WO2020077814A1 - 对旋风扇 - Google Patents

对旋风扇 Download PDF

Info

Publication number
WO2020077814A1
WO2020077814A1 PCT/CN2018/122549 CN2018122549W WO2020077814A1 WO 2020077814 A1 WO2020077814 A1 WO 2020077814A1 CN 2018122549 W CN2018122549 W CN 2018122549W WO 2020077814 A1 WO2020077814 A1 WO 2020077814A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
diameter
hub
angle
counter
Prior art date
Application number
PCT/CN2018/122549
Other languages
English (en)
French (fr)
Inventor
李书奇
张辉
张冀喆
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to US17/283,534 priority Critical patent/US11506211B2/en
Priority to JP2021540348A priority patent/JP7092433B2/ja
Priority to EP18937456.4A priority patent/EP3842644B1/en
Priority to KR1020217010044A priority patent/KR102518997B1/ko
Publication of WO2020077814A1 publication Critical patent/WO2020077814A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/007Axial-flow pumps multistage fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/329Details of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • F04D29/386Skewed blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/125Fluid guiding means, e.g. vanes related to the tip of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the invention relates to the technical field of fans, in particular to a counter-rotating fan.
  • the general counter-rotating axial fan has the characteristics of high noise and low wind pressure. Especially when the rotary axial flow fan is miniaturized, the characteristics of high noise and low wind pressure are more prominent.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. For this reason, the present invention proposes a counter-rotating fan, which can increase wind pressure and reduce noise after rational design of structural parameters.
  • a counter-rotating fan includes: an impeller assembly including a first-stage impeller and a second-stage impeller having opposite rotation directions, the first-stage impeller includes a first hub and a first hub connected to the first A plurality of first blades on a hub, the second-stage impeller includes a second hub and a plurality of second blades connected to the second hub, the pressure surface of the first blade faces the second blade
  • the suction surface is set, in the direction from the blade root to the blade tip, the first blade and the second blade are curved toward their respective rotation directions; and the wind guide structure, the wind guide structure includes a grille ,
  • the inlet grille includes a plurality of supporting wind guide plates arranged along the circumferential direction, and the supporting wind guide plates are curvedly arranged in a direction toward the wind outlet side, and the bending direction of the support wind guide plates is The rotation direction of the first blade is opposite, and the installation angle of the inlet of the supporting air guide plate is smaller than the installation angle of the outlet of the
  • the support air guides bent in the direction toward the air outlet side, the support air guides are ensured to guide the air toward the inlet of the first blade, reducing the noise of the inlet air Reduce the pressure loss of the counter-rotating fan.
  • the wind deflector structure includes a deflector shroud disposed at a center position on an air inlet side of the first-stage impeller, and at least a surface of the air inlet side surface of the deflector shroud Partly formed as a guide surface that extends away from the axis of the counter-rotating fan in the direction toward the first-stage impeller.
  • the diversion surface is a hemispherical surface, and the diameter of the hemispherical surface is at least 0.8 times the diameter of the end of the first hub on the inlet side, and the diameter of the hemispherical surface The diameter of the end of the first hub on the air inlet side is 1.1 times.
  • the inlet installation angle of the supporting wind deflector is 0 °
  • the outlet installation angle of the supporting deflector is at least 18 °
  • the outlet installation angle of the supporting deflector does not exceed 42 °.
  • the supporting wind deflector bends from the blade root end to the blade tip in a direction opposite to the rotation direction of the first blade, and the average angle is 360 °, which is equally divided into the supporting wind deflector
  • the average angle is at least 4 ° larger than the bending angle of each supporting wind guide plate, and the average angle is higher than each supporting wind guide
  • the bending angle of the piece does not exceed 15 °.
  • the diameter of the first hub gradually increases from the wind inlet side to the wind outlet side, wherein the diameter of the first hub end at the wind inlet side is at least that of the first hub 0.5 times the diameter at the end of the air outlet side, the diameter of the first hub at the inlet side is no more than 0.85 times the diameter of the first hub at the outlet side; the diameter of the first hub at the outlet side It is at least 0.25 times the diameter of the first-stage impeller rim, and the diameter of one end of the first hub on the wind exit side does not exceed 0.45 times the diameter of the first-stage impeller rim.
  • the hub ratio of the second-stage impeller is the ratio between the diameter of the second hub and the diameter of the rim of the second-stage impeller, and the hub ratio of the second-stage impeller is at least Is 0.45, and the hub ratio of the second-stage impeller does not exceed 0.7.
  • the inlet of the first blade is swept backward, and the inlet swept angle of the first blade is L1, and L1 satisfies the relationship: 5 ° ⁇ L1 ⁇ 12 °.
  • the outlet of the first blade is swept forward, and the outlet swept angle of the first blade is L2, and L2 satisfies the relationship: 3 ° ⁇ L2 ⁇ 15 °.
  • the inlet of the second blade is swept backward, and the inlet swept angle of the second blade is L3, and L3 satisfies the relationship: 5 ° ⁇ L3 ⁇ 10 °.
  • the outlet of the second blade is swept forward, and the outlet swept angle of the second blade is L4, and L4 satisfies the relationship: 3 ° ⁇ L4 ⁇ 8 °.
  • the exit angle of the second blade differs from the entrance angle of the first blade by no more than 10 °
  • the entrance angle of the second blade differs from the reference angle of the first blade by no more than 5 °
  • the first blade reference angle is an inverse tangent function angle of the tangent of the inlet angle of the first blade after the reference flow coefficient.
  • the axial width of the first blade is at least 1.4 times the axial width of the second blade, and the axial width of the first blade does not exceed the axial width of the second blade 3 times.
  • the axial gap between the first blade and the second blade is at least 0.1 times the axial width of the first blade, and the axial gap does not exceed the first 0.8 times the axial width of the blade.
  • the diameter of the first hub on the wind exit side is at least 0.9 times the diameter of the second hub, and the diameter of the first hub on the wind exit side does not exceed the diameter of the second hub 1.1 times.
  • the second blade has no more than 3 pieces than the first blade, and the first blade has no more than 5 pieces than the second blade.
  • the impeller assembly is a plurality of axially arranged groups.
  • the blade shape of the first blade and the blade shape of the second blade are different.
  • the rim diameter of the first blade is equal to the rim diameter of the second blade, or the rim diameter of the first blade is not equal to the rim diameter of the second blade.
  • FIG. 1 is a cross-sectional structural diagram of an air duct composition of a counter-rotating fan according to an embodiment of the present invention.
  • FIG. 2 is a front view of the intake grille of the present invention.
  • Fig. 3 is a cross-sectional profile diagram of a progressive grid type of the present invention.
  • FIG. 4 is an explanatory diagram of the definition of the intake grid parameters of the present invention.
  • FIG. 5 is a schematic diagram of parameters of a counter-rotating fan according to an embodiment of the present invention.
  • FIG. 6 is a front view of the first-stage impeller of the embodiment of the present invention.
  • FIG. 7 is a side view of the first stage impeller of the embodiment of the present invention.
  • FIG. 8 is a front view of the second-stage impeller of the embodiment of the present invention.
  • FIG. 9 is a side view of the second stage impeller of the embodiment of the present invention.
  • 10 is an explanatory diagram of parameter definitions of the first blade and the second blade.
  • FIG. 11 is the noise test data of the shroud structure of the embodiment of the patent.
  • FIG. 12 is the noise test data of the grille structure of the embodiment of the patent.
  • Figure 13 is the data of the same speed wind pressure increase of this patent.
  • the wind guide structure 10 The wind guide structure 10, the inlet grille 11, the supporting wind guide 111, the outlet grille 12, the air deflector 13, the air cylinder 14,
  • the second-stage impeller 22, the second hub 221, and the second blade 222 are identical to each other.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • installation should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • the counter-rotating fan 100 according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 13.
  • a counter-rotating fan 100 includes an air guide structure 10 and an impeller assembly 20.
  • the impeller assembly 20 includes a first-stage impeller 21 and a second-stage impeller 22 having opposite rotation directions.
  • the first-stage impeller 21 includes a first hub 211 and a plurality of first blades 212 connected to the first hub 211
  • the second-stage impeller 22 includes a second hub 221 and a plurality of second blades 222 connected to the second hub 221, and the pressure surface of the first blade 212 is disposed toward the suction surface of the second blade 222.
  • the pressure surface and the suction surface are the conventional structure names of blades known in the art.
  • the side corresponding to the blade pressure surface on the impeller is the air outlet side of the impeller, and the side corresponding to the blade suction surface on the impeller is It is the air inlet side of the impeller.
  • the direction of the air flow when the counter-rotating fan 100 is operating is substantially the same as the direction from the first-stage impeller 21 to the second-stage impeller 22.
  • the first blade 212 is curved toward its rotation direction.
  • the second blade 222 bends toward its rotation direction, that is, the bending directions of the first blade 212 and the second blade 222 are opposite.
  • the first-stage impeller 21 and the second-stage impeller 22 of the counter-rotating fan 100 are arranged counter-rotatingly, which uses the wind field generated by the rotation of the first-stage impeller 21 to affect the wind field of the second-stage impeller 22, Not only can the outlet wind pressure of the second-stage impeller 22 be changed, but also the wind speed, the wind field diffusion cone angle of the second-stage impeller 22, and even the eddy current conditions.
  • the second-stage impeller 22 rotates, it will form an annular vortex-like wind flow.
  • the first-stage impeller 21 and the second-stage impeller 22 rotate simultaneously, under the influence of the wind field of the first-stage impeller 21, the second-stage impeller 22 rotates
  • the formed vortex-like wind flow will exhibit race and endurance.
  • the counter-rotating fan 100 according to the embodiment of the present invention can be applied to electric fans, circulation fans, ventilation fans, air-conditioning fans, and other devices that need to send out air.
  • the counter-rotating fan 100 according to the embodiment of the present invention is mainly used to promote airflow Not heat transfer.
  • the wind guide structure 10 includes an inlet grille 11, which is disposed adjacent to the first-stage impeller 21, and the inlet grille 11 includes a plurality of supporting wind guide sheets 111 arranged circumferentially.
  • the inlet grille 11 not only plays a supporting role, but also serves as a wind guide.
  • the support air guide piece 111 is bent and arranged, the bending direction of the support air guide piece 111 is opposite to the rotation direction of the first blade 212, and the inlet installation angle of the support air guide piece 111 is W0, The installation angle of the outlet of the supporting wind guide 111 is W1, and W0 and W1 satisfy the relationship: W0 ⁇ W1.
  • the inlet grille 11 since the inlet grille 11 rotates relative to the first-stage impeller 21, the inlet grille 11 includes a plurality of supporting wind guide plates 111 arranged in the circumferential direction, so the inlet grille 11 can be regarded as a wind guide wind
