenna 10 . Transmit power wave test.
  • the microstrip coupler circuit 90 is connected to the control unit in the narrowband communication circuit 70 and is used to perform power detection on the first antenna 10 and provide a standing wave ratio.
  • the linkage antenna circuit 100 switches back to the default working mode to ensure the availability of the broadband communication circuit.
  • the main set signal in the broadband communication circuit 80 is transmitted, and the main set signal output from the power amplifier of the broadband communication circuit 80 passes through the second connection end 5 to the first connection end 4 of the duplex filter 632 for path output, and enters
  • the second connection terminal 2 of the coupler 631 then passes through the passage from the second connection terminal 2 of the coupler 631 to its first connection terminal 1 and enters the fourth connection terminal RF4 of the first switch 61.
  • the main set signal is transmitted through the first antenna 10, the fourth connection terminal RF4 of the first switch 61 is connected to the first connection terminal RF1, the main set signal enters the second type filter circuit 50, and is finally transmitted through the first antenna 10 , at this time, the power detection is connected to the third connection end 3 of the coupler 631 through the first connection end RF7 of the third switch 64 to its third connection end ANT2, and the coupled power is sent to the broadband transceiver in the broadband communication circuit 80 for execution. Detection.
  • the main set signal is transmitted through the second antenna 20.
  • the fourth connection of the first switch 61 Terminal RF4 is connected to its second connection terminal RF2.
  • the main set signal passes through the fourth connection terminal RF4 of the first switch 61 and its second connection terminal RF2, then enters the transmitting and receiving terminal TRX1 of the second antenna switch 65, and then passes through the second antenna.
  • the transmitting and receiving terminal TRX1 of the switch 65 passes through the antenna terminal ANT_IN1, it is finally transmitted through the second antenna 20.
  • the power detection passes through the path from the second connection terminal RF8 of the third switch to its third connection terminal ANT2, and is connected to The control power feedback terminal CPL of the second antenna switching switch 65 sends the coupled power to the broadband transceiver in the broadband communication circuit 80 for detection.
  • the main set signal reception in the broadband communication circuit 80 is controlled according to the business logic. There are two situations:
  • the second antenna 20 receives the main set signal.
  • the second antenna 20 is connected to the antenna terminal ANT_IN1.
  • the main set signal received by the antenna terminal ANT_IN1 enters the antenna terminal ANT_IN1 of the second antenna switch 65 and passes through the second antenna switch 65.
  • the signal is then sent to the broadband transceiver in the broadband communication circuit 80 through the duplex filter 632.
  • the first antenna 10 receives the main set signal, passes through the second type filter circuit 50 and enters the first connection end RF1 of the first switch 61, and then passes through the first connection end RF1 to the fourth connection end RF4 of the first switch 61.
  • the path enters the coupler 631, and then passes through the duplex filter 632 to send the main set signal to the broadband transceiver in the broadband communication circuit 80.
  • Broadband diversity signal reception in the broadband communication circuit 80 has three situations according to business logic control:
  • the third antenna 30 receives the diversity signal, passes through the path from the antenna terminal ANT_IN2 of the third antenna switching switch 66 to the transmitting and receiving terminal TRX2, then enters the second connection terminal RF6 of the second switch 62, and then passes through the second connection terminal RF6 of the second switch 62. After the passage from the second connection end RF6 to its third connection end ANT1, it enters the filter module 67, and finally passes through the passage of the filter module 67 and is sent to the broadband transceiver in the broadband communication circuit 80.
  • the first antenna 10 receives the diversity signal, passes through the second type filter circuit 50, enters the first connection terminal RF1 of the first switch 61, and then passes through the first connection terminal RF1 to the third connection terminal RF3 of the first switch 61.
  • the path enters the first connection terminal RF5 of the second switch 62, and then passes through the path from the first connection terminal RF5 of the second switch 62 to its third connection terminal ANT1, then enters the filter module 67, and finally passes through the path of the filter module 67. into the broadband transceiver in the broadband communication circuit 80.
  • the second antenna 20 receives the diversity signal, enters the ANT_IN1 port of the second antenna switch 65, passes through the path from the antenna terminal ANT_IN1 of the second antenna switch 65 to the transmitting and receiving terminal TRX1, and then enters the port of the first switch 61
  • the second connection terminal RF2 then passes through the passage from the second connection terminal RF2 to the third connection terminal RF3 of the first switch 61, enters the first connection terminal RF5 of the second switch 62, and then passes through the first connection terminal of the second switch 62.
  • the logic control terminal MIPI of the second antenna switch 65 is connected to the broadband control unit.
  • the transmitting and receiving terminal TRX1 currently used by the second antenna switching switch 65 is not fixed and can also be other TRX ports.
  • the logic control terminal MIPI of the third antenna switching switch 66 is connected to the broadband control unit.
  • the transmitting and receiving terminal TRX2 currently used by the third antenna switching switch 66 is not fixed and can also be other TRX ports.
  • the switch control ports of the first switch 61, the second switch 62 and the third switch 64 are connected to the broadband control unit, and the connection ends are not fixed and can be adjusted according to actual applications. Power supply for all units is provided by the power system.
  • FIG. 4 is a schematic structural diagram of an embodiment of the terminal of the present application.
  • the terminal 200 of this embodiment includes the linkage antenna circuit 100 disclosed in the above embodiment.
