WO2020189386A1 - 光分岐挿入装置及び光分岐挿入方法 - Google Patents

光分岐挿入装置及び光分岐挿入方法 Download PDF

Info

Publication number
WO2020189386A1
WO2020189386A1 PCT/JP2020/010115 JP2020010115W WO2020189386A1 WO 2020189386 A1 WO2020189386 A1 WO 2020189386A1 JP 2020010115 W JP2020010115 W JP 2020010115W WO 2020189386 A1 WO2020189386 A1 WO 2020189386A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
branch
wss
function unit
dropped
Prior art date
Application number
PCT/JP2020/010115
Other languages
English (en)
French (fr)
Inventor
光貴 河原
剛志 関
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/435,269 priority Critical patent/US11722235B2/en
Publication of WO2020189386A1 publication Critical patent/WO2020189386A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0219Modular or upgradable architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/08Intermediate station arrangements, e.g. for branching, for tapping-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/42Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker
    • H04Q3/52Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements

Definitions

  • the present invention relates to an optical branch insertion device and an optical branch insertion method as a ROADM (Reconfigurable Optical Add / Drop Multiplexer) that plays the role of a path switch for optical signals that are multiplex-transmitted by wavelength division in a high-speed, large-capacity optical network.
  • ROADM Reconfigurable Optical Add / Drop Multiplexer
  • FIG. 7 is a block diagram showing a configuration of an optical transmission device 10 including a conventional optical branch insertion device.
  • the optical transmission device 10 is interposed in the middle of the directions 1, 2, 3, and D in which a plurality of optical fibers are bundled as an optical transmission line.
  • the optical transmission device 10 is installed in, for example, a building, which is a relay point of the optical transmission line, and has wavelength division multiplexing (WDM) of light having wavelengths ⁇ 1 to ⁇ n in an arbitrary path of the optical transmission line. It is possible to freely assign signals.
  • the optical transmission device 10 includes a wavelength cross-connect device 20 connected in the middle of directions 1 to D, and an optical branch insertion device 30 connected to the wavelength cross-connect device 20.
  • the wavelength cross-connect device 20 includes D WSSs (Wavelength Selective Switch) 22a, 22b, 22c, 22d on the input side connected via an optical amplifier 21 for each of the directions 1 to D, and these. It is configured to include WSS23a, 23b, 23c, 23d on the output side connected to WSS22a to 22d, and an optical amplifier 24 connected to the output side of these WSS23a to 23d. WSS22a to 22d have a function of selecting an optical signal for each wavelength and adjusting an amount of attenuation.
  • D WSSs Widelength Selective Switch
  • WSS22a to 22d include one input port (referred to as one input port) and M (for example, six) output ports (referred to as M output ports), that is, 1 ⁇ M input / output ports. This is expressed as 1 ⁇ M WSS22a to 22d.
  • One input port of WSS22a to 22d is connected to each of the directions 1 to D, and among the M output ports, the same number of D output ports (called D output ports) as the number of directions are connected to WSS23a to 23d on the output side. It is connected. This connection is represented by WSS22a and WSS23a.
  • the branch ports of WSS22a to 22d drop (branch or drop) optical signals transmitted in each of the directions 1 to D for each wavelength ⁇ 1 to ⁇ n.
  • the WSS 23a to 23d on the output side are optical signals relayed by transponders 41a ... 41n, 42a ... 42n, 43a ... 43n, 44a ... 44n (hereinafter, 41a to 44n), which will be described later, in addition to the D input ports. Is provided with an insertion port that is added (inserted) via the optical branch insertion device 30.
  • the optical branch insertion device 30 includes a branch unit 32 to which the output port of each optical amplifier 31 is connected, and a CD / CDC (Colorless and Directionless / Colorless, Directionless and Contentionless) unit 33.
  • the branching portion 32 includes D (MD) branching function portions 34a to 34h as an optical coupler or WSS.
  • Each branch function unit 34a to 34h includes one input port and A branch (for example, two branches) output ports, that is, 1 ⁇ A input / output ports.
  • the CD / CDC unit 33 includes D C function units 35a to 35d, which are any one of an optical coupler, WSS, and MCS (Multicast Switch).
  • the same number (32) of communication devices 51a ... 51n, 52a ... 52n, 53a ... 53n, 54a ... 54n are connected to each transponder 41a to 44n.
  • Optical fibers are bundled in each of the directions 1 to D to which the wavelength cross-connect device 20 is connected, and optical signals having a plurality of wavelengths ⁇ 1 to ⁇ n are bundled and transmitted for each optical fiber.
  • Each WSS 22a to 22d switches the Drop for each wavelength ⁇ 1 to ⁇ n.
  • the dropped optical signals having wavelengths ⁇ 1 to ⁇ n are input to the branching function units 34a to 34h of the branching unit 32 via the optical amplifier 31.
  • Each branch function unit 34a to 34h branches the optical signal input to each into two and outputs the optical signal to the C function units 35a to 35d of the CD / CDC unit 33.
  • the branch function units 34a to 34h are optical couplers, for example, the branch function unit 34a as the optical coupler branches an optical signal from the optical amplifier 31 into two and outputs the optical signal to the C function units 35a and 35b. ..
  • the branch function unit 34b as an optical coupler branches the optical signal into two and outputs the optical signal to the C function units 35a and 35b
  • the branch function unit 34c branches the optical signal into two to the C function units 35a and 35b
  • the branch function unit 34d branches the optical signal into two and outputs the light signal to the C function units 35a and 35b.
  • the optical signal is branched into two from the optical amplifier 31 and output to the C function units 35a to 35d, similarly to the optical coupler.
  • the CD (Colorless and Directionless) function is a function having both the Colorless function and the Directionless function described later.
  • the Colorless function is a function that freely assigns the wavelengths input and output to the port by giving the tunable filter a wavelength tunable function.
  • the Directionless function is a function that makes it possible to freely set the input / output directions of the transponder, which was previously fixed, by enhancing the functionality of the transponder aggregation switch.
  • the CDC (Colorless, Directionless and Contentionless) function of the CD / CDC unit 33 is a function having three functions of the above-mentioned Colorless function and Directionless function and the later-described Contentionless function.
  • the Contentionless function is a function that eliminates the constraint condition when realizing the above two of the Colorless function and the Directionless function, that is, the restriction that two same wavelengths assigned to different paths within the same node cannot be accommodated. ..
  • Contention WSS is used for the CD / CDC unit 33, it becomes the CD function
  • Contentionless WSS is used, it becomes the CDC function
  • MCS MCS
  • the MCS distributes an optical signal, which is a WDM signal, from each of the directions 1 to D dropped by each WSS 22a to 22d by a splitter.
  • the distributed WDM signal is selected by an optical signal tunable wavelength filter, and the optical signal of this selected wavelength is transmitted to the transponders 41a to 44n.
  • the optical signal output in this way is relayed by the transponders 41a to 44n and output to the communication devices 51a to 54n.
  • a technique of this kind for example, there is a technique described in Non-Patent Document 1.
  • one C function unit (for example, the C function unit 35a) contains D optical signals dropped by all WSS 22a to 22d connected to all D routes 1 to D. It is input to the input port. Therefore, as the number of routes 1 to D increases, the number of input ports D also increases. As the number of input ports D increases, the loss of optical signal power increases when the optical coupler is applied to the C function unit 35a. Further, considering applying WSS or MCS to the C function unit 35a, the cost is high because the expensive WSS or MCS is mounted in the C function unit 35a which requires the input / output port of the multi-input D and the multi-output B. It becomes. As a result, there is a problem that the cost of the optical branch insertion device 30 becomes high.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical branch insertion device and an optical branch insertion method capable of realizing a configuration in which many transponders can be connected at a reduced cost. To do.
  • the invention according to claim 1 is an optical signal of each wavelength, which is connected to each route having a plurality of optical fibers and transmitted to the optical fiber by wavelength division multiplexing.
  • a branch function unit connected to each WSS (Wavelength Selective Switch) that drops optical signals of multiple wavelengths, and a CD / CDC (Colorless and) that transmits the optical signal branched by the branch function unit to multiple transponders.
  • WSS Widelength Selective Switch
  • CD / CDC Colelorless and
  • An optical branch insertion device with a functional unit, a set of WSS having one input port and M output ports, and a set of two or more several Ks, and one.
  • the numerical value D (MD) obtained by multiplying the number of optical signals (MD) connected to the branch function unit and dropped for each WSS by the number D of all WSSs is divided by several K.
  • the optical coupler comprises a number of optical couplers equal to or more than a positive integer obtained by combining the optical couplers connected to the optical coupler, and the optical signals having different wavelengths dropped for each set of WSSs are combined into one. It is an optical branch insertion device characterized by outputting the generated optical signal to the branch function unit.