  • the wheel, supporting the wind deflector 111 is regarded as the blade of the wind deflector. Since the bending direction of the supporting air guide plate 111 is opposite to the rotation direction of the first blade 212, the intake grille 11 can be regarded as an air guide wind wheel opposite to the rotation direction of the first-stage impeller 21.
  • the supporting air guide plate 111 is curved in the axial direction.
  • the inlet mounting angle W0 of the supporting air guide plate 111 and the outlet installation angle of the supporting air guide plate 111 are proposed in this paper W1.
  • the names of the inlet installation angle and the outlet installation angle of the supporting wind guide 111 refer to the inlet angle and the outlet angle of the blade. That is, the supporting wind guide plate 111 corresponds to the blade, the inlet installation angle of the supporting wind guide plate 111 corresponds to the blade inlet angle, and the outlet installation angle of the supporting wind guide plate 111 corresponds to the blade outlet angle.
  • the inlet angle and outlet angle of the blade are both well-known structural names of blades known in the art.
  • the blade angle at the inlet of the blade is the inlet angle of the blade, and the blade angle at the inlet of the blade is the inlet angle of the blade.
  • the following describes how to calculate the inlet installation angle W0 of the support wind guide 111 and the outlet installation angle W1 of the support wind guide 111.
  • the inlet angle and outlet angle of the first blade 212 and the second blade 222 are mentioned later They also use the same calculation method as the inlet installation angle W0 and the outlet installation angle W1, and the calculation of the inlet angle and the outlet angle will not be repeated here.
  • the inlet installation angle W0 of the supporting air guide plate 111 is equal to the angle between the tangent line of the central arc of the supporting air guide plate 111 at the air inlet end and the axis of the fan.
  • the outlet installation angle W1 of the supporting air guide plate 111 is equal to the angle between the tangent line of the central arc of the supporting air guide plate 111 at the outlet end and the axis of the fan.
  • the center arc of the support air guide plate 111 is the intersection between the center arc surface of the support air guide plate 111 and the reference cylindrical surface.
  • the reference cylindrical surface is a cylindrical surface coaxial with the axis of the fan, the opposite surfaces on both sides of the supporting air guide plate 111 are wing surfaces, and the center arc surface of the supporting air guide plate 111 is an equidistant reference surface between the wing surfaces on both sides.
  • the approximate runway shape shown in FIG. 3 is the cross-sectional shape of the reference cylindrical surface formed on the supporting wind guide sheet 111.
  • the intersection of the central arc surface of the supporting wind guide sheet 111 and the cross section forms the illustrated central arc line.
  • the tangents at both ends of the arc and the axis of the fan form angles W0 and W1, respectively.
  • the supporting wind deflector 111 on the intake grille 11 is bent, and in the direction toward the wind outlet side, the bending direction of the supporting wind deflector 111 is opposite to the rotation direction of the first blade 212, and the flow can be directed to the first stage
  • the airflow of the impeller 21 is directed in a direction opposite to the rotation direction of the first-stage impeller 21, which changes the wind field on the inlet side of the first-stage impeller 21.
  • the effect of supporting the air guide 111 on the first-stage impeller 21 on the inlet grille 11 is similar to the effect of the first-stage impeller 21 on the second-stage impeller 22, and finally the effect of supporting the air guide 111 on the first-stage impeller 21 , Which in turn affects the wind field of the second-stage impeller 22. In this way, even if the rotational speed of the impeller assembly 20 decreases, the outgoing wind pressure can still be increased.
  • the inlet installation angle W0 of the support air guide 111 is smaller than the outlet installation angle W1 of the support air guide 111 to ensure that the inlet air guide 111 of the support air guide 111 faces the first blade 212, which not only reduces the noise of the inlet air, And it is helpful to reduce pressure loss.
  • the support air guide sheet 111 by providing the support air guide sheet 111 curved in the direction toward the air outlet side, the support air guide sheet 111 is guaranteed to guide the air toward the inlet of the first blade 212, reducing the inlet Wind noise, and reduce the pressure loss of the rotary fan 100.
  • the wind deflector structure 10 includes a deflector shroud 13 disposed at the center of the air inlet side of the first-stage impeller 21, and at least part of the air inlet side surface of the deflector shroud 13 is formed as a guide The flow surface and the flow guide surface extend away from the axis of the counter-rotating fan 100 in the direction toward the first-stage impeller 21.
  • the design of the air deflector 13 with the air guide surface is helpful to guide the air flow to the first hub 211 to the first blade 212.
  • Reduce the wind pressure loss direct the airflow to the area where the work is done, can increase the wind pressure.
  • This counter-rotating fan 100 is particularly effective in scenarios where the upstream and downstream resistances are large. Therefore, providing a guide cover 13 at the center of the air inlet side of the first-stage impeller 21 can guide the fan inlet air to the area of the impeller assembly 20 where the pressurization is strong, to avoid excessive turbulence caused by the air flow near the root end of the blade , Noise, which is conducive to enhancing the wind pressure of the counter-rotating fan 100 and reducing noise.
  • the side surface of the diversion cover 13 that is away from the inlet grille 11 is a hemispherical surface, that is, the diversion surface is set to a hemispherical surface, and the hemispherical surface processing is the simplest.
  • the diversion surface can also select other revolving surfaces, such as ellipsoidal surface, hyperboloid surface, etc., without limitation here.
  • the diameter of the hemispherical surface is at least 0.8 times the diameter of the end of the first hub 211 on the inlet side, and the diameter of the hemispherical surface does not exceed the end of the first hub 211 on the inlet side 1.1 times the diameter.
  • the diameter of the hemispherical surface is Ddao
  • the diameter of the end of the first hub 211 on the air inlet side is DH1.
  • Ddao and DH1 satisfy the relationship: 0.8 * DH1 ⁇ Ddao ⁇ 1.1 * DH1.
  • the wind guide structure 10 includes a wind cylinder 14 formed in a cylindrical shape with both ends open in the axial direction, and the impeller assembly 20 is disposed in the wind cylinder 14.
  • the configuration of the air cylinder 14 can guide on the one hand, extend the air supply distance of the fan, and on the other hand, prevent premature pressure release around the impeller assembly 20, and ensure that the wind pressure from the second-stage impeller 22 is large.
  • the air cylinder 14 is provided with an inlet grille 11 and an outlet grille 12 at both ends in the axial direction, the first-stage impeller 21 is disposed adjacent to the inlet grille 11, and the second-stage impeller 22 is disposed adjacent to the outlet grille 12 .
  • the arrangement of the inlet grille 11 and the outlet grille 12 supports the air cylinder 14.
  • the first-stage impeller 21 is driven by the first motor
  • the second-stage impeller 22 is driven by the second motor.
  • the first motor It is fixed on the inlet grille 11 and the second motor is fixed on the outlet grille 12.
  • the first-stage impeller 21 and the second impeller are driven by the same motor, and one of the impellers is connected to the steering mechanism. At this time, the motor can be fixed on the inlet grille 11 and the outlet grille 12, here No restrictions.
  • the inlet installation angle W0 of the supporting wind guide plate 111 is 0 °
  • the outlet installation angle W1 of the supporting wind guide plate 111 satisfies 18 ° ⁇ W1 ⁇ 42 °.
  • the design of the inlet installation angle and the outlet installation angle of the support wind guide 111 is adapted to the characteristics of the blade shape of the conventional axial flow wind wheel to maximize the impact of the wind guide on the wind pressure. It can be understood here that since the supporting wind guide plate 111 is designed on the inlet grille 11, the axial size of the supporting wind guide plate 111 will not be too large.
  • the outlet installation angle W1 of the support wind guide 111 is less than 18 °, the wind guide effect is too weak; and when the outlet installation angle W1 of the support wind guide 111 exceeds 42 °, the wind guide does not fit well with the first-stage impeller 21
  • the air inlet angle may cause airflow turbulence and other phenomena.
  • the support wind guide 111 is bent from the blade root end to the blade tip in a direction opposite to the rotation direction of the first blade 212, so that the shape of the inlet grille 11 is a type of anti-axial wind wheel Shape, the effect on the wind field is more obvious.
  • the intake grille 11 is set to have an average angle, and the average angle is 360 °, and the angle occupied by each share when the average number is 360 ° is divided into equal parts as the number of blades supporting the air guide plate 111.
  • the average angle is at least 4 ° larger than the bending angle of each supporting wind guide plate 111, and the average angle is no more than 15 ° compared to the bending angle of each supporting wind guide plate.
  • the relationship between the bending angle T0 of each supporting wind guide 111 and the number of blades BN0 supporting the wind guide 111 meets: (360 ° / BN0-15 °) ⁇ T0 ⁇ (360 ° / BN0-4 °) ,
  • the gap angle Tg between two adjacent supporting wind guide plates 111 satisfies 4 ° ⁇ Tg ⁇ 15 °.
  • the bending angle T0 of the supporting air guide plate 111 refers to the central angle between the blade root end and the blade tip of the supporting air guide plate 111 on the same radial section (the radial section is perpendicular to the fan axis).
  • the clearance angle Tg of the supporting air guide plate 111 refers to the central angle between the blade tip of the supporting air guide plate 111 and the root end of the adjacent supporting air guide plate 111 in the bending direction on the same radial cross section . In this way, the density of the supporting wind guide plates 111 is restricted, on the one hand, the air output volume is prevented from decreasing, and on the other hand, the local vortex is reduced.
  • the diameter of the first hub 211 gradually increases from the wind inlet side to the wind outlet side.
  • the diameter of the first hub 211 at the inlet side is at least 0.5 times the diameter of the first hub 211 at the outlet side.
  • the diameter of the first hub 211 at the inlet side does not exceed 0.85 of the diameter of the first hub 211 at the outlet side Times.
  • the diameter of the end of the first hub 211 on the wind side is at least 0.25 times the diameter of the rim of the first-stage impeller 21, and the diameter of the end of the first hub 211 on the wind side does not exceed 0.45 of the diameter of the rim of the first-stage impeller 21 Times.
  • the diameter of the first hub 211 on the air inlet side is DH1
  • the diameter of the first hub 211 on the air outlet side is DH2.
  • the diameter of the rim of the first-stage impeller 21 may also be referred to as the diameter of the first-stage impeller 21, that is, the diameter of the circle where the first blades 212 on the first-stage impeller 21 are located farthest from the rotation axis.
  • the first hub 211 is set to gradually increase in diameter toward the second hub 221, and the circumferential surface of the first hub 211 is equivalent to another guide surface, which is beneficial to direct the airflow to the second hub 221 to the second
  • the blade 222 reduces turbulence and noise at the second hub 221, and further increases the wind pressure.
  • the limitation of the diameter ratio at both ends of the first hub 211 is to ensure that the circumferential surface of the first hub 211 can play a significant flow guiding effect. Moreover, if the diameter of the first hub 211 at the air inlet side is too small, a plurality of first blades 212 cannot be arranged, so a reasonable diameter ratio at both ends can also ensure that the first blades 212 are arranged reasonably. Limit the diameter of the first hub 211 and the diameter of the rim of the first-stage impeller 21, on the one hand, to ensure that the blade has sufficient sweeping area, on the other hand, to prevent the first hub 211 from being too small, resulting in weak torsion resistance happensing.
  • the diameter of the second hub 221 is DH3
  • the diameter of the rim of the second-stage impeller 22 is DS2
  • CD2 satisfies the relationship: 0.45 ⁇ CD2 ⁇ 0.7.
