WO2019202741A1 - Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material - Google Patents

Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material Download PDF

Info

Publication number
WO2019202741A1
WO2019202741A1 PCT/JP2018/016360 JP2018016360W WO2019202741A1 WO 2019202741 A1 WO2019202741 A1 WO 2019202741A1 JP 2018016360 W JP2018016360 W JP 2018016360W WO 2019202741 A1 WO2019202741 A1 WO 2019202741A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
metal particles
resin composition
compound
resin
Prior art date
Application number
PCT/JP2018/016360
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 一雅
稲垣 孝
里奈 伊豆
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020514895A priority Critical patent/JP7070672B2/en
Priority to PCT/JP2018/016360 priority patent/WO2019202741A1/en
Publication of WO2019202741A1 publication Critical patent/WO2019202741A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a sealing material, an electronic component, an electronic circuit board, and a method for manufacturing the sealing material.
  • Electronic devices are equipped with electromagnetic shields that shield electromagnetic waves generated inside and outside the electronic devices.
  • the electromagnetic shield prevents problems such as noise, electromagnetic interference, malfunction, and leakage or disappearance of electromagnetic information. Since the electromagnetic shielding property is caused by electric conductivity, the conventional electromagnetic shielding includes a metal foil having electric conductivity and an adhesive layer overlapping the metal foil.
  • An electromagnetic shield including a shield layer made of a mixture of iron powder and an organic binder instead of metal foil is also known. (See Patent Document 1 below.)
  • a sealing material is a mixture of a resin composition such as an epoxy resin and a filler such as a silica filler, and has insulating properties resulting from the resin composition.
  • the insulating property of the sealing material may be required in order to suppress an electrical short circuit in the electronic device.
  • the electrical conductivity of the electromagnetic shield and the insulating property of the sealing material are mutually incompatible physical properties. Therefore, when both shielding of the electromagnetic wave and protection of the element by the sealing material are required, a complicated process for covering the element with both the electromagnetic shielding and the sealing material is required, and the manufacturing cost of the electronic device is increased. To do. Further, the metal foil or shield layer provided in the electromagnetic shield is easily damaged by processing such as molding.
  • the present invention has been made in view of the above circumstances, and includes a sealing material having electromagnetic shielding properties and insulating properties, an electronic component including the sealing material, an electronic circuit board including the sealing material, and manufacturing of the sealing material. It aims to provide a method.
  • the sealing material which concerns on 1 side of this invention is a sealing material provided with a some metal particle and resin composition, Comprising: Resistance per unit length in at least one part of the surface of a sealing material is 0.00. 1 k ⁇ / mm or more and 20 k ⁇ / mm or less, and the resistance per unit length in the sealing material is 0.2 G ⁇ / mm or more and 10 T ⁇ / mm or less.
  • the metal particles may be covered with a metal phosphate derived from the metal particles.
  • the metal particles may contain iron.
  • the resin composition may contain a thermosetting resin.
  • the resin composition may be a cured product.
  • the content of the metal particles in the sealing material may be 90% by mass or more and less than 100% by mass.
  • the metal particles may protrude from the resin composition on the surface of the sealing material.
  • the metal particles and the resin composition may be exposed on the surface of the sealing material.
  • the electronic component which concerns on 1 side of this invention is equipped with said sealing material and the element covered with the sealing material.
  • An electronic circuit board includes a substrate, an element installed on the surface of the substrate, and a sealing material that covers the element, and the sealing material is the above-described sealing material.
  • the method for manufacturing a sealing material includes a first heating step for curing a resin composition by heating a compound including a plurality of metal particles and a resin composition, and a first heating step.
  • the second heating for adjusting the resistance per unit length to 0.1 k ⁇ / mm to 20 k ⁇ / mm by reducing the resistance per unit length on at least a part of the surface of the compound by further heating the passed compound A process.
  • the compound may be heated at 140 ° C. or higher and 180 ° C. or lower.
  • the metal particles may be covered with a metal phosphate derived from the metal particles.
  • the metal particles may contain iron.
  • the resin composition may contain a thermosetting resin.
  • the content of metal particles in the compound may be 90% by mass or more and less than 100% by mass.
  • a sealing material having electromagnetic shielding properties and insulation, an electronic component including the sealing material, an electronic circuit board including the sealing material, and a method for manufacturing the sealing material.
  • FIG. 1 is a schematic perspective view of a sealing material according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a part (region II) of the cross section of the sealing material shown in FIG. (A) in FIG. 3 is a schematic cross-sectional view of an electronic component according to an embodiment of the present invention
  • FIG. 3 is an electronic component according to another embodiment of the present invention. It is typical sectional drawing.
  • FIG. 4 is a schematic cross-sectional view of an electronic circuit board according to an embodiment of the present invention.
  • X, Y, and Z shown in each figure mean three coordinate axes orthogonal to each other.
  • the directions indicated by the XYZ coordinate axes in each figure are common to each figure.
  • the sealing material 2 includes a plurality (a large number) of metal particles 4 and a resin composition 6.
  • the resin composition 6 may exist between the plurality of metal particles 4, and the plurality of metal particles 4 may be bound to each other via the resin composition 6.
  • the plurality of metal particles 4 may be dispersed in the resin composition 6.
  • the plurality of metal particles 4 may be referred to as “metal powder”.
  • the sealing material 2 shown in FIG. 1A is a rectangular parallelepiped, but the shape of the sealing material 2 is not limited to a rectangular parallelepiped.
  • the shape and dimensions of the sealing material 2 may be appropriately changed according to the shape of the object to be sealed (elements described later) or the use of the sealing material 2.
  • the resistance per unit length L-s in a part or the whole of the surface 2s of the sealing material 2 is 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less.
  • the resistance per unit length in a part or the whole of the outer surface (2s) of the sealing material 2 may be 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less.
  • the resistance per unit length in a part or the whole of the exposed surface (2s) of the sealing material 2 may be 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less.
  • the resistance per unit length Ls in a part or the whole of the surface 2s of the sealing material 2 may be expressed as “Rs”.
  • the surface 2s of the sealing material 2 (part or the whole of the surface 2s) can have excellent electromagnetic shielding properties.
  • the content of the metal particles in the encapsulant 2 increases, the content of the resin composition in the encapsulant 2 decreases, Rs decreases, and the electromagnetic shielding property improves.
  • Rs is less than the lower limit
  • the content of the resin composition in the sealing material 2 is too small, and it is difficult for the inside of the sealing material 2 to have sufficient insulation.
  • Rs is less than the above lower limit value
  • the content of the resin composition in the sealing material 2 is too small, and the plurality of metal particles 4 are hardly bonded via the resin composition 6, and the sealing is performed.
  • the durability (for example, light resistance, heat resistance, moisture resistance, dust resistance and mechanical strength) of the material 2 is impaired.
  • Rs is 8 k ⁇ / mm. It may be 20 k ⁇ / mm or less, or 10 k ⁇ / mm or more and 12 k ⁇ / mm or less.
  • R-s may be measured by the following two-terminal measurement method. Two terminals are brought into contact with two arbitrary points on the surface 2 s of the sealing material 2. A voltage is applied between the two terminals, and the resistance R between any two points is measured with a tester. Rs is calculated by dividing R by the distance L between the two points. That is, R ⁇ s is equal to R / L.
  • the unit length L-s is 1 mm, but the distance L between the two points at which the resistance R is measured may be longer than 1 mm or shorter than 1 mm. The distance L between the two points at which the resistance R is measured may be equal to the unit length Ls (ie 1 mm).
  • the voltage applied between arbitrary two points may be several V or more and 10 V or less, for example.
  • the average value of Rs measured at a plurality of locations on the surface 2s of the sealing material 2 may be 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less.
  • the number of samples used for calculating the average value of Rs may be, for example, 2 or more and 50 or less.
  • Rs may be measured at room temperature.
  • the room temperature may be, for example, 1 ° C. or higher and 30 ° C. or lower, or 15 ° C. or higher and 25 ° C. or lower.
  • the resistance per unit length Li in the inside 2i of the sealing material 2 is 0.2 G ⁇ / mm or more and 10 T ⁇ / mm or less.
  • the resistance per unit length Li in a part or the whole of the cross section of the sealing material 2 in the direction perpendicular to the surface 2s of the sealing material 2 is 0.2 G ⁇ / mm or more and 10 T ⁇ / mm or less. is there.
  • the inside 2 i of the sealing material 2 is a portion surrounded by the surface 2 s (outer surface) of the sealing material 2.
  • the resistance per unit length Li in the inside 2i of the sealing material 2 may be expressed as “Ri”.
  • the inside 2 i of the sealing material 2 can have excellent insulating properties.
  • the content of the resin composition in the sealing material 2 increases, the content of the metal particles in the sealing material 2 decreases, Ri increases, and the insulation of the inside 2i of the sealing material 2 improves. To do.
  • the metal particles 4 tend to be firmly bonded to each other, and the durability of the encapsulant 2 (for example, light resistance, heat resistance, moisture resistance, dust resistance). And mechanical strength).
  • Ri is 0.3 G ⁇ / mm or more from the viewpoint of easily improving the insulation of the inside 2i of the sealing material 2, the durability of the whole sealing material 2, and the electromagnetic shielding properties of the surface 2s of the sealing material 2. It may be 0.8 G ⁇ / mm or less, 0.2 G ⁇ / mm or more and 5 T ⁇ / mm or less, or 0.2 T ⁇ / mm or more and 10 T ⁇ / mm or less.
  • Ri may be measured by the following two-terminal measurement method.
  • the sealing material 2 In a direction perpendicular to the surface 2 s of the sealing material 2, the sealing material 2 is cut to expose the inside of the sealing material 2 to the cross section.
  • Two terminals are brought into contact with two arbitrary points on the cross section of the sealing material 2.
  • a voltage is applied between the two terminals, and the resistance R 'between any two points is measured with an insulation resistance meter.
  • R ⁇ i is calculated. That is, R ⁇ i is equal to R ′ / L ′.
  • the unit length Li is 1 mm, but the distance L ′ between the two points at which the resistance R ′ is measured may be longer than 1 mm or shorter than 1 mm.
  • the distance L ′ between the two points at which the resistance R ′ is measured may be equal to the unit length Li (ie 1 mm).
  • the voltage applied between two arbitrary points may be 1 V or more and 100 V or less, for example.
  • the average value of Ri measured at a plurality of locations in the inside 2i (cross section) of the sealing material 2 may be 0.2 G ⁇ / mm or more and 10 T ⁇ / mm or less.
  • the number of samples used for calculating the average value of Ri (the number of Ri measurement points) may be, for example, 2 or more and 50 or less. Ri may be measured at room temperature.
  • metal particles 4 may be covered with a metal phosphate derived from the metal particles 4. That is, some or all of the metal particles 4 may be covered with the phosphate coating. Part or the whole of the surface of each metal particle 4 may be covered with a metal phosphate derived from the metal particle 4. That is, a part or the whole of the surface of each metal particle 4 may be covered with the phosphate coating.
  • the “metal phosphate” may be a metal salt of inorganic phosphoric acid (H 3 PO 4 ).
  • the metal particles 4 include iron
  • the metal particles 4 may be covered with one or both of iron (II) phosphate and iron (III) phosphate.
  • the metal particles 4 when the metal particles 4 contain iron, the metal particles 4 may be covered with one or both of Fe 3 (PO 4 ) 2 and FePO 4 . Since the phosphate has insulating properties, the metal particles 4 are covered with the phosphate, so that the phosphate is likely to intervene between the two metal particles 4 in contact with each other, and electrical conduction between the metal particles 4 is suppressed. It is easy to be done. As a result, the insulating property of the inside 2i of the sealing material 2 is easily improved. Moreover, the corrosion resistance of the metal particle 4 improves because the metal particle 4 is covered with the phosphate.
  • the phosphate covering the metal particles 4 may be formed by a phosphate treatment (chemical conversion treatment) of the metal particles 4.
  • the metal particles 4 that have undergone pretreatment such as degreasing, water washing, and rust removal may be immersed in an aqueous solution (treatment solution) of phosphate.
  • treatment solution aqueous solution
  • the phosphate contained in the treatment liquid may be at least one selected from the group consisting of zinc phosphate, iron phosphate, manganese phosphate, and calcium phosphate.
  • a phosphate containing at least one selected from the group consisting of zinc, manganese, iron and calcium derived from the treatment liquid may cover the surface of the metal particles 4.
  • the metal particles 4 may protrude from the resin composition 6 on the surface 2 s of the sealing material 2. On the surface 2s of the sealing material 2, the metal particles 4 and the resin composition 6 may be exposed. On the surface 2s of the sealing material 2, the metal particles 4 and the resin composition 6 may be mixed.
  • the surface of the sealing material 2 according to the present embodiment does not have to have a metal foil that a conventional electromagnetic shield has. Even if the metal foil is not present on the surface of the encapsulant 2, the surface 2s itself of the encapsulant 2 has an electromagnetic shielding property, so that the encapsulant 2 is only insulative and durable. It can have electromagnetic shielding properties.
  • the plurality of metal particles 4 may be in direct contact with each other on the surface 2 s of the sealing material 2. On the surface 2s of the sealing material 2, a part of the surface of each metal particle 4 may be in direct contact without interposing the resin composition 6 and the phosphate. On the other hand, in the interior 2 i of the sealing material 2, the resin composition 6 may be interposed between the plurality of metal particles 4. Since the plurality of metal particles 4 are in direct contact with each other on the surface 2s of the sealing material 2, the resistance Rs of the surface 2s of the sealing material 2 is lower than the resistance Ri of the inside 2i of the sealing material 2, The surface 2s of the sealing material 2 can have high electrical conductivity and electromagnetic shielding properties.
  • the shape and structure of the surface 2s of the sealing material 2 described above may be observed and specified by, for example, a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the metal particles 4 that reflect electrons appear to be bright, while the resin composition 6 appears to be dark.
  • the causal relationship between the shape and structure of the surface 2s of the sealing material 2 described above and the electrical conductivity and electromagnetic shielding properties of the surface 2s of the sealing material 2 is a hypothesis.
  • the surface 2s of the sealing material 2 having the shape and structure described above is a two-dimensional surface (for example, a plane, a curved surface, or an uneven surface), and the surface 2s of the sealing material 2 is the inside of the sealing material 2.
  • the surface layer covering 2i is not always clearly distinguished from the inside 2i of the sealing material 2. In other words, an interface that clearly defines a surface layer having high electrical conductivity and electromagnetic shielding properties and the inside 2i of the sealing material 2 does not necessarily exist.
  • the resin composition may contain a thermosetting resin.
  • the resin composition may be a cured product.
  • the resin composition may contain an epoxy resin as a thermosetting resin.
  • the resin composition may include an epoxy resin and a phenol resin.
  • the sealing material 2 containing an epoxy resin as a resin composition is excellent in the electromagnetic shielding properties of the surface 2s, the insulating properties of the inside 2i, and the durability of the entire sealing material 2. Details of the resin composition will be described later.
  • the content of the metal particles 4 in the sealing material 2 may be 90% by mass or more and less than 100% by mass, or 97% by mass or more and 99.8% by mass or less with respect to the total mass of the sealing material 2.
  • the resistance Rs of the surface 2s of the sealing material 2 tends to increase.
  • Rs is 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less
  • Ri is 0.2 G ⁇ / mm or more and 10 T ⁇ / mm or less. Stop material 2 is easy to be obtained.
  • the content of the resin composition 6 in the sealing material 2 is greater than 0% by mass and 10% by mass or less, or 0.2% by mass to 3% by mass with respect to the total mass of the sealing material 2. Good. As the content of the resin composition 6 increases, the resistance Ri of the inside 2i of the sealing material 2 tends to increase. When the content of the resin composition 6 is within the above range, Rs is 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less, and Ri is 0.2 G ⁇ / mm or more and 10 T ⁇ / mm or less. The sealing material 2 is easy to be obtained.
  • the sealing material 2 may further include a filler (filler) in addition to the plurality of metal particles 4 and the resin composition 6.
  • the metal particles 4 and the filler may be dispersed in the resin composition 6.
  • the filler may be, for example, a plurality (large number) of silica particles.
  • the electronic components 10 a and 10 b include the sealing material 2 and an element (device) 3 covered with the sealing material 2. And comprising.
  • the element 3 is not particularly limited, but may be at least one selected from the group consisting of a semiconductor chip, a MEMS (micro electro mechanical system), and a coil, for example.
  • the semiconductor chip is not particularly limited, but may be at least one selected from the group consisting of IC, LSI, system LSI, SRAM, DRAM, and flash memory.
  • the resistance per unit length of the inner surface of the sealing material 2 (the surface in contact with the element 3 in the sealing material 2) is the resistance Ri per unit length Li of the interior 2i of the sealing material 2. May be equal.
  • the electronic component 10 a may include the above-described sealing material 2 and the element 5 embedded in the sealing material 2.
  • the electronic component 10 a may include the element 5 and the sealing material 2 that covers the entire element 5.
  • the element 5 may be a coil
  • the electronic component 10a may be an inductor, a filter (for example, an EMI filter), or a transformer.
  • the electronic component 10 b may include the element 3 and the sealing material 2 that partially covers the element 3.
  • the electronic component 10b is a semiconductor package including an interposer 9 (lead frame), a semiconductor chip 7 installed on the interposer 9, and a sealing material 2 covering the interposer 9 and the semiconductor chip 7.
  • the outer lead which is a part of the interposer 9 may extend outside the sealing material 2.
  • the side surface of the sealing material 2 where the outer lead is located may be electrically insulated from the outer lead.
  • an electronic circuit board 100 As shown in FIG. 4, an electronic circuit board 100 according to this embodiment includes a substrate 11, an element 3 installed on the surface of the substrate 11, and the sealing material 2 that covers the element 3. Good.
  • substrate 11 is not specifically limited, For example, at least 1 type of printed circuit board chosen from the group which consists of a rigid board
  • the resistance per unit length of the inner surface of the sealing material 2 (the surface in contact with the element 3 in the sealing material 2) is the resistance Ri per unit length Li of the interior 2i of the sealing material 2. May be equal.
  • the surface 2s of the sealing material 2 may be electrically insulated from the substrate 11.
  • the resistance per unit length of the surface of the sealing material 2 in contact with the substrate 11 is the unit length of the inside 2i of the sealing material 2. It may be equal to the resistance Ri per Li.
  • the sealing material 2 may cover both the element 3 and the substrate 11.
  • the sealing material 2 may cover the entire surface of the element 3 and the substrate 11.
  • the metal particles may contain, for example, at least one selected from the group consisting of simple metals, alloys, and metal compounds.
  • the metal particles may be made of at least one selected from the group consisting of simple metals, alloys and metal compounds, for example.
  • the alloy may contain at least one selected from the group consisting of a solid solution, a eutectic and an intermetallic compound.
  • the alloy may be, for example, stainless steel (Fe—Cr alloy, Fe—Ni—Cr alloy, etc.).
  • the metal particles may contain one kind of metal element or plural kinds of metal elements.
  • the metal element contained in the metal particles may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element.
  • the compound may include one type of metal particles, and may include a plurality of types of metal particles having different compositions.
  • the metal particles are not limited to the above composition.
  • metal elements contained in the metal particles include iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al).
  • the metal particles may further contain an element other than the metal element.
  • the metal particles may include, for example, oxygen (O), beryllium (Be), phosphorus (P), boron (B), or silicon (Si).
  • the metal particles may be magnetic powder.
  • the metal particles may be a soft magnetic alloy or a ferromagnetic alloy.
  • Metal particles include, for example, Fe-Si alloys, Fe-Si-Al alloys (Sendust), Fe-Ni alloys (Permalloy), Fe-Cu-Ni alloys (Permalloy), Fe-Co alloys (Per Menjur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Co alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet) , And at least one magnetic powder selected from the group consisting of Al—Ni—Co alloys (alnico magnets).
  • the metal particles may be a copper alloy such as a Cu—Sn alloy, a Cu—Sn—P alloy, a Cu—Ni alloy, or a Cu—Be alloy.
  • the metal particles may contain one of the above elements and compositions, and may contain two or more of the above elements and compositions.
  • the metal particles may contain iron.
  • the metal particles may consist only of iron. When the metal particles contain iron, it is easy to obtain the sealing material 2 having Rs of 0.1 k ⁇ / mm to 20 k ⁇ / mm and Ri of 0.2 G ⁇ / mm to 10 T ⁇ / mm. .
  • the metal particles are preferably carbonyl iron powder (pure iron powder).
  • Carbonyl iron powder carbonyl iron powder manufactured by BASF Japan Ltd.
  • the metal particles may be amorphous iron powder.
  • the metal particles may be an alloy containing iron (Fe-based alloy).
  • the Fe-based alloy may be, for example, an Fe-Si-Cr-based alloy or an Nd-Fe-B-based alloy.
  • the metal particles may be an Fe amorphous alloy.
  • Commercially available products of Fe amorphous alloy powder include, for example, AW2-08, KUAMET-6B2 (above, product names manufactured by Epson Atmix Co., Ltd.), DAP MS3, DAP MS7, DAP MSA10, DAP PB, DAP PC, DAP MKV49.
  • DAP 410L DAP 430L
  • DAP HYB series above, trade name made by Daido Steel
  • MH45D MH28D
  • MH25D MH20D
  • MH20D above, trade name made by Kobe Steel
  • the metal particles may be an Fe-based alloy containing Fe and Nb.
  • the metal particles may be an Fe-based alloy containing Fe, Nb, Cu, Si, and B.
  • the metal particles may include Fe-based alloy crystals having a crystal grain size of 10 nm or less. When the crystal grain size of the Fe-based alloy contained in the metal particles is 10 nm or less, the metal particles can have excellent magnetic properties (for example, high relative magnetic permeability).
  • the crystal grain size (for example, the average value of the crystal grain size) of the Fe-based alloy contained in the metal particles may be 5 nm or more and 10 nm or less.
  • the means for measuring the crystal grain size of the Fe-based alloy contained in the metal particles is not particularly limited, and may be, for example, a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the crystal grain size of the Fe-based alloy contained in the metal particles may be specified using Scherrer's formula based on the powder X-ray diffraction method.
  • various properties such as electromagnetic properties or thermal conductivity of the encapsulant 2 can be freely controlled, and the encapsulant 2 can be used for various industrial products. can do.
  • the average particle diameter of the metal particles is not particularly limited, but may be, for example, 1 ⁇ m or more and 300 ⁇ m or less.
  • the smaller the average particle diameter of the metal particles the smaller the specific surface area of the metal particles, the more contacts (electric conduction paths) between the metal particles, and the lower the resistance Rs on the surface of the sealing material.
  • the average particle diameter of the metal particles is larger, the specific surface area of the metal particles is larger, the number of contacts (electric conduction paths) between the metal particles is smaller, and the resistance Ri inside the sealing material tends to be higher.
  • the resin composition is a component that can include a resin, a curing agent, a curing accelerator, and an additive, and may be the remaining component (nonvolatile component) excluding the organic solvent and the metal particles.
  • An additive is a remaining component except resin, a hardening
  • the additive is, for example, a coupling agent or a flame retardant.
  • the resin composition may contain a wax as an additive.
  • a mixture of the above metal particles (metal powder) and an uncured resin composition (resin composition before being heated) is a so-called compound and a raw material for the sealing material.
  • the sealing material is obtained by curing the resin composition in the molded body formed from the compound. You may use the tablet formed from the compound as a starting material of a sealing material.
  • the composition of the resin composition described below may be regarded as an uncured resin composition contained in the compound.
  • the resin composition has a function as a binder (binder) for metal particles, and imparts mechanical strength to the sealing material formed from the compound.
  • a binder binder
  • the resin composition is filled between the metal particles and binds the metal particles to each other.
  • the cured product of the resin composition firmly binds the metal particles to each other, and a sealing material having high mechanical strength is obtained.
  • the resin composition may contain a thermosetting resin.
  • the thermosetting resin may be at least one selected from the group consisting of an epoxy resin, a phenol resin, and a polyamideimide resin, for example.
  • the resin composition may contain both an epoxy resin and a phenol resin, the phenol resin may function as a curing agent for the epoxy resin.
  • the resin composition may include a thermoplastic resin.
  • the thermoplastic resin may be at least one selected from the group consisting of acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, for example.
  • the resin composition may include both a thermosetting resin and a thermoplastic resin.
  • the resin composition may include a silicone resin.
  • the resin composition may contain an epoxy resin.
  • Rs is 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less
  • Ri is 0.2 G ⁇ / mm or more and 10 T ⁇ / mm or less, and durability It is easy to obtain an excellent sealing material 2.
  • the epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule.
  • Epoxy resins include, for example, biphenyl type epoxy resins, stilbene type epoxy resins, diphenylmethane type epoxy resins, sulfur atom-containing type epoxy resins, novolac type epoxy resins, dicyclopentadiene type epoxy resins, salicylaldehyde type epoxy resins, naphthols and phenols.
  • Type epoxy resin epoxidized aralkyl type phenol resin, bisphenol type epoxy resin, glycidyl ether type epoxy resin of alcohols, glycidyl ether type epoxy resin of paraxylylene and / or metaxylylene modified phenol resin, terpene modified phenol resin Glycidyl ether type epoxy resin, cyclopentadiene type epoxy resin, glycidyl ether type epoxy resin of polycyclic aromatic ring modified phenolic resin, naphthalene Glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl type or methyl glycidyl type epoxy resin, alicyclic epoxy resin, halogenated phenol novolak type epoxy resin, orthocresol novolak type epoxy resin, hydroquinone type epoxy It may be at least one selected from the group consisting of a resin, a trimethylolpropane type epoxy resin, and a linear aliphatic epoxy resin obtained by oxidizing
  • the crystalline epoxy resin (epoxy resin having high crystallinity) may be at least one selected from the group consisting of hydroquinone type epoxy resins, bisphenol type epoxy resins, thioether type epoxy resins, and biphenyl type epoxy resins, for example.
  • crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron N -740, Epicron N-770, Epicron N-775, Epicron N-865, Epicron HP-4032D, Epicron HP-7200L, Epicron HP-7200, Epicron HP-7200H, Epicron HP-7200HH, Epicron HP-7200HHH, Epicron HP -4700, Epicron HP-4710, Epicron HP-4770, Epicron HP-5000, Epicron HP-6000, and N500P-2 (above, IC Co., Ltd.
  • the resin composition may contain one kind of epoxy resin among the above.
  • the resin composition may contain a plurality of types of epoxy resins among the above.
  • Curing agents are classified into a curing agent that cures an epoxy resin in a range from low temperature to room temperature, and a heat curing type curing agent that cures an epoxy resin with heating.
  • the curing agent that cures the epoxy resin in the range from low temperature to room temperature include aliphatic polyamines, polyaminoamides, and polymercaptans.
  • the thermosetting curing agent include aromatic polyamines, acid anhydrides, phenol novolac resins, and dicyandiamide (DICY).
  • the curing agent is preferably a thermosetting curing agent, more preferably a phenol resin, and even more preferably a phenol novolac resin.
  • a phenol novolac resin as a curing agent, a cured product of an epoxy resin having a high glass transition point is easily obtained. As a result, the heat resistance and mechanical strength of the sealing material are easily improved.
  • phenol resin examples include aralkyl type phenol resin, dicyclopentadiene type phenol resin, salicylaldehyde type phenol resin, novolac type phenol resin, copolymer type phenol resin of benzaldehyde type phenol and aralkyl type phenol, paraxylylene and / or metaxylylene modified.
  • phenolic resin From the group consisting of phenolic resin, melamine modified phenolic resin, terpene modified phenolic resin, dicyclopentadiene type naphthol resin, cyclopentadiene modified phenolic resin, polycyclic aromatic ring modified phenolic resin, biphenyl type phenolic resin, and triphenylmethane type phenolic resin It may be at least one selected.
  • the phenol resin may be a copolymer composed of two or more of the above.
  • Tamorol 758 manufactured by Arakawa Chemical Industries, Ltd. or HP-850N manufactured by Hitachi Chemical Co., Ltd. may be used.
  • the phenol novolac resin may be, for example, a resin obtained by condensation or cocondensation of phenols and / or naphthols and aldehydes under an acidic catalyst.
  • the phenols constituting the phenol novolac resin may be at least one selected from the group consisting of phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, for example.
  • the naphthols constituting the phenol novolac resin may be at least one selected from the group consisting of ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, for example.
  • the aldehyde constituting the phenol novolac resin may be at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde, for example.
  • the curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule.
  • the compound having two phenolic hydroxyl groups in one molecule may be at least one selected from the group consisting of resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
  • the resin composition may contain one kind of phenol resin among the above.
  • the resin composition may include a plurality of types of phenol resins among the above.
  • the resin composition may contain a kind of curing agent among the above.
  • the resin composition may contain plural kinds of curing agents among the above.
  • Tamorol 758 manufactured by Arakawa Chemical Industries, Ltd. or HP-850N manufactured by Hitachi Chemical Co., Ltd. may be used.
  • the ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalent, more preferably 1 equivalent to 1 equivalent of the epoxy group in the epoxy resin. May be 0.9 to 1.4 equivalents, more preferably 1.0 to 1.2 equivalents.
  • the ratio of the active group in the curing agent is less than 0.5 equivalent, the amount of OH per unit weight of the epoxy resin after curing decreases, and the curing rate of the resin composition (epoxy resin) decreases.
  • curing agent is less than 0.5 equivalent, the glass transition temperature of the hardened
  • the curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin.
  • the curing accelerator may be, for example, an alkyl group-substituted imidazole or an imidazole such as benzimidazole.
  • the resin composition may include a kind of curing accelerator.
  • the resin composition may include a plurality of types of curing accelerators. When the resin composition contains a curing accelerator, the moldability and releasability of the compound can be easily improved, but the resin composition contains a curing accelerator, so that the sealing material manufactured using the compound is used. This improves the mechanical strength of the material and improves the storage stability of the compound in a high temperature and high humidity environment.
  • Examples of commercially available imidazole curing accelerators include 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ. At least one selected from the group consisting of —CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (trade names manufactured by Shikoku Kasei Kogyo Co., Ltd.) may be used. Among these, imidazole-type curing accelerators having a long-chain alkyl group are preferable, and C11Z-CN (1-cyanoethyl-2-undecylimidazole) is preferable.
  • the blending amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is obtained.
  • the blending amount of the curing accelerator is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin. Preferably, it may be 1 to 15 parts by mass. It is preferable that content of a hardening accelerator is 0.001 mass part or more and 5 mass parts or less with respect to the sum total of the mass of an epoxy resin and a hardening
  • curing agent for example, phenol resin.
  • the coupling agent improves the adhesion between the resin composition and the metal particles, and improves the flexibility and mechanical strength of the sealing material formed from the compound.
  • the coupling agent may be at least one selected from the group consisting of, for example, a silane compound (silane coupling agent), a titanium compound, an aluminum compound (aluminum chelate), and an aluminum / zirconium compound.
  • the silane coupling agent may be at least one selected from the group consisting of epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, acid anhydride silane and vinyl silane, for example. In particular, aminophenyl silane coupling agents are preferred.
  • the compound may include one type of coupling agent among the above, and may include a plurality of types of coupling agents among the above.
  • the compound may contain a flame retardant because of the environmental safety, recyclability, moldability and low cost of the compound.
  • the flame retardant is, for example, at least one selected from the group consisting of brominated flame retardants, bulb flame retardants, hydrated metal compound flame retardants, silicone flame retardants, nitrogen-containing compounds, hindered amine compounds, organometallic compounds, and aromatic engineering plastics. It may be.
  • the compound may include one type of flame retardant among the above, and may include a plurality of types of flame retardant among the above.
  • the resin composition may contain a wax.
  • the wax increases the fluidity of the compound in molding of the compound (for example, transfer molding) and functions as a release agent.
  • the wax may be at least one of fatty acids such as higher fatty acids and fatty acid esters.
  • the wax is, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid, or esters thereof; zinc stearate, calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, calcium laurate, Fatty acid salts such as zinc linoleate, calcium ricinoleate and zinc 2-ethylhexoate; stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitic acid amide, lauric acid amide, hydroxystearic acid amide, methylenebisstearin Acid amide, ethylenebisstearic acid amide, ethylene bislauric acid amide, distearyl adipic acid amide, ethylene bisoleic acid amide, dioleyl adipic acid amide, N-steer Fatty acid amides such as rustearic acid amide, N-o
  • Compound production method A compound is obtained by mixing metal particles (metal powder) and a resin composition (resin composition before being heated) while heating.
  • the metal particles and the resin composition may be kneaded with a kneader or a stirrer while heating.
  • metal particles a resin such as an epoxy resin, a curing agent such as a phenol resin, a curing accelerator, and a coupling agent may be kneaded in a tank.
  • the resin, the curing agent, and the curing accelerator may be charged into the tank to knead the raw materials in the tank.
  • a curing accelerator may be put in the tank, and the raw materials in the tank may be further kneaded.
  • a mixed powder (resin mixed powder) of a resin, a curing agent, and a curing accelerator is prepared, and then a metal mixed powder is prepared by kneading metal particles and a coupling agent, followed by metal mixing. You may knead
  • the kneading time by the kneader depends on the volume of the tank and the production amount of the compound, but is preferably 5 minutes or longer, more preferably 10 minutes or longer, and further preferably 20 minutes or longer. Further, the kneading time by the kneader is preferably 120 minutes or less, more preferably 60 minutes or less, and further preferably 40 minutes or less. When the kneading time is less than 5 minutes, the kneading is insufficient, the moldability of the compound is impaired, and the degree of cure of the compound varies.
  • the heating temperature is not limited because it depends on the composition of the resin composition.
  • the heating temperature is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher.
  • the heating temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 110 ° C. or lower.
  • the compound is completed by the above kneading.
  • the content of the metal particles in the compound may be adjusted to 90% by mass to less than 100% by mass, or 97% by mass to 99.8% by mass with respect to the total mass of the compound.
  • the content of the resin composition in the compound may be adjusted to be greater than 0% by mass and 10% by mass or less, or 0.2% by mass to 3% by mass with respect to the total mass of the compound.
  • a tablet may be formed by filling a compound in a predetermined mold and molding it by pressing.
  • the shape and dimensions of the tablet are not particularly limited.
  • the tablet diameter may be 5 mm or more
  • the tablet height (length) may be 5 mm or more.
  • the molding pressure of the tablet is, for example, preferably 500 MPa or more, more preferably 1000 MPa or more, and further preferably 2000 MPa or more.
  • the manufacturing method of each of the sealing material, the electronic component, and the electronic circuit board according to the present embodiment includes a first heating step and a second heating step.
  • the resin composition is cured by heating the above compound containing a plurality of metal particles (metal powder) and a resin composition (uncured resin composition).
  • the compound may be heated while being pressed with a mold. That is, in the first heating step, the compound may be heated while being molded.
  • a compound (molded body) covering the element (sealed object) may be heated.
  • a compound (molded body) covering an element installed on the surface of the board may be heated.
  • the compound (molded body) may be heated at 130 ° C. or higher and 200 ° C. or lower.
  • the time during which the compound (molded body) is heated at the above temperature in the first heating step may be 2 minutes or longer and 30 minutes or shorter.
  • the compound may be heated in an inert gas such as nitrogen.
  • compound transfer molding may be performed.
  • the compound In transfer molding, the compound may be pressurized at 500 MPa to 2500 MPa. The higher the molding pressure, the easier it is to obtain a sealing material with excellent mechanical strength.
  • the molding pressure is preferably 1400 MPa or more and 2000 MPa or less.
  • the density of the molded body formed by transfer molding is preferably 75% or more and 86% or less, and more preferably 80% or more and 86% or less, with respect to the true density of the compound. When the density of the molded body is 75% or more and 86% or less, a sealing material excellent in mechanical strength is easily obtained.
  • the first heating step and the second heating step may be performed collectively.
  • the resistance Rs per unit length Ls in part or the entire surface of the compound (molded body) is reduced.
  • the resistance Rs is adjusted to 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less.
  • the compound (molded body) may be heated in the atmosphere.
  • the compound (molded body) may be heated at 140 ° C. or higher and 180 ° C. or lower.
  • the time during which the compound or molded body is heated at the above temperature in the second heating step is not particularly limited, but may be 30 hours or longer and 150 hours or shorter.
  • the compound (molded body) may be heated at 150 ° C. for 150 hours
  • the compound (molded body) may be heated at 160 ° C. for 60 hours
  • the sealing material, the electronic component, and the electronic circuit board according to this embodiment are obtained.
  • the element (sealing object) is sealed with an electromagnetic shielding property by simply heating the compound covering the element (sealing object) twice in the first heating step and the second heating step. Can be covered.
  • an element (sealed object) with a conventional electromagnetic shield (metal foil) and a conventional sealing material
  • a process of heating and curing a compound covering the element to form a sealing material, and an adhesive The process of sticking metal foil on the surface of a sealing material through is required. Further, the metal foil is easily damaged along with handling.
  • the manufacturing method of the sealing material, the electronic component, and the electronic circuit board according to this embodiment is simpler than the conventional method using the sealing material and the electromagnetic shield. And the productivity of electronic circuit boards is excellent.
  • a metal film electromagnetic shield
  • the metal target and the sealing material Due to the relative positional relationship, it is difficult to cover the surface of the sealing material with a metal film without unevenness. That is, sputtering is an anisotropic processing method.
  • heat having no anisotropy is used, it is possible to uniformly impart electromagnetic shielding properties to the entire surface of the compound (molded body).
  • the shape and structure of the surface 2s of the sealing material 2 as shown in FIG. 2 are formed.
  • Thermosetting resins such as epoxy resins tend to expand due to oxidation, but in the elemental analysis on the surface 2s of the sealing material 2 obtained in the second heating step, an amount of oxygen sufficient to support the oxidation was not detected. . That is, there is a high possibility that the decrease in the resistance Rs on the surface of the compound (molded body) is not caused by the oxidation of the resin composition in the second heating step.
  • the shape and structure of the surface 2s of the sealing material 2 as shown in FIG. 2 is formed in the second heating step, and the resistance of a part or the whole of the surface of the compound (molded body) decreases. is there. The following is a hypothesis.
  • the second heating step not the oxidation and decomposition of the resin composition, but the curing and shrinkage of the resin composition locally proceeds on the surface of the compound (molded product). That is, a phenomenon such as so-called “film reduction” occurs on the surface of the compound (molded body).
  • film reduction occurs on the surface of the compound (molded body).
  • the metal particles 4 and the resin composition 6 are easily exposed on the surface 2 s of the sealing material 2, and the metal particles 4 are likely to protrude from the resin composition 6.
  • the resin composition interposed between the metal particles 4 contracts, the metal particles 4 are easily brought into direct contact with each other, and the contacts (electric conduction paths) between the metal particles 4 are increased.
  • the insulating phosphate is detached from the surface of the metal particles 4 as the resin composition covering the metal particles 4 contracts, resulting in a compound (molded product).
  • the electrical insulation between the metal particles 4 on the surface of the metal is broken.
  • the phosphate covering the metal particles 4 on the surface of the compound (molded body) chemically acts on the resin composition, the resin composition becomes unstable, and a part of the resin composition is decomposed. There is also a possibility. Due to the above factors, the resistance of a part or the whole of the surface of the compound (molded body) is lowered.
  • the technical scope of the present invention is not limited by the above hypothesis.
  • the electronic component or the electronic circuit board according to the present embodiment includes an element 3, a conventional sealing material (a sealing material that does not have electromagnetic shielding properties) that covers a part or the whole of the element 3, and a conventional sealing And a sealing material 2 (sealing material having electromagnetic shielding properties) according to the present embodiment covering the material.
  • a conventional sealing material a sealing material that does not have electromagnetic shielding properties
  • a sealing material 2 sealing material having electromagnetic shielding properties
  • the surface of the sealing material 2 having a resistance Rs of 0.1 k ⁇ / mm or more and 20 k ⁇ / mm or less by polishing the surface of the molded body by ion milling after forming a molded body by molding of the compound and heat curing 2s may be formed.
  • the surface of the sealing material 2 having a resistance Rs of not less than 0.1 k ⁇ / mm and not more than 20 k ⁇ / mm by forming a molded body by molding of the compound and heat curing, and then performing a desmear treatment on the surface of the molded body 2s may be formed.
  • a part of the element in the sealing material is removed by cutting and polishing the surface of the sealing material. May be exposed.
  • the element exposed from the sealing material may be electrically connected to another element or the substrate.
  • the element exposed from the sealing material may be fixed to the surface of the substrate together with the sealing material.
  • Example 1 [Preparation of sealing material]
  • a mixture of iron amorphous alloy powder and carbonyl iron powder (pure iron powder) was used.
  • the ratio of the mass of the iron amorphous alloy powder to the mass (100 parts by mass) of the entire metal powder of Example 1 was 80 parts by mass.
  • the ratio of the mass of the carbonyl iron powder to the mass (100 parts by mass) of the entire metal powder of Example 1 was 20 parts by mass.
  • As the iron amorphous alloy powder KUAMET 9A4-II manufactured by Epson Atmix Co., Ltd. was used.
  • carbonyl iron powder SQ-I manufactured by BASF Japan Ltd. was used. SQ-I is pure iron powder that has been subjected to phosphoric acid treatment.
  • SQ used in Comparative Example 2 is another pure iron powder manufactured by BASF Japan Ltd., and is pure iron powder that has not been subjected to phosphoric acid treatment. That is, a film made of phosphate (iron phosphate) is not formed on the surface of each particle (particle made of pure iron) constituting “SQ”.
  • the mass (unit: g) of the entire metal powder used for preparing the compound powder was the same as in Example 1.
  • the resin composition prepared in Example 1 is a mixture of 100.0 g epoxy resin, 39.7 g phenol novolac resin, 3.0 g curing accelerator, 10.5 g silane coupling agent, and 15 g wax.
  • As the epoxy resin NC3000H (epoxy equivalent: 290) manufactured by Nippon Kayaku Co., Ltd. was used.
  • As the phenol novolac resin HP-850N (hydroxyl equivalent: 108) manufactured by Hitachi Chemical Co., Ltd. was used.
  • As a curing accelerator C11Z-CN of Shikoku Kasei Kogyo Co., Ltd. was used.
  • silane coupling agent KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • Rico Wax E manufactured by Clariant Chemicals Co., Ltd. was used.
  • a rod-shaped molded body was produced from a tablet-like compound by transfer molding using a predetermined mold. In transfer molding, the compound was pressurized at 6.9 MPa for 10 minutes while being heated at 170 ° C. Transfer molding corresponds to the first heating step.
  • the size of the rod-shaped molded body was (vertical width 10 mm) ⁇ (horizontal width 3 mm) ⁇ (height: 30 mm).
  • a plate-like molded body was also produced from the tablet-like compound by the same transfer molding as described above except that another mold was used.
  • the dimension of the plate-shaped molded body was (vertical width 100 mm) ⁇ (horizontal width 100 mm) ⁇ (thickness 1 mm).
  • each of the two types of molded bodies that had undergone transfer molding was heated at 150 ° C. for 150 hours in a thermostatic bath filled with air.
  • Example 1 bar-shaped sealing material and plate-shaped sealing material
  • the rod-shaped sealing material was cut with a diamond cutter in a direction perpendicular to the surface of the rod-shaped sealing material.
  • the resistance between two points was measured by the two-terminal measurement method, and the average value of the resistance was calculated.
  • the distance between the two points was 5 mm.
  • the voltage applied between the two points was 100V. All measurements were performed at room temperature.
  • Megal “MODEL 6018” manufactured by Kyoritsu Electric Instruments Co., Ltd. was used.
  • the average resistance R INTERNAL (unit: ⁇ ) between two points in the cross section (inside) of the sealing material is shown in Table 1 below.
  • the average resistance Ri per unit length (unit: ⁇ / mm) in the cross section (inside) of the sealing material is shown in Table 1 below.
  • the electric field shield value SE (unit: dB) was determined by the Kansai Electronics Industry Promotion Center (KEC) method using the plate-shaped sealing material.
  • the electric field shield value SE is defined by the following formula A.
  • SE 20 ⁇ log 10 (E 0 / E 1 ) (A)
  • E 0 is the electric field strength (unit: V / m) when there is no plate-like sealing material.
  • E 1 is the electric field strength (unit: V / m) measured through the plate-shaped sealing material.
  • a network analyzer 37247C manufactured by Anritsu Corporation was used for the measurement of E 0 and E 1 .
  • the frequency of the electromagnetic wave used for the measurement was 1 MHz.
  • a magnetic shield value SM (unit: dB) was determined using a plate-shaped sealing material.
  • the magnetic field shield value SM is defined by the following formula B.
  • SM 20 ⁇ log 10 (H 0 / H 1 ) (B)
  • H 0 is the magnetic field strength (unit: A / m) when there is no plate-like sealing material.
  • E 1 is the intensity (unit: A / m) of the magnetic field measured through the plate-shaped sealing material.
  • a network analyzer “37247C” manufactured by Anritsu Corporation was used for the measurement of H 0 and H 1 . The larger the SM, the better the sealing material is for electromagnetic shielding.
  • R SURFACE of the plate-shaped sealing material was measured by the above method, and Rs was calculated.
  • the plate-shaped sealing material R SURFACE is substantially the same as the rod-shaped sealing material R SURFACE
  • the plate-shaped sealing material R-s is also substantially the same as the rod-shaped sealing material R-s. there were.
  • the plate-shaped sealing material was cut in the thickness direction, and R INTERNAL of the plate-shaped sealing material was measured by the above-described method to calculate Ri .
  • R INTERNAL of the plate-shaped sealing material is substantially the same as R INTERNAL of the rod-shaped sealing material
  • Ri of the plate-shaped sealing material is also substantially the same as Ri of the rod-shaped sealing material. there were.
  • Example 2 and 3 Comparative Examples 1 to 3
  • the ratio of the mass of the Fe amorphous alloy powder to the mass (100 parts by mass) of the entire metal powder of Example 2 was 60 parts by mass.
  • the ratio of the mass of the carbonyl iron powder which occupies for the mass (100 mass parts) of the whole metal powder of Example 2 was 40 mass parts.
  • the ratio of the mass of the Fe amorphous alloy powder to the mass (100 parts by mass) of the entire metal powder of Example 3 was 50 parts by mass.
  • the ratio of the mass of the carbonyl iron powder to the mass (100 parts by mass) of the entire metal powder of Example 3 was 50 parts by mass. In Example 3, it was adjusted M METAL / M RESIN to 100/5.
  • Comparative Example 1 only Fe amorphous alloy powder (9A4-II) was used as the metal powder.
  • Comparative Example 2 SQ having no phosphate coating was used as carbonyl iron powder instead of SQ-I.
  • the ratio of the mass of the Fe amorphous alloy powder to the mass (100 parts by mass) of the entire metal powder of Comparative Example 2 was 60 parts by mass.
  • the ratio of the mass of the carbonyl iron powder which occupies for the mass (100 mass parts) of the whole metal powder of the comparative example 2 was 40 mass parts.
  • the sealing material according to the present invention is used as, for example, a sealing material for an EMI filter.
  • SYMBOLS 2 Sealing material, 2s ... Surface of sealing material, 2i ... Inside (cross section) of sealing material, 3, 5 ... Element, 4 ... Metal particle, 6 ... Resin composition, 7 ... Semiconductor chip, 9 ... Inter Poser, 10a, 10b ... electronic components, 11 ... substrate, 100 ... electronic circuit board, Ls ... unit length on the surface of the sealing material, Li ... unit length on the inside (cross section) of the surface of the sealing material Well.

