WO2023079940A1 - Packing body for sealing material and packing method for sealing material - Google Patents

Packing body for sealing material and packing method for sealing material Download PDF

Info

Publication number
WO2023079940A1
WO2023079940A1 PCT/JP2022/038638 JP2022038638W WO2023079940A1 WO 2023079940 A1 WO2023079940 A1 WO 2023079940A1 JP 2022038638 W JP2022038638 W JP 2022038638W WO 2023079940 A1 WO2023079940 A1 WO 2023079940A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
package
mass
packaging bag
packaging
Prior art date
Application number
PCT/JP2022/038638
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 山口
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to JP2023557927A priority Critical patent/JPWO2023079940A1/ja
Priority to CN202280053106.0A priority patent/CN117715835A/en
Publication of WO2023079940A1 publication Critical patent/WO2023079940A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/04Articles or materials enclosed in two or more containers disposed one within another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to a sealing material package and a sealing material packaging method.
  • the sealing material When transporting the sealing material, for example, it is transported as a package in which a packaging bag containing the sealing material is further housed in a packaging container such as a cardboard box.
  • the encapsulant to be transported is required to maintain the state at the time of manufacture in order to exhibit its performance.
  • the product of the bulk density of the sealing material and the height of the deposit of the sealing material is set to a certain value or less, so that the caking of the sealing materials is suppressed.
  • a method is disclosed.
  • Japanese Patent Laid-Open No. 2019-151408 describes a transportation method in which a granular sealing material is stored in a packaging material and transported at a temperature of 10 ° C. or less, and the bulk density and the height of the deposit are Disclosed is a transportation method that suppresses caking of some sealing materials by setting the product to a certain value or less and setting the angle difference of the sealing materials to 10 degrees or more after being left at a specific temperature and humidity. It is
  • blocking of the sealing material particles means that the sealing material particles are agglomerated and the fluidity of the particles is lowered.
  • the sealing material particles may move inside the packing container during transportation. In the interior of the packaging container, the particles of the sealing material move frequently, and if the amount of movement is large, blocking of the particles of the sealing material due to the uneven distribution of the sealing material, damage to the packaging bag in which the sealing material is packaged, and the like may occur. can occur.
  • One aspect of the present disclosure is to provide a sealing material package and a sealing material packaging method that simultaneously suppress blocking of the sealing material particles and suppress movement of the sealing material particles during transportation. With the goal.
  • Specific means for achieving the above object include the following forms. ⁇ 1> a packaging container; a packaging bag accommodated in the packaging container; a deposit of a sealing material containing a resin and a metal powder, which is housed in the packaging bag and has an average deposition height of 75 mm or less; A package of sealing material, wherein the volume of the space in the package is 1600 cm 3 to 3400 cm 3 . ⁇ 2> The sealing material package according to ⁇ 1>, further including a desiccant contained in the packaging bag. ⁇ 3> ⁇ 1> or ⁇ 2, wherein the content of the metal powder is 95% by mass or more with respect to the entire sealing material > package of the encapsulant described in .
  • ⁇ 5> The package of the sealing material according to ⁇ 4>, wherein the two or more packages are horizontally arranged in the one package.
  • ⁇ 6> The sealing material package according to any one of ⁇ 1> to ⁇ 5>, wherein the volume of the packing container is 3500 cm 3 to 9500 cm 3 .
  • ⁇ 7> The sealing material package according to any one of ⁇ 1> to ⁇ 6>, wherein the mass of the entire package is 14 kg or less.
  • ⁇ 8> The sealing according to any one of ⁇ 1> to ⁇ 7>, wherein the packing container contains no cushioning material or contains a cushioning material with a total volume of 1200 cm 3 or less. material packaging.
  • ⁇ 9> The sealing material package according to any one of ⁇ 1> to ⁇ 8>, wherein the sealing material contains an epoxy resin and a curing agent as the resin.
  • ⁇ 10> The sealing material package according to any one of ⁇ 1> to ⁇ 9>, wherein the resin has an ICI viscosity of 0.30 Pa ⁇ s or less at 150°C.
  • ⁇ 11> The sealing material package according to any one of ⁇ 1> to ⁇ 10>, wherein the sealing material further contains a silicone compound.
  • ⁇ 12> The sealing material package according to ⁇ 11>, wherein the content of the silicone compound is 15 parts by mass or more with respect to 100 parts by mass of the total content of the resin.
  • the metal powder contains at least one metal element selected from the group consisting of iron, cobalt, and nickel.
  • ⁇ 14> housing the packaging bag within the packaging container; A sealing material containing resin and metal powder is accommodated in the packaging bag, and an average deposition height of the deposit of the sealing material is 75 mm or less; setting the volume of the space in the packaging container to 1600 cm 3 to 3400 cm 3 ;
  • a method of packaging an encapsulant comprising:
  • a sealing material package and a sealing material packaging method that achieve both suppression of blocking of sealing material particles and suppression of movement of sealing material particles during transportation. be done.
  • the term "process” includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified.
  • Particles corresponding to each component in the present disclosure may include a plurality of types.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • (meth)acryloyl means at least one of acryloyl and methacryloyl.
  • a sealing material package according to an embodiment of the present invention is a deposit of a sealing material containing a packaging container, a packaging bag housed in the packaging container, and a resin and metal powder,
  • the volume of the space in the packaging container is 1600 cm 3 to 3400 cm 3 including deposits of the sealing material contained in the packaging bag and having an average deposition height of 75 mm or less.
  • the package of the sealing material will be simply referred to as the "package”, and the deposit of the sealing material will be simply referred to as the “deposit”.
  • the thing which accommodated the sediment in the inside of a packaging bag is also called a "packaging body.”
  • the package includes at least a packaging bag and a sediment housed inside the packaging bag, and optionally other contents such as a desiccant housed inside the packaging bag. It's okay.
  • the package includes at least a packaging container, a packaging bag, and a deposit of the sealing material, and if necessary, further includes cushioning materials, desiccants, etc., contained inside the packaging container. May contain content.
  • the "space” refers to an area in which the contents do not exist among the inner areas of the packaging container.
  • the above-mentioned contents are the packaging bag, the deposit of the sealing material, and other contents accommodated as necessary.
  • the "space volume” means the total volume of the spaces at the plurality of positions.
  • the average pile height of the deposits is within the above range, and the volume of the space in the packing container is within the above range, thereby suppressing blocking of the sealing material particles and making transportation easier. It is possible to simultaneously suppress the movement of the encapsulant particles that accompanies the above. The reason is presumed as follows.
  • One cause of blocking of encapsulant particles is that the weight of the encapsulant at the top of the deposit rests on the encapsulant at the bottom of the deposit. It is believed that blocking of the sealing material particles occurs due to the sealing material particles at the bottom of the deposit sticking together due to the pressure exerted by the sealing material at the top of the deposit. In particular, in a sealing material containing metal powder, the specific gravity of the sealing material increases due to the high specific gravity of the metal powder. blocking is more likely to occur. In addition, as the average height of the deposits increases, the pressure applied to the lower portion of the deposits increases, and blocking of the particles of the encapsulant is more likely to occur. Therefore, by setting the average deposition height of the deposits to 75 mm or less, the blocking of the sealing material particles due to the pressure of the sealing material on the top of the deposits is suppressed.
  • the contents may become easier to move during transportation of the package.
  • the particles of the sealing material frequently move inside the packaging container, and if the amount of movement is large, blocking of the particles of the sealing material and damage to the packaging bag in which the sealing material is packed are caused by the unevenness of the sealing material. etc. may occur.
  • the blocking of the sealing material particles due to the unevenness of the sealing material is, for example, an area where the sealing material is uneven, the height of the deposit is partially appeared, and the sealing material in the lower part of the area is large. It is thought that this is caused by the application of pressure.
  • damage to the packaging bag for packaging the sealing material occurs due to frequent and large movement of the contents during transportation, and partial load being applied to the packaging bag.
  • the average pile height of the deposits is set to 75 mm or less, and the volume of the space in the packing container is set to 1600 cm 3 to 3400 cm 3 . Therefore, compared to the case where the volume of the space is larger than the above range, the movement of the sealing material particles due to transportation is suppressed, and compared to the case where the volume of the space is smaller than the above range, the sealing material due to the pressure is reduced. It is believed that particle blocking is suppressed. As described above, in the present embodiment, it is presumed that both suppression of blocking of the sealing material particles and suppression of movement of the sealing material particles during transportation can be achieved.
  • FIG. 1 is a schematic cross-sectional view schematically showing an example of the package of this embodiment.
  • the package shown in FIG. 1 is a package having two packages each containing a sediment and a desiccant inside a packaging bag.
  • the package 10 shown in FIG. Includes deposit 18A and desiccant 20A contained within bag 16A and deposit 18B and desiccant 20B contained within packaging bag 16B.
  • a packaging body 22A is composed of the packaging bag 16A, the sediment 18A and the desiccant 20A.
  • the packaging bag 16A is sealed while containing the sediment 18A and the desiccant 20A.
  • the packaging bag 16B, the sediment 18B and the desiccant 20B form a package 22B.
  • the packaging bag 16B is sealed while containing the sediment 18B and the desiccant 20B.
  • the packaging bag 14 is sealed with the package 22A and the package 22B accommodated therein.
  • the packaging container 12 is sealed while accommodating therein the packaging bag 14 containing the package 22A and the package 22B.
  • “sealing” refers to closing the opening so that no solid matter enters or exits. It should be noted that it is preferable that the packaging bags 16A and 16B are sealed to prevent aggressive inflow of gas and liquid.
  • the package 10 has the package 22A and the package 22B, it is not limited to this.
  • the package of the present embodiment may have two packages in one packaging container 12, may have only one package, or may have three or more packages.
  • the package 22A and the package 22B are horizontally arranged inside the package container 12, but the present invention is not limited to this.
  • the package of this embodiment has two or more packages inside one packaging container 12, the two or more packages may be arranged horizontally or vertically.
  • the average pile height of the deposits is the sum of all the deposits accommodated inside the two or more packages arranged in the vertical direction. Means the average pile height. From the viewpoint of lowering the average pile height of the pile, it is desirable to arrange two or more packages horizontally.
  • the package 22A and the package 22B are further housed inside the packaging bag 14 and then housed inside the packaging container 12, but this is not the only option, and the packaging bag 14 is used Instead, the package 22A and the package 22B may be housed inside the packing container 12 as they are.
  • the desiccant 20A is housed inside the packaging bag 16A and forms part of the package 22A.
  • the desiccant 20A may be housed inside the bag 14, and the package 10 may not contain the desiccant 20A.
  • the desiccant 20B is accommodated inside the packaging bag 16B and forms part of the package 22B, but is not limited to this.
  • the desiccant 20B may not be included in the package 10.
  • FIG. 2 is a schematic cross-sectional view schematically showing another example of the package of the present embodiment.
  • the package shown in FIG. 2 has only one package containing deposits and a desiccant inside a package bag, and has cushioning materials as other contents.
  • the package 30 shown in FIG. and a cushioning material 34 housed outside the bag 36 and inside the packaging container 32 .
  • a packaging body 42 is composed of the packaging bag 36 , the sediment 38 and the desiccant 40 .
  • the packaging bag 36 is sealed with the sediment 38 and the desiccant 40 contained therein.
  • the package 30 has only one package 42 .
  • the package of this embodiment is not limited to this, and one package 32 may have two or more packages.
  • the package 42 is housed inside the packaging container 32 as it is.
  • the package 42 is not limited to this. may be accommodated.
  • multiple packaging bags may be used.
  • the desiccant 40 is housed inside the packaging bag 36 and forms part of the package 42 . It doesn't have to be.
  • the desiccant 40 may be accommodated outside the packaging bag 36 and inside another packaging bag.
  • the package 30 has two cushioning materials 34 .
  • the package of the present embodiment is not limited to this. It does not have to contain materials.
  • the cushioning material 34 may be accommodated inside the packaging bag 36, outside the packaging bag 36 and inside another packaging bag, or outside the other packaging bag. may be accommodated in
  • the mass of the entire package in the package of the present embodiment is not particularly limited, and from the viewpoint of ease of transportation, it is preferably 14 kg or less, more preferably 12 kg or less, and 11 kg or less. is more preferred.
  • the mass of the entire package may be 8 kg or more, or may be 9 kg or more.
  • the packing container is not particularly limited as long as it can house the package inside and be sealed. From the viewpoint of ease of transportation, the packaging container preferably stands on its own and maintains its shape, and more preferably can be loaded with another packaging container on top of the packaging container.
  • Examples of packing containers include box-shaped containers such as cardboard boxes and can-shaped containers such as metal cans.
  • corrugated cardboard refers to a corrugated core with a flat surface adhered to it.
  • the cardboard box may be made of paper or may be made of resin.
  • the packaging container is preferably a corrugated cardboard box, and more preferably a corrugated cardboard box made of paper.
  • the volume of the entire packing container may be 3,500 cm 3 to 21,000 cm 3 , may be 3,500 cm 3 to 18,000 cm 3 , and may be 3,500 cm 3 to 9,500 cm 3 from the viewpoint of ease of transportation and prevention of blocking, It may be 4000 cm 3 to 7000 cm 3 or 4500 cm 3 to 5500 cm 3 .
  • the height inside the packaging container may be 8 cm to 35 cm, and may be 8 cm to 28 cm, or 9 cm to 20 cm, from the viewpoint of suppressing movement of the sealing material during transportation and blocking. It may be 10 cm to 13 cm.
  • the packaging container is preferably hermetically sealed from the viewpoint of ease of transportation.
  • a method for sealing the packaging container is not particularly limited, and a general method according to the type of the packaging container is used.
  • the packaging bag is not particularly limited as long as it can contain the sediment inside and be sealed. From the viewpoint of easiness of accommodation in the packaging container, it is preferable that the packaging bag can change its shape and follow the shape of the inside of the packaging container and the shape of other contents.
  • the packaging bag include resin bags and paper bags, and resin bags are preferable from the viewpoint of reducing the intrusion of moisture.
  • resin bags include polyethylene bags.
  • the packaging bag may have a multi-layered structure. That is, the packaging bag containing the sediment, that is, the package may be accommodated inside another packaging bag. Moreover, like the package 10 shown in FIG. 1, a plurality of packages may be accommodated inside one other packaging bag.
  • the package of the present embodiment may be one in which two or more packaging bags for accommodating deposits are housed in one packaging container. Moreover, when the package contains a desiccant, the package and the desiccant may be accommodated inside one other packaging bag.
  • the packaging bag is preferably sealed from the viewpoint of suppressing blocking of the sealing material particles due to moisture absorption.
  • the method of sealing the packaging bag is not particularly limited. A method of fusing and closing with is exemplified, and these methods may be combined.
  • a deposit of encapsulant is a deposit of encapsulant that is to be transported.
  • the encapsulant forming the encapsulant deposit include granular encapsulants such as granules and powdery encapsulants such as powder.
  • the encapsulant is preferably solid at 25° C. and atmospheric pressure.
  • the mass average particle diameter of the sealing material particles is not particularly limited, and may be, for example, a range of 150 ⁇ m or more, may be 300 ⁇ m or more and less than 2000 ⁇ m, or may be 300 ⁇ m or more and less than 1000 ⁇ m.