  • the diameter of the rim of the second-stage impeller 22 may also be referred to as the diameter of the second-stage impeller 22, that is, the diameter of the circle where the second blades 222 on the second-stage impeller 22 are located farthest from the rotation axis.
  • the blades of an impeller each have a leading edge and a trailing edge (the “trailing edge” may also be referred to as a “trailing edge”). Judging from the direction of fluid flow, the fluid flows from the leading edge of the blade into the blade channel, The blade channel flows out from the trailing edge of the blade. In the direction away from the rotation axis of the impeller, when the leading edge of the blade extends toward the wind exit side, the inlet of the blade is said to be swept backward; otherwise, the inlet of the blade is said to be swept forward. In the direction away from the rotation axis of the impeller, when the trailing edge of the blade extends toward the wind inlet side, the outlet of the blade is said to be curved forward; otherwise, the outlet of the blade is said to be curved backward.
  • the inlet of the first blade 212 is swept backward, and the inlet swept angle of the first blade 212 is L1, and L1 satisfies the relationship: 5 ° ⁇ L1 ⁇ 12 °.
  • the first blade 212 has a leading edge, and the intersection of the mid-arc surface (ie, the surface of equal thickness) of the first blade 212 and the leading edge of the first blade 212 is the first leading edge line.
  • the angle between the tangent at any point on the first leading edge line and the radial section ie, the section perpendicular to the fan axis) is equal to L1. Setting the inlet of the first blade 212 to bend backward and limit the range of L1 is beneficial to reduce the wind resistance of the airflow and generate sufficient atmospheric pressure.
  • the outlet of the first blade 212 is bent forward, and the angle of the outlet of the first blade 212 is L2, and L2 satisfies the relationship: 3 ° ⁇ L2 ⁇ 15 °.
  • the first blade 212 has a trailing edge, and the intersection of the mid-arc surface of the first blade 212 and the trailing edge of the first blade 212 is the first trailing edge line. The angle between the tangent at any point on the first trailing edge and the radial cross-section is equal to L2. Setting the outlet of the first blade 212 to bend forward and limit the range of L2 is beneficial to reduce the wind resistance of the airflow and generate sufficient atmospheric pressure.
  • the inlet of the second blade 222 is swept backward, and the inlet swept angle of the second blade 222 is L3, and L3 satisfies the relationship: 5 ° ⁇ L3 ⁇ 10 °.
  • the second blade 222 has a leading edge, and the intersection of the mid-arc surface of the second blade 222 and the leading edge of the second blade 222 is the second leading edge line.
  • the angle between the tangent at any point on the second leading edge and the radial cross-section is equal to L3. Setting the inlet of the second blade 222 to sweep backward and limit the range of L3 is beneficial to reduce the wind resistance of the airflow and generate sufficient atmospheric pressure.
  • the outlet of the second blade 222 is curved forward, and the outlet curved angle of the second blade 222 is L4, and L4 satisfies the relationship: 3 ° ⁇ L4 ⁇ 8 °.
  • the second blade 222 has a trailing edge, and the intersection of the mid-arc surface of the second blade 222 and the trailing edge of the second blade 222 is the second trailing edge line.
  • the angle between the tangent at any point on the second trailing edge and the radial cross-section is equal to L4. Setting the outlet of the second blade 222 to bend forward and limit the range of L4 is beneficial to reduce the wind resistance of the airflow and generate sufficient atmospheric pressure.
  • the exit angle of the second blade 222 and the entrance angle of the first blade 212 are no more than 10 °, and the entrance angle of the second blade 222 and the reference angle of the first blade are no more than 5 °, where the first blade reference angle is the inverse tangent function angle of the tangent of the inlet angle of the first blade 212 after the reference flow coefficient.
  • the inlet angle of the first blade 212 is W2
  • the inlet angle of the second blade 222 is W4
  • the outlet angle of the second blade 222 is W5
  • Fi is the flow coefficient.
  • the size of the inlet angle W1 of the first blade 212, the inlet angle W3 and the outlet angle W4 of the second blade 222 have affected the wind output characteristics of the first-stage impeller 21 and the second-stage impeller 22 to a certain extent.
  • the axial width of the first blade 212 is B1
  • the axial width of the second blade 222 is B2.
  • B1 and B2 satisfy the relationship: 1.4 * B2 ⁇ B1 ⁇ 3 * B2. It can be seen from FIG. 5 that the axial width of the blade refers to the maximum axial dimension of the blade, that is, the length of the projection line segment formed when the blade is projected on the rotation axis of the impeller.
  • the total axial width of the counter-rotating fan 100 is limited, and the rational distribution of the axial width of the first blade 212 and the second blade 222 is conducive to ensuring the wind output characteristics of the counter-rotating fan 100.
  • the counter-rotating fan 100 has better air output characteristics. At this time, the air output of the counter-rotating fan 100 is larger and the air pressure is larger.
  • the outlet airflow of the first-stage impeller 21 is equivalent to providing reverse pre-rotation.
  • the first-stage impeller 21 rotates clockwise
  • the airflow at the outlet of the first-stage impeller 21 brings out a clockwise airflow swirl
  • the second-stage impeller 22 rotates counterclockwise
  • the airflow at the outlet of the second-stage impeller 22 brings out a counterclockwise airflow .
  • the two-stage impeller rotates at the same time, and finally, some of the airflow swirls in the airflow exiting the second-stage impeller 22 will cancel each other out.
  • the more the airflow swirls in the outlet airflow the stronger the fan's function, that is, the greater the air volume and pressure.
  • the speed of the wind wheel can be increased, and the blade shape can also be modified. From the perspective of modifying the airfoil shape, the best solution is to increase the axial length of the first blade 212. Because if the axial length of the second blade 222 is increased, although the airflow swirl will increase, the direction of the airflow out of the axis deviates from the axis, resulting in a short air supply distance.
  • the axial length of the first blade 212 is increased, not only will the airflow swirl increase, but also because the airflow generated by the first blade 212 is superimposed on the airflow generated by the second blade 222, according to the analysis result of the superposition of the airflow direction vector, the final airflow The direction of the wind will not deviate from the axis to ensure that the axial fan has a long enough air supply distance.
  • the reason why the increase in the axial length of the first blade 212 can increase the airflow vortex is because under a sufficiently long axial length, the airflow can rotate through a sufficient rotation angle, thereby generating enough airflow vortex.
  • the first-stage impeller 21 generates enough airflow vortices.
  • the second-stage impeller 22 generates the superposed airflow vortices, the remaining airflow vortices are still sufficient, so that the final air volume and pressure of the rotary fan 100 are relatively large.
  • the axial gap between the first blade 212 and the second blade 222 is Bg
  • the axial width of the first blade 212 is B1
  • Bg and B1 satisfy the relationship: 0.1 * B1 ⁇ Bg ⁇ 0.8 * B1. Projecting the first blade 212 and the second blade 222 on the rotation axis can form two collinear line segments, and the gap length between the two line segments is equal to the axial direction between the first blade 212 and the second blade 222 Clearance Bg.
  • the size of the axial gap between the first blade 212 and the second blade 222 can directly affect the performance of the output wind field of the counter-rotating fan 100.
  • Bg / B1 is in the range of 0.1-0.8, the counter-rotating fan 100 Can have better wind characteristics.
  • Bg satisfies the relationship: 10mm ⁇ Bg ⁇ 15mm.
  • the value of Bg is not limited to the above range, and in practical applications, Bg can be adjusted adaptively according to actual needs.
  • the diameter of the end of the first hub 211 on the wind exit side is DH2
  • the diameter of the second hub 221 is DH3.
  • DH2 and DH3 satisfy the relationship: 0.9 ⁇ DH2 / DH3 ⁇ 1.1. It can be understood that the size of DH2 / DH3 directly affects the superposition relationship between the wind field output by the first-stage impeller 21 and the wind field output by the second-stage impeller 22.
  • DH2 / DH3 when DH2 / DH3 is in the range of 0.9-1.1, the interaction between the wind field output by the first-stage impeller 21 and the wind field output by the second-stage impeller 22 is relatively strong, thereby ensuring the output of the counter-rotating fan 100 It can output wind field with large wind pressure and long supply distance.
  • the specific ratio of DH2 to DH3 can be adjusted according to actual needs, and is not limited to the above range.
  • the rim diameter DS1 of the first-stage impeller 21 is equal to the rim diameter DS2 of the second-stage impeller 22.
  • the same function can be achieved.
  • the number of the first blades 212 is BN1
  • the number of the second blades 222 is BN2
  • BN1 and BN2 satisfy the relationship: BN2-3 ⁇ BN1 ⁇ BN2 + 5.
  • the values of BN1 and BN2 will directly affect the wind field superposition results of the first-stage impeller 21 and the second-stage impeller 22. According to actual experiments, when BN1 and BN2 satisfy the relationship: BN2-3 ⁇ BN1 ⁇ BN2 +5, the wind field superposition effect of the first-stage impeller 21 and the second-stage impeller 22 is the best, and the wind output characteristics of the counter-rotating fan 100 are better ensured.
  • the values of BN1 and BN2 can be specifically selected according to actual conditions, and are not limited to the above range.
  • first-stage impeller 21 and the second-stage impeller 22 there is only one set of the first-stage impeller 21 and the second-stage impeller 22.
  • first-stage impeller 21 and the second-stage impeller 22 may be provided in multiple groups, and at this time, the same function can be achieved.
  • the counter-rotating fan 100 can reduce noise and improve wind pressure by optimizing the design of a series of structures and parameters for the air guide structure 10 and the impeller assembly 20.
  • the counter-rotating fan 100 according to a specific embodiment of the present invention will be described below with reference to FIGS. 1 to 13.
  • the counter-rotating fan 100 includes an air cylinder 14, an inlet grille 11, a first-stage impeller 21, a first motor, a second-stage impeller 22, a second motor, and an outlet grille 12.
  • the first-stage impeller 21 includes a plurality of circumferentially spaced first blades 212
  • the second-stage impeller 22 includes a plurality of circumferentially spaced second blades 222
  • the pressure surface of the first blade 212 and the suction force of the second blade 222 The surfaces are arranged oppositely, and the bending directions of the first blade 212 and the second blade 222 are opposite.
  • Nine supporting wind guide sheets 111 are provided on the air intake grille 11, and a wind guide cover 13 is provided on the air intake side of the air intake grille 11, and the side wind side of the air guide cover 13 is a hemispherical surface.
  • the diameter Ddao of the upper hemisphere of the air deflector 13 0.9DH1
  • the inlet installation angle W0 of the airfoil supporting the air deflector 111 0
  • the outlet installation angle W1 30 °
  • the bending angle T0 35 °
  • the clearance angle Tg 5 °.
  • FIG. 11 The noise test of the counter-rotating fan 100 of this embodiment and the counter-rotating fan 100 with the deflector 13 removed is shown in FIG. 11. It can be seen that in the case of different air volumes, the arrangement of the deflector 13 reduces noise.
  • a noise test is performed on the counter-rotating fan 100 of this embodiment and the counter-rotating fan 100 replaced with the ordinary inlet grille 11, and the comparison result obtained is shown in FIG. 12.
  • the normal grille 11 is used, which means that the grille is no longer bent. It can be seen that in the case of different air volumes, the curved grille 11 in the embodiment of the present invention reduces noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种对旋风扇(100),包括叶轮组件(20)及导风结构(10)。叶轮组件(20)包括旋转方向相反的第一级叶轮(21)和第二级叶轮(22),第一级叶轮(21)的第一叶片(212)的压力面朝向第二级叶轮(22)的第二叶片(222)的吸力面设置,在由叶根到叶尖的方向上,第一叶片(212)和第二叶片(222)均朝向各自的旋转方向弯曲。导风结构(10)包括导流罩(13),导流罩(13)设置在第一级叶轮(21)的进风侧的中心位置,导流罩(13)的进风侧表面的至少部分形成为导流面,导流面在朝向第一级叶轮(21)的方向上远离对旋风扇(100)的轴线延伸。该对旋风扇可以降低噪音、提高风压。