  • the terminal 200 in this embodiment may be a handheld broadband terminal, such as a walkie-talkie, etc., which is not limited here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种联动天线电路及终端,涉及通信技术领域。该电路包括第一天线、第二天线、第三天线、第一类型滤波电路、第二类型滤波电路、切换开关电路、窄带通信电路及宽带通信电路,窄带通信电路通过第一类型滤波电路连接至第一天线;宽带通信电路通过切换开关电路和第二类型滤波电路连接至第一天线,并通过切换开关电路连接至第二天线、第三天线,以选择第一天线和第二天线执行宽带通信,或者选择第一天线和第三天线执行宽带通信,或者选择第一天线、第二天线、第三天线执行宽带通信。本申请可以实现宽带通信信号、窄带通信信号同时收发,也可以实现单独收发,并且可以灵活地选择天线通道,提高了宽带通信的效率,提高整体的收发能力。

Description

联动天线电路及终端 【技术领域】
本申请涉及通信技术领域,具体涉及一种联动天线电路及终端。
【背景技术】
当前的终端,宽带通信时设置的天线为内置天线,内置天线分为主集收发天线和分集接收天线。从天线、结构、射频布局来考虑,主集天线放置于终端的底部,分集天线放置于终端顶部。窄带通信时设置的天线为外置天线。受制于终端特点及结构堆叠因素,导致宽带通信时的内置天线低频段(729-960MHz)的效率较低,尤其是分集天线的效率更为低下。终端的宽带通信通常采取低频段来部署,当专网视频上拉或者大数据下载时,终端内置天线的效率低下会致使速率不佳,终端整体的收发能力下降。
【发明内容】
本申请提出了一种联动天线电路及终端,以提高终端宽带通信的效率,提高终端的整体收发能力。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种联动天线电路,该联动天线电路包括第一天线、第二天线、第三天线、第一类型滤波电路、第二类型滤波电路、切换开关电路、窄带通信电路及宽带通信电路。
第一天线用于窄带通信;窄带通信电路通过第一类型滤波电路连接至第一天线,以执行窄带通信;宽带通信电路通过切换开关电路和第二类型滤波电路连接至第一天线,并通过切换开关电路连接至第二天线、第三天线,以选择第一天线和第二天线执行宽带通信,或者选择第一天线和第三天线执行宽带通信,或者选择第一天线、第二天线、第三天线执行宽带通信;其中,在选择第一天线、第二天线执行宽带通信时,第一天线接收的信号通过第一类型滤波电路将其中的窄带信号传递至窄带通信电路,第一天线接收的信号通过第二类型滤波电路将其中的宽带 信号传递至宽带通信电路。
其中,当第二天线执行宽带通信中的主集信号的收发时,切换开关电路被配置为选择第一天线和第三天线中接收能力强的一者连通宽带通信电路,以执行宽带通信中的分集信号的接收;当第一天线执行宽带通信中的主集信号的收发时,切换开关电路被配置为选择第二天线和第三天线中接收能力强的一者连通宽带通信电路,以执行宽带通信中的分集信号的接收。
其中,联动天线电路的工作模式包括第一模式、第二模式第三模式;当联动天线电路工作在第一模式时,切换开关电路被配置为使第一天线用于收发窄带通信中的窄带信号,第二天线用于收发宽带通信中的主集信号,第三天线用于接收宽带通信中的分集信号;当联动天线电路工作在第二模式时,切换开关电路被配置为使第一天线用于收发窄带通信中的窄带信号,第二天线用于收发宽带通信中的主集信号,且第一天线还用于接收宽带通信中的分集信号;当联动天线电路工作在第三模式时,切换开关电路被配置为使第一天线用于收发窄带通信中的窄带信号,且第一天线还用于收发宽带通信中的主集信号,第二天线用于接收宽带通信中的分集信号。
其中,当第一天线工作异常,切换开关电路被配置为使联动天线电路工作在第一模式。
其中,切换开关电路包括第一开关及第二开关,第一开关包括第一连接端、第二连接端、第三连接端和第四连接端,其中,第一开关的第一连接端用于连接第二类型滤波电路,第一开关的第二连接端用于连接第二天线,第一开关的第四连接端用于连接宽带通信电路;第二开关包括第一连接端、第二连接端和第三连接端,第二开关的第一连接端用于连接第一开关的第三连接端,第二开关的第二连接端用于连接第三天线,第二开关的第三连接端用于连接宽带通信电路;其中,在第一天线执行宽带通信的主集信号的发射或接收时,第一开关的第一连接端与第一开关的第四连接端连通,以使宽带通信电路通过第一开关而连通至第一天线;在第二天线执行宽带通信的主集信号的发射或接收时,第一开 关的第二连接端与第一开关的第四连接端连通,以使宽带通信电路通过第一开关而连通至第二天线;在第一天线执行宽带通信的分集信号的接收时,第一开关的第一连接端与第一开关的第三连接端连通,且第二开关的第一连接端与第二开关的第三连接端连通,以使宽带通信电路通过第一开关和第二开关而连通至第一天线;在第二天线执行宽带通信的分集信号的接收时,第一开关的第二连接端与第一开关的第三连接端连通,且第二开关的第一连接端与第二开关的第三连接端连通,以使宽带通信电路通过第一开关和第二开关而连通至第二天线;在第三天线执行宽带通信的分集信号的接收时,第二开关的第二连接端与第二开关的第三连接端连通,以使宽带通信电路通过第二开关而连通至第三天线。
其中,切换开关电路还包括耦合滤波模块,第一开关的第四连接端通过耦合滤波模块连接至宽带通信电路。
其中,切换开关电路还包括第三开关及第二天线切换开关。第三开关包括第一连接端、第二连接端和第三连接端,其中,第三开关的第一连接端连接至耦合滤波模块,第三开关的第三连接端连接至宽带通信电路;第二天线切换开关包括至少一个发送接收端、天线端和控制功率反馈端,其中,第一开关的第二连接端连接第二天线切换开关的一个发送接收端,第二天线连接第二天线切换开关的天线端以通过第二天线切换开关而连接第二天线与第一开关,第三开关的第二连接端连接至第二天线切换开关的控制功率反馈端;在第一天线执行宽带通信的主集信号的发射时,第三开关的第一连接端与第三开关的第三连接端连通,以使宽带通信电路通过第三开关而连通至耦合滤波模块;在第二天线执行宽带通信的主集信号的发射时,第三开关的第二连接端与第三开关的第三连接端连通,以使宽带通信电路通过第三开关而连通至第二天线切换开关的控制功率反馈端。