Abstract

Provided is a sealing material 2 having electromagnetic shielding properties and insulation properties. The sealing material 2 includes a plurality of metal particles 4 and a resin composition 6. The resistance per unit length L-s in at least a part of the surface 2s of the sealing material 2 is 0.1-20 kΩ/mm, and the resistance per unit length L-i in the interior 2i of the sealing material 2 is 0.2 GΩ/mm-10 TΩ/mm.

Description

封止材、電子部品、電子回路基板、及び封止材の製造方法Encapsulant, electronic component, electronic circuit board, and method for producing encapsulant
 本発明は、封止材、電子部品、電子回路基板、及び封止材の製造方法に関するものである。 The present invention relates to a sealing material, an electronic component, an electronic circuit board, and a method for manufacturing the sealing material.
 電子機器は、電子機器の内外で発生した電磁波を遮蔽する電磁シールドを備えている。電磁シールドにより、ノイズ、電磁気的干渉、誤作動、及び電磁気的情報の漏洩又は消失等の問題が防止される。電磁シールド性は電気伝導性に起因するので、従来の電磁シールドは、電気伝導性を有する金属箔と、金属箔に重なる接着剤層とを備えている。金属箔の代わりに、鉄粉と有機バインダーとの混合物からなるシールド層を備える電磁シールドも知られている。(下記特許文献1参照。) Electronic devices are equipped with electromagnetic shields that shield electromagnetic waves generated inside and outside the electronic devices. The electromagnetic shield prevents problems such as noise, electromagnetic interference, malfunction, and leakage or disappearance of electromagnetic information. Since the electromagnetic shielding property is caused by electric conductivity, the conventional electromagnetic shielding includes a metal foil having electric conductivity and an adhesive layer overlapping the metal foil. An electromagnetic shield including a shield layer made of a mixture of iron powder and an organic binder instead of metal foil is also known. (See Patent Document 1 below.)
特開平1-261897号公報Japanese Patent Laid-Open No. 1-261897
 電子機器が備える半導体チップ等の素子は、封止材で覆われることより、光、熱、湿気、ほこり及び物理的衝撃等から保護される。一般的な封止材は、エポキシ樹脂等の樹脂組成物とシリカフィラー等の充填材の混合物であり、樹脂組成物に起因する絶縁性を有している。封止材の絶縁性は、電子機器内における電気的な短絡を抑制するために要求されることもある。 An element such as a semiconductor chip included in an electronic device is protected from light, heat, moisture, dust, physical impact, and the like by being covered with a sealing material. A general sealing material is a mixture of a resin composition such as an epoxy resin and a filler such as a silica filler, and has insulating properties resulting from the resin composition. The insulating property of the sealing material may be required in order to suppress an electrical short circuit in the electronic device.
 上記のように、電磁シールドの電気伝導性と、封止材の絶縁性とは、互いに相容れない物性である。したがって、電磁波の遮蔽と封止材による素子の保護の両方が要求される場合、電磁シールド及び封止材の両方で素子を覆うための複雑な工程が必要であり、電子機器の製造コストが増加する。また電磁シールドが備える金属箔又はシールド層は、成形等の加工によって容易に破損してしまう。 As described above, the electrical conductivity of the electromagnetic shield and the insulating property of the sealing material are mutually incompatible physical properties. Therefore, when both shielding of the electromagnetic wave and protection of the element by the sealing material are required, a complicated process for covering the element with both the electromagnetic shielding and the sealing material is required, and the manufacturing cost of the electronic device is increased. To do. Further, the metal foil or shield layer provided in the electromagnetic shield is easily damaged by processing such as molding.
 本発明は、上記事情に鑑みてなされたものであり、電磁シールド性と絶縁性を有する封止材、封止材を備える電子部品、封止材を備える電子回路基板、及び封止材の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes a sealing material having electromagnetic shielding properties and insulating properties, an electronic component including the sealing material, an electronic circuit board including the sealing material, and manufacturing of the sealing material. It aims to provide a method.
(封止材)
 本発明の一側面に係る封止材は、複数の金属粒子と樹脂組成物とを備える封止材であって、封止材の表面の少なくとも一部における単位長さ当たりの抵抗が、0.1kΩ/mm以上20kΩ/mm以下であり、封止材の内部における単位長さ当たりの抵抗が、0.2GΩ/mm以上10TΩ/mm以下である。
(Encapsulant)
The sealing material which concerns on 1 side of this invention is a sealing material provided with a some metal particle and resin composition, Comprising: Resistance per unit length in at least one part of the surface of a sealing material is 0.00. 1 kΩ / mm or more and 20 kΩ / mm or less, and the resistance per unit length in the sealing material is 0.2 GΩ / mm or more and 10 TΩ / mm or less.
 金属粒子が、金属粒子に由来する金属のリン酸塩によって覆われていてよい。 The metal particles may be covered with a metal phosphate derived from the metal particles.
 金属粒子が鉄を含んでよい。 The metal particles may contain iron.
 樹脂組成物が熱硬化性樹脂を含んでよい。 The resin composition may contain a thermosetting resin.
 樹脂組成物が硬化物であってよい。 The resin composition may be a cured product.
 封止材における金属粒子の含有量が、90質量%以上100質量%未満であってよい。 The content of the metal particles in the sealing material may be 90% by mass or more and less than 100% by mass.
 封止材の表面において、金属粒子が樹脂組成物から突出していてよい。 The metal particles may protrude from the resin composition on the surface of the sealing material.
 封止材の表面において、金属粒子及び樹脂組成物が露出していてよい。 The metal particles and the resin composition may be exposed on the surface of the sealing material.
(電子部品)
 本発明の一側面に係る電子部品は、上記の封止材と、封止材で覆われた素子と、を備える。
(Electronic parts)
The electronic component which concerns on 1 side of this invention is equipped with said sealing material and the element covered with the sealing material.
(電子回路基板)
 本発明の一側面に係る電子回路基板は、基板と、基板の表面に設置された素子と、素子を覆う封止材と、を備え、封止材が上記の封止材である。
(Electronic circuit board)
An electronic circuit board according to one aspect of the present invention includes a substrate, an element installed on the surface of the substrate, and a sealing material that covers the element, and the sealing material is the above-described sealing material.
(封止材の製造方法)
 本発明の一側面に係る封止材の製造方法は、複数の金属粒子と樹脂組成物とを含むコンパウンドを加熱することにより、樹脂組成物を硬化する第一加熱工程と、第一加熱工程を経たコンパウンドを更に加熱することにより、コンパウンドの表面の少なくとも一部における単位長さ当たりの抵抗を低下させ、単位長さ当たりの抵抗を0.1kΩ/mm以上20kΩ/mm以下に調整する第二加熱工程と、を備える。
(Method for producing sealing material)
The method for manufacturing a sealing material according to one aspect of the present invention includes a first heating step for curing a resin composition by heating a compound including a plurality of metal particles and a resin composition, and a first heating step. The second heating for adjusting the resistance per unit length to 0.1 kΩ / mm to 20 kΩ / mm by reducing the resistance per unit length on at least a part of the surface of the compound by further heating the passed compound A process.
 第二加熱工程では、コンパウンドを140℃以上180℃以下で加熱してよい。 In the second heating step, the compound may be heated at 140 ° C. or higher and 180 ° C. or lower.
 金属粒子が、金属粒子に由来する金属のリン酸塩によって覆われていてよい。 The metal particles may be covered with a metal phosphate derived from the metal particles.
 金属粒子が鉄を含んでよい。 The metal particles may contain iron.
 樹脂組成物が熱硬化性樹脂を含んでよい。 The resin composition may contain a thermosetting resin.
 コンパウンドにおける金属粒子の含有量が、90質量%以上100質量%未満であってよい。 The content of metal particles in the compound may be 90% by mass or more and less than 100% by mass.
 本発明によれば、電磁シールド性と絶縁性を有する封止材、封止材を備える電子部品、封止材を備える電子回路基板、及び封止材の製造方法が提供される。 According to the present invention, there are provided a sealing material having electromagnetic shielding properties and insulation, an electronic component including the sealing material, an electronic circuit board including the sealing material, and a method for manufacturing the sealing material.
図1中の(a)は、本発明の一実施形態に係る封止材の模式的な斜視図であり、図1中の(b)は、図1中の(a)に示されるb‐b線方向において見られる封止材の模式的な断面図である。(A) in FIG. 1 is a schematic perspective view of a sealing material according to an embodiment of the present invention, and (b) in FIG. 1 is b--shown in (a) in FIG. It is typical sectional drawing of the sealing material seen in b line direction. 図2は、図1中の(b)に示される封止材の断面の一部(領域II)の拡大図である。FIG. 2 is an enlarged view of a part (region II) of the cross section of the sealing material shown in FIG. 図3中の(a)は、本発明の一実施形態に係る電子部品の模式的な断面図であり、図3中の(b)は、本発明の他の一実施形態に係る電子部品の模式的な断面図である。(A) in FIG. 3 is a schematic cross-sectional view of an electronic component according to an embodiment of the present invention, and (b) in FIG. 3 is an electronic component according to another embodiment of the present invention. It is typical sectional drawing. 図4は、本発明の一実施形態に係る電子回路基板の模式的な断面図である。FIG. 4 is a schematic cross-sectional view of an electronic circuit board according to an embodiment of the present invention.
 以下、図面を参照しながら、本発明の好適な実施形態について説明する。図面において、同等の構成要素には同等の符号を付す。本発明は下記実施形態に限定されるものではない。各図に示すX,Y及びZは、互いに直交する3つの座標軸を意味する。各図中のXYZ座標軸其々が示す方向は各図に共通する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals. The present invention is not limited to the following embodiment. X, Y, and Z shown in each figure mean three coordinate axes orthogonal to each other. The directions indicated by the XYZ coordinate axes in each figure are common to each figure.
(封止材の概要)
 図1中の(b)及び図2に示されるように、本実施形態に係る封止材2は、複数(多数)の金属粒子4と樹脂組成物6とを備える。樹脂組成物6は、複数の金属粒子4の間に存在してよく、複数の金属粒子4は樹脂組成物6を介して互いに結着されていてよい。複数の金属粒子4は、樹脂組成物6中に分散していてよい。以下では、複数の金属粒子4が「金属粉」と表記される場合がある。
(Outline of sealing material)
As shown in FIG. 1B and FIG. 2, the sealing material 2 according to the present embodiment includes a plurality (a large number) of metal particles 4 and a resin composition 6. The resin composition 6 may exist between the plurality of metal particles 4, and the plurality of metal particles 4 may be bound to each other via the resin composition 6. The plurality of metal particles 4 may be dispersed in the resin composition 6. Hereinafter, the plurality of metal particles 4 may be referred to as “metal powder”.
 説明の便宜上、図1中の(a)に示される封止材2は直方体であるが、封止材2の形状は直方体に限定されない。被封止物(後述される素子)の形状、又は封止材2の用途に応じて、封止材2の形状及び寸法は適宜変更されてよい。 For convenience of explanation, the sealing material 2 shown in FIG. 1A is a rectangular parallelepiped, but the shape of the sealing material 2 is not limited to a rectangular parallelepiped. The shape and dimensions of the sealing material 2 may be appropriately changed according to the shape of the object to be sealed (elements described later) or the use of the sealing material 2.
 図1中の(a)に示されるように、封止材2の表面2sの一部又は全体における単位長さL‐s当たりの抵抗は、0.1kΩ/mm以上20kΩ/mm以下である。封止材2の外表面(2s)の一部又は全体における単位長さ当たりの抵抗は、0.1kΩ/mm以上20kΩ/mm以下であってよい。換言すれば、封止材2の露出している表面(2s)の一部又は全体における単位長さ当たりの抵抗は、0.1kΩ/mm以上20kΩ/mm以下であってよい。以下では、封止材2の表面2sの一部又は全体における単位長さL‐s当たりの抵抗が、「R‐s」と表記される場合がある。 As shown in (a) of FIG. 1, the resistance per unit length L-s in a part or the whole of the surface 2s of the sealing material 2 is 0.1 kΩ / mm or more and 20 kΩ / mm or less. The resistance per unit length in a part or the whole of the outer surface (2s) of the sealing material 2 may be 0.1 kΩ / mm or more and 20 kΩ / mm or less. In other words, the resistance per unit length in a part or the whole of the exposed surface (2s) of the sealing material 2 may be 0.1 kΩ / mm or more and 20 kΩ / mm or less. Hereinafter, the resistance per unit length Ls in a part or the whole of the surface 2s of the sealing material 2 may be expressed as “Rs”.
 R‐sが20kΩ/mm以下であることにより、封止材2の表面2s(表面2sの一部又は全体)が優れた電磁シールド性を有することができる。封止材2における金属粒子の含有量の増加に伴って、封止材2における樹脂組成物の含有量が低下し、R‐sが低下し、電磁シールド性が向上する。しかしR‐sが上記の下限値未満である場合、封止材2における樹脂組成物の含有量が少な過ぎて、封止材2の内部が十分な絶縁性を有することが困難である。またR‐sが上記の下限値未満である場合、封止材2における樹脂組成物の含有量が少な過ぎて、複数の金属粒子4が樹脂組成物6を介して結着され難く、封止材2の耐久性(例えば耐光性、耐熱性、耐湿性、耐塵性及び機械的強度)が損なわれる。封止材2の表面2sの電磁シールド性が向上し易く、且つ封止材2の内部の絶縁性及び封止材2全体の耐久性が損なわれ難い観点において、R‐sは、8kΩ/mm以上20kΩ/mm以下、又は10kΩ/mm以上12kΩ/mm以下であってよい。 When R-s is 20 kΩ / mm or less, the surface 2s of the sealing material 2 (part or the whole of the surface 2s) can have excellent electromagnetic shielding properties. As the content of the metal particles in the encapsulant 2 increases, the content of the resin composition in the encapsulant 2 decreases, Rs decreases, and the electromagnetic shielding property improves. However, when Rs is less than the lower limit, the content of the resin composition in the sealing material 2 is too small, and it is difficult for the inside of the sealing material 2 to have sufficient insulation. Further, when Rs is less than the above lower limit value, the content of the resin composition in the sealing material 2 is too small, and the plurality of metal particles 4 are hardly bonded via the resin composition 6, and the sealing is performed. The durability (for example, light resistance, heat resistance, moisture resistance, dust resistance and mechanical strength) of the material 2 is impaired. From the viewpoint that the electromagnetic shielding property of the surface 2s of the sealing material 2 is easily improved and the insulation inside the sealing material 2 and the durability of the entire sealing material 2 are not easily impaired, Rs is 8 kΩ / mm. It may be 20 kΩ / mm or less, or 10 kΩ / mm or more and 12 kΩ / mm or less.
 R‐sは、以下の二端子測定法で測定されてよい。二つの端子を、封止材2の表面2sの任意の二点に接触させる。そして、二つの端子間に電圧を印加して、任意の二点間の抵抗Rをテスターで測定する。Rを二点間の距離Lで除することにより、R‐sが算出される。つまり、R‐sはR/Lに等しい。単位長さL‐sは1mmであるが、抵抗Rが測定される二点間の距離Lは、1mmより長くてもよく、1mmより短くてもよい。抵抗Rが測定される二点間の距離Lは、単位長さL‐s(つまり1mm)に等しくてもよい。任意の2点間に印加される電圧は、例えば、数V以上10V以下であってよい。封止材2の表面2sにおける複数箇所で測定されたR‐sの平均値が、0.1kΩ/mm以上20kΩ/mm以下であってよい。R‐sの平均値の算出に用いるサンプル数(R‐sの測定箇所の数)は、例えば、2以上50以下であってよい。R‐sは室温で測定されてよい。室温とは、例えば、1℃以上30℃以下、又は15℃以上25℃以下であってよい。 R-s may be measured by the following two-terminal measurement method. Two terminals are brought into contact with two arbitrary points on the surface 2 s of the sealing material 2. A voltage is applied between the two terminals, and the resistance R between any two points is measured with a tester. Rs is calculated by dividing R by the distance L between the two points. That is, R−s is equal to R / L. The unit length L-s is 1 mm, but the distance L between the two points at which the resistance R is measured may be longer than 1 mm or shorter than 1 mm. The distance L between the two points at which the resistance R is measured may be equal to the unit length Ls (ie 1 mm). The voltage applied between arbitrary two points may be several V or more and 10 V or less, for example. The average value of Rs measured at a plurality of locations on the surface 2s of the sealing material 2 may be 0.1 kΩ / mm or more and 20 kΩ / mm or less. The number of samples used for calculating the average value of Rs (the number of measurement points of Rs) may be, for example, 2 or more and 50 or less. Rs may be measured at room temperature. The room temperature may be, for example, 1 ° C. or higher and 30 ° C. or lower, or 15 ° C. or higher and 25 ° C. or lower.
 図1中の(b)に示されるように、封止材2の内部2iにおける単位長さL‐i当たりの抵抗は、0.2GΩ/mm以上10TΩ/mm以下である。換言すれば、封止材2の表面2sに垂直な方向における封止材2の断面の一部又は全体における単位長さL‐i当たりの抵抗が、0.2GΩ/mm以上10TΩ/mm以下である。封止材2の内部2iとは、封止材2の表面2s(外表面)に囲まれた部分である。以下では、封止材2の内部2iにおける単位長さL‐i当たりの抵抗が、「R‐i」と表記される場合がある。 As shown in (b) of FIG. 1, the resistance per unit length Li in the inside 2i of the sealing material 2 is 0.2 GΩ / mm or more and 10 TΩ / mm or less. In other words, the resistance per unit length Li in a part or the whole of the cross section of the sealing material 2 in the direction perpendicular to the surface 2s of the sealing material 2 is 0.2 GΩ / mm or more and 10 TΩ / mm or less. is there. The inside 2 i of the sealing material 2 is a portion surrounded by the surface 2 s (outer surface) of the sealing material 2. Hereinafter, the resistance per unit length Li in the inside 2i of the sealing material 2 may be expressed as “Ri”.
 R‐iが0.2GΩ/mm以上であることにより、封止材2の内部2iが優れた絶縁性を有することができる。封止材2における樹脂組成物の含有量の増加に伴って、封止材2における金属粒子の含有量が低下し、R‐iが増加し、封止材2の内部2iの絶縁性が向上する。また封止材2における樹脂組成物の含有量の増加に伴って、金属粒子4同士が強固に結着され易く、封止材2の耐久性(例えば耐光性、耐熱性、耐湿性、耐塵性及び機械的強度)が向上し易い。しかしR‐iが上記の上限値を超える場合、封止材2における金属粒子の含有量が少な過ぎて、封止材2の表面2sが十分な電磁シールド性を有することが困難である。封止材2の内部2iの絶縁性、封止材2全体の耐久性、及び封止材2の表面2sの電磁シールド性が向上し易い観点において、R‐iは、0.3GΩ/mm以上0.8GΩ/mm以下、0.2GΩ/mm以上5TΩ/mm以下、又は0.2TΩ/mm以上10TΩ/mm以下であってよい。 When Ri is 0.2 GΩ / mm or more, the inside 2 i of the sealing material 2 can have excellent insulating properties. As the content of the resin composition in the sealing material 2 increases, the content of the metal particles in the sealing material 2 decreases, Ri increases, and the insulation of the inside 2i of the sealing material 2 improves. To do. Further, as the content of the resin composition in the encapsulant 2 increases, the metal particles 4 tend to be firmly bonded to each other, and the durability of the encapsulant 2 (for example, light resistance, heat resistance, moisture resistance, dust resistance). And mechanical strength). However, when Ri exceeds the above upper limit, the content of the metal particles in the sealing material 2 is too small, and it is difficult for the surface 2s of the sealing material 2 to have sufficient electromagnetic shielding properties. Ri is 0.3 GΩ / mm or more from the viewpoint of easily improving the insulation of the inside 2i of the sealing material 2, the durability of the whole sealing material 2, and the electromagnetic shielding properties of the surface 2s of the sealing material 2. It may be 0.8 GΩ / mm or less, 0.2 GΩ / mm or more and 5 TΩ / mm or less, or 0.2 TΩ / mm or more and 10 TΩ / mm or less.
 R‐iは、以下の二端子測定法で測定されてよい。封止材2の表面2sに垂直な方向において、封止材2を切断して封止材2の内部を断面に露出させる。二つの端子を、封止材2の断面の任意の二点に接触させる。そして、二つの端子間に電圧を印加して、任意の二点間の抵抗R’を絶縁抵抗計で測定する。R’を二点間の距離L’で除することにより、R‐iが算出される。つまり、R‐iはR’/L’に等しい。単位長さL‐iは1mmであるが、抵抗R’が測定される二点間の距離L’は、1mmより長くてもよく、1mmより短くてもよい。抵抗R’が測定される二点間の距離L’は、単位長さL‐i(つまり1mm)に等しくてもよい。任意の2点間に印加される電圧は、例えば、1V以上100V以下であってよい。封止材2の内部2i(断面)における複数箇所で測定されたR‐iの平均値が、0.2GΩ/mm以上10TΩ/mm以下であってよい。R‐iの平均値の算出に用いるサンプル数(R‐iの測定箇所の数)は、例えば、2以上50以下であってよい。R‐iは室温で測定されてよい。 Ri may be measured by the following two-terminal measurement method. In a direction perpendicular to the surface 2 s of the sealing material 2, the sealing material 2 is cut to expose the inside of the sealing material 2 to the cross section. Two terminals are brought into contact with two arbitrary points on the cross section of the sealing material 2. A voltage is applied between the two terminals, and the resistance R 'between any two points is measured with an insulation resistance meter. By dividing R ′ by the distance L ′ between the two points, R−i is calculated. That is, R−i is equal to R ′ / L ′. The unit length Li is 1 mm, but the distance L ′ between the two points at which the resistance R ′ is measured may be longer than 1 mm or shorter than 1 mm. The distance L ′ between the two points at which the resistance R ′ is measured may be equal to the unit length Li (ie 1 mm). The voltage applied between two arbitrary points may be 1 V or more and 100 V or less, for example. The average value of Ri measured at a plurality of locations in the inside 2i (cross section) of the sealing material 2 may be 0.2 GΩ / mm or more and 10 TΩ / mm or less. The number of samples used for calculating the average value of Ri (the number of Ri measurement points) may be, for example, 2 or more and 50 or less. Ri may be measured at room temperature.