Description

对旋风扇
相关申请的交叉引用
本申请基于申请号为201811198045.9、申请日为2018年10月15日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及风扇技术领域,特别是涉及一种对旋风扇。
背景技术
一般的对旋轴流风机,相对于应用较广的多翼离心风机而言,具有噪音高、风压低的特点。尤其当对旋轴流风机作小型化制造后,噪音高、风压低的特点就更加突出。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种对旋风扇,所述对旋风扇在结构参数合理化设计后,可提高风压、降低噪音。
根据本发明实施例的对旋风扇,包括:叶轮组件,所述叶轮组件包括旋转方向相反的第一级叶轮和第二级叶轮,所述第一级叶轮包括第一轮毂和连接在所述第一轮毂上的多个第一叶片,所述第二级叶轮包括第二轮毂和连接在所述第二轮毂上的多个第二叶片,所述第一叶片的压力面朝向所述第二叶片的吸力面设置,在由叶根到叶尖的方向上,所述第一叶片和所述第二叶片均朝向各自的旋转方向弯曲;及导风结构,所述导风结构包括进风格栅,所述进风格栅包括多个沿周向排布的支撑导风片,在朝向出风侧的方向上,所述支撑导风片弯曲设置,所述支撑导风片的弯曲方向与所述第一叶片的旋转方向相反,所述支撑导风片的进口安装角小于所述支撑导风片的出口安装角。
根据本发明实施例的对旋风扇,通过设置在朝向出风侧的方向上弯曲的支撑导风片,保证了支撑导风片朝向第一叶片的进口导风,降低了使进风噪音,且降低对旋风扇的压损。
根据本发明一个实施例,所述导风结构包括导流罩,所述导流罩设置在所述第一级叶轮的进风侧的中心位置,所述导流罩的进风侧表面的至少部分形成为导流面,所述导流面在朝向所述第一级叶轮的方向上远离所述对旋风扇的轴线延伸。
根据本发明一个实施例,所述导流面为半球面,所述半球面的直径至少为所述第一轮毂在进风侧一端的直径的0.8倍,且所述半球面的直径不超过所述第一轮毂在进风侧一端的直径的1.1倍。
根据本发明一个实施例,所述支撑导风片的进口安装角为0°,所述支撑导风片的出口安装角至少为18°,且所述支撑导风片的出口安装角不超过42°。
根据本发明一个实施例,所述支撑导风片从叶根端到叶尖端,朝向与所述第一叶片的旋转方向相反的方向弯曲,平均角为360°均分成与所述支撑导风片的叶片数相等份数时,每份所占的角度,所述平均角相比每个所述支撑导风片的弯角至少大4°,所述平均角相比每个所述支撑导风片的弯角不超过15°。
根据本发明一个实施例,从进风侧到出风侧的方向上,所述第一轮毂的直径逐渐增大,其中,所述第一轮毂在进风侧一端直径至少为所述第一轮毂在出风侧一端直径的0.5倍,所述第一轮毂在进风侧一端直径不超过所述第一轮毂在出风侧一端直径的0.85倍;所述第一轮毂在出风侧一端的直径至少为所述第一级叶轮轮缘直径的0.25倍,所述第一轮毂在出风侧一端的直径不超过所述第一级叶轮轮缘直径的0.45倍。
根据本发明一个实施例,所述第二级叶轮的轮毂比为所述第二轮毂的直径与所述第二级叶轮的轮缘直径之间的比值,所述第二级叶轮的轮毂比至少为0.45,且所述第二级叶轮的轮毂比不超过0.7。
根据本发明一个实施例,所述第一叶片的进口向后弯掠,所述第一叶片的进口弯掠角度为L1,L1满足关系式:5°≤L1≤12°。
根据本发明一个实施例,所述第一叶片的出口向前弯掠,所述第一叶片的出口弯掠角度为L2,L2满足关系式:3°≤L2≤15°。
根据本发明一个实施例,所述第二叶片的进口向后弯掠,所述第二叶片的进口弯掠角度为L3,L3满足关系式:5°≤L3≤10°。
根据本发明一个实施例,所述第二叶片的出口向前弯掠,所述第二叶片的出口弯掠角度为L4,L4满足关系式:3°≤L4≤8°。
根据本发明一个实施例,所述第二叶片的出口角与所述第一叶片的进口角相差不超过10°,所述第二叶片的进口角与第一叶片参考角相差不超过5°,其中,所述第一叶片参考角为所述第一叶片进口角的正切值在参考流量系数后的反正切函数角。
根据本发明一个实施例,所述第一叶片的轴向宽度至少为所述第二叶片轴向宽度的1.4倍,且所述第一叶片的轴向宽度不超过所述第二叶片轴向宽度的3倍。
根据本发明一个实施例,所述第一叶片与所述第二叶片之间的轴向间隙至少为所述 第一叶片轴向宽度的0.1倍,且所述轴向间隙不超过所述第一叶片轴向宽度的0.8倍。
根据本发明一个实施例,所述第一轮毂在出风侧一端直径至少为所述第二轮毂直径的0.9倍,且所述第一轮毂在出风侧一端直径不超过所述第二轮毂直径的1.1倍。
根据本发明一个实施例,所述第二叶片相比所述第一叶片不多过3片,且所述第一叶片相比所述第二叶片不多过5片。
根据本发明一个实施例,所述叶轮组件为轴向设置的多组。
根据本发明一个实施例,所述第一叶片的叶型和所述第二叶片的叶型不同。
根据本发明一个实施例,所述第一叶片的轮缘直径等于所述第二叶片的轮缘直径,或者,所述第一叶片的轮缘直径不等于所述第二叶片的轮缘直径。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一个实施例的对旋风扇的风道组成剖面结构图。
图2是本发明的进风格栅正面图。
图3是本发明的进风格栅叶型截面型线图。
图4是本发明的进风格栅参数定义说明图。
图5是本发明实施例的对旋风扇的参数示意图。
图6是本发明实施例的第一级叶轮的正视图。
图7是本发明实施例的第一级叶轮的侧视图。
图8是本发明实施例的第二级叶轮的正视图。
图9是本发明实施例的第二级叶轮的侧视图。
图10是第一叶片和第二叶片的参数定义说明图。
图11是本专利实施例导流罩结构噪音测试数据。
图12是本专利实施例进风格栅结构噪音测试数据。
图13是本专利同转速风压提升数据。
附图标记:
对旋风扇100、
导风结构10、进风格栅11、支撑导风片111、出风格栅12、导流罩13、风筒14、
叶轮组件20、
第一级叶轮21、第一轮毂211、第一叶片212、
第二级叶轮22、第二轮毂221、第二叶片222。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图13描述根据本发明实施例的对旋风扇100。
如图1所示,根据本发明实施例的对旋风扇100,包括:导风结构10及叶轮组件20。
叶轮组件20包括旋转方向相反的第一级叶轮21和第二级叶轮22,第一级叶轮21包括第一轮毂211和连接在第一轮毂211上的多个第一叶片212,第二级叶轮22包括第二轮毂221和连接在第二轮毂221上的多个第二叶片222,第一叶片212的压力面朝向第二叶片222的吸力面设置。其中,需要说明的是,压力面、吸力面均是本领域所公知的叶片惯用结构名称,叶轮上叶片压力面所对应一侧为该叶轮的出风侧,叶轮上叶片吸力面所对应一侧为该叶轮的进风侧。
也就是说,对旋风扇100运转时气流流动的方向,与从第一级叶轮21到第二级叶 轮22的方向基本一致。在由叶根到叶尖的方向上,第一叶片212朝向其旋转方向弯曲。在由叶根到叶尖的方向上,第二叶片222朝向其旋转方向弯曲,即第一叶片212和第二叶片222的弯曲方向相反。
在本发明实施例中,将对旋风扇100第一级叶轮21与第二级叶轮22对旋设置,是利用第一级叶轮21旋转产生的风场来影响第二级叶轮22的风场,不仅能改变第二级叶轮22的出风风压,也能改变第二级叶轮22的风速、风场扩散锥角,甚至是涡流状况等。第二级叶轮22旋转时会形成为环向涡流状风流,当第一级叶轮21与第二级叶轮22同时旋转时,在第一级叶轮21的风场影响下,第二级叶轮22旋转形成的环向涡流状风流会出现消旋和续航的现象。
需要说明的是,本发明实施例的对旋风扇100可应用于电风扇、循环扇、换气扇、空调风扇等需要送出空气的设备中,本发明实施例的对旋风扇100主要用于促进气流流动而非换热。
如图1所示,导风结构10包括进风格栅11,进风格栅11临近第一级叶轮21设置,进风格栅11包括多个沿周向排布的支撑导风片111,进风格栅11不仅起到支撑作用,进风格栅11还起到导风作用。
具体地,在朝向出风侧的方向上,支撑导风片111弯曲设置,支撑导风片111的弯曲方向与第一叶片212的旋转方向相反,支撑导风片111的进口安装角为W0,支撑导风片111的出口安装角为W1,W0与W1满足关系式:W0<W1。
这里,由于进风格栅11与第一级叶轮21相对转动,进风格栅11包括多个沿周向排布的支撑导风片111,因此进风格栅11可以看成是导风风轮,支撑导风片111看成是该导风风轮的叶片。由于支撑导风片111的弯曲方向与第一叶片212的旋转方向相反,因此可以将进风格栅11看成是与第一级叶轮21转动方向相反的导风风轮。
其中,支撑导风片111在轴向上呈弯曲状态,为进一步限定支撑导风片111弯曲的特征,本文中提出支撑导风片111的进口安装角W0,支撑导风片111的出口安装角W1。支撑导风片111的进口安装角、出口安装角的名称,是引用叶片的进口角和出口角而来。即支撑导风片111相当于叶片,支撑导风片111的进口安装角相当于叶片进口角,支撑导风片111的出口安装角相当于叶片出口角。
