WO2021104456A1 - 射频电路及电子设备 - Google Patents

射频电路及电子设备 Download PDF

Info

Publication number
WO2021104456A1
WO2021104456A1 PCT/CN2020/132250 CN2020132250W WO2021104456A1 WO 2021104456 A1 WO2021104456 A1 WO 2021104456A1 CN 2020132250 W CN2020132250 W CN 2020132250W WO 2021104456 A1 WO2021104456 A1 WO 2021104456A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
throw switch
path
pole
transceiver
Prior art date
Application number
PCT/CN2020/132250
Other languages
English (en)
French (fr)
Inventor
崔理金
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021104456A1 publication Critical patent/WO2021104456A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the present invention relates to the technical field of radio frequency front ends, in particular to a radio frequency circuit and electronic equipment.
  • the embodiments of the present invention provide a radio frequency circuit and electronic equipment to solve the problems of large loss and poor isolation of currently designed radio frequency circuit elements.
  • an embodiment of the present invention provides a radio frequency circuit, including a transceiver, and a first transmission path, a first reception path, a second reception path, a second transmission path, and a third transmission path respectively connected to the transceiver.
  • the first transmission path includes a first transmission circuit, a three-pole, three-throw switch, and a first antenna group connected in sequence;
  • the first antenna group includes a first antenna, a second antenna, a third antenna, and a fourth antenna;
  • the second receiving path includes a second receiving circuit, the three-pole three-throw switch, and the first antenna group connected in sequence;
  • the second transmission path includes a second transmission circuit, a double-pole double-throw switch, and a second antenna group connected in sequence; the second antenna group includes the third antenna and the fourth antenna;
  • the third receiving path includes a third receiving circuit, the double-pole double-throw switch, and the second antenna group connected in sequence;
  • the fourth receiving path includes a fourth receiving circuit and the first antenna connected in sequence.
  • an embodiment of the present invention also provides an electronic device, including the radio frequency circuit as described in the first aspect.
  • the first antenna group is connected to the first antenna group by using a three-pole three-throw switch (3-pole 3-throw, 3P3T) in the first transmitting path, the first receiving path, and the second receiving path.
  • the double-pole double-throw switch (DPDT) is used to connect the second antenna group in the channel and the third receiving channel, which reduces the number of 3P3T in the radio frequency circuit.
  • the radio frequency circuit can effectively reduce the component loss caused by using multiple 3P3Ts; at the same time, because the DPDT has fewer switching paths and better isolation, it can reduce signal interference; in addition, due to the complexity of the radio frequency circuit The low degree of the circuit makes the circuit winding less, thus avoiding the path loss caused by the long wiring between the paths, and reducing the cost at the same time. Furthermore, the radio frequency circuit based on the above advantages can still maintain The electronic equipment supports the function of one-channel transmission and four-channel reception or two-channel transmission and four-channel reception function.
  • Fig. 1 is a schematic structural diagram of a radio frequency circuit in an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a radio frequency circuit in another embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of an electronic device in an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a radio frequency circuit in an embodiment of the present invention.
  • the radio frequency circuit includes a transceiver 10, and a first transmission path, a first reception path, a second reception path, a second transmission path, a third reception path, and a fourth reception path respectively connected to the transceiver 10; Shown:
  • the first transmitting path includes a first transmitting circuit 110, a three-pole three-throw switch 3P3T, and a first antenna group 111 connected in sequence; the first antenna group 111 includes a first antenna ANT1, a second antenna ANT2, a third antenna ANT3, and a fourth antenna.
  • the first receiving path includes a first receiving circuit 120, a three-pole three-throw switch 3P3T, and a first antenna group 111 connected in sequence;
  • the second receiving path includes a second receiving circuit 130, a three-pole three-throw switch 3P3T, and a first antenna group 111 connected in sequence;
  • the second transmitting path includes a second transmitting circuit 140, a double-pole double-throw switch DPDT, and a second antenna group 141 connected in sequence; the second antenna group 141 includes a third antenna ANT3 and a fourth antenna ANT4;
  • the third receiving path includes a third receiving circuit 150, a double-pole double-throw switch DPDT, and a second antenna group 141 connected in sequence;
  • the fourth receiving path includes a fourth receiving circuit 160 and a first antenna ANT1 connected in sequence.
  • the first antenna group is connected by using a three-pole three-throw switch (3P3T) in the first transmission path, the first reception path, and the second reception path, and is used in the second transmission path and the third reception path.
  • the double-pole double-throw switch (DPDT) is connected to the second antenna group, which reduces the number of 3P3Ts in the radio frequency circuit. Because the component loss of DPDT is small, the use of one DPDT in the radio frequency circuit can effectively reduce the use of multiple 3P3Ts.
  • the radio frequency circuit can also maintain the function of electronic equipment for one-way transmission and four-way reception or two-way transmission and four-way reception. Support for receiving function.
  • Fig. 2 is a schematic structural diagram of a radio frequency circuit in another embodiment of the present invention.
  • the first transmitting circuit 110 includes a first amplifier PA1, a first single-pole double-throw switch SW1, and a first filter Filter1 connected in sequence; the first filter Filter1 and a three-pole three-throw Switch 3P3T connection;
  • the first receiving circuit 120 includes a second amplifier LNA1, a first single-pole double-throw switch SW1, and a first filter Filter1 connected in sequence;
