WO2020189373A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置およびプログラム Download PDF

Info

Publication number
WO2020189373A1
WO2020189373A1 PCT/JP2020/010022 JP2020010022W WO2020189373A1 WO 2020189373 A1 WO2020189373 A1 WO 2020189373A1 JP 2020010022 W JP2020010022 W JP 2020010022W WO 2020189373 A1 WO2020189373 A1 WO 2020189373A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
processing
substrate
gas supply
Prior art date
Application number
PCT/JP2020/010022
Other languages
English (en)
French (fr)
Inventor
小川 有人
篤郎 清野
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2021507220A priority Critical patent/JP7159446B2/ja
Publication of WO2020189373A1 publication Critical patent/WO2020189373A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method, a substrate processing device, and a program.
  • Patent Document 1 In recent years, with the increasing integration and high performance of semiconductor devices, various types of metal films have been used to manufacture semiconductor devices having a three-dimensional structure (see, for example, Patent Document 1 and Patent Document 2).
  • a tungsten film (W film) or the like is used for the control gate of the NAND flash memory, which is an example of a semiconductor device having a three-dimensional structure.
  • the resistance of this W film has a large effect on the device characteristics, and a low resistance film is required.
  • a second treatment gas containing the second element is supplied to the membrane containing the first element, the first element is removed from the membrane containing the first element, and the membrane containing the second element is modified.
  • FIG. 2 is a schematic cross-sectional view which shows the outline of the vertical processing furnace of a substrate processing apparatus.
  • FIG. 2 is a schematic cross-sectional view taken along the line AA in FIG.
  • It is a schematic block diagram of the controller of a board processing apparatus, and is the figure which shows the control system of a controller by a block diagram.
  • It is a flow chart which shows the operation of a substrate processing apparatus.
  • It is a flow chart which shows the operation of the 1st film formation process.
  • It is a figure which shows the timing of gas supply in the 1st film formation process.
  • It is a flow chart which shows the operation of the 2nd film formation process.
  • It is a figure which shows the timing of gas supply in the 3rd film formation process.
  • It is a figure which shows the effect of this technology.
  • the substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 forming a reaction vessel is arranged concentrically with the heater 207.
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC).
  • the shape of the outer tube 203 is formed into a cylindrical shape in which the upper end is closed and the lower end is open.
  • a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203.
  • the manifold 209 is made of a metal material such as stainless steel (SUS).
  • the shape of the manifold 209 is a cylindrical shape with open upper and lower ends.
  • An O-ring 220a as a sealing member is provided between the upper end portion of the manifold 209 and the outer tube 203.
  • the inner tube 204 constituting the reaction vessel is arranged inside the outer tube 203.
  • the inner tube 204 is made of a heat-resistant material such as quartz or SiC.
  • the shape of the inner tube 204 is a cylindrical shape in which the upper end is closed and the lower end is open.
  • the processing container (reaction container) is mainly composed of the outer tube 203, the inner tube 204, and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the processing container (inside the inner tube 204).
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate in a state of being arranged in multiple stages in the vertical direction in a horizontal posture by a boat 217 described later.
  • nozzles 410, 420, 430 are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • Gas supply pipes 310, 320, 330 are connected to the nozzles 410, 420, 430, respectively.
  • the processing furnace 202 of the present embodiment is not limited to the above-described embodiment.
  • the gas supply pipes 310, 320, and 330 are provided with mass flow controllers (MFCs) 312, 321 and 332, which are flow rate controllers (flow control units), in order from the upstream side. Further, the gas supply pipes 310, 320, and 330 are provided with valves 314, 324, and 334, which are on-off valves, respectively. Gas supply pipes 510, 520, and 530 for supplying the inert gas are connected to the downstream sides of the valves 314, 324 and 334 of the gas supply pipes 310, 320 and 330, respectively. The gas supply pipes 510, 520, and 530 are provided with MFC 512, 522, 532 and valves 514, 524, 534, respectively, in this order from the upstream side.
  • MFCs mass flow controllers
  • gas supply pipe 310-2 may be connected to the gas supply pipe 310.
  • the gas supply pipe 310-2 is provided with an MFC 312-2 and a valve 314-2 from the upstream side.
  • Nozzles 410, 420, 430 are connected to the tips of the gas supply pipes 310, 320, 330, respectively.
  • the nozzles 410, 420, 430 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
  • the vertical portions of the nozzles 410, 420, and 430 are arranged so as to project outward in the radial direction of the inner tube 204, and the inside of the spare chamber 201a having a channel shape (groove shape) formed so as to extend in the vertical direction. It is provided in the reserve chamber 201a toward the upper side (upper in the arrangement direction of the wafer 200) along the inner wall of the inner tube 204.
  • the nozzles 410, 420, 430 are provided so as to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410a, 420a, 430a are provided at positions facing the wafer 200, respectively. Is provided.
  • the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430, respectively.
  • a plurality of the gas supply holes 410a, 420a, and 430a are provided from the lower part to the upper part of the inner tube 204, each having the same opening area, and further provided with the same opening pitch.
  • the gas supply holes 410a, 420a, 430a are not limited to the above-described form.
  • the opening area may be gradually increased from the lower part to the upper part of the inner tube 204. This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a, 420a, 430a more uniform.
  • a plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at height positions from the lower part to the upper part of the boat 217, which will be described later. Therefore, the processing gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 is supplied to the entire area of the wafer 200 accommodated from the lower part to the upper part of the boat 217.
  • the nozzles 410, 420, 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but are preferably provided so as to extend to the vicinity of the ceiling of the boat 217.
  • a flush tank 322 is arranged between the MFC 321 and the valve 324 of the gas supply pipe 320.
  • a gas containing a silicon (Si) element is supplied into the processing chamber 201 via the MFC 311, the valve 314, and the nozzle 410.
  • a silane-based gas can be used as the first treatment gas.
  • the silane-based gas is a gas containing silicon (Si) and hydrogen (H) and not containing halogen.
  • monosilane (SiH 4 ) gas can be used.
  • SiH 4 acts as a film-forming gas for forming the first film.
  • the gas supply pipe 310-2 contains a silicon (Si) element and is different from the first treatment gas (also referred to as the first second treatment gas). Is supplied into the processing chamber 201 via the MFC 312-2, the valve 314-2, and the nozzle 420.
  • the treatment gas different from the first treatment gas is, for example, a gas containing silicon (Si) and hydrogen and containing halogen. More specifically, the first processing gas, when the SiH 4 gas, different process gas from the first process gas, hexachlorodisilane (HCDS) gas is used.
  • HCDS hexachlorodisilane
  • a raw material gas (metal-containing gas) containing a metal element is supplied into the processing chamber 201 as a second processing gas via the MFC 322, the valve 324, and the nozzle 420.
  • the second treatment gas for example, tungsten hexafluoride (WF 6 ) containing tungsten (W) as a metal element and as a halogen-based raw material (halide, halogen-based tungsten raw material) is used.
  • the reaction gas as the third processing gas is supplied into the processing chamber 201 via the MFC 332, the valve 334, and the nozzle 430.
  • the reaction gas for example, hydrogen (H 2 ) gas as an H-containing gas containing hydrogen (H) can be used.
  • nitrogen (N 2 ) gas as an inert gas is discharged into the processing chamber via MFC512,522,532, valves 514,524,534, and nozzles 410,420,430, respectively. It is supplied in 201.
  • N 2 gas used as the inert gas
  • the inert gas for example, argon (Ar) gas, helium (He) gas, neon (Ne) gas, xenon other than N 2 gas will be described.
  • a rare gas such as (Xe) gas may be used.
  • the gas supply section is mainly composed of gas supply pipes 310, 320, 330, MFC 311, 322, 332, valves 314, 324, 334, and nozzles 410, 420, 430, but only the nozzles 410, 420, 430 are gas. You can think of it as a supply unit.