而叶片的进口角、出口角均是本领域所公知的叶片惯用结构名称,叶片在进口处的叶片角为叶片的进口角,叶片在进口处的叶片角为叶片的进口角。
下文中关于支撑导风片111的进口安装角W0、支撑导风片111的出口安装角W1如何计算均有明确说明,后文中提到第一叶片212、第二叶片222的进口角、出口角,也均分 别采用与进口安装角W0、出口安装角W1相同的计算方式,这里不再对进口角、出口角如何计算赘述。
支撑导风片111的进口安装角W0,等于支撑导风片111的中弧线在进风端处的切线与风扇轴线之间的夹角。支撑导风片111的出口安装角W1,等于支撑导风片111的中弧线在出风端处的切线与风扇轴线之间的夹角。
以图2和图3所示的一种进风格栅11为例,支撑导风片111的中弧线为支撑导风片111的中弧面与参考圆柱面之间的交线。参考圆柱面为与风扇轴线同轴的圆柱面,支撑导风片111两侧相对表面为翼面,支撑导风片111的中弧面为两侧翼面之间的等距参考面。图3所示的近似跑道形的形状为参考圆柱面在支撑导风片111上形成的截面形状,支撑导风片111的中弧面与该截面的交线形成图示的中弧线,中弧线两端切线与风扇轴线分别形成夹角W0和W1。
进风格栅11上的支撑导风片111作弯曲设置,且在朝向出风侧的方向上,支撑导风片111的弯曲方向与第一叶片212的旋转方向相反,可将流向第一级叶轮21的气流朝向与第一级叶轮21的旋转方向相反的方向导流,改变了第一级叶轮21的进风侧风场。进风格栅11上支撑导风片111对于第一级叶轮21的作用,类似于第一级叶轮21对于第二级叶轮22的作用,最终支撑导风片111对第一级叶轮21的影响,进而影响到第二级叶轮22的出风风场。这样即使叶轮组件20的转速即使下降,出风风压仍能提高。
这里提出支撑导风片111的进口安装角W0小于支撑导风片111的出口安装角W1,是为了保证支撑导风片111朝向第一叶片212的进口导风,不仅使进风噪音减小,而且有利于降低压损。根据本发明实施例的对旋风扇100,通过设置在朝向出风侧的方向上弯曲的支撑导风片111,保证了支撑导风片111朝向第一叶片212的进口导风,降低了使进风噪音,且降低对旋风扇100的压损。
在一些实施例中,导风结构10包括导流罩13,导流罩13设置在第一级叶轮21的进风侧的中心位置,导流罩13的进风侧表面的至少部分形成为导流面,导流面在朝向第一级叶轮21的方向上远离对旋风扇100的轴线延伸。
可以理解的是,在风轮的径向面(与风扇轴线相垂直的面)上,距离风扇轴线越近处线速度越小,气流增压越小;反之距离叶尖端越近处,气流增压越大。因此带有导流面的导流罩13的设计,有利于将流向第一轮毂211的气流,导向第一叶片212,一方面有利于气流避开第一轮毂211,减少气流紊流及噪音,减小风压损耗,另一方面将气流导向做功大的区域,可提高出风风压。这种对旋风扇100在上下游阻力较大场景中,作用尤其显著。由此,在第一级叶轮21的进风侧的中心位置设置导流罩13可将风扇进 风尽可能导向叶轮组件20增压强的区域,避免气流在叶根端附近造成过多紊流、噪音,从而有利于增强对旋风扇100的风压,降低噪音。
具体地,导流罩13的远离进风格栅11的一侧表面为半球面,即将导流面设置成半球面,半球面加工最简单。当然,导流面也可以选择其他回转形面,例如椭球面、双曲面等,这里不作限制。
可选地,当导流面为半球面时,半球面的直径至少为第一轮毂211在进风侧一端的直径的0.8倍,且半球面的直径不超过第一轮毂211在进风侧一端的直径的1.1倍。参考图5,半球面的直径为Ddao,第一轮毂211在进风侧一端的直径为DH1,Ddao与DH1满足关系式:0.8*DH1≤Ddao≤1.1*DH1。此时如果半球面的直径过小,第一轮毂211边缘处仍有较大过风量,造成风压损耗及噪音。而如果半球面的直径过大,风扇进风面积受影响,会导致出风量下降。因此此处选择0.8*DH1≤Ddao≤1.1*DH1,可充分利用半球面的导风效果,又避免直径过大导致进风量的降低。在一些实施例中,导风结构10包括风筒14,风筒14形成为轴向两端敞开的筒形,叶轮组件20设置在风筒14内。风筒14的设置一方面能够导向,延长风扇的送风距离,另一方面避免叶轮组件20的周围过早泄压,保证从第二级叶轮22处出风的风压较大。
具体地,风筒14在轴向两端设置有进风格栅11和出风格栅12,第一级叶轮21临近进风格栅11设置,第二级叶轮22临近出风格栅12设置。进风格栅11和出风格栅12的设置支撑风筒14,在图1的示例中,第一级叶轮21由第一电机驱动,第二级叶轮22由第二电机驱动,第一电机固定在进风格栅11上,第二电机固定在出风格栅12上。
也有的实施例中,第一级叶轮21和第二叶轮由同一个电机驱动,其中一个叶轮上连接转向机构,此时电机可固定在进风格栅11和出风格栅12上,在此不作限制。
可选地,支撑导风片111的进口安装角W0为0°,支撑导风片111的出口安装角W1满足18°≤W1≤42°。支撑导风片111的进口安装角和出口安装角的设计,是适应常规的轴流风轮的叶片叶型特点,最大化提升对导风对风压的影响。这里可以理解的是,由于支撑导风片111设计在进风格栅11上,支撑导风片111的轴向尺寸不会过大。如果支撑导风片111的出口安装角W1不足18°时,导风效果太弱;而支撑导风片111的出口安装角W1超过42°时,导风无法很好契合第一级叶轮21的进风角度,反而可能会造成气流紊乱等现象。
在一些实施例中,支撑导风片111从叶根端到叶尖端,朝向与第一叶片212的旋转方向相反的方向弯曲,这样进风格栅11的形状是一种轴流风轮的防形,对风场影响效果更加明显。
具体地,如图4所示,这里设定进风格栅11具有平均角,平均角为360°均分成与支撑导风片111的叶片数相等份数时,每份所占的角度。平均角相比每个支撑导风片111的弯角至少大4°,平均角相比每个支撑导风片的弯角不超过15°。即,每个支撑导风片111的弯角T0与支撑导风片111的叶片数BN0之间满足关系式:(360°/BN0-15°)≤T0≤(360°/BN0-4°),相邻两个支撑导风片111之间的间隙角Tg满足4°≤Tg≤15°。这里支撑导风片111的弯角T0,指的是在同一径向截面(径向截面垂直于风扇轴线)上,支撑导风片111的叶根端与叶尖端之间所夹的中心角。支撑导风片111的间隙角Tg,指的是在同一径向截面上,支撑导风片111的叶尖端与弯曲方向上相邻支撑导风片111的叶根端之间所夹的中心角。这样限制支撑导风片111排布的疏密度,一方面避免出风量下降,另一方面为了减少局部涡流。
在一些实施例中,从进风侧到出风侧的方向上,第一轮毂211的直径逐渐增大。第一轮毂211在进风侧一端直径至少为第一轮毂211在出风侧一端直径的0.5倍,第一轮毂211在进风侧一端直径不超过第一轮毂211在出风侧一端直径的0.85倍。而且,第一轮毂211在出风侧一端的直径至少为第一级叶轮21轮缘直径的0.25倍,第一轮毂211在出风侧一端的直径不超过第一级叶轮21轮缘直径的0.45倍。
具体如5所示,第一轮毂211在进风侧一端的直径为DH1,第一轮毂211在出风侧一端的直径为DH2,DH1与DH2满足关系式:0.5*DH2≤DH1≤0.85*DH2,DH2=(0.25-0.45)*DS1,其中DS1为第一级叶轮21的轮缘直径。第一级叶轮21的轮缘直径也可以称为第一级叶轮21的直径,即第一级叶轮21上多个第一叶片212距离旋转轴线最远点所在圆的直径。
这里将第一轮毂211设置成朝向第二轮毂221的方向上直径逐渐增大,第一轮毂211的周面相当于另一个导流面,有利于将流向第二轮毂221的气流,导向第二叶片222,减少第二轮毂221处的紊流及噪音,进一步提高出风风压。
其中,第一轮毂211两端直径比例的限制,是为了保证第一轮毂211的周面能够起到明显导流效果。而且如果第一轮毂211在进风侧一端的直径过小,无法排开多个第一叶片212,因此两端合理的直径比例也能够保证第一叶片212合理排布。将第一轮毂211的直径尺寸与第一级叶轮21的轮缘直径进行限制,一方面保证叶片有足够的扫风面积,另一方面避免第一轮毂211直径过小导致抗扭能力较弱的情况。
在一些实施例中,第二轮毂221的直径为DH3,第二级叶轮22的轮缘直径为DS2,第二级叶轮22的轮毂比CD2=DH3/DS2,CD2满足关系式:0.45≤CD2≤0.7。这样设置有利于保证足够的扫风面积,充分利用导流罩13及其他导流结构,将导向第二叶片222 的气流进行做功加压,提高出风压力。第二级叶轮22的轮缘直径也可以称为第二级叶轮22的直径,即第二级叶轮22上多个第二叶片222距离旋转轴线最远点所在圆的直径。
为本领域为公知的是,叶轮的叶片均具有前缘和后缘(“后缘”也可称为“尾缘”),根据流体的流动方向来判断,流体从叶片前缘流入叶片通道,从叶片后缘流出叶片通道。在远离所述叶轮的旋转轴线的方向上,当叶片前缘朝向出风侧方向延伸的,称该叶片的进口向后弯掠;反之,则称该叶片的进口向前弯掠。在远离所述叶轮的旋转轴线的方向上,当叶片后缘朝向进风侧的方向延伸的,称叶片的出口向前弯掠;反之,则称叶片的出口向后弯掠。