  • the second receiving circuit 130 includes a third amplifier LNA2 and a second filter Filter2 connected in sequence; the second filter Filter2 is connected to a three-pole three-throw switch 3P3T;
  • the second transmitting circuit 140 includes a fourth amplifier PA2, a second single-pole double-throw switch SW2, and a third filter Filter3 connected in sequence; the third filter Filter3 is connected to the double-pole double-throw switch DPDT;
  • the third receiving circuit 150 includes a fifth amplifier LNA3, a second single-pole double-throw switch SW2, and a third filter Filter3 connected in sequence;
  • the three-pole three-throw switch 3P3T is connected to the first antenna ANT1 through the third single-pole double-throw switch SW3; the three-pole three-throw switch 3P3T is connected to the third antenna through the double-pole double-throw switch DPDT.
  • the signal received by the transceiver 10 is transmitted to the first antenna ANT1, the second antenna ANT2, the third antenna ANT3, or the fourth antenna ANT4 through the first transmission path.
  • transceiver 10 is not shown in Figure 2.
  • the arrow to the right in the figure indicates the direction of the signal in the transmission path.
  • the signal received by the transceiver 10 is amplified by the first amplifier PA1 and transmitted to the first single-pole double-throw switch SW1, and then transmitted from the first single-pole double-throw switch SW1 to the first filter Filter1, and then transmitted after being filtered by the first filter Filter1 To three-pole three-throw switch 3P3T.
  • the three-pole three-throw switch 3P3T After the three-pole three-throw switch 3P3T receives the signal, it can transmit the signal according to the following path: switch to the third single-pole double-throw switch SW3, and then transmit the signal to the first antenna ANT1 through the third single-pole double-throw switch SW3; or, directly The signal is transmitted to the second antenna ANT2; or, it is switched to the double-pole double-throw switch DPDT, and then the signal is transmitted to the third antenna ANT3 or the fourth antenna ANT4 through the double-pole double-throw switch DPDT.
  • the signal received by the transceiver 10 is transmitted to the first antenna ANT1, the second antenna ANT2, the third antenna ANT3, or the fourth antenna ANT4 through the first transmission path, and is transmitted to the third antenna ANT4 through the second transmission path.
  • transceiver 10 is not shown in Figure 2.
  • the arrow to the right in the figure indicates the direction of the signal in the transmission path.
  • the signal received by the transceiver 10 is amplified by the first amplifier PA1 and transmitted to the first single-pole double-throw switch SW1, and then transmitted from the first single-pole double-throw switch SW1 to the first filter Filter1, and then transmitted after being filtered by the first filter Filter1 To three-pole three-throw switch 3P3T.
  • the three-pole three-throw switch 3P3T After the three-pole three-throw switch 3P3T receives the signal, it can transmit the signal according to the following path: switch to the third single-pole double-throw switch SW3, and then transmit the signal to the first antenna ANT1 through the third single-pole double-throw switch SW3; or, directly The signal is transmitted to the second antenna ANT2; or, it is switched to the double-pole double-throw switch DPDT, and then the signal is transmitted to the third antenna ANT3 or the fourth antenna ANT4 through the double-pole double-throw switch DPDT.
  • the signal received by the transceiver 10 is amplified by the fourth amplifier PA2 and transmitted to the second SPDT switch SW2, and then switched by the second SPDT switch SW2 to the third filter Filter3, and then filtered by the third filter Filter3 Then it is transmitted to the double-pole double-throw switch DPDT, and then the signal is transmitted to the third antenna ANT3 or the fourth antenna ANT4 through the double-pole double-throw switch DPDT.
  • the signal received by the first antenna ANT1 can be transmitted to the transceiver 10 through the fourth receiving path; the signal received by the second antenna ANT2 can be transmitted to the transceiver 10 through the first receiving path; and the signal received by the third antenna ANT3 The signal can be transmitted to the transceiver 10 through the second receiving path; the signal received by the fourth antenna ANT4 can be transmitted to the transceiver 10 through the third receiving path.
  • transceiver 10 is not shown in Figure 2.
  • the left arrow in the figure indicates the direction of the signal in the receiving path.
  • the signal received by the first antenna ANT1 is switched to the fourth filter Filter4 through the third single-pole double-throw switch SW3, then filtered by the fourth filter Filter4 and transmitted to the sixth amplifier LNA4, and then amplified by the sixth amplifier LNA4 to transmit the signal To the transceiver 10;
  • the signal received by the second antenna ANT2 is switched to the first filter Filter1 through the three-pole three-throw switch 3P3T, and then filtered by the first filter Filter1 and then switched to the second amplifier LNA1 through the first single-pole double-throw switch SW1 , And then amplified by the second amplifier LNA1 to transmit the signal to the transceiver 10;
  • the signal received by the third antenna ANT3 is switched to the three-pole three-throw switch 3P3T through the double-pole double-throw switch DPDT, and then from the three-pole three
  • the first amplifier PA1 and the fourth amplifier PA2 may be power amplifiers; the second amplifier LNA1, the third amplifier LNA2, the fifth amplifier LNA3, and the sixth amplifier LNA4 may be low noise amplifiers.
  • Fig. 3 is a schematic structural diagram of an electronic device in an embodiment of the present invention.
  • the electronic device 300 includes the radio frequency circuit 310 provided in any of the above embodiments, and the circuit structure of the radio frequency circuit 310 has been described in detail in the above embodiments, so it will not be repeated.
  • the electronic device 300 supports one-channel transmission and four-channel reception function or two-channel transmission and four-channel reception function.
  • the transmission mode of the signal received by the transceiver 10 is as follows: the signal is transmitted to the first antenna ANT1, the second antenna ANT2 through the first transmission path The third antenna ANT3 or the fourth antenna ANT4.
