WO2023037452A1 - 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体 - Google Patents

半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体 Download PDF

Info

Publication number
WO2023037452A1
WO2023037452A1 PCT/JP2021/033031 JP2021033031W WO2023037452A1 WO 2023037452 A1 WO2023037452 A1 WO 2023037452A1 JP 2021033031 W JP2021033031 W JP 2021033031W WO 2023037452 A1 WO2023037452 A1 WO 2023037452A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
group
substrate
layer
semiconductor device
Prior art date
Application number
PCT/JP2021/033031
Other languages
English (en)
French (fr)
Inventor
幸永 栗林
有人 小川
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2021/033031 priority Critical patent/WO2023037452A1/ja
Priority to CN202180101071.9A priority patent/CN117751429A/zh
Priority to JP2023546631A priority patent/JPWO2023037452A5/ja
Priority to KR1020247007462A priority patent/KR20240038105A/ko
Priority to TW111125457A priority patent/TW202312390A/zh
Publication of WO2023037452A1 publication Critical patent/WO2023037452A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method, a substrate processing method, a substrate processing apparatus, and a recording medium.
  • low-resistance tungsten (W) films are used as word lines for NAND flash memories and DRAMs that have a three-dimensional structure.
  • a titanium nitride (TiN) film for example, may be used as a barrier film between the W film and the insulating film (see, for example, Patent Documents 1 and 2).
  • JP 2011-66263 A International Publication No. 2019/058608 pamphlet
  • An object of the present disclosure is to provide a technique capable of improving the film properties of a metal-based film.
  • FIG. 1 is a vertical cross-sectional view showing an outline of a vertical processing furnace of a substrate processing apparatus according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a schematic cross-sectional view taken along line AA in FIG. 1
  • 1 is a schematic configuration diagram of a controller of a substrate processing apparatus according to an embodiment of the present disclosure, and is a block diagram showing a control system of the controller
  • FIG. FIG. 4 is a diagram showing a substrate processing process in one embodiment of the present disclosure
  • FIG. 10 is a diagram showing a modification of the substrate processing process in one embodiment of the present disclosure
  • FIG. 10 is a diagram showing a modification of the substrate processing process in one embodiment of the present disclosure
  • FIG. 10 is a diagram showing a modification of the substrate processing process in one embodiment of the present disclosure
  • FIG. 10 is a diagram showing a modification of the substrate processing process in one embodiment of the present disclosure
  • FIG. 10 is a diagram showing a modification of the substrate processing process in one embodiment of the present disclosure
  • FIGS. 1 to 4. A description will be given below with reference to FIGS. 1 to 4.
  • the drawings used in the following description are all schematic, and the dimensional relationship of each element, the ratio of each element, etc. shown in the drawings do not necessarily match the actual ones. Moreover, the dimensional relationship of each element, the ratio of each element, etc. do not necessarily match between a plurality of drawings.
  • the substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as heating means (heating mechanism, heating system).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • an outer tube 203 forming a reaction tube is arranged concentrically with the heater 207 .
  • the outer tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with a closed upper end and an open lower end.
  • a manifold (inlet flange) 209 is arranged concentrically with the outer tube 203 below the outer tube 203 .
  • the manifold 209 is made of metal such as stainless steel (SUS), and has a cylindrical shape with open top and bottom ends.
  • An O-ring 220a is provided between the upper end of the manifold 209 and the outer tube 203 as a sealing member.
  • An inner tube 204 constituting a reaction container is arranged inside the outer tube 203 .
  • the inner tube 204 is made of a heat-resistant material such as quartz or SiC, and has a cylindrical shape with a closed upper end and an open lower end.
  • a processing vessel (reaction vessel) is mainly composed of the outer tube 203 , the inner tube 204 and the manifold 209 .
  • a processing chamber 201 is formed in the cylindrical hollow portion of the processing container (inside the inner tube 204).
  • the processing chamber 201 is configured so that wafers 200 as substrates can be accommodated in a state in which they are horizontally arranged in multiple stages in the vertical direction by a boat 217 as a support.
  • Nozzles 410 , 420 , 430 are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209 and the inner tube 204 .
  • Gas supply pipes 310, 320 and 330 are connected to the nozzles 410, 420 and 430, respectively.
  • the processing furnace 202 of this embodiment is not limited to the form described above.
  • Gas supply pipes 510, 520, 530 for supplying inert gas are connected to the downstream sides of the valves 314, 324, 334 of the gas supply pipes 310, 320, 330, respectively.
  • Gas supply pipes 510, 520, 530 are provided with MFCs 512, 522, 532 as flow rate controllers (flow control units) and valves 514, 524, 534 as on-off valves, respectively, in this order from the upstream side.
  • MFCs 512, 522, 532 as flow rate controllers (flow control units)
  • valves 514, 524, 534 as on-off valves, respectively, in this order from the upstream side.
  • Nozzles 410, 420, and 430 are connected to the tip portions of the gas supply pipes 310, 320, and 330, respectively.
  • the nozzles 410 , 420 , 430 are configured as L-shaped nozzles, and their horizontal portions are provided so as to penetrate the side wall of the manifold 209 and the inner tube 204 .
  • the vertical portions of the nozzles 410, 420, and 430 protrude outward in the radial direction of the inner tube 204 and are provided inside a channel-shaped (groove-shaped) preliminary chamber 201a formed to extend in the vertical direction. It is provided upward (upward in the direction in which the wafers 200 are arranged) along the inner wall of the inner tube 204 in the preliminary chamber 201a.
  • the nozzles 410 , 420 , 430 are provided to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201 , and have a plurality of gas supply holes 410 a , 420 a , 430 a at positions facing the wafer 200 . is provided. Thereby, the processing gas is supplied to the wafer 200 from the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430, respectively.
  • a plurality of gas supply holes 410a, 420a, 430a are provided from the lower portion to the upper portion of the inner tube 204, each having the same opening area and the same opening pitch.
  • the gas supply holes 410a, 420a, and 430a are not limited to the forms described above.
  • the opening area may gradually increase from the bottom to the top of the inner tube 204 . This makes it possible to make the flow rate of the gas supplied from the gas supply holes 410a, 420a, and 430a more uniform.
  • a plurality of gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 are provided at height positions from the bottom to the top of the boat 217, which will be described later. Therefore, the processing gas supplied into the processing chamber 201 through the gas supply holes 410a, 420a, 430a of the nozzles 410, 420, 430 is supplied to the entire area of the wafers 200 accommodated from the bottom to the top of the boat 217.
  • the nozzles 410 , 420 , 430 may be provided so as to extend from the lower region to the upper region of the processing chamber 201 , but are preferably provided so as to extend to the vicinity of the ceiling of the boat 217 .
  • a raw material gas containing a metal element (metal-containing gas) is supplied as a processing gas from the gas supply pipe 310 into the processing chamber 201 via the MFC 312 , the valve 314 and the nozzle 410 .
  • a reducing gas is supplied as a processing gas from the gas supply pipe 320 into the processing chamber 201 via the MFC 322 , the valve 324 and the nozzle 420 .
  • a gas containing a Group 15 element different from the reducing gas is supplied from the gas supply pipe 330 into the processing chamber 201 via the MFC 332 , the valve 334 and the nozzle 430 as the processing gas.
  • inert gas such as argon (Ar) gas is supplied to the processing chamber 201 through MFCs 512, 522, 532, valves 514, 524, 534, and nozzles 410, 420, 430, respectively. supplied within.
  • Ar gas Ar gas
  • the inert gas other than the Ar gas, for example, rare gases such as helium (He) gas, neon (Ne) gas, xenon (Xe) gas, etc. may be used.
  • the raw material gas supply system is mainly composed of the gas supply pipe 310, the MFC 312, and the valve 314.
  • the nozzle 410 may be included in the raw material gas supply system. good.
  • the source gas supply system can also be referred to as a metal-containing gas supply system.
  • the reducing gas supply system is mainly composed of the gas supply pipe 320, the MFC 322, and the valve 324, but the nozzle 420 may be included in the reducing gas supply system. .
  • the gas supply system containing the group 15 element is mainly composed of the gas supply pipe 330, the MFC 332, and the valve 334. It may be considered to be included in the gas supply system containing the Group 15 element. Further, the metal-containing gas supply system, the reducing gas supply system, and the gas supply system containing the group 15 element can also be referred to as a processing gas supply system. Also, the nozzles 410, 420, and 430 may be included in the processing gas supply system. In addition, the gas supply pipes 510, 520, 530, the MFCs 512, 522, 532, and the valves 514, 524, 534 mainly constitute an inert gas supply system.
  • the method of gas supply in this embodiment includes nozzles 410 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 , 420 . , 420 . 430 to convey
  • the gas supply hole 410 a of the nozzle 410 , the gas supply hole 420 a of the nozzle 420 , and the gas supply hole 430 a of the nozzle 430 are used to eject the raw material gas and the like in the direction parallel to the surface of the wafer 200 .
  • the exhaust hole (exhaust port) 204a is a through hole formed in a side wall of the inner tube 204 at a position facing the nozzles 410, 420, and 430.
  • the exhaust hole (exhaust port) 204a is a slit-like through hole elongated in the vertical direction. is.
  • the gas supplied into the processing chamber 201 from the gas supply holes 410a, 420a, and 430a of the nozzles 410, 420, and 430 and flowed over the surface of the wafer 200 passes through the exhaust hole 204a and flows between the inner tube 204 and the outer tube 203. It flows into the gap (in the exhaust path 206) formed therebetween. Then, the gas that has flowed into the exhaust path 206 flows into the exhaust pipe 231 and is discharged out of the processing furnace 202 .
  • the exhaust holes 204a are provided at positions facing the plurality of wafers 200, and the gas supplied to the vicinity of the wafers 200 in the processing chamber 201 from the gas supply holes 410a, 420a, and 430a flows in the horizontal direction. After that, it flows into the exhaust passage 206 through the exhaust hole 204a.
  • the exhaust hole 204a is not limited to being configured as a slit-shaped through hole, and may be configured by a plurality of holes.
  • the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere inside the processing chamber 201 .
  • the exhaust pipe 231 includes, in order from the upstream side, a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201, an APC (Auto Pressure Controller) valve 243, and a vacuum pump as an evacuation device. 246 are connected.
  • the APC valve 243 can evacuate the processing chamber 201 and stop the evacuation by opening and closing the valve while the vacuum pump 246 is in operation. By adjusting the degree of opening, the pressure inside the processing chamber 201 can be adjusted.
  • An exhaust system is mainly composed of the exhaust hole 204 a , the exhaust path 206 , the exhaust pipe 231 , the APC valve 243 and the pressure sensor 245 .
  • a vacuum pump 246 may be considered to be included in the exhaust system.
  • a seal cap 219 is provided below the manifold 209 as a furnace mouth cover capable of airtightly closing the lower end opening of the manifold 209 .
  • the seal cap 219 is configured to contact the lower end of the manifold 209 from below in the vertical direction.
  • the seal cap 219 is made of metal such as SUS, and is shaped like a disc.
  • An O-ring 220 b is provided on the upper surface of the seal cap 219 as a sealing member that contacts the lower end of the manifold 209 .
  • a rotating mechanism 267 for rotating the boat 217 containing the wafers 200 is installed on the side of the seal cap 219 opposite to the processing chamber 201 .
  • a rotating shaft 255 of the rotating mechanism 267 passes through the seal cap 219 and is connected to the boat 217 .
  • the rotating mechanism 267 is configured to rotate the wafers 200 by rotating the boat 217 .
  • the seal cap 219 is configured to be vertically moved up and down by a boat elevator 115 as a lifting mechanism installed vertically outside the outer tube 203 .
  • the boat elevator 115 is configured to move the boat 217 into and out of the processing chamber 201 by raising and lowering the seal cap 219 .
  • the boat elevator 115 is configured as a transport device (transport mechanism, transport system) that transports the boat 217 and the wafers 200 housed in the boat 217 into and out of the processing chamber 201 .
  • the boat 217 is configured to arrange a plurality of wafers 200, for example, 25 to 200 wafers 200, in a horizontal posture and with their centers aligned with each other at intervals in the vertical direction.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • dummy substrates 218 made of a heat-resistant material such as quartz or SiC are supported horizontally in multiple stages. This configuration makes it difficult for heat from the heater 207 to be transmitted to the seal cap 219 side.
  • this embodiment is not limited to the form described above.
  • a heat insulating cylinder configured as a cylindrical member made of a heat-resistant material such as quartz or SiC may be provided.
  • a temperature sensor 263 as a temperature detector is installed in the inner tube 204.
  • the temperature inside the processing chamber 201 is configured to have a desired temperature distribution.
  • the temperature sensor 263 is L-shaped, like the nozzles 410 , 420 , 430 , and is provided along the inner wall of the inner tube 204 .
  • the controller 121 which is a control unit (control means), is configured as a computer comprising a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I/O port 121d. It is The RAM 121b, storage device 121c, and I/O port 121d are configured to exchange data with the CPU 121a via an internal bus.
  • An input/output device 122 configured as, for example, a touch panel or the like is connected to the controller 121 .
  • the storage device 121c is composed of, for example, a flash memory, HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe describing procedures and conditions of a semiconductor device manufacturing method (substrate processing method) described later, and the like are stored in a readable manner.
  • the process recipe is a combination that causes the controller 121 to execute each process (each step) in a method for manufacturing a semiconductor device (substrate processing method) to be described later, so that a predetermined result can be obtained, and functions as a program. do.