  • the mass average particle diameter of the sealing material particles is measured by using a JIS standard sieve (5 stages) equipped with a low-tap sieve shaker, and classifying a 500 g sample through the sieve while vibrating these sieves for 10 minutes. and measure.
  • the mesh size of the sieve is gradually reduced in the order of 2000 ⁇ m, 1000 ⁇ m, 500 ⁇ m, 300 ⁇ m, and 150 ⁇ m from the top, and the tray is placed at the bottom.
  • a sample on a sieve with an opening of 1000 ⁇ m has a particle size of 1000 ⁇ m or more and less than 2000 ⁇ m.
  • the mass of the sample on each sieve is determined, and the particle size range in which the ratio of the mass on each sieve to the mass of the entire sample reaches 50% cumulatively from the small diameter side is defined as the mass average particle size of the sealing material particles.
  • the sum of the mass of the sample on the pan and the mass of the sample on the 150 ⁇ m sieve is less than 50% by mass of the entire sample, and the mass of the sample on the pan and the 150 ⁇ m sieve
  • the mass average particle size of the sealing material particles is defined as “300 ⁇ m or more and less than 500 ⁇ m”. do.
  • the bulk density of the encapsulant is not particularly limited, and may be, for example, a range of 2.0 g /cm 3 to 7.0 g/cm 3 , and a range of 2.5 g/cm 3 to 6.0 g/cm 3 . range, and may be in the range of 3.0 g/cm 3 to 5.0 g/cm 3 .
  • the bulk density of the encapsulant is obtained, for example, by placing the encapsulant in a graduated cylinder, measuring the volume, measuring the mass of the encapsulant in the amount put in the graduated cylinder, and determining the volume and mass values.
  • the average deposition height of the deposits is 75 mm or less, and may be 70 mm or less, 65 mm or less, or 60 mm or less from the viewpoint of suppressing blocking of the sealing material particles. Also, the average deposition height of the deposits may be 35 mm or more, 40 mm or more, or 45 mm or more.
  • the average height of the deposit is the average value of the values obtained by measuring the height of the deposit at three points using a measuring instrument such as a vernier caliper and a ruler. The details of the sealing material forming the deposit will be described later.
  • the mass of the deposit contained in one packaging bag is preferably 3 kg to 13 kg, more preferably 3.5 kg to 10 kg, from the viewpoint of ease of transportation of the sealing material and prevention of blocking of the sealing material particles. is more preferred, and 4 kg to 6 kg is even more preferred.
  • the desiccant is used as necessary, and is not particularly limited as long as it irreversibly adsorbs moisture. From the viewpoint of suppressing blocking of the sealing material particles due to moisture absorption of the sealing material, the package preferably contains a desiccant.
  • Moisture-absorbing components contained in the desiccant include, for example, physical moisture-absorbing components such as silica gel, aluminum oxide, molecular sieves, allophane, zeolite, and clay; chemical moisture-absorbing components such as quicklime and calcium chloride;
  • the hygroscopic component contained in the desiccant is preferably a physical hygroscopic component, more preferably a hygroscopic component containing an alkaline earth metal compound, and still more preferably clay.
  • the desiccant may be a desiccant in which the moisture absorbing component is wrapped in a packaging material such as a porous resin film or non-woven fabric, or may be a sheet-like desiccant in which the moisture absorbing component is supported on a sheet-like base material. .
  • the amount of desiccant contained in one package is not particularly limited, and is appropriately set according to the moisture absorption rate of the hygroscopic component contained in the desiccant, the amount of sealing material contained in the package, and the like. .
  • the mass of the hygroscopic component in the desiccant contained in one package is, for example, 50 g to 600 g, may be 50 g to 200 g, or may be 50 g to 100 g.
  • the cushioning material is used as necessary to suppress movement of contents during transportation.
  • the cushioning material is not particularly limited as long as it can adjust the volume of the space inside the packaging container.
  • Examples of the cushioning material include a foamed resin cushioning material such as foamed polyurethane and a resin bubble cushioning material such as an air cap.
  • the total volume of the cushioning materials housed in one package is not particularly limited, and may be 15000 cm 3 or less, or 11000 cm 3 or less. From the viewpoint of cost reduction and prevention of blocking of the sealing material particles, it is preferable that the packing container contains no cushioning material or a cushioning material with a total volume of 1800 cm 3 or less. When the packing container contains cushioning materials, the total volume of the cushioning materials may be 1200 cm 3 or less, or 700 cm 3 or less.
  • the volume of space in the packing container is 1600 cm 3 to 3400 cm 3 .
  • the volume of the space in the packing container is preferably 1600 cm 3 or more, more preferably 1800 cm 3 or more, and even more preferably 2000 cm 3 or more, from the viewpoint of suppressing blocking of the sealing material particles.
  • the volume of the space in the packaging container is preferably 3,400 cm 3 or less, more preferably 3,200 cm 3 or less, and more preferably 3,000 cm 3 or less, from the viewpoint of suppressing movement of the sealing material particles during transportation. More preferred.
  • the volume of the space in the packing container is preferably 1,600 cm 3 to 3,400 cm 3 and preferably 1,800 cm 3 to 1,800 cm 3 from the viewpoint of simultaneously suppressing blocking of the sealing material particles and suppressing movement of the sealing material particles during transportation. It is more preferably 3200 cm 3 and even more preferably 2000 cm 3 to 3000 cm 3 .
  • the volume of the space inside the packaging container is obtained by subtracting the volume of the contents from the volume of the entire packaging container. Specifically, for example, first, the volume of the entire packaging container, the volume of the packaging bag, the volume of the sediment, and the volume of other contents used as necessary are obtained, and from the volume of the entire packaging container, each content Subtract the volume of to find the volume of the space.
  • the volume of the entire packaging container may be theoretically calculated from the inner dimensions of the packaging container, or may be obtained by a liquid filling method or a gas filling method.
  • the inside of the packaging container may be processed so that the liquid or gas does not permeate the packaging container before the measurement.
  • the volume of the packaging bag if a knot is formed at the opening of the packaging bag, the volume of the knotted region and the volume of the other regions may be determined separately.
  • the volume of each region may be theoretically calculated after measuring, or may be measured using liquid or gas.
  • the volume of the deposit may be calculated from the values obtained by measuring the mass of the deposit and the bulk density of the sealing material, or it may be calculated theoretically after measuring the dimensions of the entire deposit. good too.
  • the bulk density of the encapsulating material may be obtained, for example, from the volume and mass of a part of the encapsulating material put in a graduated cylinder.
  • the volumes of other contents such as desiccants and buffer materials used as necessary are also determined by a method of measuring and calculating theoretically, a method of measuring using liquid or gas, and the like.
  • the volume of the space may be measured directly.
  • the value may be corrected in consideration of the surface tension of the liquid.
  • the volume of the space within the packaging container may be adjusted by changing at least one of the height and bottom area of the packaging container, and may be adjusted by changing the volume of the cushioning material, or both may be changed. can be adjusted with .
  • a method for packing a sealing material according to the present embodiment comprises housing a packaging bag in a packaging container, housing a sealing material containing resin and metal powder in the packaging bag, and storing the sealing material making the average pile height of the piles 75 mm or less, and making the volume of the space in the packing container 1600 cm 3 to 3400 cm 3 .
  • the sealing material package according to the above-described embodiment is manufactured by the sealing material packaging method described above. That is, a method for manufacturing a package of encapsulant includes the steps of accommodating a packaging bag in a packaging container, accommodating a encapsulant containing resin and metal powder in the packaging bag, and and a step of setting the volume of the space in the packing container within the above range, and other steps may be included as necessary. Other steps include a step of accommodating a desiccant in the packaging bag, a step of accommodating a cushioning material in the packaging container, a step of sealing the packaging bag, a step of sealing the packaging container, and the like. .
  • the order of the step of accommodating the packaging bag in the packaging container and the step of accommodating the sealing material in the packaging bag is not particularly limited.
  • the sealing material may be accommodated in the packaging bag after the packaging bag is accommodated in the packaging container, or the packaging body may be accommodated in the packaging container after the sealing material is accommodated in the packaging bag to form a package. good.
  • the step of accommodating the other contents in the packaging container i.e., the step of accommodating the desiccant in the packaging bag and the buffering in the packaging container. It may further include a step of containing the material, and the like.
  • the step of accommodating other contents in the packaging container may be performed before or after accommodating the packaging bag or package in the packaging container.
  • the step of setting the volume of the space in the packing container within the above range may be performed together with other steps. Specifically, for example, in the step of accommodating the sealing material in the packaging bag, the volume of the space in the packaging container may be set within the above range by adjusting the amount of the sealing material contained. Further, for example, in the step of accommodating other contents in the packaging container, the volume of the space in the packaging container may be set within the above range by adjusting the volume of the other contents such as desiccant and cushioning material.
  • the details of the sealing material that constitutes the deposit will be described below.
  • the sealing material contains at least resin and metal powder, and may contain other components as necessary.
  • the metal powder contained in the sealing material examples include particles containing at least one selected from the group consisting of simple metals, alloys, and metal compounds.
  • the alloy may contain at least one selected from the group consisting of solid solution, eutectic and intermetallic compounds.
  • the alloy may be, for example, stainless steel (Fe--Cr alloy, Fe--Ni--Cr alloy, etc.).
  • the metal compound may be, for example, an oxide such as ferrite.
  • the metal powder may contain one type of metal element or multiple types of metal elements. Examples of metal elements contained in the metal powder include base metal elements, noble metal elements, transition metal elements and rare earth elements.
  • the sealing material may contain one type of metal powder, or may contain a plurality of types of metal powder.
  • the specific gravity (density) of the metal powder may be, for example, 5 g/cm 3 or more, and may be 6 g/cm 3 or more, or 6.5 g/cm 3 or more.
  • metal elements contained in the metal powder include iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al ), tin (Sn), chromium (Cr), niobium (Nb), barium (Ba), strontium (Sr), lead (Pb), silver (Ag), praseodymium (Pr), neodymium (Nd), samarium (Sm ), and at least one selected from the group consisting of dysprosium (Dy).
  • the metal powder may contain elements other than metal elements.
  • the metal powder is, for example, carbon (C), oxygen (O), beryllium (Be), phosphorus (P), sulfur (S), boron (B), and at least one selected from the group consisting of silicon (Si). may contain.
  • the metal powder may be a soft magnetic alloy or a ferromagnetic alloy.
  • Metal powders are, for example, Fe—Si alloys, Fe—Si—Al alloys (sendust), Fe—Ni alloys (permalloy), Fe—Cu—Ni alloys (permalloy), Fe—Co alloys (permalloy). Mendur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), Al-Ni-Co alloy (alnico magnet) and at least one selected from the group consisting of ferrite.
  • Ferrites include, for example, spinel ferrite, hexagonal ferrite, and garnet ferrite.
  • the metal powder may be Fe alone.
  • the metal powder may be an alloy containing iron (Fe-based alloy).
  • the Fe-based alloy may be, for example, a Fe--Si--Cr-based alloy or a Nd--Fe--B based alloy.
  • the metal powder may be at least one of amorphous iron powder and carbonyl iron powder.
  • the metal powder may be Fe amorphous alloy.
  • the sealing material preferably contains magnetic powder, and more preferably contains soft magnetic powder.
  • the sealing material may contain both magnetic powder and non-magnetic metal powder such as alumina.
  • the sealing material preferably contains metal powder containing at least one metal element selected from the group consisting of iron, cobalt, and nickel, and more preferably contains iron-containing metal powder.
  • the content of iron in the metal powder containing iron is, for example, 80% by mass or more, may be 83% by mass to 99% by mass, and may be 85% by mass to 95% by mass. There may be.
  • the content of the metal powder may be 60% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more with respect to the entire sealing material. There may be.
  • a sealing material containing 95% by mass or more of metal powder is used, it is possible to achieve both suppression of blocking of sealing material particles and suppression of movement of sealing material particles during transportation. .
  • the sealing material containing a large amount of high-density metal powder has a high density, the pressure of the sealing material in the upper part of the deposit is large, and blocking of the sealing material particles in the lower part of the deposit is more likely to occur. Become.
  • the content of the metal powder may be 99% by mass or less, 98% by mass or less, or 97% by mass or less with respect to the entire sealing material.
  • the volume average particle size of the metal powder is not particularly limited, and may be, for example, 1 ⁇ m to 300 ⁇ m, 3 ⁇ m to 100 ⁇ m, or 4 ⁇ m to 50 ⁇ m.
  • the volume average particle size is determined as the particle size (50% D) at which the accumulation from the small particle size side is 50% in the volume-accumulated particle size distribution curve measured by the laser diffraction scattering particle size distribution measurement method.
  • it can be measured using a particle size distribution analyzer (for example, Shimadzu Corporation, "SALD-3000") using a laser light scattering method.
  • the shape of the individual particles that make up the metal powder is not limited, and may be, for example, spherical, flat, prismatic, or needle-like.
  • the sealing material may contain a plurality of types of metal powders with different volume average particle diameters.
  • the resin contained in the sealing material examples include curable resins.
  • the curable resin may be either a thermosetting resin or a photocurable resin, and is preferably a thermosetting resin from the viewpoint of mass productivity.
  • Thermosetting resins include epoxy resins, phenolic resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, urethane resins, polyimide resins such as bismaleimide resins, polyamide resins, polyamideimide resins, silicone resins, and acrylic resins. etc.
  • thermosetting resin is preferably at least one selected from the group consisting of epoxy resins and polyimide resins, and at least one selected from the group consisting of epoxy resins and bismaleimide resins.
  • One type is more preferable, and an epoxy resin is even more preferable.
  • the encapsulant may contain only one type of resin, or may contain two or more types.
  • the resin contained in the sealing material may have an ICI viscosity at 150° C. of 0.30 Pa ⁇ s or less, 0.16 Pa ⁇ s or less, or 0.14 Pa ⁇ s or less. Well, it may be 0.12 Pa ⁇ s or less.
  • a sealing material containing a resin having an ICI viscosity of 0.30 Pa s or less at 150° C. even when a sealing material containing a resin having an ICI viscosity of 0.30 Pa s or less at 150° C. is used, blocking of the sealing material particles and movement of the sealing material particles during transportation are suppressed. It is possible to be compatible with A sealing material containing a resin having a low ICI viscosity at 150° C. is likely to soften, and the softening tends to increase the adhesiveness, so blocking of the sealing material particles is more likely to occur.
  • the ICI viscosity of the resin at 150° C. may be 1.0 mPa ⁇ s or more.
  • ICI viscosity means a value measured with an ICI cone-plate rotational viscometer.
  • ICI viscosity can be measured as follows. In an ICI viscometer (for example, a cone plate viscometer (model: CV-1S, cone: 10 poise) manufactured by Toa Kogyo Co., Ltd.), a measurement sample is placed on a hot plate set to 150 ° C., and used for viscosity measurement. Lower the cone and sandwich the measurement sample between the heating plate and the cone. Then, the viscous resistance when the cone is rotated at 750 revolutions per minute (rpm) is measured, and this is taken as the ICI viscosity. Details of the ICI viscometer are described in, for example, ASTM D4287 (2019). When the encapsulant contains a plurality of types of resins, "the ICI viscosity of the resin at 150°C” represents the ICI viscosity of a mixture of the plurality of types of resins at 150°C.