其中,耦合滤波模块包括耦合器及双工滤波器,耦合器包括第一连接端、第二连接端和第三连接端,其中,耦合器的第一连接端连接第一开关的第四连接端,耦合器的第二连接端连接第三开关的第一连接端;双工滤波器包括第一连接端、第二连接端和第三连接端,其中,双工滤 波器的第一连接端连接至耦合器的第三连接端,双工滤波器的第二连接端和第三连接端连接至宽带通信电路。
其中,切换开关电路还包括第三天线切换开关及滤波模块,第三天线切换开关包括至少一个发送接收端和天线端,其中,第三天线切换开关的一个发送接收端连接至第二开关的第二连接端,第三天线切换开关的天线端连接至第三天线;滤波模块连接在第二开关的第三连接端与宽带通信电路之间。
其中,联动天线电路进一步包括微带耦合电路,微带耦合电路与第一天线进行耦合,并连接至窄带通信电路。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种终端,该终端包括上述任意一项的联动天线电路。
本申请的有益效果是:区别于现有技术的情况,本申请的联动天线电路在现有技术的基础上通过设置第一类型滤波电路与第二类型滤波电路及切换开关电路,使终端在进行宽带通信时可通过切换开关电路连接至第一天线,并通过切换电路选择第一天线和第二天线执行宽带通信,或者选择第一天线和第三天线执行宽带通信,或者选择第一天线、第二天线、第三天线执行宽带通信。当终端在进行宽带通信时,第一天线、第二天线及第三天线的通道之间可以进行共享和实时切换,从而在保证宽带通信和窄带通信的双模通信同时进行的前提下,提高宽带通信的效率,提高终端整体的收发能力。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请联动天线电路第一实施例的结构示意图;
图2是本申请联动天线电路第二实施例的结构示意图;
图3是本申请联动天线电路第三实施例的结构示意图;
图4是本申请终端一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请首先提出一种联动天线电路,请参阅图1,图1是本申请联动天线电路第一实施例的结构示意图。如图1所示,本实施例的联动天线电路100包括第一天线10、第二天线20、第三天线30、第一类型滤波电路40、第二类型滤波电路50、切换开关电路60、窄带通信电路70及宽带通信电路80。
第一天线10用于窄带通信。其中,窄带通信是宽带技术出现之前的通信技术,理论信道带宽较小,仅仅能满足少量语音文字信息的传输,对于大量数据的视频、音频、图像信息来说,却无力承载,例如,PDT、DMR等通信技术。在本实施中窄带通信的窄带信号为频率低于470MHz发射按键控制频段信号。宽带通信,是指应用于公众陆地移动网络中的无线技术,例如,3G、LTE、4G、5G等无线通信技术。在本实施中宽带通信的宽带信号指的是频率为699-960MHz的蜂窝频段信号。
窄带通信电路70通过第一类型滤波电路40连接至第一天线10,以执行窄带通信。宽带通信电路80通过切换开关电路60和第二类型滤波电路50连接至第一天线10,并通过切换开关电路60连接至第二天线20、第三天线30,以选择第一天线10、第二天线20执行宽带通信,或者选择第一天线10和第三天线30执行宽带通信,或者选择第一天线10、第二天线20、第三天线30执行宽带通信。其中,在选择第一天线10、第二天线20执行宽带通信时,第一天线10接收的信号可通过第一类型滤波电路40而将其中的窄带信号传递至窄带通信电路70,第一天线10接收的信号可通过第二类型滤波电路50而将其中的宽带信号传递至宽 带通信电路80,以使第一天线10具有同时窄带通信和宽带通信的能力。
在本实施例中,第一类型滤波电路40可以设置为多阶低通滤波器电路,低通滤波电路用于深度抑制宽带通信的蜂窝频段信号,以通过低于470MHz频率的发射按键控制频段信号;第二类型滤波电路50可以设置为多阶高通滤波器电路,高通滤波电路用于深度抑制窄带通信的发射按键控制频段信号,以通过频率为699-960MHz的蜂窝频段信号,第一天线10分别通过第一类型滤波电路40及第二类型滤波电路50分别连接窄带通信电路70、宽带通信电路80,可以是第一天线10具有同时进行窄带通信及宽带通信的能力,设置第一类型滤波电路40及第二类型滤波电路50可以避免其他信号对第一天线10进行宽/窄带通信时其他信号的干扰。
其中,窄带通信电路70中包括窄带发射/接收单元、驻波比检测单元及控制单元,宽带通信电路80中包括功率放大器、宽带收发信机及控制单元。
本实施例还设置切换开关电路60,切换开关电路60分别与第二类型滤波电路50、第二天线20、第三天线30及宽带通信电路80连接,通过切换开关电路60,在进行宽带通信时,可以基于切换开关电路60选择第一天线10、第二天线20执行宽带通信,或者选择第一天线10和第三天线30执行宽带通信,或者选择第一天线10、第二天线20、第三天线30执行宽带通信。
第一天线10为外置天线,第二天线20为内置主集天线,第三天线30为内置分集天线,从天线、结构、射频布局来考虑,内置主集天线一般放置于终端底部,内置分集天线一般放置于终端顶部,受制于终端结构堆叠因素,导致内置天线低频段的效率较低,尤其是内置分集天线效率更为低下。从天线效率上来比较,外置天线的效率大于内置主集天线的效率,内置主集天线的效率又大于内置分集天线的效率。本申请通过设置切换开关电路60,使进行宽带通信时,可以选择第一天线10、第二天线20执行宽带通信,或者选择第一天线10和第三天线30执行宽带通信,或者选择第一天线10、第二天线20、第三天线30执行宽带通 信,从而可以提升宽带通信的效率,进而提升终端整体的收发能力。
区别于现有技术的情况,本申请的联动天线电路100在现有技术的基础上通过设置第一类型滤波电路40与第二类型滤波电路50及切换开关电路60,使终端在进行宽带通信时可通过切换开关电路60连接至第一天线10,并通过切换电路选择第一天线10和第二天线20执行宽带通信,或者选择第一天线10和第三天线30执行宽带通信,或者选择第一天线10、第二天线20、第三天线30执行宽带通信。使终端在进行宽带通信时,第一天线10、第二天线20及第三天线30的通道之间可以进行共享和实时切换,从而在保证宽带通信和窄带通信的双模通信同时进行的前提下,提高宽带通信的效率,提高终端整体的收发能力。