  • the invention according to claim 4 drops an optical signal having a plurality of wavelengths among the optical signals of each wavelength transmitted to the optical fiber by wavelength division multiplexing, which are connected to each route having a plurality of optical fibers.
  • An optical signal that is connected between a set of WSSs having one input port and M output ports and a set of two or more several Ks and one branching function unit, and is dropped for each WSS.
  • the optical coupler includes a number equal to or greater than a positive integer obtained by dividing the numerical value D (MD) obtained by multiplying the number (MD) by the number D of all WSSs by the number K, and the optical coupler is the said. It is characterized in that a step of combining optical signals having different wavelengths dropped for each set of WSSs connected to an optical coupler into one and outputting the combined optical signals to the branch function unit is executed. This is an optical branch insertion method.
  • one branch function unit has been connected for each path of a plurality of optical signals dropped by each WSS.
  • the numerical value D (MD) "4 (6-4)” obtained by multiplying the number of optical signals (MD) "for example 6-4" dropped for each WSS by the number D "for example 4" of all WSS. ) ” 8, the branching function part was used.
  • an optical coupler having a number "4" greater than or equal to a positive integer "4" obtained by dividing the above numerical value D (MD) "8" by a set of numbers K (for example, K 2).
  • the branch function unit is connected to each of the two optical couplers, the number of branch function units is only two, which is half of the conventional four. That is, the device cost when a plurality of expensive WSSs are used for the branch function unit can be significantly reduced, for example, by half.
  • the power of the optical signal output from the optical coupler increases as the number of output branches of the branch function unit connected to the input port of the CD / CDC function unit increases.
  • the optical coupler could not be used for the branch function part.
  • the number of branch function units can be reduced as described above, the number of output branches by the branch function unit on the input port side of the CD / CDC function unit is reduced. Therefore, an inexpensive optical coupler can be used for the branch function portion so that the power of the output optical signal is not attenuated, and the device cost can be reduced.
  • the number of output branches by the branch function unit on the input port side of the CD / CDC function unit can be reduced, so that the number of input ports can be reduced.
  • By reducing the number of input ports it is possible to reduce the loss of optical signal power from the optical coupler when an optical coupler is used for the CD / CDC function unit. Therefore, an inexpensive optical coupler can be used for the CD / CDC function unit, and the device cost can be reduced. Therefore, a configuration capable of connecting many transponders of the optical branch insertion device can be realized at low cost.
  • the invention according to claim 2 drops an optical signal having a plurality of wavelengths among the optical signals of each wavelength transmitted to the optical fiber by wavelength division multiplexing, which are connected to each route having a plurality of optical fibers.
  • An optical branch insertion device having a branch function unit connected for each WSS and a CD / CDC function unit that transmits an optical signal branched by the branch function unit to a plurality of transponders, and is an optical branch insertion device having one input port and M.
  • the number of optical signals (MD) that are connected between a set of WSSs having two or more output ports and a set of two or more Ks and one branching function unit, and are dropped for each WSS.
  • the selector is an optical branch insertion device, which performs an operation of selecting an optical signal dropped by the other WSS.
  • the invention according to claim 5 drops an optical signal having a plurality of wavelengths among the optical signals of each wavelength transmitted to the optical fiber by wavelength division multiplexing, which are connected to each route having a plurality of optical fibers.
  • An optical signal that is connected between a set of WSSs having one input port and M output ports and a set of two or more several Ks and one branching function unit, and is dropped for each WSS.
  • the number (MD) is multiplied by the number D of all WSSs, and the numerical value D (MD) is divided by the number K to provide a number of selectors equal to or greater than a positive integer.
  • One of the optical signals dropped by the WSS is selected and output to the branch function unit, and one of the set of the selector selects the optical signal dropped by the WSS of any one of the set. If so, the other selector is an optical branch insertion method characterized by executing a step of performing an operation of selecting an optical signal dropped by the other WSS.
  • each number of the optical amplifier and the branch function unit and the CD / CDC function unit are used.
  • the number of input ports can be reduced, and the equipment cost can be reduced.
  • an output port for dropping is added for each WSS, and the added output port is connected between the added output port and the input port of the CD / CDC function unit, and the drop is performed for each WSS.
  • the bypass unit can be realized by combining at least two WSS or optical couplers, so that the number of bypass units is extremely small compared to, for example, the number of WSSs constituting the CD / CDC functional unit. Therefore, the reduction of the device cost is not hindered. Therefore, the cost of the entire optical branch insertion device can be reduced.
  • an optical branch insertion device and an optical branch insertion method that realize a configuration in which many transponders can be connected at a reduced cost.
  • FIG. 1 is a block diagram showing a configuration of an optical transmission device including an optical branch insertion device according to the first embodiment of the present invention.
  • the optical branch insertion device 30A of the optical transmission device 10A shown in FIG. 1 differs from the conventional optical branch insertion device 30 (FIG. 7) in the WSS 22a to 22d of the wavelength cross-connect device 20 and the branch function units 34a to 34d.
  • Optical couplers 36a, 36b, 36c, and 36d having K input ports and one output port (K ⁇ 1) were connected between the optical amplifier 31 on the input side.
  • K ⁇ 1 By connecting the optical couplers 36a to 36d of K ⁇ 1, the number of each of the optical amplifier 31 and the branch function units 34a to 34d was reduced by 1 / K. Further, the number of input ports of the C function units 35a to 35d has been reduced from D (FIG. 7) to D / K.
  • step S11 shown in FIG. 2 the branch ports of WSS22a to 22d drop the optical signals transmitted through the respective directions 1 to D for each wavelength ⁇ 1 to ⁇ n. Each of the dropped optical signals is input to the optical couplers 36a to 36d.
  • step S12 the optical coupler (for example, the optical coupler 36a) combines two optical signals having different wavelengths dropped by each of the WSS 22c and 22d into one, and combines the two combined optical signals with the optical amplifier 31. It is output to the branch function unit 34a via.
  • the optical coupler for example, the optical coupler 36a
  • step S13 the branch function unit 34a branches the coupled optical signal from the optical coupler 36a and inputs it to the D / K input ports for each of the C function units 35a and 35b.
  • Optical signals from other branch function units 34b are also input to the input ports for each of the C function units 35a and 35b.
  • step S14 the optical signals output from the B output ports for each of the C function units 35a and 35b are transmitted to the transponders 41a to 41n.
  • step S15 the transponders 41a to 41n transmit their optical signals to the communication devices 51a to 51n.
  • the optical branch insertion device 30A according to the first embodiment is connected to each of the routes 1 to D having a plurality of optical fibers, and among the optical signals of each wavelength transmitted to the optical fiber by wavelength division multiplexing.
  • a branch function unit 34a to 34d connected to each WSS 22a to 22d that drops optical signals of a plurality of wavelengths is provided.
  • the C function units 35a to 35d as CD / CDC function units for transmitting the optical signals branched by the branch function units 34a to 34d to a plurality of transponders are provided.
  • the features of the first embodiment are a set of WSS (for example, WSS22c, 22d) having one input port and M output ports, and a set of two or more several Ks, and one branch function unit (for example, branch).
  • a numerical value D (MD) obtained by multiplying the number of optical signals (MD) connected to the functional unit 34a) and dropped every WSS22c and 22d by the number D of all WSS22a to 22d is obtained by several K.
  • a number of optical couplers 36a to 36d obtained by dividing by a positive integer or more is provided.
  • the optical coupler (for example, the optical coupler 36a) combines a plurality of optical signals having different wavelengths dropped for each set of WSSs connected to the optical coupler 36a into one, and the combined optical signals are branched into a branching function unit. It was configured to output to 34a.
  • one branch function unit 34a to 34h has been connected for each path of a plurality of optical signals dropped by each WSS 22a to 22d.
  • the light of a number "4" greater than or equal to a positive integer "4" obtained by dividing the numerical value D (MD) "8" by a set of numbers K (for example, K 2).
  • a coupler eg, optical coupler 36a