  • the resin contained in the encapsulant contains an epoxy resin
  • the total content of the epoxy resin and the curing agent with respect to the entire resin may be 70% by mass or more, or 90% by mass or more. may be 95% by mass or more.
  • a encapsulant containing an epoxy resin and a curing agent will be described below.
  • epoxy resin The type of epoxy resin is not particularly limited as long as it has an epoxy group in its molecule.
  • the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • a novolac type epoxy resin (phenol novolac type epoxy resin, ortho-cresol novolac type epoxy resin, etc.); triphenylmethane type phenolic resin obtained by condensation or co-condensation of the above phenolic compound and an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde in the presence of an acidic catalyst.
  • Diphenylmethane-type epoxy resin that is a diglycidyl ether of bisphenol A, bisphenol F, etc. Biphenyl-type epoxy resin that is a diglycidyl ether of alkyl-substituted or unsubstituted biphenol; Stilbene-type epoxy that is a diglycidyl ether of a stilbene-based phenol compound Resin; Sulfur atom-containing epoxy resin that is diglycidyl ether such as bisphenol S; Epoxy resin that is glycidyl ether of alcohol such as butanediol, polyethylene glycol, polypropylene glycol
  • glycidyl groups dicyclopentadiene and phenol Dicyclopentadiene type epoxy resin obtained by epoxidizing the cocondensation resin of the compound; Vinylcyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane obtained by epoxidizing the olefin bond in the molecule Carboxylates, alicyclic epoxy resins such as 2-(3,4-epoxy)cyclohexyl-5,5-spiro(3,4-epoxy)cyclohexane-m-dioxane; paraxylylene-modified glycidyl ethers of paraxylylene-modified phenolic resins Epoxy resin; metaxylylene-modified epoxy resin that is glycidyl ether of metaxylylene-modified phenol resin; terpene-modified epoxy resin that is glycidyl ether of
  • the epoxy equivalent (molecular weight/number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, the epoxy equivalent of the epoxy resin is preferably 100 g/eq to 1000 g/eq, more preferably 150 g/eq to 500 g/eq. is more preferable. Let the epoxy equivalent of an epoxy resin be the value measured by the method according to JISK7236:2009.
  • the softening point or melting point of the epoxy resin is not particularly limited.
  • the softening point or melting point of the epoxy resin is preferably 40° C. to 180° C. from the viewpoint of moldability and reflow resistance, and 50° C. to 130° C. from the viewpoint of handleability during preparation of the encapsulant. It is more preferable to have
  • the melting point or softening point of the epoxy resin is a value measured by differential scanning calorimetry (DSC) or a method (ring and ball method) according to JIS K 7234:1986.
  • the mass ratio of the epoxy resin to the total amount of the encapsulant is 0.5% by mass to 30% by mass from the viewpoint of strength, fluidity, heat resistance, moldability, and the like. preferably 2% by mass to 20% by mass, and even more preferably 3.5% by mass to 13% by mass.
  • -Curing agent- Curing agents include phenol curing agents, active ester curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like.
  • phenol curing agents include polyhydric phenol compounds such as resorcinol, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol , At least one phenolic compound selected from the group consisting of phenol compounds such as aminophenol and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde, are acidified.
  • polyhydric phenol compounds such as resorcinol, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol
  • Novolak-type phenolic resins obtained by condensation or co-condensation in the presence of a catalyst; aralkyl-type resins such as phenol aralkyl resins and naphthol aralkyl resins synthesized from the above phenolic compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc.
  • Phenolic resin para-xylylene-modified phenolic resin, meta-xylylene-modified phenolic resin; melamine-modified phenolic resin; terpene-modified phenolic resin; Pentadiene-type naphthol resin; cyclopentadiene-modified phenol resin; polycyclic aromatic ring-modified phenol resin; biphenyl-type phenol resin; triphenylmethane-type phenolic resins obtained by condensation; phenolic resins obtained by copolymerizing two or more of these.
  • These phenol curing agents may be used singly or in combination of two or more.
  • the active ester curing agent has one or more ester groups in one molecule that react with epoxy groups, It is a curing agent that has the effect of curing epoxy resin.
  • active ester curing agents include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esters of heterocyclic hydroxy compounds.
  • Specific examples of active ester curing agents include ester compounds obtained from at least one of aliphatic carboxylic acids and aromatic carboxylic acids and at least one of aliphatic hydroxy compounds and aromatic hydroxy compounds.
  • the active ester curing agent is an aromatic carboxylic acid component in which 2 to 4 hydrogen atoms on the aromatic ring are substituted with carboxy groups, such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenylether, and diphenylsulfonic acid.
  • carboxy groups such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenylether, and diphenylsulfonic acid.
  • aromatic ester obtained by a condensation reaction between a group carboxylic acid and a phenolic hydroxyl group is preferred. That is, aromatic esters having structural units derived from the aromatic carboxylic acid component, structural units derived from the monohydric phenol, and structural units derived from the polyhydric phenol are preferred.
  • the functional group equivalent weight of the curing agent (hydroxyl group equivalent weight in the case of a phenol curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, the functional group equivalent weight of the curing agent is preferably 70 g/eq to 1000 g/eq, more preferably 80 g/eq to 500 g/eq. is more preferable.
  • the functional group equivalent of other curing agents (hydroxyl group equivalent in the case of phenol curing agents) is JIS K 0070:1992.
  • the softening point or melting point of the curing agent is not particularly limited.
  • the softening point or melting point of the curing agent is preferably 40° C. to 180° C. from the viewpoint of moldability and reflow resistance, and from the viewpoint of handleability during production of the encapsulant, 50° C. to 130° C. is more preferable.
  • the melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
  • the equivalent ratio of the epoxy resin and the curing agent (all curing agents when multiple curing agents are used), that is, the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (number of functional groups in the curing agent / epoxy
  • the number of functional groups in the resin is not particularly limited. From the viewpoint of suppressing the unreacted amount of each, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
  • the encapsulant may contain a curing accelerator as necessary.
  • the type of curing accelerator is not particularly limited, and can be selected according to the type of resin, desired properties of the encapsulant, and the like.
  • Curing accelerators used in sealing materials containing epoxy resins and curing agents as resins include N,N′′-(4-methyl-1,3-phenylene)bis[N′,N′-dimethylurea], N′ -[3-[[[[(dimethylamino)carbonyl]amino]methyl]-3,5,5-trimethylcyclohexyl]-N,N-dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethyl aromatic ureas such as urea, 3-(4-chlorophenyl)-1,1-dimethylurea, phenyldimethylurea, toluenebisdimethylurea; 1,5-diazabicyclo[4.3.0]non
  • Tetrasubstituted phosphonium compounds such as tetrasubstituted phosphoniums, tetraphenylborate salts of tetrasubstituted phosphoniums such as tetraphenylphosphonium tetra-p-tolylborate, salts of tetrasubstituted phosphoniums and phenolic compounds; tetraalkylphosphoniums and aromatic carboxylic acids salts with partial hydrolysates of anhydrides; phosphobetaine compounds; adducts of phosphonium compounds and silane compounds;
  • a hardening accelerator may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the amount thereof is preferably 0.1 to 30 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the resin component. preferable.
  • the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency for satisfactory curing in a short period of time.
  • the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing speed is not too fast and a good molded article tends to be obtained.
  • the “amount of resin component” means the total amount of the epoxy resin and the curing agent when the resin contained in the sealing material contains the epoxy resin and the curing agent.
  • the encapsulant may optionally contain a stress-relieving agent.
  • a stress relaxation agent By containing the stress relaxation agent, it is possible to further reduce the warpage deformation of the package and the occurrence of package cracks.
  • the stress relaxation agent include commonly used known stress relaxation agents (flexible agents).
  • a stress relaxation agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • a silicone compound is preferable from the viewpoint of improving the adhesiveness of the encapsulant.
  • a silicone compound is a polymer compound having a siloxane bond to which an organic group is bonded as a main skeleton, and a general organic polysiloxane compound can be used without particular limitation.
  • silicone compounds include dimethylpolysiloxane, methylhydrogenpolysiloxane, hydrogenmethylpolysiloxane at both ends, caprolactone-modified dimethylpolysiloxane at both ends, methylphenylpolysiloxane, alkyl-modified polysiloxane, amino-modified polysiloxane, carboxyl Modified polysiloxane, epoxy-modified polysiloxane, epoxy-polyether-modified polysiloxane, alcohol-modified polysiloxane, polyether-modified polysiloxane, higher fatty acid-modified polysiloxane, vinyl group-containing polysiloxane, alkyl-polyether-modified polysiloxane, alkyl-polyether-modified polysiloxane, Aralkyl-polyether-modified polysiloxane, fluorine-modified polysiloxane, mercapto-mod
  • a silicone compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the silicone compound one commercially available as an industrial product or reagent may be used, or one synthesized by a known method may be used.
  • the molecular weight of the silicone compound is not particularly limited and can be selected depending on the application.
  • the content of the silicone compound may be 10 parts by mass or more, 15 parts by mass or more, or 17 parts by mass or more with respect to 100 parts by mass of the total resin content.
  • a sealing material having a silicone compound content of 15 parts by mass or more is used, it is possible to suppress blocking of the sealing material particles and suppress movement of the sealing material particles during transportation. becomes.
  • a sealing material containing a large amount of a silicone compound has increased adhesiveness and tackiness at room temperature due to an increase in the proportion of the low-melting point component, so blocking of the sealing material particles is more likely to occur.
  • the content of the silicone compound may be 30 parts by mass or less, 27 parts by mass or less, or 21 parts by mass or less with respect to 100 parts by mass of the total resin content.
  • the sealing material contains a stress relaxation agent
  • the amount thereof is preferably 1 part by mass to 30 parts by mass, more preferably 2 parts by mass to 20 parts by mass, with respect to 100 parts by mass of the resin component. more preferred.
  • the encapsulant may contain a coupling agent.
  • the type of coupling agent is not particularly limited, and known coupling agents can be used. Examples of coupling agents include silane coupling agents and titanium coupling agents.
  • a coupling agent may be used individually by 1 type, or may use 2 or more types together.
  • Silane coupling agents include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane, ⁇ -(3,4- epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -[bis( ⁇ -hydroxyethyl)] aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, ⁇ -( ⁇ -aminoethyl)aminopropyldimethoxymethylsilane, N-
  • Titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2, 2-diallyloxymethyl-1-butyl)bis(ditridecylphosphite)titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctanoyltitanate, isopropyldimethacrylisostearoyltitanate , isopropyltridodecylbenzenesulfonyltitanate, isopropylisostearoyldiacryl
  • the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass of the metal powder, and 0.08 parts by mass to 2.5 parts by mass. Parts by mass are more preferred.
  • the encapsulant may contain a mold release agent from the viewpoint of obtaining good releasability from the mold during molding.
  • the release agent is not particularly limited, and conventionally known agents can be used. Specific examples include carnauba wax, higher fatty acids such as montanic acid, lauric acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. .
  • the release agent may be used alone or in combination of two or more. When the encapsulant contains a release agent, the amount thereof is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, per 100 parts by mass of the resin component.
  • the encapsulant may contain an ion exchanger.
  • the ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
  • the ion exchangers may be used singly or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.
  • the sealing material contains an ion exchanger
  • its content is not particularly limited as long as it is sufficient to capture ions such as halogen ions.
  • the content of the ion exchanger is preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass, per 100 parts by mass of the resin component.
  • the encapsulant may contain a flame retardant.
  • the flame retardant is not particularly limited, and conventionally known ones can be used. Specific examples include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, and metal hydroxides.
  • a flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the encapsulant contains a flame retardant, its amount is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect.
  • the amount of the flame retardant is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, with respect to 100 parts by mass of the resin component.
  • the encapsulant may contain a colorant.
  • the coloring agent include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron oxide.
  • the content of the coloring agent can be appropriately selected according to the purpose and the like.
  • a coloring agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the encapsulant may optionally contain other fillers.
  • Other fillers include silica and the like.
  • a method for preparing the encapsulant is not particularly limited.
  • a general method there can be mentioned a method of thoroughly mixing components in predetermined amounts with a mixer or the like, melt-kneading the mixture with a mixing roll, an extruder or the like, cooling, and pulverizing. More specifically, for example, predetermined amounts of the above components are stirred and mixed, kneaded with a kneader, rolls, extruder, etc. preheated to 70° C. to 140° C., cooled, and pulverized. be able to.
  • a sealing material A was prepared by mixing the components shown below in the proportions (parts by mass) shown below.
  • the resulting encapsulating material A was a powdery encapsulating material that was solid at 25° C. and atmospheric pressure and had a bulk density of 4.07 g/cm 3 and a mass average particle size of 300 ⁇ m or more and less than 500 ⁇ m.
  • the ICI viscosity of the entire resin at 150° C. was 0.11 Pa ⁇ s.
  • the content rate of the metal powder with respect to the whole sealing material A was 96.4% by mass.
  • Epoxy resin 1 (biphenylene aralkyl type epoxy resin, epoxy equivalent 275 g / eq, softening point 58 ° C., Nippon Kayaku Co., Ltd.): 50 parts by mass ⁇ Epoxy resin 2 (trifunctional epoxy resin, epoxy equivalent 210 g / eq, softening point 60 ° C., Printec Co., Ltd.): 50 parts by mass Curing agent 1 (triphenylmethane type phenolic resin, Air Water Co., Ltd., hydroxyl equivalent 101 g / eq, softening point 78 ° C.): 26 parts by mass Curing agent 2 ( Biphenylene aralkyl type phenol resin, hydroxyl equivalent 203 g / eq, softening point 67 ° C., Meiwa Kasei Co., Ltd.): 42 parts by mass
  • Curing accelerator aromatic urea, San-Apro Co., Ltd.: 6.0 parts by mass Silane compound 1 (methacryloxyoctyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.): 3.0 parts by mass Silane compound 2 (3- Mercaptopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.): 2.0 parts by mass Release agent 1 (zinc laurate, NOF Corporation): 4.0 parts by mass Release agent 2 (partially saponified montanic acid Ester, Clariant Chemicals Co., Ltd.): 2.0 parts by mass Silicone compound 1 (polycaprolactone-modified dimethyl silicone, Gelest): 30 parts by mass
  • ⁇ Metal powder 1 Fe amorphous alloy, volume average particle size: 24 ⁇ m, true specific gravity: 6.7 g/cm 3 , iron content: 93% by mass, Epson Atmix Co., Ltd.
  • ⁇ Metal powder 2 Fe amorphous alloy, volume average particle size: 5.3 ⁇ m, true specific gravity: 6.9 g/cm 3 , iron content: 87% by mass, Epson Atmix Co., Ltd.): 1037 parts by mass
  • a sealing material B was obtained in the same manner as the sealing material A, except that the mixing ratio of the metal powder 1 was changed to 5706 parts by mass and the mixing ratio of the metal powder 2 was changed to 1252 parts by mass.
  • the resulting encapsulating material B was a powdery encapsulating material that was solid at 25° C. and atmospheric pressure and had a bulk density of 4.58 g/cm 3 and a mass average particle size of 300 ⁇ m or more and less than 500 ⁇ m. Also, the content of the metal powder with respect to the entire sealing material B was 97.0% by mass.