在一些实施例中,第一叶片212的进口向后弯掠,第一叶片212的进口弯掠角度为L1,L1满足关系式:5°≤L1≤12°。这里,第一叶片212具有前缘,第一叶片212的中弧面(即等厚度面)与第一叶片212的前缘的交线为第一前缘线。第一前缘线上任一点的切线,与径向截面(即垂直于风扇轴线的截面)之间的夹角等于L1。将第一叶片212的进口设置成向后弯掠,且限制L1的范围,有利于减小气流风阻,产生足够大气压。
在一些实施例中,第一叶片212的出口向前弯掠,第一叶片212的出口弯掠角度为L2,L2满足关系式:3°≤L2≤15°。第一叶片212具有后缘,第一叶片212的中弧面与第一叶片212的后缘的交线为第一后缘线。第一后缘线上任一点的切线,与径向截面之间的夹角等于L2。将第一叶片212的出口设置成向前弯掠,且限制L2的范围,有利于减小气流风阻,产生足够大气压。
在一些实施例中,第二叶片222的进口向后弯掠,第二叶片222的进口弯掠角度为L3,L3满足关系式:5°≤L3≤10°。第二叶片222具有前缘,第二叶片222的中弧面与第二叶片222的前缘的交线为第二前缘线。第二前缘线上任一点的切线,与径向截面之间的夹角等于L3。将第二叶片222的进口设置成向后弯掠,且限制L3的范围,有利于减小气流风阻,产生足够大气压。
在一些实施例中,第二叶片222的出口向前弯掠,第二叶片222的出口弯掠角度为L4,L4满足关系式:3°≤L4≤8°。第二叶片222具有后缘,第二叶片222的中弧面与第二叶片222的后缘的交线为第二后缘线。第二后缘线上任一点的切线,与径向截面之间的夹角等于L4。将第二叶片222的出口设置成向前弯掠,且限制L4的范围,有利于减小气流风阻,产生足够大气压。
在一些实施例中,如图10所示,第二叶片222的出口角与第一叶片212的进口角相差不超过10°,第二叶片222的进口角与第一叶片参考角相差不超过5°,其中,第一 叶片参考角为第一叶片212的进口角的正切值在参考流量系数后的反正切函数角。
具体地,如图10所示,第一叶片212的进口角为W2,第二叶片222的进口角为W4,第二叶片222的出口角为W5,W2和W5满足关系式:(W2-10°)≤W5≤(W2+10°),(W4t-5°)≤W4≤(W4t+5°),其中:W4t=arctan{Fi*tan(W2)/[Fi+tan(W2)]},Fi为流量系数。
可以理解的是,第一叶片212的进口角W1、第二叶片222的进口角W3和出口角W4的大小在一定程度上影响了第一级叶轮21和第二级叶轮22的出风特性,经过多次试验证明,当第一叶片212的进口角W1,第二叶片222的进口角W3,第二叶片222的出口角W4满足上述关系式时,第一级叶轮21和第二级叶轮22的出风特性较好,出风量较大,送风距离较远。
在一些实施例中,第一叶片212的轴向宽度为B1,第二叶片222的轴向宽度为B2,B1和B2满足关系式:1.4*B2≤B1≤3*B2。由图5可知,叶片的轴向宽度指的是,叶片的最大轴向尺寸,即将叶片在叶轮的旋转轴线上做投影时,形成的投影线段的长度。
可以理解的是,一般情况下对旋风扇100的轴向总宽度是有限的,合理的分配的第一叶片212和第二叶片222的轴向宽度有利于保证对旋风扇100的出风特性。根据多次试验证明,当B1/B2位于1.4-3的范围内时,对旋风扇100具有较优的出风特性,此时对旋风扇100的出风量较大,出风风压较大。
这里需要说明的是,对于轴向宽度而言,有限的轴向宽度如何分配给两级叶轮,是一个值得研究的问题。对于第二级叶轮22而言,第一级叶轮21的出口气流相当于提供了反向预旋。例如第一级叶轮21顺时针旋转,第一级叶轮21出口的气流带出顺时针的气流旋,第二级叶轮22逆时针旋转,第二级叶轮22出口的气流带出逆时针的气流旋。两级叶轮同时旋转,最终第二级叶轮22出口的气流中的部分气流旋会相互抵消。
但是出口气流中气流旋越多,风扇做功能力越强,即风量、风压更大。要增加气流旋,可以提高风轮转速,也可以修改叶型。从修改叶型的角度出发,最佳的方案是增加第一叶片212的轴向长度。因为如果将第二叶片222的轴向长度增加,虽然气流旋会增加,但是气流的出风方向偏离轴线,导致送风距离不远。而如果将第一叶片212的轴向长度增加,不仅气流旋会增加,而且由于第一叶片212产生气流是叠加在第二叶片222产生气流中的,根据气流方向矢量叠加的分析结果,最终气流的出风方向不会偏离轴线,保证轴流风扇足够长的送风距离。
其中,之所以第一叶片212的轴向长度增加可以增加气流旋,是因为在足够长的轴向长度下,气流可以转过足够的转角,因而产生足够多的气流旋。第一级叶轮21产生 足够多的气流旋,在第二级叶轮22产生的气流旋叠加后,剩下的气流旋仍较足够,从而对旋风扇100最终的风量、风压较大。
在一些实施例中,第一叶片212与第二叶片222之间的轴向间隙为Bg,第一叶片212的轴向宽度为B1,Bg和B1满足关系式:0.1*B1≤Bg≤0.8*B1。将第一叶片212与第二叶片222在旋转轴线上做投影,可形成两条共线的线段,两条线段之间的间隙长度,等于第一叶片212与第二叶片222之间的轴向间隙Bg。
可以理解的是,第一叶片212和第二叶片222之间的轴向间隙大小可以直接影响对旋风扇100的输出风场性能,Bg/B1在0.1-0.8的范围内时,对旋风扇100可具有较优的出风特性。
可选地,Bg满足关系式:10mm≤Bg≤15mm。当然,这里需要说明的是,Bg的取值并不限于上述范围,在实际应用中Bg可以根据实际需要做出适应性调整。
在一些实施例中,第一轮毂211在出风侧一端的直径为DH2,第二轮毂221的直径为DH3,DH2与DH3满足关系式:0.9≤DH2/DH3≤1.1。可以理解的是,DH2/DH3的大小直接影响了第一级叶轮21输出的风场和第二级叶轮22输出的风场的叠加关系。根据多次试验,当DH2/DH3在0.9-1.1范围内时,第一级叶轮21输出的风场和第二级叶轮22输出的风场的相互影响较为强烈,从而保证了对旋风扇100输出可输出风压较大,送风距离较远的风场。当然,这里需要说明的是,DH2和DH3的具体比值可以根据实际需要进行调整,并不限于上述范围。
在图1的示例中,第一级叶轮21的轮缘直径DS1与第二级叶轮22的轮缘直径DS2相等。而第一级叶轮21的轮缘直径DS1与第二级叶轮22的轮缘直径DS2不等时,也能实现同等功能。
在一些实施例中,第一叶片212的数量为BN1,第二叶片222的数量为BN2,BN1和BN2满足关系式:BN2-3≤BN1≤BN2+5。
可以理解的是,BN1和BN2的数值将直接影响第一级叶轮21和第二级叶轮22的风场叠加结果,根据实际实验证明,当BN1和BN2满足关系式:BN2-3≤BN1≤BN2+5,第一级叶轮21和第二级叶轮22的风场叠加效果最好,较好地保证了对旋风扇100的出风特性。当然,在本发明的其他实施例中,BN1和BN2的取值可以根据实际情况做出具体选择,并不限于上述范围。
在图1中,第一级叶轮21和第二级叶轮22只有一组。本发明其他实施例中,第一级叶轮21和第二级叶轮22可以设置多组,此时也能实现同等功能。
综上所述,本发明实施例的对旋风扇100,通过对导风结构10、对叶轮组件20的 一系列结构、参数的优化设计,可以降低噪音,提升风压。
下面参考图1-图13描述本发明一个具体实施例的对旋风扇100。
实施例:
本发明实施例的对旋风扇100包括风筒14、进风格栅11、第一级叶轮21、第一电机、第二级叶轮22、第二电机、出风格栅12。第一级叶轮21包括周向间隔开的多个第一叶片212,第二级叶轮22包括周向间隔开的多个第二叶片222,第一叶片212的压力面与第二叶片222的吸力面相对设置,第一叶片212和第二叶片222的弯曲方向相反。在进风格栅11上设置有9条支撑导风片111,在进风格栅11的进风侧设有导流罩13,导流罩13的侧风侧为半球面。
其中,导流罩13上半球面的直径Ddao=0.9DH1,支撑导风片111的叶型进口安装角W0=0,出口安装角W1=30°,弯角T0=35°,间隙角Tg=5°。组成对旋轴流风机的第二级叶轮22的轮毂比CD2=0.7。
该实施例中,第一级叶轮21和第二级叶轮22的叶型关系为:W4=W1,(W3t-5°)≤W3≤(W3t+5°),B1=2.5B2,Bg=15mm;两级叶轮的轮缘直径(DS1、DS2)相同;两级叶轮的叶片数目相等,BN1=BN2=7。
将该实施例的对旋风扇100,与去掉导流罩13的对旋风扇100进行噪音测试,得出的对比结果如图11所示。可以看出在不同风量的情况下,导流罩13的设置均降低了噪音。
将该实施例的对旋风扇100,与替换成普通进风格栅11的对旋风扇100进行噪音测试,得出的对比结果如图12所示。这里普通进风格栅11,指的是格栅条不再做弯曲设计。可以看出在不同风量的情况下,本发明实施例中带弯曲的进风格栅11均降低了噪音。
将该实施例的对旋风扇100,与结构不作上述优化的对旋风扇100进行对比,可以看出本发明实施例的对旋风扇100最终得出压升非常突出。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (19)