  • WSS e.g. WSS22c, 22d
  • branching function e.g. 34a
  • the number of branch function units 34a to 34d (FIG. 1) can be reduced, so that the number of input ports can be reduced.
  • the number of input ports By reducing the number of input ports, it is possible to reduce the loss of optical signal power from the optical coupler when the optical coupler is used for the C functional units 35a to 35d. Therefore, an inexpensive optical coupler can be used for the C function units 35a to 35d, and the device cost can be reduced. Therefore, a configuration capable of connecting many transponders 41a to 44n of the optical branch insertion device 30A can be realized at low cost.
  • FIG. 3 is a block diagram showing a configuration of an optical transmission device including an optical branch insertion device according to a modification of the first embodiment of the present invention.
  • the difference between the optical branch insertion device 30B in the optical transmission device 10B of the modified example shown in FIG. 3 and the above-mentioned optical branch insertion device 30A (FIG. 1) is that each WSS 22a to 22d connected to each of the directions 1 to D One output port for Drop was added, and the bypass unit 38 was connected between the four output ports of the added four WSS22a to 22d and the input ports of the C function units 35a to 35d. is there.
  • the bypass unit 38 includes a combine unit 38a and a demultiplexer 38b. Further, the number of input ports for each of the C function units 35a to 35d is increased by one to (D / K) to be (D / K) + 1. In FIG. 3, WSS23a to 23d (see FIG. 1) on the output side are omitted.
  • An optical coupler or WSS is applied to the combiner portion 38a and the demultiplexer portion 38b.
  • the combiner 38a combines each optical signal dropped by each WSS 22a to 22d into one and outputs it to the demultiplexer 38b.
  • the demultiplexing unit 38b demultiplexes the combined optical signal and outputs it to one additional input port of each C function unit 35a to 35d.
  • both optical signals that are dropped by WSS22c and 22d and input to the optical coupler 36a are not output to the C function units 35a and 35b for some reason.
  • both of the optical signals are output to the C function units 35a and 35b via the bypass unit 38, so that the problem is solved.
  • the number of optical signals (the number of drops) dropped in the branching function units 34a to 34d via the optical couplers 36a to 36d and the optical amplifier 31 for each WSS 22a to 22d in the directions 1 to D is (M). -D) This is a book.
  • the number of output ports (number of branches) for each of the branch function units 34a to 34d is A. From the number of drops (MD) and the number of branches A, the number of WSS when applying WSS to the C functional units 35a to 35d is obtained by A (MD). Therefore, the number of output ports of the demultiplexing unit 38b is also A (MD).
  • FIG. 4 is a block diagram showing a configuration of an optical transmission device including an optical branch insertion device according to a second embodiment of the present invention.
  • the optical branch insertion device 30C of the optical transmission device 10C shown in FIG. 4 is different from the optical branch insertion device 30A (FIG. 1) of the first embodiment in that the selectors 37a to 37d are provided instead of the optical couplers 36a to 36d. There is.
  • the selectors 37b and 37d of the same number K are connected to the route for the drop of the set of WSS22a and 22b in which two or more numbers K are set as one set. Therefore, other sets of selectors 37a and 37c of the same number K are connected to the routes for Drop of the other sets of WSS22c and 22d.
  • a set of selectors 37b and 37d connected to the drop path of WSS22a and 22b will be described as representatives.
  • one signal S1 is input to the selector 37b, and the other signal S2 is input to the selector 37d. Further, it is assumed that of the two optical signals transmitted from the direction 2 and dropped by the WSS 22b, one signal S3 is input to the selector 37b and the other signal S4 is input to the selector 37d.
  • the other selector 37d selects the signal S4 dropped by the other WSS 22b on the route 2 side. Perform the selection operation.
  • the optical signal S1 of the route 1 can be input from the selector 37b to the C function units 35a and 35b via the optical amplifier 31 and the branch function unit 34b.
  • the optical signal S4 of the route 2 can be input from the selector 37d to the C function units 35c and 35d via the optical amplifier 31 and the branch function unit 34d.
  • the input optical signal is transmitted from the C function units 35a to 35d to the communication devices 51a to 54n via the transponders 41a to 44n.
  • the other selectors 37a and 37c can be selected in the same manner, and the optical signals from the directions 3 and D can be input to the C function units 35a to 35d.
  • the input optical signal is transmitted from the C function units 35a to 35d to the communication devices 51a to 54n via the transponders 41a to 44n.
  • step S21 shown in FIG. 5 the branch ports of WSS22a to 22d drop the optical signals transmitted through the respective directions 1 to D for each wavelength ⁇ 1 to ⁇ n. Each of the dropped optical signals is input to the selectors 37a to 37d.
  • one set of selectors selects one of the optical signals dropped by one set of WSS22a and 22b and outputs it to the branch function unit 34b.
  • the other selector 37d selects the optical signal S4 dropped by the other WSS22b. Select.
  • the selected optical signals S1 and S4 are input to the branch function units 34b and 34d.
  • the branch function unit (for example, the branch function unit 34b) branches the optical signal S1 selected by the selector 37b and inputs it to the D / K input ports for each of the C function units 35a and 35b.
  • Optical signals from other branch function units 34a are also input to the input ports for each of the C function units 35a and 35b.
  • step S24 the optical signals output from the B output ports for each of the C function units 35a and 35b are transmitted to the transponders 41a to 41n.
  • step S25 the transponders 41a to 41n transmit their optical signals to the communication devices 51a to 51n.
  • the optical branch insertion device 30C has one input port and M output ports, and has a set of WSS (for example, WSS22c, 22d) in which two or more several Ks are set as a set, and one branch.
  • Numerical value D (MD) connected to the functional unit (for example, branch function unit 34a) and multiplied by the number D of all WSS 22a to 22d by the number of optical signals (MD) that are dropped for each WSS 22c and 22d.
  • Is divided by the number K, and the number of selectors 37a to 37d that is equal to or greater than a positive integer is provided.
  • the selector selects one of the optical signals dropped by one set of WSS22a and 22b and outputs the optical signal to the branch function unit 34b.
  • selectors 37b selects the optical signal S1 dropped by any one of the sets of WSS22a
  • the other selector 37d selects the optical signal S4 dropped by the other WSS22b.
  • the configuration is such that the selection operation is performed.
  • the optical branch insertion device 30C can be realized by simply replacing the optical couplers 36a to 36d (FIG. 1) of the first embodiment with the selectors 37a to 37d of the second embodiment. Therefore, by using the selectors 37a to 37d, the number of each of the optical amplifier 31 and the branch function units 34a to 34d is reduced by 1 / K, and the number of input ports of the C function units 35a to 35d is reduced by D / K. It can be reduced to pieces. Therefore, as in the first embodiment, it is possible to realize a configuration in which many transponders 41a to 44n can be connected to the optical branch insertion device 30C at low cost.
  • FIG. 6 is a block diagram showing a configuration of an optical transmission device including an optical branch insertion device according to a modification of the second embodiment of the present invention.
  • each WSS 22a to 22d connected to each of the directions 1 to D.
  • One output port for Drop is added, and a bypass unit 38 is connected between the added total of four output ports and the input ports of the C function units 35a to 35d.
  • the bypass unit 38 includes a combine unit 38a and a demultiplexer 38b. Further, the number of input ports for each of the C function units 35a to 35d is increased by one to (D / K) to be (D / K) + 1.
  • WSS23a to 23d on the output side are omitted.
  • optical signals S1 and S2 dropped by one of the WSS22a and 22b of the set are not selected by the selectors 37b and 37d and are not output to the C function units 35a to 35d. Even in this case, the optical signals S1 and S2 can be output to the C function units 35a to 35d via the bypass unit 38.
  • the bypass unit 38 that compensates for the unselection in the selectors 37a to 37d also has the same number of output ports of the demultiplexing unit 38b as the configuration (FIG. 3) of the modified example of the first embodiment described above. D).
  • the number of WSS when applying WSS to the C functional units 35a to 35d is also A (MD). Therefore, as described in the modified example of the first embodiment, the number of WSSs of the entire optical branch insertion device 30D can be reduced, so that the cost can be reduced.
  • an inexpensive optical coupler is applied to each of the combiner portion 38a and the demultiplexer portion 38b, the same effect and further cost reduction effect can be obtained.
  • 10A, 10B, 10C, 10D Optical transmission device 20 wavelength cross-connect device 21, 24, 31 Optical amplifier 22a to 22d, 23a to 23d WSS 30A, 30B, 30C, 30D Optical branch insertion device 32 Branch part 33 CD / CDC part 34a to 34h Branch function part 35a to 35d C function part (CD / CDC function part) 36a to 36d Optical coupler 37a to 37d Selector 41a to 44n Transponder 51a to 54n Communication device 38 Bypass part 38a Combined part 38b Demultiplexed part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