 一部又は全ての金属粒子4が、金属粒子4に由来する金属のリン酸塩によって覆われていてよい。つまり、一部又は全ての金属粒子4がリン酸塩の被膜によって覆われていてよい。各金属粒子4の表面の一部又は全体が、金属粒子4に由来する金属のリン酸塩によって覆われていてよい。つまり、各金属粒子4の表面の一部又は全体が、リン酸塩の被膜によって覆われていてよい。「金属のリン酸塩」とは無機リン酸(HPO)の金属塩であってよい。例えば金属粒子4が鉄を含む場合、金属粒子4は、リン酸鉄(II)及びリン酸鉄(III)のうち一方又は両方によって覆われていてよい。つまり金属粒子4が鉄を含む場合、金属粒子4は、Fe(PO及びFePOのうち一方又は両方によって覆われていてよい。リン酸塩は絶縁性を有するため、金属粒子4がリン酸塩によって覆われることにより、互いに接する2つの金属粒子4の間にリン酸塩が介在し易く、金属粒子4間の電気伝導が抑制され易い。その結果、封止材2の内部2iの絶縁性が向上し易い。また金属粒子4がリン酸塩によって覆われることにより、金属粒子4の耐食性が向上する。 Some or all of the metal particles 4 may be covered with a metal phosphate derived from the metal particles 4. That is, some or all of the metal particles 4 may be covered with the phosphate coating. Part or the whole of the surface of each metal particle 4 may be covered with a metal phosphate derived from the metal particle 4. That is, a part or the whole of the surface of each metal particle 4 may be covered with the phosphate coating. The “metal phosphate” may be a metal salt of inorganic phosphoric acid (H 3 PO 4 ). For example, when the metal particles 4 include iron, the metal particles 4 may be covered with one or both of iron (II) phosphate and iron (III) phosphate. That is, when the metal particles 4 contain iron, the metal particles 4 may be covered with one or both of Fe 3 (PO 4 ) 2 and FePO 4 . Since the phosphate has insulating properties, the metal particles 4 are covered with the phosphate, so that the phosphate is likely to intervene between the two metal particles 4 in contact with each other, and electrical conduction between the metal particles 4 is suppressed. It is easy to be done. As a result, the insulating property of the inside 2i of the sealing material 2 is easily improved. Moreover, the corrosion resistance of the metal particle 4 improves because the metal particle 4 is covered with the phosphate.
 金属粒子4を覆うリン酸塩は、金属粒子4のリン酸塩処理(化成処理)によって形成されてよい。リン酸塩処理では、脱脂、水洗及び除錆等の前処理を経た金属粒子4をリン酸塩の水溶液(処理液)に浸漬してよい。その結果、金属粒子4の表面がリン酸塩の被膜によって覆われる。処理液に含まれるリン酸塩は、リン酸亜鉛、リン酸鉄、リン酸マンガン及びリン酸カルシウムからなる群より選ばれる少なくとも一種であってよい。処理液に由来する亜鉛、マンガン、鉄及びカルシウムからなる群より選ばれる少なくとも一種を含むリン酸塩が金属粒子4の表面を覆っていてよい。 The phosphate covering the metal particles 4 may be formed by a phosphate treatment (chemical conversion treatment) of the metal particles 4. In the phosphate treatment, the metal particles 4 that have undergone pretreatment such as degreasing, water washing, and rust removal may be immersed in an aqueous solution (treatment solution) of phosphate. As a result, the surface of the metal particle 4 is covered with the phosphate coating. The phosphate contained in the treatment liquid may be at least one selected from the group consisting of zinc phosphate, iron phosphate, manganese phosphate, and calcium phosphate. A phosphate containing at least one selected from the group consisting of zinc, manganese, iron and calcium derived from the treatment liquid may cover the surface of the metal particles 4.
 図2に示されるように、封止材2の表面2sにおいて、金属粒子4が樹脂組成物6から突出していてよい。封止材2の表面2sにおいて、金属粒子4及び樹脂組成物6が露出していてよい。封止材2の表面2sにおいて、金属粒子4及び樹脂組成物6が混合されていてよい。上記のように、本実施形態に係る封止材2の表面には、従来の電磁シールドが有するような金属箔が存在しなくてよい。金属箔が封止材2の表面に存在しない場合であっても、封止材2の表面2s自体が電磁シールド性を有しているため、封止材2は、絶縁性及び耐久性のみならず、電磁シールド性を有することができる。 2, the metal particles 4 may protrude from the resin composition 6 on the surface 2 s of the sealing material 2. On the surface 2s of the sealing material 2, the metal particles 4 and the resin composition 6 may be exposed. On the surface 2s of the sealing material 2, the metal particles 4 and the resin composition 6 may be mixed. As described above, the surface of the sealing material 2 according to the present embodiment does not have to have a metal foil that a conventional electromagnetic shield has. Even if the metal foil is not present on the surface of the encapsulant 2, the surface 2s itself of the encapsulant 2 has an electromagnetic shielding property, so that the encapsulant 2 is only insulative and durable. It can have electromagnetic shielding properties.
 封止材2の表面2sにおいて、複数の金属粒子4が互いに直接接触してよい。封止材2の表面2sにおいて、各金属粒子4の表面の一部が、樹脂組成物6及びリン酸塩を介することなく直接接触してよい。一方、封止材2の内部2iにおいては、複数の金属粒子4の間に樹脂組成物6が介在してよい。封止材2の表面2sにおいて複数の金属粒子4が互いに直接接触しているため、封止材2の表面2sの抵抗R‐sが封止材2の内部2iの抵抗R‐iより低く、封止材2の表面2sが高い電気伝導率と電磁シールド性を有することができる。上述された封止材2の表面2sの形状及び構造は、例えば、走査型電子顕微鏡(SEM)によって観察・特定されてよい。SEMの視野内において、電子を反射する金属粒子4は明るい色に見える一方、樹脂組成物6は暗い色に見える。ただし、上述された封止材2の表面2sの形状及び構造と、封止材2の表面2sの電気伝導率及び電磁シールド性との因果関係は、仮説である。 The plurality of metal particles 4 may be in direct contact with each other on the surface 2 s of the sealing material 2. On the surface 2s of the sealing material 2, a part of the surface of each metal particle 4 may be in direct contact without interposing the resin composition 6 and the phosphate. On the other hand, in the interior 2 i of the sealing material 2, the resin composition 6 may be interposed between the plurality of metal particles 4. Since the plurality of metal particles 4 are in direct contact with each other on the surface 2s of the sealing material 2, the resistance Rs of the surface 2s of the sealing material 2 is lower than the resistance Ri of the inside 2i of the sealing material 2, The surface 2s of the sealing material 2 can have high electrical conductivity and electromagnetic shielding properties. The shape and structure of the surface 2s of the sealing material 2 described above may be observed and specified by, for example, a scanning electron microscope (SEM). In the field of view of the SEM, the metal particles 4 that reflect electrons appear to be bright, while the resin composition 6 appears to be dark. However, the causal relationship between the shape and structure of the surface 2s of the sealing material 2 described above and the electrical conductivity and electromagnetic shielding properties of the surface 2s of the sealing material 2 is a hypothesis.
 上述された形状及び構造を有する封止材2の表面2sは、あくまで二次元的な面(例えば平面、曲面又は凹凸面)であり、封止材2の表面2sは、封止材2の内部2iを覆う表層として、封止材2内部2iと明確に識別されるとは限らない。換言すれば、高い電気伝導率と電磁シールド性を有する表層と封止材2の内部2iとを明確に画する界面は必ずしも存在しなくてよい。 The surface 2s of the sealing material 2 having the shape and structure described above is a two-dimensional surface (for example, a plane, a curved surface, or an uneven surface), and the surface 2s of the sealing material 2 is the inside of the sealing material 2. The surface layer covering 2i is not always clearly distinguished from the inside 2i of the sealing material 2. In other words, an interface that clearly defines a surface layer having high electrical conductivity and electromagnetic shielding properties and the inside 2i of the sealing material 2 does not necessarily exist.
 樹脂組成物は熱硬化性樹脂を含んでよい。樹脂組成物は硬化物であってよい。樹脂組成物は、熱硬化性樹脂として、エポキシ樹脂を含んでよい。樹脂組成物は、エポキシ樹脂とフェノール樹脂とを含んでもよい。樹脂組成物としてエポキシ樹脂を含む封止材2は、表面2sの電磁シールド性、内部2iの絶縁性、及び封止材2全体の耐久性に優れている。樹脂組成物の詳細は後述される。 The resin composition may contain a thermosetting resin. The resin composition may be a cured product. The resin composition may contain an epoxy resin as a thermosetting resin. The resin composition may include an epoxy resin and a phenol resin. The sealing material 2 containing an epoxy resin as a resin composition is excellent in the electromagnetic shielding properties of the surface 2s, the insulating properties of the inside 2i, and the durability of the entire sealing material 2. Details of the resin composition will be described later.
 封止材2における金属粒子4の含有量は、封止材2全体の質量に対して、90質量%以上100質量%未満、又は97質量%以上99.8質量%以下であってよい。金属粒子4の含有量の増加に伴い、封止材2の表面2sの抵抗R‐sが増加する傾向がある。金属粒子4の含有量が上記の範囲内である場合、R‐sが0.1kΩ/mm以上20kΩ/mm以下であり、且つR‐iが0.2GΩ/mm以上10TΩ/mm以下である封止材2が得られ易い。 The content of the metal particles 4 in the sealing material 2 may be 90% by mass or more and less than 100% by mass, or 97% by mass or more and 99.8% by mass or less with respect to the total mass of the sealing material 2. As the content of the metal particles 4 increases, the resistance Rs of the surface 2s of the sealing material 2 tends to increase. When the content of the metal particles 4 is within the above range, Rs is 0.1 kΩ / mm or more and 20 kΩ / mm or less, and Ri is 0.2 GΩ / mm or more and 10 TΩ / mm or less. Stop material 2 is easy to be obtained.
 封止材2におけるにおける樹脂組成物6の含有量は、封止材2全体の質量に対して、0質量%より大きく10質量%以下、又は0.2質量%以上3質量%以下であってよい。樹脂組成物6の含有量の増加に伴い、封止材2の内部2iの抵抗R‐iが増加する傾向がある。樹脂組成物6の含有量が上記の範囲内である場合、R‐sが0.1kΩ/mm以上20kΩ/mm以下であり、且つR‐iが0.2GΩ/mm以上10TΩ/mm以下である封止材2が得られ易い。 The content of the resin composition 6 in the sealing material 2 is greater than 0% by mass and 10% by mass or less, or 0.2% by mass to 3% by mass with respect to the total mass of the sealing material 2. Good. As the content of the resin composition 6 increases, the resistance Ri of the inside 2i of the sealing material 2 tends to increase. When the content of the resin composition 6 is within the above range, Rs is 0.1 kΩ / mm or more and 20 kΩ / mm or less, and Ri is 0.2 GΩ / mm or more and 10 TΩ / mm or less. The sealing material 2 is easy to be obtained.
 封止材2は、複数の金属粒子4と樹脂組成物6に加えて、充填材(フィラー)を更に備えてよい。金属粒子4及び充填材が、樹脂組成物6中に分散していてよい。充填材は、例えば、複数(多数)のシリカ粒子であってよい。 The sealing material 2 may further include a filler (filler) in addition to the plurality of metal particles 4 and the resin composition 6. The metal particles 4 and the filler may be dispersed in the resin composition 6. The filler may be, for example, a plurality (large number) of silica particles.
(電子部品)
 図3中の(a)及び(b)に示されるように、本実施形態に係る電子部品10a,10bは、上記の封止材2と、封止材2で覆われた素子(device)3と、を備える。素子3は、特に限定されないが、例えば、半導体チップ、MEMS(微小電気機械システム)、及びコイルからなる群より選ばれる少なくとも一種であってよい。半導体チップは、特に限定されないが、IC、LSI、システムLSI、SRAM、DRAM及びフラッシュメモリーからなる群より選ばれる少なくとも一種であってよい。封止材2の内表面(封止材2において素子3と接触する面)の単位長さ当たりの抵抗は、封止材2の内部2iの単位長さL‐i当たりの抵抗R‐iと等しくてよい。
(Electronic parts)
As shown in (a) and (b) of FIG. 3, the electronic components 10 a and 10 b according to the present embodiment include the sealing material 2 and an element (device) 3 covered with the sealing material 2. And comprising. The element 3 is not particularly limited, but may be at least one selected from the group consisting of a semiconductor chip, a MEMS (micro electro mechanical system), and a coil, for example. The semiconductor chip is not particularly limited, but may be at least one selected from the group consisting of IC, LSI, system LSI, SRAM, DRAM, and flash memory. The resistance per unit length of the inner surface of the sealing material 2 (the surface in contact with the element 3 in the sealing material 2) is the resistance Ri per unit length Li of the interior 2i of the sealing material 2. May be equal.
 図3中の(a)に示されるように、電子部品10aは、上記の封止材2と、封止材2中に埋設された素子5と、を備えてよい。換言すれば、電子部品10aは、素子5と、素子5の全体を覆う封止材2と、を備えてよい。例えば、素子5がコイルであり、電子部品10aがインダクタ、フィルタ(例えば、EMIフィルタ)又はトランスであってよい。 As shown in (a) of FIG. 3, the electronic component 10 a may include the above-described sealing material 2 and the element 5 embedded in the sealing material 2. In other words, the electronic component 10 a may include the element 5 and the sealing material 2 that covers the entire element 5. For example, the element 5 may be a coil, and the electronic component 10a may be an inductor, a filter (for example, an EMI filter), or a transformer.
 図3中の(b)に示されるように、封止材2で覆われた素子3の一部が封止材2の外へ延在(extend)していてよい。と、換言すれば、電子部品10bは、素子3と、素子3を部分的に覆う封止材2と、を備えてよい。例えば、電子部品10bは、インターポーザー9(リードフレーム)と、インターポーザー9上に設置された半導体チップ7と、インターポーザー9及び半導体チップ7を覆う封止材2と、を備える半導体パッケージであってよく、インターポーザー9の一部であるアウターリードが封止材2の外へ延在していてよい。アウターリードが位置する封止材2の側面はアウターリードと電気的に絶縁されていてよい。 As shown in FIG. 3B, a part of the element 3 covered with the sealing material 2 may extend outside the sealing material 2. In other words, the electronic component 10 b may include the element 3 and the sealing material 2 that partially covers the element 3. For example, the electronic component 10b is a semiconductor package including an interposer 9 (lead frame), a semiconductor chip 7 installed on the interposer 9, and a sealing material 2 covering the interposer 9 and the semiconductor chip 7. The outer lead which is a part of the interposer 9 may extend outside the sealing material 2. The side surface of the sealing material 2 where the outer lead is located may be electrically insulated from the outer lead.
(電子回路基板)
 図4に示されるように、本実施形態に係る電子回路基板100は、基板11と、基板11の表面に設置された素子3と、素子3を覆う上記の封止材2と、を備えてよい。基板11は、特に限定されないが、例えば、リジッド基板、フレキシブル基板及びリジッドフレキシブル基板からなる群より選ばれる少なくとも一種のプリント基板であってよい。封止材2の内表面(封止材2において素子3と接触する面)の単位長さ当たりの抵抗は、封止材2の内部2iの単位長さL‐i当たりの抵抗R‐iと等しくてよい。封止材2の表面2sは、基板11と電気的に絶縁されていてよい。基板11と接する封止材2の表面(基板11と封止材2の界面に位置する封止材2の面)の単位長さ当たりの抵抗は、封止材2の内部2iの単位長さL‐i当たりの抵抗R‐iと等しくてよい。封止材2は、素子3及び基板11の両方を覆ってよい。封止材2は、素子3及び基板11の表面全体を覆ってもよい。
(Electronic circuit board)
As shown in FIG. 4, an electronic circuit board 100 according to this embodiment includes a substrate 11, an element 3 installed on the surface of the substrate 11, and the sealing material 2 that covers the element 3. Good. Although the board | substrate 11 is not specifically limited, For example, at least 1 type of printed circuit board chosen from the group which consists of a rigid board | substrate, a flexible substrate, and a rigid flexible substrate may be sufficient. The resistance per unit length of the inner surface of the sealing material 2 (the surface in contact with the element 3 in the sealing material 2) is the resistance Ri per unit length Li of the interior 2i of the sealing material 2. May be equal. The surface 2s of the sealing material 2 may be electrically insulated from the substrate 11. The resistance per unit length of the surface of the sealing material 2 in contact with the substrate 11 (the surface of the sealing material 2 located at the interface between the substrate 11 and the sealing material 2) is the unit length of the inside 2i of the sealing material 2. It may be equal to the resistance Ri per Li. The sealing material 2 may cover both the element 3 and the substrate 11. The sealing material 2 may cover the entire surface of the element 3 and the substrate 11.
(金属粒子)
 金属粒子(金属粉)は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。金属粒子は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種からなっていてよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。合金とは、例えば、ステンレス鋼(Fe‐Cr系合金、Fe‐Ni‐Cr系合金等)であってよい。金属粒子は、一種の金属元素又は複数種の金属元素を含んでよい。金属粒子に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。コンパウンドは、一種の金属粒子を含んでよく、組成が異なる複数種の金属粒子を含んでもよい。
(Metal particles)
The metal particles (metal powder) may contain, for example, at least one selected from the group consisting of simple metals, alloys, and metal compounds. The metal particles may be made of at least one selected from the group consisting of simple metals, alloys and metal compounds, for example. The alloy may contain at least one selected from the group consisting of a solid solution, a eutectic and an intermetallic compound. The alloy may be, for example, stainless steel (Fe—Cr alloy, Fe—Ni—Cr alloy, etc.). The metal particles may contain one kind of metal element or plural kinds of metal elements. The metal element contained in the metal particles may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element. The compound may include one type of metal particles, and may include a plurality of types of metal particles having different compositions.
 金属粒子は上記の組成物に限定されない。金属粒子に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。金属粒子は、金属元素以外の元素を更に含んでもよい。金属粒子は、例えば、酸素(О)、ベリリウム(Be)、リン(P)、ホウ素(B)、又はケイ素(Si)を含んでもよい。金属粒子は、磁性粉であってよい。金属粒子は、軟磁性合金、又は強磁性合金であってよい。金属粒子は、例えば、Fe‐Si系合金、Fe‐Si‐Al系合金(センダスト)、Fe‐Ni系合金(パーマロイ)、Fe‐Cu‐Ni系合金(パーマロイ)、Fe‐Co系合金(パーメンジュール)、Fe‐Cr‐Si系合金(電磁ステンレス鋼)、Nd‐Fe‐B系合金(希土類磁石)、Sm‐Co系合金(希土類磁石)、Sm‐Fe‐N系合金(希土類磁石)、及びAl‐Ni‐Co系合金(アルニコ磁石)からなる群より選ばれる少なくとも一種からなる磁性粉であってよい。金属粒子は、Cu‐Sn系合金、Cu‐Sn‐P系合金、Cu-Ni系合金、又はCu‐Be系合金等の銅合金であってもよい。金属粒子は、上記の元素及び組成物のうち一種を含んでよく、上記の元素及び組成物のうち複数種を含んでもよい。 The metal particles are not limited to the above composition. Examples of metal elements contained in the metal particles include iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). , Tin (Sn), chromium (Cr), barium (Ba), strontium (Sr), lead (Pb), silver (Ag), praseodymium (Pr), neodymium (Nd), samarium (Sm) and dysprosium (Dy) It may be at least one selected from the group consisting of The metal particles may further contain an element other than the metal element. The metal particles may include, for example, oxygen (O), beryllium (Be), phosphorus (P), boron (B), or silicon (Si). The metal particles may be magnetic powder. The metal particles may be a soft magnetic alloy or a ferromagnetic alloy. Metal particles include, for example, Fe-Si alloys, Fe-Si-Al alloys (Sendust), Fe-Ni alloys (Permalloy), Fe-Cu-Ni alloys (Permalloy), Fe-Co alloys (Per Menjur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Co alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet) , And at least one magnetic powder selected from the group consisting of Al—Ni—Co alloys (alnico magnets). The metal particles may be a copper alloy such as a Cu—Sn alloy, a Cu—Sn—P alloy, a Cu—Ni alloy, or a Cu—Be alloy. The metal particles may contain one of the above elements and compositions, and may contain two or more of the above elements and compositions.
 金属粒子は鉄を含んでよい。金属粒子は鉄のみからなっていてよい。金属粒子が鉄を含む場合、R‐sが0.1kΩ/mm以上20kΩ/mm以下であり、且つR‐iが0.2GΩ/mm以上10TΩ/mm以下である封止材2が得られ易い。同様の理由から、金属粒子は、カルボニル鉄粉(純鉄の粉)であることが好ましい。カルボニル鉄粉(BASFジャパン株式会社製のカルボニル鉄粉)は、例えば、SQ、SQ‐I、SP‐I、SW‐S、EW及びHQからなる群より選ばれる少なくとも一種であってよい。金属粒子は、アモルファス系鉄粉であってもよい。 The metal particles may contain iron. The metal particles may consist only of iron. When the metal particles contain iron, it is easy to obtain the sealing material 2 having Rs of 0.1 kΩ / mm to 20 kΩ / mm and Ri of 0.2 GΩ / mm to 10 TΩ / mm. . For the same reason, the metal particles are preferably carbonyl iron powder (pure iron powder). Carbonyl iron powder (carbonyl iron powder manufactured by BASF Japan Ltd.) may be at least one selected from the group consisting of SQ, SQ-I, SP-I, SW-S, EW and HQ, for example. The metal particles may be amorphous iron powder.
 金属粒子は、鉄を含む合金(Fe系合金)であってもよい。Fe系合金は、例えば、Fe‐Si‐Cr系合金、又はNd‐Fe‐B系合金であってよい。金属粒子は、Feアモルファス合金であってもよい。Feアモルファス合金粉の市販品としては、例えば、AW2‐08、KUAMET‐6B2(以上、エプソンアトミックス株式会社製の商品名)、DAP MS3、DAP MS7、DAP MSA10、DAP PB、DAP PC、DAP MKV49、DAP 410L、DAP 430L、DAP HYBシリーズ(以上、大同特殊鋼株式会社製の商品名)、MH45D、MH28D、MH25D、及びMH20D(以上、神戸製鋼株式会社製の商品名)からなる群より選ばれる少なくとも一種が用いられてよい。 The metal particles may be an alloy containing iron (Fe-based alloy). The Fe-based alloy may be, for example, an Fe-Si-Cr-based alloy or an Nd-Fe-B-based alloy. The metal particles may be an Fe amorphous alloy. Commercially available products of Fe amorphous alloy powder include, for example, AW2-08, KUAMET-6B2 (above, product names manufactured by Epson Atmix Co., Ltd.), DAP MS3, DAP MS7, DAP MSA10, DAP PB, DAP PC, DAP MKV49. , DAP 410L, DAP 430L, DAP HYB series (above, trade name made by Daido Steel), MH45D, MH28D, MH25D, and MH20D (above, trade name made by Kobe Steel) At least one kind may be used.