  1. 一种对旋风扇,其特征在于,包括:
    叶轮组件,所述叶轮组件包括旋转方向相反的第一级叶轮和第二级叶轮,所述第一级叶轮包括第一轮毂和连接在所述第一轮毂上的多个第一叶片,所述第二级叶轮包括第二轮毂和连接在所述第二轮毂上的多个第二叶片,所述第一叶片的压力面朝向所述第二叶片的吸力面设置,在由叶根到叶尖的方向上,所述第一叶片和所述第二叶片均朝向各自的旋转方向弯曲;
    导风结构,所述导风结构包括进风格栅,所述进风格栅临近所述第一级叶轮设置,所述进风格栅包括多个沿周向排布的支撑导风片,在朝向出风侧的方向上,所述支撑导风片弯曲设置,所述支撑导风片的弯曲方向与所述第一叶片的旋转方向相反,所述支撑导风片的进口安装角小于所述支撑导风片的出口安装角。
  2. 根据权利要求1所述的对旋风扇,其特征在于,所述导风结构包括导流罩,所述导流罩设置在所述进风格栅的进风侧的中心位置,所述导流罩的进风侧表面的至少部分形成为导流面,所述导流面在朝向所述第一级叶轮的方向上远离所述对旋风扇的轴线延伸。
  3. 根据权利要求2所述的对旋风扇,其特征在于,所述导流面为半球面,所述半球面的直径至少为所述第一轮毂在进风侧一端的直径的0.8倍,且所述半球面的直径不超过所述第一轮毂在进风侧一端的直径的1.1倍。
  4. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述支撑导风片的进口安装角为0°,所述支撑导风片的出口安装角至少为18°,且所述支撑导风片的出口安装角不超过42°。
  5. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述支撑导风片从叶根端到叶尖端,朝向与所述第一叶片的旋转方向相反的方向弯曲,平均角为360°均分成与所述支撑导风片的叶片数相等份数时,每份所占的角度,所述平均角相比每个所述支撑导风片的弯角至少大4°,所述平均角相比每个所述支撑导风片的弯角不超过15°。
  6. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,从进风侧到出风侧的方向上,所述第一轮毂的直径逐渐增大;其中,
    所述第一轮毂在进风侧一端直径至少为所述第一轮毂在出风侧一端直径的0.5倍,所述第一轮毂在进风侧一端直径不超过所述第一轮毂在出风侧一端直径的0.85倍;
    所述第一轮毂在出风侧一端的直径至少为所述第一级叶轮轮缘直径的0.25倍,所 述第一轮毂在出风侧一端的直径不超过所述第一级叶轮轮缘直径的0.45倍。
  7. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第二级叶轮的轮毂比为所述第二轮毂的直径与所述第二级叶轮的轮缘直径之间的比值,所述第二级叶轮的轮毂比至少为0.45,且所述第二级叶轮的轮毂比不超过0.7。
  8. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第一叶片的进口向后弯掠,所述第一叶片的进口弯掠角度为L1,L1满足关系式:5°≤L1≤12°。
  9. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第一叶片的出口向前弯掠,所述第一叶片的出口弯掠角度为L2,L2满足关系式:3°≤L2≤15°。
  10. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第二叶片的进口向后弯掠,所述第二叶片的进口弯掠角度为L3,L3满足关系式:5°≤L3≤10°。
  11. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第二叶片的出口向前弯掠,所述第二叶片的出口弯掠角度为L4,L4满足关系式:3°≤L4≤8°。
  12. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第二叶片的出口角与所述第一叶片的进口角相差不超过10°,所述第二叶片的进口角与第一叶片参考角相差不超过5°,其中,所述第一叶片参考角为所述第一叶片进口角的正切值在参考流量系数后的反正切函数角。
  13. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第一叶片的轴向宽度至少为所述第二叶片轴向宽度的1.4倍,且所述第一叶片的轴向宽度不超过所述第二叶片轴向宽度的3倍。
  14. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第一叶片与所述第二叶片之间的轴向间隙至少为所述第一叶片轴向宽度的0.1倍,且所述轴向间隙不超过所述第一叶片轴向宽度的0.8倍。
  15. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第一轮毂在出风侧一端直径至少为所述第二轮毂直径的0.9倍,且所述第一轮毂在出风侧一端直径不超过所述第二轮毂直径的1.1倍。
  16. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第二叶片相比所述第一叶片不多过3片,且所述第一叶片相比所述第二叶片不多过5片。
  17. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述叶轮组件为轴向设置的多组。
  18. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第一叶片的叶型和所述第二叶片的叶型不同。
  19. 根据权利要求1-3中任一项所述的对旋风扇,其特征在于,所述第一叶片的轮缘直径等于所述第二叶片的轮缘直径,或者,所述第一叶片的轮缘直径不等于所述第二叶片的轮缘直径。
PCT/CN2018/122549 2018-10-15 2018-12-21 对旋风扇 WO2020077814A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/283,534 US11506211B2 (en) 2018-10-15 2018-12-21 Counter-rotating fan
JP2021540348A JP7092433B2 (ja) 2018-10-15 2018-12-21 正逆回転ファン
EP18937456.4A EP3842644B1 (en) 2018-10-15 2018-12-21 Counter-rotating fan
KR1020217010044A KR102518997B1 (ko) 2018-10-15 2018-12-21 이중 반전 팬