  • transceiver 10 is not shown in Figure 2.
  • the arrow to the right in the figure indicates the direction of the signal in the transmission path.
  • the signal received by the transceiver 10 is amplified by the first amplifier PA1 and transmitted to the first single-pole double-throw switch SW1, and then transmitted from the first single-pole double-throw switch SW1 to the first filter Filter1, and then transmitted after being filtered by the first filter Filter1 To three-pole three-throw switch 3P3T.
  • the transmission method of the signal received by the antenna is as follows: the signal received by the first antenna ANT1 can be transmitted to the transceiver 10 through the fourth receiving path; the signal received by the second antenna ANT2 can be transmitted to the transceiver 10 through the first receiving path; the third antenna The signal received by ANT3 can be transmitted to the transceiver 10 through the second receiving path; the signal received by the fourth antenna ANT4 can be transmitted to the transceiver 10 through the third receiving path.
  • transceiver 10 is not shown in Figure 2.
  • the left arrow in the figure indicates the direction of the signal in the receiving path.
  • the signal received by the first antenna ANT1 is switched to the fourth filter Filter4 through the third single-pole double-throw switch SW3, then filtered by the fourth filter Filter4 and transmitted to the sixth amplifier LNA4, and then amplified by the sixth amplifier LNA4 to transmit the signal To the transceiver 10;
  • the signal received by the second antenna ANT2 is switched to the first filter Filter1 through the three-pole three-throw switch 3P3T, and then filtered by the first filter Filter1 and then switched to the second amplifier LNA1 through the first single-pole double-throw switch SW1 , And then amplified by the second amplifier LNA1 to transmit the signal to the transceiver 10;
  • the signal received by the third antenna ANT3 is switched to the three-pole three-throw switch 3P3T through the double-pole double-throw switch DPDT, and then from the three-pole three
  • the transmission mode of the signal received by the transceiver 10 is as follows: the signal is transmitted to the first antenna ANT1 and the second antenna ANT2 through the first transmission path , The third antenna ANT3 or the fourth antenna ANT4, and transmitting to the third antenna ANT3 or the fourth antenna ANT4 through the second transmission path.
  • transceiver 10 is not shown in Figure 2.
  • the arrow to the right in the figure indicates the direction of the signal in the transmission path.
  • the signal received by the transceiver 10 is amplified by the first amplifier PA1 and transmitted to the first single-pole double-throw switch SW1, and then transmitted from the first single-pole double-throw switch SW1 to the first filter Filter1, and then transmitted after being filtered by the first filter Filter1 To three-pole three-throw switch 3P3T.
  • the three-pole three-throw switch 3P3T After the three-pole three-throw switch 3P3T receives the signal, it can transmit the signal according to the following path: switch to the third single-pole double-throw switch SW3, and then transmit the signal to the first antenna ANT1 through the third single-pole double-throw switch SW3; or, directly The signal is transmitted to the second antenna ANT2; or, it is switched to the double-pole double-throw switch DPDT, and then the signal is transmitted to the third antenna ANT3 or the fourth antenna ANT4 through the double-pole double-throw switch DPDT.
  • the signal received by the transceiver 10 is amplified by the fourth amplifier PA2 and transmitted to the second SPDT switch SW2, and then switched by the second SPDT switch SW2 to the third filter Filter3, and then filtered by the third filter Filter3 Then it is transmitted to the double-pole double-throw switch DPDT, and then the signal is transmitted to the third antenna ANT3 or the fourth antenna ANT4 through the double-pole double-throw switch DPDT.
  • the transmission method of the signal received by the antenna is as follows: the signal received by the first antenna ANT1 can be transmitted to the transceiver 10 through the fourth receiving path; the signal received by the second antenna ANT2 can be transmitted to the transceiver 10 through the first receiving path; the third antenna The signal received by ANT3 can be transmitted to the transceiver 10 through the second receiving path; the signal received by the fourth antenna ANT4 can be transmitted to the transceiver 10 through the third receiving path.
  • transceiver 10 is not shown in Figure 2.
  • the left arrow in the figure indicates the direction of the signal in the receiving path.
  • the signal received by the first antenna ANT1 is switched to the fourth filter Filter4 through the third single-pole double-throw switch SW3, then filtered by the fourth filter Filter4 and transmitted to the sixth amplifier LNA4, and then amplified by the sixth amplifier LNA4 to transmit the signal To the transceiver 10;
  • the signal received by the second antenna ANT2 is switched to the first filter Filter1 through the three-pole three-throw switch 3P3T, and then filtered by the first filter Filter1 and then switched to the second amplifier LNA1 through the first single-pole double-throw switch SW1 , And then amplified by the second amplifier LNA1 to transmit the signal to the transceiver 10;
  • the signal received by the third antenna ANT3 is switched to the three-pole three-throw switch 3P3T through the double-pole double-throw switch DPDT, and then from the three-pole three
  • the first antenna group is connected by using a three-pole three-throw switch (3P3T) in the first transmitting path, the first receiving path, and the second receiving path, and the first antenna group is connected in the second transmitting path and the third receiving path.
  • 3P3T three-pole three-throw switch
  • DPDT double-pole double-throw switch
  • the radio frequency circuit can also maintain the electronic equipment's ability to transmit four channels or two channels to transmit and four channels. Road receiving function support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本发明实施例公开了一种射频电路及电子设备,以解决目前设计的射频电路元件差损大、隔离度差的问题。包括收发器,以及分别与收发器连接的第一发射通路、第一接收通路、第二接收通路、第二发射通路、第三接收通路及第四接收通路。通过在第一发射通路、第一接收通路及第二接收通路中使用三刀三掷开关连接第一天线组,在第二发射通路及第三接收通路中使用双刀双掷开关连接第二天线组。

