WO2020039976A1 - 反射防止膜、光学素子及び反射防止膜の成膜方法 - Google Patents

反射防止膜、光学素子及び反射防止膜の成膜方法 Download PDF

Info

Publication number
WO2020039976A1
WO2020039976A1 PCT/JP2019/031593 JP2019031593W WO2020039976A1 WO 2020039976 A1 WO2020039976 A1 WO 2020039976A1 JP 2019031593 W JP2019031593 W JP 2019031593W WO 2020039976 A1 WO2020039976 A1 WO 2020039976A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical
optical element
optical surface
convex
Prior art date
Application number
PCT/JP2019/031593
Other languages
English (en)
French (fr)
Inventor
穣 澁谷
和生 川俣
涼 橋本
Original Assignee
株式会社タムロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムロン filed Critical 株式会社タムロン
Priority to CN201980027116.5A priority Critical patent/CN112534307B/zh
Publication of WO2020039976A1 publication Critical patent/WO2020039976A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to an antireflection film, an optical element including the same, and a method for forming the antireflection film.
  • An optical element having an antireflection film having a multilayer structure on a convex optical surface is known. It is desired that the antireflection film has low reflectance in a desired wavelength band and small unevenness of the reflected color.
  • the anti-reflection film provided on the optical element having the convex R-shaped optical surface may cause unevenness of the reflection color, impair the aesthetic appearance, and degrade the product quality. For example, in the peripheral portion of the convex optical surface, the film thickness becomes thinner than in the central portion, and the reflection characteristic shifts to the shorter wavelength side. Therefore, even if the reflection color is green at the central portion of the convex optical surface, the reflection color becomes red at the peripheral portion, which may cause unevenness of the reflection color.
  • the occurrence of unevenness in the reflection color in the anti-reflection film is caused by a convex optical surface having a portion where the inclination angle, which is the angle between the optical axis and the normal to the position, is 25 ° or more, ie, the maximum inclination angle is 25 ° or more This is particularly remarkable in the case of an optical element having a convex optical surface.
  • Each optical thin film constituting the multilayer structure is usually formed by a vacuum evaporation method or a sputtering method.
  • d0 is the film thickness at the center of the convex optical surface
  • is the inclination angle of the optical surface indicated by the angle between the normal and the optical axis at the measurement point.
  • the thickness of the optical thin film formed at the position where the inclination angle ⁇ of the convex optical surface is 25 ° is 0.91d0, the position at 60 ° is 0.5d0, and the position at 80 ° Is 0.17d0. That is, the thickness of the optical thin film becomes thinner as the inclination angle ⁇ of the convex optical surface becomes larger.
  • the thickness of the optical thin film becomes thinner at a portion closer to the peripheral portion than at the central portion.
  • the anti-reflection film has uneven reflection color. Even in practical use, the reflectance at the peripheral portion of the antireflection film increases at a specific wavelength, which leads to the occurrence of ghost.
  • Patent Literature 1 discloses a technique of forming a film while irradiating ions or plasma to a convex lens that rotates about the lens optical axis in a posture in which the lens optical axis is inclined at 70 ° with respect to the evaporation source. Have been. According to Patent Document 1, it is described that a film having excellent uniformity in film thickness and excellent in denseness can be formed by the effect of ion assist or plasma assist.
  • Patent Document 2 discloses a sputtering process in which sputter particles emitted from a metal target are deposited on a concave surface of an optical element to form a metal film, and the metal film is irradiated with an ion beam to form a metal film.
  • a film forming method is disclosed in which a re-sputtering process of emitting the released sputter particles again on the concave surface of the optical element and an oxidation process of irradiating the metal film with an oxygen radical beam to perform an oxidation process are disclosed.
  • sputter particles released from the metal film at the center of the concave surface are deposited on the peripheral portion of the concave surface, so that a metal film having a uniform thickness can be formed on the concave surface.
  • Example 2 of Patent Document 1 shows an optical thin film formed by an ion-assisted film forming method using LaTiO 3 as a vapor deposition source and using oxygen ions.
  • the optical thin film of Example 2 has a refractive index for light having a wavelength of 550 nm of 1.91 at the top of the lens and 1.93 at the periphery of the lens.
  • LaTiO 3 is a material that can achieve a refractive index of 2.10 for light having a wavelength of 550 nm.
  • the porosity and the filling rate of the optical thin film of Example 2 are calculated by the Lorentz-Lorentz relational expression, and the porosity is 15% by volume and the filling rate is 85% by volume.
  • Such an optical thin film having many voids is sparse and therefore has low physical strength and low physical durability.
  • a change in spectral characteristics and a further decrease in durability occur.
  • LaTiO 3 is used as a high refractive index material, it is optically disadvantageous if the refractive index of the high refractive index material is low.
  • the film forming method disclosed in Patent Document 1 forms a uniform film thickness by rotating a convex lens about an optical axis. Therefore, film formation cannot be performed simultaneously on two or more lenses, and there is also a disadvantage that productivity is low.
  • Patent Document 2 there is a disadvantage that the film forming method disclosed in Patent Document 2 cannot be applied to the convex optical surface of the optical element. This is because, when an ion beam is applied to the metal film formed on the convex optical surface in the sputtering process, the sputtered particles emitted from the convex optical surface travel in a direction away from the convex optical surface. Therefore, the sputtered particles cannot be formed again on the convex optical surface.
  • an object of the present invention is to provide an antireflection film having a low reflectance, a small unevenness of a reflection color, and excellent durability, and an optical element having the antireflection film. Further, an object of the present invention is to provide a film forming method excellent in productivity of such an antireflection film.
  • an antireflection film is an antireflection film having a multilayer structure provided on the convex optical surface side of an optical element having a convex optical surface having a maximum inclination angle of 25 ° or more.
  • Each of the optical thin films constituting the multilayer structure has a filling ratio of 90% or more at an arbitrary position, and the L value in the L * a * b * color system of CIE1976 is represented by the following conditional expression (1). ) Is satisfied, and the difference ⁇ a of the a value at any two places and the difference ⁇ b of the b value at the two places satisfy the following conditional expression (2).
  • an optical element according to the present invention is characterized in that the above-described antireflection film is provided on a convex optical surface having a maximum inclination angle of 25 ° or more.
  • the method for forming an antireflection film according to the present invention includes forming an antireflection film having a multilayer structure on the convex optical surface side where the maximum tilt angle of the optical element is 25 ° or more.
  • a film forming method for forming a film by depositing a film forming material from a film forming source on the convex optical surface side of the optical element while rotating the optical element, The convex optical surface of the rotating optical element is irradiated with ions from an ion source or plasma from a plasma source from a direction inclined with respect to an optical axis to the convex optical surface, thereby depositing the convex optical surface.
  • the film While removing the film material, the film is densified, and by the region of the convex optical surface closer to the ion source or the plasma source, the convex optical surface farther from the ion source or the plasma source Said ions or front to region
  • FIG. 1 is a schematic diagram of a film forming apparatus that performs a method of forming an antireflection film according to the present invention.
  • FIG. 3 is an enlarged view of a main part of the film forming apparatus shown in FIG. 2.
  • FIG. 4 is a diagram showing an optical element provided with an antireflection film in Examples 1 to 5 and Comparative Examples 1 to 4.
  • FIG. 1 is a schematic diagram of a film forming apparatus that performs a method of forming an antireflection film according to the present invention.
  • (A) is a front view of the film forming apparatus, and
  • (b) is a bottom view of the optical element supporting device as viewed from below.
  • 5 is a graph showing a change in reflection characteristics of the antireflection film of Example 1.
  • 7 is a graph showing a change in reflection characteristics of the antireflection film of Example 2.
  • 9 is a graph showing a change in reflection characteristics of the antireflection film of Comparative Example 2.
  • the anti-reflection film according to the present invention is an anti-reflection film having a multilayer structure provided on the convex optical surface side of an optical element having a convex optical surface having a maximum tilt angle of 25 ° or more,
  • Each of the optical thin films constituting the multilayer structure has a filling rate of 90% or more at an arbitrary position, and the L value in the L * a * b * color system of CIE1976 satisfies the following conditional expression (1).
  • the difference a of the a value at the two places and the difference ⁇ b of the b value at the two places satisfy the following conditional expression (2).
  • the antireflection film is provided on a convex optical surface having a maximum inclination angle of the optical element of 25 ° or more, and has a multilayer structure in which n layers (n is an integer of 2 or more) of optical thin films are laminated.
  • the convex optical surface having a maximum inclination angle of 25 ° or more refers to an optical surface in which there is a portion having a maximum inclination angle of 25 ° or more when the inclination angle is measured in the convex optical surface.
  • the convex optical surface having the maximum tilt angle of 25 ° or more is an optical surface whose tilt angle gradually increases from the center to the peripheral portion, the tilt angle of the peripheral portion of the convex optical surface is 25 ° or more.
  • the convex optical surface may be a surface having a curvature or a free-form surface.
  • a convex optical surface having a maximum inclination angle of 25 ° or more and being a free-form surface is defined as an angle ⁇ / 2 ⁇ 25 °, where ⁇ is an angle between normals of two arbitrary points on the convex optical surface.
  • the line segment forming the angle ⁇ / 2 can be regarded as the optical axis of the optical element having the convex optical surface.
  • FIG. 1 shows an antireflection film according to an embodiment of the present invention.
  • the anti-reflection film 1 shown in FIG. 1 is provided on an optical element 11 having a convex optical surface 11a having a maximum inclination angle of 90 °, that is, a peripheral part having an inclination angle of 90 °.
  • the convex optical surface 11a may be referred to as “optical surface 11a”.
  • the antireflection film 1 has a multilayer structure in which seven optical thin films 2 are stacked.
  • the seven-layer optical thin film 2 includes, in order from the side closer to the optical surface 11a, a first optical thin film 2a, a second optical thin film 2b, a third optical thin film 2c, a fourth optical thin film 2d, Also referred to as a five-layer optical thin film 2e, a sixth-layer optical thin film 2f, and a seventh-layer optical thin film 2g.
  • the hatching of the optical thin film 2 in FIG. 1 is omitted.
  • Each optical thin film constituting the multilayer structure has a filling rate of 90% or more at an arbitrary position.
  • a filling rate of 90% or more means that the porosity is less than 10% and the number of voids is small.
  • An optical thin film having a filling factor of 90% or more can obtain high physical strength. Further, since the porosity is less than 10%, it is possible to suppress the intrusion of moisture through the voids and the deterioration. Therefore, the antireflection film in which the optical thin films are laminated in n layers can obtain excellent durability. Further, since this optical thin film has a filling rate of 90% or more, it is possible to realize a refractive index close to the original refractive index of the material.
  • the filling rate of the optical thin film is less than 90%, the physical strength is low, and the optical thin film may be deteriorated by infiltration of moisture.
  • An antireflection film having such an optical thin film laminated thereon is not preferable because excellent durability cannot be obtained.
  • the filling rate of the optical thin film is less than 90%, a refractive index close to the original refractive index of the material cannot be realized.
  • an antireflection film is formed by stacking such optical thin films, it is necessary to increase the number of stacked optical thin films, which is inefficient and is not preferable.
  • the filling factor of the optical thin film can be measured by, for example, X-ray diffraction method (XRD), and a formula (H. Angus Macleod (2010), ”) quoted from a thin-films optical filters shown in the following formula: Thin-Films Optical Filters ", USA: CRC Press, pp. 570-572.) Or Lorentz-Lorentz relational expression.
  • p (n eff -n air) / (n s -n air)
  • n eff Effective refractive index of optical thin film
  • n air Refractive index of air
  • n s Original refractive index of film when there is no void in film or recommended value of manufacturer
  • the L value in the L * a * b * color system of CIE1976 satisfies the conditional expression (1), the difference a between the a values at any two places, and the difference between the b values at the two places. ⁇ b satisfies conditional expression (2).
  • conditional expression (1) means that the L value is less than 5 at any part of the anti-reflection film, and that the anti-reflection film is an anti-reflection film whose reflection is suppressed over the whole.
  • conditional expression (1) When the conditional expression (1) is not satisfied, it is not preferable because there are portions where the L value is 5 or more in the antireflection film, and the antireflection film has high reflectance or uneven reflection color. Then, in any condition of the antireflection film, the conditional expression (2) is calculated from the difference a of the a value ⁇ a and the difference b of the b value at any two places ( ⁇ a 2 + ⁇ b 2 ) 1/2 is 5 Less than that, which means that the antireflection film has a small uneven reflection color. When the conditional expression (2) is not satisfied, there is a portion where ( ⁇ a 2 + ⁇ b 2 ) 1/2 is 5 or more in the antireflection film, which is not preferable because the reflection color is uneven.
  • the minimum value d (min) and the maximum value d (max) of the film thickness satisfy the following conditional expression (3).
  • is the inclination angle of the convex optical surface at the measurement location.
  • Conditional expression (3) indicates that each optical thin film constituting the multilayer structure of the anti-reflection film has a ratio of a position where the film thickness is minimum to a position where the film thickness is minimum is cos (5 ⁇ / 6) or more. It means that thickness uniformity is excellent. Specifically, it is preferable that the thickness of the optical thin film satisfies 0.935 ⁇ d (min) / d (max) ⁇ 1 at a position where the inclination angle of the convex optical surface is 25 °. It is preferable that the thickness of the optical thin film satisfies 0.643 ⁇ d (min) / d (max) ⁇ 1 at a position where the inclination angle of the convex optical surface is 60 °. At the point where the inclination angle of the convex optical surface is 90 °, the thickness of the optical thin film preferably satisfies 0.259 ⁇ d (min) / d (max) ⁇ 1.
  • the optical thin film satisfying the conditional expression (3) has excellent film thickness uniformity. Therefore, it is possible to further reduce the unevenness of the reflection color and to realize an antireflection film in which ghost is suppressed. Further, it is possible to realize an antireflection film having a low reflectance not only at the center but also at the periphery of the convex optical surface.
  • the unevenness of the reflection color of the antireflection film may not be reduced or a ghost may occur because the film thickness uniformity is insufficient. Absent.
  • the minimum value d (min) and the maximum value d (max) of the film thickness satisfy the following conditional expression (4). cos ( ⁇ / 2) ⁇ d (min) / d (max) ⁇ 1.0 (4)
  • the thickness of the optical thin film satisfies 0.976 ⁇ d (min) / d (max) ⁇ 1 at a position where the inclination angle of the convex optical surface is 25 °. It is preferable that the thickness of the optical thin film satisfies 0.866 ⁇ d (min) / d (max) ⁇ 1 at the position where the inclination angle of the convex optical surface is 60 °. At the point where the inclination angle of the convex optical surface is 90 °, the thickness of the optical thin film preferably satisfies 0.707 ⁇ d (min) / d (max) ⁇ 1.
  • the optical thin film that satisfies the conditional expression (4) has more excellent film thickness uniformity than the optical thin film that satisfies the conditional expression (3) but does not satisfy the conditional expression (4). Therefore, the antireflection film in which the optical thin films satisfying the conditional expression (4) are stacked can surely suppress the occurrence of unevenness of the reflection color and can further reduce the reflectance.
  • each optical thin film can be measured by a cross-sectional SEM or a contact type film thickness meter.
  • the reflectance of the optical thin film can be measured by an ellipsometer or the like, and the film thickness or the refractive index can be calculated from the reflectance by simulation.
  • the antireflection film preferably includes an optical thin film that is a high refractive index layer and an optical thin film that is a low refractive index layer in order to further reduce the reflectance.
  • the antireflection film may include an intermediate refractive index layer having a refractive index between the high refractive index layer and the low refractive index layer. The antireflection film can be formed by appropriately combining the high refractive index layer, the low refractive index layer, and the intermediate refractive index layer.
  • the high refractive index layer preferably contains at least one metal oxide selected from the group consisting of TiO 2 , Nb 2 O 5 , ZrO 2 , La 2 O 3 , Ta 2 O 5 , and HfO 2 .
  • the high refractive index layer containing these metal oxides can realize a high refractive index of 2.0 or more. It is preferable that the low refractive index layer as the final layer contains SiO 2 . When the low refractive index layer include both or SiO 2 and Al 2 O 3 containing SiO 2 alone can reduce the refractive index to 1.50 or less.
  • the intermediate refractive index layer preferably contains a metal oxide such as Al 2 O 3 , Y 2 O 3 and YbF 2 or a mixture such as Al 2 O 3 + L 2 O 3 .
  • the refractive index of the intermediate refractive index layer is 1.50 or more and 2.0 or less.
  • the first optical thin film 2a, the third optical thin film 2c, and the fifth optical thin film 2e are formed as intermediate refractive index layers made of Al 2 O 3 .
  • the two-layer optical thin film 2b, the fourth-layer optical thin film 2d, and the sixth-layer optical thin film 2f are high-refractive-index layers made of LaTiO 3, and the seventh-layer optical thin film 2g, which is the final layer, is made of SiO 2. It may be a refractive index layer.
  • Each optical thin film constituting the above-described antireflection film can be formed by a film forming method described later. Since ions or plasma are used in the film forming method, the optical thin film contains an element constituting ions or plasma. For example, in the case where Ar is formed into a plasma and formed into a film, it can be confirmed by secondary ion mass spectrometry (SIMS) that the optical thin film contains 1 ⁇ 10 19 atomic% / cm 3 or more of Ar. However, it is not preferable that the optical thin film contains Ar of 1 ⁇ 10 22 at % / cm 3 or more because the optical thin film may not be dense.