  • this process recipe, control program, etc. will be collectively referred to simply as a program.
  • program may include only a process recipe alone, may include only a control program alone, or may include a combination of a process recipe and a control program.
  • the RAM 121b is configured as a memory area (work area) in which programs and data read by the CPU 121a are temporarily held.
  • the I/O port 121d includes the above MFCs 312, 322, 332, 512, 522, 532, valves 314, 324, 334, 514, 524, 534, pressure sensor 245, APC valve 243, vacuum pump 246, heater 207, temperature It is connected to the sensor 263, the rotation mechanism 267, the boat elevator 115, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read recipes and the like from the storage device 121c in response to input of operation commands from the input/output device 122 and the like.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 312, 322, 332, 512, 522, and 532, opens and closes the valves 314, 324, 334, 514, 524, and 534, and controls the APC valves in accordance with the content of the read recipe.
  • the controller 121 is stored in an external storage device 123 (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the program described above can be configured by installing it in a computer.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are also collectively referred to simply as recording media.
  • the recording medium may include only the storage device 121c alone, or may include only the external storage device 123 alone, or may include both.
  • the program may be provided to the computer without using the external storage device 123, but using communication means such as the Internet or a dedicated line.
  • the substrate processing process semiconductor device manufacturing process
  • a Mo-containing film is formed as a metal-containing film on the first layer of.
  • wafer When the term “wafer” is used in this specification, it may mean “the wafer itself” or “a laminate of a wafer and a predetermined layer or film formed on its surface”. be.
  • wafer surface when the term “wafer surface” is used, it may mean “the surface of the wafer itself” or “the surface of a predetermined layer, film, etc. formed on the wafer”. be.
  • substrate in this specification is synonymous with the use of the term "wafer”.
  • the inside of the processing chamber 201 that is, the space in which the wafer 200 exists is evacuated by the vacuum pump 246 to a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 is kept in operation at least until the processing of the wafer 200 is completed. Further, the inside of the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the amount of power supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment). Heating in the processing chamber 201 by the heater 207 is continued at least until the processing of the wafer 200 is completed.
  • Step of forming first layer [First step] (Pretreatment step; gas supply containing group 15 element)
  • the valve 334 is opened to allow the gas containing the Group 15 element to flow through the gas supply pipe 330 .
  • the gas containing the Group 15 element is adjusted in flow rate by the MFC 332 , supplied into the processing chamber 201 through the gas supply hole 430 a of the nozzle 430 , and exhausted through the exhaust pipe 231 .
  • a gas containing a Group 15 element is supplied to the wafer 200 .
  • the valve 534 may be opened to flow an inert gas such as Ar gas into the gas supply pipe 530 .
  • the Ar gas flowing through the gas supply pipe 530 is adjusted in flow rate by the MFC 532 , supplied into the processing chamber 201 together with the gas containing the Group 15 element, and exhausted through the exhaust pipe 231 .
  • valves 512 and 524 are opened to allow Ar gas to flow through gas supply pipes 510 and 520 in order to prevent gas containing group 15 elements from entering nozzles 410 and 420 .
  • Ar gas is supplied into the processing chamber 201 through gas supply pipes 310 and 320 and nozzles 410 and 420 and exhausted through an exhaust pipe 231 .
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to within the range of 1 to 3990 Pa, for example 1000 Pa.
  • the supply flow rate of the gas containing the Group 15 element controlled by the MFC 332 is, for example, a flow rate within the range of 0.01 to 5.0 slm.
  • the supply flow rates of Ar gas controlled by the MFCs 512, 522, and 532 are, for example, within the range of 0.1 to 5.0 slm in order to suppress the entry of gases containing group 15 elements into the nozzles.
  • the temperature of the heater 207 is set such that the temperature of the wafer 200 is within the range of 300 to 650° C., for example.
  • the temperature of the wafer 200 is preferably set to a temperature equal to or lower than the temperature of the metal-containing film forming process described below.
  • the notation of a numerical range such as “1 to 3990 Pa” in the present disclosure means that the lower limit and the upper limit are included in the range. Therefore, for example, “1 to 3990 Pa” means “1 Pa or more and 3990 Pa or less”. The same applies to other numerical ranges.
  • At least one supply of diluent gas and reducing gas At least one supply of diluent gas and reducing gas
  • a timing to supply at least one of the diluent gas and the reducing gas while supplying the gas containing the Group 15 element As the diluent gas, a reducing gas can be used in addition to the inert gas.
  • a gas having characteristics of suppressing the state change and decomposition of the Group 15 element-containing material can be used.
  • these gases are supplied by opening the valve 324 and supplying the reducing gas, which is a diluent gas, to the gas supply pipe 320 .
  • the flow rate of the reducing gas is adjusted by the MFC 322 , supplied into the processing chamber 201 through the gas supply hole 420 a of the nozzle 420 , and exhausted through the exhaust pipe 231 .
  • a gas containing a Group 15 element and a reducing gas as a diluent gas are supplied to the wafer 200 .
  • the valve 524 may be opened at the same time to flow an inert gas such as Ar gas into the gas supply pipe 520 .
  • the Ar gas flowing through the gas supply pipe 520 is adjusted in flow rate by the MFC 522 , supplied into the processing chamber 201 together with the reducing gas, and exhausted through the exhaust pipe 231 . Further, when supplying only the inert gas as the diluent gas, the valve 324 may be closed and the inert gas may be supplied from another inert gas supply system.
  • a diluent gas may be supplied to adjust the concentration of the group 15 element-containing material supplied to the wafer 200 to a predetermined concentration.
  • the gas containing the Group 15 element may be a gas composed of a material containing the Group 15 element alone, or may be a mixture of a material containing the Group 15 element and a diluent gas. At least one of the flow rate of the gas containing the Group 15 element, the flow rate of the reducing gas, and the flow rate of the diluent gas is adjusted so as to achieve a predetermined concentration.
  • the flow rate of each gas is adjusted so that the concentration of the Group 15 element-containing material (the gas containing the Group 15 element) is, for example, in the range of 0.1 to 50%.
  • the concentration of the Group 15 element-containing material is, for example, in the range of 0.1 to 50%.
  • the first layer containing the Group 15 element can be formed.
  • the concentration of the group 15 element in the first layer increases, the concentration of the group 15 element in the metal film (Mo-containing film) increases, and the characteristics of the metal film may deteriorate.
  • the concentration of the group 15 element in the metal film increases, and the characteristics of the metal film may deteriorate.
  • the group 15 element in the first layer and other element for example, hydrogen
  • the gas flowing in the processing chamber 201 is a gas containing at least a Group 15 element.
  • the Group 15 element is at least one of phosphorus (P) and arsenic (As).
  • a gas containing a Group 15 element is a gas containing at least one of P and As.
  • the gas containing the Group 15 element can contain hydrogen (H).
  • gases containing P and H include trimethylphosphine ((CH 3 ) 3 P) gas, triethylphosphine ((C 2 H 5 ) 3 P) gas, tri-n-propylphosphine ((nC 3 H 7 ) 3 P) gas, triisopropylphosphine ((i-C 3 H 7 ) 3 P) gas, tri-n-butylphosphine ((n-C 4 H 9 ) 3 P) gas, triisobutylphosphine ((i- C 4 H 9 ) 3 P) gas, tri-tert-butylphosphine ((t-C 4 H 9 ) 3 P) gas, tert-butylphosphine (t-C 4 H 9 PH 2 ) gas, etc.
  • trimethylphosphine ((CH 3 ) 3 P) gas
  • triethylphosphine ((C 2 H 5 ) 3 P) gas tri-n-propylphosphine (
  • a first layer containing at least P is formed on the surface of the wafer 200 .
  • the first layer is a layer containing P and H. More preferably, the first layer is a layer containing molecules of the Group 15 element-containing material or molecules of the Group 15 element-containing material in a partially decomposed state.
  • the first layer formed when PH3 is used as the Group 15 element-containing material can contain P, H, and PHx.
  • X is an integer of 3 or less
  • PHx is at least one of PH, PH 2 and PH 3 , for example.
  • the temperature in the processing chamber 201 is preferably a temperature at which a part of the group 15 element-containing material can be decomposed.
  • the temperature in the processing chamber 201 is set within the range of 300°C to 650°C.
  • a gas containing a group element is removed from the processing chamber 201 . That is, the atmosphere in the processing chamber 201 is exhausted. By lowering the pressure in the processing chamber 201, the gas containing the Group 15 element remaining in the gas supply pipe 330 and the nozzle 430 can be exhausted. By exhausting the gas containing the group 15 element remaining in the gas supply pipe 330 and the nozzle 430, the gas containing the group 15 element remaining in the gas supply pipe 330 and the nozzle 430 in the step of forming the metal-containing film can be removed. can be suppressed from being supplied into the processing chamber 201 . At this time, the valves 514 , 524 , 534 may remain open to maintain the supply of Ar gas into the processing chamber 201 .
  • Ar gas can act as a purge gas in addition to acting as a gas intrusion suppression gas into each nozzle.
  • Ar gas is supplied as the purge gas, the effect of removing from the processing chamber 201 the unreacted gas remaining in the processing chamber 201 or the gas containing the group 15 element after contributing to the formation of the first layer can be enhanced. .
  • Step of forming metal-containing film [Third step] (metal-containing gas supply)
  • the valve 314 is opened to allow the metal-containing gas, which is the raw material gas, to flow into the gas supply pipe 310 .
  • the flow rate of the metal-containing gas is adjusted by the MFC 312 , supplied into the processing chamber 201 through the gas supply hole 410 a of the nozzle 410 , and exhausted through the exhaust pipe 231 .
  • a metal-containing gas is supplied to the wafer 200 .
  • the valve 514 is opened to flow an inert gas such as Ar gas into the gas supply pipe 510 .
  • the Ar gas flowing through the gas supply pipe 510 is adjusted in flow rate by the MFC 512 , supplied into the processing chamber 201 together with the metal-containing gas, and exhausted through the exhaust pipe 231 .
  • the valves 524 , 534 are opened to allow Ar gas to flow through the gas supply pipes 520 , 530 .
  • Ar gas is supplied into the processing chamber 201 through gas supply pipes 320 and 330 and nozzles 420 and 430 and exhausted through an exhaust pipe 231 .
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to within the range of 1 to 3990 Pa, for example 500 Pa.
  • the supply flow rate of the metal-containing gas controlled by the MFC 312 is, eg, 0.1 to 1.0 slm.
  • the supply flow rates of Ar gas controlled by the MFCs 512, 522, and 532 are, for example, within the range of 0.1 to 5.0 slm.
  • the temperature of the heater 207 is set such that the temperature of the wafer 200 is within the range of 300 to 650° C., for example.
  • a main gas (gas supplied to the wafer 200) flowing in the processing chamber 201 at this time is a metal-containing gas. That is, the metal-containing gas is supplied to the wafer 200 .
  • the metal-containing gas for example, a molybdenum (Mo)-containing gas containing molybdenum (Mo) as a metal element can be used.
  • the Mo-containing gas include molybdenum pentachloride (MoCl 5 ) gas containing Mo and chlorine (Cl), molybdenum dioxide dichloride (MoO 2 Cl 2 ) gas containing Mo, oxygen (O) and Cl, and tetrachloride gas.
  • Molybdenum oxide ( MoOCl4 ) can be used.
  • a Mo-containing layer as a metal-containing layer is formed on the wafer 200 (first layer).
  • the Mo-containing layer may be a Mo layer containing Cl or an adsorption layer of MoCl 5 .
  • MoO 2 Cl 2 or MoOCl 4
  • it may be a Mo layer containing Cl or O, or an adsorption layer of MoO 2 Cl 2 (or MoOCl 4 ), It may contain both of them.
  • the Mo layer is a layer containing P contained in the first layer.
  • the Mo-containing gas reacts with the molecules that make up the first layer, and the elements and molecules that make up the first layer escape from the first layer. release. Elements and molecules constituting the first layer can be incorporated into the Mo layer during this desorption process.
  • Ar gas can act as a purge gas in addition to acting as a gas for suppressing entry of gas into each nozzle.
  • Ar gas is supplied as the purge gas, the effect of removing from the processing chamber 201 the unreacted gas remaining in the processing chamber 201 or the metal-containing gas after contributing to the formation of the metal-containing layer can be enhanced.
  • [Fifth step] (reducing gas supply) After removing the residual gas in the processing chamber 201 , the valve 324 is opened to allow the reducing gas to flow through the gas supply pipe 320 .
  • the flow rate of the reducing gas is adjusted by the MFC 322 , supplied into the processing chamber 201 through the gas supply hole 420 a of the nozzle 420 , and exhausted through the exhaust pipe 231 .
  • a reducing gas is supplied to the wafer 200 .
  • the valves 514 , 524 , 534 are kept open to maintain the supply of Ar gas into the gas supply pipes 510 , 520 , 530 .
  • the Ar gas flowing through the gas supply pipes 510, 520, 530 is adjusted in flow rate by the MFCs 512, 522, 532, respectively.
  • the Ar gas flowing through the gas supply pipe 520 is supplied into the processing chamber 201 through the gas supply pipe 320 and the nozzle 420 together with the reducing gas, and is exhausted from the exhaust pipe 231 .
  • Ar gas flowing through the gas supply pipe 530 is supplied into the processing chamber 201 via the gas supply pipe 330 and the nozzle 430 and exhausted from the exhaust pipe 231 .
  • the Ar gas flowing through the gas supply pipe 510 is supplied into the processing chamber 201 through the gas supply pipe 310 and the nozzle 410, and is exhausted through the exhaust pipe 231, thereby preventing entry of the reducing gas into the nozzle 410. .
  • the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to within the range of 1 to 13300 Pa, for example 5000 Pa.
  • the supply flow rate of the reducing gas controlled by the MFC 322 is, for example, 1 to 50 slm, preferably 15 to 40 slm.
  • the supply flow rates of Ar gas controlled by the MFCs 512, 522, and 532 are, for example, within the range of 0.1 to 5.0 slm.
  • the temperature of the heater 207 is set such that the temperature of the wafer 200 is within the range of 300 to 650° C., for example.