Description

射频电路及电子设备
相关申请的交叉引用
本申请主张在2019年11月29日在中国提交的中国专利申请号No.201911205832.6的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及射频前端技术领域,尤其涉及一种射频电路及电子设备。
背景技术
随着移动智能终端的大量普及,用户对数据流量的需求不断增加。从4G应用于多媒体和宽带,速率100M~1Gbps,到5G新空口(New Radio,NR)峰值速率可达20Gbps,速率的提升要求5G具备4*4多入多出(Multiple Input Multiple Output,MIMO)技术。目前,对于5G移动电子设备要求的操作频率越来越高,频宽越来越大,导致元件差损大,隔离度差。
发明内容
本发明实施例提供一种射频电路及电子设备,以解决目前设计的射频电路元件差损大、隔离度差的问题。
为解决上述技术问题,本发明实施例是这样实现的:
第一方面,本发明实施例提供了一种射频电路,包括收发器,以及分别与所述收发器连接的第一发射通路、第一接收通路、第二接收通路、第二发射通路、第三接收通路及第四接收通路;其中:
所述第一发射通路包含依次连接的第一发射电路、三刀三掷开关及第一天线组;所述第一天线组包含第一天线、第二天线、第三天线及第四天线;
所述第一接收通路包含依次连接的第一接收电路、所述三刀三掷开关及所述第一天线组;
所述第二接收通路包含依次连接的第二接收电路、所述三刀三掷开关及所述第一天线组;
所述第二发射通路包含依次连接的第二发射电路、双刀双掷开关及第二天线组;所述第二天线组包含所述第三天线及所述第四天线;
所述第三接收通路包含依次连接的第三接收电路、所述双刀双掷开关及所述第二天线组;
所述第四接收通路包含依次连接的第四接收电路及所述第一天线。
第二方面,本发明实施例还提供了一种电子设备,包括如上述第一方面所述的射频电路。
在本发明实施例中,通过在第一发射通路、第一接收通路及第二接收通路中使用三刀三掷开关(3-pole 3-throw,3P3T)连接第一天线组,在第二发射通路及第三接收通路中使用双刀双掷开关(double-pole double-throw,DPDT)连接第二天线组,减少了射频电路中3P3T的数量,由于DPDT的元件差损较小,因此在射频电路中使用一个DPDT能够有效降低使用多个3P3T时造成的元件差损;同时,由于DPDT的切换路径少,且有更好的隔离度,因此能够降低信号干扰;此外,由于该射频电路的复杂度低,使得电路绕线少,因此避免了各通路间绕较长的走线所导致的路径损失,同时也能降低成本;再者,该射频电路在基于上述优点的基础上,还能维持电子设备对一路发射四路接收功能或两路发射四路接收功能的支持。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的一个实施例中一种射频电路的结构示意图。
图2是本发明的另一个实施例中一种射频电路的结构示意图。
图3是本发明的一个实施例中一种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明的一个实施例中一种射频电路的结构示意图。射频电路包括收发器10,以及分别与收发器10连接的第一发射通路、第一接收通路、第二接收通路、第二发射通路、第三接收通路及第四接收通路;其中,如图1所示:
第一发射通路包含依次连接的第一发射电路110、三刀三掷开关3P3T及第一天线组111;第一天线组111包含第一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4;
第一接收通路包含依次连接的第一接收电路120、三刀三掷开关3P3T及第一天线组111;
第二接收通路包含依次连接的第二接收电路130、三刀三掷开关3P3T及第一天线组111;
第二发射通路包含依次连接的第二发射电路140、双刀双掷开关DPDT及第二天线组141;第二天线组141包含第三天线ANT3及第四天线ANT4;
第三接收通路包含依次连接的第三接收电路150、双刀双掷开关DPDT及第二天线组141;
第四接收通路包含依次连接的第四接收电路160及第一天线ANT1。
本发明实施例中,通过在第一发射通路、第一接收通路及第二接收通路中使用三刀三掷开关(3P3T)连接第一天线组,在第二发射通路及第三接收通路中使用双刀双掷开关(DPDT)连接第二天线组,减少了射频电路中3P3T的数量,由于DPDT的元件差损较小,因此在射频电路中使用一个DPDT能够有效降低使用多个3P3T时造成的元件差损;同时,由于DPDT的切换路径少,且有更好的隔离度,因此能够降低信号干扰;此外,由于该射频电路的复杂度低,使得电路绕线少,因此避免了各通路间绕较长的走线所导致的路径损失,同时也能降低成本;再者,该射频电路在基于上述优点的基础上,还能维持电子设备对一路发射四路接收功能或两路发射四路接收功能的支持。
图2是本发明的另一个实施例中一种射频电路的结构示意图。在一个实施例中,如图2所示,第一发射电路110包含依次连接的第一放大器PA1、第一单刀双掷开关SW1及第一滤波器Filter1;第一滤波器Filter1与三刀三掷开关3P3T连接;
第一接收电路120包含依次连接的第二放大器LNA1、第一单刀双掷开关SW1及第一滤波器Filter1;
第二接收电路130包含依次连接的第三放大器LNA2及第二滤波器Filter2;第二滤波器Filter2与三刀三掷开关3P3T连接;