具体地,联动天线电路的工作模式包括第一模式、第二模式及第三模式,第一模式为默认工作模式,第二模式为分集能力提升模式,第三模式为主集能力提升模式。
当联动天线电路100工作在默认工作模式时,即工作在第一模式,切换开关电路60被配置为使第一天线10用于收发窄带通信中的窄带信号,第二天线20用于收发宽带通信中的主集信号,第三天线30用于接收宽带通信中的分集信号。
当联动天线电路100工作在分集能力提升模式,即工作在第二模式时,分集能力提升模式指的是联动天线电路100提升宽带通信中分集接收信号的效率,以确保接收信号的质量。切换开关电路60被配置为使第一天线10用于收发窄带通信中的窄带信号,第二天线20用于收发宽带通信中的主集信号,且第一天线10还用于接收宽带通信中的分集信号。
当联动天线电路100工作在主集能力提升模式,即工作在第三模式,主集能力提升模式指的是联动天线电路100提升宽带通信中主集接收与反射信号的效率,以确保主集信号接收与发射的质量。切换开关电路60被配置为使第一天线10用于收发窄带通信中的窄带信号,且第一天线10还用于收发宽带通信中的主集信号,第二天线20用于接收宽带通信中的分集信号。
当第一天线10工作异常,切换开关电路60被配置为使联动天线电路100工作在第一模式,即默认工作模式。默认工作模式即为切换开关电路60被配置为使第一天线10用于收发窄带通信中的窄带信号,第二天线20用于收发宽带通信中的主集信号,第三天线30用于接收宽带通信中的分集信号。
本申请的联动天线电路100不仅可以实现宽窄带通信同时进行,且通过设置第二模式(分集能力提升模式)、第三模式(主集能力提升模式),可以通过切换开关电路60从本质上同时提升联动天线电路100的宽带通信的主集信号的收发性能和分集信号的接收性能,进而提升用户的使用体验。
可选地,请参阅图2,图2是本申请联动天线电路第二实施例的结构示意图,如图2所示,本实施例的联动天线电路100的切换开关电路60包括第一开关61及第二开关62。
第一开关61包括第一连接端RF1、第二连接端RF2、第三连接端RF3和第四连接端RF4,其中,第一开关61的第一连接端RF1用于连接第二类型滤波电路50,第一开关61的第二连接端RF2用于连接第二天线20,第一开关61的第四连接端RF4用于连接宽带通信电路80。
其中,第一开关61可以为通用性输入输出(General-purpose input/output,GPIO)的逻辑控制器件,可以设置为双刀双掷开关,第一开关61的主要作用是根据高低电平控制指令将第一连接端RF1与第三连接端RF3/第四连接端RF4的连通和第二连接端RF2与第三连接端RF3/第四连接端RF4的连通执行切换,具体切换通路由终端本身逻辑表决定。在其他实施例中,第一开关61也可以为其他逻辑控制器件,只需满足上述的第一开关61的功能即可,在此不作限定。
第二开关62包括第一连接端RF5、第二连接端RF6和第三连接端ANT1,第二开关的第一连接端RF5用于连接第一开关61的第三连接端RF3,第二开关62的第二连接端RF6用于连接第三天线30,第二开关62的第三连接端ANT1用于连接宽带通信电路80。
其中,第二开关62也可以为GPIO逻辑控制器件,可以设置为单刀 双掷开关,主要作用为根据高低电平控制指令将第二开关62的第一连接端RF5与第三连接端ANT1的连通和第二开关62的第二连接端RF6与第三连接端ANT1的连通执行切换,具体切换通路由终端本身逻辑表决定。在其他实施例中,第二开关62也可以为其他逻辑控制器件,只需满足上述的第二开关62的功能即可,在此不作限定。
当第一天线10执行宽带通信的主集信号的发射或接收时,第一开关61的第一连接端RF1与第一开关61的第四连接端RF4连通,以使宽带通信电路80通过第一开关61而连通至第一天线10。
当第一天线10执行宽带通信的主集信号的发射或接收时,第一开关61基于第一切换通路控制指令使第一开关61的其第一连接端RF1与第一开关61的第四连接端RF4连通,从而实现宽带通信电路80通过第一开关61连接至第一天线10,第一天线10用于宽带通信的主集信号的发射或接收,因第一天线10为外置天线,相较于内置天线的第二天线20及第三天线30效率较高,从而提升宽带通信的主集收发性能。
当第二天线20执行宽带通信的主集信号的发射或接收时,第一开关61的第二连接端RF2与第一开关61的第四连接端RF4连通,以使宽带通信电路通过第一开关61而连通至第二天线20。
当第一天线10执行宽带通信的分集信号的接收时,第一开关61的第一连接端RF1与第一开关61的第三连接端RF3连通,且第二开关62的第一连接端RF5与第二开关62的第三连接端ANT1连通,以使宽带通信电路通过第一开关61和第二开关62而连通至第一天线10。
当第一天线10执行宽带通信的分集信号的接收时,基于第一切换通路控制信号第一开关61的第一连接端RF1与第一开关61的第三连接端RF3连通,基于第二切换通路控制信号,第二开关62的第一连接端RF5与第二开关62的第三连接端ANT1连通,从而使第一天线10应用于宽带通信的分集信号的接收,因第一天线10为外置天线,相较于内置天线的第二天线20及第三天线30效率较高,从而提升宽带通信的分集的接收性能。
当第二天线20执行宽带通信的分集信号的接收时,第一开关61的 第二连接端RF2与第一开关61的第三连接端RF3连通,且第二开关62的第一连接端RF5与第二开关62的第三连接端ANT1连通,以使宽带通信电路通过第一开关61和第二开关62而连通至第二天线20。
当第二天线20执行宽带通信的分集信号的接收时,基于第一切换通路控制信号第一开关61的第二连接端RF2与第一开关61的第三连接端RF3连通,基于第二切换通路控制信号,第二开关62的第一连接端RF5与第二开关62的第三连接端ANT1连通,从而使第二天线20应用于宽带通信的分集信号的接收,因第二天线20相较于第三天线30效率较高,从而提升宽带通信的分集的接收性能。