  • the main gas flowing in the processing chamber 201 at this time is the reducing gas. That is, the reducing gas is supplied to the wafer 200 .
  • the reducing gas is, for example, a gas composed of hydrogen (H).
  • a gas composed of simple hydrogen is preferred.
  • hydrogen (H 2 ) gas and deuterium (D 2 ) can be used.
  • H 2 gas the case of using H 2 gas as the reducing gas will be described as an example.
  • a Mo-containing film having a predetermined thickness as a metal-containing film is formed on the wafer 200 by performing at least one cycle (predetermined number of times (n times)) in which the above-described third to sixth steps are performed in order. to form The above cycle is preferably repeated multiple times.
  • the Mo-containing film is a film containing molybdenum as a main component, and a layer containing Mo and P is formed on the wafer 200 side (first layer side) of the Mo-containing film.
  • the P concentration in the Mo-containing film is configured to decrease toward the surface of the Mo-containing film.
  • Ar gas is supplied into the processing chamber 201 from each of the gas supply pipes 510 , 520 , 530 and exhausted from the exhaust pipe 231 .
  • the Ar gas acts as a purge gas, thereby purging the inside of the processing chamber 201 with an inert gas, and removing gas remaining in the processing chamber 201 and reaction by-products from the inside of the processing chamber 201 (afterpurge).
  • the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure recovery).
  • the adhesion with the film (base film) formed on the surface of the wafer 200 can be improved. That is, the bonding strength between the first layer and the surface of the wafer 200 and the bonding strength between the first layer and the Mo-containing film can be increased.
  • the reactivity between the first layer and the Mo-containing gas as the metal-containing gas can be increased, and the deposition rate of the Mo-containing film can be improved. That is, the productivity (throughput) of semiconductor devices can be improved.
  • PH 3 gas is used as the gas containing the group 15 element
  • MoO 2 Cl 2 is used as the Mo-containing gas.
  • a layer containing PHx is formed as the first layer.
  • PHx and MoO 2 Cl 2 are likely to cause a chemical reaction, and react more easily on the surface of the wafer 200 than when the first layer is not formed, and the surface of the wafer 200 (on the first layer) , a layer containing Mo is formed, and molecules containing P are desorbed from the first layer.
  • Molecules containing P are, for example, polonium tetrachloride (POCl 4 ). Since such a reaction occurs, the deposition rate of the Mo-containing film can be improved. Note that this chemical reaction incorporates the Group 15 element into the Mo-containing film (the Group 15 element diffuses into the Mo-containing film). It can also be said that a part (surface) of the first layer is partially removed by the raw material gas (metal-containing gas). It can also be said that a part (surface) of the first layer is partially decomposed by the source gas.
  • POCl 4 polonium tetrachloride
  • the diluent gas has the effect of sweeping away the decomposition products. It is considered that the diluent gas suppresses the decomposition of the material containing the group 15 element by lowering the partial pressure of the gas containing the group 15 element. In addition, by lowering the partial pressure of the gas containing the group 15 element, the probability that the molecules of the gas containing the group 15 element collide with the member (for example, the support or the processing container) that is at the decomposition temperature or higher can be lowered. It is believed that this reduces the probability that the molecules of the gas containing the Group 15 element will receive thermal energy from the member at the decomposition temperature or higher and decompose.
  • the same effect can be obtained not only with the partial pressure of the Group 15 element-containing gas, but also with the total pressure.
  • a substrate processing apparatus having a heating unit around the processing container as shown in FIG. The environment is such that decomposition of the Group 15 element-containing material is likely to occur. Therefore, with such a configuration of the substrate processing apparatus, a more remarkable effect can be obtained.
  • the partial pressure of the gas containing the group 15 element in the processing chamber 201 is lower than the partial pressure of the inert gas as the diluent gas. By setting such a partial pressure relationship, it is possible to suppress the decomposition of the gas containing the Group 15 element.
  • (f) A state in which the temperature of the wafer 200 and members surrounding the wafer 200 (eg, at least one of a support and a processing container) is the decomposition temperature of the group 15 element-containing material during the formation of the first layer.
  • excessive decomposition of the group 15 element-containing material can be suppressed by supplying the reducing gas. That is, by supplying the reducing gas, an atmosphere that suppresses decomposition of the group 15 element-containing material can be created. It is believed that the reducing gas itself has the same effect as the diluent gas, and also has the effect of suppressing the thermal decomposition of the group 15 element-containing material.
  • both the gas containing the group 15 element and the reducing gas contain the same element.
  • Such elements include, for example, hydrogen (H).
  • Specific materials include the materials described above.
  • the partial pressure of the gas containing the Group 15 element in the processing chamber 201 is lower than the partial pressure of the reducing gas. By setting such a partial pressure relationship, it is possible to suppress the decomposition of the gas containing the Group 15 element. In order to achieve such a partial pressure, for example, as shown in FIG. 4, the flow rate of the reducing gas should be made higher than the flow rate of the gas containing the Group 15 element.
  • At least one or more effects of (a), (b), (c), and (d) can be obtained by forming the metal film (Mo-containing film) in an atmosphere that suppresses the decomposition of the first layer.
  • the atmosphere that suppresses decomposition of the first layer will be described in detail in a modified example.
  • the supply flow rate of the reducing gas in the reducing gas supply step is supplied during the supply of the gas containing the Group 15 element, which is the first step. It is made larger than the supply flow rate of the reducing gas as the diluent gas.
  • the temperature of the wafer 200 is set so as to promote the reaction between the Mo-containing gas adsorbed on the wafer 200 and the reducing gas.
  • the decomposition of the first layer is, for example, thermal decomposition. Focusing on PH 3 in the first layer, this decomposition reaction is, for example, a reaction of 2PH 3 ⁇ 2P+3H 2 .
  • Such a reaction can be suppressed by increasing the flow rate of the reducing gas in the fifth step.
  • the flow rate of the reducing gas in the fifth step is preferably set higher than the flow rate of the Mo-containing gas in the third step.
  • by suppressing the decomposition of the first layer it is possible to suppress excessive incorporation of elements (for example, P) contained in the first layer into the Mo-containing film.
  • the electrical properties (for example, resistivity) of the Mo-containing film may deteriorate.
  • the pressure inside the processing chamber 201 in the fifth step is made higher than the pressure in the processing chamber 201 in the first step.
  • Such a pressure can suppress decomposition of the first layer that occurs in the step of forming the metal-containing film, as in Modification 1.
  • the pressure in the processing chamber 201 in the first step may be higher than the pressure in the processing chamber 201 in the third step.
  • the pressure inside the processing chamber 201 in the third step is made lower than the pressure in the processing chamber 201 in the first step.
  • the pressure in the processing chamber 201 in the third step is made lower than the pressure in the processing chamber 201 in the fifth step.
  • the amount of reaction between the first layer and the metal-containing gas in the third step can be made smaller than the amount of reaction between the first layer and the reducing gas in the fifth step. . That is, decomposition of the first layer by the metal-containing gas can be suppressed in the third step. Further, in the third step, the metal-containing gas causes the surface of the first layer to be covered with reduction by the metal element, and the reducing gas supplied in the fifth step cannot reach the surface of the first layer. can be suppressed. That is, in the fifth step, decomposition of the surface of the first layer can be suppressed by the reducing gas.
  • Modification 3 In this modification, as shown in FIG. 7, in the first step, the supply of the reducing gas is started before the supply of the gas containing the Group 15 element is started, and the Group 15 element is removed during the supply of the reducing gas.
  • the supply of gas containing the Group 15 element is started before the supply of the gas containing the Group 15 element is started, and the Group 15 element is removed during the supply of the reducing gas.
  • Decomposition of the gas containing the group 15 element which may occur immediately after the supply of the gas containing the group 15 element, by starting the supply of the reducing gas before starting the supply of the gas containing the group 15 element reaction can be suppressed.
  • the pressure in the processing chamber 201 it is preferable to increase the pressure in the processing chamber 201 to a predetermined pressure with a reducing gas.
  • the molecules of the reducing gas can be dispersed in the processing chamber 201. can improve the establishment of contact with Thereby, the decomposition reaction of the group 15 element-containing material can be suppressed.
  • the decomposition reaction of the gas containing the group 15 element remaining in the processing chamber 201 can be suppressed.
  • the group 15 simple substance produced by the decomposition of the material containing the group 15 element on the surface of the first layer formed in the first step can be suppressed from being exposed on the surface of the wafer 200 (first layer).
  • the surface of the first layer is preferably in a state in which the group 15 element-containing material is adsorbed.
  • the supply of the reducing gas is started before the supply of the gas containing the Group 15 element is started, and the supply of the gas containing the Group 15 element is stopped during the supply of the reducing gas.
  • the supply of the reducing gas can go to only one side. You can get the same effect by doing only one. By doing both, you get the benefits of both.
  • this modification includes a process of performing the third to sixth processes X times and a process of performing Y times.
  • the supply time of the reducing gas in the fifth step (the step of supplying the reducing gas) in the steps performed X times is set longer than the supply time of the reducing gas in the fifth step in the steps performed Y times.
  • MoO2Cl2 gas is used as metal containing gas (Mo containing gas)
  • Mo containing gas metal containing gas
  • the reducing gas used in the first step and the reducing gas used in the fifth step are the same type of gas, but the present disclosure is limited to this. not something.
  • Gases having different molecular structures may be used for the reducing gas used in the first step and the reducing gas used in the fifth step.
  • H 2 gas may be used in the first step
  • D 2 gas or activated H 2 gas may be used in the fifth step.
  • at least one of PH3 gas, silane-based gas, and borane-based gas, which will be described later, may be used.
  • the reducing gas used in the first step is a gas having at least one of the properties of suppressing the decomposition of the Group 15 element-containing material and the property of becoming a carrier for the Group 15 element-containing material. Also good. Further, the reducing gas used in the fifth step may be a gas having at least one of the characteristics of reducing the Mo-containing gas as the raw material gas and the characteristics of suppressing the decomposition of the first layer.
  • the gas containing P and H as the gas containing the Group 15 element has been described as an example, but the present disclosure is not limited to this, and for example monosilane (SiH 4 ) silane-based gases such as disilane (Si 2 H 6 ) gas, trisilane (Si 3 H 8 ) gas, tetrasilane (Si 4 H 10 ), monoborane (BH 3 ), diborane (B 2 H 6 ), etc.
  • Other reducing gases such as borane-based gases can be used.
  • a gas containing P is preferable as the gas containing a Group 15 element. Gases containing P and H are more preferred.
  • the gas containing the Mo element is used as the raw material gas (metal element-containing gas) has been described as an example, but the present disclosure is not limited to this. For example, it may be applicable to processing using a gas containing at least one element of ruthenium (Ru) element and tungsten (W) element as source gas.
  • a substrate processing apparatus which is a batch-type vertical apparatus that processes a plurality of substrates at once.
  • the present invention can be suitably applied to film formation using a single substrate processing apparatus for processing one or several substrates. Even when these substrate processing apparatuses are used, film formation can be performed under the same sequence and processing conditions as in the above embodiments.
  • the process recipes (programs describing processing procedures, processing conditions, etc.) used to form these various thin films include the contents of substrate processing (type of thin film to be formed, composition ratio, film quality, film thickness, processing procedure, processing, etc.). conditions, etc.), it is preferable to prepare each individually (preparing a plurality of them). Then, when starting substrate processing, it is preferable to appropriately select an appropriate process recipe from among a plurality of process recipes according to the content of substrate processing.
  • the substrate processing apparatus is provided with a plurality of process recipes individually prepared according to the contents of substrate processing via an electric communication line or a recording medium (external storage device 123) in which the process recipes are recorded. It is preferable to store (install) in advance in the storage device 121c.
  • the CPU 121a provided in the substrate processing apparatus appropriately selects an appropriate process recipe from a plurality of process recipes stored in the storage device 121c according to the content of the substrate processing. is preferred.
  • thin films having various film types, composition ratios, film qualities, and film thicknesses can be generally formed with good reproducibility using a single substrate processing apparatus.
  • the present disclosure can also be realized, for example, by changing the process recipe of an existing substrate processing apparatus.
  • the process recipe according to the present disclosure can be installed in an existing substrate processing apparatus via an electric communication line or a recording medium in which the process recipe is recorded. It is also possible to operate the equipment and change the process recipe itself to the process recipe according to the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