【課題】多くのトランスポンダを接続可能な構成を、コストを低減して実現する。 【解決手段】光分岐挿入装置30Aは、光ファイバの方路1~D毎に接続され、波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS22a~22d毎に接続された分岐機能部34a~34dを備える。分岐機能部34a~34dで分岐された光信号を、複数のトランスポンダへ送信するC機能部35a~35dを備える。1入力とM出力で、2以上の数Kを1組とした組のWSS22c,22dと、1つの分岐機能部34aとの間に接続され、WSS22c,22d毎にドロップされる光信号数(M-D)に、全WSS22a~22dの数Dを乗算した数値D(M-D)を、数Kで割った正の整数以上の数の光カプラ36a~36dを備える。光カプラ36aは、1組のWSS毎にドロップされる異波長の光信号を1つに結合して分岐機能部34aへ出力する。

Description

光分岐挿入装置及び光分岐挿入方法
 本発明は、高速で大容量の光ネットワークに波長分割多重伝送される光信号の方路スイッチの役割を担うROADM(Reconfigurable Optical Add/Drop Multiplexer)としての光分岐挿入装置及び光分岐挿入方法に関する。
 光ネットワークの光伝送路に接続される従来の光分岐挿入装置を、図7を参照して説明する。図7は、従来の光分岐挿入装置を備える光伝送装置10の構成を示すブロック図である。光伝送装置10は、光伝送路としての複数本の光ファイバを束ねた方路1,2,3,Dの途中に介在されている。なお、本明細書の説明では図面の左から右側へ光信号が光伝送路に伝送される場合を想定し、このため光伝送路を方路1~Dと称している。例えば、D=「4」とする。
 光伝送装置10は、光伝送路の中継点である例えばビル内に設置されており、光伝送路の任意の経路に、波長分割多重(WDM:Wavelength Division Multiplexing)された波長λ1~λnの光信号を自由に割り当てることが可能となっている。この光伝送装置10は、方路1~Dの途中に接続される波長クロスコネクト装置20と、この波長クロスコネクト装置20に接続される光分岐挿入装置30とを備える。
 波長クロスコネクト装置20は、方路1~D毎に光アンプ21を介して接続された入力側のD個のWSS(Wavelength Selective Switch:波長選択スイッチ)22a,22b,22c,22dと、これらのWSS22a~22dに接続された出力側のWSS23a,23b,23c,23dと、これらのWSS23a~23dの出力側に接続された光アンプ24とを備えて構成されている。WSS22a~22dは、波長毎の光信号の選択と減衰量調整機能等を有する。
 WSS22a~22dは、1個の入力ポート(1入力ポートという)とM個(例えば、6個)の出力ポート(M出力ポートという)、即ち1×Mの入出力ポートを備える。これを1×MのWSS22a~22dと表現する。WSS22a~22dの1入力ポートは各方路1~Dに接続され、M出力ポートの内、方路数と同数のD個の出力ポート(D出力ポートという)が、出力側のWSS23a~23dに接続されている。この接続は、WSS22aとWSS23aとに代表して示す。
 WSS22a~22dのM出力ポートからD個を引いた(M-D)個の分岐ポートは、光分岐挿入装置30のD(M-D)個「例えば、4(6-4)=8個」の光アンプ31に接続されている。WSS22a~22dの分岐ポートは、各方路1~Dを伝送してきた光信号を、波長λ1~λn毎にDrop(分岐又はドロップ)する。
 なお、出力側のWSS23a~23dは、D個の入力ポートの他に、後述のトランスポンダ41a…41n,42a…42n,43a…43n,44a…44n(以降、41a~44n)で中継される光信号が、光分岐挿入装置30を介してAdd(挿入)される挿入ポートを備える。
 光分岐挿入装置30は、各光アンプ31の出力ポートが接続された分岐部32と、CD/CDC(Colorless and Directionless/Colorless, Directionless and Contentionless)部33とを備える。
 分岐部32は、光カプラ又はWSSとしてのD(M-D)個の分岐機能部34a~34hを備える。各分岐機能部34a~34hは、1個の入力ポートと、A分岐(例えば2分岐)したA個(2個)の出力ポート、即ち、1×Aの入出力ポートを備える。
 CD/CDC部33は、光カプラ、WSS及びMCS(Multicast Switch)の何れか1つであるD個のC機能部35a~35dを備える。各C機能部35a~35dは、D個の入力ポートと、D個以上のB個の出力ポート、即ち、D×Bの入出力ポートを備える。なお、その出力ポート数のB個は、通常、D個以上のより多くの数が好ましい。例えば、B=8であるとする。また、C機能部35a~35dは、請求項記載のCD/CDC機能部を構成する。
 C機能部35a~35d毎には、B個(8個)のトランスポンダ41a…41n,42a…42n,43a…43n,44a…44nが接続されている。つまり、8個×4=32個のトランスポンダ41a~44nが接続されている。各トランスポンダ41a~44nには、これらと同数(32個)の通信装置51a…51n,52a…52n,53a…53n,54a…54nが接続されている。
 波長クロスコネクト装置20が接続された各方路1~Dには光ファイバが束ねられており、光ファイバ毎に、複数波長λ1~λnの光信号が束ねられて伝送されている。各WSS22a~22dは、波長λ1~λn毎にDropの切り替えを行っている。このDropされた波長λ1~λnの光信号は、光アンプ31を介して分岐部32の分岐機能部34a~34hに入力される。
 各分岐機能部34a~34hは、各々に入力された光信号を2分岐してCD/CDC部33のC機能部35a~35dへ出力する。ここで、分岐機能部34a~34hが光カプラであるとすると、この光カプラとしての例えば分岐機能部34aは、光アンプ31から光信号を、2分岐してC機能部35a,35bへ出力する。
 同様に、光カプラとしての分岐機能部34bは、光信号を2分岐してC機能部35a,35bへ出力し、分岐機能部34cは、光信号を2分岐してC機能部35a,35bへ出力し、分岐機能部34dは、光信号を2分岐してC機能部35a,35bへ出力する。
 このような出力によって、C機能部35aには、WSS22a~22d毎にDropされた全ての光信号が入力され、C機能部35bにも、WSS22a~22d毎にDropされた全ての光信号が入力される。これと同様に、C機能部35c,35dにも光信号が入力される。
 一方、分岐機能部34a~34hがWSSである場合も、光カプラと同様に、光アンプ31から光信号を2分岐してC機能部35a~35dへ出力する。
 ここで、CD/CDC部33において、CD(Colorless and Directionless)機能は、後述のColorless機能とDirectionless機能との、2つを併せ持つ機能である。
 Colorless機能は、合分波フィルタに波長可変機能を持たせることにより、ポートに入出力する波長を自在に割り当てる機能である。
 Directionless機能は、トランスポンダの集約スイッチの高機能化により、従来は固定されていたトランスポンダの入出力方路を自由に設定可能とする機能である。
 また、CD/CDC部33のCDC(Colorless, Directionless and Contentionless)機能は、上記のColorless機能及びDirectionless機能と、後述のContentionless機能との、3つを併せ持つ機能である。
 Contentionless機能は、上記のColorless機能及びDirectionless機能の2つを実現する際の制約条件、即ち、同一ノード内において別方路に割り当てられる同一波長を、2つ収容できないという制約を解消する機能である。
 また、WSSには、Contention WSSと、Contentionless WSSとの2種類がある。CD/CDC部33に、Contention WSSを用いると上記CD機能になり、Contentionless WSSを用いるとCDC機能になり、また、上記MCSを用いると、CDC機能になる。
 MCSは、各WSS22a~22dでDropされた各方路1~DからWDM信号である光信号を、それぞれスプリッタで分配する。この分配したWDM信号を光信号可変波長フィルタで選択し、この選択波長の光信号をトランスポンダ41a~44nへ送信する。このように出力された光信号は、トランスポンダ41a~44nで中継されて通信装置51a~54nへ出力される。
 この種の技術として、例えば非特許文献1に記載の技術がある。
坂巻陽平 他2名,"より柔軟な光ノードを実現する光スイッチ技術," NTT技術ジャーナル,Vol.25,No.11,pp.16-20,2013.
 ところで、上述した光分岐挿入装置30においては、C機能部35a~35dの数を多くする程に多くのトランスポンダを接続できる。しかし、その数を増やすためには、C機能部35a~35dの入力側の分岐機能部34a~34h毎の分岐数を増やす必要がある。分岐機能部34a~34hに光カプラを用いた場合、分岐数が多くなる程に光カプラから出力される光信号のパワーが減衰する。この減衰のため、分岐数を所定数以上増やす場合、分岐機能部34a~34hに光カプラが使用できなくなる。
 そこで、分岐機能部34a~34hにWSSを使用した場合、WSSは、出力分岐数を増やしても光信号パワーが弱くならない。しかし、WSSは高価であるため、出力分岐数が増える程に、光分岐挿入装置30がコスト高となってしまう問題がある。
 CD/CDC部33において、1つのC機能部(例えばC機能部35a)には、D本全ての方路1~Dに接続された全WSS22a~22dでDropされた光信号が、D個の入力ポートに入力される。このため、方路1~D路数が増えると、入力ポート数Dも増える。入力ポート数Dが増えると、C機能部35aに光カプラを適用した場合は、光信号パワーの損失が増える。また、C機能部35aにWSS又はMCSを適用することを考えると、多入力Dで多出力Bの入出力ポートを必要とするC機能部35aにおいて、高価なWSS又はMCSを実装するのでコスト高となる。結果的に、光分岐挿入装置30がコスト高となってしまう問題がある。
 本発明は、このような事情に鑑みてなされたものであり、多くのトランスポンダを接続可能な構成を、コストを低減して実現できる光分岐挿入装置及び光分岐挿入方法を提供することを課題とする。
 上記課題を解決するための手段として、請求項1に係る発明は、複数の光ファイバを有する方路毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS(Wavelength Selective Switch)毎に接続された分岐機能部と、当該分岐機能部で分岐された光信号を、複数のトランスポンダへ送信するCD/CDC(Colorless and Directionless/Colorless, Directionless and Contentionless)機能部とを有する光分岐挿入装置であって、1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSSと、1つの前記分岐機能部との間に接続され、前記WSS毎にドロップされる光信号数(M-D)に、全WSSの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数の光カプラを備え、前記光カプラは、当該光カプラに接続された1組のWSS毎にドロップされる波長の異なる光信号を1つに結合し、この結合された光信号を前記分岐機能部へ出力することを特徴とする光分岐挿入装置である。