  • a sealing material C was obtained in the same manner as the sealing material A, except that the mixing ratio of the metal powder 1 was changed to 3745 parts by mass and the mixing ratio of the metal powder 2 was changed to 822 parts by mass.
  • the resulting encapsulating material C was a powdery encapsulating material that was solid at 25° C. and atmospheric pressure and had a bulk density of 3.31 g/cm 3 and a mass average particle diameter of 300 ⁇ m or more and less than 500 ⁇ m. Also, the content of the metal powder with respect to the entire sealing material C was 95.5% by mass.
  • ⁇ Packing container> A packing container shown below was prepared.
  • ⁇ Packing container 1 Cardboard box, made of paper, internal dimensions (width 232 mm, length 183 mm, height 128 mm), total volume (calculated from internal dimensions): 5434 cm 3 , thickness 5 mm, Showa Denko Materials Techno Service Co., Ltd.
  • ⁇ Packing container 2 Cardboard box, made of paper, inner dimensions (width 254 mm, length 254 mm, height 268 mm), total volume (calculated from inner dimensions): 17290 cm 3 , thickness 5 mm, Showa Denko Materials Techno Service Co., Ltd.
  • Packing container 3 bead can, made of metal (TFS-ET), inner dimensions (width 240 mm, length 240 mm, height 349 mm), total volume (calculated from inner dimensions): 20102 cm 3 , thickness 0.32 mm, large Made by Nisseikan Co., Ltd., product number “Bead can”, mass 1.09 kg
  • cushioning material resin bubble cushioning material, manufactured by Izumi Co., product name “AC-230” ”, volume 900 cm 3 /unit to 1800 cm 3 /unit, mass 0.03 kg/unit
  • Example 1 Two packages were prepared by putting 5 kg of the sealing material A and one desiccant in one packaging bag, and sealing the opening of the packaging bag with a rubber band. On the other hand, a third packaging bag is put in the packing container 1, two packages are put in parallel in the third packaging bag in the horizontal direction, and the opening of the third packaging bag is tied and fastened with a rubber band. By sealing and sealing the packaging container, a package 1 having the form shown in FIG. 1 was obtained.
  • Example 2> A package 2 was obtained in the same manner as in Example 1, except that the mass of the sealing material A put into one packaging bag was changed to 4 kg.
  • Example 3> A package 3 was obtained in the same manner as in Example 1, except that the two desiccants were accommodated outside the package and inside the third packaging bag.
  • Example 4> A package 4 was obtained in the same manner as in Example 1, except that the total number of desiccants used was only one, and it was housed outside the package and inside the third packaging bag.
  • Example 5 A package 5 was obtained in the same manner as in Example 1, except that no desiccant was used.
  • Example 7> A package 7 was obtained in the same manner as in Example 1, except that the sealing material put into one packaging bag was changed to 5 kg of sealing material B.
  • Example 9 10 kg of the sealing material A and two desiccants were placed in one packaging bag, and one packaging body was prepared by tying the opening of the packaging bag and fixing it with a rubber band to seal it.
  • the package 9 was obtained by putting the package in the package 1 and sealing the package.
  • Example 10 Two packages were prepared by putting 5 kg of the sealing material A and one desiccant in one packaging bag, and sealing the opening of the packaging bag with a rubber band. On the other hand, a third packaging bag is placed in the packaging container 2, two packages are placed in the third packaging bag horizontally, and the opening of the third packaging bag is tied and fastened with a rubber band. sealed. Next, a 10660 cm 3 cushioning material was accommodated outside the third packaging bag and inside the packaging container, and the packaging container was sealed to obtain the package 10 .
  • Example 11 Two packages were prepared by putting 5 kg of the sealing material A and one desiccant in one packaging bag, and sealing the opening of the packaging bag with a rubber band. On the other hand, a third packaging bag is put in the packing container 3, two packages are put in parallel in the vertical direction in the third packaging bag, and the opening of the third packaging bag is tied and fastened with a rubber band. sealed. Next, a 14000 cm 3 cushioning material was accommodated outside the third packaging bag and inside the packaging container, and the packaging container was sealed to obtain the package 11 .
  • ⁇ Comparative Example 1> A package C1 was obtained in the same manner as in Example 1, except that the mass of the sealing material A put into one packaging bag was changed to 7.5 kg.
  • a second packaging bag is put in the packaging container 1, the package is put in the second packaging bag, the opening of the second packaging bag is tied and fastened with a rubber band to seal, and the packaging container is was sealed to obtain a package C2.
  • ⁇ Comparative Example 4> A package C4 was obtained in the same manner as in Example 1, except that a 930 cm 3 cushioning material was further accommodated outside the third packaging bag and inside the packaging container.
  • ⁇ Comparative Example 5> A package C5 was obtained in the same manner as in Example 1, except that the packaging container 2 was used as the packaging container, and a 5580 cm 3 cushioning material was accommodated outside the third packaging bag and inside the packaging container. rice field.
  • Example 6> A package C6 was obtained in the same manner as in Example 9, except that the sealing material put into the packaging bag was changed to 15 kg of the sealing material B.
  • ⁇ Comparative Example 8> Three packages were prepared by putting 15 kg of the sealing material A and one desiccant in one packaging bag, and sealing the opening of the packaging bag with a rubber band. On the other hand, put a fourth packaging bag in the packaging container 2, put three packages in the fourth packaging bag in a vertical direction, tie the opening of the fourth packaging bag and fasten it with a rubber band. A package C8 was obtained by sealing and sealing the packaging container. ⁇ Comparative Example 9> A package C9 was obtained in the same manner as in Comparative Example 8, except that the package 3 was used as the package.
  • the volume of the space was measured by a liquid filling method using water as the liquid, and the value was corrected in consideration of the surface tension of water. A value equivalent to the value obtained by subtracting the volume of the contents from the volume of the entire container was obtained.
  • the packages of the examples are more effective in suppressing blocking of the sealing material particles and suppressing movement of the sealing material particles during transportation than the packages of the comparative examples. are compatible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Packages (AREA)

Abstract

This packing body for a sealing material comprises: a packing container; a packaging bag which is housed in the packing container; and deposit of the sealing material that contains resin and metal particles, that is housed within the packaging bag, and that has an average deposit height of at most 75 mm. The packing container has a spatial capacity of 1600-3400 cm3.<sp />

Description

封止材の梱包体及び封止材の梱包方法Sealing material package and sealing material packing method
 本開示は、封止材の梱包体及び封止材の梱包方法に関する。 The present disclosure relates to a sealing material package and a sealing material packaging method.
 封止材を運搬する際には、例えば、封止材を内部に収容した包装袋を、さらに段ボール箱等の梱包容器に収容した梱包体として運搬される。運搬される封止材は、その性能を発揮するために、製造時の状態を保つことが求められている。 When transporting the sealing material, for example, it is transported as a package in which a packaging bag containing the sealing material is further housed in a packaging container such as a cardboard box. The encapsulant to be transported is required to maintain the state at the time of manufacture in order to exhibit its performance.
 例えば国際公開第2013/128889号には、封止材の嵩密度と封止材の堆積物の高さとの積が一定の値以下とすることで、封止材同士の固結を抑制する梱包方法が開示されている。
 また、特開2019-151408号公報には、顆粒状の封止材を包装資材に収容し、かつ、10℃以下の状態で運搬する運搬方法であって、嵩密度と堆積物の高さの積を一定の値以下とし、特定の温度及び湿度で放置した後の封止材の差角を10度以上とすることで、一部の封止材同士の固結を抑制する運搬方法が開示されている。
For example, in International Publication No. 2013/128889, the product of the bulk density of the sealing material and the height of the deposit of the sealing material is set to a certain value or less, so that the caking of the sealing materials is suppressed. A method is disclosed.
Further, Japanese Patent Laid-Open No. 2019-151408 describes a transportation method in which a granular sealing material is stored in a packaging material and transported at a temperature of 10 ° C. or less, and the bulk density and the height of the deposit are Disclosed is a transportation method that suppresses caking of some sealing materials by setting the product to a certain value or less and setting the angle difference of the sealing materials to 10 degrees or more after being left at a specific temperature and humidity. It is
 しかし、嵩密度と堆積物の高さの積を一定の値以下とした場合であっても、封止材粒子のブロッキングが生じることがある。ここで、封止材粒子のブロッキングとは、封止材粒子同士が固結し、粉粒体としての流動性が下がることをいう。
 また、運搬時に梱包容器の内部で封止材粒子が移動することがある。梱包容器の内部において、封止材粒子が頻繁に移動し、その移動量が大きいと、封止材の偏りに起因する封止材粒子のブロッキング、封止材を包装する包装袋の破損等が生じることがある。
However, even when the product of the bulk density and the height of deposits is set to a certain value or less, blocking of the sealing material particles may occur. Here, the blocking of the sealing material particles means that the sealing material particles are agglomerated and the fluidity of the particles is lowered.
Also, the sealing material particles may move inside the packing container during transportation. In the interior of the packaging container, the particles of the sealing material move frequently, and if the amount of movement is large, blocking of the particles of the sealing material due to the uneven distribution of the sealing material, damage to the packaging bag in which the sealing material is packaged, and the like may occur. can occur.
 本開示の一形態は、封止材粒子のブロッキングの抑制と、運搬に伴う封止材粒子の移動の抑制と、を両立する封止材の梱包体及び封止材の梱包方法を提供することを目的とする。 One aspect of the present disclosure is to provide a sealing material package and a sealing material packaging method that simultaneously suppress blocking of the sealing material particles and suppress movement of the sealing material particles during transportation. With the goal.
 前記課題を達成するための具体的手段は以下の形態を含む。
<1>
 梱包容器と、
 前記梱包容器内に収容される包装袋と、
 樹脂と金属粉とを含有する封止材の堆積物であって、前記包装袋内に収容され、平均堆積高さが75mm以下である封止材の堆積物と、
 を含み
 前記梱包容器内における空間の容積が1600cm~3400cmである、封止材の梱包体。
<2>
 前記包装袋内に収容される乾燥剤をさらに含む、<1>に記載の封止材の梱包体。
<3>
 前記金属粉の含有率は、前記封止材全体に対し95質量%以上である、<1>又は<2
>に記載の封止材の梱包体。
<4>
 前記堆積物と、前記堆積物を内部に収容する前記包装袋と、を含む包装体は、1つの前記梱包容器に2以上収容される、<1>~<3>のいずれか1つに記載の封止材の梱包体。
<5>
 前記2以上の包装体は、前記1つの梱包容器内において、水平方向に配置される、<4>に記載の封止材の梱包体。
<6>
 前記梱包容器の容積は、3500cm~9500cmである、<1>~<5>のいずれか1つに記載の封止材の梱包体。
<7>
 梱包体全体の質量は、14kg以下である、<1>~<6>のいずれか1つに記載の封止材の梱包体。
<8>
 前記梱包容器の内部には、緩衝材が収容されていないか、又は合計体積が1200cm以下の緩衝材が収容されている、<1>~<7>のいずれか1つに記載の封止材の梱包体。
<9>
 前記封止材は、前記樹脂として、エポキシ樹脂及び硬化剤を含有する<1>~<8>のいずれか1つに記載の封止材の梱包体。
<10>
 前記樹脂は、150℃におけるICI粘度が0.30Pa・s以下である<1>~<9>のいずれか1つに記載の封止材の梱包体。
<11>
 前記封止材は、さらにシリコーン化合物を含む、<1>~<10>のいずれか1つに記載の封止材の梱包体。
<12>
 前記シリコーン化合物の含有量は、前記樹脂の合計含有量100質量部に対し、15質量部以上である、<11>に記載の封止材の梱包体。
<13>
 前記金属粉は、鉄、コバルト、及びニッケルからなる群より選択される少なくとも1種の金属元素を含む、<1>~<12>のいずれか1つに記載の封止材の梱包体。
<14>
 梱包容器内に包装袋を収容することと、
 前記包装袋内に、樹脂と金属粉とを含有する封止材を収容し、前記封止材の堆積物における平均堆積高さを75mm以下とすることと、
 前記梱包容器内における空間の容積を1600cm~3400cmとすることと、
 を含む、封止材の梱包方法。
Specific means for achieving the above object include the following forms.
<1>
a packaging container;
a packaging bag accommodated in the packaging container;
a deposit of a sealing material containing a resin and a metal powder, which is housed in the packaging bag and has an average deposition height of 75 mm or less;
A package of sealing material, wherein the volume of the space in the package is 1600 cm 3 to 3400 cm 3 .
<2>
The sealing material package according to <1>, further including a desiccant contained in the packaging bag.
<3>
<1> or <2, wherein the content of the metal powder is 95% by mass or more with respect to the entire sealing material
> package of the encapsulant described in .
<4>
Any one of <1> to <3>, wherein two or more packages containing the deposit and the packaging bag containing the deposit are contained in one packaging container. package of encapsulant.
<5>
The package of the sealing material according to <4>, wherein the two or more packages are horizontally arranged in the one package.
<6>
The sealing material package according to any one of <1> to <5>, wherein the volume of the packing container is 3500 cm 3 to 9500 cm 3 .
<7>
The sealing material package according to any one of <1> to <6>, wherein the mass of the entire package is 14 kg or less.
<8>
The sealing according to any one of <1> to <7>, wherein the packing container contains no cushioning material or contains a cushioning material with a total volume of 1200 cm 3 or less. material packaging.
<9>
The sealing material package according to any one of <1> to <8>, wherein the sealing material contains an epoxy resin and a curing agent as the resin.
<10>
The sealing material package according to any one of <1> to <9>, wherein the resin has an ICI viscosity of 0.30 Pa·s or less at 150°C.
<11>
The sealing material package according to any one of <1> to <10>, wherein the sealing material further contains a silicone compound.
<12>
The sealing material package according to <11>, wherein the content of the silicone compound is 15 parts by mass or more with respect to 100 parts by mass of the total content of the resin.
<13>
The sealing material package according to any one of <1> to <12>, wherein the metal powder contains at least one metal element selected from the group consisting of iron, cobalt, and nickel.
<14>
housing the packaging bag within the packaging container;
A sealing material containing resin and metal powder is accommodated in the packaging bag, and an average deposition height of the deposit of the sealing material is 75 mm or less;
setting the volume of the space in the packaging container to 1600 cm 3 to 3400 cm 3 ;
A method of packaging an encapsulant, comprising:
 本開示の一形態によれば、封止材粒子のブロッキングの抑制と、運搬に伴う封止材粒子の移動の抑制と、を両立する封止材の梱包体及び封止材の梱包方法が提供される。 According to one aspect of the present disclosure, there is provided a sealing material package and a sealing material packaging method that achieve both suppression of blocking of sealing material particles and suppression of movement of sealing material particles during transportation. be done.
本実施形態の梱包体の一例を模式的に示す模式断面図である。It is a schematic cross section which shows an example of the package of this embodiment typically. 本実施形態の梱包体の他の一例を模式的に示す模式断面図である。It is a schematic cross section which shows typically another example of the package of this embodiment.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明
確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの少なくとも一方を意味する。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
In the present disclosure, the term "process" includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. . Moreover, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
In the present disclosure, "(meth)acryloyl" means at least one of acryloyl and methacryloyl.
When embodiments are described in the present disclosure with reference to drawings, the configurations of the embodiments are not limited to the configurations shown in the drawings. In addition, the sizes of the members in each drawing are conceptual, and the relative relationship between the sizes of the members is not limited to this.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 A detailed description will be given below of the embodiment for implementing the present disclosure. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present disclosure.