  • the first treated gas supply section is mainly composed of the gas supply pipe 310, the MFC311 and the valve 314, but only the nozzle 410 is considered as the first treated gas supply section. You may.
  • the second treated gas supply section is mainly composed of the gas supply pipe 320, the MFC 322, and the valve 324, but only the nozzle 420 is the second treated gas supply section. You may consider including it in.
  • the flash tank 322 may be included in the second processing gas supply unit.
  • the reaction gas is flowed from the gas supply pipe 330, the gas supply pipe 330, the MFC 332, and the valve 334 mainly form a third processing gas supply unit (reaction gas supply unit), but only the nozzle 430 is the third. It may be included in the processing gas supply unit.
  • the reaction gas supply unit can also be referred to as a nitrogen-containing gas supply unit.
  • the inert gas supply unit is mainly composed of gas supply pipes 510, 520, 530, MFC 512, 522, 532, and valves 514, 524, 534.
  • the method of gas supply in the present embodiment is the nozzles 410, 420, arranged in the spare chamber 201a in the annular vertically long space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200.
  • Gas is transported via 430.
  • gas is ejected into the inner tube 204 from a plurality of gas supply holes 410a, 420a, 430a provided at positions facing the wafers of the nozzles 410, 420, 430. More specifically, the gas supply hole 410a of the nozzle 410, the gas supply hole 420a of the nozzle 420, and the gas supply hole 430a of the nozzle 430 eject gas or the like in a direction parallel to the surface of the wafer 200.
  • the exhaust hole (exhaust port) 204a is a through hole formed at a position facing the nozzles 410, 420, 430 on the side wall of the inner tube 204, and is, for example, a slit-shaped through hole formed elongated in the vertical direction. Is.
  • the gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 and flowing on the surface of the wafer 200 passes through the exhaust holes 204a into the inner tube 204 and the outer tube 203. It flows into the exhaust passage 206 formed by the gaps formed between them. Then, the gas that has flowed into the exhaust passage 206 flows into the exhaust pipe 231 and is discharged to the outside of the processing furnace 202.
  • the exhaust holes 204a are provided at positions facing the side surfaces of the plurality of wafers 200, and the gas supplied from the gas supply holes 410a, 420a, 430a to the vicinity of the wafers 200 in the processing chamber 201 faces in the horizontal direction. Then, it flows into the exhaust passage 206 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to the case where it is configured as a slit-shaped through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • an APC (Auto Pressure Controller) valve 243 and a vacuum pump as a vacuum exhaust device. 246 is connected.
  • the APC valve 243 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, the valve with the vacuum pump 246 operating. By adjusting the opening degree, the pressure in the processing chamber 201 can be adjusted by adjusting the exhaust conductance.
  • the exhaust section is mainly composed of the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 2311, the APC valve 243, and the pressure sensor 245. At least the exhaust port 204a may be considered as an exhaust unit.
  • the vacuum pump 246 may be included in the exhaust unit.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to come into contact with the lower end of the manifold 209 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal material such as SUS.
  • the shape of the seal cap 219 is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 accommodating the wafer 200 is installed on the opposite side of the processing chamber 201 in the seal cap 219.
  • the rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered in the vertical direction by a boat elevator 115 as a raising and lowering mechanism vertically installed outside the outer tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (convey mechanism) for transporting the wafers 200 housed in the boat 217 and the boat 217 into and out of the processing chamber 201.
  • the boat 217 as a substrate support is configured so that a plurality of wafers, for example, 1 to 200 wafers 200, can be arranged vertically at intervals in a horizontal position and centered on each other. There is.
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in a horizontal posture in multiple stages (not shown). With this configuration, the heat from the heater 207 is less likely to be transferred to the seal cap 219 side.
  • this embodiment is not limited to the above-described embodiment.
  • a heat insulating cylinder configured as a tubular member made of a heat-resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and the amount of electricity supplied to the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263.
  • the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is L-shaped like the nozzles 410, 420 and 430, and is provided along the inner wall of the inner tube 204.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus.
  • An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which procedures and conditions of a method for manufacturing a semiconductor device to be described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each step (each step) in the method for manufacturing a semiconductor device described later and obtain a predetermined result, and functions as a program.
  • the process recipe, control program, etc. are collectively referred to as a program.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d includes the above-mentioned MFC 312, 321, 332, 521, 522, 532, 312-2, valve 314, 324, 334, 514, 524, 534, 314-2, pressure sensor 245, APC valve 243, A vacuum pump 246, a heater 207, a temperature sensor 263, a rotation mechanism 267, a boat elevator 115, and the like are connected in a controllable manner.
  • the connection includes being electrically directly connected, being indirectly connected, and being configured to be able to directly or indirectly transmit and receive electrical signals.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFC 312, 321, 332, 521, 522, 532, 312-2, and valves 314,324,334,514,524,534,314 according to the contents of the read recipe.
  • the controller 121 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) 123.
  • the above-mentioned program can be configured by installing it on a computer.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • the recording medium may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing process As one step of the manufacturing process of the semiconductor device (device), an example of a step of forming a control gate film of a flash memory or a metal film constituting a word line electrode of a MOSFET on a wafer 200 is shown with reference to FIG. explain.
  • the step of forming the metal film is performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 121.
  • a titanium nitride TiN film as a barrier metal that prevents fluorine (F) in the WF 6 gas, which will be described later, from diffusing into an insulating film (not shown) formed on the wafer 200 is formed. It is formed.
  • a tungsten (W) film as a wordline electrode there is a problem that the resistivity of the W film is increased, and it is required to reduce the resistivity of the W film.
  • FIGS. 6 and 8 represent time, and the vertical axis represents ON / OFF of each gas.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246 so as to have a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is always kept in operation until at least the processing on the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the processing on the wafer 200 is completed.
  • the initial film forming step S300 includes at least the first film forming step S303 and the second film forming step S305 described below. Each step will be described with reference to FIGS. 5, 6, and 7.
  • the first film forming step S303 includes at least the first processing gas supply step S303a, as shown by the solid lines in FIGS. 5 and 6. As shown by the broken lines in FIGS. 5 and 6, the purging steps S303b and S303d, the processing gas supply step S303c different from the first processing gas, and the determination step S303e may be included. Each process will be described below.
  • First processing gas supply step S303a SiH 4 gas as the first processing gas is supplied to the wafer 200 in the processing chamber 201.
  • SiH 4 gas supply The valve 314 is opened to allow SiH 4 gas, which is the first processing gas, to flow into the gas supply pipe 310.
  • the flow rate of SiH 4 gas is adjusted by the MFC 312, is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410, and is exhausted from the exhaust pipe 231.
  • the valve 514 is opened at the same time, and an inert gas such as N 2 gas is allowed to flow in the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, is supplied into the processing chamber 201 together with the SiH 4 gas, and is exhausted from the exhaust pipe 231.
  • the valves 524 and 534 are opened and the N 2 gas flows into the gas supply pipes 520 and 530.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 320 and 330 and the nozzles 420 and 430, and is exhausted from the exhaust pipe 231.