 請求項4に係る発明は、複数の光ファイバを有する方路毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS毎に接続された分岐機能部と、当該分岐機能部で分岐された光信号を、複数のトランスポンダへ送信するCD/CDC機能部とを有する光分岐挿入装置の光分岐挿入方法であって、1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSSと、1つの前記分岐機能部との間に接続され、前記WSS毎にドロップされる光信号数(M-D)に、全WSSの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数の光カプラを備え、前記光カプラは、当該光カプラに接続された1組のWSS毎にドロップされる波長の異なる光信号を1つに結合し、この結合された光信号を前記分岐機能部へ出力するステップを実行することを特徴とする光分岐挿入方法である。
 請求項1の構成及び請求項4の方法によれば、次のような作用効果が得られる。従来は、各WSSでドロップされる複数の光信号の経路毎に1つの分岐機能部を接続していた。言い換えれば、WSS毎にドロップされる光信号数(M-D)「例えば6-4」に、全WSSの数D「例えば4」を乗算した数値D(M-D)「4(6-4)」=8の、分岐機能部を用いていた。
 本発明では、上記数値D(M-D)「8」を、1組の数K(例えばK=2とする)で割って得られる正の整数「4」以上の数「4」の光カプラが個々に、K=2個で1組のWSSと、1つの分岐機能部との間に接続される。この2個の光カプラ毎に分岐機能部が接続されるので、分岐機能部の数は、従来の4個の半分の2個で済む。つまり、分岐機能部に高価なWSSを複数用いる場合の装置コストが例えば半分のように、大幅に低減できる。
 また、従来では分岐機能部に光カプラを用いた場合、CD/CDC機能部の入力ポートに接続される分岐機能部の出力分岐数が多くなる程に、光カプラから出力される光信号のパワーが減衰し、このため、分岐機能部に光カプラを使用できなかった。しかし、本発明では、上述したように分岐機能部の数を低減できるので、CD/CDC機能部の入力ポート側の分岐機能部による出力分岐数が低減される。このため、出力光信号のパワーが減衰しないように、分岐機能部に安価な光カプラを使用可能となり、装置コストを低減できる。
 上述したように、CD/CDC機能部の入力ポート側の分岐機能部による出力分岐数を低減できるので、その入力ポート数を低減できる。この入力ポート数の低減により、CD/CDC機能部に光カプラを使用した際に、光カプラからの光信号パワーの損失を低減できる。このため、CD/CDC機能部に安価な光カプラを使用可能となり、装置コストを低減できる。従って、光分岐挿入装置の多くのトランスポンダを接続可能な構成を低コストで実現できる。
 請求項2に係る発明は、複数の光ファイバを有する方路毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS毎に接続された分岐機能部と、当該分岐機能部で分岐された光信号を、複数のトランスポンダへ送信するCD/CDC機能部とを有する光分岐挿入装置であって、1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSSと、1つの前記分岐機能部との間に接続され、前記WSS毎にドロップされる光信号数(M-D)に、全WSSの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数のセレクタを備え、前記セレクタは、1組の前記WSSでドロップされた何れかの光信号を選択して前記分岐機能部へ出力し、1組の一方の前記セレクタが、1組の何れか一方の前記WSSでドロップされた光信号を選択している場合、他方の前記セレクタが、他方の前記WSSでドロップされた光信号を選択する動作を行うことを特徴とする光分岐挿入装置である。
 請求項5に係る発明は、複数の光ファイバを有する方路毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS毎に接続された分岐機能部と、当該分岐機能部で分岐された光信号を、複数のトランスポンダへ送信するCD/CDC機能部とを有する光分岐挿入装置の光分岐挿入方法であって、1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSSと、1つの前記分岐機能部との間に接続され、前記WSS毎にドロップされる光信号数(M-D)に、全WSSの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数のセレクタを備え、前記セレクタは、1組の前記WSSでドロップされた何れかの光信号を選択して前記分岐機能部へ出力し、1組の一方の前記セレクタが、1組の何れか一方の前記WSSでドロップされた光信号を選択している場合、他方の前記セレクタが、他方の前記WSSでドロップされた光信号を選択する動作を行うステップを実行することを特徴とする光分岐挿入方法である。
 請求項2の構成及び請求項5の方法によれば、請求項1に記載の光カプラを、セレクタに代えるだけでよいので、光アンプと分岐機能部との各個数と、CD/CDC機能部の入力ポート数とを減少でき、装置コストを低減できる。
 請求項3に係る発明は、前記WSS毎にドロップ用の出力ポートを増設し、この増設された出力ポートと、前記CD/CDC機能部の入力ポートとの間に接続され、前記WSS毎にドロップされる光信号を当該CD/CDC機能部へ伝送するバイパス部を備えたことを特徴とする請求項1又は2に記載の光分岐挿入装置である。
 この構成によれば、バイパス部は、WSS又は光カプラを少なくとも2個以上組み合わせて実現可能なので、例えばCD/CDC機能部を構成するWSS数等から比べると極僅かな数である。このため、装置コストの低減を妨げることは無い。従って、光分岐挿入装置全体のコスト低減を図ることができる。
 本発明によれば、多くのトランスポンダを接続可能な構成を、コストを低減して実現する光分岐挿入装置及び光分岐挿入方法を提供することができる。
本発明の第1実施形態に係る光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。 第1実施形態に係る光分岐挿入装置を備える光伝送装置の光分岐挿入動作を説明するためのフローチャートである。 本発明の第1実施形態の変形例に係る光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。 本発明の第2実施形態に係る光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。 第2実施形態に係る光分岐挿入装置を備える光伝送装置の光分岐挿入動作を説明するためのフローチャートである。 本発明の第2実施形態の変形例に係る光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。 従来の光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。
 以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書の全図において機能が対応する構成部分には同一符号を付し、その説明を適宜省略する。
<第1実施形態の構成>
 図1は、本発明の第1実施形態に係る光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。
 図1に示す光伝送装置10Aの光分岐挿入装置30Aが、従来の光分岐挿入装置30(図7)と異なる点は、波長クロスコネクト装置20のWSS22a~22dと、分岐機能部34a~34dの入力側の光アンプ31との間に、K個の入力ポートと1個の出力ポート(K×1)を有する光カプラ36a,36b,36c,36dを接続した。このK×1の光カプラ36a~36dの接続により、光アンプ31と分岐機能部34a~34dとの各個数を1/Kだけ減少させた。更に、C機能部35a~35dの入力ポート数を、D個(図7)からD/K個に減少させたことにある。
 図1の光伝送装置10Aにおいて、図7で例示したD=「4」、M=6個、A=2、B=8の場合は、(M-D)=(6-4)=2、D(M-D)=4(6-4)=8である。
 ここで、図1に示す光カプラ36a~36d毎の入力ポート数K=2とする。即ち、2×1の光カプラ36a~36dとする。この場合、WSS22a~22dでDropされた2方路ずつが、2×1の各光カプラ36a~36dに接続されるので、全ての光カプラ36a~36dの数は、D(M-D)/K=8/2=4個となる。
 光カプラ36a~36d毎の出力ポートは1個なので、光アンプ31は4個、分岐機能部34a~34dも4個となり、従来の光分岐挿入装置30(図7)の光アンプ31=8個及び分岐機能部34a~34h=8個に比べ、本実施形態では各々が半分の4個となる。更に、C機能部35a~35dの入力ポート数は、1つ当たりD/K=4/2=2個となり、従来の4個の半分となる。
<第1実施形態の動作>
 次に、第1実施形態に係る光分岐挿入装置30Aを備える光伝送装置10Aの光分岐挿入動作について、図2に示すフローチャートを参照して説明する。
 図2に示すステップS11において、WSS22a~22dの分岐ポートが、各方路1~Dを伝送してきた光信号を、波長λ1~λn毎にDropする。このDropされた各光信号は光カプラ36a~36dに入力される。
 ステップS12において、光カプラ(例えば光カプラ36a)は、WSS22c,22dの各々でDropされた波長の異なる2つの光信号を1つに結合し、この結合された2つの光信号を光アンプ31を介して分岐機能部34aへ出力する。
 ステップS13において、分岐機能部34aは、光カプラ36aからの結合された光信号を分岐し、C機能部35a,35b毎のD/K個の入力ポートへ入力する。C機能部35a,35b毎の入力ポートには、他の分岐機能部34bからの光信号も入力される。
 ステップS14において、C機能部35a,35b毎のB個の出力ポートから出力された光信号を、トランスポンダ41a~41nへ送信する。
 ステップS15において、トランスポンダ41a~41nは、それらの光信号を通信装置51a~51nへ送信する。
<第1実施形態の効果>
 第1実施形態に係る光分岐挿入装置30Aは、複数の光ファイバを有する方路1~D毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS22a~22d毎に接続された分岐機能部34a~34dを備える。更に、分岐機能部34a~34dで分岐された光信号を、複数のトランスポンダへ送信するCD/CDC機能部としてのC機能部35a~35dを備える。
 第1実施形態の特徴は、1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSS(例えばWSS22c,22d)と、1つの分岐機能部(例えば分岐機能部34a)との間に接続され、WSS22c,22d毎にDropされる光信号数(M-D)に、全WSS22a~22dの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数の光カプラ36a~36dを備える。光カプラ(例えば光カプラ36a)は、光カプラ36aに接続された1組のWSS毎にドロップされる波長の異なる複数の光信号を1つに結合し、この結合された光信号を分岐機能部34aへ出力する構成とした。
 この構成によれば、次のような効果が得られる。従来は、各WSS22a~22dでDropされる複数の光信号の経路毎に1つの分岐機能部34a~34h(図7参照)を接続していた。言い換えれば、WSS22a~22d毎にDropされる光信号数(M-D)「例えば6-4」に、全WSS22a~22dの数D「例えば4」を乗算した数値D(M-D)「4(6-4)」=8の、分岐機能部34a~34hを用いていた。
 本実施形態では、上記数値D(M-D)「8」を、1組の数K(例えばK=2とする)で割って得られる正の整数「4」以上の数「4」の光カプラ(例えば光カプラ36a)が、1組のWSS(例えば、WSS22c,22d)と、1つの分岐機能部(例えば34a)との間に接続される。このような4個の光カプラ36a~36d毎に分岐機能部34a~34d(図1)が接続されるので、分岐機能部34a~34dの数は、従来の8個の半分の4個で済む。つまり、分岐機能部34a~34dの装置コストを半分と大幅に低減できる。