当第三天线30执行宽带通信的分集信号的接收时,第二开关62的第二连接端RF6与第二开关62的第三连接端ANT1连通,以使宽带通信电路通过第二开关62而连通至第三天线30。
在一应用场景下,当联动天线电路100工作在默认工作模式时,即工作在第一模式时,窄带通信电路70进行窄带信号的收发时通过第一类型滤波电路40连接第一天线10进行窄带通信,宽带通信电路80在进行主集信号的收发时,第一开关61的第二连接端RF2连接第四连接端RF4,宽带通信电路80通过第一开关61连接第二天线20进行主集信号的收发,宽带通信电路80在进行分集信号的接收时,第二开关62的第二连接端RF6连接其第三连接端ANT1端,宽带通信电路80通过第二开关62连接第三天线30进行分集信号的接收。
当联动天线电路100工作在分集能力提升模式,窄带通信电路70进行窄带信号的收发时通过第一类型滤波电路40连接第一天线10进行窄带通信,宽带通信电路80在进行主集信号的收发时,第一开关61的第二连接端RF2连接第四连接端RF4,宽带通信电路80通过第一开关61连接第二天线20进行主集信号的收发,宽带通信电路80在进行分集信号的接收时,第一开关61的第一连接端RF1连接第三连接端RF3,第二开关62的第一连接端RF5连接其第三连接端ANT1端,宽带通信电路80通过第一开关61及第二开关62连接第一天线10进行分集信号的接收,以提升分集信号的接收能力。
在其他实施例中,宽带通信电路80通过第二天线20进行主集信号的收发时,进行分集信号的接收时,可以比较第一天线10及第三天线30的接收能力,选择第一天线10及第三天线30中接收能力较好的一路接入;宽带通信电路80通过第一天线10进行主集信号的收发时,进行分集信号的接收时,可以比较第二天线20及第三天线30的接收能力,选择第二天线20及第三天线30中接收能力较好的一路接入。
当联动天线电路100工作在主集能力提升模式,窄带通信电路70进行窄带信号的收发时依旧通过第一类型滤波电路40连接第一天线10进行窄带通信,宽带通信电路80在进行主集信号的收发时,第一开关61的第一连接端RF1连接第四连接端RF4,宽带通信电路80通过第一开关61连接第一天线10进行主集信号的收发。
区别于现有技术,本申请的联动天线电路100通过设置切换开关电路开关60优化了电路设计,整合了业务逻辑关联性,使得各天线通道能够充分共享和实时切换。在保证宽窄带通信可同时进行的前提下,提高宽带通信时天线覆盖效率,提高了终端整体收发能力,从而提升了用户体验。
可选地,请参阅图3,图3是本申请联动天线电路第三实施例的结构示意图,如图3所示,本实施例的切换开关电路60还包括耦合滤波模块63、第三开关64及第二天线切换开关65。
第一开关61的第四连接端RF4通过耦合滤波模块63连接至宽带通信电路80。
第三开关64包括第一连接端RF7、第二连接端RF8和第三连接端ANT2,其中,第三开关64的第一连接端RF7连接至耦合滤波模块63,第三开关64的第三连接端ANT2连接至宽带通信电路80。
在本实施例中第三开关64与第二开关62同为单刀双掷开关,在此不再赘述。
第二天线切换开关65包括至少一个发送接收端TRX1、天线端ANT_IN1和控制功率反馈端CPL,其中,第一开关61的第二连接端RF2连接第二天线切换开关65的一个发送接收端TRX1,第二天线20连接 第二天线切换开关65的天线端ANT_IN1,以通过第二天线切换开关65,而连接第二天线20与第一开关61,第三开关64的第二连接端RF8连接至第二天线切换开关65的控制功率反馈端CPL。
在本实施例中,第二天线切换开关65是一种移动行业处理器接口(Mobile Industry Processor Interface,MIPI)逻辑控制器件,设置为主集天线切换开关,主要作用是根据控制指令将天线端ANT_IN1的信号在某一时刻切给某一个发送接收端,具体切换通路指令由器件本身逻辑表决定。
当第一天线10执行宽带通信的主集信号的发射,第三开关64的第一连接端RF7与第三开关64的第三连接端ANT2连通,以使宽带通信电路80通过第三开关64而连通至耦合滤波模块63,从而进行发射功率验波。
当第二天线20执行宽带通信的主集信号的发射,第三开关64的第二连接端RF8与第三开关64的第三连接端ANT2连通,以使宽带通信电路80通过第三开关64而连通至第二天线切换开关65的控制功率反馈端CPL,从而进行发射功率验波。
在本实施例中,宽带通信电路80中的检波信号单元对主集信号发射时进行检波,当主集信号发射通过第二天线20时,检波信号单元经过第三开关64,第三开关64的第三连接端ANT2与第二连接端RF8连通,通路连接到第二天线切换开关的控制功率反馈端CPL。
当主集信号发射通过第一天线10时,检波信号单元经过第三开关64,第三开关64的第三连接端ANT2与第一连接端RF7连通,通路连接到耦合滤波模块63,即第三开关64根据逻辑控制指令选择某一路检波通路接入宽带通信电路80中的宽带收发信机。
可选地,请参阅图3,本实施例的耦合滤波模块63包括耦合器631及双工滤波器632,耦合器631包括第一连接端1、第二连接端2和第三连接端3,其中,耦合器631的第一连接端1连接第一开关61的第四连接端RF4,耦合器631的第三连接端3连接第三开关64的第一连接端RF7;双工滤波器632包括第一连接端4、第二连接端5和第三连接 端6,其中,双工滤波器632的第一连接端4连接至耦合器631的第二连接端2,双工滤波器632的第二连接端5和第三连接端6连接至宽带通信电路80,以分别向宽带通信电路80传递滤波后的接收信号,或从宽带通信电路80接收发射信号并进行滤波后传输至耦合器631。
在本实施例中,耦合器631为无源器件,主要作用为当传输功率从输入到输出后,通过控制功率反馈端CPL耦合一路功率给宽带通信电路80中的控制单元,控制单元判断传输功率的大小。
双工滤波器632为无源器件,在本实施例中主要作用对收发的信号进行滤波,将滤波后的信号送入下一个单元。
可选地,请参阅图3,本实施例的切换开关电路60还包括第三天线切换开关66及滤波模块67。