 金属粒子は、Fe及びNbを含有するFe系合金であってよい。金属粒子は、Fe、Nb、Cu、Si及びBを含有するFe系合金であってもよい。金属粒子は、結晶粒径が10nm以下であるFe系合金の結晶を含んでよい。金属粒子は、に含まれるFe系合金の結晶粒径が10nm以下であることにより、金属粒子は、優れた磁気特性(例えば、高い比透磁率)を有することができる。金属粒子に含まれるFe系合金の結晶粒径(例えば結晶粒径の平均値)は、5nm以上10nm以下であってよい。金属粒子に含まれるFe系合金の結晶粒径の測定手段は、特に限定されないが、例えば、走査型電子顕微鏡(SEM)、又は透過型電子顕微鏡(TEM)であってよい。粉末X線回折法に基づくシェラー(Scherrer)の式を用いて、金属粒子に含まれるFe系合金の結晶粒径が特定されてもよい。 The metal particles may be an Fe-based alloy containing Fe and Nb. The metal particles may be an Fe-based alloy containing Fe, Nb, Cu, Si, and B. The metal particles may include Fe-based alloy crystals having a crystal grain size of 10 nm or less. When the crystal grain size of the Fe-based alloy contained in the metal particles is 10 nm or less, the metal particles can have excellent magnetic properties (for example, high relative magnetic permeability). The crystal grain size (for example, the average value of the crystal grain size) of the Fe-based alloy contained in the metal particles may be 5 nm or more and 10 nm or less. The means for measuring the crystal grain size of the Fe-based alloy contained in the metal particles is not particularly limited, and may be, for example, a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The crystal grain size of the Fe-based alloy contained in the metal particles may be specified using Scherrer's formula based on the powder X-ray diffraction method.
 封止材2に含まれる金属粒子の組成又は組合せに応じて、封止材2の電磁気的特性又は熱伝導性等の諸物性を自在に制御し、封止材2を様々な工業製品に利用することができる。 Depending on the composition or combination of the metal particles contained in the encapsulant 2, various properties such as electromagnetic properties or thermal conductivity of the encapsulant 2 can be freely controlled, and the encapsulant 2 can be used for various industrial products. can do.
 金属粒子の平均粒子径は、特に限定されないが、例えば、1μm以上300μm以下であってよい。金属粒子の平均粒子径が小さいほど、金属粒子の比表面積が小さく、金属粒子の間の接点(電気伝導経路)が多く、封止材の表面における抵抗R‐sが低い傾向がある。金属粒子の平均粒子径が大きいほど、金属粒子の比表面積が大きく、金属粒子の間の接点(電気伝導経路)が少なく、封止材の内部における抵抗R‐iが高い傾向がある。 The average particle diameter of the metal particles is not particularly limited, but may be, for example, 1 μm or more and 300 μm or less. The smaller the average particle diameter of the metal particles, the smaller the specific surface area of the metal particles, the more contacts (electric conduction paths) between the metal particles, and the lower the resistance Rs on the surface of the sealing material. As the average particle diameter of the metal particles is larger, the specific surface area of the metal particles is larger, the number of contacts (electric conduction paths) between the metal particles is smaller, and the resistance Ri inside the sealing material tends to be higher.
(樹脂組成物)
 樹脂組成物は、樹脂、硬化剤、硬化促進剤及び添加剤を包含し得る成分であって、有機溶媒と金属粒子とを除く残りの成分(不揮発性成分)であってよい。添加剤とは、樹脂組成物のうち、樹脂、硬化剤及び硬化促進剤を除く残部の成分である。添加剤とは、例えば、カップリング剤又は難燃剤等である。樹脂組成物が添加剤としてワックスを含んでいてもよい。上記の金属粒子(金属粉)と、未硬化の樹脂組成物(加熱される前の樹脂組成物)との混合物は、いわゆるコンパウンドであり、封止材の原料である。コンパウンドから形成された成形体中の樹脂組成物を硬化させることにより、封止材が得られる。コンパウンドから形成されたタブレットを、封止材の出発原料として用いてもよい。以下に記載の樹脂組成物の組成は、コンパウンドに含まれる未硬化の樹脂組成物とみなされてもよい。
(Resin composition)
The resin composition is a component that can include a resin, a curing agent, a curing accelerator, and an additive, and may be the remaining component (nonvolatile component) excluding the organic solvent and the metal particles. An additive is a remaining component except resin, a hardening | curing agent, and a hardening accelerator among resin compositions. The additive is, for example, a coupling agent or a flame retardant. The resin composition may contain a wax as an additive. A mixture of the above metal particles (metal powder) and an uncured resin composition (resin composition before being heated) is a so-called compound and a raw material for the sealing material. The sealing material is obtained by curing the resin composition in the molded body formed from the compound. You may use the tablet formed from the compound as a starting material of a sealing material. The composition of the resin composition described below may be regarded as an uncured resin composition contained in the compound.
 樹脂組成物は金属粒子の結合剤(バインダー)としての機能を有し、コンパウンドから形成される封止材に機械的強度を付与する。例えば、樹脂組成物は、金型を用いてコンパウンドが高圧で成形される際に、金属粒子の間に充填され、金属粒子を互いに結着する。コンパウンドから形成された成形体中の樹脂組成物を硬化させることにより、樹脂組成物の硬化物が金属粒子同士を強固に結着して、高い機械的強度を有する封止材が得られる。 The resin composition has a function as a binder (binder) for metal particles, and imparts mechanical strength to the sealing material formed from the compound. For example, when the compound is molded at a high pressure using a mold, the resin composition is filled between the metal particles and binds the metal particles to each other. By curing the resin composition in the molded body formed from the compound, the cured product of the resin composition firmly binds the metal particles to each other, and a sealing material having high mechanical strength is obtained.
 樹脂組成物は、熱硬化性樹脂を含有してよい。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂及びポリアミドイミド樹脂からなる群より選ばれる少なくとも一種であってよい。樹脂組成物がエポキシ樹脂及びフェノール樹脂の両方を含む場合、フェノール樹脂はエポキシ樹脂の硬化剤として機能してもよい。樹脂組成物は、熱可塑性樹脂を含んでもよい。熱可塑性樹脂は、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、及びポリエチレンテレフタレートからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、熱硬化性樹脂及び熱可塑性樹脂の両方を含んでよい。樹脂組成物は、シリコーン樹脂を含んでもよい。 The resin composition may contain a thermosetting resin. The thermosetting resin may be at least one selected from the group consisting of an epoxy resin, a phenol resin, and a polyamideimide resin, for example. When the resin composition contains both an epoxy resin and a phenol resin, the phenol resin may function as a curing agent for the epoxy resin. The resin composition may include a thermoplastic resin. The thermoplastic resin may be at least one selected from the group consisting of acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate, for example. The resin composition may include both a thermosetting resin and a thermoplastic resin. The resin composition may include a silicone resin.
 樹脂組成物はエポキシ樹脂を含有してよい。樹脂組成物がエポキシ樹脂を含有することにより、R‐sが0.1kΩ/mm以上20kΩ/mm以下であり、且つR‐iが0.2GΩ/mm以上10TΩ/mm以下であり、且つ耐久性に優れた封止材2が得られ易い。 The resin composition may contain an epoxy resin. When the resin composition contains an epoxy resin, Rs is 0.1 kΩ / mm or more and 20 kΩ / mm or less, Ri is 0.2 GΩ / mm or more and 10 TΩ / mm or less, and durability It is easy to obtain an excellent sealing material 2.
 エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってよい。エポキシ樹脂は、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、及びオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。 The epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule. Epoxy resins include, for example, biphenyl type epoxy resins, stilbene type epoxy resins, diphenylmethane type epoxy resins, sulfur atom-containing type epoxy resins, novolac type epoxy resins, dicyclopentadiene type epoxy resins, salicylaldehyde type epoxy resins, naphthols and phenols. Type epoxy resin, epoxidized aralkyl type phenol resin, bisphenol type epoxy resin, glycidyl ether type epoxy resin of alcohols, glycidyl ether type epoxy resin of paraxylylene and / or metaxylylene modified phenol resin, terpene modified phenol resin Glycidyl ether type epoxy resin, cyclopentadiene type epoxy resin, glycidyl ether type epoxy resin of polycyclic aromatic ring modified phenolic resin, naphthalene Glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl type or methyl glycidyl type epoxy resin, alicyclic epoxy resin, halogenated phenol novolak type epoxy resin, orthocresol novolak type epoxy resin, hydroquinone type epoxy It may be at least one selected from the group consisting of a resin, a trimethylolpropane type epoxy resin, and a linear aliphatic epoxy resin obtained by oxidizing an olefinic bond with a peracid such as peracetic acid.
 エポキシ樹脂の中でも、結晶性のエポキシ樹脂が好ましい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。結晶性のエポキシ樹脂の市販品は、例えば、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM-091、エピクロンHM-101、エピクロンN-730A、エピクロンN-740、エピクロンN-770、エピクロンN-775、エピクロンN-865、エピクロンHP-4032D、エピクロンHP-7200L、エピクロンHP-7200、エピクロンHP-7200H、エピクロンHP-7200HH、エピクロンHP-7200HHH、エピクロンHP-4700、エピクロンHP-4710、エピクロンHP-4770、エピクロンHP-5000、エピクロンHP-6000、及びN500P-2(以上、DIC株式会社製の商品名)、NC-3000、NC-3000-L、NC-3000-H、NC-3100、CER-3000-L、NC-2000-L、XD-1000、NC-7000-L、NC-7300-L、EPPN-501H、EPPN-501HY、EPPN-502H、EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、CER-1020、EPPN-201、BREN-S、BREN-10S(以上、日本化薬株式会社製の商品名)、YX-4000、YX-4000H、YL4121H、及びYX-8800(以上、三菱ケミカル株式会社製の商品名)からなる群より選ばれる少なくとも一種であってよい。 Among the epoxy resins, a crystalline epoxy resin is preferable. Despite the relatively low molecular weight of the crystalline epoxy resin, the crystalline epoxy resin has a relatively high melting point and excellent fluidity. The crystalline epoxy resin (epoxy resin having high crystallinity) may be at least one selected from the group consisting of hydroquinone type epoxy resins, bisphenol type epoxy resins, thioether type epoxy resins, and biphenyl type epoxy resins, for example. Commercially available crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron N -740, Epicron N-770, Epicron N-775, Epicron N-865, Epicron HP-4032D, Epicron HP-7200L, Epicron HP-7200, Epicron HP-7200H, Epicron HP-7200HH, Epicron HP-7200HHH, Epicron HP -4700, Epicron HP-4710, Epicron HP-4770, Epicron HP-5000, Epicron HP-6000, and N500P-2 (above, IC Co., Ltd. trade names), NC-3000, NC-3000-L, NC-3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-1000, NC-7000-L NC-7300-L, EPPN-501H, EPPN-501HY, EPPN-502H, EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, CER-1020, EPPN-201, BREN-S, BREN-10S (Trade name, manufactured by Nippon Kayaku Co., Ltd.), YX-4000, YX-4000H, YL4121H, and YX-8800 (above, trade name, manufactured by Mitsubishi Chemical Corporation). It's okay.
 樹脂組成物は、上記のうち一種のエポキシ樹脂を含有してよい。樹脂組成物は、上記のうち複数種のエポキシ樹脂を含有してもよい。 The resin composition may contain one kind of epoxy resin among the above. The resin composition may contain a plurality of types of epoxy resins among the above.
 硬化剤は、低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型硬化剤と、に分類される。低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤は、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタン等である。加熱硬化型硬化剤は、例えば、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂、及びジシアンジアミド(DICY)等である。 Curing agents are classified into a curing agent that cures an epoxy resin in a range from low temperature to room temperature, and a heat curing type curing agent that cures an epoxy resin with heating. Examples of the curing agent that cures the epoxy resin in the range from low temperature to room temperature include aliphatic polyamines, polyaminoamides, and polymercaptans. Examples of the thermosetting curing agent include aromatic polyamines, acid anhydrides, phenol novolac resins, and dicyandiamide (DICY).
 低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、エポキシ樹脂の硬化物のガラス転移点は低く、エポキシ樹脂の硬化物は軟らかい傾向がある。その結果、コンパウンドから形成された封止材も軟らかくなり易い。一方、封止材の耐熱性を向上させる観点から、硬化剤は、好ましくは加熱硬化型の硬化剤、より好ましくはフェノール樹脂、さらに好ましくはフェノールノボラック樹脂であってよい。特に硬化剤としてフェノールノボラック樹脂を用いることで、ガラス転移点が高いエポキシ樹脂の硬化物が得られ易い。その結果、封止材の耐熱性及び機械的強度が向上し易い。 When a curing agent that cures an epoxy resin in the range of low temperature to room temperature is used, the glass transition point of the cured epoxy resin is low, and the cured epoxy resin tends to be soft. As a result, the sealing material formed from the compound tends to be soft. On the other hand, from the viewpoint of improving the heat resistance of the sealing material, the curing agent is preferably a thermosetting curing agent, more preferably a phenol resin, and even more preferably a phenol novolac resin. In particular, by using a phenol novolac resin as a curing agent, a cured product of an epoxy resin having a high glass transition point is easily obtained. As a result, the heat resistance and mechanical strength of the sealing material are easily improved.
 フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種であってよい。フェノール樹脂は、上記のうちの2種以上から構成される共重合体であってもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、又は日立化成株式会社製のHP-850N等を用いてもよい。 Examples of the phenol resin include aralkyl type phenol resin, dicyclopentadiene type phenol resin, salicylaldehyde type phenol resin, novolac type phenol resin, copolymer type phenol resin of benzaldehyde type phenol and aralkyl type phenol, paraxylylene and / or metaxylylene modified. From the group consisting of phenolic resin, melamine modified phenolic resin, terpene modified phenolic resin, dicyclopentadiene type naphthol resin, cyclopentadiene modified phenolic resin, polycyclic aromatic ring modified phenolic resin, biphenyl type phenolic resin, and triphenylmethane type phenolic resin It may be at least one selected. The phenol resin may be a copolymer composed of two or more of the above. As a commercially available phenol resin, for example, Tamorol 758 manufactured by Arakawa Chemical Industries, Ltd. or HP-850N manufactured by Hitachi Chemical Co., Ltd. may be used.
 フェノールノボラック樹脂は、例えば、フェノール類及び/又はナフトール類と、アルデヒド類と、を酸性触媒下で縮合又は共縮合させて得られる樹脂であってよい。フェノールノボラック樹脂を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール及びアミノフェノールからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するナフトール類は、例えば、α‐ナフトール、β‐ナフトール及びジヒドロキシナフタレンからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するアルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒドからなる群より選ばれる少なくとも一種であってよい。 The phenol novolac resin may be, for example, a resin obtained by condensation or cocondensation of phenols and / or naphthols and aldehydes under an acidic catalyst. The phenols constituting the phenol novolac resin may be at least one selected from the group consisting of phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, for example. The naphthols constituting the phenol novolac resin may be at least one selected from the group consisting of α-naphthol, β-naphthol and dihydroxynaphthalene, for example. The aldehyde constituting the phenol novolac resin may be at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde, for example.
 硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種であってよい。 The curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule. The compound having two phenolic hydroxyl groups in one molecule may be at least one selected from the group consisting of resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
 樹脂組成物は、上記のうち一種のフェノール樹脂を含有してよい。樹脂組成物は、上記のうち複数種のフェノール樹脂を備えてもよい。樹脂組成物は、上記のうち一種の硬化剤を含有してよい。樹脂組成物は、上記のうち複数種の硬化剤を含有してもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、又は日立化成株式会社製のHP-850N等を用いてもよい。 The resin composition may contain one kind of phenol resin among the above. The resin composition may include a plurality of types of phenol resins among the above. The resin composition may contain a kind of curing agent among the above. The resin composition may contain plural kinds of curing agents among the above. As a commercially available phenol resin, for example, Tamorol 758 manufactured by Arakawa Chemical Industries, Ltd. or HP-850N manufactured by Hitachi Chemical Co., Ltd. may be used.
 エポキシ樹脂中のエポキシ基と反応する硬化剤中の活性基(フェノール性OH基)の比率は、エポキシ樹脂中のエポキシ基1当量に対して、好ましくは0.5~1.5当量、より好ましくは0.9~1.4当量、さらに好ましくは1.0~1.2当量であってよい。硬化剤中の活性基の比率が0.5当量未満である場合、硬化後のエポキシ樹脂の単位重量当たりのOH量が少なくなり、樹脂組成物(エポキシ樹脂)の硬化速度が低下する。また硬化剤中の活性基の比率が0.5当量未満である場合、得られる硬化物のガラス転移温度が低くなったり、硬化物の充分な弾性率が得られなかったりする。一方、硬化剤中の活性基の比率が1.5当量を超える場合、コンパウンドから形成された封止材の機械的強度が低下する傾向がある。ただし、硬化剤中の活性基の比率が上記範囲外である場合であっても、本発明に係る効果は得られる。 The ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalent, more preferably 1 equivalent to 1 equivalent of the epoxy group in the epoxy resin. May be 0.9 to 1.4 equivalents, more preferably 1.0 to 1.2 equivalents. When the ratio of the active group in the curing agent is less than 0.5 equivalent, the amount of OH per unit weight of the epoxy resin after curing decreases, and the curing rate of the resin composition (epoxy resin) decreases. Moreover, when the ratio of the active group in a hardening | curing agent is less than 0.5 equivalent, the glass transition temperature of the hardened | cured material obtained becomes low, or sufficient elasticity modulus of hardened | cured material cannot be obtained. On the other hand, when the ratio of the active group in the curing agent exceeds 1.5 equivalents, the mechanical strength of the sealing material formed from the compound tends to decrease. However, even if the ratio of the active group in the curing agent is outside the above range, the effect according to the present invention can be obtained.
 硬化促進剤は、例えば、エポキシ樹脂と反応してエポキシ樹脂の硬化を促進させる組成物であれば限定されない。硬化促進剤は、例えば、アルキル基置換イミダゾール、又はベンゾイミダゾール等のイミダゾール類であってよい。樹脂組成物は、一種の硬化促進剤を備えてよい。樹脂組成物は、複数種の硬化促進剤を備えてもよい。樹脂組成物が、硬化促進剤を含有することにより、コンパウンドの成形性及び離型性が向上し易いが樹脂組成物が硬化促進剤を含有することにより、コンパウンドを用いて製造された封止材の機械的強度が向上したり、高温・高湿な環境下におけるコンパウンドの保存安定性が向上したりする。イミダゾール系硬化促進剤の市販品としては、例えば、2MZ-H、C11Z、C17Z、1,2DMZ、2E4MZ、2PZ-PW、2P4MZ、1B2MZ、1B2PZ、2MZ-CN、C11Z-CN、2E4MZ-CN、2PZ-CN、C11Z-CNS、2P4MHZ、TPZ、及びSFZ(以上、四国化成工業株式会社製の商品名)からなる群より選ばれる少なくとも一種を用いてよい。これらの中でも、長鎖アルキル基を有するイミダゾール系硬化促進剤が好ましく、C11Z-CN(1-シアノエチル-2-ウンデシルイミダゾール)が好ましい。 The curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin. The curing accelerator may be, for example, an alkyl group-substituted imidazole or an imidazole such as benzimidazole. The resin composition may include a kind of curing accelerator. The resin composition may include a plurality of types of curing accelerators. When the resin composition contains a curing accelerator, the moldability and releasability of the compound can be easily improved, but the resin composition contains a curing accelerator, so that the sealing material manufactured using the compound is used. This improves the mechanical strength of the material and improves the storage stability of the compound in a high temperature and high humidity environment. Examples of commercially available imidazole curing accelerators include 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ. At least one selected from the group consisting of —CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (trade names manufactured by Shikoku Kasei Kogyo Co., Ltd.) may be used. Among these, imidazole-type curing accelerators having a long-chain alkyl group are preferable, and C11Z-CN (1-cyanoethyl-2-undecylimidazole) is preferable.
 硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。ただし、樹脂組成物の吸湿時の硬化性及び流動性を改善する観点からは、硬化促進剤の配合量は、100質量部のエポキシ樹脂に対して、好ましくは0.1~30質量部、より好ましくは1~15質量部であってよい。硬化促進剤の含有量は、エポキシ樹脂及び硬化剤(例えばフェノール樹脂)の質量の合計に対して0.001質量部以上5質量部以下であることが好ましい。硬化促進剤の配合量が0.1質量部未満である場合、十分な硬化促進効果が得られ難い。硬化促進剤の配合量が30質量部を超える場合、コンパウンドの保存安定性が低下し易い。ただし、硬化促進剤の配合量及び含有量が上記範囲外である場合であっても、本発明に係る効果は得られる。 The blending amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is obtained. However, from the viewpoint of improving the curability and fluidity at the time of moisture absorption of the resin composition, the blending amount of the curing accelerator is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin. Preferably, it may be 1 to 15 parts by mass. It is preferable that content of a hardening accelerator is 0.001 mass part or more and 5 mass parts or less with respect to the sum total of the mass of an epoxy resin and a hardening | curing agent (for example, phenol resin). When the compounding quantity of a hardening accelerator is less than 0.1 mass part, it is difficult to obtain sufficient hardening acceleration effect. When the compounding quantity of a hardening accelerator exceeds 30 mass parts, the storage stability of a compound tends to fall. However, even if it is a case where the compounding quantity and content of a hardening accelerator are outside the said range, the effect which concerns on this invention is acquired.