 また、従来では分岐機能部34a~34h(図7)に光カプラを用いた場合、C機能部35a~35dの入力ポートに接続される分岐機能部34a~34hの出力分岐数が多くなる程に、光カプラから出力される光信号のパワーが減衰していた。このため、分岐機能部34a~34hに光カプラを使用できなかった。しかし、本実施形態では、上述したように分岐機能部34a~34d(図1)の数を低減できるので、C機能部35a~35dの入力ポート側の分岐機能部34a~34dによる出力分岐数が低減される。このため、出力光信号のパワーが減衰しないように、分岐機能部34a~34dに安価な光カプラを使用可能となり、装置コストを低減できる。
 上述したように、本実施形態では、分岐機能部34a~34d(図1)の数を低減できるので、その入力ポート数を低減できる。この入力ポート数の低減により、C機能部35a~35dに光カプラを使用した際に、光カプラからの光信号パワーの損失を低減できる。このため、C機能部35a~35dに安価な光カプラを使用可能となり、装置コストを低減できる。従って、光分岐挿入装置30Aの多くのトランスポンダ41a~44nを接続可能な構成を低コストで実現できる。
<第1実施形態の変形例>
 図3は、本発明の第1実施形態の変形例に係る光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。
 図3に示す変形例の光伝送装置10Bにおける光分岐挿入装置30Bが、上述した光分岐挿入装置30A(図1)と異なる点は、各方路1~Dに接続されたWSS22a~22d毎にDrop用の出力ポートを1本増設し、この増設された4つのWSS22a~22dで合計4本の出力ポートと、C機能部35a~35dの入力ポートとの間にバイパス部38を接続したことにある。バイパス部38は、合波部38a及び分波部38bを備える。また、C機能部35a~35d毎の入力ポート数は、(D/K)個に1個増設されて、(D/K)+1個とされている。なお、図3において、出力側のWSS23a~23d(図1参照)は省略してある。
 合波部38a及び分波部38bには、光カプラ又はWSSが適用される。合波部38aは、各WSS22a~22dでDropされる各光信号を1つに合波し、分波部38bへ出力する。分波部38bは、その合波された光信号を分波して各C機能部35a~35dの増設された1入力ポートへ出力する。
 ここで、WSS22c,22dでDropされ、光カプラ36aに入力された双方の光信号が何らかの原因によりC機能部35a,35bへ出力されなかった不具合が生じたとする。この場合、その双方の光信号は、バイパス部38を介してC機能部35a,35bへ出力されるので、その不具合が解消される。
 ここで、方路1~DのWSS22a~22d毎に、光カプラ36a~36d及び光アンプ31を介して分岐機能部34a~34dに、Dropしている光信号の本数(Drop数)は(M-D)本である。分岐機能部34a~34d毎の出力ポート数(分岐数)はA個である。このDrop数(M-D)と分岐数Aとから、C機能部35a~35dにWSSを適用する際のWSS数は、A(M-D)で求められる。従って、分波部38bの出力ポート数もA(M-D)となる。
 第1実施形態で引用した数値を当て嵌めると、M=6、D=4、A=2なので、2×(6-4)=4が導かれ、この4がバイパス部38の分波部38bの出力ポート数と、C機能部35a~35dのWSS数となる。
 実際には、M=100、D=40、A=5のように数値が多く、この際、WSS数は、A(M-D)=5×(100-40)=300のように多くなる。この300個のバイパス部38の出力ポートが、C機能部35a~35dの300個のWSSの入力ポートに接続された関係となる。従って、実際には、バイパス部38を追加しても、300個に、合波部38a及び分波部38bの2個のWSSが追加されるだけである。このため、光分岐挿入装置30Bの全体のWSS数に対して極僅かな割合しか追加されないので、装置コストの低減を妨げることは無い。このように、バイパス部38を追加しても、第1実施形態で説明したと同様に、光分岐挿入装置30B全体のWSS数を低減できるので、コスト低減を図ることができる。
 また、合波部38a及び分波部38bに各々光カプラを適用した場合でも、上記同様に全体のWSS等の部品数に対して極僅かな割合しか追加されないので、装置コストの低減を妨げることは無い。
<第2実施形態の構成>
 図4は、本発明の第2実施形態に係る光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。
 図4に示す光伝送装置10Cの光分岐挿入装置30Cが、第1実施形態の光分岐挿入装置30A(図1)と異なる点は、光カプラ36a~36dに代え、セレクタ37a~37dを備えたことにある。
 セレクタ37a~37dは、2以上の数Kを1組とした組のWSS22a,22bのDrop用の経路に、同じ数Kの組のセレクタ37b,37dが接続されている。従って、他の組のWSS22c,22dのDrop用の経路には、同じ数Kの他組のセレクタ37a,37cが接続されている。以降、WSS22a,22bのDrop用の経路に接続された組のセレクタ37b,37dを代表して説明する。
 前提条件として、方路1から伝送され、WSS22aでDropされた2つの光信号の内、一方の信号S1が、セレクタ37bに入力され、他方の信号S2がセレクタ37dに入力されている。また、方路2から伝送され、WSS22bでDropされた2つの光信号の内、一方の信号S3が、セレクタ37bに入力され、他方の信号S4がセレクタ37dに入力されているとする。
 この際、一方のセレクタ37bが、方路1側のWSS22aでDropされた信号S1を選択している場合、他方のセレクタ37dは、方路2側の他方のWSS22bでDropされた信号S4を選択する選択動作を行う。
 この選択動作により、方路1の光信号S1を、セレクタ37bから光アンプ31及び分岐機能部34bを介してC機能部35a,35bに入力できる。また、方路2の光信号S4を、セレクタ37dから光アンプ31及び分岐機能部34dを介してC機能部35c,35dに入力できる。この入力された光信号は、C機能部35a~35dから各トランスポンダ41a~44nを介して通信装置51a~54nへ送信される。
 他のセレクタ37a,37cにおいても同様に選択して、方路3,Dからの光信号をC機能部35a~35dに入力できる。この入力された光信号は、C機能部35a~35dから各トランスポンダ41a~44nを介して通信装置51a~54nへ送信される。
<第2実施形態の動作>
 次に、第2実施形態に係る光分岐挿入装置30Cを備える光伝送装置10Cの光分岐挿入動作について、図5に示すフローチャートを参照して説明する。
 図5に示すステップS21において、WSS22a~22dの分岐ポートが、各方路1~Dを伝送してきた光信号を、波長λ1~λn毎にDropする。このDropされた各光信号はセレクタ37a~37dに入力される。
 ステップS22において、1組のセレクタ(例えばセレクタ37b,37d)は、1組のWSS22a,22bでドロップされた何れかの光信号を選択して分岐機能部34bへ出力する。この際、1組の一方のセレクタ37bが、1組の何れか一方のWSS22aでドロップされた光信号S1を選択している場合、他方のセレクタ37dが、他方のWSS22bでドロップされた光信号S4を選択する。この選択された光信号S1,S4は、分岐機能部34b,34dに入力される。
 ステップS23において、分岐機能部(例えば分岐機能部34b)は、セレクタ37bで選択された光信号S1を分岐し、C機能部35a,35b毎のD/K個の入力ポートへ入力する。C機能部35a,35b毎の入力ポートには、他の分岐機能部34aからの光信号も入力される。
 ステップS24において、C機能部35a,35b毎のB個の出力ポートから出力された光信号を、トランスポンダ41a~41nへ送信する。
 ステップS25において、トランスポンダ41a~41nは、それらの光信号を通信装置51a~51nへ送信する。
<第2実施形態の効果>
 第2実施形態に係る光分岐挿入装置30Cは、1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSS(例えばWSS22c,22d)と、1つの分岐機能部(例えば分岐機能部34a)との間に接続され、WSS22c,22d毎にDropされる光信号数(M-D)に、全WSS22a~22dの数Dを乗算した数値D(M-D)を、前記数Kで割って得られる正の整数以上の数のセレクタ37a~37dを備える。
 セレクタ(例えばセレクタ37b,37d)は、1組のWSS22a,22bでドロップされた何れかの光信号を選択して分岐機能部34bへ出力する。また、1組の一方のセレクタ37bが、1組の何れか一方のWSS22aでドロップされた光信号S1を選択している場合、他方のセレクタ37dが、他方のWSS22bでドロップされた光信号S4を選択する選択動作を行う構成とした。
 この構成によれば、光分岐挿入装置30Cを、第1実施形態の光カプラ36a~36d(図1)について、第2実施形態のセレクタ37a~37dに置き換えるのみの構成で実現可能となる。このため、セレクタ37a~37dを用いることにより、光アンプ31と分岐機能部34a~34dとの各個数を1/Kだけ減少させ、更に、C機能部35a~35dの入力ポート数をD/K個に減少させることができる。従って、第1実施形態と同様に、光分岐挿入装置30Cに多くのトランスポンダ41a~44nを接続可能な構成を低コストで実現できる。
<第2実施形態の変形例>
 図6は、本発明の第2実施形態の変形例に係る光分岐挿入装置を備える光伝送装置の構成を示すブロック図である。
 図6に示す変形例の光伝送装置10Dの光分岐挿入装置30Dが、上述した光分岐挿入装置30C(図4)と異なる点は、各方路1~Dに接続されたWSS22a~22d毎にDrop用の出力ポートを1本増設し、この増設された合計4本の出力ポートと、C機能部35a~35dの入力ポートとの間にバイパス部38を接続したことにある。バイパス部38は、合波部38a及び分波部38bを備える。また、C機能部35a~35d毎の入力ポート数は、(D/K)個に1個増設されて、(D/K)+1個とされている。なお、図6において、出力側のWSS23a~23d(図4参照)は省略した。
 例えば、1組のWSS22a,22bの内、一方のWSS22aでDropされた光信号S1,S2が、セレクタ37b,37dで選択されず、C機能部35a~35dへ出力されなかったとする。この場合でも、その光信号S1,S2は、バイパス部38を介してC機能部35a~35dへ出力可能となる。
 このようなセレクタ37a~37dでの未選択を補うバイパス部38も、前述した第1実施形態の変形例の構成(図3)と同様に、分波部38bの出力ポート数もA(M-D)となる。C機能部35a~35dにWSSを適用する際のWSS数も同様にA(M-D)となる。このため、第1実施形態の変形例で説明したと同様に、光分岐挿入装置30D全体のWSS数を低減できるので、コスト低減を図ることができる。合波部38a及び分波部38bに各々、安価な光カプラを適用した場合も同等の効果、並びに更に低コスト化の効果が得られる。
 その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。
 10A,10B,10C,10D 光伝送装置
 20 波長クロスコネクト装置
 21,24,31 光アンプ
 22a~22d,23a~23d WSS
 30A,30B,30C,30D 光分岐挿入装置
 32 分岐部
 33 CD/CDC部
 34a~34h 分岐機能部
 35a~35d C機能部(CD/CDC機能部)
 36a~36d 光カプラ
 37a~37d セレクタ
 41a~44n トランスポンダ
 51a~54n 通信装置
 38 バイパス部
 38a 合波部
 38b 分波部