[封止材の梱包体]
 本発明の一実施形態に係る封止材の梱包体は、梱包容器と、前記梱包容器内に収容される包装袋と、樹脂と金属粉とを含有する封止材の堆積物であって、前記包装袋内に収容され、平均堆積高さが75mm以下である封止材の堆積物と、を含み前記梱包容器内における空間の容積が1600cm~3400cmである。
[Package of sealing material]
A sealing material package according to an embodiment of the present invention is a deposit of a sealing material containing a packaging container, a packaging bag housed in the packaging container, and a resin and metal powder, The volume of the space in the packaging container is 1600 cm 3 to 3400 cm 3 including deposits of the sealing material contained in the packaging bag and having an average deposition height of 75 mm or less.
 以下、封止材の梱包体を単に「梱包体」ともいい、封止材の堆積物を単に「堆積物」ともいう。また、包装袋の内部に堆積物を収容したものを「包装体」ともいう。つまり、包装体は、少なくとも包装袋と、包装袋の内部に収容された堆積物と、を少なくとも含み、必要に応じて、包装袋の内部に収容された乾燥剤等のその他の内容物を含んでもよい。
 また、梱包体は、少なくとも梱包容器と、包装袋と、封止材の堆積物と、を含み、必要に応じて、さらに、梱包容器の内部に収容される緩衝材、乾燥剤等のその他の内容物を含んでいてもよい。
 なお、「空間」とは、梱包容器の内部領域のうち、内容物が存在しない領域をいう。なお、上記内容物は、包装袋、封止材の堆積物、及び必要に応じて収容されるその他の内容物である。
 また、内容物の配置により1つの梱包容器内に空間が複数箇所存在する場合、「空間の容積」は、前記複数箇所における空間の合計容積を意味する。
Hereinafter, the package of the sealing material will be simply referred to as the "package", and the deposit of the sealing material will be simply referred to as the "deposit". Moreover, the thing which accommodated the sediment in the inside of a packaging bag is also called a "packaging body." In other words, the package includes at least a packaging bag and a sediment housed inside the packaging bag, and optionally other contents such as a desiccant housed inside the packaging bag. It's okay.
In addition, the package includes at least a packaging container, a packaging bag, and a deposit of the sealing material, and if necessary, further includes cushioning materials, desiccants, etc., contained inside the packaging container. May contain content.
In addition, the "space" refers to an area in which the contents do not exist among the inner areas of the packaging container. Note that the above-mentioned contents are the packaging bag, the deposit of the sealing material, and other contents accommodated as necessary.
Further, when a plurality of spaces exist in one packing container due to the arrangement of the contents, the "space volume" means the total volume of the spaces at the plurality of positions.
 本実施形態の梱包体は、堆積物の平均堆積高さが上記範囲であり、かつ、梱包容器内における空間の容積が上記範囲であることにより、封止材粒子のブロッキングの抑制と、運搬に伴う封止材粒子の移動の抑制と、の両立が可能となる。その理由は以下のように推測される。 In the package of the present embodiment, the average pile height of the deposits is within the above range, and the volume of the space in the packing container is within the above range, thereby suppressing blocking of the sealing material particles and making transportation easier. It is possible to simultaneously suppress the movement of the encapsulant particles that accompanies the above. The reason is presumed as follows.
 封止材粒子のブロッキングが生じる原因の一つとして、堆積物の上部における封止材の重みが、堆積物の下部における封止材にかかることが挙げられる。堆積物の上部における
封止材による圧力によって、堆積物の下部における封止材粒子同士が固結することで、封止材粒子のブロッキングが生じると考えられる。特に、金属粉を含有する封止材は金属粉の比重が大きいことに起因して封止材の比重も大きくなるため、堆積物の上部における封止材による圧力が大きく、より封止材粒子のブロッキングが生じやすくなる。また、堆積物の平均堆積高さが大きくなるほど、堆積物の下部にかかる圧力は大きくなり、封止材粒子のブロッキングが生じやすくなる。
 そのため、堆積物の平均堆積高さを75mm以下とすることで、堆積物の上部における封止材による圧力に起因する封止材粒子のブロッキングは抑制される。
One cause of blocking of encapsulant particles is that the weight of the encapsulant at the top of the deposit rests on the encapsulant at the bottom of the deposit. It is believed that blocking of the sealing material particles occurs due to the sealing material particles at the bottom of the deposit sticking together due to the pressure exerted by the sealing material at the top of the deposit. In particular, in a sealing material containing metal powder, the specific gravity of the sealing material increases due to the high specific gravity of the metal powder. blocking is more likely to occur. In addition, as the average height of the deposits increases, the pressure applied to the lower portion of the deposits increases, and blocking of the particles of the encapsulant is more likely to occur.
Therefore, by setting the average deposition height of the deposits to 75 mm or less, the blocking of the sealing material particles due to the pressure of the sealing material on the top of the deposits is suppressed.
 一方、梱包容器の大きさを変えずに堆積物の平均堆積高さを低くすると、梱包体の運搬時に内容物が移動しやすくなることがある。そして、梱包容器の内部において、封止材粒子が頻繁に移動し、その移動量が大きいと、封止材の偏りに起因する封止材粒子のブロッキング、封止材を包装する包装袋の破損等が生じることがある。なお、封止材の偏りに起因する封止材粒子のブロッキングは、例えば、封止材が偏り、部分的に堆積物の高さが大きい領域が現れ、その領域の下部における封止材に大きい圧力がかかることで発生すると考えられる。また、封止材を包装する包装袋の破損は、運搬時に内容物が頻繁に大きく移動し、包装袋に部分的に負荷がかかることで発生すると考えられる。 On the other hand, if the average pile height of the pile is lowered without changing the size of the packing container, the contents may become easier to move during transportation of the package. In addition, the particles of the sealing material frequently move inside the packaging container, and if the amount of movement is large, blocking of the particles of the sealing material and damage to the packaging bag in which the sealing material is packed are caused by the unevenness of the sealing material. etc. may occur. In addition, the blocking of the sealing material particles due to the unevenness of the sealing material is, for example, an area where the sealing material is uneven, the height of the deposit is partially appeared, and the sealing material in the lower part of the area is large. It is thought that this is caused by the application of pressure. In addition, it is considered that damage to the packaging bag for packaging the sealing material occurs due to frequent and large movement of the contents during transportation, and partial load being applied to the packaging bag.
 また、梱包容器の内部における封止材粒子の移動を抑制するために、梱包容器の内部に緩衝材を収容すると、堆積物の平均堆積高さが75mm以下であっても、封止材粒子のブロッキングが生じることがある。上記封止材粒子のブロッキングは、梱包容器内に詰め込まれた緩衝材等からの圧力に起因するものと推測される。 In addition, if a cushioning material is accommodated inside the packaging container in order to suppress the movement of the sealing material particles inside the packaging container, even if the average pile height of the deposits is 75 mm or less, the sealing material particles will not move. Blocking may occur. It is presumed that the blocking of the sealing material particles is caused by the pressure from the cushioning material or the like packed in the packing container.
 これに対して、本実施形態では、堆積物の平均堆積高さを75mm以下とし、かつ、梱包容器内における空間の容積を1600cm~3400cmとする。そのため、空間の容積が上記範囲よりも大きい場合に比べて運搬に伴う封止材粒子の移動が抑制され、かつ、空間の容積が上記範囲よりも小さい場合に比べて圧力に起因する封止材粒子のブロッキングが抑制されると考えられる。
 以上のようにして、本実施形態では、封止材粒子のブロッキングの抑制と、運搬に伴う封止材粒子の移動の抑制と、の両立が可能になるものと推測される。
On the other hand, in this embodiment, the average pile height of the deposits is set to 75 mm or less, and the volume of the space in the packing container is set to 1600 cm 3 to 3400 cm 3 . Therefore, compared to the case where the volume of the space is larger than the above range, the movement of the sealing material particles due to transportation is suppressed, and compared to the case where the volume of the space is smaller than the above range, the sealing material due to the pressure is reduced. It is believed that particle blocking is suppressed.
As described above, in the present embodiment, it is presumed that both suppression of blocking of the sealing material particles and suppression of movement of the sealing material particles during transportation can be achieved.
 以下、本実施形態の梱包体の一例について、図面を用いて説明するが、本実施形態の梱包体は、これらに限定されるものではない。
 図1は、本実施形態の梱包体の一例を模式的に示す模式断面図である。図1に示す梱包体は、包装袋の内部に堆積物及び乾燥剤を収容した包装体を2つ有する梱包体である。
 具体的には、図1に示す梱包体10は、梱包容器12と、梱包容器12内に収容される包装袋14と、包装袋14内に収容される包装袋16A及び包装袋16Bと、包装袋16A内に収容される堆積物18A及び乾燥剤20Aと、包装袋16B内に収容される堆積物18B及び乾燥剤20Bと、含む。
An example of the package of this embodiment will be described below with reference to the drawings, but the package of this embodiment is not limited to these.
FIG. 1 is a schematic cross-sectional view schematically showing an example of the package of this embodiment. The package shown in FIG. 1 is a package having two packages each containing a sediment and a desiccant inside a packaging bag.
Specifically, the package 10 shown in FIG. Includes deposit 18A and desiccant 20A contained within bag 16A and deposit 18B and desiccant 20B contained within packaging bag 16B.
 包装袋16Aと堆積物18Aと乾燥剤20Aとで包装体22Aが構成される。包装袋16Aは、堆積物18A及び乾燥剤20Aを内部に収容した状態で密閉されている。同様に、包装袋16Bと堆積物18Bと乾燥剤20Bとで包装体22Bが構成される。包装袋16Bは、堆積物18B及び乾燥剤20Bを内部に収容した状態で密閉されている。また、包装袋14は、包装体22A及び包装体22Bを内部に収容した状態で密閉されている。さらに、梱包容器12は、包装体22A及び包装体22Bを内部に収容した包装袋14を内部に収容した状態で密閉されている。
 ここで、密閉とは、開口部を閉じて固体が出入りしない状態にすることをいう。なお、包装袋16A及び包装袋16Bにおいては、密閉により、積極的な気体及び液体の流入も防ぐことが好ましい。
A packaging body 22A is composed of the packaging bag 16A, the sediment 18A and the desiccant 20A. The packaging bag 16A is sealed while containing the sediment 18A and the desiccant 20A. Similarly, the packaging bag 16B, the sediment 18B and the desiccant 20B form a package 22B. The packaging bag 16B is sealed while containing the sediment 18B and the desiccant 20B. Moreover, the packaging bag 14 is sealed with the package 22A and the package 22B accommodated therein. Further, the packaging container 12 is sealed while accommodating therein the packaging bag 14 containing the package 22A and the package 22B.
Here, "sealing" refers to closing the opening so that no solid matter enters or exits. It should be noted that it is preferable that the packaging bags 16A and 16B are sealed to prevent aggressive inflow of gas and liquid.
 なお、梱包体10は、包装体22A及び包装体22Bを有しているが、これに限定されるものではない。本実施形態の梱包体は、1つの梱包容器12に包装体を2つ有してもよく、1つのみ有してもよく、3つ以上有してもよい。
 また、梱包体10においては、包装体22Aと包装体22Bとが梱包容器12の内部において水平方向に配置されているが、これに限定されるものではない。本実施形態の梱包体が1つの梱包容器12の内部に2以上の包装体を有する場合、前記2以上の包装体が水平方向に配置されてもよく、鉛直方向に配置されてもよい。
 ここで、2以上の包装体が鉛直方向に配置されている場合、堆積物の平均堆積高さは、鉛直方向に配置された前記2以上の包装体の内部に収容された堆積物全体の合計堆積高さの平均値を意味する。
 堆積物の平均堆積高さを低くする観点からは、2以上の包装体を水平方向に配置することが望ましい。
In addition, although the package 10 has the package 22A and the package 22B, it is not limited to this. The package of the present embodiment may have two packages in one packaging container 12, may have only one package, or may have three or more packages.
Moreover, in the package 10, the package 22A and the package 22B are horizontally arranged inside the package container 12, but the present invention is not limited to this. When the package of this embodiment has two or more packages inside one packaging container 12, the two or more packages may be arranged horizontally or vertically.
Here, when two or more packages are arranged in the vertical direction, the average pile height of the deposits is the sum of all the deposits accommodated inside the two or more packages arranged in the vertical direction. Means the average pile height.
From the viewpoint of lowering the average pile height of the pile, it is desirable to arrange two or more packages horizontally.
 また、梱包体10においては、包装体22A及び包装体22Bをさらに包装袋14の内部に収容した上で、梱包容器12の内部に収容しているが、これに限られず、包装袋14を用いずに、包装体22A及び包装体22Bをそのまま梱包容器12の内部に収容してもよい。
 また、梱包体10においては、乾燥剤20Aが、包装袋16Aの内部に収容されて包装体22Aの一部となっているが、これに限られず、乾燥剤20Aが包装袋16Aの外側かつ包装袋14の内側に収容されてもよく、乾燥剤20Aが梱包体10に含まれていなくてもよい。同様に、乾燥剤20Bは、包装袋16Bの内部に収容されて包装体22Bの一部となっているが、これに限られず、乾燥剤20Bが包装袋16Bの外側かつ包装袋14の内側に収容されてもよく、乾燥剤20Bが梱包体10に含まれていなくてもよい。
In the package 10, the package 22A and the package 22B are further housed inside the packaging bag 14 and then housed inside the packaging container 12, but this is not the only option, and the packaging bag 14 is used Instead, the package 22A and the package 22B may be housed inside the packing container 12 as they are.
In the package 10, the desiccant 20A is housed inside the packaging bag 16A and forms part of the package 22A. The desiccant 20A may be housed inside the bag 14, and the package 10 may not contain the desiccant 20A. Similarly, the desiccant 20B is accommodated inside the packaging bag 16B and forms part of the package 22B, but is not limited to this. The desiccant 20B may not be included in the package 10.
 図2は、本実施形態の梱包体の他の一例を模式的に示す模式断面図である。図2に示す梱包体は、包装袋の内部に堆積物及び乾燥剤を収容した包装体を1つのみ有し、その他の内容物として緩衝材を有する。
 具体的には、図2に示す梱包体30は、梱包容器32と、梱包容器32内に収容される包装袋36と、包装袋36内に収容される堆積物38及び乾燥剤40と、包装袋36の外側かつ梱包容器32の内側に収容される緩衝材34と、含む。
 包装袋36と堆積物38と乾燥剤40とで包装体42が構成される。包装袋36は、堆積物38及び乾燥剤40を内部に収容した状態で密閉されている。
FIG. 2 is a schematic cross-sectional view schematically showing another example of the package of the present embodiment. The package shown in FIG. 2 has only one package containing deposits and a desiccant inside a package bag, and has cushioning materials as other contents.
Specifically, the package 30 shown in FIG. and a cushioning material 34 housed outside the bag 36 and inside the packaging container 32 .
A packaging body 42 is composed of the packaging bag 36 , the sediment 38 and the desiccant 40 . The packaging bag 36 is sealed with the sediment 38 and the desiccant 40 contained therein.