第二发射电路140包含依次连接的第四放大器PA2、第二单刀双掷开关SW2及第三滤波器Filter3;第三滤波器Filter3与双刀双掷开关DPDT连接;
第三接收电路150包含依次连接的第五放大器LNA3、第二单刀双掷开关SW2及第三滤波器Filter3;
第四接收电路160包含依次连接的第六放大器LNA4、第四滤波器Filter4及第三单刀双掷开关SW3;第三单刀双掷开关SW3与第一天线ANT1连接。
在一个实施例中,如图2所示,三刀三掷开关3P3T通过第三单刀双掷开关SW3连接至第一天线ANT1;三刀三掷开关3P3T通过双刀双掷开关DPDT连接至第三天线ANT3及第四天线ANT4。
在一个实施例中,收发器10接收的信号通过第一发射通路发射至第一天线ANT1、第二天线ANT2、第三天线ANT3或第四天线ANT4。
如图2所示(收发器10未在图2中示出)。图中向右箭头表示信号在发射通路中的走向。收发器10接收的信号经由第一放大器PA1放大后传输至第一单刀双掷开关SW1,然后由第一单刀双掷开关SW1传输至第一滤波器Filter1,再由第一滤波器Filter1滤波后传输至三刀三掷开关3P3T。三刀三掷开关3P3T接收到信号后,可按照以下路径传输信号:切换至第三单刀双掷开关SW3,进而通过第三单刀双掷开关SW3将信号发射至第一天线ANT1;或,直接将信号发射至第二天线ANT2;或,切换至双刀双掷开关DPDT,进而通过双刀双掷开关DPDT将信号发射至第三天线ANT3或第四天线ANT4。
在一个实施例中,收发器10接收的信号通过第一发射通路发射至第一天线ANT1、第二天线ANT2、第三天线ANT3或第四天线ANT4,及,通过第 二发射通路发射至第三天线ANT3或第四天线ANT4。
如图2所示(收发器10未在图2中示出)。图中向右箭头表示信号在发射通路中的走向。收发器10接收的信号经由第一放大器PA1放大后传输至第一单刀双掷开关SW1,然后由第一单刀双掷开关SW1传输至第一滤波器Filter1,再由第一滤波器Filter1滤波后传输至三刀三掷开关3P3T。三刀三掷开关3P3T接收到信号后,可按照以下路径传输信号:切换至第三单刀双掷开关SW3,进而通过第三单刀双掷开关SW3将信号发射至第一天线ANT1;或,直接将信号发射至第二天线ANT2;或,切换至双刀双掷开关DPDT,进而通过双刀双掷开关DPDT将信号发射至第三天线ANT3或第四天线ANT4。同时,收发器10接收的信号经由第四放大器PA2放大后传输至第二单刀双掷开关SW2,然后由第二单刀双掷开关SW2切换至第三滤波器Filter3,再由第三滤波器Filter3滤波后传输至双刀双掷开关DPDT,进而通过双刀双掷开关DPDT将信号发射至第三天线ANT3或第四天线ANT4。
在一个实施例中,第一天线ANT1接收的信号可通过第四接收通路发射至收发器10;第二天线ANT2接收的信号可通过第一接收通路发射至收发器10;第三天线ANT3接收的信号可通过第二接收通路发射至收发器10;第四天线ANT4接收的信号可通过第三接收通路发射至收发器10。
如图2所示(收发器10未在图2中示出)。图中向左箭头表示信号在接收通路中的走向。第一天线ANT1接收的信号经由第三单刀双掷开关SW3切换至第四滤波器Filter4,然后由第四滤波器Filter4滤波后传输至第六放大器LNA4,再由第六放大器LNA4放大后将信号发射至收发器10;第二天线ANT2接收的信号经由三刀三掷开关3P3T切换至第一滤波器Filter1,然后由第一滤波器Filter1滤波后通过第一单刀双掷开关SW1切换至第二放大器LNA1,再由第二放大器LNA1放大后将信号发射至收发器10;第三天线ANT3接收的信号经由双刀双掷开关DPDT切换至三刀三掷开关3P3T,然后由三刀三掷开关3P3T切换至第二滤波器Filter2,再由第二滤波器Filter2滤波后传输至第三放大器LNA2,进而通过第三放大器LNA2放大后将信号发射至收发器10;第四天线ANT4接收的信号经由双刀双掷开关DPDT切换至第三滤波器Filter3,然后由第三滤波器Filter3滤波后通过第二单刀双掷开关SW2切换至 第五放大器LNA3,再由第五放大器LNA3放大后将信号发射至收发器10。
在一个实施例中,第一放大器PA1、第四放大器PA2可为功率放大器;第二放大器LNA1、第三放大器LNA2、第五放大器LNA3及第六放大器LNA4可为低噪声放大器。
图3是本发明的一个实施例中一种电子设备的结构示意图。请参考图3,电子设备300包括上述任一实施例提供的射频电路310,射频电路310的电路结构已在上述实施例中详述,因此不再赘述。并且,电子设备300支持一路发射四路接收功能或两路发射四路接收功能。
在一个实施例中,在电子设备300支持一路发射四路接收功能的情况下,收发器10接收的信号的传输方式如下:信号通过第一发射通路发射至第一天线ANT1、第二天线ANT2、第三天线ANT3或第四天线ANT4。
如图2所示(收发器10未在图2中示出)。图中向右箭头表示信号在发射通路中的走向。收发器10接收的信号经由第一放大器PA1放大后传输至第一单刀双掷开关SW1,然后由第一单刀双掷开关SW1传输至第一滤波器Filter1,再由第一滤波器Filter1滤波后传输至三刀三掷开关3P3T。三刀三掷开关3P3T接收到信号后,可按照以下路径传输信号:切换至第三单刀双掷开关SW3,进而通过第三单刀双掷开关SW3将信号发射至第一天线ANT1;或,直接将信号发射至第二天线ANT2;或,切换至双刀双掷开关DPDT,进而通过双刀双掷开关DPDT将信号发射至第三天线ANT3或第四天线ANT4。