  • SIMS secondary ion mass spectrometry
  • the antireflection film having the above configuration can have excellent antireflection characteristics.
  • an average reflectance of 1% or less can be achieved at any position with respect to light having a wavelength of 420 nm or more and 680 nm or less at an incident angle of 0 °.
  • the antireflection film has an average reflectance of 1% or less with respect to the light at any location regardless of the central portion and the peripheral portion, and has excellent antireflection characteristics. If the reflectance exceeds 1%, the antireflection film may have insufficient antireflection characteristics.
  • an antireflection film with an average reflectance of 1% or less for light in the ultraviolet or near-infrared range can be realized. Can be.
  • the method for forming an antireflection film according to the present invention is a method for forming an antireflection film having a multilayer structure on a convex optical surface side where the maximum tilt angle of the optical element is 25 ° or more,
  • a film forming step of forming a film by depositing a film forming material from a film forming source on the convex optical surface side of the optical element while rotating the optical element; By irradiating the surface side with ions from an ion source or plasma from a plasma source from a direction inclined with respect to the optical axis, while removing the film-forming material deposited on the convex optical surface side, the film is removed.
  • the method for forming an anti-reflection film according to the present invention can be carried out, for example, by the film forming apparatus shown in FIGS.
  • the film forming apparatus shown in FIGS. 2 and 3 is one of the embodiments.
  • various forms, for example, sputtering, CVD, and the like can be applied as a film formation source, and the invention is not limited to the film formation process of this embodiment.
  • First, an embodiment of the film forming apparatus will be described.
  • the film forming apparatus 21 shown in FIG. 2 includes an optical element support device 41 having a planetary rotation mechanism, a vapor deposition source 51 as a film forming source, and an ion gun 61 in a film forming chamber 31 capable of holding the inside thereof in a vacuum. Is provided.
  • the ion gun 61 for irradiating ions is used, but a plasma gun for irradiating plasma may be used instead of the ion gun 61.
  • the optical element support device 41 is hung from the ceiling wall of the film forming chamber 31 and is rotatable and has a disk-shaped support base 42.
  • the optical element holder 41 is hung around the periphery of the support base 42 and is rotatable and has a rotatable disk-shaped optical element holder. 43.
  • the support base 42 rotates by driving a first motor (not shown).
  • the rotation axis of the support base 42 is L1.
  • the optical element holder 43 rotates by driving a second motor (not shown).
  • the rotation axis of the optical element holder 43 is L2.
  • the optical element holder 43 revolves around the rotation axis L1 of the support base 42 as a rotation axis by driving the first motor.
  • Six optical element holders 43 are arranged on the support base 42 at equal intervals. However, in FIG. 2, only two optical element holders 43 are described, and the description of the other optical element holders 43 is omitted.
  • the optical element holder 43 is suspended from the support base 42 such that the film forming surface 43a on which the optical element 11 is mounted and on which the film is formed faces obliquely downward.
  • the direction of the film forming surface 43 a is adjusted by the angle adjusting mechanism 44.
  • FIG. 2 shows a state where the film forming surface 43a is inclined by 20 ° with respect to the vertical direction.
  • the plurality of optical elements 11 are arranged concentrically around the rotation axis L2 of the optical element holder 43 with the optical surface 11a on which the antireflection film is formed facing outward on the film forming surface 43a.
  • optical elements 11 can be arranged at equal intervals around the rotation axis L2 of the optical element holder 43, and 14 optical elements 11 can be arranged at equal intervals around the periphery.
  • FIG. 2 only two optical elements 11 are described, and the description of the other optical elements 11 is omitted.
  • the optical element 11 attached to the film formation surface 43a takes a posture in which the optical axis OA is inclined with respect to the vertical direction.
  • the film formation surface 43a is flat, the optical axis OA of each optical element 11 and the rotation axis L2 of the optical element holder 43 are parallel, but need not be.
  • the evaporation source 51 is provided at the bottom of the film forming chamber 21 and inside the orbit of the optical element holder 43.
  • the position of the evaporation source 51 is not limited to this position.
  • the evaporation source 51 can be provided at a position in the horizontal direction with respect to the optical element holder 43.
  • the vapor deposition source 51 forms a vapor deposition material which is a film forming material by using an electron gun, resistance heating, a sputtering source, sputtering by an ion gun or a plasma gun, heat vapor deposition by a plasma gun, a chemical vapor deposition method, ion plating, or the like.
  • the evaporation source 51 for example, various optical materials such as TiO 2 , Nb 2 O 5 , ZrO 2 , La 2 O 3 , Ta 2 O 5 , HfO 2 , SiO 2 , and Al 2 O 3 can be used. .
  • the deposition material from the deposition source 51 rises while spreading, and deposits on the optical surface 11a of the optical element 11, the optical element holder 43, and the like.
  • the deposition material is incident on the optical surface 11a side of the optical element 11 from various directions, but mainly from a vertically downward direction. That is, the deposition material mainly enters the optical surface 11a of the optical element 11 from a direction inclined with respect to the optical axis OA.
  • the deposition material enters the optical surface 11a side of the optical element 11 from a direction D1 inclined at an angle ⁇ with respect to the optical axis OA.
  • the angle ⁇ can be adjusted by changing the position of the evaporation source 51, the direction of the film forming surface 43a, and the like.
  • FIG. 2 shows a state where the angle ⁇ is 70 °.
  • the deposition rate of the vapor deposition material on the optical surface 11a side is determined by the pressure (degree of vacuum) in the film forming chamber 31, the position of the vapor deposition source 51, and the film deposition conditions of the vapor deposition source 51 (resistance heating temperature, evaporation area, electron It can be controlled by the electron beam size of the gun, emission current, acceleration voltage, etc.
  • the ion gun 61 is also located at the bottom of the film forming chamber 21, inside the orbit of the optical element holder 43, and with respect to the rotation axis L 1 of the support base 42. It is provided at the opposite position.
  • the position of the ion gun 61 is not limited to this position as long as self-shielding can be performed as described later.
  • the ion gun 61 irradiates ions at high speed.
  • one or more rare gases selected from the group consisting of He, Ne, Ar, Xe, and Xr and O 2 are introduced into the ion gun 61 as appropriate, and the rare gas and oxygen gas are ionized by the ion gun 61. And irradiate.
  • the ions irradiated by the ion gun 61 have high straightness because they are accelerated.
  • the ion gun 61 irradiates ions in a predetermined direction. For example, at a certain moment, the ion gun 61 irradiates the ions such that the ions are incident on the optical surface 11a side of the optical element 11 from a direction D2 inclined at an angle ⁇ with respect to the optical axis OA.
  • the angle ⁇ can be adjusted by changing the position of the ion gun 61 and the irradiation angle.
  • FIG. 2 shows a state in which the angle ⁇ is 70 °.
  • the irradiation energy of the ion gun 61 can be controlled by accelerating voltage, beam current, beam voltage, film forming pressure, gas introduction type, gas introduction amount, and the like.
  • the first-layer optical thin film 2a is formed, and subsequently, the second-layer optical thin film 2b to the seventh-layer optical thin film 2g are formed. Are formed in order.
  • formation of the first-layer optical thin film 2a will be described in detail.
  • the film forming process is performed as follows.
  • the first optical thin film 2a is formed using Al 2 O 3 as the evaporation source 51.
  • the evaporation source 51 is heated to evaporate the evaporation material (Al 2 O 3 ).
  • the deposition material is deposited on the optical surface 11a of the optical element 11 to form a film.
  • the vapor deposition material enters the optical surface 11a from various directions, but mainly enters the optical surface 11a from a direction D1 inclined with respect to the optical axis OA.
  • the irradiation step is performed as follows.
  • the ion gun 61 irradiates ions with the optical element 11 rotated with the rotation axis L1 of the support base 42 and the rotation axis L2 of the optical element holder 43 as rotation axes.
  • the ions collide with the deposited material deposited on the optical surface 11a of the optical element 11 energy is imparted to the deposited material.
  • the ions act as assisting film formation, and the film formed on the optical surface 11a is densified.
  • the deposition material deposited on the optical surface 11a is removed, and the thickness of the film is reduced.
  • the ions irradiated by the ion gun 61 are intentionally accelerated by the accelerating voltage, and therefore have higher straightness than the vapor deposition material from the vapor deposition source 51. Therefore, the ions enter the optical surface 11a from the direction D2 inclined with respect to the optical axis OA of the optical element 11.
  • the optical surface 11a of the optical element 11 is an optical surface having a deep R such that a portion having an inclination angle of 25 ° or more exists. Therefore, the region of the optical surface 11a on the side closer to the ion gun 61 blocks incidence of ions on the region of the optical surface 11a farther from the ion gun 61 (region R surrounded by a double-dashed line in FIG. 3). You.
  • Self-shielding does not occur at the center of the optical surface 11a, but occurs at the periphery.
  • the central portion of the optical surface 11a is an incident area where ions are incident regardless of the rotation of the optical element 11.
  • the peripheral portion of the optical surface 11a the incident area and the shielding area where the incidence of ions is shielded are switched with the rotation of the optical element 11. As a result, more ions are incident on the central portion of the optical surface 11a than on the peripheral portion, and the removal amount of the deposition material from the optical surface 11a is increased.
  • the ion irradiation position on the optical surface 11a moves up, down, left and right with the rotation of the optical element holder 43. Also change.
  • the ions irradiated by the ion gun 61 have high rectilinearity, even if the position of ion irradiation on the optical surface 11a changes up, down, left, and right with the rotation of the optical element holder 43, sufficient self-shielding occurs. In addition, a large amount of deposition material deposited on the central portion of the optical surface 11a can be removed.
  • the film formed on the optical surface 11a in the film forming step is densified and reduced in thickness.
  • the film formed on the optical surface 11a gradually increases in thickness, and the film thickness increases from the central portion on the optical surface 11a side. It is uniformed over the periphery.
  • the conditions of the film forming step and the irradiation step are appropriately changed, and the film forming step and the irradiation step are repeatedly performed while keeping a balance as to which one is preferentially performed.
  • the first-layer optical thin film 2a made of Al 2 O 3 and having a desired film thickness can be formed on the convex optical surface 11a of the optical element 11.
  • the optical thin film 2a of the first layer has a uniform film thickness from the central portion to the peripheral portion, and is densified to have a filling rate of 90% or more at an arbitrary portion.
  • the film forming step and the irradiation step are repeated while appropriately changing the material of the evaporation source 51 while appropriately changing the conditions, and the remaining optical thin films 2b to 2g are formed on the first optical thin film 2a.
  • the thickness of the optical thin films 2b to 2g of the second to seventh layers is made uniform from the center to the peripheral portion, and the filling rate of an arbitrary portion is reduced. 90% or more.
  • the antireflection film 1 having the multilayer structure can be formed on the optical surface 11a of the optical element 11 shown in FIG.
  • a film is formed by a film forming process.
  • An irradiation step is performed before the film thickness reaches 10 nm, and the sublayer is formed by shaving off the surface layer of the film and reducing the film thickness.
  • the sub-layers are stacked to form the first optical thin film 2a having a desired film thickness.
  • the obtained optical thin film 2a of the first layer is not preferable because a dense layer and a non-dense layer are laminated and become inhomogeneous in the depth direction. From the above, it is more preferable to perform the film formation step and the irradiation step at the same time rather than alternately. When they are performed at the same time, only a dense layer is laminated, and a first-layer optical thin film 2a uniform in the depth direction can be obtained.
  • the optical element 11 when the optical element 11 approaches the evaporation source 51, a film forming process is mainly performed, and the film on the optical surface 11a becomes thick.
  • an irradiation step is mainly performed, and the film on the optical surface 11a becomes thin.
  • the rate at which the film becomes thicker in the film formation step that is, the deposition rate of the deposition substance can be controlled by the above-described film formation conditions.
  • the rate at which the film becomes thinner in the irradiation step that is, the rate at which the deposition material is removed by ions can be controlled by the above-described ion irradiation energy.
  • the angle ⁇ between the incident direction D1 of the deposition material on the optical surface 11a and the optical axis OA of the optical element 11, and the incident direction D2 of ions on the optical surface 11a and the optical axis will be described.
  • the angle ⁇ will be described.
  • the deposition material from the deposition source 51 rises with spreading.
  • the amount of vapor deposition material deposited on the optical surface 11a is the largest.
  • the angle between the optical axis OA of the optical element 11 at that position and the vertical direction is defined as an angle ⁇ .
  • the angle ⁇ is set to 70 °, but the angle ⁇ is preferably from 0 ° to 90 °, more preferably from 45 ° to 90 °.
  • the angle ⁇ is 0 °
  • the optical axis OA of the optical element 11 coincides with the vertical direction.
  • the angle ⁇ exceeds 90 °
  • the optical axis OA of the optical element 11 faces upward from the horizontal direction. The deposition amount of the deposition material on the central portion of the optical surface 11a is reduced, and the film forming speed is undesirably reduced.
  • the angle ⁇ is preferably 0 ° or more and as small as possible.
  • An example of a small angle ⁇ is a film forming apparatus having a plane planetary rotation mechanism for forming an optical multilayer filter on a flat glass.
  • the angle ⁇ is less than 45 °, the deposition amount of the deposition material at the central portion of the optical surface 11a increases in the film forming process, while the deposition amount at the peripheral portion decreases excessively.
  • the angle ⁇ is more preferably 45 ° or more and 90 ° or less.
  • the angle ⁇ Since the ions emitted from the ion gun 61 have straightness, when the optical element 11 is located at a position facing the irradiation port of the ion gun 61, the amount of ions incident on the optical surface 11a is the largest.
  • an angle between the optical axis OA of the optical element 11 at that position and a line segment connecting the center of the optical surface 11a and the ion gun 61 is defined as an angle ⁇ .
  • the angle ⁇ is set to 70 °, but the angle ⁇ is preferably 45 ° or more and 90 ° or less. When the angle ⁇ is 45 ° or more, uniformity of the film can be secured.
  • the angle ⁇ is preferably set to 60 ° or more. If the angle ⁇ is less than 45 °, self-shielding during ion irradiation becomes insufficient, and it is difficult to secure uniformity of the film, which is not preferable. On the other hand, if the angle exceeds 90 °, the amount of ion irradiation to the central portion of the optical surface 11a decreases, and it becomes difficult to cut the film at the central portion, which is not preferable.
  • the optical element 11 rotates around an axis different from the optical axis OA as a rotation axis. Specifically, the optical element 11 is rotated about the rotation axis L1 of the support base 42 and the rotation axis L2 of the optical element holder 43 by the optical element support device 41 having a planetary rotation mechanism. Therefore, the optical element 11 moves (rotates) in the horizontal direction with the rotation of the support base 42 about the rotation axis L1 and moves in the vertical direction with the rotation of the optical element holder 43 about the rotation axis L2. , Move left and right.
  • the film thickness formed in the film forming process differs depending on the position where the optical element 11 is mounted on the optical element holder 43, that is, the distance from the rotation axis L2 to the optical element 11. Further, the range of the incident area and the shield area of the ions on the optical surface 11a in the irradiation step differs depending on the mounting position of the optical element 1.
  • the film formation process and the irradiation process are performed in a state where the optical element 11 is moved in the horizontal direction, the vertical direction, and the horizontal direction, the plurality of optical elements 11 are The antireflection film 1 can be uniformly formed. Therefore, the film forming method of the present embodiment is suitable for mass production of the antireflection film 1. Note that the optical element 11 only needs to be rotated so that self-shielding occurs during the irradiation step, and the method of rotation is not limited to this.
  • the film forming method using the film forming apparatus 21 shown in FIG. 2 has been described, but the present invention is not limited to this.
  • a general-purpose sputtering apparatus generally used for forming a thin film may be used.
  • a film forming method using a general-purpose sputtering apparatus will be briefly described with reference to FIG.
  • the general-purpose sputtering apparatus includes an optical element support device 101, a vapor deposition source 111, and an ion gun 121 in a film forming chamber whose inside can be maintained in a vacuum, as schematically shown in FIG.
  • the same vapor deposition source 111 and ion gun 61 as those shown in FIG. 2 can be used for the vapor deposition source 111 and the ion gun 121.
  • the optical element support device 101 includes a disk-shaped support base 102 and an optical element holder 103 that is provided on the support base 102 and has a smaller diameter than the support base 102.
  • the optical element support device 101 is suspended from the ceiling wall of the film forming chamber so that the film forming surface 103a of the optical element holder 103 faces the bottom of the film forming chamber.
  • the support base 102 rotates around the rotation axis L1 around its center, and two or more optical element holders 103 are arranged around the rotation axis L1.
  • the optical element holder 103 rotates with its center as the rotation axis L2.
  • the evaporation source 111 is provided, for example, at the bottom of the film forming chamber and immediately below the rotation trajectory of the optical element holder 103.
  • the ion gun 121 is provided, for example, at the bottom of the film forming chamber and immediately below the rotation trajectory of the optical element holder 103 and at a position different from the deposition source 111. The ion gun 121 irradiates ions obliquely upward.