 カップリング剤は、樹脂組成物と金属粒子との密着性を向上させ、コンパウンドから形成される封止材の可撓性及び機械的強度を向上させる。カップリング剤は、例えば、シラン系化合物(シランカップリング剤)、チタン系化合物、アルミニウム化合物(アルミニウムキレート類)、及びアルミニウム/ジルコニウム系化合物からなる群より選ばれる少なくとも一種であってよい。シランカップリング剤は、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、酸無水物系シラン及びビニルシランからなる群より選ばれる少なくとも一種であってよい。特に、アミノフェニル系のシランカップリング剤が好ましい。コンパウンドは、上記のうち一種のカップリング剤を備えてよく、上記のうち複数種のカップリング剤を備えてもよい。 The coupling agent improves the adhesion between the resin composition and the metal particles, and improves the flexibility and mechanical strength of the sealing material formed from the compound. The coupling agent may be at least one selected from the group consisting of, for example, a silane compound (silane coupling agent), a titanium compound, an aluminum compound (aluminum chelate), and an aluminum / zirconium compound. The silane coupling agent may be at least one selected from the group consisting of epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, acid anhydride silane and vinyl silane, for example. In particular, aminophenyl silane coupling agents are preferred. The compound may include one type of coupling agent among the above, and may include a plurality of types of coupling agents among the above.
 コンパウンドの環境安全性、リサイクル性、成形加工性及び低コストのために、コンパウンドは難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、鱗茎難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物及び芳香族エンプラからなる群より選ばれる少なくとも一種であってよい。コンパウンドは、上記のうち一種の難燃剤を備えてよく、上記のうち複数種の難燃剤を備えてもよい。 The compound may contain a flame retardant because of the environmental safety, recyclability, moldability and low cost of the compound. The flame retardant is, for example, at least one selected from the group consisting of brominated flame retardants, bulb flame retardants, hydrated metal compound flame retardants, silicone flame retardants, nitrogen-containing compounds, hindered amine compounds, organometallic compounds, and aromatic engineering plastics. It may be. The compound may include one type of flame retardant among the above, and may include a plurality of types of flame retardant among the above.
 金型を用いてコンパウンドから封止材を形成する場合、樹脂組成物は、ワックスを含有してよい。ワックスは、コンパウンドの成形(例えばトランスファー成形)におけるコンパウンドの流動性を高めると共に、離型剤として機能する。ワックスは、高級脂肪酸等の脂肪酸、及び脂肪酸エステルのうち少なくともいずれか一つであってよい。 When forming a sealing material from a compound using a metal mold, the resin composition may contain a wax. The wax increases the fluidity of the compound in molding of the compound (for example, transfer molding) and functions as a release agent. The wax may be at least one of fatty acids such as higher fatty acids and fatty acid esters.
 ワックスは、例えば、モンタン酸、ステアリン酸、12-オキシステアリン酸、ラウリン酸等の脂肪酸類又はこれらのエステル;ステアリン酸亜鉛、ステアリン酸カルシウム、ステアエン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、リノール酸亜鉛、リシノール酸カルシウム、2-エチルヘキソイン酸亜鉛等の脂肪酸塩;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N-ステアリルステアリン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等の脂肪酸アミド;ステアリン酸ブチル等の脂肪酸エステル;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びこれらの変性物からなるポリエーテル類;シリコーンオイル、シリコングリース等のポリシロキサン類;フッ素系オイル、フッ素系グリース、含フッ素樹脂粉末等のフッ素化合物;並びに、パラフィンワックス、ポリエチレンワックス、アマイドワックス、ポリプロピレンワックス、エステルワックス、カルナウバ、マイクロワックス等のワックス類;からなる群より選ばれる少なくとも一種であってよい。 The wax is, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid, or esters thereof; zinc stearate, calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, calcium laurate, Fatty acid salts such as zinc linoleate, calcium ricinoleate and zinc 2-ethylhexoate; stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitic acid amide, lauric acid amide, hydroxystearic acid amide, methylenebisstearin Acid amide, ethylenebisstearic acid amide, ethylene bislauric acid amide, distearyl adipic acid amide, ethylene bisoleic acid amide, dioleyl adipic acid amide, N-steer Fatty acid amides such as rustearic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, methylol stearic acid amide, methylol behenic acid amide; fatty acid esters such as butyl stearate; alcohols such as ethylene glycol and stearyl alcohol Polyethers composed of polyethylene glycol, polypropylene glycol, polytetramethylene glycol and modified products thereof; polysiloxanes such as silicone oil and silicone grease; fluorine compounds such as fluorine oil, fluorine grease and fluorine-containing resin powder; And waxes such as paraffin wax, polyethylene wax, amide wax, polypropylene wax, ester wax, carnauba, and microwax; It may be at least one kind of barrel.
(コンパウンドの製造方法)
 金属粒子(金属粉)と樹脂組成物(加熱される前の樹脂組成物)とを加熱しながら混合することでコンパウンドが得られる。
(Compound production method)
A compound is obtained by mixing metal particles (metal powder) and a resin composition (resin composition before being heated) while heating.
 コンパウンドの製造では、例えば、金属粒子と樹脂組成物とを加熱しながらニーダー又は攪拌機で混練してよい。 In the production of the compound, for example, the metal particles and the resin composition may be kneaded with a kneader or a stirrer while heating.
 混練では、金属粒子、エポキシ樹脂等の樹脂、フェノール樹脂等の硬化剤、硬化促進剤、及びカップリング剤を槽内で混練してよい。金属粒子及びカップリング剤を槽内に投入して混合した後、樹脂、硬化剤、及び硬化促進剤を槽内へ投入して、槽内の原料を混練してもよい。樹脂、硬化剤、カップリング剤を槽内で混練した後、硬化促進剤を槽内入れて、更に槽内の原料を混練してもよい。予め樹脂、硬化剤、及び硬化促進剤の混合粉(樹脂混合粉)を作製して、続いて、金属粒子とカップリング剤とを混練して金属混合粉を作製して、続いて、金属混合粉と上記の樹脂混合粉とを混練してもよい。 In kneading, metal particles, a resin such as an epoxy resin, a curing agent such as a phenol resin, a curing accelerator, and a coupling agent may be kneaded in a tank. After the metal particles and the coupling agent are charged and mixed in the tank, the resin, the curing agent, and the curing accelerator may be charged into the tank to knead the raw materials in the tank. After kneading the resin, curing agent, and coupling agent in the tank, a curing accelerator may be put in the tank, and the raw materials in the tank may be further kneaded. First, a mixed powder (resin mixed powder) of a resin, a curing agent, and a curing accelerator is prepared, and then a metal mixed powder is prepared by kneading metal particles and a coupling agent, followed by metal mixing. You may knead | mix powder and said resin mixed powder.
 ニーダーによる混練時間は、槽の容積、コンパウンドの製造量にもよるが、例えば、5分以上であることが好ましく、10分以上であることがより好ましく、20分以上であることがさらに好ましい。またニーダーによる混練時間は、120分以下であることが好ましく、60分以下であることがより好ましく、40分以下であることがさらに好ましい。混練時間が5分未満ある場合、混練が不十分であり、コンパウンドの成形性が損なわれ、コンパウンドの硬化度にばらつきが生じる。混練時間が120分を超える場合、例えば、槽内で樹脂組成物(例えばエポキシ樹脂及びフェノール樹脂)の硬化が進み、コンパウンドの流動性及び成形性が損なわれ易い。槽内の原料を加熱しながらニーダーで混練する場合、加熱温度は樹脂組成物の組成に依るので限定されない。加熱温度は、例えば、50℃以上であることが好ましく、60℃以上であることがより好ましく、80℃以上であることがさらに好ましい。加熱温度は、150℃以下であることが好ましく、120℃以下であることがより好ましく、110℃以下であることがさらに好ましい。加熱温度が上記の範囲内である場合、槽内の樹脂組成物が軟化して金属粒子の表面を被覆し易く、混練中の樹脂組成物の硬化が抑制され易い。 The kneading time by the kneader depends on the volume of the tank and the production amount of the compound, but is preferably 5 minutes or longer, more preferably 10 minutes or longer, and further preferably 20 minutes or longer. Further, the kneading time by the kneader is preferably 120 minutes or less, more preferably 60 minutes or less, and further preferably 40 minutes or less. When the kneading time is less than 5 minutes, the kneading is insufficient, the moldability of the compound is impaired, and the degree of cure of the compound varies. When the kneading time exceeds 120 minutes, for example, the curing of the resin composition (for example, epoxy resin and phenol resin) proceeds in the tank, and the fluidity and moldability of the compound tend to be impaired. When kneading with a kneader while heating the raw material in the tank, the heating temperature is not limited because it depends on the composition of the resin composition. For example, the heating temperature is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher. The heating temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 110 ° C. or lower. When the heating temperature is within the above range, the resin composition in the tank is softened and the surface of the metal particles is easily covered, and the curing of the resin composition during kneading is easily suppressed.
 以上の混練によって、コンパウンドが完成される。 The compound is completed by the above kneading.
 コンパウンドにおける金属粒子の含有量は、コンパウンド全体の質量に対して、90質量%以上100質量%未満、又は97質量%以上99.8質量%以下に調整されてよい。コンパウンドにおけるにおける樹脂組成物の含有量は、コンパウンド全体の質量に対して、0質量%より大きく10質量%以下、又は0.2質量%以上3質量%以下に調整されてよい。 The content of the metal particles in the compound may be adjusted to 90% by mass to less than 100% by mass, or 97% by mass to 99.8% by mass with respect to the total mass of the compound. The content of the resin composition in the compound may be adjusted to be greater than 0% by mass and 10% by mass or less, or 0.2% by mass to 3% by mass with respect to the total mass of the compound.
 コンパウンドを所定の金型に充填して加圧により成形することで、タブレットを形成してもよい。タブレットの形状及び寸法は、特に制限はない。例えば、タブレットが円柱状である場合、タブレットの直径は5mm以上であってよく、タブレットの高さ(長さ)は5mm以上であってよい。タブレットの成形圧力は、例えば、500MPa以上であることが好ましく、1000MPa以上であることがより好ましく、2000MPa以上であるとさらに好ましい。 A tablet may be formed by filling a compound in a predetermined mold and molding it by pressing. The shape and dimensions of the tablet are not particularly limited. For example, when the tablet is cylindrical, the tablet diameter may be 5 mm or more, and the tablet height (length) may be 5 mm or more. The molding pressure of the tablet is, for example, preferably 500 MPa or more, more preferably 1000 MPa or more, and further preferably 2000 MPa or more.
(封止材、電子部品及び電子回路基板其々の製造方法)
 本実施形態に係る封止材、電子部品及び電子回路基板其々の製造方法は、第一加熱工程と第二加熱工程とを備える。
(Encapsulant, electronic component and electronic circuit board manufacturing method)
The manufacturing method of each of the sealing material, the electronic component, and the electronic circuit board according to the present embodiment includes a first heating step and a second heating step.
 第一加熱工程では、複数の金属粒子(金属粉)と樹脂組成物(未硬化の樹脂組成物)とを含む上記のコンパウンドを加熱することにより、樹脂組成物を硬化する。第一加熱工程においてコンパウンドを金型で加圧しながら加熱してよい。つまり第一加熱工程では、コンパウンドを成形しながら加熱してよい。電子部品を製造する場合、第一加熱工程では、素子(被封止物)を覆っているコンパウンド(成形体)を加熱しよい。電子回路基板を製造する場合、基板の表面に設置された素子を覆っているコンパウンド(成形体)を加熱してよい。第一加熱工程では、コンパウンド(成形体)を130℃以上200℃以下で加熱してよい。第一加熱工程においてコンパウンド(成形体)が上記の温度で加熱される時間は、2分以上30分以下であってよい。第一加熱工程では、窒素等の不活性ガス中でコンパウンドを加熱してよい。 In the first heating step, the resin composition is cured by heating the above compound containing a plurality of metal particles (metal powder) and a resin composition (uncured resin composition). In the first heating step, the compound may be heated while being pressed with a mold. That is, in the first heating step, the compound may be heated while being molded. When manufacturing an electronic component, in the first heating step, a compound (molded body) covering the element (sealed object) may be heated. When an electronic circuit board is manufactured, a compound (molded body) covering an element installed on the surface of the board may be heated. In the first heating step, the compound (molded body) may be heated at 130 ° C. or higher and 200 ° C. or lower. The time during which the compound (molded body) is heated at the above temperature in the first heating step may be 2 minutes or longer and 30 minutes or shorter. In the first heating step, the compound may be heated in an inert gas such as nitrogen.
 第一加熱工程として、コンパウンドのトランスファー成形を実施してもよい。トランスファー成形では、コンパウンドを500MPa以上2500MPa以下で加圧してよい。成形圧力が高いほど、機械的強度に優れた封止材が得られ易い。封止材の量産性及び金型の寿命を考慮した場合、成形圧力は1400MPa以上2000MPa以下であることが好ましい。トランスファー成形によって形成される成形体の密度は、コンパウンドの真密度に対して、好ましくは75%以上86%以下、より好ましくは80%以上86%以下であってよい。成形体の密度が75%以上86%以下である場合、機械的強度に優れた封止材が得られ易い。トランスファー成形において、第一加熱工程と第二加熱工程とを一括して実施してもよい。 As the first heating step, compound transfer molding may be performed. In transfer molding, the compound may be pressurized at 500 MPa to 2500 MPa. The higher the molding pressure, the easier it is to obtain a sealing material with excellent mechanical strength. In consideration of the mass productivity of the sealing material and the life of the mold, the molding pressure is preferably 1400 MPa or more and 2000 MPa or less. The density of the molded body formed by transfer molding is preferably 75% or more and 86% or less, and more preferably 80% or more and 86% or less, with respect to the true density of the compound. When the density of the molded body is 75% or more and 86% or less, a sealing material excellent in mechanical strength is easily obtained. In transfer molding, the first heating step and the second heating step may be performed collectively.
 第二加熱工程では、第一加熱工程を経たコンパウンド(成形体)を更に加熱することにより、コンパウンド(成形体)の表面の一部又は全体における単位長さL‐s当たりの抵抗Rsを低下させ、抵抗Rsを0.1kΩ/mm以上20kΩ/mm以下に調整する。第二加熱工程では、大気中でコンパウンド(成形体)を加熱してよい。 In the second heating step, by further heating the compound (molded body) that has undergone the first heating step, the resistance Rs per unit length Ls in part or the entire surface of the compound (molded body) is reduced. The resistance Rs is adjusted to 0.1 kΩ / mm or more and 20 kΩ / mm or less. In the second heating step, the compound (molded body) may be heated in the atmosphere.
 第二加熱工程では、コンパウンド(成形体)を140℃以上180℃以下で加熱してよい。第二加熱工程においてコンパウンド又は成形体が上記の温度で加熱される時間は、特に限定されないが、30時間以上150時間以下であってよい。第二加熱工程では、コンパウンド(成形体)の加熱温度が高いほど、コンパウンド(成形体)を加熱する時間は短くてよい。換言すれば、コンパウンド(成形体)の加熱温度が低いほど、コンパウンド(成形体)を加熱する時間は長くてよい。例えば、第二加熱工程では、コンパウンド(成形体)を150℃で150時間加熱してよく、コンパウンド(成形体)を160℃で60時間加熱してもよく、コンパウンド(成形体)を180℃で30時間してもよい。電子部品又は電子回路基板を製造する場合、コンパウンド(成形体)の加熱温度が高いほど、抵抗Rsが短時間で低下し易く、封止材の生産性が高いが、コンパウンド(成形体)によって覆われている素子又は基板が劣化し易い。また電子部品又は電子回路基板を製造する場合、コンパウンド(成形体)を加熱する時間が長いほど、封止材の生産性が低い。コンパウンド(成形体)を低温で長時間加熱する場合、コンパウンド(成形体)によって覆われている素子又は基板は劣化し難いが、封止材の生産性が低い。 In the second heating step, the compound (molded body) may be heated at 140 ° C. or higher and 180 ° C. or lower. The time during which the compound or molded body is heated at the above temperature in the second heating step is not particularly limited, but may be 30 hours or longer and 150 hours or shorter. In the second heating step, the higher the heating temperature of the compound (molded body), the shorter the time for heating the compound (molded body). In other words, the lower the heating temperature of the compound (molded body), the longer the time for heating the compound (molded body). For example, in the second heating step, the compound (molded body) may be heated at 150 ° C. for 150 hours, the compound (molded body) may be heated at 160 ° C. for 60 hours, and the compound (molded body) at 180 ° C. It may be 30 hours. When manufacturing an electronic component or an electronic circuit board, the higher the heating temperature of the compound (molded body), the easier the resistance Rs decreases in a short time and the higher the productivity of the sealing material. A broken element or substrate is likely to deteriorate. Moreover, when manufacturing an electronic component or an electronic circuit board, productivity of a sealing material is so low that the time which heats a compound (molded object) is long. When the compound (molded body) is heated at a low temperature for a long time, the element or the substrate covered with the compound (molded body) is hardly deteriorated, but the productivity of the sealing material is low.
 少なくとも上記の工程が実施されることにより、本実施形態に係る封止材、電子部品及び電子回路基板が得られる。 By performing at least the above-described steps, the sealing material, the electronic component, and the electronic circuit board according to this embodiment are obtained.
 本実施形態では、素子(被封止物)を覆うコンパウンドを第一加熱工程と第二加熱工程によって二回加熱するだけで、電磁シールド性を有する封止材で素子(被封止物)を覆うことができる。一方、従来の電磁シールド(金属箔)と従来の封止材で素子(被封止物)を覆う場合、素子を覆うコンパウンドを加熱・硬化して封止材を形成する工程と、接着剤を介して金属箔を封止材の表面に貼る工程が必要である。また金属箔は、ハンドリングに伴って容易に破損してしまう。以上のように、本実施形態に係る封止材、電子部品及び電子回路基板其々の製造方法は、従来の封止材及び電磁シールドを用いる方法よりも簡便であり、封止材、電子部品及び電子回路基板の生産性に優れている。 In the present embodiment, the element (sealing object) is sealed with an electromagnetic shielding property by simply heating the compound covering the element (sealing object) twice in the first heating step and the second heating step. Can be covered. On the other hand, when covering an element (sealed object) with a conventional electromagnetic shield (metal foil) and a conventional sealing material, a process of heating and curing a compound covering the element to form a sealing material, and an adhesive The process of sticking metal foil on the surface of a sealing material through is required. Further, the metal foil is easily damaged along with handling. As described above, the manufacturing method of the sealing material, the electronic component, and the electronic circuit board according to this embodiment is simpler than the conventional method using the sealing material and the electromagnetic shield. And the productivity of electronic circuit boards is excellent.
 素子を覆う従来のコンパウンドを加熱・硬化して封止材を形成した後、金属ターゲットのスパッタリングによって、金属膜(電磁シールド)を封止材の表面に形成する場合、金属ターゲットと封止材との相対的な位置関係に起因して、封止材の表面を斑なく金属膜で覆うことは困難である。つまり、スパッタリングは異方性のある加工方法である。一方、本実施形態の第二加熱工程では、異方性のない熱を用いるため、コンパウンド(成形体)の表面全体に対して均一に電磁シールド性を付与することができる。 When a metal film (electromagnetic shield) is formed on the surface of the sealing material by sputtering the metal target after heating and curing a conventional compound covering the element to form the sealing material, the metal target and the sealing material Due to the relative positional relationship, it is difficult to cover the surface of the sealing material with a metal film without unevenness. That is, sputtering is an anisotropic processing method. On the other hand, in the second heating step of the present embodiment, since heat having no anisotropy is used, it is possible to uniformly impart electromagnetic shielding properties to the entire surface of the compound (molded body).
 第二加熱工程において、図2に示されるような封止材2の表面2sの形状及び構造が形成されることは、本発明者らが行った研究によって確認されている。エポキシ樹脂等の熱硬化樹脂は酸化によって膨張する傾向があるが、第二加熱工程で得られた封止材2の表面2sにおける元素分析では、酸化を裏付ける程度の量の酸素は検出されなかった。つまり、コンパウンド(成形体)の表面における抵抗Rsの低下は、第二加熱工程における樹脂組成物の酸化には起因していない可能性が高い。しかし、図2に示されるような封止材2の表面2sの形状及び構造が第二加熱工程において形成され、コンパウンド(成形体)の表面の一部又は全体における抵抗が低下する理由は不明である。以下は、仮説である。 In the second heating step, it has been confirmed by research conducted by the present inventors that the shape and structure of the surface 2s of the sealing material 2 as shown in FIG. 2 are formed. Thermosetting resins such as epoxy resins tend to expand due to oxidation, but in the elemental analysis on the surface 2s of the sealing material 2 obtained in the second heating step, an amount of oxygen sufficient to support the oxidation was not detected. . That is, there is a high possibility that the decrease in the resistance Rs on the surface of the compound (molded body) is not caused by the oxidation of the resin composition in the second heating step. However, it is unclear why the shape and structure of the surface 2s of the sealing material 2 as shown in FIG. 2 is formed in the second heating step, and the resistance of a part or the whole of the surface of the compound (molded body) decreases. is there. The following is a hypothesis.