  • SiH 4 gas and N 2 gas are simultaneously supplied to the wafer 200.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, 1 to 3990 Pa, preferably 5 to 2660 Pa, and more preferably 10 to 1500 Pa.
  • the supply flow rate of the SiH 4 gas controlled by the MFC 312 is, for example, a flow rate within the range of 0.1 to 5 slm, preferably 0.3 to 3 slm, and more preferably 0.5 to 2 slm. Specifically, it is set to 1.0 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, 0.01 to 20 slm, preferably 0.1 to 10 slm, and more preferably 0.1 to 1 slm.
  • a silicon (Si) film as a first film is formed on the wafer 200.
  • the Si film is formed, for example, by forming two or more atomic layers, preferably 2 nm to 30 nm, and more preferably about 5 nm.
  • the Si film as the first film may be continuously supplied with SiH 4 gas for vapor phase growth, or may be supplied with two Si-based gases alternately.
  • SiH 4 gas for vapor phase growth
  • two Si-based gases alternately supplying the two Si-based gases, it is possible to improve the uniformity of the Si film formed on the surface of the structure formed on the wafer 200. That is, it is possible to improve the coverage characteristics.
  • the flow of the process of alternately supplying Si-based gas will be described with reference to FIGS. 5 and 6.
  • a treatment gas supply step S303c different from the first treatment gas is performed, but between the first treatment gas supply step S303a and the treatment gas supply step S303c different from the first treatment gas. Then, the purging step S303b may be performed.
  • N 2 gas as the inert gas is supplied into the processing chamber 201.
  • the pressure adjustment in the processing chamber 201 is performed.
  • the flow rate of the N 2 gas is, for example, 0.1 to 5 slm, preferably 0.3 to 3 slm, and more preferably 0.5 to 2 slm.
  • the pressure at this time is adjusted so as to be the pressure at the time of supplying the first gas later.
  • the pressure is, for example, a pressure in the range of 1 to 3990 Pa.
  • the supply of N 2 gas is stopped or the flow rate is reduced.
  • the N 2 gas may be supplied from all the nozzles existing in the processing chamber 201, or may be supplied from any one of the nozzles. Further, it may be configured to be supplied from a nozzle other than the nozzle used in the next step. Further, the N 2 gas supply is maintained for a predetermined time in a state where the N 2 gas supply is stopped or the flow rate is reduced, and the unreacted SiH 4 gas and by-products existing in the processing chamber 201 are removed.
  • HCDS gas supply The valve 314-2 is opened to allow HCDS gas, which is a processing gas different from the first processing gas, to flow into the gas supply pipe 310.
  • the flow rate of the HCDS gas is adjusted by the MFC 312-2, is supplied into the processing chamber 201 from the gas supply hole 410a of the nozzle 410, and is exhausted from the exhaust pipe 231.
  • the valve 514 is opened at the same time, and an inert gas such as N 2 gas is allowed to flow in the gas supply pipe 510.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 510 is adjusted by the MFC 512, is supplied into the processing chamber 201 together with the HCDS gas, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, 1 to 3990 Pa, preferably 5 to 2660 Pa, and more preferably 10 to 1500 Pa.
  • the supply flow rate of the HCDS gas controlled by the MFC 312 is, for example, a flow rate within the range of 0.1 to 5 slm, preferably 0.3 to 3 slm, and more preferably 0.5 to 2 slm. Specifically, it is set to 1.0 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, 0.01 to 20 slm, preferably 0.1 to 10 slm, and more preferably 0.1 to 1 slm.
  • a silicon (Si) film as a first film is formed on the wafer 200.
  • purging step S303d Subsequently, the purging step S303d is performed. Since the purging step S303d is substantially the same as the purging step S303b described above, the description thereof will be omitted. By performing the purging step S303d, unreacted HCDS gas and by-products (HCl) existing in the processing chamber 201 are removed.
  • the determination step S303e may be performed.
  • a Si film is formed on the wafer 200.
  • the purging step S304 may be performed between the first film forming step S303 and the second film forming step S305.
  • purging step S304 Since the purging step S304 is substantially the same as the purging steps S303b and S303d described above, the description thereof will be omitted.
  • the purging step it is possible to prevent the first treatment gas in the treatment chamber 201 and the treatment gas different from the first treatment gas from reacting with the metal-containing gas supplied in the second film forming step S305. It becomes possible to do. For example, it suppresses the reaction of HCDS gas and WF6 gas to form tungsten silicide (WSi).
  • the second film forming step S305 includes at least the second processing gas supply step S305a as shown by the solid line in FIG. As shown by the broken line in FIG. 7, the purging step S305b and the determination step S305c may be included. Each process will be described below.
  • the valve 324 is opened and the WF 6 gas, which is the second processing gas, flows into the gas supply pipe 320.
  • the flow rate of the WF 6 is adjusted by the MFC 321 and is supplied into the processing chamber 201 from the gas supply hole 420a of the nozzle 420 and exhausted from the exhaust pipe 231.
  • the valve 524 is opened at the same time to allow an inert gas such as N 2 gas to flow into the gas supply pipe 520.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 520 is adjusted by the MFC 522, is supplied into the processing chamber 201 together with the WF 6 gas, and is exhausted from the exhaust pipe 231.
  • the valves 514 and 534 are opened to allow the N 2 gas to flow into the gas supply pipes 510 and 530.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310 and 330 and the nozzles 410 and 430, and is exhausted from the exhaust pipe 231.
  • the WF 6 gas and the N 2 gas are simultaneously supplied to the wafer 200.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, 1 to 3990 Pa, preferably 5 to 2660 Pa, and more preferably 10 to 1500 Pa.
  • the supply flow rate of the WF 6 gas controlled by the MFC 312 is, for example, a flow rate within the range of 0.1 to 5 slm, preferably 0.3 to 3 slm, and more preferably 0.5 to 2 slm. Specifically, it is set to 1.0 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, 0.01 to 20 slm, preferably 0.1 to 10 slm, and more preferably 0.1 to 1 slm.
  • the reaction of the following formula occurs when the WF 6 gas comes into contact with the silicon (Si) film as the first film formed on the wafer 200.
  • 6Si + 4WF 6 ⁇ 6SiF 4 + 4W reaction occurs.
  • the Si film as the first film formed on the wafer 200 is converted (changed) into the tungsten (W) film as the second film.
  • the Si formed on the wafer 200 is desorbed (sublimated) as SiF 4 .
  • W is replaced with the Si site on the wafer 200, and a W film is formed.
  • a W film is formed on the wafer 200.
  • a film in which W atoms (W crystals) are densely arranged is formed. Therefore, for example, a W film having a lower resistance than the W film formed by directly performing the third film forming step described later is formed on the barrier metal.
  • the flash tank 322 is filled with WF 6 gas in advance and the WF 6 gas is supplied in a flash.
  • WF 6 gas By supplying the WF 6 gas with a flash, it is possible to improve the efficiency of removing by-products generated in the reaction while supplying the WF 6 gas.
  • the second processing gas supply step S305a may be performed intermittently in order to remove impurities (Si and fluorine (F)) in the W film. In other words, as shown in FIG. 7, the second processing gas supply step S305a and the purging step S305b may be repeated.
  • purging step S305b Since the purging step S305b is a procedure substantially the same as the other purging steps described above, the description thereof will be omitted.
  • the purging step S305b By performing the purging step S305b, by-products existing on the wafer 200 and in the processing chamber 201 are removed. This makes it possible to reduce the impurity concentration in the W film as the second film. That is, it is possible to reduce the resistivity of the W film.
  • step S305c it is determined whether or not the second processing gas supply step S305a has been performed for a predetermined time (predetermined number of times). If it has been performed a predetermined number of times, a YES (Y) determination is made, the second film forming step S305 is completed, and the next step is performed. If it has not been performed a predetermined number of times, the second film forming step S303 is performed again as a No (N) determination.
  • the second film forming step S305 is performed.
  • the third film forming step S400 is performed.
  • the purge step S306 and the determination step S307 And may be done.