  • the ion gun 121 is directed toward the optical surface 11a of the optical element 11 so that ions can be irradiated from a direction inclined at an angle ⁇ of 45 ° to 90 ° with respect to the optical axis OA. Position has been adjusted.
  • the above-described apparatus configuration shown in FIG. 5 can also perform the film forming method of the present embodiment described above. Then, self-shielding can be caused when performing the above-described irradiation step.
  • An optical element according to the present invention is provided with the above-described antireflection film on a convex optical surface having a maximum inclination angle of 25 ° or more. According to the present invention, by providing the above-described antireflection film, it is possible to provide an optical element having high appearance productivity and less ghost. Examples of the optical element include a photographing optical element and a projection optical element.
  • the lens for example, an interchangeable lens of a single-lens reflex camera, a lens mounted on a digital camera (DSC), or mounted on a mobile phone
  • DSC digital camera
  • Lenses for digital cameras projector lenses for illumination systems, free-form lenses for car headlights, laser processing lenses and axicon lenses, DVD, CD, Blu-ray pickup lenses, mobile phones and smartphones
  • Various lenses such as a lens used for a camera can be given.
  • each optical thin film constituting the antireflection film is formed by a film forming step of depositing a deposition material and an irradiation step of irradiating ions or plasma. Therefore, when depositing the first-layer optical thin film on the above-mentioned convex optical surface, ions, plasma, electrons, etc. may collide with the convex optical surface.
  • the optical element is made of a specific glass material, for example, a glass material such as FCD1 containing fluorine, light absorption occurs in the optical element when accelerated electrons or the like collide with the convex optical surface. Is not preferred.
  • the optical element according to the present invention preferably includes a protective layer between the convex optical surface and the antireflection film for preventing the incidence of ions, plasma, or electrons on the convex optical surface. .
  • the protective layer is preferably made of a material having the same refractive index as the optical element.
  • the optical element is made of a glass material of FCD1 (refractive index: 1.497)
  • the protective layer is made of SiO 2 having substantially the same refractive index.
  • the protective layer can be formed by a normal vacuum deposition method without using ions or plasma.
  • the protective layer can be formed by performing the above-described film forming process using the evaporation source 51.
  • the thickness of the protective layer is preferably at least 0.5 nm, more preferably at least 5 nm.
  • the thickness of the protective layer is less than 0.5 nm, the coating on the convex optical surface becomes insufficient, and the deposition of the rare gas element on the convex optical surface when forming the first optical thin film is performed. It is not preferable because it cannot be prevented.
  • an antifouling film or a hard film can be formed as a functional film on the surface of the antireflection film.
  • an antifouling film with a fluorine coating or a hard film made of diamond-like carbon (DLC) or SiO x N y can be provided.
  • the thickness of the functional film is preferably 10 nm or less in order to prevent the influence on the optical characteristics.
  • the anti-reflection film composed of seven optical thin films 2a to 2g is formed on the convex optical surface 11a of the optical element 11 by performing the above-described film forming method using the film forming apparatus 21 shown in FIG. 1 was formed.
  • the optical element 11 having the shape shown in FIG. 4 was used.
  • the inclination angle was measured at a position where the distance D from the optical axis OA was 15 mm on the convex optical surface 11a
  • the inclination angle was 60 °.
  • the maximum inclination angle of the convex optical surface 11a in the optical element 11 used in the present embodiment is 60 ° or more.
  • the optical element 11 made of TAF1 is used.
  • the evaporation source 51 In the film forming process, the following was used as the evaporation source 51.
  • the first, third, and fifth optical thin films 2a, 2c, and 2e were formed using Al 2 O 3 .
  • TiO 2 and La 2 O 3 were used for forming the second, fourth and sixth optical thin films 2b, 2d and 2f.
  • the irradiation step Ar gas at a flow rate of 40 sccm was introduced at the time of ion irradiation by the ion gun 61, and the Ar gas and oxygen gas were ionized and irradiated by the ion gun 61.
  • the acceleration voltage of the ion gun 61 was set to 1.5 kV.
  • the antireflection film 1 composed of seven optical thin films 2a to 2g is formed on the convex optical surface 11a of the optical element 11 in exactly the same manner as in the first embodiment except that the evaporation source 51 is changed.
  • the following was used as the evaporation source 51.
  • the first, third, fifth and seventh optical thin films 2a, 2c, 2e and 2g were formed using SiO 2 .
  • TiO 2 was used for forming the second, fourth and sixth optical thin films 2b, 2d and 2f.
  • the antireflection film 1 composed of seven layers of optical thin films 2a to 2g was formed on the convex optical surface 11a of the optical element 11 in exactly the same manner as in Example 2. Thereafter, a functional film (antifouling film) made of perfluorocarbon was formed to a thickness of 5 nm on the optical thin film 2g of the seventh layer which is the final layer of the antireflection film 1. Resistance heating was used to form the functional film. In forming the functional film, the ion source 61 was not used.
  • the second embodiment is different from the second embodiment.
  • the antireflection film 1 was formed in exactly the same manner as in Example 1.
  • the optical element 11 made of the FCD 1 is used.
  • an oxygen gas is introduced into the film forming apparatus 21 to adjust the degree of vacuum to 1.5 ⁇ 10 ⁇ 2 Pa, and SiO 2 is used as the evaporation source 51 in exactly the same manner as the above-described film forming step. 2 was formed on the optical surface 11a.
  • the ion source 61 was not used. Thereafter, in exactly the same manner as in Example 2, an antireflection film 1 composed of seven optical thin films 2a to 2g was formed on the protective layer.
  • the convex optical surface of the optical element 11 is exactly the same as the embodiment 2 except that the inclination of the film forming surface 43a of the optical element holder 43, the output of the ion gun, and the film forming conditions are changed.
  • An antireflection film 1 composed of seven optical thin films 2a to 2g was formed on 11a.
  • the inclination of the film forming surface 43 was changed so as to incline by 45 ° with respect to the vertical direction. Accordingly, the angle ⁇ between the incident direction of the deposition material on the optical surface 11a and the optical axis OA is 45 °, and the angle ⁇ between the incident direction of ions on the optical surface 11a and the optical axis OA is 45 °. Became.
  • the output of the ion gun was set to an acceleration voltage of 700 V. Then, in order to balance the film forming step and the irradiation step, the film forming conditions in the film forming step were changed, and the deposition rate of the deposition material was adjusted.
  • This film forming apparatus includes a dome in which the optical element 11 is arranged, and a deposition source 51 and an ion source 61 identical to those used in the first embodiment, in a film forming chamber in which the inside can be kept in a vacuum.
  • This dome has a dome shape unlike the optical element holder used in the first embodiment. The dome is suspended from the ceiling wall of the film forming chamber in an upwardly convex posture, and rotates around its center as a rotation axis.
  • the inner concave surface is a film forming surface
  • the optical element 11 is arranged on the film forming surface.
  • 300 or more optical elements 11 can be arranged around the rotation axis of the film formation surface. Since the film-forming surface is concave, the optical element 11 attached to the film-forming surface has a posture in which its optical axis OA is inclined by 5 to 30 ° with respect to the vertical direction.
  • Example 1 the film forming step and the irradiation step were performed.
  • the operation was performed in exactly the same manner as in Example 1.
  • the optical element 11 is exactly the same as in the first embodiment except that the mounting position of the optical element 11 in the optical element holder 43 is changed and the irradiation condition of the ion gun 61 is changed.
  • An antireflection film 1 composed of seven layers of optical thin films 2a to 2g was formed on the convex optical surface 11a.
  • one optical element 11 was arranged on the rotation axis L2 of the optical element holder 43.
  • Comparative Example 3 In this comparative example, seven layers of optical thin films were formed on the convex optical surface 11a of the optical element 11 in exactly the same manner as in Comparative Example 2, except that the mounting position of the optical element 11 in the optical element holder 43 was changed. An antireflection film 1 made of 2a to 2g was formed.
  • two or more optical elements 11 are placed around the rotation axis L2 of the optical element holder 43 and at a position where the rotation axis L2 does not coincide with the optical axis OA of the optical element 11. Placed.
  • FIG. 6 shows the results.
  • is the inclination angle of the measurement point.
  • the refractive index and the film thickness of each layer were calculated using an eprisometer M-2000 manufactured by JA Woollam, and the refractive index and the film thickness were calculated for each optical thin film 2a to FE3000 and SEM. It was confirmed that they matched the refractive index and the film thickness of 2 g.
  • the calculation of the refractive index and the film thickness was performed on portions of the single-layer film corresponding to the portions having the inclination angles of 0 °, 25 °, 35 °, 45 °, and 60 ° on the optical surface 11a.
  • n eff refractive index for each material of the optical thin films 2a to 2g obtained by simulation.
  • n air refractive index of air
  • FIG. 7 shows the result of the optical thin film having the lowest filling rate among the optical thin films of the optical thin films 2a to 2g by material. The broken line in FIG. 7 indicates that the filling rate is 90%.
  • the antireflection films 1 of Examples 1 to 5 and Comparative Examples 1 to 4 were measured for spectral reflectance by a reflection spectral thickness meter FE-3000 manufactured by Otsuka Electronics Co., Ltd.
  • positions corresponding to the positions of the antireflection film 1 having the inclination angles of 0 °, 25 °, 35 °, 45 °, and 60 ° on the optical surface 11a were determined as measurement positions.
  • the angle of incidence of the incident light on the central portion of the antireflection film 1 was set to 0 °, and the wavelength range of the incident light was changed within a range from 350 nm to 850 nm.
  • the results are shown in FIGS.
  • the antireflection film 1 of Examples 1 to 4 and Comparative Examples 1 to 4 which were allowed to stand still in the above environment was weighed 500 g by a reciprocating wear tester TYPE30 manufactured by Shinto Kagaku Co., Ltd.
  • a durability test was performed by reciprocating 100 times at a moving speed of 1200 mm / min for a moving distance of 10 mm with a load applied.
  • the durability test was performed at positions corresponding to the central portion (position at an inclination angle of 0 °) and the peripheral portion (position at an inclination angle of 60 °) of the optical element 11. Thereafter, the presence or absence of scratches generated on the surface of the antireflection film 1 (the functional layer in Example 3) was visually observed, and the durability was evaluated.
  • Table 1 shows the results. In the column of “Durability” in Table 1, a mark “ ⁇ ” means that no flaw was observed in both the central part and the peripheral part. An “x” mark means that a flaw was observed in at least one of the central part and the
  • the optical thin films 2a to 2g of Examples 1 to 5 have a film thickness ratio of 0.91 or more even at the measurement point where the inclination angle ⁇ is 60 °.
  • the optical thin films 2a to 2g of Examples 1 to 5 have excellent film thickness uniformity from the center to the periphery.
  • the optical thin films 2a to 2g of Comparative Example 2 have a film thickness ratio of 95% or more even at a measurement point where the inclination angle is 60 °, and have excellent film thickness uniformity.
  • the film thickness ratio sharply decreases as the inclination angle ⁇ of the measurement point increases, and the inclination angle ⁇ is 25 ° or more.
  • the film thickness ratio falls below cos (5 ⁇ / 6) and does not satisfy the conditional expression (3).
  • the film thickness ratio is reduced to about 0.50 at the measurement point where the inclination angle is 60 °. From the above, the optical thin films 2a to 2g of Examples 1 to 5 have poor film thickness uniformity.
  • the optical thin films 2a to 2g of Comparative Examples 1 and 4 are similar to or slightly inferior to Examples 1 to 5, but have an inclination angle ⁇ .
  • the filling rate has reached 90% at the measurement points from 0 ° to 60 °.
  • the optical thin films 2a to 2g of Comparative Examples 2 and 3 have low filling rates and do not reach 90%.
  • the L value is less than 5 at measurement points where the inclination angle ⁇ is 0 ° or more and 25 ° or less, but the inclination angle ⁇ is 35 ° or more.
  • the L value exceeds 5 at the measurement location.
  • reflection is suppressed at a position where the inclination angle ⁇ is 0 ° or more and 25 ° or less, but at a position where the inclination angle is 35 ° or more. It can be seen that the reflection is not suppressed.
  • the L value is about 25 at a position where the inclination angle ⁇ is 35 °, and about 40 at a position of 60 °. From this, it can be understood that the antireflection films 1 of Comparative Example 1, Comparative Example 3, and Comparative Example 4 have extremely large reflected light at a position where the inclination angle is 35 ° or more. Further, in the antireflection films 1 of Comparative Examples 1 to 4, the value of ( ⁇ a 2 + ⁇ b 2 ) 1/2 exceeds 5. From this, it can be understood that the antireflection films 1 of Comparative Examples 1 to 4 have large unevenness of the reflection color.
  • the value of ( ⁇ a 2 + ⁇ b 2 ) 1/2 is around 40. From this, it can be understood that the antireflection films 1 of Comparative Example 1, Comparative Example 3, and Comparative Example 4 have extremely large unevenness of the reflection color.
  • the antireflection film 1 of Example 2 has a reflectance of 1% or less for light having a wavelength of 420 nm or more and 680 nm or less at an incident angle of 0 ° regardless of the inclination angle ⁇ . From this, it can be understood that the antireflection film 1 of Example 2 also has excellent antireflection characteristics over the entire region from the center to the periphery.
  • the reflectance for light having an incident angle of 0 ° and a wavelength of 420 nm or more and 680 nm or less was 0.5% or less. It is.
  • the inclination angle ⁇ of the measurement point increases, the reflection characteristic shifts to the shorter wavelength side, and the reflection cannot be suppressed at the longer wavelength side.
  • the reflectance exceeds 1% for light having a wavelength longer than 575 nm. From this, it can be understood that the antireflection film 1 of Comparative Example 1 has inferior antireflection characteristics.
  • the optical thin films 2a to 2g constituting the antireflection film 1 The filling rate is 94% or more.
  • the filling ratio of the optical thin films 2a to 2g is 90% or less. From this, it can be understood that the durability of the antireflection film 1 is related to the filling rate of the optical thin films 2a to 2g constituting the antireflection film 1.
  • the antireflection films 1 of Examples 1 to 5 have a low reflectance over the entire region from the central portion to the peripheral portion, have small unevenness of the reflected color, and have excellent durability. It became clear. It has been found that the thickness distribution of the optical thin films 2a to 2g constituting the antireflection film 1 is related to the suppression of reflection and the suppression of uneven reflection color in the antireflection film 1. It has been found that the durability of the antireflection film 1 is related to the filling rate of the optical thin films 2a to 2g.
  • Example 2 and Example 3 the antireflection film 1 formed by the method of the present example suppresses reflection regardless of whether a functional layer is present thereon, and It can be understood that color unevenness can be reduced.
  • Example 2 and Example 4 the antireflection film 1 formed by the method of the present example can reflect light regardless of whether or not a protective layer exists between the optical surface 11a. It can be understood that the reflection can be suppressed and the unevenness of the reflection color can be reduced.
  • Example 1 when performing ion irradiation with the ion gun 61, Ar gas was introduced, Ar gas and oxygen gas were ionized, and the accelerating voltage was 1.5 kV. I have.
  • Example 1 is different in that the angle ⁇ is 70 ° and the angle ⁇ is 70 °, whereas Comparative Example 1 is that the angle ⁇ is 30 ° and the angle ⁇ is 30 °.
  • the optical thin films 2a to 2g of Example 1 have a high filling rate and excellent film thickness uniformity (see FIG.
  • Example 5 and Comparative Example 4 both coincide in that the acceleration voltage is 700 V when ion irradiation is performed by the ion gun 61.
  • Example 5 was different in that Ar gas was introduced to ionize Ar gas and oxygen gas during ion irradiation, whereas Comparative Example 4 was ionized with oxygen gas without introducing Ar gas.
  • the optical thin films 2a to 2g of Example 5 have excellent film thickness uniformity (see FIG. 6A), whereas the optical thin films 2a to 2g of Comparative Example 4 have poor film thickness uniformity (see FIG. 6A). 6 (b)). From this, it can be understood that in order to obtain the optical thin films 2a to 2g having excellent film thickness uniformity, it is preferable to ionize Ar gas and oxygen gas and perform ion irradiation.
  • a comparative example 2 in which the optical element 11 is arranged on the rotation axis L2 of the optical element holder 43 is compared with a comparative example 3 in which the optical element 11 is arranged around the rotation axis L2.
  • Table 1 in Comparative Example 2, the ( ⁇ a 2 + ⁇ b 2 ) 1/2 value of the antireflection film 1 was 6.48 although not less than 5, which is better than 38.80 in Comparative Example 3. . In both Comparative Examples 2 and 3, the durability of the antireflection film 1 is insufficient.
  • the antireflection film 1 of Comparative Example 2 has a problem in durability, it has an advantage that unevenness of the reflection color is small.
  • arranging the optical elements 11 on the rotation axis L2 of the optical element holder 43 as in Comparative Example 2 is not preferable in that the number of optical elements 11 that can be arranged is limited and productivity is low.
  • a plurality of optical elements 11 are arranged around the rotation axis L2 of the optical element holder 43 as in Comparative Example 3 and Examples 1 to 5, the plurality of optical elements 11 This is preferable because a film can be formed and productivity can be improved.
  • the antireflection film and the method of forming the same according to the present invention are suitable for various optical elements such as a photographing optical element and a projection optical element having a deep R convex optical surface having a maximum inclination angle of 25 ° or more. It is.
  • Optical thin film of the seventh layer 11 Optical element 11a Convex optical surface 51,111 Evaporation source 61,121 Ion gun (ion source) D1 Incident direction when vapor deposition material enters the convex optical surface side D2 Incident direction when ion or plasma enters the convex optical surface side OA Optical axis of optical element ⁇ Vapor deposition substance with respect to optical axis of optical element The angle formed by the incident direction of ions or plasma with respect to the optical axis of the optical element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本件発明は、反射率が低くて反射色のムラが小さく、耐久性に優れた反射防止膜及びそれを備える光学素子を提供することを目的とする。さらに、そのような反射防止膜の生産性に優れた成膜方法を提供することを目的とする。本件発明に係る反射防止膜は、最大傾斜角度が25°以上である凸の光学面11aを有する光学素子11の、凸の光学面11a側に設ける多層構造を備える反射防止膜1であって、多層構造を構成する各光学薄膜2は、任意の箇所の充填率が90%以上であり、CIE1976のL表色系におけるL値が以下の条件式(1)を満たし、任意の2箇所におけるa値の差Δa及び当該2箇所におけるb値の差Δbが以下の条件式(2)を満たす。 L<5 ……(1) (Δa+Δb1/2<5 ……(2)