金属系膜の膜特性を向上させることができる。 (a)基板に対して、第15族元素を含むガスを供給し、基板の表面に第15族元素を含む第1層を形成する工程と、(b)基板に対して、Mo元素を含むガスを供給する工程と、(c)基板に対して、還元ガスを供給する工程と、(d)第1層の分解を抑制する雰囲気で、(b)と(c)とを所定回数行い、第1層の上に、Mo元素を含む膜を形成する工程と、を有する。

Description

半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体
 本開示は、半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体に関する。
 3次元構造を持つNAND型フラッシュメモリやDRAMのワードラインとして例えば低抵抗なタングステン(W)膜が用いられている。また、このW膜と絶縁膜との間にバリア膜として例えば、窒化チタン(TiN)膜が用いられることがある(例えば特許文献1及び特許文献2参照)。
特開2011-66263号公報 国際公開第2019/058608号パンフレット
 しかしながら、3次元構造のNAND型フラッシュメモリの高層化に伴ってエッチングが困難となっているために、ワード線の薄膜化が課題となっている。
 この課題を解決するために、上述したようなバリア膜を形成せずに膜特性の良い金属系膜の成膜方法が求められている。
 本開示は、金属系膜の膜特性を向上させることが可能な技術を提供することを目的とする。
 本開示の一態様によれば、
(a)基板に対して、第15族元素を含むガスを供給し、基板の表面に第15族元素を含む第1層を形成する工程と、
(b)基板に対して、Mo元素を含むガスを供給する工程と、
(c)基板に対して、還元ガスを供給する工程と、
(d)第1層の分解を抑制する雰囲気で、(b)と(c)とを所定回数行い、第1層の上に、Mo元素を含む膜を形成する工程と、
を有する技術が提供される。
 本開示の一態様によれば、基板上に形成される金属系膜の膜特性を向上させることが可能となる。
本開示の一実施形態における基板処理装置の縦型処理炉の概略を示す縦断面図である。 図1におけるA-A線概略横断面図である。 本開示の一実施形態における基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の一実施形態における基板処理工程を示す図である。 本開示の一実施形態における基板処理工程の変形例を示す図である。 本開示の一実施形態における基板処理工程の変形例を示す図である。 本開示の一実施形態における基板処理工程の変形例を示す図である。 本開示の一実施形態における基板処理工程の変形例を示す図である。
 以下、図1~4を参照しながら説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
(1)基板処理装置の構成
 基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応管(反応容器、処理容器)を構成するアウタチューブ203が配設されている。アウタチューブ203は、例えば石英(SiO)、炭化シリコン(SiC)などの耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。アウタチューブ203の下方には、アウタチューブ203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)などの金属で構成され、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部と、アウタチューブ203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、アウタチューブ203は垂直に据え付けられた状態となる。
 アウタチューブ203の内側には、反応容器を構成するインナチューブ204が配設されている。インナチューブ204は、例えば石英、SiCなどの耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。主に、アウタチューブ203と、インナチューブ204と、マニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部(インナチューブ204の内側)には処理室201が形成されている。
 処理室201は、基板としてのウエハ200を、支持具としてのボート217によって水平姿勢で鉛直方向に多段に配列した状態で収容可能に構成されている。
 処理室201内には、ノズル410,420,430がマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430には、ガス供給管310,320,330が、それぞれ接続されている。ただし、本実施形態の処理炉202は上述の形態に限定されない。
 ガス供給管310,320,330には上流側から順に流量制御器(流量制御部)であるマスフローコントローラ(MFC)312,322,332がそれぞれ設けられている。また、ガス供給管310,320,330には、開閉弁であるバルブ314,324,334がそれぞれ設けられている。ガス供給管310,320,330のバルブ314,324,334の下流側には、不活性ガスを供給するガス供給管510,520,530がそれぞれ接続されている。ガス供給管510,520,530には、上流側から順に、流量制御器(流量制御部)であるMFC512,522,532及び開閉弁であるバルブ514,524,534がそれぞれ設けられている。
 ガス供給管310,320,330の先端部にはノズル410,420,430がそれぞれ連結接続されている。ノズル410,420,430は、L字型のノズルとして構成されており、その水平部はマニホールド209の側壁及びインナチューブ204を貫通するように設けられている。ノズル410,420,430の垂直部は、インナチューブ204の径方向外向きに突出し、かつ鉛直方向に延在するように形成されているチャンネル形状(溝形状)の予備室201aの内部に設けられており、予備室201a内にてインナチューブ204の内壁に沿って上方(ウエハ200の配列方向上方)に向かって設けられている。
 ノズル410,420,430は、処理室201の下部領域から処理室201の上部領域まで延在するように設けられており、ウエハ200と対向する位置にそれぞれ複数のガス供給孔410a,420a,430aが設けられている。これにより、ノズル410,420,430のガス供給孔410a,420a,430aからそれぞれウエハ200に処理ガスを供給する。このガス供給孔410a,420a,430aは、インナチューブ204の下部から上部にわたって複数設けられ、それぞれ同一の開口面積を有し、さらに同一の開口ピッチで設けられている。ただし、ガス供給孔410a,420a,430aは上述の形態に限定されない。例えば、インナチューブ204の下部から上部に向かって開口面積を徐々に大きくしてもよい。これにより、ガス供給孔410a,420a,430aから供給されるガスの流量をより均一化することが可能となる。
 ノズル410,420,430のガス供給孔410a,420a,430aは、後述するボート217の下部から上部までの高さの位置に複数設けられている。そのため、ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給された処理ガスは、ボート217の下部から上部までに収容されたウエハ200の全域に供給される。ノズル410,420,430は、処理室201の下部領域から上部領域まで延在するように設けられていればよいが、ボート217の天井付近まで延在するように設けられていることが好ましい。
 ガス供給管310からは、処理ガスとして、金属元素を含む原料ガス(金属含有ガス)が、MFC312、バルブ314、ノズル410を介して処理室201内に供給される。
 ガス供給管320からは、処理ガスとして、還元ガスが、MFC322、バルブ324、ノズル420を介して処理室201内に供給される。
 ガス供給管330からは、処理ガスとして、還元ガスとは異なる第15族元素を含むガスが、MFC332、バルブ334、ノズル430を介して処理室201内に供給される。
 ガス供給管510,520,530からは、不活性ガスとして、例えばアルゴン(Ar)ガスが、それぞれMFC512,522,532、バルブ514,524,534、ノズル410,420,430を介して処理室201内に供給される。以下、不活性ガスとしてArガスを用いる例について説明するが、不活性ガスとしては、Arガス以外に、例えば、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いてもよい。
 主に、ガス供給管310から原料ガスを流す場合、主に、ガス供給管310、MFC312、バルブ314により原料ガス供給系が構成されるが、ノズル410を原料ガス供給系に含めて考えてもよい。原料ガス供給系を金属含有ガス供給系と称することもできる。また、ガス供給管320から還元ガスを流す場合、主に、ガス供給管320、MFC322、バルブ324により還元ガス供給系が構成されるが、ノズル420を還元ガス供給系に含めて考えてもよい。また、ガス供給管330から第15族元素を含むガスを流す場合、主に、ガス供給管330、MFC332、バルブ334により第15族元素を含むガス供給系が構成されるが、ノズル430を第15族元素を含むガス供給系に含めて考えてもよい。また、金属含有ガス供給系と還元ガス供給系と第15族元素を含むガス供給系を処理ガス供給系と称することもできる。また、ノズル410,420,430を処理ガス供給系に含めて考えてもよい。また、主に、ガス供給管510,520,530、MFC512,522,532、バルブ514,524,534により不活性ガス供給系が構成される。
 本実施形態におけるガス供給の方法は、インナチューブ204の内壁と、複数枚のウエハ200の端部とで定義される円環状の縦長の空間内の予備室201a内に配置したノズル410,420,430を経由してガスを搬送している。そして、ノズル410,420,430のウエハと対向する位置に設けられた複数のガス供給孔410a,420a,430aからインナチューブ204内にガスを噴出させている。より詳細には、ノズル410のガス供給孔410a、ノズル420のガス供給孔420a、ノズル430のガス供給孔430aにより、ウエハ200の表面と平行方向に向かって原料ガス等を噴出させている。
 排気孔(排気口)204aは、インナチューブ204の側壁であってノズル410,420,430に対向した位置に形成された貫通孔であり、例えば、鉛直方向に細長く開設されたスリット状の貫通孔である。ノズル410,420,430のガス供給孔410a,420a,430aから処理室201内に供給され、ウエハ200の表面上を流れたガスは、排気孔204aを介してインナチューブ204とアウタチューブ203との間に形成された隙間(排気路206内)に流れる。そして、排気路206内へと流れたガスは、排気管231内に流れ、処理炉202外へと排出される。
 排気孔204aは、複数のウエハ200と対向する位置に設けられており、ガス供給孔410a,420a,430aから処理室201内のウエハ200の近傍に供給されたガスは、水平方向に向かって流れた後、排気孔204aを介して排気路206内へと流れる。排気孔204aはスリット状の貫通孔として構成される場合に限らず、複数個の孔により構成されていてもよい。
 マニホールド209には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、上流側から順に、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245、APC(Auto Pressure Controller)バルブ243、真空排気装置としての真空ポンプ246が接続されている。APCバルブ243は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気及び真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができる。主に、排気孔204a、排気路206、排気管231、APCバルブ243及び圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に鉛直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属で構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219における処理室201の反対側には、ウエハ200を収容するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、アウタチューブ203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって鉛直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入及び搬出することが可能なように構成されている。ボートエレベータ115は、ボート217及びボート217に収容されたウエハ200を、処理室201内外に搬送する搬送装置(搬送機構、搬送系)として構成されている。
 ボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で鉛直方向に間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料で構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料で構成されるダミー基板218が水平姿勢で多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。ただし、本実施形態は上述の形態に限定されない。例えば、ボート217の下部にダミー基板218を設けずに、石英やSiC等の耐熱性材料で構成される筒状の部材として構成された断熱筒を設けてもよい。
 図2に示すように、インナチューブ204内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電量を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル410,420,430と同様にL字型に構成されており、インナチューブ204の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バスを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラム、後述する半導体装置の製造方法(基板処理方法)の手順や条件などが記載されたプロセスレシピなどが、読み出し可能に格納されている。プロセスレシピは、後述する半導体装置の製造方法(基板処理方法)における各工程(各ステップ)をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピ、制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、プロセスレシピ及び制御プログラムの組み合わせを含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC312,322,332,512,522,532、バルブ314,324,334,514,524,534、圧力センサ245、APCバルブ243、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピ等を読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC312,322,332,512,522,532による各種ガスの流量調整動作、バルブ314,324,334,514,524,534の開閉動作、APCバルブ243の開閉動作及びAPCバルブ243による圧力センサ245に基づく圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動及び停止、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、ボート217へのウエハ200の収容動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に、例えば3DNANDのコントロールゲート電極として用いられるモリブデン(Mo)を含有するMo含有膜を形成する工程の一例について、図4を用いて説明する。Mo含有膜を形成する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
 本実施形態による基板処理工程(半導体装置の製造工程)では、
(a)ウエハ200に対して、第15族元素を含むガスを供給し、ウエハ200の表面に第15族元素を含む第1層を形成する工程と、
(b)ウエハ200に対して、Mo元素を含むガスを供給する工程と、
(c)ウエハ200に対して、還元ガスを供給する工程と、
(d)第1層の分解を抑制する雰囲気で、(b)と(c)とを所定回数行い、第1層の上に、Mo元素を含む膜を形成する工程と、を行い、ウエハ200の第1層の上に金属含有膜としてのMo含有膜を形成する。
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体」を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面」を意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハ搬入)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて、処理室201内に搬入(ボートロード)され、処理容器に収容される。この状態で、シールキャップ219はOリング220を介してアウタチューブ203の下端開口を閉塞した状態となる。
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
[第1層の形成工程]
[第1の工程]
(Pre treatment工程;第15族元素を含むガス供給)
 バルブ334を開き、ガス供給管330内に第15族元素を含むガスを流す。第15族元素を含むガスは、MFC332により流量調整され、ノズル430のガス供給孔430aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対して第15族元素を含むガスが供給される。なお、このときバルブ534を開き、ガス供給管530内にArガス等の不活性ガスを流しても良い。ガス供給管530内を流れたArガスは、MFC532により流量調整され、第15族元素を含むガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル410,420内へ第15族元素を含むガスの進入を防止するために、バルブ512、524を開き、ガス供給管510,520内にArガスを流す。Arガスは、ガス供給管310,320、ノズル410,420を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば、1~3990Paの範囲内の圧力であって、例えば、1000Paとする。MFC332で制御する第15族元素を含むガスの供給流量は、例えば、0.01~5.0slmの範囲内の流量とする。MFC512,522,532で制御するArガスの供給流量は、各ノズルへの第15族元素を含むガスの進入抑制のため、それぞれ例えば0.1~5.0slmの範囲内の流量とする。このときヒータ207の温度は、ウエハ200の温度が、例えば300~650℃の範囲内の温度となるような温度に設定する。ウエハ200の温度は、好ましくは、後述の金属含有膜の形成工程の温度以下の温度となるように設定する。なお、本開示における「1~3990Pa」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「1~3990Pa」とは「1Pa以上3990Pa以下」を意味する。他の数値範囲についても同様である。
 (希釈ガスと還元ガスの少なくとも1つ以上の供給)
 また、第15族元素を含むガスの供給を供給している間、希釈ガスと還元ガスの少なくとも1つ以上を供給するタイミングを有する。ここで、希釈ガスは、不活性ガスの他、還元ガスを用いることができる。好ましくは、第15族元素含有材料の状態変化や、分解を抑制する特性を有するガスを用いることができる。このようなガスを処理室201内に供給することにより、処理室201の中を、第15族元素を含むガスの状態変化や、分解を抑制する雰囲気とする。これらのガスの供給は、具体的には、バルブ324を開き、ガス供給管320に、希釈ガスである還元ガスを供給する。還元ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対して、第15族元素を含むガスと希釈ガスとしての還元ガスが供給される。なお、この時同時にバルブ524を開き、ガス供給管520内にArガス等の不活性ガスを流しても良い。ガス供給管520内を流れるArガスは、MFC522により流量調整され、還元ガスと一緒に処理室201内に供給され、排気管231から排気される。また、希釈ガスとして不活性ガスだけを供給する場合には、バルブ324を閉じて他の不活性ガス供給系から不活性ガスを供給すれば良い。
(第15族元素含有材料の濃度調整)
 なお、ウエハ200に供給される第15族元素含有材料の濃度を所定の濃度に調整するために、希釈ガスを供給しても良い。第15族元素を含むガスは、第15族元素含有材料の単体で構成されるガスである場合と、第15族元素含有材料のガスと希釈ガスが混合している場合があり、それぞれの場合に応じて、所定の濃度となるように第15族元素を含むガスの流量、還元ガスの流量、希釈ガスの流量、の少なくとも1つ以上が調整される。ここで、第15族元素含有材料(第15族元素を含むガス)の濃度は、例えば、0.1~50%の範囲となるように、各ガスの流量が調整される。このような濃度のガスを供給することにより、第15族元素を含む第1層を形成することができる。また、第1層の上に形成される金属膜(Mo含有膜)中の第15族元素濃度が高くなることを抑制することができる。なお、濃度を0.1%未満とすると、第15族元素を含む第1層が形成され難く、第1層の形成時間が増加し、製造スループットが低下する可能性がある。また、濃度が50%を超えると第1層中の第15族元素濃度が高くなり、金属膜(Mo含有膜)中の第15族元素濃度が高くなり、金属膜の特性が悪化する可能性がある。また、50%を超える濃度のガスを供給することにより、処理室201内で生成される第15族元素含有材料の分解生成物の量が多くなり、第1層中の第15族元素と他の元素(例えば、水素)との比率が所定の比率にならず、本開示に記載の効果が得られ難くなる可能性がある。
 このとき、処理室201内に流しているガスは、少なくとも第15族元素を含むガスである。ここで、第15族元素は、リン(P)、ヒ素(As)の少なくとも1つ以上である。第15族元素を含むガスは、PとAsの少なくとも1つ以上を含むガスである。また、好ましくは、第15族元素を含むガスは、水素(H)を含むことができる。このようなPとHを含むガスとしては、例えば、トリメチルホスフィン((CHP)ガス、トリエチルホスフィン((CP)ガス、トリノルマルプロピルホスフィン((n-CP)ガス、トリイソプロピルホスフィン((i-CP)ガス、トリノルマルブチルホスフィン((n-CP)ガス、トリイソブチルホスフィン((i-CP)ガス、トリターシャリーブチルホスフィン((t-CP)ガス、ターシャリーブチルホスフィン(t-CPH)ガス等のアルキルホスフィン系ガスや、アミノホスフィン(NHPH)ガス、トリス(ジメチルアミノ)ホスフィン([(CHN)]P)ガス、ビス(ジメチルアミノ)ホスフィン(PH[N(CH])ガス、ビス(ジメチルアミノ)クロロホスフィン([(CHN]PCl)ガス等のアミノホスフィン系ガスや、ビス(ジメチルアミノ)メチルホスフィン(CHP[N(CH])ガス、ジメチルアミノジメチルホスフィン((CHPN(CH)ガス、ジエチルアミノジエチルホスフィン((CPN(C)ガス等のホスフィナスアミド系ガスや、ホスフィン(PH)ガス、ジホスフィン(P)ガス等のホスフィン系ガスや、トリビニルホスフィン((CH=CH)P)ガス等を用いることができる。なお、第15族元素含有材料は、これらの材料の少なくとも1つ以上であり、第15族元素含有ガスは、第15族元素含有材料の単独のガスである場合と、第15族元素含有材料と希釈ガスの混合ガスの場合がある。