  • purging step S306 Since the purging step S306 is a procedure substantially the same as the other purging steps described above, the description thereof will be omitted. By performing the purging step S306, it is possible to reduce the impurity concentration in the W film as the second film. That is, it is possible to reduce the resistivity of the W film.
  • the determination step S307 determines whether or not these two steps have been performed a predetermined number of times when the first film formation step S303 and the second film formation step S305 are repeated. If it has been performed a predetermined number of times, a YES (Y) determination is made, the initial film forming step S300 is completed, and the next step is performed. If it has not been performed a predetermined number of times, the initial film forming step S300 is re-performed as a No (N) determination.
  • the main film forming step (third film forming step) S400 After the initial film forming step S300, the main film forming step (third film forming step) S400 is performed. In the main film forming step S400, at least the second treated gas supply step S403 and the third treated gas supply step S405 are performed as shown by the solid line in FIG. In order to improve the film characteristics of the main film formed on the wafer 200, the purging steps S404 and S406 and the determination step S407 shown by the broken lines in FIG. 4 may be performed. Each process will be described below.
  • purging step S404 Next, the purging step S404 is performed. Since the purging step S404 is a procedure substantially the same as each of the above-mentioned purging steps, the description thereof will be omitted.
  • H 2 gas supply Opening the valve 334, flow of H 2 gas is a reaction gas into the gas supply pipe 330.
  • the flow rate of the H 2 gas is adjusted by the MFC 332, is supplied into the processing chamber 201 from the gas supply hole 430 a of the nozzle 430, and is exhausted from the exhaust pipe 231.
  • H 2 gas is supplied to the wafer 200.
  • opening the valve 534 flow the inert gas such as N 2 gas into the gas supply pipe 530.
  • the flow rate of the N 2 gas flowing through the gas supply pipe 530 is adjusted by the MFC 532, is supplied into the processing chamber 201 together with the H 2 gas, and is exhausted from the exhaust pipe 231.
  • the valves 514 and 524 are opened to allow the N 2 gas to flow into the gas supply pipes 510 and 520.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipes 310 and 320 and the nozzles 410 and 420, and is exhausted from the exhaust pipe 231.
  • the APC valve 243 is adjusted so that the pressure in the processing chamber 201 is set to, for example, a pressure in the range of 1 to 3990 Pa.
  • the supply flow rate of the H 2 gas controlled by the MFC 332 is, for example, a flow rate in the range of 0.1 to 50 slm.
  • the supply flow rate of the N 2 gas controlled by the MFC 512, 522, 532 is, for example, a flow rate within the range of 0.1 to 20 slm.
  • Time for supplying the H 2 gas to the wafer 200 is, for example, time within a range of 0.1 to 20 seconds.
  • the temperature of the heater 207 is set to a temperature such that the temperature of the wafer 200 is in the range of, for example, 200 to 600 ° C.
  • the only gases flowing in the processing chamber 201 are H 2 gas and N 2 gas, and by supplying the H 2 gas, a third film, for example, less than one atomic layer, is placed on the wafer 200 (surface base film).
  • a W layer is formed as a metal layer having a thickness of about several atomic layers.
  • the present invention is not limited to this, and the second treated gas supply step S403 and the third treated gas supply step are not limited to this. It may be configured so that S405 and S405 are performed at the same time.
  • by simultaneously performing the second treatment gas supply step S403 and the third treatment gas supply step S405 these effects cannot be expected, but the film formation rate can be improved and the throughput can be improved. ..
  • the purging step S406 is performed.
  • the purging step S406 the unreacted H 2 gas remaining in the treatment chamber 201 or after contributing to the formation of the W layer is removed from the treatment chamber 201. Since the purging step S406 is a procedure substantially the same as each of the above-mentioned purging steps, the description thereof will be omitted.
  • the determination step S407 is performed.
  • the atmosphere adjusting step S308 and the substrate unloading step S309 are performed. Each will be described below.
  • the N 2 gas is supplied into the process chamber 201 from the respective gas supply pipes 510, 520, and 530, is exhausted from the exhaust pipe 231.
  • the N 2 gas acts as a purge gas, whereby the inside of the treatment chamber 201 is purged with the inert gas, and the gas and by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge).
  • the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to normal pressure (return to atmospheric pressure).
  • the W layer can be densely formed on the TiN film.
  • the resistivity of the W film can be reduced. For example, as shown by ⁇ in FIG. 9, according to this technique, it is possible to reduce the resistivity as compared with the conventional technique ⁇ .
  • C It is possible to improve the resistivity while improving the coverage.
  • the above-mentioned first film means a film containing a first element as a main component
  • a second film means a film containing a second element as a main component
  • a third film means a second film. It means a film whose main component is an element.
  • Si has been described as an example as the first element, there is a possibility that the technique of the present disclosure can be applied to any Group 14 element.
  • germanium (Ge) is a metal element.
  • the principal component in the present disclosure means a film having an atomic ratio of 50% or more in the film composition, and preferably a film constituting 90% or more. By increasing the atomic ratio of the film composition, the above-mentioned reaction efficiency is increased, and a desired film can be obtained.
  • WF 6 is used as the second treatment gas, but the present invention is not limited to this, but titanium tetrachloride (TiCl 4 ), tantalum tetrachloride (TaCl 4 ), tungsten hexachloride (WCl 6 ), tungsten pentachloride (Titanium tetrachloride) ( Halogen-containing gas such as WCl 5 ), molybdenum tetrachloride (MoCl 4 ), silicon tetrachloride (SiCl 4 ), disilicon hexachloride (Si 2 Cl 6 , hexachlorodisilane (HCDSS)) and films formed using them. Can be applied to seeds.
  • TiCl 4 titanium tetrachloride
  • TaCl 4 tantalum tetrachloride
  • WCl 6 tungsten hexachloride
  • WCl 6 tungsten pentachloride
  • TiCl 4 tungs
  • the second treatment gas is a gas containing a halogen element and a metal element, it reacts with the Si film as the first film formed on the wafer 200, and the first film is modified into the second film.
  • the halogen element is fluorine (F), chlorine (Cl), bromine (Br), and iodine (I).
  • the metal elements include, for example, tungsten (W), titanium (Ti), molybdenum (Mo), ruthenium (Ru), aluminum (Al), hafnium (Hf), zirconium (Zr), lantern (La), and the like.
  • SiH 4 is used as a Si-based raw material as a first treatment gas or a treatment gas different from the first treatment gas, but the present invention is not limited to this, and for example, disilane containing Si and H. (Si 2 H 6 ), trisdimethylaminosilane (Si H [N (CH 3 ) 2 ] 3 ) and the like may be used.
  • the above-mentioned silane-based gas may be used as the first treatment gas, and a halosilane-based gas may be used as a treatment gas different from the first treatment gas.
  • the halosilane-based gas is a silane-based gas having a halogen group.
  • Halogen groups include halogen elements such as chlorine (Cl), fluorine (F), bromine (Br) and iodine (I).
  • a raw material gas containing Si and Cl that is, a chlorosilane-based gas can be used as the halosilane-based gas.
  • the chlorosilane-based gas acts as a Si source.
  • chlorosilane-based gas for example, hexachlorodisilane (Si2Cl6, abbreviation: HCDS) gas, dichlorosilane (SiH2Cl2, abbreviation: DCS) gas, and the like can be used.
  • HCDS hexachlorodisilane
  • DCS dichlorosilane
  • a Si-based raw material is used as the first treatment gas or a treatment gas different from the first treatment gas, but the raw material is not limited to Si and contains boron (B) and phosphorus (P).
  • B boron
  • P phosphorus
  • a gas such as diborane (B 2 H 6 ) gas, phosphine (PH 3 ) gas, etc. can be applied.
  • H 2 gas has been used as the third treatment gas, but the present invention is not limited to this, and any gas that can reduce the halogen-based material may be used.
  • the configuration in which the film formation is performed using a batch type substrate processing apparatus that processes a plurality of substrates at one time is described, but the present disclosure is not limited to this, and one or several substrates are processed at a time. It can also be suitably applied to the case where film formation is performed using a single-wafer type substrate processing apparatus for processing a substrate.
  • a substrate composed of other materials can be applied to the case of performing substrate processing using a material such as a ceramic substrate or a glass substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