Description

反射防止膜、光学素子及び反射防止膜の成膜方法
 本件発明は、反射防止膜、それを備える光学素子及び反射防止膜の成膜方法に関する。
 凸の光学面に多層構造の反射防止膜を備える光学素子が知られている。反射防止膜は、所望の波長帯域で反射率が低いことに加えて、反射色のムラが小さいことが望まれる。しかしながら、Rが深い凸の光学面を備える光学素子に設けられた反射防止膜は、反射色のムラが発生して美観を損ね、製品性が低下することがある。例えば、凸の光学面の周辺部では、中心部と比較して、膜厚が薄くなり反射特性が短波長側にシフトする。そのため、凸の光学面の中心部では反射色が緑色であったとしても、周辺部では反射色が赤色になってしまい、反射色のムラが生じることがある。反射防止膜における反射色のムラの発生は、光軸とその位置の法線がなす角度である傾斜角度が25°以上である箇所を有する凸の光学面、すなわち、最大傾斜角度が25°以上である凸の光学面を備える光学素子の場合に特に顕著である。
 多層構造を構成する各光学薄膜は、通常、真空蒸着法やスパッタ法によって成膜される。そして、このような方法で成膜された光学薄膜の場合、一般的に、任意の測定箇所における膜厚dは、d=d0cosθの式に概ね従う。ここで、d0は凸の光学面の中心部での膜厚であり、θは測定箇所における法線と光軸がなす角度によって示される光学面の傾斜角度である。例えば、凸の光学面の傾斜角度θが25°である箇所に成膜される光学薄膜の膜厚は0.91d0であり、60°である箇所では0.5d0であり、80°である箇所では0.17d0である。すなわち、凸の光学面の傾斜角度θが大きい箇所ほど、光学薄膜の膜厚は薄くなる。例えば、中央部から周辺部に向かって傾斜角度が徐々に大きくなるような凸の光学面の場合には、中心部に比べて周辺部に近い箇所ほど、光学薄膜の膜厚が薄くなる。膜厚が薄いと、反射特性が短波長側にシフトする。そのため、凸の光学面の全体に亘って光学薄膜の膜厚が均一でない場合には、反射防止膜に反射色のムラが生じる。実用上としても、反射防止膜の周辺部の反射率が特定の波長で上がってしまい、ゴーストの発生につながる。
 従来、反射防止膜の反射色のムラを防ぐために、膜厚を均一化する技術が提案されている。例えば、特許文献1には、蒸着源に対してレンズ光軸を70°傾斜させた姿勢でレンズ光軸を中心に回転する凸レンズに対して、イオン又はプラズマを照射しながら成膜する技術が開示されている。特許文献1によれば、膜厚均一性に優れると共に、イオンアシスト又はプラズマアシストの効果によって緻密性に優れた膜を形成することができるとされている。
 また、特許文献2には、金属ターゲットから放出されたスパッタ粒子を、光学素子の凹面に蒸着させて金属膜を形成するスパッタ処理工程と、当該金属膜にイオンビームを照射して当該金属膜から放出されたスパッタ粒子を再度、前記光学素子の凹面に蒸着させる再スパッタ処理工程と、前記金属膜に酸素ラジカルビームを照射して酸化処理を行う酸化処理工程とを行う成膜方法が開示されている。特許文献2によれば、凹面の中央部の金属膜から放出したスパッタ粒子が凹面の周辺部に成膜するため、凹面に均一な膜厚の金属膜を形成できるとされている。
特開2006-91600号公報 特開2012-128321号公報
 しかしながら、特許文献1~特許文献2に開示の成膜方法によって、光学素子の凸の光学面側に複数層の光学薄膜が積層した多層構造の反射防止膜を形成する場合に、以下の不都合がある。
 すなわち、特許文献1に開示の成膜方法によって形成された光学薄膜は、空隙があるため、反射防止膜に適していないという不都合がある。具体的に説明すると、特許文献1の実施例2には、蒸着源にLaTiOを用い、酸素イオンを用いたイオンアシスト成膜法によって形成した光学薄膜が示されている。実施例2の光学薄膜は、波長550nmの光に対する屈折率がレンズ頂点部で1.91であり、レンズ周辺部では1.93である。このLaTiOは、波長550nmの光に対する屈折率が2.10を達成可能な材料であることが知られている。これらの数値に基づいて、ローレンツ・ローレンツの関係式によって実施例2の光学薄膜における空隙率及び充填率を算出すると、空隙率が15体積%であり、充填率が85体積%である。このような空隙の多い光学薄膜は、疎であるために物理的強度が低く物理耐久性が低い。また、空隙に水分が侵入することによって、分光特性の変化や更なる耐久性の低下が生じる。そして、LaTiOを高屈折率材料として用いる場合には、高屈折率材料の屈折率が低いと光学的にも不利である。さらに、特許文献1に開示の成膜方法は、凸レンズを光軸を中心に回転させることによって膜厚を均一に成膜する。そのため、2個以上のレンズに対して同時に成膜することができず、生産性が低いという不都合もある。
 また、特許文献2に開示の成膜方法は、光学素子の凸の光学面には適用できないという不都合がある。なぜなら、スパッタ処理工程によって凸の光学面に形成された金属膜にイオンビームを照射すると、凸の光学面から放出されたスパッタ粒子は、凸の光学面から離間する方向へ進む。そのため、このスパッタ粒子を凸の光学面に再度成膜させることができないからである。
 そこで、本件発明は、反射率が低くて反射色のムラが小さく、耐久性に優れた反射防止膜及びそれを備える光学素子を提供することを目的とする。さらに、本件発明は、そのような反射防止膜の生産性に優れた成膜方法を提供することを目的とする。
 上記課題を解決するために、本件発明に係る反射防止膜は、最大傾斜角度が25°以上である凸の光学面を有する光学素子の、当該凸の光学面側に設ける多層構造を備える反射防止膜であって、前記多層構造を構成する各光学薄膜は、任意の箇所の充填率が90%以上であり、CIE1976のL表色系におけるL値が以下の条件式(1)を満たし、任意の2箇所におけるa値の差Δa及び当該2箇所におけるb値の差Δbが以下の条件式(2)を満たすことを特徴とする。
     L<5  ……(1)
     (Δa+Δb1/2<5  ……(2)
 そして、上記課題を解決するために、本件発明に係る光学素子は、上述した反射防止膜を最大傾斜角度が25°以上である凸の光学面に備えることを特徴とする。
 さらに、上記課題を解決するために、本件発明に係る反射防止膜の成膜方法は、光学素子の最大傾斜角度が25°以上である凸の光学面側に多層構造を備える反射防止膜を形成するための成膜方法であって、光学素子を回転させながら、当該光学素子の前記凸の光学面側に、成膜ソースからの成膜材料を堆積させて膜を形成する成膜工程と、回転する前記光学素子の前記凸の光学面側に、イオン源からのイオン又はプラズマ源からのプラズマを光軸に対して傾斜した方向から照射することにより、前記凸の光学面側に堆積した成膜材料を除去しつつ、前記膜を緻密化し、前記イオン源又は前記プラズマ源に近い側の前記凸の光学面の領域によって、前記イオン源又は前記プラズマ源から遠い側の前記凸の光学面の領域への前記イオン又は前記プラズマの入射を遮蔽する照射工程とを備え、前記成膜工程と前記照射工程とを行うことにより、前記光学素子の前記凸の光学面側に前記多層構造を構成する各光学薄膜を形成することを特徴とする。
 本件発明によれば、反射率が低くて反射色のムラが小さく、耐久性に優れた反射防止膜及びそれを備えた光学素子を提供することができる。さらに、本件発明によれば、そのような反射防止膜の生産性に優れた成膜方法を提供することができる。
本件発明に係る反射防止膜を示す模式的断面図である。 本件発明に係る反射防止膜の成膜方法を実施する成膜装置の模式図である。 図2に示す成膜装置の要部拡大図である。 実施例1~実施例5及び比較例1~比較例4の反射防止膜を設ける光学素子を示す図である。 本発明に係る反射防止膜の成膜方法を実施する成膜装置の概略図である。(a)は成膜装置の正面図であり、(b)は光学素子支持装置を下側から見た底面図である。 実施例1~実施例5及び比較例1~比較例4の光学薄膜の膜厚分布を示すグラフである。(a)は実施例1~実施例5の光学薄膜の膜厚分布を示し、(b)は比較例1~比較例4の光学薄膜の膜厚分布を示す。 実施例1~実施例5及び比較例1~比較例4の光学薄膜の充填率を示すグラフである。(a)は実施例1~実施例5の光学薄膜の充填率を示し、(b)は比較例1~比較例4の光学薄膜の充填率を示す。 実施例1の反射防止膜の反射特性を示すグラフである。 実施例2の反射防止膜の反射特性を示すグラフである。 比較例1の反射防止膜の反射特性を示すグラフである。 実施例1の反射防止膜の反射特性の変化を示すグラフである。 実施例2の反射防止膜の反射特性の変化を示すグラフである。 比較例2の反射防止膜の反射特性の変化を示すグラフである。
 以下、本件発明に係る反射防止膜及びその成膜方法、並びに、反射防止膜を備える光学素子の実施の形態を説明する。
1.反射防止膜
 本件発明に係る反射防止膜は、最大傾斜角度が25°以上である凸の光学面を有する光学素子の、当該凸の光学面側に設ける多層構造を備える反射防止膜であって、前記多層構造を構成する各光学薄膜は、任意の箇所の充填率が90%以上であり、CIE1976のL表色系におけるL値が以下の条件式(1)を満たし、任意の2箇所におけるa値の差Δa及び当該2箇所におけるb値の差Δbが以下の条件式(2)を満たす。
     L<5  ……(1)
     (Δa+Δb1/2<5  ……(2)
 反射防止膜は、光学素子の最大傾斜角度が25°以上である凸の光学面に設けられるものであり、n層(nは2以上の整数)の光学薄膜が積層した多層構造を備える。最大傾斜角度が25°以上である凸の光学面とは、凸の光学面内で傾斜角度を測定したときに25°以上である箇所が存在するような光学面をいう。例えば、最大傾斜角度が25°以上である凸の光学面が中心部から周辺部に向かって傾斜角度が徐々に大きくなる光学面である場合には、凸の光学面の周辺部の傾斜角度は25°以上である。凸の光学面は、曲率を有する面であってもよく、自由曲面であってもよい。最大傾斜角度が25°以上であって自由曲面である凸の光学面とは、凸の光学面上の任意の2点の法線のなす角度をγとするとき、角度γ/2≧25°である光学面をいう。このとき、角度γ/2を形成する線分を、凸の光学面を備える光学素子の光軸とみなすことができる。
 図1に、本件発明の実施の形態である反射防止膜を示す。図1に示す反射防止膜1は、最大傾斜角度が90°、すなわち、周辺部の傾斜角度が90°である凸の光学面11aを備える光学素子11に設けられたものである。以下、凸の光学面11aを「光学面11a」と記載することがある。反射防止膜1は、7層の光学薄膜2が積層した多層構造を備える。7層の光学薄膜2は、光学面11aに近い側から順に、第1層の光学薄膜2a、第2層の光学薄膜2b、第3層の光学薄膜2c、第4層の光学薄膜2d、第5層の光学薄膜2e、第6層の光学薄膜2f、第7層の光学薄膜2gとも表記する。尚、図1中の光学薄膜2のハッチングを省略する。
 多層構造を構成する各光学薄膜は、任意の箇所の充填率が90%以上である。充填率が90%以上であるとは、空隙率が10%未満であって空隙が少ないことを意味する。光学薄膜は、充填率が90%以上であることにより、高い物理的強度を得ることができる。また、空隙率が10%未満であるため、空隙を介して水分が浸入して劣化することを抑制することができる。そのため、この光学薄膜がn層積層した反射防止膜は、優れた耐久性を得ることができる。さらに、この光学薄膜は、充填率が90%以上であることから、材料本来の屈折率に近い屈折率を実現することができる。一方、光学薄膜の充填率が90%未満の場合には、物理的強度が低い上に、水分の浸入によって劣化することがある。このような光学薄膜が積層した反射防止膜は、優れた耐久性を得ることができないため、好ましくない。さらに、光学薄膜の充填率が90%未満の場合には、材料本来の屈折率に近い屈折率を実現することができない。このような光学薄膜を積層させて反射防止膜を形成する場合には、光学薄膜の積層数を増やす必要があり非効率であるため、好ましくない。
 ここで、光学薄膜の充填率は、例えばX線回折法(XRD)によって測定することができるが、以下の式に示すThin-films optical filtersから引用した式(H. Angus Macleod (2010), "Thin-Films Optical Filters", USA: CRC Press, pp.570-572.参照)や、ローレンツ・ローレンツの関係式によって算出することもできる。
   p=(neff-nair)/(n-nair
 但し、上述した式において、
   p:光学薄膜の充填率
   neff:光学薄膜の実効屈折率
   nair:空気の屈折率
   n:膜に空隙が存在しないときの膜本来の屈折率又はメーカ推奨値
 さらに、反射防止膜は、CIE1976のL表色系におけるL値が条件式(1)を満たすと共に、任意の2箇所におけるa値の差Δa及び当該2箇所におけるb値の差Δbが条件式(2)を満たす。これにより、反射率が低く、反射色のムラの小さい反射防止膜を実現することができる。ここで、条件式(1)は、反射防止膜のいずれの箇所においてもL値が5未満であって、全体に亘って反射を抑えた反射防止膜であることを意味する。条件式(1)を満たさない場合には、反射防止膜にL値が5以上である箇所が存在し、反射率が高いか或いは反射色のムラがある反射防止膜であるため好ましくない。そして、条件式(2)は、反射防止膜のいずれの箇所においても、任意の2箇所におけるa値の差Δa及びb値の差Δbから算出される(Δa+Δb1/2が5未満であって、反射色のムラが小さい反射防止膜であることを意味する。条件式(2)を満たさない場合、反射防止膜に(Δa+Δb1/2が5以上である箇所が存在し、反射色のムラが大きい反射防止膜であるため好ましくない。
 各光学薄膜は、膜厚の最小値d(min)及び最大値d(max)が以下の条件式(3)を満たすことが好ましい。
     cos(5θ/6)≦d(min)/d(max)≦1.0  …(3)
 但し、θは、測定箇所における凸の光学面の傾斜角度である。
 条件式(3)は、反射防止膜の多層構造を構成する各光学薄膜が、膜厚が最大である箇所に対する膜厚が最小である箇所の比がcos(5θ/6)以上であって膜厚均一性に優れることを意味する。具体的には、凸の光学面の傾斜角度が25°である箇所では、光学薄膜の膜厚は0.935≦d(min)/d(max)≦1を満たすことが好ましい。凸の光学面の傾斜角度が60°である箇所では、光学薄膜の膜厚は0.643≦d(min)/d(max)≦1を満たすことが好ましい。凸の光学面の傾斜角度が90°である箇所では、光学薄膜の膜厚は0.259≦d(min)/d(max)≦1を満たすことが好ましい。
 条件式(3)を満たす光学薄膜は、膜厚均一性に優れる。そのため、反射色のムラをより小さくすることができる上に、ゴーストの発生を抑制した反射防止膜を実現することができる。さらに、凸の光学面の中心部だけでなく周辺部においても反射率の低い反射防止膜を実現することができる。光学薄膜が条件式(3)を満たさない場合には、膜厚均一性が不十分であるため、反射防止膜の反射色のムラを小さくできなかったり、ゴーストが生じたりすることがあり、好ましくない。
 各光学薄膜は、膜厚の最小値d(min)及び最大値d(max)が以下の条件式(4)を満たすことがより好ましい。
     cos(θ/2)≦d(min)/d(max)≦1.0  …(4)
 具体的には、凸の光学面の傾斜角度が25°である箇所では、光学薄膜の膜厚は0.976≦d(min)/d(max)≦1を満たすことが好ましい。凸の光学面の傾斜角度が60°である箇所では、光学薄膜の膜厚は0.866≦d(min)/d(max)≦1を満たすことが好ましい。凸の光学面の傾斜角度が90°である箇所では、光学薄膜の膜厚は0.707≦d(min)/d(max)≦1を満たすことが好ましい。
 条件式(4)を満たす光学薄膜は、条件式(3)を満たすが条件式(4)を満たさない光学薄膜と比較して、さらに膜厚均一性に優れる。そのため、条件式(4)を満たす光学薄膜を積層した反射防止膜は、反射色のムラの発生を確実に抑制することができる上に、反射率をより低くすることができる。
 各光学薄膜の膜厚は、断面SEMや接触式の膜厚計で測定することができる。或いは、光学薄膜の反射率をエリプソメータ等によって測定し、シミュレーションによって反射率から膜厚や屈折率を算出することもできる。
 ところで、反射防止膜は、反射率をより低減するために、高屈折率層である光学薄膜と低屈折率層である光学薄膜とを備えることが好ましい。さらに、反射防止膜は、屈折率が高屈折率層と低屈折率層との中間である中間屈折率層を備えてもよい。高屈折率層、低屈折率層及び中間屈折率層を、適宜組み合わせて反射防止膜を構成することができる。
 高屈折率層としては、TiO、Nb、ZrO、La、Ta、HfOの群より選択される1種以上の金属酸化物を含むものであることが好ましい。これらの金属酸化物を含む高屈折率層は、2.0以上の高屈折率を実現することができる。最終層の低屈折率層としては、SiOを含むものであることが好ましい。低屈折率層がSiOを単独で含むか或いはSiOとAlとの両方を含む場合には、屈折率を1.50以下に低減することができる。また、中間屈折率層としては、Al、Y、YbF等の金属酸化物や、Al+L等の混合物を含むものであることが好ましい。中間屈折率層の屈折率は1.50以上2.0以下である。例えば、図1に示す反射防止膜1において、第1層の光学薄膜2a、第3層の光学薄膜2c及び第5層の光学薄膜2eを、Alからなる中間屈折率層とし、第2層の光学薄膜2b、第4層の光学薄膜2d及び第6層の光学薄膜2fをLaTiOからなる高屈折率層とし、最終層である第7層の光学薄膜2gをSiOからなる低屈折率層としてもよい。