 このようなガスをウエハ200に供給することで、ウエハ200の表面に少なくともPを含む第1層を形成する。好ましくは、第1層は、PとHを含む層である。さらに好ましくは、第1層は、第15族元素含有材料の分子や、第15族元素含有材料の分子が一部分解した状態の物を含む層である。例えば、第15族元素含有材料として、PHを用いた場合に形成される第1層は、P,H,PHxを含み得る。ここでXは、3以下の整数であり、PHxは、例えば、PH、PH、PHの少なくとも1つ以上である。なお、このような物質を含む第1層を形成するため、処理室201内の温度は、第15族元素含有材料の一部が分解可能な温度することが好ましい。例えば、第15族元素含有材料として、PHを用いた場合、処理室201内の温度は、300℃~650℃の範囲の温度とする。
[第2の工程]
(残留ガス除去)
 第15族元素を含むガスの供給を開始してから所定時間経過後であって例え1~600秒後に、ガス供給管330のバルブ334を閉じて、第15族元素を含むガスの供給を停止する。つまり、第15族元素を含むガスをウエハ200に対して供給する時間は、例えば1~600秒の範囲内の時間とする。このとき排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1層の形成に寄与した後の第15族元素を含むガスを処理室201内から排除する。すなわち、処理室201内の雰囲気を排気する。処理室201内の圧力を下げることにより、ガス供給管330やノズル430内に残留する第15族元素を含むガスを排気することができる。ガス供給管330やノズル430内に残留する第15族元素を含むガスを排気することで、金属含有膜の形成工程で、ガス供給管330やノズル430内に残留した第15族元素を含むガスが処理室201内に供給されることを抑制できる。なお、このときバルブ514,524,534は開いたままとして、Arガスの処理室201内への供給を維持してもよい。Arガスは各ノズルへのガス進入抑制ガスとして作用する他、パージガスとして作用させることができる。パージガスとしてArガスを供給する場合、処理室201内に残留する未反応もしくは第1層の形成に寄与した後の第15族元素を含むガスを処理室201内から排除する効果を高めることができる。
[金属含有膜の形成工程]
[第3の工程]
(金属含有ガス供給)
 次に、バルブ314を開き、ガス供給管310内に原料ガスである金属含有ガスを流す。金属含有ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対して金属含有ガスが供給される。このとき同時にバルブ514を開き、ガス供給管510内にArガス等の不活性ガスを流す。ガス供給管510内を流れたArガスは、MFC512により流量調整され、金属含有ガスと一緒に処理室201内に供給され、排気管231から排気される。このとき、ノズル420,430内への金属含有ガスの侵入を防止するために、バルブ524,534を開き、ガス供給管520,530内にArガスを流す。Arガスは、ガス供給管320,330、ノズル420,430を介して処理室201内に供給され、排気管231から排気される。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~3990Paの範囲内の圧力であって、例えば500Paとする。MFC312で制御する金属含有ガスの供給流量は、例えば0.1~1.0slmとする。MFC512,522,532で制御するArガスの供給流量は、それぞれ例えば0.1~5.0slmの範囲内の流量とする。このときヒータ207の温度は、ウエハ200の温度が、例えば300~650℃の範囲内の温度となるような温度に設定する。
 このとき処理室201内に流している主なガス(ウエハ200に供給されるガス)は、金属含有ガスである。すなわち、ウエハ200に対して金属含有ガスが供給されることとなる。ここで、金属含有ガスとしては、例えば金属元素としてのモリブデン(Mo)を含むモリブデン(Mo)含有ガスを用いることができる。Mo含有ガスとしては、Moと塩素(Cl)を含む例えば、五塩化モリブデン(MoCl)ガス、Moと酸素(O)とClを含む例えば二酸化二塩化モリブデン(MoOCl)ガス、四塩化酸化モリブデン(MoOCl)を用いることができる。Mo含有ガスの供給により、ウエハ200(第1層)上に金属含有層としてのMo含有層が形成される。Mo含有層は、MoClを用いた場合には、Clを含むMo層であっても良いしMoClの吸着層であっても良い。また、MoOCl(又はMoOCl)を用いる場合には、ClやOを含むMo層であってもよいし、MoOCl(又はMoOCl)の吸着層であってもよいし、それらの両方を含んでいてもよい。なお、好ましくは、Mo層は、第1層中に含まれていたPを含む層である。例えば、第1層にP,H、PHxが含まれている場合、Mo含有ガスと、第1層を構成する分子とが反応し、第1層を構成する元素や分子が第1層から脱離する。この脱離の過程でMo層中に第1層を構成する元素や分子を取り込むことができる。
[第4の工程]
(残留ガス除去)
 金属含有ガスの供給を開始してから所定時間経過後であって例え1~60秒後に、ガス供給管310のバルブ314を閉じて、金属含有ガスの供給を停止する。つまり、金属含有ガスをウエハ200に対して供給する時間は、例えば1~60秒の範囲内の時間とする。このとき排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは金属含有層形成に寄与した後の金属含有ガスを処理室201内から排除する。すなわち、処理室201内の雰囲気を排気する。このときバルブ514,524,534は開いたままとして、Arガスの処理室201内への供給を維持してもよい。Arガスは各ノズルへのガスの進入抑制ガスとして作用する他、パージガスとして作用させることができる。パージガスとしてArガスを供給する場合、処理室201内に残留する未反応もしくは金属含有層形成に寄与した後の金属含有ガスを処理室201内から排除する効果を高めることができる。
[第5の工程]
(還元ガス供給)
 処理室201内の残留ガスを除去した後、バルブ324を開き、ガス供給管320内に、還元ガスを流す。還元ガスは、MFC322により流量調整され、ノズル420のガス供給孔420aから処理室201内に供給され、排気管231から排気される。このときウエハ200に対して、還元ガスが供給される。このときバルブ514,524,534は開いたままとしてガス供給管510,520,530内へのArガスの供給を維持する。ガス供給管510,520,530内を流れたArガスは、MFC512,522,532によりそれぞれ流量調整される。ガス供給管520内は流れたArガスは還元ガスと一緒にガス供給管320、ノズル420を介して処理室201内に供給され、排気管231から排気される。またガス供給管530内を流れたArガスはガス供給管330、ノズル430を介して処理室201内に供給され、排気管231から排気される。またガス供給管510内を流れたArガスは、ガス供給管310、ノズル410を介して処理室201内に供給され、排気管231から排気され、ノズル410内への還元ガスの進入を防止する。
 このときAPCバルブ243を調整して、処理室201内の圧力を、例えば1~13300Paの範囲内の圧力であって、例えば5000Paとする。MFC322で制御する還元ガスの供給流量は、例えば1~50slm、好ましくは15~40slmの範囲内の流量とする。MFC512,522,532で制御するArガスの供給流量は、それぞれ例えば0.1~5.0slmの範囲内の流量とする。このときヒータ207の温度は、ウエハ200の温度が、例えば300~650℃の範囲内の温度となるような温度に設定する。
 このとき処理室201内に流している主なガスは、還元ガスである。すなわちウエハ200に対して還元ガスが供給されることとなる。
 ここで、還元ガスとしては、例えば水素(H)で構成されるガスである。好ましくは、水素単体で構成されるガスである。具体的には、水素(H)ガス、重水素(D)を用いることができる。以下では、還元ガスとしてHガスを用いた場合を例として説明する。
[第6の工程]
(残留ガス除去)
 還元ガスの供給を開始してから所定時間経過後であって例えば1~1200秒後に、ガス供給管320のバルブ324を閉じて、還元ガスの供給を停止する。そして、上述した第2の工程と同様の処理手順により、処理室201内に残留する未反応もしくは金属含有層の形成に寄与した後の還元ガスや反応副生成物を処理室201内から排除する。すなわち、処理室201内の雰囲気を排気する。
(所定回数実施)
 上記した第3の工程~第6の工程を順に行うサイクルを少なくとも1回以上(所定回数(n回))行うことにより、ウエハ200上に、所定の厚さの金属含有膜としてのMo含有膜を形成する。上述のサイクルは、複数回繰り返すのが好ましい。なお、Mo含有膜は、モリブデンを主成分とする膜であり、Mo含有膜のウエハ200側(第1層側)には、MoとPを含む層が形成される。好ましくは、Mo含有膜中のP濃度は、Mo含有膜の表面に向けて、小さくなるように構成される。
(アフターパージおよび大気圧復帰)
 ガス供給管510,520,530のそれぞれからArガスを処理室201内へ供給し、排気管231から排気する。Arガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ウエハ搬出)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、アウタチューブ203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態でアウタチューブ203の下端からアウタチューブ203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(3)本実施形態による効果
 本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)ウエハ200の表面とMo含有膜との間に、第1層を形成することにより、Mo含有膜と、ウエハ200との密着性を向上させることができる。これにより、ウエハ200の表面にバリア膜を形成せずに、膜特性の良い金属系膜を形成することができる。
(b)第1層に含まれる第15族元素をMo含有膜に含ませることにより、ウエハ200の表面に形成された膜(下地膜)との密着性を向上させることができる。すなわち、第1層とウエハ200の表面の結合力と、第1層とMo含有膜との結合力を高めることができる。
(c)第1層に含まれる第15族元素をMo含有膜に拡散させることにより、Mo含有膜の中に存在する元素の結合力を向上させることができる。すなわち、Mo元素同士や、Mo元素と第15族元素との結合が生じる。
(d)第1層と金属含有ガスとしてのMo含有ガスとの反応性を高めることができ、Mo含有膜の成膜速度を向上させることができる。すなわち、半導体装置の生産性(スループット)を向上させることができる。例えば、第15族元素を含むガスとして、PHガスを用い、Mo含有ガスとして、例えば、MoOClを用いた場合について説明する。この場合、第1層として、PHxを含む層が形成される。このPHxとMoOClとは化学反応が起こり易く、ウエハ200の表面に、第1層が形成されていない場合と比較して容易に反応し、ウエハ200の上(第1層の上)には、Moを含む層が形成され、第1層から、Pを含む分子が脱離する。Pを含む分子は例えば、四塩化ポロニウム(POCl)がある。このような反応が生じるため、Mo含有膜の成膜速度を向上させることができる。なお、この化学反応により、Mo含有膜中に第15族元素が取り込まれる(第15族元素がMo含有膜中に拡散する)。なお、第1層の一部(表面)は、原料ガス(金属含有ガス)により、一部が除去されているとも言える。また、第1層の一部(表面)は、原料ガスにより、一部が分解されているとも言える。