 第二加熱工程では、樹脂組成物の酸化及び分解ではなく、樹脂組成物の硬化・収縮がコンパウンド(成形体)の表面において局所的に進行する。つまりコンパウンド(成形体)の表面において、いわゆる「膜減り」のような現象が起きている。その結果、封止材2の表面2sにおいて、金属粒子4及び樹脂組成物6が露出し易く、金属粒子4が樹脂組成物6から突出し易い。そして、金属粒子4の間に介在する樹脂組成物の収縮に伴い、金属粒子4同士が直接接触し易くなり、金属粒子4間の接点(電気伝導経路)が増加する。金属粒子4がリン酸塩で覆われている場合、金属粒子4を覆う樹脂組成物の収縮に伴って、絶縁性のリン酸塩が金属粒子4の表面から脱離して、コンパウンド(成形体)の表面における金属粒子4間の電気的絶縁が破壊される可能性もある。またコンパウンド(成形体)の表面において金属粒子4を覆うリン酸塩が樹脂組成物に対して化学的に作用して、樹脂組成物が不安定になり、樹脂組成物の一部が分解している可能性もある。以上の要因により、コンパウンド(成形体)の表面の一部又は全体における抵抗が低下する。ただし、本発明の技術的範囲は上記の仮説によって限定されるものではない。 In the second heating step, not the oxidation and decomposition of the resin composition, but the curing and shrinkage of the resin composition locally proceeds on the surface of the compound (molded product). That is, a phenomenon such as so-called “film reduction” occurs on the surface of the compound (molded body). As a result, the metal particles 4 and the resin composition 6 are easily exposed on the surface 2 s of the sealing material 2, and the metal particles 4 are likely to protrude from the resin composition 6. As the resin composition interposed between the metal particles 4 contracts, the metal particles 4 are easily brought into direct contact with each other, and the contacts (electric conduction paths) between the metal particles 4 are increased. When the metal particles 4 are covered with a phosphate, the insulating phosphate is detached from the surface of the metal particles 4 as the resin composition covering the metal particles 4 contracts, resulting in a compound (molded product). There is also a possibility that the electrical insulation between the metal particles 4 on the surface of the metal is broken. Further, the phosphate covering the metal particles 4 on the surface of the compound (molded body) chemically acts on the resin composition, the resin composition becomes unstable, and a part of the resin composition is decomposed. There is also a possibility. Due to the above factors, the resistance of a part or the whole of the surface of the compound (molded body) is lowered. However, the technical scope of the present invention is not limited by the above hypothesis.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本実施形態に係る電子部品又は電子回路基板は、素子3と、素子3の一部又は全体を覆う従来の封止材(電磁シールド性を有しない封止材)と、従来の封止材を覆う本実施形態に係る封止材2(電磁シールド性を有する封止材)と、を備えてもよい。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, the electronic component or the electronic circuit board according to the present embodiment includes an element 3, a conventional sealing material (a sealing material that does not have electromagnetic shielding properties) that covers a part or the whole of the element 3, and a conventional sealing And a sealing material 2 (sealing material having electromagnetic shielding properties) according to the present embodiment covering the material.
 コンパウンドの成形及び加熱硬化によって成形体を形成した後、成形体の表面をイオンミリングによって研磨することにより、抵抗R‐sが0.1kΩ/mm以上20kΩ/mm以下である封止材2の表面2sを形成してもよい。コンパウンドの成形及び加熱硬化によって成形体を形成した後、成形体の表面に対するデスミア処理を実施することにより、抵抗R‐sが0.1kΩ/mm以上20kΩ/mm以下である封止材2の表面2sを形成してもよい。イオンミリング及びデスミア処理のいずれの場合であっても、成形体の表面から樹脂組成物が除去され易く、金属粒子が成形体の表面に残存し易い。その結果、抵抗R‐sが0.1kΩ/mm以上20kΩ/mm以下である封止材2の表面2sが形成される。 The surface of the sealing material 2 having a resistance Rs of 0.1 kΩ / mm or more and 20 kΩ / mm or less by polishing the surface of the molded body by ion milling after forming a molded body by molding of the compound and heat curing 2s may be formed. The surface of the sealing material 2 having a resistance Rs of not less than 0.1 kΩ / mm and not more than 20 kΩ / mm by forming a molded body by molding of the compound and heat curing, and then performing a desmear treatment on the surface of the molded body 2s may be formed. In both cases of ion milling and desmear treatment, the resin composition is easily removed from the surface of the molded body, and the metal particles are likely to remain on the surface of the molded body. As a result, a surface 2s of the sealing material 2 having a resistance Rs of 0.1 kΩ / mm or more and 20 kΩ / mm or less is formed.
 電子部品又は電子回路基板を製造する場合、素子(被封止物)の全体を封止材で覆った後、封止材の表面の切削・研磨により、封止材内の素子の一部を露出させてよい。封止材から露出した素子を、他の素子又は基板と電気的に接続してよい。封止材から露出した素子を、封止材と共に、基板の表面に固定してもよい。 When manufacturing an electronic component or an electronic circuit board, after covering the entire element (encapsulated object) with a sealing material, a part of the element in the sealing material is removed by cutting and polishing the surface of the sealing material. May be exposed. The element exposed from the sealing material may be electrically connected to another element or the substrate. The element exposed from the sealing material may be fixed to the surface of the substrate together with the sealing material.
 以下では実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1)
[封止材の作製]
 実施例1の金属粉として、鉄アモルファス合金粉とカルボニル鉄粉(純鉄粉)の混合物を用いた。実施例1の金属粉全体の質量(100質量部)に占める鉄アモルファス合金粉の質量の割合は、80質量部であった。実施例1の金属粉全体の質量(100質量部)に占めるカルボニル鉄粉の質量の割合は、20質量部であった。鉄アモルファス合金粉としては、エプソンアトミックス株式会社製のKUAMET 9A4‐IIを用いた。カルボニル鉄粉としては、BASFジャパン株式会社製のSQ‐Iを用いた。SQ‐Iは、リン酸処理が施された純鉄粉である。つまり、SQ‐Iを構成する各粒子(純鉄からなる粒子)の表面には、リン酸塩(リン酸鉄)からなる被膜が形成されている。一方、後述される比較例2で用いたSQは、BASFジャパン株式会社製の別の純鉄粉であり、リン酸処理が施されていない純鉄粉である。つまり、「SQ」を構成する各粒子(純鉄からなる粒子)の表面には、リン酸塩(リン酸鉄)からなる被膜が形成されていない。後述される実施例2,3及び比較例1~3のいずれの場合も、コンパウンド粉の作製に用いた金属粉全体の質量(単位:g)は、実施例1の場合と同じであった。
Example 1
[Preparation of sealing material]
As the metal powder of Example 1, a mixture of iron amorphous alloy powder and carbonyl iron powder (pure iron powder) was used. The ratio of the mass of the iron amorphous alloy powder to the mass (100 parts by mass) of the entire metal powder of Example 1 was 80 parts by mass. The ratio of the mass of the carbonyl iron powder to the mass (100 parts by mass) of the entire metal powder of Example 1 was 20 parts by mass. As the iron amorphous alloy powder, KUAMET 9A4-II manufactured by Epson Atmix Co., Ltd. was used. As carbonyl iron powder, SQ-I manufactured by BASF Japan Ltd. was used. SQ-I is pure iron powder that has been subjected to phosphoric acid treatment. That is, a film made of phosphate (iron phosphate) is formed on the surface of each particle (particle made of pure iron) constituting SQ-I. On the other hand, SQ used in Comparative Example 2, which will be described later, is another pure iron powder manufactured by BASF Japan Ltd., and is pure iron powder that has not been subjected to phosphoric acid treatment. That is, a film made of phosphate (iron phosphate) is not formed on the surface of each particle (particle made of pure iron) constituting “SQ”. In all of Examples 2 and 3 and Comparative Examples 1 to 3 described later, the mass (unit: g) of the entire metal powder used for preparing the compound powder was the same as in Example 1.
 実施例1で調製された樹脂組成物は、100.0gのエポキシ樹脂、39.7gのフェノールノボラック樹脂、3.0gの硬化促進剤、10.5gのシランカップリング剤、及び15gのワックスの混合物であった。エポキシ樹脂としては、日本化薬株式会社製のNC3000H(エポキシ当量:290)を用いた。フェノールノボラック樹脂としては、日立化成株式会社製のHP-850N(水酸基当量:108)を用いた。硬化促進剤としては、四国化成工業株式会社のC11Z-CNを用いた。シランカップリング剤としては、信越化学工業株式会社製のKBM-403を用いた。ワックスとしては、クラリアントケミカルズ株式会社製のリコワックスEを用いた。 The resin composition prepared in Example 1 is a mixture of 100.0 g epoxy resin, 39.7 g phenol novolac resin, 3.0 g curing accelerator, 10.5 g silane coupling agent, and 15 g wax. Met. As the epoxy resin, NC3000H (epoxy equivalent: 290) manufactured by Nippon Kayaku Co., Ltd. was used. As the phenol novolac resin, HP-850N (hydroxyl equivalent: 108) manufactured by Hitachi Chemical Co., Ltd. was used. As a curing accelerator, C11Z-CN of Shikoku Kasei Kogyo Co., Ltd. was used. As the silane coupling agent, KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd. was used. As the wax, Rico Wax E manufactured by Clariant Chemicals Co., Ltd. was used.
 100質量部の上記金属粉と5質量部の上記樹脂組成物とをプラスチック容器内で混合して混合物を得た。この混合物をニーダーの槽内に容れて、槽内の温度を80℃に維持しながら槽内の混合物を30分間混練した。混練後の混合物の塊を自然冷却してから粉砕することにより、コンパウンド粉を得た。コンパウンド粉を、円筒状の金型に入れて、金型内のコンパウンドを2000MPaで加圧することにより、タブレットを得た。金型(キャビティ)の寸法は、(直径13mm)×(高さ13mm)であった。以下では、コンパウンド粉の作製に用いた金属粉の相対的質量は「MMETAL」(単位:質量部)と表記される。コンパウンド粉の作製に用いた金属粉の相対的質量は「MRESIN」(単位:質量部)と表記される。 100 parts by mass of the metal powder and 5 parts by mass of the resin composition were mixed in a plastic container to obtain a mixture. The mixture was placed in a kneader tank, and the mixture in the tank was kneaded for 30 minutes while maintaining the temperature in the tank at 80 ° C. The kneaded mixture was naturally cooled and then pulverized to obtain a compound powder. The compound powder was put in a cylindrical mold, and the compound in the mold was pressurized at 2000 MPa to obtain a tablet. The dimension of the mold (cavity) was (diameter 13 mm) × (height 13 mm). Below, the relative mass of the metal powder used for preparation of compound powder is described as "M METAL " (unit: mass part). The relative mass of the metal powder used for producing the compound powder is expressed as “M RESIN ” (unit: part by mass).
 所定の金型を用いたトランスファー成形により、タブレット状のコンパウンドから棒状の成形体を作製した。トランスファー成形では、10分間にわたって、コンパウンドを170℃で加熱しながら6.9MPaで加圧した。トランスファー成形は、第一加熱工程に相当する。棒状の成形体の寸法は、(縦幅10mm)×(横幅3mm)×(高さ:30mm)であった。別の型を用いたこと以外は上記の同様のトランスファー成形により、タブレット状のコンパウンドから板状の成形体も作製した。板状の成形体の寸法は、(縦幅100mm)×(横幅100mm)×(厚み1mm)であった。 A rod-shaped molded body was produced from a tablet-like compound by transfer molding using a predetermined mold. In transfer molding, the compound was pressurized at 6.9 MPa for 10 minutes while being heated at 170 ° C. Transfer molding corresponds to the first heating step. The size of the rod-shaped molded body was (vertical width 10 mm) × (horizontal width 3 mm) × (height: 30 mm). A plate-like molded body was also produced from the tablet-like compound by the same transfer molding as described above except that another mold was used. The dimension of the plate-shaped molded body was (vertical width 100 mm) × (horizontal width 100 mm) × (thickness 1 mm).
 第二加熱工程では、トランスファー成形(第一加熱工程)を経た二種類の成形体其々を、空気で満たされた恒温槽中において、150℃で150時間加熱した。 In the second heating step, each of the two types of molded bodies that had undergone transfer molding (first heating step) was heated at 150 ° C. for 150 hours in a thermostatic bath filled with air.
 以上の工程により、実施例1の封止材(棒状の封止材及び板状の封止材)を作製した。 Through the above steps, the sealing material of Example 1 (bar-shaped sealing material and plate-shaped sealing material) was produced.
[表面の抵抗の測定]
 棒状の封止材の表面における5箇所において、二端子測定法により二点間の抵抗を測定して、抵抗の平均値を算出した。二点間の距離は5mmであった。二点間に印加した電圧は、5Vであった。いずれの測定も室温で実施した。測定には、低抵抗測定用の市販のテスターを用いた。封止材の表面における二点間の抵抗の平均値RSURFACE(単位:Ω)は、下記表1に示される。封止材の表面における単位長当たりの抵抗の平均値R‐s(単位:Ω/mm)は、下記表1に示される。
[Measurement of surface resistance]
At five points on the surface of the rod-shaped sealing material, the resistance between two points was measured by a two-terminal measurement method, and the average value of the resistance was calculated. The distance between the two points was 5 mm. The voltage applied between the two points was 5V. All measurements were performed at room temperature. For the measurement, a commercially available tester for low resistance measurement was used. The average value R SURFACE (unit: Ω) between two points on the surface of the sealing material is shown in Table 1 below. The average value Rs (unit: Ω / mm) of resistance per unit length on the surface of the sealing material is shown in Table 1 below.
[内部の抵抗の測定]
 棒状の封止材の表面に垂直な方向において、棒状の封止材をダイヤモンドカッターで切断した。棒状の封止材の断面(内部)における5箇所において、二端子測定法により二点間の抵抗を測定して、抵抗の平均値を算出した。二点間の距離は5mmであった。二点間に印加した電圧は、100Vであった。いずれの測定も室温で実施した。測定には、共立電気計器株式会社製のメガー「MODEL6018」を用いた。封止材の断面(内部)における二点間の抵抗の平均値RINTERNAL(単位:Ω)は、下記表1に示される。封止材の断面(内部)における単位長当たりの抵抗の平均値R‐i(単位:Ω/mm)は、下記表1に示される。
[Measurement of internal resistance]
The rod-shaped sealing material was cut with a diamond cutter in a direction perpendicular to the surface of the rod-shaped sealing material. At five points in the cross section (inside) of the rod-shaped sealing material, the resistance between two points was measured by the two-terminal measurement method, and the average value of the resistance was calculated. The distance between the two points was 5 mm. The voltage applied between the two points was 100V. All measurements were performed at room temperature. For the measurement, Megal “MODEL 6018” manufactured by Kyoritsu Electric Instruments Co., Ltd. was used. The average resistance R INTERNAL (unit: Ω) between two points in the cross section (inside) of the sealing material is shown in Table 1 below. The average resistance Ri per unit length (unit: Ω / mm) in the cross section (inside) of the sealing material is shown in Table 1 below.
[電界シールド値の測定]
 板状の封止材を用いて、関西電子工業振興センター(KEC)法により、電界シールド値SE(単位:dB)を求めた。電界シールド値SEは下記式Aで定義される。
SE=20×log10(E/E)   (A)
 式Aにおいて、Eは、板状の封止材が無いときの電界の強度(単位:V/m)である。Eは、板状の封止材を介して測定された電界の強度(単位:V/m)である。E及びEの測定には、アンリツ株式会社製のネットワークアナライザ 37247Cを用いた。測定に用いた電磁波の周波数は1MHzであった。SEが大きいほど、封止材は電磁シールド性に優れる。
[Measurement of electric field shield value]
The electric field shield value SE (unit: dB) was determined by the Kansai Electronics Industry Promotion Center (KEC) method using the plate-shaped sealing material. The electric field shield value SE is defined by the following formula A.
SE = 20 × log 10 (E 0 / E 1 ) (A)
In Formula A, E 0 is the electric field strength (unit: V / m) when there is no plate-like sealing material. E 1 is the electric field strength (unit: V / m) measured through the plate-shaped sealing material. A network analyzer 37247C manufactured by Anritsu Corporation was used for the measurement of E 0 and E 1 . The frequency of the electromagnetic wave used for the measurement was 1 MHz. The larger the SE, the better the sealing material has electromagnetic shielding properties.
[磁界シールド値の測定]
 板状の封止材を用いて、磁界シールド値SM(単位:dB)を求めた。磁界シールド値SMは下記式Bで定義される。
SM=20×log10(H/H)   (B)
 式Aにおいて、Hは、板状の封止材が無いときの磁界の強度(単位:A/m)である。Eは、板状の封止材を介して測定された磁界の強度(単位:A/m)である。H及びHの測定には、アンリツ株式会社製のネットワークアナライザ「37247C」を用いた。SMが大きいほど、封止材は電磁シールド性に優れる。
[Measurement of magnetic shielding value]
A magnetic shield value SM (unit: dB) was determined using a plate-shaped sealing material. The magnetic field shield value SM is defined by the following formula B.
SM = 20 × log 10 (H 0 / H 1 ) (B)
In Formula A, H 0 is the magnetic field strength (unit: A / m) when there is no plate-like sealing material. E 1 is the intensity (unit: A / m) of the magnetic field measured through the plate-shaped sealing material. A network analyzer “37247C” manufactured by Anritsu Corporation was used for the measurement of H 0 and H 1 . The larger the SM, the better the sealing material is for electromagnetic shielding.
 板状の封止材を用いた電界シールド値及び磁界シールド値の測定後、上記の方法で、板状の封止材のRSURFACEを測定して、R‐sを算出した。板状の封止材のRSURFACEは、棒状の封止材のRSURFACEと略同じであり、板状の封止材のR‐sも、棒状の封止材のR‐sと略同じであった。また板状の封止材を厚み方向に切断して、上記の方法で、板状の封止材のRINTERNALを測定して、R‐iを算出した。板状の封止材のRINTERNALは、棒状の封止材のRINTERNALと略同じであり、板状の封止材のR‐iも、棒状の封止材のR‐iと略同じであった。 After measuring the electric field shield value and the magnetic field shield value using the plate-shaped sealing material, R SURFACE of the plate-shaped sealing material was measured by the above method, and Rs was calculated. The plate-shaped sealing material R SURFACE is substantially the same as the rod-shaped sealing material R SURFACE , and the plate-shaped sealing material R-s is also substantially the same as the rod-shaped sealing material R-s. there were. Further, the plate-shaped sealing material was cut in the thickness direction, and R INTERNAL of the plate-shaped sealing material was measured by the above-described method to calculate Ri . R INTERNAL of the plate-shaped sealing material is substantially the same as R INTERNAL of the rod-shaped sealing material, and Ri of the plate-shaped sealing material is also substantially the same as Ri of the rod-shaped sealing material. there were.
(実施例2,3、比較例1~3)
 実施例2の金属粉全体の質量(100質量部)に占めるFeアモルファス合金粉の質量の割合は、60質量部であった。実施例2の金属粉全体の質量(100質量部)に占めるカルボニル鉄粉の質量の割合は、40質量部であった。
(Examples 2 and 3, Comparative Examples 1 to 3)
The ratio of the mass of the Fe amorphous alloy powder to the mass (100 parts by mass) of the entire metal powder of Example 2 was 60 parts by mass. The ratio of the mass of the carbonyl iron powder which occupies for the mass (100 mass parts) of the whole metal powder of Example 2 was 40 mass parts.
 実施例3の金属粉全体の質量(100質量部)に占めるFeアモルファス合金粉の質量の割合は、50質量部であった。実施例3の金属粉全体の質量(100質量部)に占めるカルボニル鉄粉の質量の割合は、50質量部であった。実施例3では、MMETAL/MRESINを100/5に調整した。 The ratio of the mass of the Fe amorphous alloy powder to the mass (100 parts by mass) of the entire metal powder of Example 3 was 50 parts by mass. The ratio of the mass of the carbonyl iron powder to the mass (100 parts by mass) of the entire metal powder of Example 3 was 50 parts by mass. In Example 3, it was adjusted M METAL / M RESIN to 100/5.
 比較例1では、金属粉として、Feアモルファス合金粉(9A4‐II)のみを用いた。 In Comparative Example 1, only Fe amorphous alloy powder (9A4-II) was used as the metal powder.
 比較例2では、カルボニル鉄粉として、SQ‐Iの代わりに、リン酸塩の被膜を有していないSQを用いた。比較例2の金属粉全体の質量(100質量部)に占めるFeアモルファス合金粉の質量の割合は、60質量部であった。比較例2の金属粉全体の質量(100質量部)に占めるカルボニル鉄粉の質量の割合は、40質量部であった。 In Comparative Example 2, SQ having no phosphate coating was used as carbonyl iron powder instead of SQ-I. The ratio of the mass of the Fe amorphous alloy powder to the mass (100 parts by mass) of the entire metal powder of Comparative Example 2 was 60 parts by mass. The ratio of the mass of the carbonyl iron powder which occupies for the mass (100 mass parts) of the whole metal powder of the comparative example 2 was 40 mass parts.
 比較例3では、第二加熱工程を実施しなかった。 In Comparative Example 3, the second heating step was not performed.
 上記の事項を除いて実施例1と同様の方法で、実施例2,3及び比較例1~3其々の封止材(棒状の封止材及び板状の封止材)を個別に作製した。実施例2,3及び比較例1~3其々の封止材を用いて、実施例1と同様の測定を実施した。測定結果は、下記表1に示される。 Except for the above items, the sealing materials (bar-shaped sealing material and plate-shaped sealing material) of Examples 2 and 3 and Comparative Examples 1 to 3 were individually produced in the same manner as in Example 1. did. The same measurements as in Example 1 were performed using the sealing materials of Examples 2 and 3 and Comparative Examples 1 to 3. The measurement results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明に係る封止材の内部は、電磁シールド性を有する封止材の表面によって電磁気的に遮蔽されているので、本発明に係る封止材は例えばEMIフィルタ用の封止材として利用される。 Since the inside of the sealing material according to the present invention is electromagnetically shielded by the surface of the sealing material having electromagnetic shielding properties, the sealing material according to the present invention is used as, for example, a sealing material for an EMI filter. The
 2…封止材、2s…封止材の表面、2i…封止材の内部(断面)、3,5…素子、4…金属粒子、6…樹脂組成物、7…半導体チップ、9…インターポーザー、10a,10b…電子部品、11…基板、100…電子回路基板、L‐s…封止材の表面における単位長さ、L‐i…封止材の表面の内部(断面)における単位長さ。 DESCRIPTION OF SYMBOLS 2 ... Sealing material, 2s ... Surface of sealing material, 2i ... Inside (cross section) of sealing material, 3, 5 ... Element, 4 ... Metal particle, 6 ... Resin composition, 7 ... Semiconductor chip, 9 ... Inter Poser, 10a, 10b ... electronic components, 11 ... substrate, 100 ... electronic circuit board, Ls ... unit length on the surface of the sealing material, Li ... unit length on the inside (cross section) of the surface of the sealing material Well.