 上述した反射防止膜を構成する各光学薄膜は、後述する成膜方法によって形成することができる。成膜方法の中でイオン又はプラズマを使用するため、光学薄膜はイオン又はプラズマを構成する元素を含むものとなる。例えば、Arをプラズマ化して成膜した場合には、二次イオン質量分析(SIMS)によって、光学薄膜が1×1019原子%/cm以上のArを含むことを確認することができる。但し、光学薄膜が1×1022原子%/cm以上のArを含む場合には、当該光学薄膜が緻密化していないことがあるため好ましくない。
 以上の構成を備える反射防止膜は、優れた反射防止特性を備えることができる。例えば、可視域用の反射防止膜の場合には、任意の箇所において、入射角度0°の波長420nm以上680nm以下の光に対して1%以下の平均反射率を達成することができる。前記反射防止膜は、中心部や周辺部に関係なくいずれの箇所においても、前記光に対する平均反射率が1%以下であり、優れた反射防止特性を備えている。反射率が1%を超えるのでは、反射防止膜は反射防止特性が不十分なことがある。さらに、紫外域や近赤外域の波長の光に対しても最適な設計を行うことにより、紫外域又は近赤外域の波長の光に対する平均反射率が1%以下の反射防止膜を実現することができる。
2.反射防止膜の成膜方法
 次に、反射防止膜の成膜方法の実施の形態を説明する。本件発明に係る反射防止膜の成膜方法は、光学素子の最大傾斜角度が25°以上である凸の光学面側に多層構造を備える反射防止膜を形成するための成膜方法であって、光学素子を回転させながら、当該光学素子の前記凸の光学面側に、成膜ソースからの成膜材料を堆積させて膜を形成する成膜工程と、回転する前記光学素子の前記凸の光学面側に、イオン源からのイオン又はプラズマ源からのプラズマを光軸に対して傾斜した方向から照射することにより、前記凸の光学面側に堆積した成膜材料を除去しつつ、前記膜を緻密化し、前記イオン源又は前記プラズマ源に近い側の前記凸の光学面の領域によって、前記イオン源又は前記プラズマ源から遠い側の前記凸の光学面の領域への前記イオン又は前記プラズマの入射を遮蔽する照射工程とを備え、前記成膜工程と前記照射工程とを行うことにより、前記光学素子の前記凸の光学面側に前記多層構造を構成する各光学薄膜を形成する。
 本件発明に係る反射防止膜の成膜方法は、例えば、図2及び図3に示す成膜装置によって実施することができる。図2及び図3に示す成膜装置は、実施の形態の一つである。特に、成膜工程については、様々な形態、例えばスパッタ、CVD等を成膜ソースとして適用することが可能であり、本実施形態の成膜工程に限定されない。はじめに、この成膜装置の実施の形態について説明する。
 図2に示す成膜装置21は、内部を真空に保持可能な成膜室31内に、遊星回転機構を備える光学素子支持装置41と、成膜ソースとしての蒸着源51と、イオン銃61とを備える。本実施形態では、イオンを照射するイオン銃61を用いるが、イオン銃61に代えて、プラズマを照射するプラズマ銃を用いてもよい。
 光学素子支持装置41は、成膜室31の天井壁から吊り下げられ、回転可能な円盤状の支持基体42と、支持基体42の周縁部に吊り下げられ、回転可能な円盤状の光学素子ホルダ43とを備える。支持基体42は、図示しない第1モータの駆動によって自転する。支持基体42の自転軸をL1とする。光学素子ホルダ43は、図示しない第2モータの駆動によって自転する。光学素子ホルダ43の自転軸をL2とする。また、光学素子ホルダ43は、第1モータの駆動によって、支持基体42の自転軸L1を回転軸として公転する。支持基体42には6個の光学素子ホルダ43が等間隔に配設されている。但し、図2では2個の光学素子ホルダ43のみを記載し、他の光学素子ホルダ43については記載を省略する。
 本実施形態では、光学素子ホルダ43は、光学素子11が取り付けられて成膜が行われる成膜面43aが斜め下方向を向くように支持基体42に吊り下げられている。成膜面43aの向きは、角度調節機構44によって調整される。図2は、成膜面43aが鉛直方向に対して20°傾いた状態を示している。成膜面43aには、反射防止膜が形成される光学面11aを外側に向けた状態で、複数の光学素子11が光学素子ホルダ43の自転軸L2の周囲に同心円状に配置される。例えば、光学素子ホルダ43の自転軸L2の周囲に7個の光学素子11を等間隔に配置し、その外周に14個の光学素子11を等間隔に配置することができる。但し、図2では2個の光学素子11のみを記載し、他の光学素子11については記載を省略する。成膜面43aに取り付けられた光学素子11は、光軸OAが鉛直方向に対して傾斜した姿勢をとる。本実施形態では、成膜面43aが平坦であるため、各光学素子11の光軸OAと光学素子ホルダ43の自転軸L2とが平行であるが、必ずしも平行でなくてもよい。
 本実施形態では、蒸着源51は、図2に示すように、成膜室21の底部であって光学素子ホルダ43の公転軌道の内方に設けている。但し、蒸着源51の位置は、この位置に限定されない。例えば、サイドスパッタを行う場合には、蒸着源51を光学素子ホルダ43に対して水平方向の位置に設けることができる。蒸着源51は、電子銃、抵抗加熱、スパッタ源、イオン銃やプラズマ銃によるスパッタ、プラズマ銃による加熱蒸着、化学的蒸着法、イオンプレーティング等を用いて、成膜材料である蒸着物質を成膜することができる。蒸着源51として、例えば、TiO、Nb、ZrO、La、Ta、HfO、SiO、Al等、種々の光学材料を使用することができる。蒸着源51からの蒸着物質は、広がりをもちながら上昇し、光学素子11の光学面11a、光学素子ホルダ43等に堆積する。蒸着物質は、様々な方向から光学素子11の光学面11a側に入射するが、主に鉛直下方向から入射する。すなわち、蒸着物質は、主に、光軸OAに対して傾斜した方向から光学素子11の光学面11aに入射する。例えば、ある瞬間には、蒸着物質は、光軸OAに対して角度αで傾斜した方向D1から光学素子11の光学面11a側に入射する。角度αは、蒸着源51の位置や成膜面43aの向き等を変えることによって調整することができる。図2は、角度αが70°である状態を示している。そして、蒸着物質の光学面11a側への堆積速度は、成膜室31内の圧力(真空度)、蒸着源51の位置、蒸着源51の成膜条件(抵抗加熱の温度や蒸発面積、電子銃の電子線サイズ、エミッション電流、加速電圧)等によって制御することができる。
 本実施形態では、イオン銃61もまた、成膜室21の底部であって、光学素子ホルダ43の公転軌道の内方であって、支持基体42の自転軸L1に対して蒸着源51とは反対側の位置に設けている。但し、イオン銃61の位置は、後述するように、自己遮蔽を行うことができるのであれば、この位置に限定されない。イオン銃61は、イオンを高速で照射する。本実施形態では、He、Ne、Ar、Xe、Xrの群より選択される1種以上の希ガスと適宜Oをイオン銃61に導入し、イオン銃61によって希ガス及び酸素ガスをイオン化して照射する。イオン銃61によって照射されたイオンは、加速されているため高い直進性を有している。イオン銃61は、イオンを所定の方向に向けて照射する。例えば、ある瞬間には、イオン銃61は、イオンが光軸OAに対して角度βで傾斜した方向D2から光学素子11の光学面11a側に入射するように、イオンを照射する。角度βは、イオン銃61の位置や照射角度を変えることによって調整することができる。図2では、角度βが70°である状態を示している。イオン銃61の照射エネルギーは、加速電圧、ビーム電流、ビーム電圧、成膜圧力、ガス導入種、ガス導入量等によって制御することができる。
 次に、反射防止膜の成膜方法の実施の形態について説明する。ここでは、図1に示す反射防止膜1を成膜する方法について説明する。以下の成膜工程と照射工程とを同時に又は交互に繰り返し行うことによって、まず、第1層の光学薄膜2aを形成し、続いて、第2層の光学薄膜2bから第7層の光学薄膜2gを順に形成する。以下、第1層の光学薄膜2aの形成について詳しく説明する。
(成膜工程)
 成膜工程は、以下のようにして行う。本実施形態では、蒸着源51にAlを用いて第1層の光学薄膜2aを形成する。支持基体42の自転軸L1及び光学素子ホルダ43の自転軸L2を回転軸として光学素子11を回転させた状態で、蒸着源51を加熱して蒸着物質(Al)を蒸発させる。蒸着物質は、光学素子11の光学面11a上に堆積して膜を形成する。蒸着物質は、光学面11a上に様々な方向から入射するが、主に光軸OAに対して傾斜した方向D1から光学面11aに入射する。光学素子11が上述のように回転しているため、光学素子11の光学面11a上に形成される膜の膜厚分布は、上述したd=d0cosθの式に概ね対応する。すなわち、光学面11a上に形成される膜は、中心部で最も膜厚が厚く、中心部から周辺部に近付くにつれて膜厚が薄くなる。
(照射工程)
 照射工程は、以下のようにして行う。支持基体42の自転軸L1及び光学素子ホルダ43の自転軸L2を回転軸として光学素子11を回転させた状態で、イオン銃61によってイオンを照射する。イオンが光学素子11の光学面11a上に堆積した蒸着物質に衝突すると、堆積した蒸着物質にエネルギーが付与される。その結果、イオンが衝突した箇所では、イオンが成膜をアシストするものとして作用し、光学面11a上に形成された膜が緻密化される。さらに、光学面11a上に堆積した蒸着物質が除去され、膜が減厚される。蒸着物質に衝突したイオンは、その一部が何らかの形態で膜の中に残存する。
 イオン銃61によって照射されたイオンは、加速電圧によって意図的に加速されているため、蒸着源51からの蒸着物質と比較して、直進性が高い。そのため、イオンは、光学素子11の光軸OAに対して傾斜した方向D2から光学面11aに入射する。光学素子11の光学面11aは、傾斜角度が25°以上である箇所が存在するようなRの深い光学面である。そのため、光学面11aのイオン銃61に近い側の領域によって、光学面11aのイオン銃61から遠い側の領域(図3中、二重鎖線で囲んだ領域R)へのイオンの入射が遮蔽される。これを「自己遮蔽」と称す。自己遮蔽は、光学面11aの中心部では生じず、周辺部で生じる。具体的には、光学面11aの中心部は、光学素子11の回転に関係なく、イオンが入射される入射領域となる。一方、光学面11aの周辺部は、光学素子11の回転に伴って、入射領域とイオンの入射が遮蔽される遮蔽領域とが入れ替わる。その結果、光学面11aの中心部では、周辺部と比較して、イオンが多く入射し、光学面11a上からの蒸着物質の除去量が多くなる。例えば、光学面11aの中心部では、光学面11a上に堆積した蒸着物質のうちの20%以上が除去されるのに対し、光学面11aの周辺部での除去量は数%程度に留まる。尚、本実施形態では、光学素子ホルダ43の自転軸L2の周囲に光学素子11を配置しているため、光学面11aへのイオン照射位置は、光学素子ホルダ43の自転に伴って上下左右にも変化する。ところが、イオン銃61によって照射されたイオンは直進性が高いため、光学素子ホルダ43の回転に伴って光学面11aへのイオン照射位置が上下左右に変化しても、自己遮蔽が十分に生じて、光学面11aの中心部に堆積した蒸着物質を多く削ることができる。
 このように、照射工程でのイオン照射によって、成膜工程によって光学面11a上に形成した膜が緻密化されると共に減厚される。そして、上述した成膜工程と照射工程とを同時に又は交互に繰り返し行うことにより、光学面11a上に形成された膜が徐々に厚くなっていくと共に、膜厚が光学面11a側の中心部から周辺部に亘って均一化される。このとき、成膜工程及び照射工程の条件を適宜変更し、成膜工程及び照射工程のいずれを優先して行うか、バランスを取りながら繰り返し行う。以上により、光学素子11の凸の光学面11a上に、Alからなり所望の膜厚を有する第1層の光学薄膜2aを形成することができる。第1層の光学薄膜2aは、中心部から周辺部に亘って膜厚が均一化されている上に、緻密化されて任意の箇所の充填率が90%以上となっている。
 その後、蒸着源51の材料を適宜変更しながら、成膜工程と照射工程とを条件を適宜変更しながら繰り返し行い、第1層の光学薄膜2aの上に、残りの光学薄膜2b~2gを形成する。第2層から第7層の光学薄膜2b~2gは、第1層の光学薄膜2aと同様に、中心部から周辺部に亘って膜厚が均一化されると共に、任意の箇所の充填率が90%以上になる。以上のようにして、図1に示す、光学素子11の光学面11a上に多層構造を備える反射防止膜1を形成することができる。
 成膜工程と照射工程とを交互に行う場合には、次のように行うのが好ましい。まず、成膜工程によって膜を形成する。膜厚が10nmに達する前に照射工程を行い、膜の表層を削り取って膜を減厚することによってサブ層を形成する。この成膜工程と照射工程とを繰り返すことによってサブ層を積層し、所望の膜厚を有する第1層の光学薄膜2aを形成する。これに対し、膜厚が10nmを超えた後に照射工程を行ったのでは、サブ層の表層部では緻密化の効果が生じる一方、サブ層の深層部では緻密化の効果が生じない。そのため、得られた第1層の光学薄膜2aは、緻密な層と緻密でない層とが積層し、深さ方向に不均質なものとなるため好ましくない。以上のことから、成膜工程と照射工程とを交互に行うよりも、同時に行う方がより好ましい。同時に行う場合には、緻密な層のみが積層し、深さ方向に均質な第1層の光学薄膜2aを得ることができる。
 本実施形態の装置構成では、光学素子11が蒸着源51に近付いたときに、主に成膜工程が行われ、光学面11a上の膜が厚くなる。一方、光学素子11がイオン銃61に近付いたときには、主に照射工程が行われ、光学面11a上の膜が薄くなる。そして、成膜工程において膜が厚くなる速度、すなわち、蒸着物質の堆積速度は、上述した成膜条件によって制御することができる。また、照射工程において膜が薄くなる速度、すなわち、イオンによる蒸着物質の除去速度は、上述したイオン照射エネルギーによって制御することができる。
 ここで、図2を参照しながら、蒸着物質の光学面11aへの入射方向D1と光学素子11の光軸OAとのなす角度α、及び、イオンの光学面11aへの入射方向D2と光軸OAとのなす角度βについて説明する。まず、角度αについて説明する。蒸着源51からの蒸着物質は、広がりをもって上昇する。光学素子1が蒸着源51の直上に位置するときに、蒸着物質の光学面11aへの堆積量は最も多くなる。例えば、その位置における光学素子11の光軸OAと鉛直方向とがなす角度を角度αと規定する。本実施形態では、角度αを70°としているが、角度αは0°以上90°以下が好ましく45°以上90°以下の範囲であることがより好ましい。角度αが0°であるとき、光学素子11の光軸OAは鉛直方向に一致する。角度αが90°を超えると、光学素子11の光軸OAが水平方向よりも上を向く。蒸着物質の光学面11aの中心部への堆積量が減少して、成膜速度が遅くなるため好ましくない。一方、光学素子ホルダ43での取り付け位置に関係なく複数の光学素子11に対して均等に成膜するためには、角度αは0°以上でなるべく小さい方が好ましい。角度αが小さい例としては、平板ガラスに光学多層膜フィルターを成膜する平面遊星回転機構を有する成膜装置を挙げることができる。しかし、角度αが45°未満であると、成膜工程において、光学面11aの中心部での蒸着物質の堆積量が多くなる一方、周辺部での堆積量が過度に少なくなる。その場合、光学面11a側の中心部から周辺部に亘って膜厚を均一にするためには、照射工程で光学面11aの中心部の膜をより多く削る必要があり、照射工程に長時間を要することがある。以上のことから、照射工程に要する時間をより短くするためには、角度αは45°以上90°以下がより好ましい。
 次に、角度βについて説明する。イオン銃61から照射されたイオンは、直進性を有するため、光学素子11がイオン銃61の照射口に対向する箇所に位置するときに、イオンの光学面11aへの入射量は最も多くなる。例えば、その位置における光学素子11の光軸OAと、光学面11aの中心とイオン銃61とを結ぶ線分とがなす角度を角度βと規定する。本実施形態では、角度βを70°としているが、角度βは45°以上90°以下であることが好ましい。角度βが45°以上であることにより、膜の均一性を確保することができる。例えば半球形状(最大傾斜角度が90°)のように最大傾斜角度が特に大きい凸の光学面11の場合には、角度βを60°以上とすることが好ましい。角度βが45°未満であると、イオン照射時の自己遮蔽が不十分となり、膜の均一性を確保するのが困難であるため好ましくない。一方、角度90°を超えると、光学面11aの中央部へのイオン照射量が減り、中央部で膜を削るのが困難になるため好ましくない。
 また、本実施形態の成膜方法では、光学素子11は、光軸OAとは異なる軸を回転軸として回転する。具体的には、光学素子11は、遊星回転機構を備える光学素子支持装置41によって、支持基体42の自転軸L1を軸として回転すると共に、光学素子ホルダ43の自転軸L2を軸として回転する。そのため、光学素子11は、支持基体42の自転軸L1を軸とする回転に伴って水平方向に移動(回転)しつつ、光学素子ホルダ43の自転軸L2を軸とする回転に伴って上下方向、左右方向に移動する。このとき、光学素子11の光学素子ホルダ43への取り付け位置、すなわち、自転軸L2から光学素子11までの距離によって、成膜工程によって成膜される膜厚が異なる。また、光学素子1の取り付け位置によって、照射工程で光学面11a上のイオンの入射領域及び遮蔽領域の範囲が異なる。しかしながら、光学素子11が水平方向、上下方向、左右方向に移動した状態で、成膜工程及び照射工程が行われるため、光学素子11の取り付け位置に関係なく、複数の各光学素子11に対して反射防止膜1を均等に成膜することができる。従って、本実施形態の成膜方法は、反射防止膜1の量産に好適である。尚、光学素子11は、照射工程を行うときに自己遮蔽が生じるように回転していればよく、その回転方法についてはこれに限定されない。
 さらに、本実施形態では、図2に示す成膜装置21を用いた成膜方法について説明したが、これに限定されない。従来、薄膜の成膜に一般に使用される汎用スパッタ装置を用いてもよい。図5を参照しながら、汎用スパッタ装置を用いる成膜方法について簡単に説明する。汎用スパッタ装置は、図5(a)に概略を示すように、内部を真空に保持可能な成膜室内に、光学素子支持装置101と、蒸着源111と、イオン銃121とを備える。蒸着源111及びイオン銃121は、図2に示す蒸着源51及びイオン銃61と同じものを用いることができる。