 なお、梱包体30は、包装体42を1つのみ有している。本実施形態の梱包体は、これに限定されるものではなく、1つの梱包容器32に包装体を2つ以上有してもよい。
 また、梱包体30においては、包装体42がそのまま梱包容器32の内部に収容されているが、これに限られず、包装体42をさらに他の包装袋により包装した上で梱包容器32の内部に収容してもよい。つまり包装袋を多重にしてもよい。
 また、梱包体30においては、乾燥剤40が、包装袋36の内部に収容されて包装体42の一部となっているが、これに限られず、乾燥剤40が梱包体30に含まれていなくてもよい。さらに、包装袋を多重にした場合、乾燥剤40は、包装袋36の外側かつ他の包装袋の内部に収容されてもよい。
Note that the package 30 has only one package 42 . The package of this embodiment is not limited to this, and one package 32 may have two or more packages.
In addition, in the package 30, the package 42 is housed inside the packaging container 32 as it is. However, the package 42 is not limited to this. may be accommodated. In other words, multiple packaging bags may be used.
In the package 30 , the desiccant 40 is housed inside the packaging bag 36 and forms part of the package 42 . It doesn't have to be. Furthermore, when multiple packaging bags are used, the desiccant 40 may be accommodated outside the packaging bag 36 and inside another packaging bag.
 また、梱包体30は、2つの緩衝材34を有している。本実施形態の梱包体は、これに限定されるものではなく、空間の容積が前記範囲内であれば、緩衝材を1つのみ収容してもよく、3つ以上収容してもよく、緩衝材を収容していなくてもよい。包装袋を多重にした場合、緩衝材34は、包装袋36の内部に収容されてもよく、包装袋36の外側かつ他の包装袋の内部に収容されてもよく、他の包装袋の外側に収容されてもよい。 Also, the package 30 has two cushioning materials 34 . The package of the present embodiment is not limited to this. It does not have to contain materials. When multiple packaging bags are used, the cushioning material 34 may be accommodated inside the packaging bag 36, outside the packaging bag 36 and inside another packaging bag, or outside the other packaging bag. may be accommodated in
 本実施形態の梱包体における梱包体全体の質量は、特に限定されるものではなく、運搬容易性の観点から、14kg以下であることが好ましく、12kg以下であることがより好ましく、11kg以下であることがさらに好ましい。梱包体全体の質量は、8kg以上であってもよく、9kg以上であってもよい。
 以下、本実施形態の梱包体を構成する梱包容器及び内容物についてそれぞれ説明する。
The mass of the entire package in the package of the present embodiment is not particularly limited, and from the viewpoint of ease of transportation, it is preferably 14 kg or less, more preferably 12 kg or less, and 11 kg or less. is more preferred. The mass of the entire package may be 8 kg or more, or may be 9 kg or more.
Hereinafter, the packing container and contents constituting the packing body of the present embodiment will be described.
<梱包容器>
 梱包容器は、内部に包装体を収容し、密閉することが可能なものであれば特に限定されるものではない。梱包容器は、運搬容易性の観点から、自立して形状が維持されるものが好ましく、梱包容器の上に他の梱包容器を積載可能なものであることがより好ましい。
 梱包容器としては、例えば、段ボール箱等の箱状容器、金属缶等の缶状容器などが挙げられる。ここで、段ボールとは、波状の中芯に平らな表板を接着したものをいう。段ボール箱は、紙製であってもよく、樹脂製であってもよい。梱包体全体の質量を低く抑えて運搬を容易とする観点からは、梱包容器として段ボール箱が好ましく、紙製の段ボール箱がより好ましい。
<Packing container>
The packing container is not particularly limited as long as it can house the package inside and be sealed. From the viewpoint of ease of transportation, the packaging container preferably stands on its own and maintains its shape, and more preferably can be loaded with another packaging container on top of the packaging container.
Examples of packing containers include box-shaped containers such as cardboard boxes and can-shaped containers such as metal cans. Here, corrugated cardboard refers to a corrugated core with a flat surface adhered to it. The cardboard box may be made of paper or may be made of resin. From the viewpoint of keeping the mass of the entire package low and facilitating transportation, the packaging container is preferably a corrugated cardboard box, and more preferably a corrugated cardboard box made of paper.
 梱包容器全体の容積は、3500cm~21000cmであってもよく、3500cm~18000cmであってもよく、運搬容易性及びブロッキング抑制の観点から、3500cm~9500cmであってもよく、4000cm~7000cmであってもよく、4500cm~5500cmであってもよい。
 梱包容器の内部における高さは、8cm~35cmであってもよく、運搬に伴う封止材の移動の抑制とブロッキングの抑制との観点から、8cm~28cmであってもよく、9cm~20cmであってもよく、10cm~13cmであってもよい。
 梱包容器は、運搬容易性の観点から、密閉されていることが好ましい。梱包容器の密閉方法は、特に限定されるものではなく、梱包容器の種類に応じた一般的な方法が用いられる。
The volume of the entire packing container may be 3,500 cm 3 to 21,000 cm 3 , may be 3,500 cm 3 to 18,000 cm 3 , and may be 3,500 cm 3 to 9,500 cm 3 from the viewpoint of ease of transportation and prevention of blocking, It may be 4000 cm 3 to 7000 cm 3 or 4500 cm 3 to 5500 cm 3 .
The height inside the packaging container may be 8 cm to 35 cm, and may be 8 cm to 28 cm, or 9 cm to 20 cm, from the viewpoint of suppressing movement of the sealing material during transportation and blocking. It may be 10 cm to 13 cm.
The packaging container is preferably hermetically sealed from the viewpoint of ease of transportation. A method for sealing the packaging container is not particularly limited, and a general method according to the type of the packaging container is used.
<包装袋>
 包装袋は、内部に堆積物を収容し、密閉することが可能なものであれば特に限定されるものではない。包装袋は、梱包容器内への収容容易性の観点から、形状が変化し梱包容器の内部の形状及び他の内容物の形状に追従可能なものが好ましい。
 包装袋としては、例えば、樹脂製の袋、紙製の袋等が挙げられ、水分の侵入を低減する観点から樹脂製の袋が好ましい。樹脂製の袋としては、例えば、ポリエチレン袋等が挙げられる。
<Packaging bag>
The packaging bag is not particularly limited as long as it can contain the sediment inside and be sealed. From the viewpoint of easiness of accommodation in the packaging container, it is preferable that the packaging bag can change its shape and follow the shape of the inside of the packaging container and the shape of other contents.
Examples of the packaging bag include resin bags and paper bags, and resin bags are preferable from the viewpoint of reducing the intrusion of moisture. Examples of resin bags include polyethylene bags.
 なお、包装袋は、多重構造となっていてもよい。すなわち、堆積物を収容する包装袋、つまり包装体が、さらに他の包装袋の内部に収容されていてもよい。
 また、図1に示す梱包体10のように、複数の包装体が、1つの他の包装袋の内部に収容されていてもよい。つまり、本実施形態の梱包体は、堆積物を内部に収容する包装袋が1つの梱包容器内に2以上収容されたものであってもよい。
 また、梱包体が乾燥剤を含む場合、包装体と乾燥剤とが1つの他の包装袋の内部に収容されてもよい。
In addition, the packaging bag may have a multi-layered structure. That is, the packaging bag containing the sediment, that is, the package may be accommodated inside another packaging bag.
Moreover, like the package 10 shown in FIG. 1, a plurality of packages may be accommodated inside one other packaging bag. In other words, the package of the present embodiment may be one in which two or more packaging bags for accommodating deposits are housed in one packaging container.
Moreover, when the package contains a desiccant, the package and the desiccant may be accommodated inside one other packaging bag.
 包装袋は、吸湿に伴う封止材粒子のブロッキング抑制の観点から、密閉されていることが好ましい。
 包装袋の密閉方法は特に限定されるものではなく、例えば、封止材を入れた包装袋の開口部を結ぶ方法、包装袋の開口部を閉じ部材で閉じる方法、包装袋の開口部を熱で融着させて閉じる方法等が挙げられ、これらを組み合わせてもよい。
The packaging bag is preferably sealed from the viewpoint of suppressing blocking of the sealing material particles due to moisture absorption.
The method of sealing the packaging bag is not particularly limited. A method of fusing and closing with is exemplified, and these methods may be combined.
<封止材の堆積物>
 封止材の堆積物は、運搬する対象である封止材が堆積したものである。
 封止材の堆積物を構成する封止材としては、例えば、グラニュール等の粒状封止材、パウダー等の粉状封止材などが挙げられる。
 封止材は、25℃かつ大気圧下において固体であることが好ましい。
 封止材粒子の質量平均粒径は、特に限定されるものではなく、例えば150μm以上の範囲が挙げられ、300μm以上2000μm未満であってもよく、300μm以上1000μm未満であってもよい。
 封止材粒子の質量平均粒径は、ロータップ式篩振とう機に備え付けたJIS標準篩(5段)を用い、これらの篩を10分間に亘って振動させながら500gの試料を篩に通し分級して測定する。
 篩の目開きは、上から、2000μm、1000μm、500μm、300μm、150μmの順に、徐々に篩の目開きを細かくして配置し、一番下に受皿を配置する。例えば目開き1000μmの篩上にある試料は1000μm以上2000μm未満の粒径である。
 各篩上にある試料の質量を求め、試料全体の質量に対する各篩上の質量の割合が、小径側から累積50%に達する粒子径範囲を、封止材粒子の質量平均粒径とする。例えば、受皿上にある試料の質量と目開き150μmの篩上にある試料の質量との合計が試料全体の50質量%未満であり、かつ、受皿上にある試料の質量と目開き150μmの篩上にある試料の質量と目開き300μmの篩上にある試料の質量との合計が試料全体の50質量%以上であるとき、封止材粒子の質量平均粒径を「300μm以上500μm未満」とする。
<Deposits of sealing material>
A deposit of encapsulant is a deposit of encapsulant that is to be transported.
Examples of the encapsulant forming the encapsulant deposit include granular encapsulants such as granules and powdery encapsulants such as powder.
The encapsulant is preferably solid at 25° C. and atmospheric pressure.
The mass average particle diameter of the sealing material particles is not particularly limited, and may be, for example, a range of 150 μm or more, may be 300 μm or more and less than 2000 μm, or may be 300 μm or more and less than 1000 μm.
The mass average particle diameter of the sealing material particles is measured by using a JIS standard sieve (5 stages) equipped with a low-tap sieve shaker, and classifying a 500 g sample through the sieve while vibrating these sieves for 10 minutes. and measure.
The mesh size of the sieve is gradually reduced in the order of 2000 μm, 1000 μm, 500 μm, 300 μm, and 150 μm from the top, and the tray is placed at the bottom. For example, a sample on a sieve with an opening of 1000 μm has a particle size of 1000 μm or more and less than 2000 μm.
The mass of the sample on each sieve is determined, and the particle size range in which the ratio of the mass on each sieve to the mass of the entire sample reaches 50% cumulatively from the small diameter side is defined as the mass average particle size of the sealing material particles. For example, the sum of the mass of the sample on the pan and the mass of the sample on the 150 μm sieve is less than 50% by mass of the entire sample, and the mass of the sample on the pan and the 150 μm sieve When the total mass of the sample on the top and the mass of the sample on the 300 μm sieve is 50% by mass or more of the entire sample, the mass average particle size of the sealing material particles is defined as “300 μm or more and less than 500 μm”. do.
 封止材の嵩密度は、特に限定されるものではなく、例えば2.0g/cm~7.0g/cmの範囲が挙げられ、2.5g/cm~6.0g/cmの範囲であってもよく、3.0g/cm~5.0g/cmの範囲であってもよい。
 封止材の嵩密度は、例えば、封止材をメスシリンダーに入れて体積を測定し、メスシリンダーに入れた量の封止材の質量を測定し、その体積及び質量の値から求める。
The bulk density of the encapsulant is not particularly limited, and may be, for example, a range of 2.0 g /cm 3 to 7.0 g/cm 3 , and a range of 2.5 g/cm 3 to 6.0 g/cm 3 . range, and may be in the range of 3.0 g/cm 3 to 5.0 g/cm 3 .
The bulk density of the encapsulant is obtained, for example, by placing the encapsulant in a graduated cylinder, measuring the volume, measuring the mass of the encapsulant in the amount put in the graduated cylinder, and determining the volume and mass values.
 堆積物の平均堆積高さは、75mm以下であり、封止材粒子のブロッキング抑制の観点から、70mm以下であってもよく、65mm以下であってもよく、60mm以下であってもよい。また、堆積物の平均堆積高さは、35mm以上であってもよく、40mm以上であってもよく、45mm以上であってもよい。
 堆積物の平均堆積高さは、ノギス、定規等の計測器を用いて堆積物の高さを3箇所測定して得られた値の平均値とする。
 なお、堆積物を構成する封止材の詳細については後述する。
The average deposition height of the deposits is 75 mm or less, and may be 70 mm or less, 65 mm or less, or 60 mm or less from the viewpoint of suppressing blocking of the sealing material particles. Also, the average deposition height of the deposits may be 35 mm or more, 40 mm or more, or 45 mm or more.
The average height of the deposit is the average value of the values obtained by measuring the height of the deposit at three points using a measuring instrument such as a vernier caliper and a ruler.
The details of the sealing material forming the deposit will be described later.
 1つの包装袋に収容された堆積物の質量は、封止材の運搬容易性及び封止材粒子のブロッキング抑制の観点から、3kg~13kgであることが好ましく、3.5kg~10kgであることがより好ましく、4kg~6kgであることがさらに好ましい。 The mass of the deposit contained in one packaging bag is preferably 3 kg to 13 kg, more preferably 3.5 kg to 10 kg, from the viewpoint of ease of transportation of the sealing material and prevention of blocking of the sealing material particles. is more preferred, and 4 kg to 6 kg is even more preferred.
<乾燥剤>
 乾燥剤は、必要に応じて用いられるものであり、水分を不可逆的に吸着するものであれば特に限定されるものではない。封止材の吸湿に起因する封止材粒子のブロッキングを抑制する観点からは、梱包体が乾燥剤を含んでいることが好ましい。
 乾燥剤に含まれる吸湿成分としては、例えば、シリカゲル、酸化アルミニウム、モレキュラーシーブ、アロフェン、ゼオライト、クレイ等の物理的吸湿成分;生石灰、塩化カルシウム等の化学的吸湿成分;などが挙げられる。乾燥剤に含まれる吸湿成分は、これらの中でも、物理的吸湿成分が好ましく、その中でもアルカリ土類金属化合物を含む吸湿成分がより好ましく、クレイがさらに好ましい。
 乾燥剤は、上記吸湿成分を、多孔質樹脂フィルム、不織布等の包装材料により包装した
乾燥剤であってもよく、シート状基材に吸湿成分を担持させたシート状乾燥剤であってもよい。
<Drying agent>
The desiccant is used as necessary, and is not particularly limited as long as it irreversibly adsorbs moisture. From the viewpoint of suppressing blocking of the sealing material particles due to moisture absorption of the sealing material, the package preferably contains a desiccant.
Moisture-absorbing components contained in the desiccant include, for example, physical moisture-absorbing components such as silica gel, aluminum oxide, molecular sieves, allophane, zeolite, and clay; chemical moisture-absorbing components such as quicklime and calcium chloride; Among these, the hygroscopic component contained in the desiccant is preferably a physical hygroscopic component, more preferably a hygroscopic component containing an alkaline earth metal compound, and still more preferably clay.