第三天线切换开关66包括至少一个发送接收端TRX2和天线端ANT_IN2,其中,第三天线切换开关66的一个发送接收端TRX2连接至第二开关62的第二连接端RF6,第三天线切换开关66的天线端ANT_IN2连接至第三天线30,以通过第三天线切换开关66而连接第三天线30与第二开关62。
其中,第三天线切换开关66也是一种MIPI逻辑控制器件,设置为分集天线切换开关,作用与第二天线切换开关65相同,不再赘述。
滤波模块67连接在第二开关62的第三连接端ANT1与宽带通信电路80之间。
在本实施例中,滤波模块67可以设置为滤波器,滤波器的主要作用是将接收到的信号进行滤波后,再送入下一单元。
具体地,当第二天线20执行宽带通信中的主集信号的收发时,切换开关电路60被配置为选择第一天线10和第三天线30中接收能力强的一者连通宽带通信电路80,以执行宽带通信中的分集信号的接收。
当第一天线10执行宽带通信中的主集信号的收发时,切换开关电路60被配置为选择第二天线20和第三天线30中接收能力强的一者连通宽带通信电路80,以执行宽带通信中的分集信号的接收。
可选地,请参阅图3,联动天线电路100进一步包括微带耦合电路 90,微带耦合电路90与第一天线10进行耦合,并连接至窄带通信电路70,以对第一天线10进行窄带发射功率验波。
其中微带耦合器电路90与窄带通信电路70中的控制单元连接,用于对第一天线10进行功率检波和提供驻波比。
具体地,当识别到第一天线10的接口驻波比大于某一阈值时,联动天线电路100切回默认工作模式,保证宽带通信电路的可用性。
在一应用场景中,如图3所示,本申请的联动天线电路100的原理详细说明如下:
一、宽带通信电路80中的主集信号进行发射,从宽带通信电路80的功率放大器输出的主集信号经过双工滤波器632的第二连接端5至第一连接端4进行通路输出,进入耦合器631的第二连接端2,再经过耦合器631的第二连接端2至其第一连接端1的通路进入第一开关61的第四连接端RF4,此时根据业务逻辑控制,有两种情况:
(1)主集信号通过第一天线10发射,第一开关61的第四连接端RF4与第一连接端RF1连通,主集信号进入第二类型滤波电路50,最后通过第一天线10进行发射,此时功率检波通过第三开关64的第一连接端RF7至其第三连接端ANT2通路连接耦合器631的第三连接端3,将耦合功率送入宽带通信电路80中宽带收发信机执行检波。
(2)主集信号通过第二天线20发射,主集信号经过耦合器631的第二连接端2至其第一连接端1的通路进入第一开关61后,第一开关61的第四连接端RF4与其第二连接端RF2连通,主集信号经过第一开关61的第四连接端RF4与其第二连接端RF2通路后进入第二天线切换开关65的发送接收端TRX1,再经过第二天线切换开关65的发送接收端TRX1与天线端ANT_IN1通路后,最后通过第二天线20进行发射,此时功率检波通过第三开关的第二连接端RF8至其第三连接端ANT2的通路,连接至第二天线切换开关65的控制功率反馈端CPL,将耦合功率送入宽带通信电路80中的宽带收发信机进行检波。
二、宽带通信电路80中的主集信号接收,根据业务逻辑控制,有两种情况:
(1)第二天线20接收主集信号,第二天线20与天线端ANT_IN1连接,天线端ANT_IN1收到的主集信号进入第二天线切换开关65的天线端ANT_IN1,经过第二天线切换开关65的天线端ANT_IN1至发送接收端TRX1的通路后,进入第一开关61的第二连接端RF2,再经过第一开关61的第二连接端RF2与第四连接端RF4的通路进入耦合器631,再经过双工滤波器632将信号送入宽带通信电路80中的宽带收发信机。
(2)第一天线10接收主集信号,经过第二类型滤波电路50后进入第一开关61的第一连接端RF1,再经过第一开关61第一连接端RF1至第四连接端RF4的通路进入耦合器631,再经过双工滤波器632将主集信号送入宽带通信电路80中的宽带收发信机。
三、宽带通信电路80中的宽带分集信号接收,根据业务逻辑控制,有三种情况:
(1)第三天线30接收分集信号,经过第三天线切换开关66的天线端ANT_IN2至发送接收端TRX2的通路后,进入第二开关62的第二连接端RF6,再经过第二开关62的第二连接端RF6至其第三连接端ANT1的通路后,进入滤波模块67,最后经过滤波模块67的通路后送入宽带通信电路80中的宽带收发信机。
(2)第一天线10接收分集信号,经过第二类型滤波电路50后进入第一开关61的第一连接端RF1,再经过第一开关61的第一连接端RF1至第三连接端RF3的通路,进入第二开关62的第一连接端RF5,再经过第二开关62的第一连接端RF5至其第三连接端ANT1的通路后,进入滤波模块67,最后经过滤波模块67的通路后送入宽带通信电路80中的宽带收发信机。
(3)第二天线20接收分集信号,进入第二天线切换开关65的ANT_IN1端口,再经过第二天线切换开关65的天线端ANT_IN1至发送接收端TRX1的通路后,后进入第一开关61的第二连接端RF2,再经过第一开关61的第二连接端RF2至第三连接端RF3的通路,进入第二开关62的第一连接端RF5,再经过第二开关62的第一连接端RF5至 其第三连接端ANT1的通路后,进入滤波模块67,最后经过滤波模块67的通路后送入宽带通信电路80中的宽带收发信机。
请参阅图3,第二天线切换开关65的逻辑控制端MIPI连接宽带控制单元,当前第二天线切换开关65使用的发送接收端TRX1不固定,也可以是其他TRX端口。第三天线切换开关66的逻辑控制端MIPI连接宽带控制单元,当前第三天线切换开关66使用的发送接收端TRX2不固定,也可以是其他TRX端口。第一开关61、第二开关62及第三开关64的开关控制口连接宽带控制单元,连接端不固定,根据实际应用可调整。所有单元的供电均为电源***提供。
本申请进一步提出一种终端,请参阅图4,图4是本申请终端一实施例的结构示意图,本实施例的终端200包括上述实施例所揭示的联动天线电路100。其中,本实施例的终端200可以为手持类宽带终端,例如对讲机等,在此不作限制。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种联动天线电路,其特征在于,包括:
    第一天线、第二天线和第三天线,其中,所述第一天线用于窄带通信;