 光学素子支持装置101は、円盤状の支持基体102と、支持基体102に配設され、支持基体102よりも小径の光学素子ホルダ103とを備える。光学素子支持装置101は、光学素子ホルダ103の成膜面103aが成膜室の底部を向くように、成膜室の天井壁から吊り下げられる。図5(b)に示すように、支持基体102は、その中心を自転軸L1として回転し、自転軸L1の周囲に2個以上の光学素子ホルダ103が配置される。光学素子ホルダ103は、その中心を自転軸L2として回転する。光学素子ホルダ103の成膜面103aには、その自転軸L2の周囲に2個以上の光学素子11を配置することができる。このとき、光学素子11の光軸OAは鉛直方向に一致している。また、図5(a)に示すように、蒸着源111は、例えば、成膜室の底部であって光学素子ホルダ103の回転軌道の直下に設けられる。イオン銃121は、例えば、成膜室の底部かつ光学素子ホルダ103の回転軌道の直下であって、蒸着源111とは別の位置に設けられる。イオン銃121は、斜め上方に向かってイオンを照射する。イオン銃121は、光学素子11の光学面11a側に向かって、光軸OAに対して45°以上90°以下の角度βで傾斜した方向からイオンを照射させることができるように、イオン銃121の位置が調整されている。以上のような図5に示す装置構成によっても、上述した本実施形態の成膜方法を行うことができる。そして、上述した照射工程を行うときに自己遮蔽を生じさせることができる。
3.光学素子
 本件発明に係る光学素子は、最大傾斜角度が25°以上である凸の光学面に、上述した反射防止膜を備えることを特徴とする。本件発明によれば、上述した反射防止膜を備えることにより、外観上の製品性が高く、ゴーストの少ない光学素子を提供することができる。光学素子としては、撮影光学素子や投影光学素子を挙げることができ、具体的には、レンズとして、例えば、一眼レフカメラの交換レンズやデジタルカメラ(DSC)に搭載されるレンズ、携帯電話機に搭載されるデジタルカメラ用のレンズ、照射系のプロジェクター用レンズ、車等のヘッドライト用の自由曲面レンズ、レーザー加工用レンズやアキシコンレンズ、DVD、CD、ブルーレイ用のピックアップレンズ、携帯電話やスマートフォンのカメラに用いられるレンズ等、各種のレンズを挙げることができる。
 ところで、上述したとおり、反射防止膜を構成する各光学薄膜は、蒸着物質を堆積させる成膜工程と、イオン又はプラズマを照射する照射工程とによって形成される。そのため、上述した凸の光学面上に第1層の光学薄膜を成膜する際に、イオン、プラズマ、電子等が凸の光学面に衝突することがある。光学素子が特定の硝材からなる場合、例えば、フッ素を含むFCD1のような硝材からなる場合には、凸の光学面に加速された電子等が衝突すると、光学素子において光の吸収が発生することがあり好ましくない。そこで、本件発明に係る光学素子は、凸の光学面と反射防止膜との間に、当該凸の光学面へのイオン、プラズマ、又は電子の入射を防止するための保護層を備えることが好ましい。保護層上に第1層の光学薄膜を成膜することにより、電子等が光学素子に直接衝突することを防ぎ、光の吸収を防ぐことができる。保護層は、光学素子と同一の屈折率を有する材質からなることが好ましい。例えば、光学素子がFCD1(屈折率1.497)の硝材からなる場合、保護層を屈折率がほぼ同一であるSiOで構成するのが好ましい。屈折率がほぼ同一であることによって硝材と保護層との界面がほぼ存在しないものとみなすことができる。そのため、光学的な干渉効果がなく、保護層が存在するにも関わらず保護層が存在しないときと同等の光学特性を得ることができる。このとき、保護層の膜厚が不均一であっても、光学特性への影響を防ぐことができる。そのため、保護層は、イオンやプラズマを用いない通常の真空蒸着法等によって成膜することができる。例えば、蒸着源51を用いて上述した成膜工程を行うことによって保護層を成膜することができる。保護層の膜厚は0.5nm以上であることが好ましく、5nm以上であることがより好ましい。保護層の膜厚が0.5nm未満であると、凸の光学面への被覆が不十分となり、第1層の光学薄膜を成膜するときに凸の光学面への希ガス元素の付着を防ぐことができないことがあるため好ましくない。
 さらに、反射防止膜の表面に、機能膜として防汚膜や硬質膜を成膜することが可能である。例えば、フッ素コーティングを施した防汚膜や、ダイヤモンドライクカーボン(DLC)、SiOからなる硬質膜を設けることができる。光学特性への影響を防ぐため、機能膜の膜厚は10nm以下であることが好ましい。
 次に、実施例および比較例を示して本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではない。
 本実施例では、図2に示す成膜装置21を用いて上述した成膜方法を行うことにより、光学素子11の凸の光学面11a上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。
(光学素子)
 光学素子11として、図4に示す形状のものを用いた。図4に示す光学素子11において、凸の光学面11a上で光軸OAからの距離Dが15mmとなる位置で傾斜角度を測定したところ、その傾斜角度は60°であった。このことから、本実施例で用いた光学素子11における凸の光学面11aの最大傾斜角度は60°以上である。本実施例では、材質がTAF1である光学素子11を用いた。
(成膜条件)
 まず、光学素子ホルダ43の自転軸L2の周囲に2個以上の光学素子11を配置し、光学素子ホルダ43を傾けて成膜面43aが鉛直方向に対して20°傾く姿勢を保持した。支持基体42を自転させつつ、光学素子ホルダ43を自転させることにより、光学素子11を回転させた。成膜室31内に流量20sccmの酸素ガスを導入して1.5×10-2Paの真空度に調整した。そして、光学素子11を温度250℃に加熱した状態で、上述の成膜工程と照射工程とを繰り返し行うことにより、各光学薄膜2a~2gを成膜した。
 成膜工程では、蒸着源51として以下のものを用いた。第1層、第3層及び第5層の光学薄膜2a,2c,2eの成膜にはAlを用いた。第2層、第4層及び第6層の光学薄膜2b,2d,2fの成膜にはTiOとLaとを用いた。第7層の光学薄膜2gの成膜にはSiOを用いた。光学素子ホルダ43の成膜面43aが鉛直方向に対して20°傾いていることにより、蒸着源51から蒸発した蒸着物質は、主に、光軸OAに対して角度α=70°で傾斜した方向D1から、光学素子11の光学面11aに入射した。
 照射工程では、イオン銃61によるイオン照射に際して、流量40sccmのArガスを導入し、イオン銃61によってArガス及び酸素ガスをイオン化して照射した。このとき、イオン銃61の加速電圧を1.5kVとした。照射されたイオンは、光軸OAに対して角度β=70°で傾斜した方向D2から、光学素子11の光学面11aに入射した。
 本実施例では、蒸着源51を変更した点を除いて、実施例1と全く同一にして、光学素子11の凸の光学面11a上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。本実施例では、蒸着源51として以下のものを用いた。第1層、第3層、第5層及び第7層の光学薄膜2a,2c,2e,2gの成膜にはSiOを用いた。第2層、第4層及び第6層の光学薄膜2b,2d,2fの成膜にはTiOを用いた。
 本実施例では、まず、実施例2と全く同一にして、光学素子11の凸の光学面11a上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。その後、反射防止膜1の最終層である第7層の光学薄膜2gの上に、パーフルオロカーボンからなる機能膜(防汚膜)を5nmの膜厚になるように成膜した。機能膜の成膜には、抵抗加熱を用いた。尚、機能膜を成膜する際、イオン源61を使用しなかった。
 本実施例では、光学素子11の材質を変更した点と、凸の光学面11a上に保護膜を成膜した後に7層の光学薄膜2a~2gを形成した点とを除いて、実施例2と全く同一にして反射防止膜1を形成した。本実施例では、FCD1からなる光学素子11を用いた。まず、成膜装置21内に酸素ガスを導入して1.5×10-2Paの真空度に調整し、蒸着源51にSiOを用いて上述した成膜工程と全く同様にして、SiOからなる保護膜を光学面11a上に成膜した。尚、保護膜を成膜する際、イオン源61を使用しなかった。その後、実施例2と全く同一にして、保護層の上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。
 本実施例では、光学素子ホルダ43の成膜面43aの傾きとイオン銃の出力と成膜条件を変更した点を除いて、実施例2と全く同一にして、光学素子11の凸の光学面11a上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。成膜面43の傾きを、鉛直方向に対して45°傾くように変更した。それに伴って、蒸着物質の光学面11aへの入射方向と光軸OAとのなす角度αが45°になり、イオンの光学面11aへの入射方向と光軸OAとのなす角度βが45°になった。また、イオン銃の出力は加速電圧を700Vとした。そして、成膜工程と照射工程のバランスを取るために、成膜工程における成膜条件を変更し、蒸着物質の堆積速度を調整した。
比較例
〔比較例1〕
 本比較例では、実施例1とは異なる一般的な成膜装置を用いて光学素子11の凸の光学面11a上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。
 本比較例では、成膜装置として汎用の成膜装置であるシンクロン社製のBMC1300を用いた。この成膜装置は、内部を真空に保持可能な成膜室内に、光学素子11が配置されるドームと、実施例1で用いたものと同一の蒸着源51及びイオン源61とを備える。
このドームは、実施例1で用いた光学素子ホルダとは異なり、ドーム形状となっている。ドームは、上に凸となる姿勢で成膜室の天井壁に吊り下げられ、その中心を回転軸として回転する。ドームは、内側の凹面が成膜面であり、当該成膜面に光学素子11が配置される。本比較例で用いたドームには、成膜面の回転軸の周囲に300個以上の光学素子11を配置できる。成膜面が凹面であることにより、成膜面に取り付けられた光学素子11は、その光軸OAが鉛直方向に対して配置によって5~30°傾いた姿勢となる。
 そして、実施例1と同様に、成膜工程及び照射工程を行った。成膜工程は、蒸着源1から蒸発した蒸着物質が、主に、光軸OAに対して角度α=5~30°で傾斜した方向D1から光学素子11の光学面11aに入射した点以外は、実施例1と全く同一にして行った。照射工程は、イオン銃によって照射されたイオンが、光軸OAに対して角度β=10~40°で傾斜した方向D2から、光学素子11の光学面11aに入射した点以外は、実施例1と全く同一にして行った。
〔比較例2〕
 本比較例では、光学素子ホルダ43での光学素子11の取り付け位置を変更した点と、イオン銃61の照射条件を変更した点とを除いて、実施例1と全く同一にして、光学素子11の凸の光学面11a上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。本比較例では、まず、光学素子ホルダ43の自転軸L2上に1個の光学素子11を配置した。そして、イオン銃61によって照射されたイオンが、光軸OAに対して角度β=20°の方向から光学素子11の光学面11aに入射するように、イオン銃61の設置場所を変更した。これに伴い、イオンの光学面11aへの入射方向と光軸OAとのなす角度βが20°になった。さらに、イオン銃61によるイオン照射では、Arガスは導入せずに、酸素ガスをイオン化して照射した。このとき、イオン銃61の加速電圧は700Vとした。
〔比較例3〕
 本比較例では、光学素子ホルダ43での光学素子11の取り付け位置を変更した点を除いて、比較例2と全く同一にして、光学素子11の凸の光学面11a上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。本比較例では、実施例1と同様に、光学素子ホルダ43の自転軸L2の周囲であって自転軸L2と光学素子11の光軸OAが一致しない位置に、2個以上の光学素子11を配置した。
〔比較例4〕
 本比較例では、イオン銃61の照射条件を変更した点を除いて、実施例2と全く同一にして、光学素子11の凸の光学面11a上に7層の光学薄膜2a~2gからなる反射防止膜1を形成した。本比較例では、比較例2と同様に、イオン銃61によるイオン照射を行うとき、Arガスは導入せずに、酸素ガスをイオン化して照射し、加速電圧は700Vとした。
〔評価項目〕
 得られた実施例1~実施例5及び比較例1~比較例4の反射防止膜1について、以下の評価を行った。
(1)光学薄膜の膜厚分布
 反射防止膜1を構成する各層の光学薄膜2a~2gについて、断面SEMによって膜厚を測定し、膜厚分布を求めた。膜厚の測定は、光学薄膜2a~2gの、光学面11a上で傾斜角度が0°、25°、35°、45°、60°である箇所に対応する箇所に対して行った。各層の光学薄膜2a~2gの膜厚分布は、その層が何番目の層であるかに関係なく、材質が同一であればほぼ同一であった。そして、光学薄膜の材質毎の膜厚分布から、光学薄膜2a~2gの平均膜厚分布を求めた。結果を図6に示す。図6中の破線は、d(min)/d(max)=cos(5/6θ)を示している。θは測定箇所の傾斜角度である。
(2)光学薄膜の充填率
 まず、得られた各層の光学薄膜2a~2gについて、大塚電子株式会社製の反射分光膜厚計FE3000を用いて、各層の反射率を測定した。続いて、得られた反射率データと(1)で求めた物理膜厚から屈折率を算出した。それ以外にも各層の光学薄膜2a~2gの成膜に用いた材料毎に、それらの成膜と同様の方法で、光学面11a上に単層膜を形成した。材料毎の単層膜について、J. A. Woollam社のエプリソメータM-2000を用いて各層の屈折率と膜厚を算出し、それらの屈折率及び膜厚が、FE3000及びSEMから算出した各光学薄膜2a~2gの屈折率及び膜厚と一致することを確認した。屈折率及び膜厚の算出は、単層膜の、光学面11a上で傾斜角度が0°、25°、35°、45°、60°である箇所に対応する箇所に対して行った。そして、上述したThin-films optical filtersの式(p=(neff-nair)/(n-nair))によって、各層の光学薄膜の充填率を算出した。充填率の算出は、各層の光学薄膜2a~2gの、光学面11a上で傾斜角度が0°、25°、35°、45°、60°である箇所に対応する箇所に対して行った。ここで、Thin-films optical filtersの式において、neff(光学薄膜の屈折率)は、シミュレーションによって求めた光学薄膜2a~2gの材料毎の屈折率である。nair(空気の屈折率)は1である。n(膜に空隙が存在しないときの膜本来の屈折率)は、Alは1.64であり、La+TiOは2.10であり、SiOは1.48であり、Nbは2.30である。これらはメーカのカタログ値や文献から調べることができる。図7に、光学薄膜2a~2gの材質別の光学薄膜のうち、充填率が最も低い光学薄膜の結果を示す。図7中の破線は、充填率が90%であることを示している。
(3)L表色系
 実施例1~実施例5及び比較例1~比較例4の反射防止膜1について、大塚電子株式会社製の反射分光膜厚計FE-3000によって、反射率を粗測定し、CIE1976のL表色系におけるL値、a値及びb値を求めた。L値、a値及びb値の測定は、反射防止膜1の、光学面11a上で傾斜角度が0°、25°、35°、45°、60°である箇所に対応する箇所に対して行った。そして、測定した5箇所のうちの2箇所を選択し、その2箇所におけるa値の差Δa及びb値の差Δbから、上述した条件式(2)の左辺である(Δa+Δb1/2の値を算出し、その最大値を求めた。結果を表1に示す。
(4)分光反射率
 実施例1~実施例5及び比較例1~比較例4の反射防止膜1について、大塚電子株式会社製の反射分光膜厚計FE-3000によって分光反射率を測定した。分光反射率の測定は、反射防止膜1の、光学面11a上で傾斜角度が0°、25°、35°、45°、60°である箇所に対応する箇所を、測定箇所とした。そして、反射防止膜1の中央部への入射光の入射角度を0°とし、入射光の波長域を350nm以上850nm以下の範囲内で変化させながら行った。結果を図8から図10に示す。
(5)信頼性試験
 実施例1~実施例5及び比較例1~比較例4の反射防止膜1について、上述の分光反射率の測定を行った後、温度60℃及び湿度90%の環境下に240時間静置した。その後、分光反射率を再び測定し、その変化を調べた。ここでは、反射防止膜1の、光学面11a上で傾斜角度が0°である箇所に対応する箇所を、測定箇所とした。結果を表1及び図11から図13に示す。
 さらに、上記環境下に静置した実施例1~実施例4及び比較例1~比較例4の反射防止膜1に対して、新東科学株式会社製の往復磨耗試験機TYPE30によって、500g重の荷重を付与した状態で移動距離10mmを移動速度1200mm/分で100往復させることにより、耐久性試験を行った。耐久性試験は、光学素子11の中心部(傾斜角度0°の位置)及び周辺部(傾斜角度60°の位置)に対応する位置で行った。その後、目視によって、反射防止膜1(実施例3では機能層)の表面に生じたキズの有無を観察し、耐久性を評価した。結果を表1に示す。表1中の「耐久性」欄において、「○」印は、中心部及び周辺部の両方でキズが観察されなかったことを意味する。「×」印は、中心部又は周辺部の少なくとも一方でキズが観察されたことを意味する。
Figure JPOXMLDOC01-appb-T000001
 