低抵抗な膜を形成する。 基板を処理室に収容する工程と、基板に第1の元素を含む第1処理ガスを供給して、基板に第1の元素を含む第1の膜を形成する第1の成膜工程と、第1の元素を含む膜に第2の元素を含む第2処理ガスを供給して、第1の元素を含む膜から第1の元素を除去して第2の元素を含む第2の膜に改質する第2の成膜工程と、を有する。

Description

半導体装置の製造方法、基板処理装置およびプログラム
 本開示は、半導体装置の製造方法、基板処理装置およびプログラムに関する。
 近年、半導体装置の高集積化及び高性能化に伴い、様々な種類の金属膜が用いられ、3次元構造の半導体装置の製造が行なわれている(例えば特許文献1及び特許文献2参照)。
特開2017-69407号公報 特開2018-49898号公報
 3次元構造の半導体装置の一例であるNAND型フラッシュメモリのコントロールゲートにはタングステン膜(W膜)等が用いられている。このW膜の抵抗がデバイス特性に与える影響は大きく、低抵抗な膜が要求される。
 本開示の一態様によれば、
 基板を処理室に収容する工程と、
 基板に第1の元素を含む第1処理ガスを供給して、基板に第1の元素を含む膜を形成する第1の成膜工程と、
 第1の元素を含む膜に第2の元素を含む第2処理ガスを供給して、第1の元素を含む膜から第1の元素を除去して第2の元素を含む膜に改質する第2の成膜工程と、
 を有する技術が提供される。
 本開示によれば、低抵抗な膜を形成することが可能となる。
基板処理装置の縦型処理炉の概略を示す縦断面図である。 図2におけるA-A線概略横断面図である。 基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 基板処理装置の動作を示すフロー図である。 第1の成膜工程の動作を示すフロー図である。 第1の成膜工程におけるガス供給のタイミングを示す図である。 第2の成膜工程の動作を示すフロー図である。 第3の成膜工程におけるガス供給のタイミングを示す図である。 本技術の効果を示す図である。
<実施形態> 
 以下、実施形態の例について、図を参照しながら説明する。
(1)基板処理装置の構成 
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO)、炭化シリコン(SiC)などの耐熱性材料で構成される。アウタチューブ203の形状は、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属材料で構成される。マニホールド209の形状は、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英、SiCなどの耐熱性材料で構成される。インナチューブ204の形状は、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。
 処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。
 処理室201内には、ノズル410,420,430がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430には、ガス供給管310,320,330が、それぞれ接続されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。
 ガス供給管310,320,330には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,321,332がそれぞれ設けられている。また、ガス供給管310,320,330には、開閉弁であるバルブ314,324,334がそれぞれ設けられている。ガス供給管310,320,330のバルブ314,324,334の下流側には、不活性ガスを供給するガス供給管510,520,530がそれぞれ接続されている。ガス供給管510,520,530には、上流側から順に、MFC512,522,532及びバルブ514,524,534がそれぞれ設けられている。
 また、ガス供給管310には、ガス供給管310-2が接続されていても良い。ガス供給管310-2には、上流側から、MFC312-2、バルブ314-2が設けられている。
 ガス供給管310,320,330の先端部にはノズル410,420,430がそれぞれ連結接続されている。ノズル410,420,430は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430の垂直部は、インナチューブ204の径方向外向きに突出して配置され、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル410,420,430は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420a,430aが設けられている。これにより、ノズル410,420,430のガス供給孔410a,420a,430aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔410a,420a,430aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410a,420a,430aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420a,430aから供給されるガスの流量をより均一化することが可能となる。
 ノズル410,420,430のガス供給孔410a,420a,430aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200の全域に供給される。ノズル410,420,430は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。
 ガス供給管320の、MFC321とバルブ324の間には、フラッシュタンク322が配置される。
 ガス供給管310からは、第1処理ガスとして、シリコン(Si)元素を含むガスが、MFC311、バルブ314、ノズル410を介して処理室201内に供給される。第1処理ガスとしては、シラン系ガスを用いることができる。シラン系ガスとは、シリコン(Si)及び水素(H)を含み、ハロゲンを含まないガスである。具体的には、モノシラン(SiH)ガスを用いることができる。SiHは第1の膜を形成する成膜ガスとして作用する。なお、この様な第1処理ガスとして、他には、例えば、ジシラン(Si)が有る。
 また、ガス供給管310-2が設けられている場合、ガス供給管310-2からは、シリコン(Si)元素を含み第1処理ガスとは異なる処理ガス(第1の2処理ガスとも呼ぶ)が、MFC312-2、バルブ314-2、ノズル420を介して処理室201内に供給される。第1処理ガスとは異なる処理ガスとしては、例えば、シリコン(Si)及び水素を含み、ハロゲンを含むガスである。具体的には、第1処理ガスが、SiHガスの場合、第1処理ガスとは異なる処理ガスは、ヘキサクロロジシラン(HCDS)ガスが用いられる。
 ガス供給管320からは、第2処理ガスとして、金属元素を含む原料ガス(金属含有ガス)が、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。第2処理ガスとしては、例えば金属元素としてのタングステン(W)を含み、ハロゲン系原料(ハロゲン化物、ハロゲン系タングステン原料)としての六フッ化タングステン(WF)が用いられる。
 ガス供給管330からは、第3処理ガスとして、反応ガスが、MFC332、バルブ334、ノズル430を介して処理室201内に供給される。反応ガスとしては、例えば水素(H)を含むH含有ガスとしての例えば水素(H)ガスを用いることができる。
 ガス供給管510,520,530からは、不活性ガスとして、例えば窒素(N)ガスが、それぞれMFC512,522,532、バルブ514,524,534、ノズル410,420,430を介して処理室201内に供給される。以下、不活性ガスとしてNガスを用いる例について説明するが、不活性ガスとしては、Nガス以外に、例えば、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管310,320,330、MFC311,322,332、バルブ314,324,334、ノズル410,420,430によりガス供給部が構成されるが、ノズル410,420,430のみをガス供給部と考えてもよい。ガス供給管310から第1処理ガスを流す場合、主に、ガス供給管310、MFC311、バルブ314により第1処理ガス供給部が構成されるが、ノズル410のみを第1処理ガス供給部と考えてもよい。また、ガス供給管320から第2処理ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により第2処理ガス供給部が構成されるが、ノズル420のみを第2処理ガス供給部に含めて考えてもよい。また、フラッシュタンク322を第2処理ガス供給部に含めて考えても良い。また、ガス供給管330から反応ガスを流す場合、主に、ガス供給管330、MFC332、バルブ334により第3処理ガス供給部(反応ガス供給部)が構成されるが、ノズル430のみを第3処理ガス供給部に含めて考えてもよい。ガス供給管330から反応ガスとして窒素含有ガスを供給する場合、反応ガス供給部を窒素含有ガス供給部と称することもできる。また、主に、ガス供給管510,520,530、MFC512,522,532、バルブ514,524,534により不活性ガス供給部が構成される。
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内の予備室201a内に配置したノズル410,420,430を経由してガスを搬送している。そして、ノズル410,420,430のウエハと対向する位置に設けられた複数のガス供給孔410a,420a,430aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420a及びノズル430のガス供給孔430aにより、ウエハ200の表面と平行方向に向かってガス等を噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420,430に対向した位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給され、ウエハ200の表面上を流れたガスは、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間で構成された排気路206内に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。
 排気孔204aは、複数のウエハ200の側面と対向する位置に設けられており、ガス供給孔410a、420a、430aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245,APC(Auto Pressure Controller)バルブ243,真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、排気コンダクタンスを調整することにより、処理室201内の圧力を調整することができる。主に、排気孔204a,排気路206,排気管231,APCバルブ243及び圧力センサ245により、排気部が構成される。少なくとも排気口204aを排気部と考えても良い。真空ポンプ246を排気部に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属材料で構成される。シールキャップ219の形状は、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば1~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に間隔を空けて配列可能なように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料で形成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料で形成される断熱板218が水平姿勢で多段(図示せず)に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。