天线接收的信号的传输方式如下:第一天线ANT1接收的信号可通过第四接收通路发射至收发器10;第二天线ANT2接收的信号可通过第一接收通路发射至收发器10;第三天线ANT3接收的信号可通过第二接收通路发射至收发器10;第四天线ANT4接收的信号可通过第三接收通路发射至收发器10。
如图2所示(收发器10未在图2中示出)。图中向左箭头表示信号在接收通路中的走向。第一天线ANT1接收的信号经由第三单刀双掷开关SW3切换至第四滤波器Filter4,然后由第四滤波器Filter4滤波后传输至第六放大器LNA4,再由第六放大器LNA4放大后将信号发射至收发器10;第二天线ANT2接收的信号经由三刀三掷开关3P3T切换至第一滤波器Filter1,然后由第一滤波器Filter1滤波后通过第一单刀双掷开关SW1切换至第二放大器LNA1,再 由第二放大器LNA1放大后将信号发射至收发器10;第三天线ANT3接收的信号经由双刀双掷开关DPDT切换至三刀三掷开关3P3T,然后由三刀三掷开关3P3T切换至第二滤波器Filter2,再由第二滤波器Filter2滤波后传输至第三放大器LNA2,进而通过第三放大器LNA2放大后将信号发射至收发器10;第四天线ANT4接收的信号经由双刀双掷开关DPDT切换至第三滤波器Filter3,然后由第三滤波器Filter3滤波后通过第二单刀双掷开关SW2切换至第五放大器LNA3,再由第五放大器LNA3放大后将信号发射至收发器10。
在一个实施例中,在电子设备300支持两路发射四路接收功能的情况下,收发器10接收的信号的传输方式如下:信号通过第一发射通路发射至第一天线ANT1、第二天线ANT2、第三天线ANT3或第四天线ANT4,及,通过第二发射通路发射至第三天线ANT3或第四天线ANT4。
如图2所示(收发器10未在图2中示出)。图中向右箭头表示信号在发射通路中的走向。收发器10接收的信号经由第一放大器PA1放大后传输至第一单刀双掷开关SW1,然后由第一单刀双掷开关SW1传输至第一滤波器Filter1,再由第一滤波器Filter1滤波后传输至三刀三掷开关3P3T。三刀三掷开关3P3T接收到信号后,可按照以下路径传输信号:切换至第三单刀双掷开关SW3,进而通过第三单刀双掷开关SW3将信号发射至第一天线ANT1;或,直接将信号发射至第二天线ANT2;或,切换至双刀双掷开关DPDT,进而通过双刀双掷开关DPDT将信号发射至第三天线ANT3或第四天线ANT4。同时,收发器10接收的信号经由第四放大器PA2放大后传输至第二单刀双掷开关SW2,然后由第二单刀双掷开关SW2切换至第三滤波器Filter3,再由第三滤波器Filter3滤波后传输至双刀双掷开关DPDT,进而通过双刀双掷开关DPDT将信号发射至第三天线ANT3或第四天线ANT4。
天线接收的信号的传输方式如下:第一天线ANT1接收的信号可通过第四接收通路发射至收发器10;第二天线ANT2接收的信号可通过第一接收通路发射至收发器10;第三天线ANT3接收的信号可通过第二接收通路发射至收发器10;第四天线ANT4接收的信号可通过第三接收通路发射至收发器10。
如图2所示(收发器10未在图2中示出)。图中向左箭头表示信号在接收通路中的走向。第一天线ANT1接收的信号经由第三单刀双掷开关SW3切 换至第四滤波器Filter4,然后由第四滤波器Filter4滤波后传输至第六放大器LNA4,再由第六放大器LNA4放大后将信号发射至收发器10;第二天线ANT2接收的信号经由三刀三掷开关3P3T切换至第一滤波器Filter1,然后由第一滤波器Filter1滤波后通过第一单刀双掷开关SW1切换至第二放大器LNA1,再由第二放大器LNA1放大后将信号发射至收发器10;第三天线ANT3接收的信号经由双刀双掷开关DPDT切换至三刀三掷开关3P3T,然后由三刀三掷开关3P3T切换至第二滤波器Filter2,再由第二滤波器Filter2滤波后传输至第三放大器LNA2,进而通过第三放大器LNA2放大后将信号发射至收发器10;第四天线ANT4接收的信号经由双刀双掷开关DPDT切换至第三滤波器Filter3,然后由第三滤波器Filter3滤波后通过第二单刀双掷开关SW2切换至第五放大器LNA3,再由第五放大器LNA3放大后将信号发射至收发器10。
在本发明实施例中,通过在第一发射通路、第一接收通路及第二接收通路中使用三刀三掷开关(3P3T)连接第一天线组,在第二发射通路及第三接收通路中使用双刀双掷开关(DPDT)连接第二天线组,减少了射频电路中3P3T的数量,由于DPDT的元件差损较小,因此在射频电路中使用一个DPDT能够有效降低使用多个3P3T时造成的元件差损;同时,由于DPDT的切换路径少,且有更好的隔离度,因此能够降低信号干扰;此外,由于该射频电路的复杂度低,使得电路绕线少,因此避免了各通路间绕较长的走线所导致的路径损失,同时也能降低成本;再者,该射频电路在基于上述优点的基础上,还能维持电子设备对一路发射四路接收功能或两路发射四路接收功能的支持。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包 括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (11)