〔評価結果〕
 以下、各実施例及び比較例の評価結果について述べる。
(1)光学薄膜の膜厚分布に関する評価結果
 図6を参照しながら、実施例1~実施例5及び比較例1~比較例4の光学薄膜2a~2gの膜厚分布について述べる。図6(a)に示すように、実施例1~実施例5の光学薄膜2a~2gは、測定箇所の傾斜角度θが大きくなるにつれて、膜厚比d(min)/d(max)が徐々に小さくなっていくものの、傾斜角度θが0°以上60°以下の範囲で、膜厚比がcos(5θ/6)以上且つ1.0以下であって上記条件式(3)を満たしている。特に、実施例1~実施例5の光学薄膜2a~2gは、傾斜角度θが60°である測定箇所でも膜厚比が0.91以上である。以上のことから、実施例1~実施例5の光学薄膜2a~2gは、中心部から周辺部までの全体に亘って膜厚均一性に優れている。
 また、図6(b)に示すように、比較例2の光学薄膜2a~2gは、傾斜角度が60°の測定箇所でも膜厚比が95%以上であり、膜厚均一性に優れている。しかしながら、比較例1、比較例3及び比較例4の光学薄膜2a~2gは、測定箇所の傾斜角度θが大きくなるにつれて膜厚比が急激に小さくなっていき、傾斜角度θが25°以上の測定箇所では膜厚比がcos(5θ/6)を下回り条件式(3)を満たさない。特に、傾斜角度が60°の測定箇所では膜厚比が0.50程度に低下している。以上のことから、実施例1~実施例5の光学薄膜2a~2gは、膜厚均一性が劣る。
(2)光学薄膜の充填率に関する評価結果
 図7を参照しながら、実施例1~実施例5及び比較例1~比較例4の光学薄膜2a~2gの充填率について述べる。図7(a)に示すように、実施例1~実施例5の光学薄膜2a~2gは、傾斜角度θが0°以上60°以下の測定箇所で、90%以上の充填率を実現している。光学薄膜2a~2gにおける高い充填率は、空隙が少ないことを意味する。
 また、図7(b)に示すように、比較例1及び比較例4の光学薄膜2a~2gは、実施例1~実施例5と同程度であるか或いは僅かに劣るものの、傾斜角度θが0°以上60°以下の測定箇所で充填率が90%に達している。しかしながら、比較例2~比較例3の光学薄膜2a~2gは、充填率が低く90%に達していない。
(3)L表色系の評価結果
 表1を参照しながら、実施例1~実施例5及び比較例1~比較例4の反射防止膜1のL表色系について述べる。実施例1~実施例5の反射防止膜1は、傾斜角度θに関係なく、L値が常に5未満である。このことから、実施例1~実施例5の反射防止膜1は、傾斜角度θが0°以上60°以下であるいずれの箇所においても、反射が抑制されていることが理解できる。そして、実施例1~実施例5の反射防止膜1は、条件式(2)の左辺である(Δa+Δb1/2の値が5未満である。このことから、実施例1~5の反射防止膜1は、中心部から周辺部までの全体に亘って反射色のムラが小さいことが理解できる。
 これに対し、比較例1~比較例4の反射防止膜1は、傾斜角度θが0°以上25°以下の測定箇所ではL値が5未満であるが、傾斜角度θが35°以上である測定箇所ではL値が5を超えている。このことから、比較例1~比較例4の反射防止膜1は、傾斜角度θが0°以上25°以下である箇所では反射が抑制されているものの、傾斜角度が35°以上である箇所では反射が抑制されていないことが理解できる。特に、比較例1、比較例3及び比較例4の反射防止膜1は、傾斜角度θが35°の箇所ではL値が25前後であり、60°の箇所ではL値が40前後である。このことから、比較例1、比較例3及び比較例4の反射防止膜1は、傾斜角度が35°以上の箇所では反射光が非常に大きいことが理解できる。さらに、比較例1~比較例4の反射防止膜1は、(Δa+Δb1/2の値が5を上回っている。このことから、比較例1~比較例4の反射防止膜1は、反射色のムラが大きいことが理解できる。特に、比較例1、比較例3及び比較例4の反射防止膜1は、(Δa+Δb1/2の値が40前後である。このことから、比較例1、比較例3及び比較例4の反射防止膜1は、反射色のムラが非常に大きいことが理解できる。
(4)分光反射率の結果
 図8から図10を参照しながら、実施例1~実施例2及び比較例1の反射防止膜1の分光反射率について述べる。図8に示すように、実施例1の反射防止膜1では、傾斜角度θに関係なく、入射角度0°の波長420nm以上680nm以下の光に対する反射率が0.6%以下である。このことから、実施例1の反射防止膜1は、中心部から周辺部までの全体に亘って、反射防止特性に非常に優れることが理解できる。また、図9に示すように、実施例2の反射防止膜1では、傾斜角度θに関係なく、入射角度0°の波長420nm以上680nm以下の光に対する反射率が1%以下である。このことから、実施例2の反射防止膜1もまた、中心部から周辺部までの全体に亘って、反射防止特性に優れることが理解できる。
 これに対し、図10に示すように、比較例1の反射防止膜では、傾斜角度が0°の測定では、入射角度0°の波長420nm以上680nm以下の光に対する反射率が0.5%以下である。しかしながら、測定箇所の傾斜角度θが大きくなるにつれて、反射特性が短波長側へシフトし、長波長側で反射を抑制できない。傾斜角度θが25°の測定箇所ですら、575nmより長い波長の光に対して反射率が1%を超えてしまう。このことから、比較例1の反射防止膜1は、反射防止特性が劣ることが理解できる。
(5)信頼性試験の結果
 表1及び図11から図13を参照しながら、実施例1~実施例5及び比較例1~比較例4の反射防止膜1の信頼性について述べる。まず、表1に示すように、実施例1~実施例5、比較例1及び比較例4の反射防止膜1は、信頼性試験の前後、すなわち、温度60℃及び湿度90%の環境下に240時間静置した前後で、反射特性が変化しなかった。図11及び図12にも、実施例1及び実施例2の反射防止膜1では反射特性が変化しなかったことが示されている。一方、表1に示すように、比較例2~比較例3の反射防止膜1は、反射特性が悪化していた。図13にも、比較例2の反射防止膜1では反射特性が悪化したことが示されている。そして、表1に示すように、実施例1~実施例5の反射防止膜1は、耐久性試験によってキズは生じず、耐久性に優れる。これに対し、比較例2及び比較例3の反射防止膜1は、キズが生じており、耐久性に劣る。以上のことから、実施例1~実施例5の反射防止膜1は、比較例2~比較例3の反射防止膜1と比較して、信頼性に優れることが理解できる。
 さらに、表1及び図7を対比すると、耐久性に優れる実施例1~実施例5、比較例1及び比較例4の反射防止膜1では、反射防止膜1を構成する光学薄膜2a~2gの充填率が94%以上である。一方、耐久性が劣る比較例2~比較例3の反射防止膜1では、光学薄膜2a~2gの充填率が90%以下である。このことから、反射防止膜1の耐久性には、反射防止膜1を構成する光学薄膜2a~2gの充填率が関連していることが理解できる。
(6)総評
 以上の結果から、実施例1~実施例5の反射防止膜1は、中心部から周辺部までの全体に亘って反射率が低くて反射色のムラが小さく、耐久性に優れることが明らかになった。そして、反射防止膜1における反射の抑制及び反射色のムラの抑制には、反射防止膜1を構成する光学薄膜2a~2gの膜厚分布が関連することが明らかになった。反射防止膜1の耐久性には、光学薄膜2a~2gの充填率が関連することが明らかになった。さらに、実施例2と実施例3とを比較すると、本実施例の方法で成膜した反射防止膜1は、その上に機能層が存在するか否かによらず、反射を抑制し、反射色のムラを小さくすることができることが理解できる。また、実施例2と実施例4とを比較すると、本実施例の方法で成膜した反射防止膜1は、光学面11aとの間に保護層が存在するか否かによらず、反射を抑制し、反射色のムラを小さくすることができることが理解できる。
 続いて、成膜条件の詳細について検討する。まず、角度α及び角度βについて検討する。実施例1及び比較例1は、いずれも、イオン銃61によるイオン照射を行うとき、Arガスを導入し、Arガス及び酸素ガスをイオン化し、加速電圧が1.5kVである点で一致している。但し、実施例1は、角度αが70°であり角度βが70°であるのに対し、比較例1は角度αが30°であり角度βが30°である点で相違する。そして、実施例1の光学薄膜2a~2gは、充填率が高い上に膜厚均一性に優れる(図6(a)参照)のに対し、比較例1の光学薄膜2a~2gは、充填率は高いものの膜厚均一性が劣る(図6(b)参照)。このことから、充填率が高く膜厚均一性に優れる光学薄膜2a~2gを得るためには、角度αを70°とし、角度βを70°とするのがよいことが理解できる。さらに、実施例5から、角度αを45°、角度βを45°としてもよいことが理解できる。
 次に、イオン銃61の照射雰囲気について検討する。実施例5及び比較例4は、いずれも、イオン銃61によるイオン照射を行うとき、加速電圧が700Vである点で一致している。但し、実施例5は、イオン照射時に、Arガスを導入してArガス及び酸素ガスをイオン化したのに対し、比較例4は、Arガスは導入せず酸素ガスをイオン化した点で相違する。そして、実施例5の光学薄膜2a~2gは、膜厚均一性に優れる(図6(a)参照)のに対し、比較例4の光学薄膜2a~2gは、膜厚均一性が劣る(図6(b)参照)。このことから、膜厚均一性に優れる光学薄膜2a~2gを得るためには、Arガス及び酸素ガスをイオン化してイオン照射を行うのがよいことが理解できる。
 次に、光学素子ホルダ43の自転軸L2に対する光学素子11の配置位置について検討する。光学素子ホルダ43の自転軸L2上に光学素子11を配置した比較例2と、自転軸L2の周囲に光学素子11を配置した比較例3とを比較する。表1に示すように、比較例2は、反射防止膜1の(Δa+Δb1/2値が、5以下ではないものの6.48であり、比較例3の38.80よりは良い。そして、比較例2及び比較例3は、共に、反射防止膜1の耐久性が不十分である。そのため、比較例2の反射防止膜1は、耐久性に問題はあるものの、反射色のムラが小さいという利点がある。しかしながら、比較例2のように、光学素子ホルダ43の自転軸L2上に光学素子11を配置したのでは、配置できる光学素子11の数に限りがあり、生産性が低いという点で好ましくない。これに対し、比較例3や実施例1~5のように、光学素子ホルダ43の自転軸L2の周囲に複数の光学素子11を配置するようにすれば、同時に複数の光学素子11に対して成膜することができ、生産性を向上することができるため好ましい。
 本件発明に係る反射防止膜及びその成膜方法は、最大傾斜角度が25°以上であるようなRの深い凸の光学面を備える、撮影光学素子や投影光学素子等の種々の光学素子に好適である。
  1 反射防止膜
  2 光学薄膜
  2a 第1層の光学薄膜
  2b 第2層の光学薄膜
  2c 第3層の光学薄膜
  2d 第4層の光学薄膜
  2e 第5層の光学薄膜
  2f 第6層の光学薄膜
  2g 第7層の光学薄膜
  11 光学素子
  11a 凸の光学面
  51,111 蒸着源
  61,121 イオン銃(イオン源)
  D1 蒸着物質が凸の光学面側へ入射するときの入射方向
  D2 イオン又はプラズマが凸の光学面側へ入射するときの入射方向
  OA 光学素子の光軸
  α 光学素子の光軸に対して蒸着物質の入射方向がなす角度
  β 光学素子の光軸に対してイオン又はプラズマの入射方向がなす角度