 図2に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420及び430と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a,RAM(Random Access Memory)121b,記憶装置121c,I/Oポート121dを備えたコンピュータとして構成されている。RAM121b,記憶装置121c,I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本開示においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC312,321,332,512,522,532,312-2、バルブ314,324,334,514,524,534,314-2、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等を、制御可能に接続されている。ここで接続とは、電気的に直接接続されていることや、間接的に接続されていること、電気信号を直接又は間接的に送受信可能に構成されていることも含む。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312,321,332,512,522,532,312-2による各種ガスの流量調整動作、バルブ314,324,334,514,524,534,314-2の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本開示において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程(成膜工程) 
 半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に、例えばフラッシュメモリのコントロールゲート膜や、MOSFETのワードライン電極を構成する金属膜を形成する工程の一例について、図4を用いて説明する。金属膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
 なお、ウエハ200の表面には、後述のWFガス中のフッ素(F)がウエハ200上に形成された絶縁膜(不図示)に拡散することを抑制するバリアメタルとしての窒化チタニウムTiN膜が形成されている。この様なバリアメタルの上にワードライン電極としてのタングステン(W)膜を形成する場合、W膜の抵抗率が高くなる課題があり、W膜の抵抗率を低くすることが求められる。
 本開示において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」、「ウエハとその表面に形成された所定の層や膜等との積層体」、「ウエハとその表面に形成された構造体」を意味する場合がある。本開示において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面」、「ウエハ上に形成された所定の層や膜等の表面」、「ウエハとその表面に形成された構造体」を意味する場合がある。本開示において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
 以下に図4~図8に基づいて、本開示の半導体装置の製造方法のフローやガス供給シーケンスについて説明する。なお、図6、図8の横軸は時間を表し、縦軸は、それぞれのガスのON/OFFを示している。
[基板搬入工程S301]
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
[雰囲気調整工程S302]
 処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
[初期成膜工程S300]
 続いて、初期成膜工程S300が行われる。初期成膜工程S300は、少なくとも、以下に記載する第1の成膜工程S303と第2の成膜工程S305を有する。それぞれの工程について、図5、図6、図7を用いて説明する。
[第1の成膜工程S303]
 第1の成膜工程S303は、図5,図6の実線で示す様に、少なくとも、第1処理ガスの供給工程S303aを有する。なお、図5,図6の破線で示す様に、パージ工程S303b,S303d、第1処理ガスとは異なる処理ガス供給工程S303c、判定工程S303eを含む様に構成しても良い。以下に、それぞれの工程について説明する。
[第1処理ガス供給工程S303a]
 第1処理ガス供給工程S303aでは、処理室201内のウエハ200に、第1処理ガスとしてのSiHガスが供給される。
(SiHガス供給) 
 バルブ314を開き、ガス供給管310内に第1処理ガスであるSiHガスを流す。SiHガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、同時にバルブ514を開き、ガス供給管510内にNガス等の不活性ガスを流す。ガス供給管510内を流れたNガスは、MFC512により流量調整され、SiHガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420やノズル430内へのSiHガスの侵入を防止するために、バルブ524,534を開き、ガス供給管520,530内にNガスを流す。Nガスは、ガス供給管320,330、ノズル420,430を介して処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してSiHガスとNガスが同時に供給されることとなる。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Pa、好ましくは5~2660Pa、より好ましくは10~1500Paの範囲内の圧力とする。MFC312で制御するSiHガスの供給流量は、例えば0.1~5slm、好ましくは0.3~3slm、より好ましくは0.5~2slmの範囲内の流量とする。具体的には、1.0slmとする。MFC512,522,532で制御するNガスの供給流量は、それぞれ例えば0.01~20slm、好ましくは0.1~10slm、より好ましくは0.1~1slmの範囲内の流量とする。
 SiHガスを供給することで、ウエハ200上に第1の膜としてのシリコン(Si)膜が形成される。なお、Si膜は、例えば、2原子層以上形成し、好ましくは、2nm~30nmであり、更に好ましくは5nm程度形成する。
 第1の膜としてのSi膜は、SiHガスの供給を連続的に供給して、気相成長させても良いし、二つのSi系ガスを交互に供給して、行っても良い。二つのSi系ガスを交互に供給することにより、ウエハ200上に形成された構造体表面に形成されるSi膜の均一性を向上させることが可能となる。即ち、カバレッジ特性を向上させることが可能となる。Si系ガスを交互に供給する工程のフローについて図5,図6を用いて説明する。
 まず、第1処理ガス供給工程S303aの後、第1処理ガスとは異なる処理ガス供給工程S303cを行うが、第1処理ガス供給工程S303aと第1処理ガスとは異なる処理ガス供給工程S303cの間で、パージ工程S303bが行われても良い。
[パージ工程S303b]
 パージ工程S303bでは、不活性ガスとしてのNガスが処理室201内に供給される。処理室201内に不活性ガスとしてのNガスを供給し、処理室201内の圧力調整が行われる。Nガスの流量は、例えば0.1~5slm、好ましくは0.3~3slm、より好ましくは0.5~2slmの範囲内の流量とする。この時の圧力は、後の第1ガスの供給時の圧力となる様に調整される。圧力は、例えば1~3990Paの範囲内の圧力とする。
 Nガスを所定時間供給後、Nガスの供給を停止又は流量減少させる。なお、Nガスの供給は、処理室201内に存在する全てのノズルから行う様に構成しても良いし、いずれか一つから供給する様に構成しても良い。また、次の工程で使われるノズル以外のノズルから供給する様に構成しても良い。また、Nガス供給を停止又は流量減少させた状態で、所定時間維持し、処理室201内に存在する未反応のSiHガスや、副生成物を除去する。
[第1処理ガスとは異なる処理ガス(第1の2処理ガス)供給工程S303c]
 第1処理ガスとは異なる処理ガス供給工程S303aでは、処理室201内のウエハ200に、第1処理ガスとは異なる処理ガスとしてのHCDSガスが供給される。
(HCDSガス供給) 
 バルブ314-2を開き、ガス供給管310内に第1処理ガスとは異なる処理ガスであるHCDSガスを流す。HCDSガスは、MFC312-2により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、同時にバルブ514を開き、ガス供給管510内にNガス等の不活性ガスを流す。ガス供給管510内を流れたNガスは、MFC512により流量調整され、HCDSガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420やノズル430内へのHCDSガスの侵入を防止するために、バルブ524,534を開き、ガス供給管520,530内にNガスを流す。Nガスは、ガス供給管320,330、ノズル420,430を介して処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してHCDSガスとNガスが同時に供給されることとなる。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Pa、好ましくは5~2660Pa、より好ましくは10~1500Paの範囲内の圧力とする。MFC312で制御するHCDSガスの供給流量は、例えば0.1~5slm、好ましくは0.3~3slm、より好ましくは0.5~2slmの範囲内の流量とする。具体的には、1.0slmとする。MFC512,522,532で制御するNガスの供給流量は、それぞれ例えば0.01~20slm、好ましくは0.1~10slm、より好ましくは0.1~1slmの範囲内の流量とする。所定時間経過後、バルブ314-2を閉じる。
 HCDSガスを供給することで、ウエハ200上に第1の膜としてのシリコン(Si)膜が形成される。
 [パージ工程S303d]
 続いて、パージ工程S303dが行われる。なお、パージ工程S303dは、上述のパージ工程S303bと略同様の工程であるので、説明を省略する。パージ工程S303dを行うことにより、処理室201内に存在する未反応のHCDSガスや、副生成物(HCl)を除去する。
 [判定工程S303e]
 続いて、判定工程S303eが行われても良い。判定工程S303eでは、第1処理ガス供給工程S303aと第1処理ガスとは異なる処理ガス供給工程S303cとが、所定回数行われたか、を判定する。所定回数行われていれば、YES(Y)判定とし、第1の成膜工程S303を終了し、次の工程を行わせる。所定回数行われていなければ、No(N)判定として、第1の成膜工程S303を再度行わせる様に構成される。
 第1の成膜工程S303では、ウエハ200上にSi膜が形成される。
 続いて、第2の成膜工程S305が行われる。なお、第1の成膜工程S303と第2の成膜工程S305との間で、パージ工程S304が行われても良い。
 [パージ工程S304]
 なお、パージ工程S304は、上述のパージ工程S303b,S303dと略同様の工程であるので、説明を省略する。ここでパージ工程を行うことにより、処理室201内の第1処理ガスや第1処理ガスとは異なる処理ガスが、第2の成膜工程S305で供給される金属含有ガスと反応することを抑制することが可能となる。例えば、HCDSガスとWF6ガスとが反応し、タングステンシリサイド(WSi)が生成されることを抑制する。
 [第2の成膜工程S305]
 第2の成膜工程S305は、図7の実線で示す様に、少なくとも第2処理ガス供給工程S305aを有する。図7の破線で示す様に、パージ工程S305bや判定工程S305cを含む様に構成しても良い。以下にそれぞれの工程について説明する。
 [第2処理ガス供給工程S305a]
 第2処理ガス供給工程S305aでは、ウエハ200に第2処理ガスとしてのWFガスが供給される。
(WFガス供給) 
 バルブ324を開き、ガス供給管320内に第2処理ガスであるWFガスを流す。WFスは、MFC321により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このとき、同時にバルブ524を開き、ガス供給管520内にNガス等の不活性ガスを流す。ガス供給管520内を流れたNガスは、MFC522により流量調整され、WFガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410やノズル430内へのWFガスの侵入を防止するために、バルブ514,534を開き、ガス供給管510,530内にNガスを流す。Nガスは、ガス供給管310,330、ノズル410,430を介して処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してWFガスとNガスが同時に供給されることとなる。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Pa、好ましくは5~2660Pa、より好ましくは10~1500Paの範囲内の圧力とする。MFC312で制御するWFガスの供給流量は、例えば0.1~5slm、好ましくは0.3~3slm、より好ましくは0.5~2slmの範囲内の流量とする。具体的には、1.0slmとする。MFC512,522,532で制御するNガスの供給流量は、それぞれ例えば0.01~20slm、好ましくは0.1~10slm、より好ましくは0.1~1slmの範囲内の流量とする。