  1. 一种射频电路,应用于支持一路发射四路接收功能或两路发射四路接收功能的电子设备;所述射频电路包括收发器,以及分别与所述收发器连接的第一发射通路、第一接收通路、第二接收通路、第二发射通路、第三接收通路及第四接收通路;其中:
    所述第一发射通路包含依次连接的第一发射电路、三刀三掷开关及第一天线组;所述第一天线组包含第一天线、第二天线、第三天线及第四天线;
    所述第一接收通路包含依次连接的第一接收电路、所述三刀三掷开关及所述第一天线组;
    所述第二接收通路包含依次连接的第二接收电路、所述三刀三掷开关及所述第一天线组;
    所述第二发射通路包含依次连接的第二发射电路、双刀双掷开关及第二天线组;所述第二天线组包含所述第三天线及所述第四天线;
    所述第三接收通路包含依次连接的第三接收电路、所述双刀双掷开关及所述第二天线组;
    所述第四接收通路包含依次连接的第四接收电路及所述第一天线。
  2. 根据权利要求1所述的射频电路,其中,所述第一发射电路包含依次连接的第一放大器、第一单刀双掷开关及第一滤波器;所述第一滤波器与所述三刀三掷开关连接;
    所述第一接收电路包含依次连接的第二放大器、所述第一单刀双掷开关及所述第一滤波器;
    所述第二接收电路包含依次连接的第三放大器及第二滤波器;所述第二滤波器与所述三刀三掷开关连接;
    所述第二发射电路包含依次连接的第四放大器、第二单刀双掷开关及第三滤波器;所述第三滤波器与所述双刀双掷开关连接;
    所述第三接收电路包含依次连接的第五放大器、所述第二单刀双掷开关及所述第三滤波器;
    所述第四接收电路包含依次连接的第六放大器、第四滤波器及第三单刀 双掷开关;所述第三单刀双掷开关与所述第一天线连接。
  3. 根据权利要求2所述的射频电路,其中,所述三刀三掷开关通过所述第三单刀双掷开关连接至所述第一天线;
    所述三刀三掷开关通过所述双刀双掷开关连接至所述第三天线及所述第四天线。
  4. 根据权利要求3所述的射频电路,其中,所述收发器接收的信号通过所述第一发射通路发射至所述第一天线、所述第二天线、所述第三天线或所述第四天线。
  5. 根据权利要求3所述的射频电路,其中,所述收发器接收的信号通过所述第一发射通路发射至所述第一天线、所述第二天线、所述第三天线或所述第四天线,及,通过所述第二发射通路发射至所述第三天线或所述第四天线。
  6. 根据权利要求3所述的射频电路,其中,
    所述第一天线接收的信号通过所述第四接收通路发射至所述收发器;
    所述第二天线接收的信号通过所述第一接收通路发射至所述收发器;
    所述第三天线接收的信号通过所述第二接收通路发射至所述收发器;
    所述第四天线接收的信号通过所述第三接收通路发射至所述收发器。
  7. 根据权利要求2所述的射频电路,其中,所述第一放大器及所述第四放大器为功率放大器;
    所述第二放大器、所述第三放大器、所述第五放大器及所述第六放大器为低噪声放大器。
  8. 一种电子设备,包括如权利要求1至7中任一项所述的射频电路。
  9. 根据权利要求8所述的电子设备,其中,在所述电子设备支持一路发射四路接收功能的情况下,所述收发器接收的信号通过所述第一发射通路发射至所述第一天线、所述第二天线、所述第三天线或所述第四天线。
  10. 根据权利要求8所述的电子设备,其中,在所述电子设备支持两路发射四路接收功能的情况下,所述收发器接收的信号通过所述第一发射通路发射至所述第一天线、所述第二天线、所述第三天线或所述第四天线,及,通过所述第二发射通路发射至所述第三天线或所述第四天线。
  11. 根据权利要求8所述的电子设备,其中,在所述电子设备支持一路发射四路接收功能或两路发射四路接收功能的情况下,所述第一天线接收的信号通过所述第四接收通路发射至所述收发器;
    所述第二天线接收的信号通过所述第一接收通路发射至所述收发器;
    所述第三天线接收的信号通过所述第二接收通路发射至所述收发器;
    所述第四天线接收的信号通过所述第三接收通路发射至所述收发器。
PCT/CN2020/132250 2019-11-29 2020-11-27 射频电路及电子设备 WO2021104456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205832.6 2019-11-29
CN201911205832.6A CN110890900A (zh) 2019-11-29 2019-11-29 射频电路及电子设备