Claims (16)

  1.  複数の金属粒子と樹脂組成物とを備える封止材であって、
     前記封止材の表面の少なくとも一部おける単位長さ当たりの抵抗が、0.1kΩ/mm以上20kΩ/mm以下であり、
     前記封止材の内部における単位長さ当たりの抵抗が、0.2GΩ/mm以上10TΩ/mm以下である、
    封止材。
    A sealing material comprising a plurality of metal particles and a resin composition,
    The resistance per unit length in at least a part of the surface of the sealing material is 0.1 kΩ / mm or more and 20 kΩ / mm or less,
    The resistance per unit length inside the sealing material is 0.2 GΩ / mm or more and 10 TΩ / mm or less.
    Sealing material.
  2.  前記金属粒子が、前記金属粒子に由来する金属のリン酸塩によって覆われている、
    請求項1に記載の封止材。
    The metal particles are covered with a metal phosphate derived from the metal particles,
    The sealing material according to claim 1.
  3.  前記金属粒子が鉄を含む、
    請求項1又は2に記載の封止材。
    The metal particles include iron;
    The sealing material according to claim 1 or 2.
  4.  前記樹脂組成物が熱硬化性樹脂を含む、
    請求項1~3のいずれか一項に記載の封止材。
    The resin composition includes a thermosetting resin;
    The sealing material according to any one of claims 1 to 3.
  5.  前記樹脂組成物が硬化物である、
    請求項1~4のいずれか一項に記載の封止材。
    The resin composition is a cured product;
    The sealing material according to any one of claims 1 to 4.
  6.  前記封止材における前記金属粒子の含有量が、90質量%以上100質量%未満である、
    請求項1~5のいずれか一項に記載の封止材。
    The content of the metal particles in the sealing material is 90% by mass or more and less than 100% by mass.
    The sealing material according to any one of claims 1 to 5.
  7.  前記封止材の表面において、前記金属粒子が前記樹脂組成物から突出している、
    請求項1~6のいずれか一項に記載の封止材。
    In the surface of the sealing material, the metal particles protrude from the resin composition.
    The sealing material according to any one of claims 1 to 6.
  8.  前記封止材の表面において、前記金属粒子及び前記樹脂組成物が露出している、
    請求項1~7のいずれか一項に記載の封止材。
    In the surface of the sealing material, the metal particles and the resin composition are exposed.
    The sealing material according to any one of claims 1 to 7.
  9.  請求項1~8のいずれか一項に記載の封止材と、
     前記封止材で覆われた素子と、
    を備える、
    電子部品。
    A sealing material according to any one of claims 1 to 8,
    An element covered with the sealing material;
    Comprising
    Electronic components.
  10.  基板と、
     前記基板の表面に設置された素子と、
     前記素子を覆う封止材と、
    を備え、
     前記封止材が、請求項1~8のいずれか一項に記載の封止材である、
    電子回路基板。
    A substrate,
    An element installed on the surface of the substrate;
    A sealing material covering the element;
    With
    The sealing material is the sealing material according to any one of claims 1 to 8,
    Electronic circuit board.
  11.  複数の金属粒子と樹脂組成物とを含むコンパウンドを加熱することにより、前記樹脂組成物を硬化する第一加熱工程と、
     前記第一加熱工程を経た前記コンパウンドを更に加熱することにより、前記コンパウンドの表面の少なくとも一部における単位長さ当たりの抵抗を低下させ、前記単位長さ当たりの抵抗を0.1kΩ/mm以上20kΩ/mm以下に調整する第二加熱工程と、
    を備える、
    封止材の製造方法。
    A first heating step of curing the resin composition by heating a compound containing a plurality of metal particles and a resin composition;
    By further heating the compound that has undergone the first heating step, the resistance per unit length in at least a part of the surface of the compound is reduced, and the resistance per unit length is 0.1 kΩ / mm or more and 20 kΩ. A second heating step of adjusting to / mm or less,
    Comprising
    Manufacturing method of sealing material.
  12.  前記第二加熱工程では、前記コンパウンドを140℃以上180℃以下で加熱する、
    請求項11に記載の封止材の製造方法。
    In the second heating step, the compound is heated at 140 ° C. or higher and 180 ° C. or lower.
    The manufacturing method of the sealing material of Claim 11.
  13.  前記金属粒子が、前記金属粒子に由来する金属のリン酸塩によって覆われている、
    請求項11又は12に記載の封止材の製造方法。
    The metal particles are covered with a metal phosphate derived from the metal particles,
    The manufacturing method of the sealing material of Claim 11 or 12.
  14.  前記金属粒子が鉄を含む、
    請求項11~13のいずれか一項に記載の封止材の製造方法。
    The metal particles include iron;
    The method for producing the sealing material according to any one of claims 11 to 13.
  15.  前記樹脂組成物が熱硬化性樹脂を含む、
    請求項11~14のいずれか一項に記載の封止材の製造方法。
    The resin composition includes a thermosetting resin;
    The method for producing the sealing material according to any one of claims 11 to 14.
  16.  前記コンパウンドにおける前記金属粒子の含有量が、90質量%以上100質量%未満である、
    請求項11~15のいずれか一項に記載の封止材の製造方法。
    The content of the metal particles in the compound is 90% by mass or more and less than 100% by mass,
    The method for producing a sealing material according to any one of claims 11 to 15.
PCT/JP2018/016360 2018-04-20 2018-04-20 Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material WO2019202741A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020514895A JP7070672B2 (en) 2018-04-20 2018-04-20 Manufacturing methods for encapsulants, electronic components, electronic circuit boards, and encapsulants
PCT/JP2018/016360 WO2019202741A1 (en) 2018-04-20 2018-04-20 Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016360 WO2019202741A1 (en) 2018-04-20 2018-04-20 Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material