Claims (13)

  1.  最大傾斜角度が25°以上である凸の光学面を有する光学素子の、当該凸の光学面側に設ける多層構造を備える反射防止膜であって、
     前記多層構造を構成する各光学薄膜は、任意の箇所の充填率が90%以上であり、
     CIE1976のL表色系におけるL値が以下の条件式(1)を満たし、任意の2箇所におけるa値の差Δa及び当該2箇所におけるb値の差Δbが以下の条件式(2)を満たすことを特徴とする反射防止膜。
         L<5  ……(1)
         (Δa+Δb1/2<5  ……(2)
  2.  前記光学薄膜は、膜厚の最小値d(min)及び最大値d(max)が以下の条件式(3)を満たすものである請求項1に記載の反射防止膜。
      cos(5θ/6)≦d(min)/d(max)≦1.0  ……(3)
    但し、θは、測定箇所における凸の光学面の傾斜角度である。
  3.  前記光学薄膜は、He、Ne、Ar、Xe、Xrの群より選択される1種以上の希ガス元素を含むものである請求項1又は請求項2に記載の反射防止膜。
  4.  前記多層構造は、高屈折率層である光学薄膜と低屈折率層である光学薄膜とを含み、
     前記高屈折率層は、TiO、Nb、ZrO、La、Ta、HfOの群より選択される1種以上の金属酸化物を含むものである請求項1から請求項3のいずれか一項に記載の反射防止膜。
  5.  前記多層構造は、高屈折率層である光学薄膜と低屈折率層である光学薄膜とを含み、
     前記低屈折率層は、SiO、Alの群より選択される1種以上の金属酸化物を含むものである請求項1から請求項4のいずれか一項に記載の反射防止膜。
  6.  任意の箇所における入射角度0°の波長420nm以上680nm以下の光に対する反射率が1%以下である請求項1から請求項5のいずれか一項に記載の反射防止膜。
  7.  最大傾斜角度が25°以上である凸の光学面を有する光学素子であって、
     請求項1から請求項6のいずれか一項に記載の反射防止膜を前記凸の光学面に備えることを特徴とする光学素子。
  8.  前記凸の光学面と前記反射防止膜との間に、当該凸の光学面へのイオン又はプラズマの入射を防止するための保護層を備える請求項7に記載の光学素子。
  9.  前記反射防止膜の上に設けられた機能膜を備える請求項7又は請求項8に記載の光学素子。
  10.  光学素子の最大傾斜角度が25°以上である凸の光学面側に多層構造を備える反射防止膜を形成するための成膜方法であって、
     光学素子を回転させながら、当該光学素子の前記凸の光学面側に成膜ソースからの成膜材料を堆積させて膜を形成する成膜工程と、
     回転する前記光学素子の前記凸の光学面側に、イオン源からのイオン又はプラズマ源からのプラズマを前記光軸に対して傾斜した方向から照射することにより、前記凸の光学面側に堆積した成膜材料を除去しつつ、前記膜を緻密化し、前記イオン源又は前記プラズマ源に近い側の前記凸の光学面の領域によって、前記イオン源又は前記プラズマ源から遠い側の前記凸の光学面の領域への前記イオン又は前記プラズマの入射を遮蔽する照射工程とを備え、
     前記成膜工程と前記照射工程とを行うことにより、前記光学素子の前記凸の光学面側に前記多層構造を構成する各光学薄膜を形成することを特徴とする反射防止膜の成膜方法。
  11.  前記照射工程は、前記光学素子の前記凸の光学面側に、前記イオン又は前記プラズマを前記光軸に対して45°以上90°以下の角度で傾斜した方向から照射するものである請求項10に記載の反射防止膜の成膜方法。
  12.  前記光学素子は、光軸とは異なる軸を回転軸として回転するものである請求項10又は請求項11に記載の反射防止膜の成膜方法。
  13.  前記イオン又はプラズマは、He、Ne、Ar、Xe、Xrの群より選択される1種以上の希ガスから形成したイオン又はプラズマである請求項10から請求項12のいずれか一項に記載の反射防止膜の成膜方法。
PCT/JP2019/031593 2018-08-20 2019-08-09 反射防止膜、光学素子及び反射防止膜の成膜方法 WO2020039976A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980027116.5A CN112534307B (zh) 2018-08-20 2019-08-09 防反射膜、光学元件及防反射膜的成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018154155A JP7237489B2 (ja) 2018-08-20 2018-08-20 反射防止膜、光学素子及び反射防止膜の成膜方法
JP2018-154155 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020039976A1 true WO2020039976A1 (ja) 2020-02-27

Family

ID=69593208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031593 WO2020039976A1 (ja) 2018-08-20 2019-08-09 反射防止膜、光学素子及び反射防止膜の成膜方法

Country Status (3)

Country Link
JP (1) JP7237489B2 (ja)
CN (1) CN112534307B (ja)
WO (1) WO2020039976A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349798B2 (ja) * 2019-03-06 2023-09-25 株式会社タムロン 反射防止膜、光学素子及び反射防止膜の成膜方法
CN114133226B (zh) * 2021-12-30 2022-11-08 苏州晶生新材料有限公司 一种光学镀层基材及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255401A (ja) * 1990-03-06 1991-11-14 Olympus Optical Co Ltd プラスチック基板へのMgF↓2膜成膜方法
JP2004098420A (ja) * 2002-09-09 2004-04-02 Dainippon Printing Co Ltd 透明積層フィルム、偏光板、液晶表示素子及び液晶表示装置
JP2006091600A (ja) * 2004-09-27 2006-04-06 Konica Minolta Opto Inc レンズへの膜形成方法及び装置
JP2011039218A (ja) * 2009-08-10 2011-02-24 Seiko Epson Corp 光学物品の製造方法
JP2011048228A (ja) * 2009-08-28 2011-03-10 Seiko Epson Corp 光学物品およびその製造方法
JP2011150154A (ja) * 2010-01-22 2011-08-04 Showa Shinku:Kk 薄膜、及び、薄膜の形成方法
JP2016080857A (ja) * 2014-10-16 2016-05-16 リコーイメージング株式会社 反射防止膜、それを用いた光学部材、及び光学機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255401A (ja) * 1990-03-06 1991-11-14 Olympus Optical Co Ltd プラスチック基板へのMgF↓2膜成膜方法
JP2004098420A (ja) * 2002-09-09 2004-04-02 Dainippon Printing Co Ltd 透明積層フィルム、偏光板、液晶表示素子及び液晶表示装置
JP2006091600A (ja) * 2004-09-27 2006-04-06 Konica Minolta Opto Inc レンズへの膜形成方法及び装置
JP2011039218A (ja) * 2009-08-10 2011-02-24 Seiko Epson Corp 光学物品の製造方法
JP2011048228A (ja) * 2009-08-28 2011-03-10 Seiko Epson Corp 光学物品およびその製造方法
JP2011150154A (ja) * 2010-01-22 2011-08-04 Showa Shinku:Kk 薄膜、及び、薄膜の形成方法
JP2016080857A (ja) * 2014-10-16 2016-05-16 リコーイメージング株式会社 反射防止膜、それを用いた光学部材、及び光学機器

Also Published As

Publication number Publication date
JP2020030237A (ja) 2020-02-27
CN112534307B (zh) 2022-09-27
JP7237489B2 (ja) 2023-03-13
CN112534307A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2010018639A1 (ja) 蒸着装置及び薄膜デバイスの製造方法
JP4178190B2 (ja) 多層膜を有する光学素子およびその製造方法
US20080316628A1 (en) Density filter, method of forming the density filter and apparatus thereof
WO2020039976A1 (ja) 反射防止膜、光学素子及び反射防止膜の成膜方法
JP2010102157A (ja) 光学物品およびその製造方法
US20230228914A1 (en) Optical device and manufacturing method therefor
US7963676B2 (en) Reflector window for use in a light lamp
JP4804830B2 (ja) 多層膜の成膜方法および成膜装置
JP5883505B2 (ja) 光学素子
JP7349798B2 (ja) 反射防止膜、光学素子及び反射防止膜の成膜方法
US10114150B2 (en) Optical multilayer coating, optical lens, and method of manufacturing optical multilayer coating
US20200166672A1 (en) Optical member and producing method of optical member
JP7216471B2 (ja) 車載レンズ用のプラスチックレンズ及びその製造方法
JP2000507000A (ja) スパッタ厚膜コーティングにおける散乱の減少方法
WO2017119335A1 (ja) 反射膜の製造方法
US20200165716A1 (en) Film forming method and film forming apparatus
JP6714399B2 (ja) 光学素子及び光学薄膜の成膜方法
JP2009007651A (ja) 減光フィルタの成膜方法、減光フィルタの製造装置及びこれを用いた減光フィルタ並びに撮像光量絞り装置
JP2000171607A (ja) 高緻密な多層薄膜およびその成膜方法
CN114846362B (zh) 带有防反射膜的光学透镜的制造方法
CN116040965B (zh) 一种宽频减反膜及其制备方法和应用
JP3987169B2 (ja) 光学薄膜の製造方法
WO2023042438A1 (ja) 遮光膜、多層反射防止膜、それらの製造方法及び光学部材
JP2007034337A (ja) フレネル型ミラー
US20170146711A1 (en) Raman edge filter in deep-uv range and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851518

Country of ref document: EP

Kind code of ref document: A1