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811198045.9A CN111043063B (zh) 2018-10-15 2018-10-15 对旋风扇
CN201811198045.9 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020077814A1 true WO2020077814A1 (zh) 2020-04-23

Family

ID=70230597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122549 WO2020077814A1 (zh) 2018-10-15 2018-12-21 对旋风扇

Country Status (6)

Country Link
US (1) US11506211B2 (zh)
EP (1) EP3842644B1 (zh)
JP (1) JP7092433B2 (zh)
KR (1) KR102518997B1 (zh)
CN (1) CN111043063B (zh)
WO (1) WO2020077814A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130483A4 (en) * 2020-10-10 2023-11-22 GD Midea Heating & Ventilating Equipment Co., Ltd. FAN DEVICE AND OUTDOOR UNIT OF AN AIR CONDITIONER

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023948A4 (en) * 2019-12-26 2023-03-08 Guangdong Midea White Home Appliance Technology Innovation Center Co., Ltd. OUTDOOR UNIT OF AN AIR CONDITIONER
CN111282381A (zh) * 2020-04-24 2020-06-16 山东新阳光环保设备股份有限公司 一种双级套旋湿式除尘洗气机
TWI742712B (zh) * 2020-06-05 2021-10-11 奇鋐科技股份有限公司 扇葉結構
US11225974B2 (en) 2020-06-23 2022-01-18 Asia Vital Components Co., Ltd. Fan impeller structure
CN111963461A (zh) * 2020-08-12 2020-11-20 西安陕鼓动力股份有限公司 一种新型对旋风机
CN112128124A (zh) * 2020-09-28 2020-12-25 西南电子技术研究所(中国电子科技集团公司第十研究所) 电子设备风冷散热轴流冷却风机
CN114320958B (zh) * 2020-10-10 2022-12-06 广东美的暖通设备有限公司 一种风机装置及空调室外机
CN114322112B (zh) * 2020-10-10 2023-12-29 广东美的暖通设备有限公司 一种空调室外机
CN117889497A (zh) * 2020-10-10 2024-04-16 广东美的暖通设备有限公司 空调室外机
CN114320977B (zh) * 2020-10-10 2023-09-29 广东美的暖通设备有限公司 一种风机装置及空调室外机
US20220170469A1 (en) * 2020-12-02 2022-06-02 Robert Bosch Gmbh Counter-Rotating Fan Assembly
CN114673685B (zh) * 2020-12-25 2024-07-12 广东美的白色家电技术创新中心有限公司 风机叶片叶型构建方法、风机叶片、风机设备和储存介质
CN114688049B (zh) * 2020-12-25 2024-02-20 广东美的白色家电技术创新中心有限公司 风机组件和空调器
CN114963483B (zh) * 2021-02-20 2023-07-07 浙江盾安人工环境股份有限公司 分液器
JP2024513926A (ja) 2021-04-09 2024-03-27 エルジー エナジー ソリューション リミテッド 電極組立体、バッテリセル、バッテリセル加工装置、これを含むバッテリパック及び車両
US11486402B1 (en) * 2021-04-16 2022-11-01 Stokes Technology Development Ltd. Counter-rotating axial air moving device structure
FI129583B (fi) * 2021-04-29 2022-05-13 Napalmi Tietotekniikka Oy Puhallin
US11333172B1 (en) * 2021-10-14 2022-05-17 Stokes Technology Development Ltd. Air moving device with stator blade structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403718A (zh) * 2001-09-10 2003-03-19 台达电子工业股份有限公司 组合式风扇及其扇框构造
CN1614242A (zh) * 2004-11-29 2005-05-11 西安交通大学 具有可调进口导叶的对旋轴流风机
JP2007303432A (ja) * 2006-05-15 2007-11-22 Denso Corp 送風装置
CN201615072U (zh) * 2010-02-11 2010-10-27 天津市通风机厂 一种双级对旋双向射流风机
CN202628549U (zh) * 2012-05-24 2012-12-26 唐山开滦广汇设备制造有限公司 矿用抽出式液压对旋风机
CN107795523A (zh) * 2016-09-05 2018-03-13 博世电动工具(中国)有限公司 导流器和包括其的电动工具

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936948A (en) * 1954-10-15 1960-05-17 Eck Bruno Christian Axial blower with cone-shaped hub
WO2000004292A1 (en) * 1998-07-15 2000-01-27 Keenlink International Ltd. Inclined flow air circulation system
US6129528A (en) 1998-07-20 2000-10-10 Nmb Usa Inc. Axial flow fan having a compact circuit board and impeller blade arrangement
JP3348689B2 (ja) 1999-05-12 2002-11-20 ダイキン工業株式会社 ファンおよびその製造方法
JP2001304183A (ja) 2000-04-19 2001-10-31 Isuzu Motors Ltd テーパー形状のハブを有する冷却ファン
EP2458223B1 (en) * 2003-03-13 2020-01-01 Sanyo Denki Co., Ltd. Axial-flow fan with double impellers
JP4128194B2 (ja) * 2005-09-14 2008-07-30 山洋電気株式会社 二重反転式軸流送風機
KR101328559B1 (ko) * 2006-02-03 2013-11-13 한라비스테온공조 주식회사 축류팬
JP2007263085A (ja) 2006-03-30 2007-10-11 Japan Servo Co Ltd 2重反転ファン
JP2008014147A (ja) 2006-07-03 2008-01-24 Nippon Densan Corp 直列式軸流ファン
JP2008038639A (ja) * 2006-08-02 2008-02-21 Nippon Densan Corp 直列式軸流ファン
US20090263238A1 (en) * 2008-04-17 2009-10-22 Minebea Co., Ltd. Ducted fan with inlet vanes and deswirl vanes
JP2010185443A (ja) 2009-02-13 2010-08-26 Nippon Densan Corp 直列式軸流ファン
JP4949537B2 (ja) 2009-06-28 2012-06-13 バルミューダ株式会社 軸流ファン
KR20110085646A (ko) * 2010-01-21 2011-07-27 엘지전자 주식회사 송풍장치 및 이를 구비하는 실외기
KR101253201B1 (ko) * 2011-10-13 2013-04-10 엘지전자 주식회사 공기조화장치
JP6084368B2 (ja) 2012-04-10 2017-02-22 シャープ株式会社 プロペラファンおよびこれを備えた流体送り装置、扇風機ならびにプロペラファンの成形用金型
JP2014043780A (ja) * 2012-08-24 2014-03-13 Sanyo Denki Co Ltd 直列型軸流ファン
JP5709921B2 (ja) 2013-03-29 2015-04-30 リズム時計工業株式会社 二重反転式送風機
JP2014238059A (ja) 2013-06-07 2014-12-18 日本電産株式会社 直列式軸流ファン
DE102015204304A1 (de) * 2015-03-11 2016-09-15 Voith Patent Gmbh Axiallaufrad und Ventilator mit einem solchen Axiallaufrad
CN105221452A (zh) 2015-09-29 2016-01-06 小米科技有限责任公司 空气净化器及其送风装置
CN106930974B (zh) 2016-01-27 2023-02-17 广东美的环境电器制造有限公司 风轮及家用电器
CN106885355B (zh) * 2017-02-22 2019-07-30 美的集团股份有限公司 送风组件和空调器
WO2018152577A1 (en) * 2017-02-23 2018-08-30 Minetek Investments Pty Ltd Improvements in fans
CN206785692U (zh) * 2017-06-14 2017-12-22 湖北工程学院 对旋轴流式通风机及通风机组件
CN107165863A (zh) * 2017-07-12 2017-09-15 李小顺 一种工程轴流冷却塑料风扇
CN108458420A (zh) * 2018-03-20 2018-08-28 广东美的制冷设备有限公司 空调室外机和空调器
DE202018101941U1 (de) * 2018-04-10 2018-04-19 Jaro Thermal, Inc. Lüfter
CN108506236A (zh) * 2018-05-11 2018-09-07 宁波生久散热科技有限公司 增压型散热风扇及其使用方法
JP7119635B2 (ja) * 2018-06-22 2022-08-17 日本電産株式会社 軸流ファン
CN111412161B (zh) * 2019-01-04 2021-07-13 台达电子工业股份有限公司 串联式风扇

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403718A (zh) * 2001-09-10 2003-03-19 台达电子工业股份有限公司 组合式风扇及其扇框构造
CN1614242A (zh) * 2004-11-29 2005-05-11 西安交通大学 具有可调进口导叶的对旋轴流风机
JP2007303432A (ja) * 2006-05-15 2007-11-22 Denso Corp 送風装置
CN201615072U (zh) * 2010-02-11 2010-10-27 天津市通风机厂 一种双级对旋双向射流风机
CN202628549U (zh) * 2012-05-24 2012-12-26 唐山开滦广汇设备制造有限公司 矿用抽出式液压对旋风机
CN107795523A (zh) * 2016-09-05 2018-03-13 博世电动工具(中国)有限公司 导流器和包括其的电动工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3842644A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130483A4 (en) * 2020-10-10 2023-11-22 GD Midea Heating & Ventilating Equipment Co., Ltd. FAN DEVICE AND OUTDOOR UNIT OF AN AIR CONDITIONER

Also Published As

Publication number Publication date
EP3842644A4 (en) 2021-11-24
KR20210046800A (ko) 2021-04-28
KR102518997B1 (ko) 2023-04-05
EP3842644B1 (en) 2023-07-05
CN111043063A (zh) 2020-04-21
JP7092433B2 (ja) 2022-06-28
CN111043063B (zh) 2021-06-18
US11506211B2 (en) 2022-11-22
EP3842644A1 (en) 2021-06-30
US20210388839A1 (en) 2021-12-16
JP2022501548A (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020077814A1 (zh) 对旋风扇
US8784060B2 (en) Centrifugal fan
US10052931B2 (en) Outdoor cooling unit in vehicle air-conditioning apparatus
US20150226227A1 (en) Turbo fan and air conditioner
JP5971667B2 (ja) プロペラファン、送風装置及び室外機
JP6381811B2 (ja) 送風機および空気調和装置
JP2009203897A (ja) 多翼送風機
WO2017077564A1 (ja) 軸流ファン、及び、その軸流ファンを有する空気調和装置
CN110914553B (zh) 叶轮、送风机及空调装置
CN110506164B (zh) 螺旋桨式风扇及空调装置用室外机
WO2015098689A1 (ja) クロスフローファンの翼
WO2022191034A1 (ja) プロペラファンおよび冷凍装置
JP2001280288A (ja) 多翼送風機の羽根車構造
JP7150480B2 (ja) プロペラファン及びこれを備えた空気調和機用室外ユニット
TWI648473B (zh) 風扇
JP2002357194A (ja) 貫流ファン
JP2013096307A (ja) 送風機、送風機ユニット及び冷却塔
WO2020143153A1 (zh) 贯流风轮及空调器
TWI667417B (zh) 多翼式風機
US20210324874A1 (en) Impeller, fan, and air-conditioning apparatus
CN114893441A (zh) 叶片、叶轮及通风设备
KR20120079913A (ko) 횡류팬 및 이를 구비한 공기 조화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540348

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217010044

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018937456

Country of ref document: EP

Effective date: 20210324