(e)第1層の形成時に、ウエハ200、ウエハ200の周囲の部材(例えば支持具、処理容器の少なくとも1つ以上)の温度が、第15族元素含有材料の分解温度になっている状態であっても、希釈ガスを供給することにより、第15族元素含有材料の過剰な分解を抑制することができる。すなわち、希釈ガスを供給することにより、第15族元素含有材料の分解を抑制する雰囲気とすることができる。また、第15族元素含有材料が、処理室201内で分解したとしても希釈ガスにより、分解生成物が過剰にウエハ200に供給されることを抑制することができる。即ち、希釈ガスにより分解生成物を押し流す効果が得られる。なお、希釈ガスは、第15族元素を含むガスの分圧を下げることにより、第15族元素含有材料の分解を抑制できていると考えられる。また、第15族元素を含むガスの分圧を下げることにより、第15族元素を含むガスの分子が、分解温度以上となっている部材(例えば、支持具や、処理容器)に衝突する確率を下げることができる。これにより、第15族元素を含むガスの分子が分解温度以上になっている部材から熱エネルギーを受け取り、分解する確率を下げることができていると考えられる。なお、第15族元素含有ガスの分圧に限らず、全圧であっても同様の効果が得られる。なお、図1の様に処理容器の周りに加熱部を有する基板処理装置では、ウエハ200の設定温度よりもウエハ200の周りに存在する部材の温度が高くなっていることがあり、このような第15族元素含有材料の分解が発生しやすい環境にある。それ故、このような基板処理装置の構成では、さらに顕著な効果を得ることができる。なお、好ましくは、処理室201内の第15族元素を含むガスの分圧は、希釈ガスとしての不活性ガスの分圧よりも小さくする。このような分圧関係にすることにより、第15族元素を含むガスの分解を抑制することが可能になる。
(f)第1層の形成時に、ウエハ200、ウエハ200の周囲の部材(例えば支持具、処理容器の少なくとも1つ以上)の温度が、第15族元素含有材料の分解温度になっている状態であっても、還元ガスを供給することにより、第15族元素含有材料の過剰な分解を抑制することができる。すなわち、還元ガスを供給することにより、第15族元素含有材料の分解を抑制する雰囲気とすることができる。還元ガス自体が、希釈ガスと同様の効果を有している他、第15族元素含有材料の熱分解を抑制する作用を有していると考えられる。このように還元ガスが直接、第15族元素含有材料の熱分解を抑制するメカニズムを得るには、好ましくは、第15族元素を含むガスと還元ガスの両方に同じ元素が含まれていることが好ましい。このような元素としては、例えば、水素(H)がある。具体的な材料としては、上述のような材料がある。なお、好ましくは、処理室201内の第15族元素を含むガスの分圧は、還元ガスの分圧よりも小さくする。このような分圧関係にすることにより、第15族元素を含むガスの分解を抑制することが可能になる。このような分圧とするには、例えば、図4に示す様に、還元ガスの流量を、第15族元素を含むガスの流量よりも多くすれば良い。
(g)第1層の分解を抑制する雰囲気で、金属膜(Mo含有膜)を形成することで、(a)(b)(c)(d)の少なくとも1つ以上の効果を得ることができる。第1層の分解を抑制する雰囲気について、変形例で詳細を説明する。
(4)他の実施形態
 次に、上述した実施形態における基板処理工程の変形例について詳述する。以下の変形例では、上述した実施形態と異なる点のみ詳述する。
(変形例1)
 本変形例では、図5に示すように、上述した第5の工程である還元ガス供給工程における還元ガスの供給流量を第1の工程である第15族元素を含むガスの供給中に供給する希釈ガスとしての還元ガスの供給流量よりも多くしている。このように第5の工程で還元ガスの供給流量を増加させることにより、ウエハ200上に吸着したMo含有ガス分子の還元量を増加させることができる他、第1層の分解を抑制することができる。第5の工程を含む金属含有膜の形成工程では、ウエハ200上に吸着したMo含有ガスと還元ガスとの反応を促進する様にウエハ200の温度を設定している。このような温度では、Mo含有ガスと還元ガスとの反応性を高められる一方で、第1層が分解してしまう課題を生じることがある。第1層が分解する場合、第1層を除去しつつMo含有膜を形成できるため、Mo含有膜中の不純物(例えば、P)を低減することができる一方で、Mo含有膜と、ウエハ200との密着性が低下する課題を生じることがある。変形例1の様にMo含有膜の形成工程において、還元ガスの流量を増加させることにより、第1層の分解を抑制することができる。ここで、第1層の分解とは、例えば、熱分解である。この分解の反応は、第1層中のPHに着目すると、例えば、2PH→2P+3Hの反応である。第5の工程における還元ガスの流量を増加させることにより、このような反応を抑制することができる。なお、第5の工程における還元ガスの流量は、第3の工程におけるMo含有ガスの流量よりも多く設定することが好ましい。また、第1層の分解を抑制することで、第1層中に含まれる元素(例えばP)が、Mo含有膜中に過度に取り込まれることを抑制することができる。なお、Mo含有膜中に不純物が過度に取り込まれた場合は、Mo含有膜の電気的特性(例えば、抵抗率)が悪化する場合がある。
(変形例2)
 本変形例では、図6に示すように、第5の工程における処理室201内の圧力を、第1の工程における処理室201内の圧力よりも高くする。このような圧力とすることにより、変形例1と同様に、金属含有膜の形成工程において生じる第1層の分解を抑制することができる。また、第1の工程における処理室201内の圧力を、第3の工程における処理室201内の圧力よりも高くしてもよい。言い換えると第3の工程における処理室201内の圧力を第1の工程における処理室201内の圧力よりも低くする。また、第3の工程における処理室201内の圧力を、第5の工程における処理室201内の圧力よりも低くする。このような圧力とすることにより、第3の工程において、第1層と金属含有ガスとの反応量を、第5の工程における第1層と還元ガスとの反応量よりも少なくすることができる。すなわち、第3の工程において、金属含有ガスによる第1層の分解を抑制できる。また、第3の工程において、金属含有ガスにより、金属元素が第1層の表面を還元に覆った状態となり、第5の工程で供給する還元ガスが、第1層の表面に到達できなくなることを抑制することができる。すなわち、第5の工程で、還元ガスにより、第1層の表面の分解を抑制することができる。
(変形例3)
 本変形例では、図7に示すように、第1の工程において、第15族元素を含むガスの供給開始前に、還元ガスの供給を開始し、還元ガスの供給中に第15族元素を含むガスの供給を停止している。
第15族元素を含むガスの供給開始前に、還元ガスの供給を開始することにより、第15族元素を含むガスの供給直後から、生じる可能性のある、第15族元素を含むガスの分解反応を抑制することができる。また、第15族元素を含むガスの供給開始前には、処理室201内の圧力を還元ガスにより、所定の圧力に昇圧しておくことが好ましい。還元ガスにより所定の圧力に昇圧しておくことにより、処理室201内に還元ガスの分子を分散させた状態とすることができ、処理室201内における第15族元素含有材料の分子と還元ガスとの接触確立を向上させることができる。これにより、第15族元素含有材料の分解反応を抑制することができる。
また、還元ガスの供給中に第15族元素を含むガスの供給を停止することにより、処理室201内に残留する第15族元素を含むガスの分解反応を抑制することができる。処理室201内に残留する第15族元素を含むガスの分解を抑制することにより、第1の工程で形成する第1層の表面に第15族元素含有材料の分解により生じた第15族単体が、ウエハ200(第1層)の表面に露出することを抑制することができる。第1層の表面は、第15族元素含有材料が吸着した状態とすることが好ましい。第1層の表面を第15族元素含有材料が吸着した状態とすることで、第3工程で供給されるMo含有ガスと、第15族元素含有材料との反応を促進することができる。
なお、第1の工程において、第15族元素を含むガスの供給開始前に、還元ガスの供給を開始することと、還元ガスの供給中に第15族元素を含むガスの供給を停止することは、片方だけ行っても良い。片方だけ行うとその効果を得ることができる。両方を行うことで、両方の効果を得ることができる。
(変形例4)
 本変形例では、図8に示すように、第3の工程から第6の工程までをX回行う工程と、Y回行う工程とを有する。X回行う工程における第5の工程(還元ガスを供給する工程)の還元ガスの供給時間は、Y回行う工程における第5の工程の還元ガスの供給時間よりも長く設定する。このように構成することにより、Mo含有膜の形成の初期において、第1層の分解を抑制し、第1層をウエハ200上に残留させることが可能となる。また、Mo含有層がある程度成膜されることにより、初期に形成されるMo含有層が、第1層のキャップ膜となり、第1層の熱分解により、ウエハ200上から脱離することを抑制することができる。なお、ここでのXとYはそれぞれ1以上の整数である。
 なお、上記実施形態では、金属含有ガス(Mo含有ガス)としてMoOClガスを用いる場合を例にして説明したが、本開示はこれに限定されるものではない。
 また、上記実施形態では、第1の工程で用いる還元ガスと、第5の工程で用いる還元ガスとを、同じ種類のガスを用いる場合を例にして説明したが、本開示はこれに限定されるものではない。第1の工程で用いる還元ガスと、第5の工程で用いる還元ガスとを、異なる分子構造のガスを用いても良い。例えば、第1の工程で、Hガスを用い、第5の工程ではDガスや、活性化したHガスを用いても良い。また、第5の工程で、PHガス、後述のシラン系ガス、ボラン系ガスの少なくとも1つ以上を用いる様にしても良い。また、第1の工程で用いる還元ガスは、第15族元素含有材料の分解を抑制する特性、第15族元素含有材料のキャリアとなる特性、の少なくとも1つ以上の特性を有するガスを用いても良い。また、第5の工程で用いる還元ガスは、原料ガスとしてのMo含有ガスの還元する特性、第1層の分解を抑制する特性の少なくとも1つ以上の特性を有するガスを用いても良い。
 また、上記実施形態では、第15族元素を含むガスとしてPとHを含むガスを用いる場合を例にして説明したが、本開示はこれに限定されるものではなく、例えばモノシラン(SiH)ガス、ジシラン(Si)ガス、トリシラン(Si)ガス、テトラシラン(Si10)、等のシラン系ガス、モノボラン(BH)、ジボラン(B)、等のボラン系ガス等の他の還元ガスを用いることができる。しかしながら、これらのガスでは、PHを用いた場合に生成されるPOClの様な脱離し易い副生成物が得られ難いため、Mo含有膜の特性が悪化する恐れがある。それ故、第15族元素を含むガスとしては、Pを含むガスが好ましい。さらに好ましくは、PとHを含むガスが好ましい。
 また、上記実施形態では、原料ガス(金属元素含有ガス)として、Mo元素を含むガスを用いる場合を例にして説明したが、本開示はこれに限定されるものではない。例えば、原料ガスに、ルテニウム(Ru)元素、タングステン(W)元素の少なくとも1つ以上の元素を含むガスを用いた処理にも適用できる場合がある。
 また、上記実施形態では、一度に複数枚の基板を処理するバッチ式の縦型装置である基板処理装置を用いて成膜する例について説明したが、本開示はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて成膜する場合にも、好適に適用できる。これらの基板処理装置を用いる場合においても、上述の実施形態と同様なシーケンス、処理条件にて成膜を行うことができる。
 これらの各種薄膜の形成に用いられるプロセスレシピ(処理手順や処理条件等が記載されたプログラム)は、基板処理の内容(形成する薄膜の膜種、組成比、膜質、膜厚、処理手順、処理条件等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、基板処理を開始する際、基板処理の内容に応じて、複数のプロセスレシピの中から、適正なプロセスレシピを適宜選択することが好ましい。具体的には、基板処理の内容に応じて個別に用意された複数のプロセスレシピを、電気通信回線や当該プロセスレシピを記録した記録媒体(外部記憶装置123)を介して、基板処理装置が備える記憶装置121c内に予め格納(インストール)しておくことが好ましい。そして、基板処理を開始する際、基板処理装置が備えるCPU121aが、記憶装置121c内に格納された複数のプロセスレシピの中から、基板処理の内容に応じて、適正なプロセスレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成できるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。
 また、本開示は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本開示に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本開示に係るプロセスレシピに変更したりすることも可能である。
 以上、本開示の実施形態を具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
10・・・基板処理装置、121・・・コントローラ、200・・・ウエハ(基板)、201・・・処理室