The desiccant may be a desiccant in which the moisture absorbing component is wrapped in a packaging material such as a porous resin film or non-woven fabric, or may be a sheet-like desiccant in which the moisture absorbing component is supported on a sheet-like base material. .
 1つの梱包体に収容される乾燥剤の量は特に限定されるものではなく、乾燥剤に含まれる吸湿成分の吸湿率、梱包体に含まれる封止材の量等に応じて適宜設定される。
 1つの梱包体に収容される乾燥剤における吸湿成分の質量としては、例えば50g~600gが挙げられ、50g~200gであってもよく、50g~100gであってもよい。
The amount of desiccant contained in one package is not particularly limited, and is appropriately set according to the moisture absorption rate of the hygroscopic component contained in the desiccant, the amount of sealing material contained in the package, and the like. .
The mass of the hygroscopic component in the desiccant contained in one package is, for example, 50 g to 600 g, may be 50 g to 200 g, or may be 50 g to 100 g.
<緩衝材>
 緩衝材は、必要に応じて、運搬時における内容物の移動を抑制するために用いられるものである。緩衝材は、梱包容器内における空間の容積を調整できるものであれば、特に限定されるものではない。
 緩衝材としては、例えば、発泡ポリウレタン等の発泡樹脂緩衝材、エアキャップ等樹脂製気泡緩衝材などが挙げられる。
<Buffer material>
The cushioning material is used as necessary to suppress movement of contents during transportation. The cushioning material is not particularly limited as long as it can adjust the volume of the space inside the packaging container.
Examples of the cushioning material include a foamed resin cushioning material such as foamed polyurethane and a resin bubble cushioning material such as an air cap.
 1つの梱包体に収容される緩衝材の合計体積は、特に限定されるのではなく、15000cm以下であってもよく、11000cm以下であってもよい。梱包容器の内部には、コストの低減及び封止材粒子のブロッキング抑制の観点から、緩衝材が収容されていないか又は合計体積が1800cm以下の緩衝材が収容されていることが好ましい。梱包容器の内部に緩衝材が収容されている場合、緩衝材の合計体積は、1200cm以下であってもよく、700cm以下であってもよい。 The total volume of the cushioning materials housed in one package is not particularly limited, and may be 15000 cm 3 or less, or 11000 cm 3 or less. From the viewpoint of cost reduction and prevention of blocking of the sealing material particles, it is preferable that the packing container contains no cushioning material or a cushioning material with a total volume of 1800 cm 3 or less. When the packing container contains cushioning materials, the total volume of the cushioning materials may be 1200 cm 3 or less, or 700 cm 3 or less.
<空間の容積>
 梱包容器内における空間の容積は、1600cm~3400cmである。梱包容器内における空間の容積は、封止材粒子のブロッキングを抑制する観点から、1600cm以上であることが好ましく、1800cm以上であることがより好ましく、2000cm以上であることがさらに好ましい。梱包容器内における空間の容積は、運搬に伴う封止材粒子の移動を抑制する観点から、3400cm以下であることが好ましく、3200cm以下であることがより好ましく、3000cm以下であることがさらに好ましい。
 梱包容器内における空間の容積は、封止材粒子のブロッキングの抑制と運搬に伴う封止材粒子の移動の抑制とを両立する観点から、1600cm~3400cmであることが好ましく、1800cm~3200cmであることがより好ましく、2000cm~3000cmであることがさらに好ましい。
<Volume of space>
The volume of space in the packing container is 1600 cm 3 to 3400 cm 3 . The volume of the space in the packing container is preferably 1600 cm 3 or more, more preferably 1800 cm 3 or more, and even more preferably 2000 cm 3 or more, from the viewpoint of suppressing blocking of the sealing material particles. The volume of the space in the packaging container is preferably 3,400 cm 3 or less, more preferably 3,200 cm 3 or less, and more preferably 3,000 cm 3 or less, from the viewpoint of suppressing movement of the sealing material particles during transportation. More preferred.
The volume of the space in the packing container is preferably 1,600 cm 3 to 3,400 cm 3 and preferably 1,800 cm 3 to 1,800 cm 3 from the viewpoint of simultaneously suppressing blocking of the sealing material particles and suppressing movement of the sealing material particles during transportation. It is more preferably 3200 cm 3 and even more preferably 2000 cm 3 to 3000 cm 3 .
 梱包容器内における空間の容積は、梱包容器全体の容積から内容物の体積を差し引くことで求められる。具体的には、例えば、まず梱包容器全体の容積、包装袋の体積、堆積物の体積、及び必要に応じて用いられるその他の内容物の体積をそれぞれ求め、梱包容器全体の容積から各内容物の体積を差し引くことで、空間の容積を求める。 The volume of the space inside the packaging container is obtained by subtracting the volume of the contents from the volume of the entire packaging container. Specifically, for example, first, the volume of the entire packaging container, the volume of the packaging bag, the volume of the sediment, and the volume of other contents used as necessary are obtained, and from the volume of the entire packaging container, each content Subtract the volume of to find the volume of the space.
 梱包容器全体の容積については、梱包容器の内寸から理論的に算出してもよく、液体充填法又は気体充填法により求めてもよい。梱包容器全体の容積を液体充填法又は気体充填法により求める場合は、梱包容器に液体又は気体が浸透しないように梱包容器の内側を加工した上で測定を行ってもよい。
 包装袋の体積については、包装袋の開口部に結び目が形成されている場合は、結び目領域の体積とその他の領域の体積とを別々に求めてもよい。各領域の体積は、採寸した上で理論的に算出してもよく、液体又は気体を用いて測定してもよい。
 堆積物の体積については、堆積物の質量と封止材の嵩密度とを測定し、得られた値から算出してもよく、堆積物全体の寸法を採寸した上で理論的に算出してもよい。なお、封止
材の嵩密度は、例えば、封止材の一部をメスシリンダーに入れ、その体積及び質量から求めてもよい。
 乾燥剤、緩衝材等の必要に応じて用いられるその他の内容物の体積についても、それぞれ、採寸した上で理論的に算出する方法、液体又は気体を用いて測定する方法等により求める。
The volume of the entire packaging container may be theoretically calculated from the inner dimensions of the packaging container, or may be obtained by a liquid filling method or a gas filling method. When the volume of the entire packaging container is determined by the liquid filling method or the gas filling method, the inside of the packaging container may be processed so that the liquid or gas does not permeate the packaging container before the measurement.
As for the volume of the packaging bag, if a knot is formed at the opening of the packaging bag, the volume of the knotted region and the volume of the other regions may be determined separately. The volume of each region may be theoretically calculated after measuring, or may be measured using liquid or gas.
The volume of the deposit may be calculated from the values obtained by measuring the mass of the deposit and the bulk density of the sealing material, or it may be calculated theoretically after measuring the dimensions of the entire deposit. good too. The bulk density of the encapsulating material may be obtained, for example, from the volume and mass of a part of the encapsulating material put in a graduated cylinder.
The volumes of other contents such as desiccants and buffer materials used as necessary are also determined by a method of measuring and calculating theoretically, a method of measuring using liquid or gas, and the like.
 なお、例えば内容物の形状が複雑である等により、内容物の体積を算出することが困難である場合は、梱包体の空間に液体又は気体を充填する方法、すなわち液体充填法又は気体充填法により、直接、空間の容積を測定してもよい。液体充填法により測定する場合は、液体の表面張力を考慮して値を補正してもよい。
 梱包容器内における空間の容積は、梱包容器の高さ及び底面積の少なくとも一方を変えることで調整してもよく、緩衝材の体積を変えることで調整してもよく、それらの両方を変えることで調整してもよい。
If it is difficult to calculate the volume of the contents due to, for example, the shape of the contents being complicated, a method of filling the space of the package with liquid or gas, that is, the liquid filling method or the gas filling method , the volume of the space may be measured directly. When measuring by the liquid filling method, the value may be corrected in consideration of the surface tension of the liquid.
The volume of the space within the packaging container may be adjusted by changing at least one of the height and bottom area of the packaging container, and may be adjusted by changing the volume of the cushioning material, or both may be changed. can be adjusted with .
<梱包方法>
 本実施形態に係る封止材の梱包方法は、梱包容器内に包装袋を収容することと、前記包装袋内に、樹脂と金属粉とを含有する封止材を収容し、前記封止材の堆積物における平均堆積高さを75mm以下とすることと、前記梱包容器内における空間の容積を1600cm~3400cmとすることと、を含む。
 上記封止材の梱包方法により、前述の実施形態に係る封止材の梱包体が製造される。
 つまり、封止材の梱包体の製造方法は、梱包容器内に包装袋を収容する工程と、前記包装袋内に、樹脂と金属粉とを含有する封止材を収容し、前記封止材の堆積物における平均堆積高さを75mm以下とする工程と、前記梱包容器内における空間の容積を前記範囲内とする工程と、を含み、必要に応じて他の工程を含んでもよい。
 他の工程としては、前記包装袋内に乾燥剤を収容する工程、前記梱包容器内に緩衝材を収容する工程等、前記包装袋を密閉する工程、前記梱包容器を密閉する工程等が挙げられる。
<Packing method>
A method for packing a sealing material according to the present embodiment comprises housing a packaging bag in a packaging container, housing a sealing material containing resin and metal powder in the packaging bag, and storing the sealing material making the average pile height of the piles 75 mm or less, and making the volume of the space in the packing container 1600 cm 3 to 3400 cm 3 .
The sealing material package according to the above-described embodiment is manufactured by the sealing material packaging method described above.
That is, a method for manufacturing a package of encapsulant includes the steps of accommodating a packaging bag in a packaging container, accommodating a encapsulant containing resin and metal powder in the packaging bag, and and a step of setting the volume of the space in the packing container within the above range, and other steps may be included as necessary.
Other steps include a step of accommodating a desiccant in the packaging bag, a step of accommodating a cushioning material in the packaging container, a step of sealing the packaging bag, a step of sealing the packaging container, and the like. .
 梱包容器内に包装袋を収容する工程と包装袋内に封止材を収容する工程との順序は特に限定されるものではない。梱包容器内に包装袋を収容した後に包装袋内に封止材を収容してもよく、包装袋内に封止材を収容して包装体とした後に包装体を梱包容器に収容してもよい。 The order of the step of accommodating the packaging bag in the packaging container and the step of accommodating the sealing material in the packaging bag is not particularly limited. The sealing material may be accommodated in the packaging bag after the packaging bag is accommodated in the packaging container, or the packaging body may be accommodated in the packaging container after the sealing material is accommodated in the packaging bag to form a package. good.
 梱包体が乾燥剤、緩衝材等のその他の内容物を含む場合、その他の内容物を梱包容器に収容する工程、すなわち、前記包装袋内に乾燥剤を収容する工程、前記梱包容器内に緩衝材を収容する工程等、をさらに含んでもよい。その他の内容物を梱包容器に収容する工程は、梱包容器内に包装袋又は包装体を収容する前に行ってもよく、あとに行ってもよい。
 梱包容器内における空間の容積を前記範囲内とする工程は、他の工程とともに行ってもよい。具体的には、例えば、包装袋内に封止材を収容する工程において、封止材の収容量を調節することによって梱包容器内における空間の容積を前記範囲内としてもよい。また例えば、その他の内容物を梱包容器に収容する工程において、乾燥剤、緩衝材等のその他の内容物の体積を調節することによって梱包容器内における空間の容積を前記範囲内としてもよい。
When the package contains other contents such as a desiccant and a cushioning material, the step of accommodating the other contents in the packaging container, i.e., the step of accommodating the desiccant in the packaging bag and the buffering in the packaging container. It may further include a step of containing the material, and the like. The step of accommodating other contents in the packaging container may be performed before or after accommodating the packaging bag or package in the packaging container.
The step of setting the volume of the space in the packing container within the above range may be performed together with other steps. Specifically, for example, in the step of accommodating the sealing material in the packaging bag, the volume of the space in the packaging container may be set within the above range by adjusting the amount of the sealing material contained. Further, for example, in the step of accommodating other contents in the packaging container, the volume of the space in the packaging container may be set within the above range by adjusting the volume of the other contents such as desiccant and cushioning material.
<封止材>
 以下、堆積物を構成する封止材の詳細について説明する。
 封止材は、少なくとも樹脂と金属粉とを含有し、必要に応じてその他の成分を含有してもよい。
<Sealant>
The details of the sealing material that constitutes the deposit will be described below.
The sealing material contains at least resin and metal powder, and may contain other components as necessary.
(金属粉)
 封止材に含有される金属粉としては、例えば、金属単体、合金、及び金属化合物からなる群より選ばれる少なくとも一種を含む粒子が挙げられる。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでいてもよい。合金は、例えば、ステンレス鋼(Fe‐Cr系合金、Fe‐Ni‐Cr系合金等)であってもよい。金属化合物は、例えば、フェライト等の酸化物であってもよい。金属粉は、一種の金属元素又は複数種の金属元素を含んでいてもよい。金属粉に含まれる金属元素としては、例えば、卑金属元素、貴金属元素、遷移金属元素及び希土類元素が挙げられる。
 封止材は、一種の金属粉を含んでいてもよく、複数種の金属粉を含んでいてもよい。
 金属粉の比重(密度)は、例えば、5g/cm以上であってもよく、6g/cm
以上であってもよく、6.5g/cm以上であってもよい。
(metal powder)
Examples of the metal powder contained in the sealing material include particles containing at least one selected from the group consisting of simple metals, alloys, and metal compounds. The alloy may contain at least one selected from the group consisting of solid solution, eutectic and intermetallic compounds. The alloy may be, for example, stainless steel (Fe--Cr alloy, Fe--Ni--Cr alloy, etc.). The metal compound may be, for example, an oxide such as ferrite. The metal powder may contain one type of metal element or multiple types of metal elements. Examples of metal elements contained in the metal powder include base metal elements, noble metal elements, transition metal elements and rare earth elements.
The sealing material may contain one type of metal powder, or may contain a plurality of types of metal powder.
The specific gravity (density) of the metal powder may be, for example, 5 g/cm 3 or more, and may be 6 g/cm 3
or more, or 6.5 g/cm 3 or more.
 金属粉に含まれる金属元素としては、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、ニオブ(Nb)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種が挙げられる。金属粉は、金属元素以外の元素を含んでいてもよい。金属粉は、例えば、炭素(C)、酸素(О)、ベリリウム(Be)、リン(P)、硫黄(S)、ホウ素(B)、及びケイ素(Si)からなる群より選ばれる少なくとも一種を含んでいてもよい。 Examples of metal elements contained in the metal powder include iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al ), tin (Sn), chromium (Cr), niobium (Nb), barium (Ba), strontium (Sr), lead (Pb), silver (Ag), praseodymium (Pr), neodymium (Nd), samarium (Sm ), and at least one selected from the group consisting of dysprosium (Dy). The metal powder may contain elements other than metal elements. The metal powder is, for example, carbon (C), oxygen (O), beryllium (Be), phosphorus (P), sulfur (S), boron (B), and at least one selected from the group consisting of silicon (Si). may contain.