    窄带通信电路,通过第一类型滤波电路连接至所述第一天线,以执行窄带通信;
    宽带通信电路,通过切换开关电路和第二类型滤波电路连接至所述第一天线,并通过所述切换开关电路连接至所述第二天线、所述第三天线,以选择所述第一天线和所述第二天线执行宽带通信,或者,选择所述第一天线和所述第三天线执行宽带通信,或者选择所述第一天线、所述第二天线、所述第三天线执行宽带通信;
    其中,在选择所述第一天线、所述第二天线执行宽带通信时,所述第一天线接收的信号通过所述第一类型滤波电路将其中的窄带信号传递至所述窄带通信电路,所述第一天线接收的信号通过所述第二类型滤波电路将其中的宽带信号传递至所述宽带通信电路。
  2. 根据权利要求1所述的联动天线电路,其特征在于,
    当所述第二天线执行所述宽带通信中的主集信号的收发时,所述切换开关电路被配置为选择所述第一天线和所述第三天线中接收能力强的一者连通所述宽带通信电路,以执行所述宽带通信中的分集信号的接收;
    当所述第一天线执行所述宽带通信中的主集信号的收发时,所述切换开关电路被配置为选择所述第二天线和所述第三天线中接收能力强的一者连通所述宽带通信电路,以执行所述宽带通信中的分集信号的接收。
  3. 根据权利要求2所述的联动天线电路,其特征在于,所述联动天线电路的工作模式包括第一模式、第二模式及第三模式;
    当所述联动天线电路工作在所述第一模式时,所述切换开关电路被配置为使所述第一天线用于收发所述窄带通信中的窄带信号,所述第二天线用于收发所述宽带通信中的主集信号,所述第三天线用于接收所述宽带通信中的分集信号;
    当所述联动天线电路工作在所述第二模式时,所述切换开关电路被配置为使所述第一天线用于收发所述窄带通信中的窄带信号,所述第二天线用于收发 所述宽带通信中的主集信号,且所述第一天线还用于接收所述宽带通信中的分集信号;
    当所述联动天线电路工作在所述第三模式时,所述切换开关电路被配置为使所述第一天线用于收发所述窄带通信中的窄带信号,且所述第一天线还用于收发所述宽带通信中的主集信号,所述第二天线用于接收所述宽带通信中的分集信号。
  4. 根据权利要求3所述的联动天线电路,其特征在于,当所述第一天线工作异常,所述切换开关电路被配置为使所述联动天线电路工作在所述第一模式。
  5. 根据权利要求1所述的联动天线电路,其特征在于,所述切换开关电路包括:
    第一开关,包括第一连接端、第二连接端、第三连接端和第四连接端,其中,所述第一开关的第一连接端用于连接所述第二类型滤波电路,所述第一开关的第二连接端用于连接所述第二天线,所述第一开关的第四连接端用于连接所述宽带通信电路;
    第二开关,包括第一连接端、第二连接端和第三连接端,其中,所述第二开关的第一连接端用于连接所述第一开关的第三连接端,所述第二开关的第二连接端用于连接所述第三天线,所述第二开关的第三连接端用于连接所述宽带通信电路;
    其中,在所述第一天线执行所述宽带通信的主集信号的发射或接收时,所述第一开关的第一连接端与所述第一开关的第四连接端连通,以使所述宽带通信电路通过所述第一开关而连通至所述第一天线;在所述第二天线执行所述宽带通信的主集信号的发射或接收时,所述第一开关的第二连接端与所述第一开关的第四连接端连通,以使所述宽带通信电路通过所述第一开关而连通至所述第二天线;
    在所述第一天线执行所述宽带通信的分集信号的接收时,所述第一开关的第一连接端与所述第一开关的第三连接端连通,且所述第二开关的第一连接端与所述第二开关的第三连接端连通,以使所述宽带通信电路通过所述第一开关和所述第二开关而连通至所述第一天线;在所述第二天线执行所述宽带通信的分集信号的接收时,所述第一开关的第二连接端与所述第一开关的第三连接端连通,且所述第二开关的第一连接端与所述第二开关的第三连接端连通,以使 所述宽带通信电路通过所述第一开关和所述第二开关而连通至所述第二天线;在所述第三天线执行所述宽带通信的分集信号的接收时,所述第二开关的第二连接端与所述第二开关的第三连接端连通,以使所述宽带通信电路通过所述第二开关而连通至所述第三天线。
  6. 根据权利要求5所述的联动天线电路,其特征在于,所述切换开关电路还包括:
    耦合滤波模块,其中,所述第一开关的所述第四连接端通过所述耦合滤波模块连接至所述宽带通信电路。
  7. 根据权利要求6所述的联动天线电路,其特征在于,所述切换开关电路还包括:
    第三开关,包括第一连接端、第二连接端和第三连接端,其中,所述第三开关的第一连接端连接至所述耦合滤波模块,所述第三开关的第三连接端连接至所述宽带通信电路;
    第二天线切换开关,包括至少一个发送接收端、天线端和控制功率反馈端,其中,所述第一开关的第二连接端连接所述第二天线切换开关的一个所述发送接收端,所述第二天线连接所述第二天线切换开关的天线端,所述第三开关的第二连接端连接至所述第二天线切换开关的控制功率反馈端;
    其中,在所述第一天线执行所述宽带通信的主集信号的发射时,所述第三开关的第一连接端与所述第三开关的第三连接端连通,以使所述宽带通信电路通过所述第三开关而连通至所述耦合滤波模块;
    在所述第二天线执行所述宽带通信的主集信号的发射时,所述第三开关的第二连接端与所述第三开关的第三连接端连通,以使所述宽带通信电路通过所述第三开关而连通至所述第二天线切换开关的控制功率反馈端。
  8. 根据权利要求7所述的联动天线电路,其特征在于,所述耦合滤波模块包括:
    耦合器,包括第一连接端、第二连接端和第三连接端,其中,所述耦合器的第一连接端连接所述第一开关的第四连接端,所述耦合器的第二连接端连接所述第三开关的第一连接端;
    双工滤波器,包括第一连接端、第二连接端和第三连接端,其中,所述双工滤波器的第一连接端连接至所述耦合器的第三连接端,所述双工滤波器的第 二连接端和第三连接端分别连接至所述宽带通信电路。
  9. 根据权利要求5所述的联动天线电路,其特征在于,所述切换开关电路还包括:
    第三天线切换开关,包括至少一个发送接收端和天线端,其中,所述第三天线切换开关的一个发送接收端连接至所述第二开关的第二连接端,所述第三天线切换开关的天线端连接至所述第三天线;