Claims (21)

  1. (a)基板に対して、第15族元素を含むガスを供給し、前記基板の表面に前記第15族元素を含む第1層を形成する工程と、
    (b)前記基板に対して、Mo元素を含むガスを供給する工程と、
    (c)前記基板に対して、還元ガスを供給する工程と、
    (d)前記第1層の分解を抑制する雰囲気で、(b)と(c)とを所定回数行い、前記第1層の上に、Mo元素を含む膜を形成する工程と、
    を有する半導体装置の製造方法。
  2.  (a)では、前記基板の処理雰囲気を、前記第15族元素を含むガスに含まれる第15族元素含有材料の分解を抑制する雰囲気とする
     請求項1に記載の半導体装置の製造方法。
  3.  (a)では、少なくとも前記第15族元素を含むガスを供給している間、還元ガスを供給する
     請求項1または2に記載の半導体装置の製造方法。
  4.  (c)において供給する前記還元ガスの流量を、(a)において供給する前記還元ガスの供給流量よりも多くする
     請求項3に記載の半導体装置の製造方法。
  5.  (c)における前記基板の処理雰囲気の圧力を、(a)における前記基板の処理雰囲気の圧力よりも高くする
     請求項3または4に記載の半導体装置の製造方法。
  6.  (a)では、前記基板の処理雰囲気の前記第15族元素を含むガスの分圧を、前記基板の処理雰囲気に供給される前記還元ガスと不活性ガスのうち少なくとも1つの分圧よりも小さくする
     請求項3または4に記載の半導体装置の製造方法。
  7. (a)では、前記第15族元素を含むガスの供給開始よりも前に、前記還元ガスの供給を開始する
     請求項3乃至6のいずれか一項に記載の半導体装置の製造方法。
  8.  (a)では、前記第15族元素を含むガスの供給開始よりも前に、前記還元ガスにより前記基板の処理雰囲気の圧力を上昇させる
     請求項3乃至7のいずれか一項に記載の半導体装置の製造方法。
  9.  (a)では、前記還元ガスを供給している状態で、前記第15族元素を含むガスの供給を停止する
     請求項3乃至8のいずれか一項に記載の半導体装置の製造方法。
  10.  前記還元ガスは、水素元素を含む
     請求項3乃至9のいずれか一項に記載の半導体装置の製造方法。
  11.  前記還元ガスは、水素単体で構成されるガスである
     請求項3乃至10のいずれか一項に記載の半導体装置の製造方法。
  12.  (a)で供給する前記還元ガスと、
     (c)で供給する前記還元ガスは、異なる分子構造のガスである
     請求項3乃至10のいずれか一項に記載の半導体装置の製造方法。
  13.  (d)では、(b)と(c)とをX回行う工程と、X回後に(b)と(c)とをY回行う工程とを有し、X回行う工程における(c)の時間を、Y回行う工程における(c)の時間よりも長くする(X,Yはそれぞれ1以上の整数)
     請求項1乃至12のいずれか一項に記載の半導体装置の製造方法。
  14.  (c)における前記基板の処理雰囲気の圧力を、(b)における前記基板の処理雰囲気の圧力よりも高くする
     請求項1乃至13のいずれか一項に記載の半導体装置の製造方法。
  15.  (a)における前記基板の温度を、(c)における前記基板の温度以下とする
     請求項1乃至14のいずれか一項に記載の半導体装置の製造方法。
  16.  (a)における前記基板に供給される前記第15族元素を含むガスの濃度を、0.1~50%とする
     請求項1乃至15のいずれか一項に記載の半導体装置の製造方法。
  17.  前記第15族元素はリンである
     請求項1乃至16のいずれか一項に記載の半導体装置の製造方法。
  18.  前記第15族元素を含むガスは、水素元素を含むガスである
     請求項1乃至17のいずれか一項に記載の半導体装置の製造方法。
  19.  (a)基板に対して、第15族元素を含むガスを供給し、前記基板の表面に前記第15族元素を含む第1層を形成する工程と、
     (b)前記基板に対して、Mo元素を含むガスを供給する工程と、
     (c)前記基板に対して、還元ガスを供給する工程と、
     (d)前記第1層の分解を抑制する雰囲気で、(b)と(c)とを所定回数行い、前記第1層の上に、Mo元素を含む膜を形成する工程と、
    を有する基板処理方法。
  20.  基板を処理する処理容器と、
     前記処理容器内にMo元素を含むガスと還元ガスと第15族元素を含むガスの少なくとも1つ以上を供給するガス供給系と、
     前記処理容器内の雰囲気を排気する排気系と、
     (a)前記基板に対して、前記第15族元素を含むガスを供給し、前記基板の表面に前記第15族元素を含む第1層を形成する処理と、
     (b)前記基板に対して、前記Mo元素を含むガスを供給する処理と、
     (c)前記基板に対して、前記還元ガスを供給する処理と、
     (d)前記第1層の分解を抑制する雰囲気で、(b)と(c)とを所定回数行い、前記第1層の上に、Mo元素を含む膜を形成する処理と、
    を行わせるように、前記ガス供給系を制御することが可能なように構成される制御部と、
    を有する基板処理装置。
  21.  (a)基板に対して、第15族元素を含むガスを供給し、前記基板の表面に前記第15族元素を含む第1層を形成させる手順と、
     (b)前記基板に対して、Mo元素を含むガスを供給させる手順と、
     (c)前記基板に対して、還元ガスを供給させる手順と、
     (d)前記第1層の分解を抑制する雰囲気で、(b)と(c)とを所定回数行い、前記第1層の上に、Mo元素を含む膜を形成させる手順と、
    をコンピュータによって基板処理装置に実行させるプログラムが記録されたコンピュータにより読み取り可能な記録媒体。
PCT/JP2021/033031 2021-09-08 2021-09-08 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体 WO2023037452A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/033031 WO2023037452A1 (ja) 2021-09-08 2021-09-08 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体
CN202180101071.9A CN117751429A (zh) 2021-09-08 2021-09-08 半导体装置的制造方法、基板处理方法、基板处理装置及记录介质
JP2023546631A JPWO2023037452A5 (ja) 2021-09-08 基板処理方法、半導体装置の製造方法、基板処理装置およびプログラム
KR1020247007462A KR20240038105A (ko) 2021-09-08 2021-09-08 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
TW111125457A TW202312390A (zh) 2021-09-08 2022-07-07 半導體裝置之製造方法、基板處理方法、基板處理裝置及記錄媒體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033031 WO2023037452A1 (ja) 2021-09-08 2021-09-08 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体

Publications (1)

Publication Number Publication Date
WO2023037452A1 true WO2023037452A1 (ja) 2023-03-16

Family

ID=85506171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033031 WO2023037452A1 (ja) 2021-09-08 2021-09-08 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体

Country Status (4)

Country Link
KR (1) KR20240038105A (ja)
CN (1) CN117751429A (ja)
TW (1) TW202312390A (ja)
WO (1) WO2023037452A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536225A (ja) * 2001-07-16 2004-12-02 アプライド マテリアルズ インコーポレイテッド 表面処理後にタングステンを堆積して膜特性を改善するための方法及び装置
JP2011066263A (ja) 2009-09-18 2011-03-31 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
JP2017069313A (ja) * 2015-09-29 2017-04-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム
WO2019058608A1 (ja) 2017-09-25 2019-03-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置及びプログラム
JP2020530881A (ja) * 2017-08-14 2020-10-29 ラム リサーチ コーポレーションLam Research Corporation 3次元垂直nandワード線用の金属充填プロセス
JP2020537359A (ja) * 2017-10-09 2020-12-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 金属堆積用の核生成層としての共形ドープアモルファスシリコン

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207116483U (zh) 2017-09-06 2018-03-16 京东方科技集团股份有限公司 一种阵列基板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536225A (ja) * 2001-07-16 2004-12-02 アプライド マテリアルズ インコーポレイテッド 表面処理後にタングステンを堆積して膜特性を改善するための方法及び装置
JP2011066263A (ja) 2009-09-18 2011-03-31 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
JP2017069313A (ja) * 2015-09-29 2017-04-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム
JP2020530881A (ja) * 2017-08-14 2020-10-29 ラム リサーチ コーポレーションLam Research Corporation 3次元垂直nandワード線用の金属充填プロセス
WO2019058608A1 (ja) 2017-09-25 2019-03-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置及びプログラム
JP2020537359A (ja) * 2017-10-09 2020-12-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 金属堆積用の核生成層としての共形ドープアモルファスシリコン

Also Published As

Publication number Publication date
JPWO2023037452A1 (ja) 2023-03-16
KR20240038105A (ko) 2024-03-22
TW202312390A (zh) 2023-03-16
CN117751429A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
KR101521466B1 (ko) 가스 공급 장치, 열처리 장치, 가스 공급 방법 및 열처리 방법
CN112424915B (zh) 半导体器件的制造方法、衬底处理装置及记录介质
US11621169B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
US20240055259A1 (en) Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
CN113227450A (zh) 半导体器件的制造方法、衬底处理装置及程序
WO2023037452A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体
WO2022064550A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
CN114941130A (zh) 基板处理装置、基板处理方法、半导体装置的制造方法和存储介质
WO2024069767A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
WO2022059170A1 (ja) 半導体装置の製造方法、記録媒体及び基板処理装置
EP4357481A1 (en) Method of processing substrate, method of manufacturing semiconductor device, program, and substrate processing apparatus
JP7387685B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム、および基板処理装置
EP4261324A1 (en) Method of processing substrate, method of manufacturing semiconductor device, program, and substrate processing apparatus
WO2023188014A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
WO2024062662A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム、および基板処理装置
WO2020189373A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2023023351A (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
JP2024016232A (ja) 基板処理方法、基板処理装置、半導体装置の製造方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956749

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546631

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180101071.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247007462

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021956749

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021956749

Country of ref document: EP

Effective date: 20240408