Publications (1)

Publication Number Publication Date
WO2019202741A1 true WO2019202741A1 (en) 2019-10-24

Family

ID=68239455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016360 WO2019202741A1 (en) 2018-04-20 2018-04-20 Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material

Country Status (2)

Country Link
JP (1) JP7070672B2 (en)
WO (1) WO2019202741A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220141598A (en) * 2021-04-13 2022-10-20 한국과학기술연구원 Multilayer film for secondary battery pouch and preparation method for the same
WO2023079940A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Packing body for sealing material and packing method for sealing material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283900A (en) * 1988-05-10 1989-11-15 Murata Mfg Co Ltd Composite material for molding sheath and sheathed electronic component
JP2017188647A (en) * 2016-03-31 2017-10-12 Tdk株式会社 Electronic circuit package arranged by using composite magnetic sealing material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283900A (en) * 1988-05-10 1989-11-15 Murata Mfg Co Ltd Composite material for molding sheath and sheathed electronic component
JP2017188647A (en) * 2016-03-31 2017-10-12 Tdk株式会社 Electronic circuit package arranged by using composite magnetic sealing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220141598A (en) * 2021-04-13 2022-10-20 한국과학기술연구원 Multilayer film for secondary battery pouch and preparation method for the same
KR102643890B1 (en) * 2021-04-13 2024-03-08 한국과학기술연구원 Multilayer film for secondary battery pouch and preparation method for the same
WO2023079940A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Packing body for sealing material and packing method for sealing material

Also Published As

Publication number Publication date
JP7070672B2 (en) 2022-05-18
JPWO2019202741A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP7388502B2 (en) Metal element-containing powders and molded bodies
JP7416124B2 (en) Compounds and tablets
WO2019229960A1 (en) Composition and molded object
JP2022109291A (en) compound powder
WO2019202741A1 (en) Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material
WO2019106812A1 (en) Compound powder
TWI804603B (en) Compounds and shaped bodies
WO2021241515A1 (en) Compound, molded body and cured product
JP2021172685A (en) Compound, molding, and cured product of compound
EP3960801B1 (en) Compound, molded article, and cured product
EP3805319A1 (en) Compound, molded body and electronic component
JP7231017B2 (en) Compound manufacturing method
WO2021241521A1 (en) Compound, molded body, and cured product
JP2023049648A (en) Molded body manufacturing method and semiconductor device manufacturing method
WO2021241513A1 (en) Compound, molded object, and cured object
JP2021120432A (en) Compound, molded body and cured product of compound
JP2021165334A (en) Compound, molding, and cured product of compound
KR20230038411A (en) Compounds for bond magnets, moldings, and bond magnets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915716

Country of ref document: EP

Kind code of ref document: A1