    滤波模块,连接在所述第二开关的第三连接端与所述宽带通信电路之间。
  10. 根据权利要求1所述的联动天线电路,其特征在于,所述联动天线电路还包括:
    微带耦合电路,与所述第一天线进行耦合,并连接至所述窄带通信电路。
  11. 一种终端,其特征在于,包括如权利要求1-10任意一项所述的联动天线电路。
PCT/CN2022/107175 2022-07-21 2022-07-21 联动天线电路及终端 WO2024016282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107175 WO2024016282A1 (zh) 2022-07-21 2022-07-21 联动天线电路及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107175 WO2024016282A1 (zh) 2022-07-21 2022-07-21 联动天线电路及终端

Publications (1)

Publication Number Publication Date
WO2024016282A1 true WO2024016282A1 (zh) 2024-01-25

Family

ID=89616768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107175 WO2024016282A1 (zh) 2022-07-21 2022-07-21 联动天线电路及终端

Country Status (1)

Country Link
WO (1) WO2024016282A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247692A (zh) * 2019-06-25 2019-09-17 Oppo广东移动通信有限公司 通路切换方法及相关产品
CN112886976A (zh) * 2020-12-31 2021-06-01 海能达通信股份有限公司 一种天线共享电路及终端
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频***、天线切换方法和通信设备
CN113316899A (zh) * 2019-02-01 2021-08-27 华为技术有限公司 一种天线选择的方法、终端设备
CN114124137A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频***及通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316899A (zh) * 2019-02-01 2021-08-27 华为技术有限公司 一种天线选择的方法、终端设备
CN110247692A (zh) * 2019-06-25 2019-09-17 Oppo广东移动通信有限公司 通路切换方法及相关产品
CN112886976A (zh) * 2020-12-31 2021-06-01 海能达通信股份有限公司 一种天线共享电路及终端
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频***、天线切换方法和通信设备
CN114124137A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频***及通信设备

Similar Documents

Publication Publication Date Title
JP6955103B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
WO2020192426A1 (zh) 射频前端电路及移动终端
CN108880602B (zh) 多路选择开关以及相关产品
WO2019233253A1 (zh) 射频电路、终端及信号发射控制方法
CN108923790B (zh) 多路选择开关、射频***和无线通信设备
CN108462498B (zh) 多路选择开关、射频***和无线通信设备
WO2017113693A1 (zh) 天线复用装置以及移动终端
WO2018027984A1 (zh) 一种终端设备及切换方法
WO2022089329A1 (zh) 射频电路及电子设备
US11569850B2 (en) Radio frequency front-end circuit and controller
WO2021031771A1 (zh) 射频前端电路及移动终端
CN108900201B (zh) 多路选择开关、射频***及电子设备
CN111245469B (zh) 射频电路和电子设备
WO2016184271A1 (zh) 一种天线切换装置
WO2012079411A1 (zh) 共用天线的无线通信设备及采用所述设备的通信方法
WO2023061090A1 (zh) 一种覆盖多频段的射频前端模块及无线通信设备
CN115459805B (zh) 一种实现天线复用的电路
CN107889120B (zh) 一种提高tdd-lte上行抗干扰性的室内覆盖***
US11652505B2 (en) RF system and electronic device
WO2023236530A1 (zh) 射频PA Mid器件、射频***和通信设备
WO2024016282A1 (zh) 联动天线电路及终端
WO2020052406A1 (zh) 开关控制电路、载波聚合方法及装置、通信设备
WO2022111632A1 (zh) 网络设备、用户终端、芯片、无线通信***及方法
CN115441881B (zh) 联动天线电路及终端
CN213152052U (zh) 信号收发电路和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951555

Country of ref document: EP

Kind code of ref document: A1