 WFガスは、ウエハ200上に形成された第1の膜としてのシリコン(Si)膜と接することで次式の反応が生じる。6Si+4WF→6SiF+4Wの反応が生じる。この反応により、ウエハ200上に形成された第1の膜としてのSi膜が、第2の膜としてのタングステン(W)膜にコンバージョン(変化)する。ウエハ200上に形成されていたSiは、SiFとして脱離(昇華)する。なお、この反応の過程でウエハ200上にあったSiのサイトにWが入れ替わり、W膜が形成される。これにより、ウエハ200上にW膜が形成される。W原子(W結晶)が密に並んだ膜が形成される。よって、例えば、バリアメタル上に、直接、後述の第3の成膜工程を行って形成したW膜よりも低抵抗なW膜が形成される。
 なお、好ましくは、事前にフラッシュタンク322に、WFガスを溜めておき、WFガスをフラッシュ供給する様に構成する。WFガスをフラッシュ供給することにより、WFガスを供給しつつ、反応で生じる副生成物の除去効率を向上させることができる。
 ここで、ウエハ200上にSi膜が、5nm形成されている場合は、3nm程度のW膜が形成されるまで、WFガスの供給を継続して、ウエハ200上のSi膜からW膜へのコンバージョンを行う。なお、W膜中の不純物(Siやフッ素(F))の除去のため、第2処理ガス供給工程S305aを間欠的に行わせても良い。言い換えると、図7に示す様に、第2処理ガス供給工程S305aとパージ工程S305bとを繰り返し行う様に構成しても良い。
 [パージ工程S305b]
 パージ工程S305bは、上述の他のパージ工程と略同様の手順であるため、説明を省略する。パージ工程S305bを行うことにより、ウエハ200上や処理室201内に存在する副生物を除去する。これにより、第2の膜としてのW膜中の不純物濃度を低下させることが可能となる。即ち、W膜の抵抗率を低下させることが可能となる。
 [判定工程S305c]
 判定工程S305cでは、第2処理ガス供給工程S305aが所定時間(所定回数)行われたか否かを判定する。所定回数行われていれば、YES(Y)判定とし、第2の成膜工程S305を終了し、次の工程を行わせる。所定回数行われていなければ、No(N)判定として、第2の成膜工程S303を再度行わせる様に構成される。
 この様にして、第2の成膜工程S305が行われる。第2の成膜工程S305の後は、第3の成膜工程S400が行われるが、第2の成膜工程S305と、第3の成膜工程S400の間で、パージ工程S306と判定工程S307とを行わせても良い。
 [パージ工程S306]
 パージ工程S306は、上述の他のパージ工程と略同様の手順であるため、説明を省略する。パージ工程S306を行うことにより、第2の膜としてのW膜中の不純物濃度を低下させることが可能となる。即ち、W膜の抵抗率を低下させることが可能となる。
 [判定工程S307]
 判定工程S307は、第1の成膜工程S303と第2の成膜工程S305とを繰り返す場合に、この2つの工程が、所定回数行われたか否かを判定する。所定回数行われていれば、YES(Y)判定とし、初期膜成膜工程S300を終了し、次の工程を行わせる。所定回数行われていなければ、No(N)判定として、初期膜成膜工程S300を再度行わせる様に構成される。
 [メイン膜形成工程(第3の成膜工程)S400]
 初期膜成膜工程S300の後、メイン膜形成工程(第3の成膜工程)S400が行われる。メイン膜形成工程S400は、図4の実線に示す様に、少なくとも第2処理ガス供給工程S403と、第3処理ガス供給工程S405とが行われる。ウエハ200上に形成するメイン膜の膜特性を向上のため、図4の破線で示すパージ工程S404,S406、判定工程S407を行わせても良い。以下にそれぞれの工程について説明する。
 [第2処理ガス供給工程S403]
 第2処理ガス供給工程S403では、第2の膜としてのW膜を有する初期膜が形成されたウエハ200に対して、上述の第2処理ガス供給工程S305aと略同様の手順が行われるので、説明は省略する。第2処理ガス供給工程S403が行われることにより、第2の膜としてのW膜を有する初期膜上にWとFを含む(WFx)膜が形成される。ここでxは4よりも小さい自然数である。なお、初期のW膜の結晶(W原子)は密に並んでおり、第2処理ガス供給工程S403では、この初期のW膜の結晶(W原子)の並びに沿って、WFxが吸着する。
 [パージ工程S404]
 次に、パージ工程S404が行われる。パージ工程S404は、上述の各パージ工程と略同様の手順であるため、説明を省略する。
 [第3処理ガス供給工程S405]
 第3処理ガス供給工程S405では、WFxが吸着したウエハ200に対して、第3処理ガス(反応ガス)としての、Hガスが供給される。
(Hガス供給) 
 バルブ334を開き、ガス供給管330内に反応ガスであるHガスを流す。Hガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してHガスが供給されることとなる。このとき同時にバルブ534を開き、ガス供給管530内にNガス等の不活性ガスを流す。ガス供給管530内を流れたNガスは、MFC532により流量調整され、Hガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、ノズル410,420内へのHガスの侵入を防止するために、バルブ514,524を開き、ガス供給管510,520内にNガスを流す。Nガスは、ガス供給管310,320、ノズル410,420を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Paの範囲内の圧力とする。MFC332で制御するHガスの供給流量は、例えば0.1~50slmの範囲内の流量とする。MFC512,522,532で制御するNガスの供給流量は、それぞれ例えば0.1~20slmの範囲内の流量とする。Hガスをウエハ200に対して供給する時間は、例えば0.1~20秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば200~600℃の範囲内の温度となるような温度に設定する。処理室201内に流しているガスはHガスとNガスのみであり、Hガスの供給により、ウエハ200(表面の下地膜)上に、第3の膜として、例えば1原子層未満から数原子層程度の厚さの金属層としてのW層が形成される。
 なお、ここでは、第2処理ガス供給工程S403と第3処理ガス供給工程S405とを別々に行う例を説明したが、これに限らず、第2処理ガス供給工程S403と第3処理ガス供給工程S405とを同時に行う様に構成しても良い。第2処理ガス供給工程S403と第3処理ガス供給工程S405とを別々に行うことにより、メイン膜中のF濃度の低減や、カバレッジ向上、等の効果が得られる。一方で、第2処理ガス供給工程S403と第3処理ガス供給工程S405とを同時に行うことで、これらの効果は期待できないが、成膜レートを向上させることができ、スループットを向上させることができる。
 [パージ工程S406]
 次に、パージ工程S406が行われる。パージ工程S406では、処理室201内に残留する未反応もしくはW層形成に寄与した後のHガスを処理室201内から排除する。なお、パージ工程S406は、上述の各パージ工程と略同様の手順であるため、説明を省略する。
 [判定工程S407]
 次に判定工程S407が行われる。判定工程S407では、第2処理ガス供給工程S403と第3処理ガス供給工程S405とが、所定回数行われたか否かが判定される。所定回数行われていれば、YES(Y)判定とし、メイン膜成膜工程S400を終了し、次の工程を行わせる。所定回数行われていなければ、No(N)判定として、メイン膜成膜工程S400を再度行わせる様に構成される。
 メイン膜成膜工程S400の後、雰囲気調整工程S308と基板搬出工程S309とが行われる。それぞれについて以下に説明する。
(雰囲気調整工程S308) 
 ガス供給管510,520,530のそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(基板搬出工程S309) 
 その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(3)実施形態による効果 
 本実施形態の例によれば、以下に示す1つまたは複数の効果を得ることができる。(a)TiN膜上に密にW層を形成することができる。(b)W膜の抵抗率を低下させることができる。例えば、図9の▲で示す様に、本技術によれば、従来技術◆に比べて、抵抗率を低減することが可能となる。(c)被覆率(カバレッジ)を向上させつつ、抵抗率を向上させることが可能となる。
 以上、本開示の実施形態を具体的に説明した。しかしながら、本開示は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の第1の膜は、第1の元素を主成分とする膜を意味し、第2の膜は、第2の元素を主成分とする膜を意味し、第3の膜は第2の元素を主成分とする膜を意味する。なお、第1の元素として、Siを例に説明したが、14族元素であれば、本開示の技術を適用できる可能性がある。例えば、ゲルマニウム(Ge)がある。また、第2の元素は、金属元素である。ここで、本開示における主成分とは、膜組成の原子比率が50%以上となる膜を意味し、好ましくは90%以上を構成する膜を意味する。膜組成の原子比率が増すことで、上述の反応効率が上がり、所望の膜を得ることが可能となる。
 上述では、第2処理ガスとしてWFを用いて説明したが、これに限らず、四塩化チタン(TiCl)、四塩化タンタル(TaCl)、六塩化タングステン(WCl)、五塩化タングステン(WCl)、四塩化モリブデン(MoCl)、四塩化ケイ素(SiCl)、六塩化二ケイ素(SiCl、ヘキサクロロジシラン(HCDSS))等のハロゲン含有ガスおよびそれらを用いて形成される膜種に適用することができる。
 なお、第2処理ガスは、ハロゲン元素と金属元素を含むガスであれば、ウエハ200に形成された第1の膜としてのSi膜と反応し、第1の膜を第2の膜に改質させられる可能性がある。ここで、ハロゲン元素とは、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)である。金属元素は、例えば、タングステン(W)、チタニウム(Ti)、モリブデン(Mo)、ルテニウム(Ru)、アルミニウム(Al)、ハフニウム(Hf)、ジルコニウム(Zr)、ランタン(La)、等である。
 また、上述では、第1処理ガスや、第1処理ガスとは異なる処理ガスとして、Si系の原料として、SiHを用いて説明したが、これに限らず、SiとHを含む例えば、ジシラン(Si)、トリスジメチルアミノシラン(SiH[N(CH)等であっても良い。
また、第1処理ガスは、上述のシラン系ガスを用いて、第1処理ガスとは異なる処理ガスとして、ハロシラン系のガスを用いても良い。このように、2種類の処理ガスを用いることで、膜の平坦性を向上させることが可能となる。ここで、ハロシラン系ガスとは、ハロゲン基を有するシラン系ガスのことである。ハロゲン基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。ハロシラン系ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン系ガスを用いることができる。クロロシラン系ガスは、Siソースとして作用する。クロロシラン系ガスとしては、例えば、ヘキサクロロジシラン(Si2Cl6、略称:HCDS)ガス、ジクロロシラン(SiH2Cl2、略称:DCS)ガス、等を用いることができる。
 また、上述では、第1処理ガスや、第1処理ガスとは異なる処理ガスとして、Si系の原料を用いたが、Si系に限らず、ホウ素(B)やリン(P)を含む原料であっても良い。例えば、ジボラン(B)ガス、ホスフィン(PH)ガス、等のガスを適用することができる。
 また、上述では、第3処理ガスとして、Hガスを用いて説明したが、これに限るものでは無く、ハロゲン系材料を還元できるガスであれば良い。
 また、上述では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて成膜を行う構成について説明したが、本開示はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて成膜を行う場合にも、好適に適用できる。
 また、上述では、半導体基板としてのウエハを用いる例を示したが、他の材料で構成される基板。例えば、セラミック基板やガラス基板等の材料を用いた基板処理を行う場合にも適用することができる。
 以上、本開示の種々の典型的な実施形態及び実施例を説明してきたが、本開示はそれらの実施形態及び実施例に限定されず、適宜組み合わせて用いることもできる。
10 基板処理装置
121 コントローラ
200 ウエハ(基板)
201 処理室