Publications (1)

Publication Number Publication Date
WO2021104456A1 true WO2021104456A1 (zh) 2021-06-03

Family

ID=69749671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132250 WO2021104456A1 (zh) 2019-11-29 2020-11-27 射频电路及电子设备

Country Status (2)

Country Link
CN (1) CN110890900A (zh)
WO (1) WO2021104456A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890900A (zh) * 2019-11-29 2020-03-17 维沃移动通信有限公司 射频电路及电子设备
CN113726359B (zh) * 2020-05-26 2023-08-15 Oppo广东移动通信有限公司 射频PA Mid器件、射频***和通信设备
CN112187297B (zh) * 2020-09-27 2022-08-09 Oppo广东移动通信有限公司 射频收发***和通信设备
CN112398491B (zh) * 2020-11-17 2022-03-11 维沃移动通信有限公司 电子设备
CN112886973B (zh) * 2021-01-28 2022-08-26 维沃移动通信有限公司 射频电路及电子设备
CN113055042A (zh) * 2021-03-09 2021-06-29 维沃移动通信有限公司 射频电路和电子设备
WO2022226682A1 (zh) * 2021-04-25 2022-11-03 华为技术有限公司 开关电路、通信装置和终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111174A (zh) * 2009-12-25 2011-06-29 雷凌科技股份有限公司 射频前端电路及无线通信装置
US20130162495A1 (en) * 2011-12-26 2013-06-27 Electronics And Telecommunications Research Institute Front-end apparatus of wireless transceiver using rf passive elements
CN108462498A (zh) * 2018-03-16 2018-08-28 广东欧珀移动通信有限公司 多路选择开关、射频***和无线通信设备
CN109873664A (zh) * 2019-03-22 2019-06-11 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110504982A (zh) * 2019-08-16 2019-11-26 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110890900A (zh) * 2019-11-29 2020-03-17 维沃移动通信有限公司 射频电路及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155178B2 (en) * 2004-01-29 2006-12-26 Mediatek Inc. Circuit system for wireless communications
US7486937B2 (en) * 2005-05-17 2009-02-03 Cirrus Logic, Inc. Efficient RF amplifier topologies
CN109861735B (zh) * 2019-03-22 2022-07-15 维沃移动通信有限公司 一种射频前端电路及移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111174A (zh) * 2009-12-25 2011-06-29 雷凌科技股份有限公司 射频前端电路及无线通信装置
US20130162495A1 (en) * 2011-12-26 2013-06-27 Electronics And Telecommunications Research Institute Front-end apparatus of wireless transceiver using rf passive elements
CN108462498A (zh) * 2018-03-16 2018-08-28 广东欧珀移动通信有限公司 多路选择开关、射频***和无线通信设备
CN109873664A (zh) * 2019-03-22 2019-06-11 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110504982A (zh) * 2019-08-16 2019-11-26 维沃移动通信有限公司 一种射频前端电路及移动终端
CN110890900A (zh) * 2019-11-29 2020-03-17 维沃移动通信有限公司 射频电路及电子设备

Also Published As

Publication number Publication date
CN110890900A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2021104456A1 (zh) 射频电路及电子设备
WO2021104429A1 (zh) 射频电路及电子设备
WO2020192426A1 (zh) 射频前端电路及移动终端
EP4220974A1 (en) Radio frequency l-pa mid device, radio frequency transceiving system, and communication equipment
CN109873664B (zh) 一种射频前端电路及移动终端
US11757485B2 (en) Radio frequency front-end circuit and mobile terminal
US11569850B2 (en) Radio frequency front-end circuit and controller
WO2021147279A1 (zh) 射频前端电路及电子设备
WO2022028303A1 (zh) 射频电路和电子设备
CN213072651U (zh) 射频装置和电子设备
WO2022135233A1 (zh) 天线电路及电子设备
US11349510B2 (en) Radio frequency front end module and communication device
CN214315261U (zh) 射频模组、射频电路和电子设备
CN210609164U (zh) 一种射频控制电路及电子设备
WO2023236530A1 (zh) 射频PA Mid器件、射频***和通信设备
JP2009033598A (ja) 高周波回路及びこれを用いた高周波モジュール、通信機器、高周波回路の制御方法
CN219459057U (zh) 射频电路和电子设备
RU2791910C1 (ru) Высокочастотная схема входного каскада и мобильный терминал
CN113098555B (zh) 射频结构及电子设备
RU2784458C1 (ru) Радиочастотная входная схема и мобильный терминал

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892217

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20892217

Country of ref document: EP

Kind code of ref document: A1