Claims (5)

  1.  複数の光ファイバを有する方路毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS(Wavelength Selective Switch)毎に接続された分岐機能部と、当該分岐機能部で分岐された光信号を、複数のトランスポンダへ送信するCD/CDC(Colorless and Directionless/Colorless, Directionless and Contentionless)機能部とを有する光分岐挿入装置であって、
     1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSSと、1つの前記分岐機能部との間に接続され、前記WSS毎にドロップされる光信号数(M-D)に、全WSSの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数の光カプラを備え、
     前記光カプラは、当該光カプラに接続された1組のWSS毎にドロップされる波長の異なる光信号を1つに結合し、この結合された光信号を前記分岐機能部へ出力する
     ことを特徴とする光分岐挿入装置。
  2.  複数の光ファイバを有する方路毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS毎に接続された分岐機能部と、当該分岐機能部で分岐された光信号を、複数のトランスポンダへ送信するCD/CDC機能部とを有する光分岐挿入装置であって、
     1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSSと、1つの前記分岐機能部との間に接続され、前記WSS毎にドロップされる光信号数(M-D)に、全WSSの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数のセレクタを備え、
     前記セレクタは、1組の前記WSSでドロップされた何れかの光信号を選択して前記分岐機能部へ出力し、1組の一方の前記セレクタが、1組の何れか一方の前記WSSでドロップされた光信号を選択している場合、他方の前記セレクタが、他方の前記WSSでドロップされた光信号を選択する動作を行う
     ことを特徴とする光分岐挿入装置。
  3.  前記WSS毎にドロップ用の出力ポートを増設し、この増設された出力ポートと、前記CD/CDC機能部の入力ポートとの間に接続され、前記WSS毎にドロップされる光信号を当該CD/CDC機能部へ伝送するバイパス部を備えた
     ことを特徴とする請求項1又は2に記載の光分岐挿入装置。
  4.  複数の光ファイバを有する方路毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS毎に接続された分岐機能部と、当該分岐機能部で分岐された光信号を、複数のトランスポンダへ送信するCD/CDC機能部とを有する光分岐挿入装置の光分岐挿入方法であって、
     1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSSと、1つの前記分岐機能部との間に接続され、前記WSS毎にドロップされる光信号数(M-D)に、全WSSの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数の光カプラを備え、
     前記光カプラは、当該光カプラに接続された1組のWSS毎にドロップされる波長の異なる光信号を1つに結合し、この結合された光信号を前記分岐機能部へ出力するステップ
     を実行することを特徴とする光分岐挿入方法。
  5.  複数の光ファイバを有する方路毎に接続され、当該光ファイバに波長分割多重で伝送されて来た各波長の光信号の内、複数波長の光信号をドロップするWSS毎に接続された分岐機能部と、当該分岐機能部で分岐された光信号を、複数のトランスポンダへ送信するCD/CDC機能部とを有する光分岐挿入装置の光分岐挿入方法であって、
     1入力ポートとM個の出力ポートを有し、2以上の数Kを1組とした組のWSSと、1つの前記分岐機能部との間に接続され、前記WSS毎にドロップされる光信号数(M-D)に、全WSSの数Dを乗算した数値D(M-D)を、数Kで割って得られる正の整数以上の数のセレクタを備え、
     前記セレクタは、1組の前記WSSでドロップされた何れかの光信号を選択して前記分岐機能部へ出力し、1組の一方の前記セレクタが、1組の何れか一方の前記WSSでドロップされた光信号を選択している場合、他方の前記セレクタが、他方の前記WSSでドロップされた光信号を選択する動作を行うステップ
     を実行することを特徴とする光分岐挿入方法。
PCT/JP2020/010115 2019-03-20 2020-03-09 光分岐挿入装置及び光分岐挿入方法 WO2020189386A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,269 US11722235B2 (en) 2019-03-20 2020-03-09 Optical branch insertion device and optical branch insertion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019052479A JP7235964B2 (ja) 2019-03-20 2019-03-20 光分岐挿入装置及び光分岐挿入方法
JP2019-052479 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189386A1 true WO2020189386A1 (ja) 2020-09-24