 

Claims (15)

  1.  基板を処理室に収容する工程と、
     前記基板に第1の元素を含む第1処理ガスを供給して、前記基板に第1の元素を含む第1の膜を形成する第1の成膜工程と、
     前記第1の元素を含む膜に第2の元素を含む第2処理ガスを供給して、前記第1の膜から前記第1の元素を除去して前記第2の元素を含む第2の膜に改質する第2の成膜工程と、
     を有する半導体装置の製造方法。
  2.  前記第2の成膜工程では、前記第2処理ガスを連続して供給する請求項1に記載の半導体装置の製造方法。
  3.  前記第2の成膜工程では、前記第2処理ガスを間欠供給する請求項1に記載の半導体装置の製造方法。
  4.  前記第2の成膜工程では、フラッシュタンクを介して前記第2処理ガスを供給する請求項1乃至3のいずれか一項に記載の半導体装置の製造方法。
  5.  前記第1の成膜工程では、前記第1処理ガスと、前記第1の元素を含み前記第1処理ガスとは異なる処理ガスを供給する工程を有する請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。
  6.  前記第1の成膜工程では、前記第1処理ガスと前記第1処理ガスとは異なる処理ガスとを、交互に供給する請求項5に記載の半導体装置の製造方法。
  7.  前記第1処理ガスは、シリコンと水素を含みハロゲンを含まない原料であり、
     前記第1処理ガスとは異なる処理ガスは、シリコンと水素とハロゲンを含む原料である請求項5または6に記載の半導体装置の製造方法。
  8.  前記第1処理ガスは、シラン系の原料であり、
     前記第1処理ガスとは異なる処理ガスは、ハロシラン系の原料である請求項5または6に記載の半導体装置の製造方法。
  9.  前記第2の膜に、前記第2処理ガスと第3処理ガスとを供給して、前記基板に第2の元素を含む第3の膜をさらに形成する第3の成膜工程と、を有する請求項1乃至8のいずれか一項に記載の半導体装置の製造方法。
  10.  前記第3の成膜工程では、前記第2処理ガスと前記第3処理ガスとを交互に供給する請求項9に記載の半導体装置の製造方法。
  11.  前記第1の元素は、14族元素であり、前記第2の元素は、金属元素である請求項1乃至10のいずれか一項に記載の半導体装置の製造方法。
  12.  前記第1の膜は、前記第1の元素を主成分とする膜であり、
     前記第2の膜は、前記第2の元素を主成分とする膜である
     請求項1乃至11のいずれか一項に記載の半導体装置の製造方法。
  13.  前記第3の膜は、前記第2の元素を主成分とする膜である
     請求項9に記載の半導体装置の製造方法。
  14.  基板を処理する処理室と、
     前記処理室内の前記基板に対して第1の元素を含む第1処理ガスを供給する第1処理ガス供給部と、
     前記処理室内の前記基板に対して第2の元素を含む第2処理ガスを供給する第2処理ガス供給部と、
     前記基板に対して前記第1処理ガスを供給して、前記基板に第1の元素を含む膜を形成する処理と、前記基板上の前記第1の元素を含む第1の膜に前記第2処理ガスを供給して、前記第1の膜から前記第1の元素を除去して前記第2の元素を含む第2の膜に改質する処理と、を行うように前記第1処理ガス供給部と前記第2処理ガス供給部とを制御するよう構成される制御部と、
     を有する基板処理装置。
  15.  基板を処理室に収容させる手順と、
     前記基板に第1の元素を含む第1処理ガスを供給して、前記基板に第1の元素を含む膜を成膜させる第1の成膜手順と、
     前記第1の元素を含む第1の膜に第2の元素を含む第2処理ガスを供給して、前記第1の膜から前記第1の元素を除去して前記第2の元素を含む第2の膜に改質させる第2の成膜手順と、をコンピュータにより基板処理装置に実行させるプログラム。
     

     
PCT/JP2020/010022 2019-03-20 2020-03-09 半導体装置の製造方法、基板処理装置およびプログラム WO2020189373A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507220A JP7159446B2 (ja) 2019-03-20 2020-03-09 基板処理方法、基板処理装置、プログラムおよび半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019052809 2019-03-20
JP2019-052809 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189373A1 true WO2020189373A1 (ja) 2020-09-24

Family

ID=72519074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010022 WO2020189373A1 (ja) 2019-03-20 2020-03-09 半導体装置の製造方法、基板処理装置およびプログラム

Country Status (2)

Country Link
JP (1) JP7159446B2 (ja)
WO (1) WO2020189373A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189624A (ja) * 1983-04-12 1984-10-27 Sumitomo Electric Ind Ltd シリコン半導体装置の電極形成方法
JPH0461324A (ja) * 1990-06-29 1992-02-27 Nec Corp 選択気相成長法
JPH05308058A (ja) * 1992-03-17 1993-11-19 Fujitsu Ltd 半導体装置の製造方法
JPH0645275A (ja) * 1991-06-21 1994-02-18 Citizen Watch Co Ltd 半導体装置の製造方法
JPH11340463A (ja) * 1988-02-18 1999-12-10 Internatl Business Mach Corp <Ibm> 半導体材料を高融点金属に変換する方法及び前記方法を利用して製造されるmos装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189624A (ja) * 1983-04-12 1984-10-27 Sumitomo Electric Ind Ltd シリコン半導体装置の電極形成方法
JPH11340463A (ja) * 1988-02-18 1999-12-10 Internatl Business Mach Corp <Ibm> 半導体材料を高融点金属に変換する方法及び前記方法を利用して製造されるmos装置
JPH0461324A (ja) * 1990-06-29 1992-02-27 Nec Corp 選択気相成長法
JPH0645275A (ja) * 1991-06-21 1994-02-18 Citizen Watch Co Ltd 半導体装置の製造方法
JPH05308058A (ja) * 1992-03-17 1993-11-19 Fujitsu Ltd 半導体装置の製造方法

Also Published As

Publication number Publication date
JPWO2020189373A1 (ja) 2021-12-02
JP7159446B2 (ja) 2022-10-24

Similar Documents

Publication Publication Date Title
JP7464638B2 (ja) 基板処理装置、プラズマ生成装置、反応管、プラズマ生成方法、基板処理方法、半導体装置の製造方法およびプログラム
JP7036832B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
KR102660213B1 (ko) 반도체 장치의 제조 방법, 프로그램, 기판 처리 장치 및 기판 처리 방법
US20210388487A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP7083890B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2022130559A1 (ja) 半導体装置の製造方法、プログラム及び基板処理装置
WO2018179354A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2020189373A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR20220040395A (ko) 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
WO2023188014A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
JP7387685B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置
JP7273168B2 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
JP7248722B2 (ja) 基板処理方法、基板処理装置、プログラムおよび半導体装置の製造方法
TWI840694B (zh) 基板處理方法、半導體裝置的製造方法、基板處理裝置及程式
JP7186909B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2022059325A1 (ja) 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法
WO2024034172A1 (ja) 基板処理装置、基板支持具、基板処理方法、半導体装置の製造方法及びプログラム
WO2022059170A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
EP4357481A1 (en) Method of processing substrate, method of manufacturing semiconductor device, program, and substrate processing apparatus
EP4261324A1 (en) Method of processing substrate, method of manufacturing semiconductor device, program, and substrate processing apparatus
WO2024062577A1 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2023037452A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体
KR20240038582A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
JP2023023351A (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772772

Country of ref document: EP

Kind code of ref document: A1