Family

ID=72520335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010115 WO2020189386A1 (ja) 2019-03-20 2020-03-09 光分岐挿入装置及び光分岐挿入方法

Country Status (3)

Country Link
US (1) US11722235B2 (ja)
JP (1) JP7235964B2 (ja)
WO (1) WO2020189386A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235964B2 (ja) * 2019-03-20 2023-03-09 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入方法
WO2024013838A1 (ja) * 2022-07-12 2024-01-18 日本電信電話株式会社 光伝送装置及び光伝送方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140598A (ja) * 2004-11-10 2006-06-01 Fujitsu Ltd 光伝送装置及び同装置の経路増設方法並びに同装置の経路増設用光スイッチモジュール
JP2012114640A (ja) * 2010-11-24 2012-06-14 Fujitsu Ltd 光切替装置、光挿入装置および光分岐装置
WO2012108549A1 (ja) * 2011-02-09 2012-08-16 日本電気株式会社 光伝送装置
EP2615755A1 (en) * 2012-01-12 2013-07-17 Alcatel Lucent Optical switching node for a WDM optical network
WO2018123921A1 (ja) * 2016-12-28 2018-07-05 日本電信電話株式会社 光信号処理装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303555B2 (ja) * 1994-09-28 2002-07-22 古河電気工業株式会社 複合光導波路カプラ
WO2008031452A1 (en) * 2006-09-11 2008-03-20 Telefonaktiebolaget Lm Ericsson (Publ) Communications network
US8625994B2 (en) * 2008-03-11 2014-01-07 Ciena Corporation Directionless reconfigurable optical add-drop multiplexer systems and methods
US20110262143A1 (en) * 2010-04-21 2011-10-27 Nec Laboratories America, Inc. Roadm systems and methods of operation
WO2014050064A1 (ja) * 2012-09-27 2014-04-03 日本電気株式会社 光分岐結合装置及び光分岐結合方法
JP6060648B2 (ja) * 2012-11-28 2017-01-18 富士通株式会社 光ドロップ装置、光アド装置および光アド/ドロップ装置
EP2757714A1 (en) * 2013-01-18 2014-07-23 Xieon Networks S.à.r.l. Photonic cross-connect with reconfigurable add-dropfunctionality
US9819436B2 (en) * 2013-08-26 2017-11-14 Coriant Operations, Inc. Intranodal ROADM fiber management apparatuses, systems, and methods
JP2015220590A (ja) * 2014-05-16 2015-12-07 富士通株式会社 光送信装置、光受信装置、及び、光伝送方法
WO2016017181A1 (ja) * 2014-08-01 2016-02-04 日本電気株式会社 光通信装置、光通信システム、及び光通信方法
EP2991253A1 (en) * 2014-08-25 2016-03-02 Xieon Networks S.à r.l. Reconfigurable add/drop multiplexing in optical networks
US9680569B2 (en) * 2014-10-01 2017-06-13 Ciena Corporation Method and system for optical connection validation in a reconfigurable optical add-drop multiplexer (ROADM) node
US20160315701A1 (en) * 2015-04-24 2016-10-27 Fujitsu Limited Optical transmission device, method for verifying connection, and wavelength selective switch card
WO2017022231A1 (ja) * 2015-08-03 2017-02-09 日本電気株式会社 光分岐挿入装置及び光分岐挿入方法
JP2017157941A (ja) * 2016-02-29 2017-09-07 富士通株式会社 光伝送装置および光伝送装置内の光接続を確認する方法
WO2019108547A1 (en) * 2017-11-28 2019-06-06 Neophotonics Corporation Energy efficient, contentionless nxm roadm with amplified single wavelength drop/add ports and corresponding methods
US11838101B2 (en) * 2018-01-26 2023-12-05 Ciena Corporation Upgradeable colorless, directionless, and contentionless optical architectures
US10454609B2 (en) * 2018-01-26 2019-10-22 Ciena Corporation Channel pre-combining in colorless, directionless, and contentionless optical architectures
JP6525294B1 (ja) * 2018-02-27 2019-06-05 Necプラットフォームズ株式会社 光分岐挿入装置、光通信システム及び光分岐挿入装置の制御方法
JP7180119B2 (ja) * 2018-05-29 2022-11-30 日本電信電話株式会社 光クロスコネクト装置
CN111366334B (zh) * 2018-12-26 2022-05-13 海思光电子有限公司 偏振相关损耗的确定方法、检测***及光信号传输结构
JP7235964B2 (ja) * 2019-03-20 2023-03-09 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入方法
US11564020B1 (en) * 2020-06-01 2023-01-24 Cable Television Laboratories, Inc. Ultra-wideband wireless photonic integrated antenna system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140598A (ja) * 2004-11-10 2006-06-01 Fujitsu Ltd 光伝送装置及び同装置の経路増設方法並びに同装置の経路増設用光スイッチモジュール
JP2012114640A (ja) * 2010-11-24 2012-06-14 Fujitsu Ltd 光切替装置、光挿入装置および光分岐装置
WO2012108549A1 (ja) * 2011-02-09 2012-08-16 日本電気株式会社 光伝送装置
EP2615755A1 (en) * 2012-01-12 2013-07-17 Alcatel Lucent Optical switching node for a WDM optical network
WO2018123921A1 (ja) * 2016-12-28 2018-07-05 日本電信電話株式会社 光信号処理装置

Also Published As

Publication number Publication date
JP7235964B2 (ja) 2023-03-09
US20220149970A1 (en) 2022-05-12
JP2020155924A (ja) 2020-09-24
US11722235B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
US9520959B2 (en) Optical drop apparatus, optical add apparatus, and optical add/drop apparatus
US8565603B2 (en) Reconfigurable optical add drop multiplexer core device, procedure and system using such device, optical light distributor, and coupling-ratio assigning procedure
JP4382635B2 (ja) 光伝送装置
EP2232747B1 (en) Directionless wavelength addition/subtraction using roadm
JP5004914B2 (ja) 光クロスコネクト装置および光ネットワーク
JP4854565B2 (ja) 光クロスコネクト装置
WO2020195912A1 (ja) 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
JP2015171155A (ja) N方路cdc・wsx・roadm
US20140023373A1 (en) Optical signal dropper and optical signal adder for use in a roadm system
WO2020189386A1 (ja) 光分岐挿入装置及び光分岐挿入方法
US9496979B2 (en) Space switch device
JP2002101432A (ja) 光スイッチ網、光クロスコネクト装置および光分岐・挿入装置
JPWO2008114352A1 (ja) 光伝送装置
JP7298689B2 (ja) 光分離装置、光伝送システム及び光伝送方法
WO2014050064A1 (ja) 光分岐結合装置及び光分岐結合方法
WO2014076936A1 (ja) 光スイッチ、光伝送装置、および光スイッチ方法
JP3863134B2 (ja) 光回線分配システム
WO2020195913A1 (ja) 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
KR100384889B1 (ko) 파장 그룹 광분기 삽입 장치 및 파장 그룹 광상호 분배 장치
JP2005064864A (ja) 波長多重光信号送信装置、波長多重光信号受信装置及び光波長多重通信システム
JP4872717B2 (ja) 光ノード、および光ノードの制御方法
JP2008259128A (ja) 光クロスコネクト装置及び管理制御装置及び光ネットワークシステム及び波長群収容方法及びプログラム及びコンピュータが読み取り可能な記録媒体
KR100594736B1 (ko) 파장선택 스위치 및 파장선택 방법
JP2006042372A (ja) 光信号切替え装置、光通信網、および、それらの使用方法
JP2012195658A (ja) 光分岐装置および光通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772973

Country of ref document: EP

Kind code of ref document: A1