 金属粉は、軟磁性合金又は強磁性合金であってもよい。金属粉は、例えば、Fe‐Si系合金、Fe‐Si‐Al系合金(センダスト)、Fe‐Ni系合金(パーマロイ)、Fe‐Cu‐Ni系合金(パーマロイ)、Fe‐Co系合金(パーメンジュール)、Fe‐Cr‐Si系合金(電磁ステンレス鋼)、Nd‐Fe‐B系合金(希土類磁石)、Sm‐Fe‐N系合金(希土類磁石)、Al‐Ni‐Co系合金(アルニコ磁石)、及びフェライトからなる群より選ばれる少なくとも一種を含む金属粉であってもよい。フェライトとしては、例えば、スピネルフェライト、六方晶フェライト、及びガーネットフェライトが挙げられる。 The metal powder may be a soft magnetic alloy or a ferromagnetic alloy. Metal powders are, for example, Fe—Si alloys, Fe—Si—Al alloys (sendust), Fe—Ni alloys (permalloy), Fe—Cu—Ni alloys (permalloy), Fe—Co alloys (permalloy). Mendur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), Al-Ni-Co alloy (alnico magnet) and at least one selected from the group consisting of ferrite. Ferrites include, for example, spinel ferrite, hexagonal ferrite, and garnet ferrite.
 金属粉は、Fe単体であってもよい。金属粉は、鉄を含む合金(Fe系合金)であってもよい。Fe系合金は、例えば、Fe‐Si‐Cr系合金又はNd‐Fe‐B系合金であってもよい。金属粉は、アモルファス系鉄粉及びカルボニル鉄粉のうち少なくともいずれかであってもよい。金属粉は、Feアモルファス合金であってもよい。 The metal powder may be Fe alone. The metal powder may be an alloy containing iron (Fe-based alloy). The Fe-based alloy may be, for example, a Fe--Si--Cr-based alloy or a Nd--Fe--B based alloy. The metal powder may be at least one of amorphous iron powder and carbonyl iron powder. The metal powder may be Fe amorphous alloy.
 封止材は、金属粉の中でも磁性粉を含有することが好ましく、軟磁性粉を含有することがより好ましい。封止材は、磁性粉と、アルミナ等の非磁性金属粉と、の両方を含有してもよい。
 封止材は、鉄、コバルト、及びニッケルからなる群より選択される少なくとも1種の金属元素を含む金属粉を含有することが好ましく、鉄を含む金属粉を含有することがより好ましい。鉄を含む金属粉における鉄の含有率としては、例えば、金属粉全体に対し、80質量%以上が挙げられ、83質量%~99質量%であってもよく、85質量%~95質量%であってもよい。
Among metal powders, the sealing material preferably contains magnetic powder, and more preferably contains soft magnetic powder. The sealing material may contain both magnetic powder and non-magnetic metal powder such as alumina.
The sealing material preferably contains metal powder containing at least one metal element selected from the group consisting of iron, cobalt, and nickel, and more preferably contains iron-containing metal powder. The content of iron in the metal powder containing iron is, for example, 80% by mass or more, may be 83% by mass to 99% by mass, and may be 85% by mass to 95% by mass. There may be.
 金属粉の含有率は、封止材全体に対して、60質量%以上であってもよく、80質量%以上であってもよく、90質量%以上であってもよく、95質量%以上であってもよい。
 本実施形態の梱包体では、金属粉を95質量%以上含有する封止材を用いても、封止材粒子のブロッキング抑制と運搬に伴う封止材粒子の移動抑制との両立が可能となる。前記の通り、密度の高い金属粉を多く含む封止材は密度が高くなるため、堆積物の上部における封止材による圧力が大きく、堆積物の下部における封止材粒子のブロッキングがより生
じやすくなる。しかしながら、本実施形態では、堆積物における平均堆積高さ及び梱包容器内における空間の容積が前記範囲であるため、封止材粒子のブロッキング抑制と運搬に伴う封止材粒子の移動抑制との両立が可能となる。
 なお、金属粉の含有率は、封止材全体に対して、99質量%以下であってもよく、98質量%以下であってもよく、97質量%以下であってもよい。
The content of the metal powder may be 60% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more with respect to the entire sealing material. There may be.
In the package of the present embodiment, even if a sealing material containing 95% by mass or more of metal powder is used, it is possible to achieve both suppression of blocking of sealing material particles and suppression of movement of sealing material particles during transportation. . As described above, since the sealing material containing a large amount of high-density metal powder has a high density, the pressure of the sealing material in the upper part of the deposit is large, and blocking of the sealing material particles in the lower part of the deposit is more likely to occur. Become. However, in the present embodiment, since the average pile height of the sediment and the volume of the space in the packing container are within the above ranges, both blocking suppression of the sealing material particles and suppression of movement of the sealing material particles during transportation can be achieved. becomes possible.
The content of the metal powder may be 99% by mass or less, 98% by mass or less, or 97% by mass or less with respect to the entire sealing material.
 金属粉の体積平均粒径は、特に限定されず、例えば、1μm~300μmであってもよく、3μm~100μmであってもよく、4μm~50μmであってもよい。
 本開示において、体積平均粒径は、レーザー回折散乱式粒度分布測定法による体積累積の粒度分布曲線において、小粒径側からの累積が50%となる粒径(50%D)として求められる。例えば、レーザー光散乱法を利用した粒径分布測定装置(例えば、(株)島津製作所、「SALD-3000」)を用いて測定することができる。
The volume average particle size of the metal powder is not particularly limited, and may be, for example, 1 μm to 300 μm, 3 μm to 100 μm, or 4 μm to 50 μm.
In the present disclosure, the volume average particle size is determined as the particle size (50% D) at which the accumulation from the small particle size side is 50% in the volume-accumulated particle size distribution curve measured by the laser diffraction scattering particle size distribution measurement method. For example, it can be measured using a particle size distribution analyzer (for example, Shimadzu Corporation, "SALD-3000") using a laser light scattering method.
 金属粉を構成する個々の粒子の形状は限定されず、例えば、球状、扁平形状、角柱状又は針状であってもよい。封止材は、体積平均粒径の異なる複数種の金属粉を含んでいてもよい。 The shape of the individual particles that make up the metal powder is not limited, and may be, for example, spherical, flat, prismatic, or needle-like. The sealing material may contain a plurality of types of metal powders with different volume average particle diameters.
(樹脂)
 封止材に含有される樹脂としては、例えば硬化性樹脂が挙げられる。硬化性樹脂は、硬化性樹脂は、熱硬化性樹脂及び光硬化性樹脂のいずれであってもよく、量産性の観点からは、熱硬化性樹脂であることが好ましい。
 熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、ビスマレイミド樹脂等のポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、シリコーン樹脂、アクリル樹脂などが挙げられる。熱硬化性樹脂は、成形性及び電気特性の観点から、エポキシ樹脂及びポリイミド樹脂からなる群より選択される少なくとも1種であることが好ましく、エポキシ樹脂及びビスマレイミド樹脂からなる群より選択される少なくとも1種であることがより好ましく、エポキシ樹脂であることがさらに好ましい。
 封止材は、樹脂を1種のみ含んでもよく、2種以上含んでもよい。
(resin)
Examples of the resin contained in the sealing material include curable resins. The curable resin may be either a thermosetting resin or a photocurable resin, and is preferably a thermosetting resin from the viewpoint of mass productivity.
Thermosetting resins include epoxy resins, phenolic resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, urethane resins, polyimide resins such as bismaleimide resins, polyamide resins, polyamideimide resins, silicone resins, and acrylic resins. etc. From the viewpoint of moldability and electrical properties, the thermosetting resin is preferably at least one selected from the group consisting of epoxy resins and polyimide resins, and at least one selected from the group consisting of epoxy resins and bismaleimide resins. One type is more preferable, and an epoxy resin is even more preferable.
The encapsulant may contain only one type of resin, or may contain two or more types.
 封止材に含有される樹脂は、150℃におけるICI粘度が0.30Pa・s以下であってもよく、0.16Pa・s以下であってもよく、0.14Pa・s以下であってもよく、0.12Pa・s以下であってもよい。
 本実施形態の梱包体では、150℃におけるICI粘度0.30Pa・s以下の樹脂を含有する封止材を用いても、封止材粒子のブロッキング抑制と運搬に伴う封止材粒子の移動抑制との両立が可能となる。150℃におけるICI粘度が低い樹脂を含有する封止材は、樹脂が軟化しやすく、軟化により粘着性が増しやすいため、封止材粒子のブロッキングがより生じやすくなると考えられる。しかしながら、本実施形態では、堆積物における平均堆積高さ及び梱包容器内における空間の容積が前記範囲であるため、封止材粒子のブロッキング抑制と運搬に伴う封止材粒子の移動抑制との両立が可能となる。
 なお、樹脂の150℃におけるICI粘度は、1.0mPa・s以上であってもよい。
The resin contained in the sealing material may have an ICI viscosity at 150° C. of 0.30 Pa·s or less, 0.16 Pa·s or less, or 0.14 Pa·s or less. Well, it may be 0.12 Pa·s or less.
In the package of the present embodiment, even when a sealing material containing a resin having an ICI viscosity of 0.30 Pa s or less at 150° C. is used, blocking of the sealing material particles and movement of the sealing material particles during transportation are suppressed. It is possible to be compatible with A sealing material containing a resin having a low ICI viscosity at 150° C. is likely to soften, and the softening tends to increase the adhesiveness, so blocking of the sealing material particles is more likely to occur. However, in the present embodiment, since the average pile height of the sediment and the volume of the space in the packing container are within the above ranges, both blocking suppression of the sealing material particles and suppression of movement of the sealing material particles during transportation can be achieved. becomes possible.
The ICI viscosity of the resin at 150° C. may be 1.0 mPa·s or more.
 ここで、「ICI粘度」とは、ICIコーンプレート回転粘度計で測定した値を意味する。ICI粘度は以下のように測定することができる。
 ICI粘度計(例えば、東亜工業株式会社製のコーンプレート粘度計(モデル:CV‐1S、コーン:10ポアズ))において、150℃に設定した熱盤上に測定試料を載置し、粘度測定用のコーンを下げ、測定試料を熱盤とコーンで挟み込む。そして、上記コーンを750回毎分(rpm)で回転させた際の粘性抵抗を測定し、これをICI粘度とする。なお、ICI粘度計の詳細は、例えば、ASTM D4287(2019)に記載されている。
 なお、封止材が複数種の樹脂を含有する場合、「樹脂の150℃におけるICI粘度」とは、当該複数種の樹脂の混合物の150℃におけるICI粘度を表す。
Here, "ICI viscosity" means a value measured with an ICI cone-plate rotational viscometer. ICI viscosity can be measured as follows.
In an ICI viscometer (for example, a cone plate viscometer (model: CV-1S, cone: 10 poise) manufactured by Toa Kogyo Co., Ltd.), a measurement sample is placed on a hot plate set to 150 ° C., and used for viscosity measurement. Lower the cone and sandwich the measurement sample between the heating plate and the cone. Then, the viscous resistance when the cone is rotated at 750 revolutions per minute (rpm) is measured, and this is taken as the ICI viscosity. Details of the ICI viscometer are described in, for example, ASTM D4287 (2019).
When the encapsulant contains a plurality of types of resins, "the ICI viscosity of the resin at 150°C" represents the ICI viscosity of a mixture of the plurality of types of resins at 150°C.
 封止材に含有される樹脂がエポキシ樹脂を含む場合、封止材に含有される樹脂はエポキシ樹脂の硬化剤をさらに含むことが好ましい。
 また、封止材に含有される樹脂がエポキシ樹脂及び硬化剤を含む場合、樹脂全体に対するエポキシ樹脂及び硬化剤の合計含有率は、70質量%以上であってもよく、90質量%以上であってもよく、95質量%以上であってもよい。
 以下、封止材の一例として、封止材に含有される樹脂がエポキシ樹脂及び硬化剤を含む封止材について説明する。
When the resin contained in the encapsulant contains an epoxy resin, it is preferable that the resin contained in the encapsulant further contains a curing agent for the epoxy resin.
Further, when the resin contained in the encapsulant contains an epoxy resin and a curing agent, the total content of the epoxy resin and the curing agent with respect to the entire resin may be 70% by mass or more, or 90% by mass or more. may be 95% by mass or more.
As an example of the encapsulant, a encapsulant containing an epoxy resin and a curing agent will be described below.
-エポキシ樹脂-
 エポキシ樹脂は、分子中にエポキシ基を有するものであればその種類は特に制限されない。
 エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物と、を酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状
脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
-Epoxy resin-
The type of epoxy resin is not particularly limited as long as it has an epoxy group in its molecule.
Specifically, the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. A novolac type epoxy resin (phenol novolac type epoxy resin, ortho-cresol novolac type epoxy resin, etc.); triphenylmethane type phenolic resin obtained by condensation or co-condensation of the above phenolic compound and an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde in the presence of an acidic catalyst. A triphenylmethane-type epoxy resin obtained by epoxidizing a triphenylmethane-type epoxy resin; a copolymer-type epoxy obtained by epoxidizing a novolak resin obtained by co-condensing the above phenol compound and naphthol compound with an aldehyde compound in the presence of an acidic catalyst Resin: Diphenylmethane-type epoxy resin that is a diglycidyl ether of bisphenol A, bisphenol F, etc.; Biphenyl-type epoxy resin that is a diglycidyl ether of alkyl-substituted or unsubstituted biphenol; Stilbene-type epoxy that is a diglycidyl ether of a stilbene-based phenol compound Resin; Sulfur atom-containing epoxy resin that is diglycidyl ether such as bisphenol S; Epoxy resin that is glycidyl ether of alcohol such as butanediol, polyethylene glycol, polypropylene glycol; Polyvalent such as phthalic acid, isophthalic acid, tetrahydrophthalic acid Glycidyl ester-type epoxy resins, which are glycidyl esters of carboxylic acid compounds; glycidylamine-type epoxy resins, in which active hydrogens bonded to nitrogen atoms of aniline, diaminodiphenylmethane, isocyanuric acid, etc. are substituted with glycidyl groups; dicyclopentadiene and phenol Dicyclopentadiene type epoxy resin obtained by epoxidizing the cocondensation resin of the compound; Vinylcyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane obtained by epoxidizing the olefin bond in the molecule Carboxylates, alicyclic epoxy resins such as 2-(3,4-epoxy)cyclohexyl-5,5-spiro(3,4-epoxy)cyclohexane-m-dioxane; paraxylylene-modified glycidyl ethers of paraxylylene-modified phenolic resins Epoxy resin; metaxylylene-modified epoxy resin that is glycidyl ether of metaxylylene-modified phenol resin; terpene-modified epoxy resin that is glycidyl ether of terpene-modified phenol resin; dicyclopentadiene-modified epoxy resin that is glycidyl ether of dicyclopentadiene-modified phenol resin; A cyclopentadiene-modified epoxy resin that is a glycidyl ether of a pentadiene-modified phenol resin; a polycyclic aromatic ring-modified epoxy resin that is a glycidyl ether of a polycyclic aromatic ring-modified phenol resin; a naphthalene-type epoxy resin that is a glycidyl ether of a naphthalene ring-containing phenol resin; Halogenated phenol novolac type epoxy resins; hydroquinone type epoxy resins; trimethylolpropane type epoxy resins; linear aliphatic epoxy resins obtained by oxidizing olefin bonds with peracids such as peracetic acid; phenol aralkyl resins, naphthol aralkyl resins, etc. an aralkyl type epoxy resin obtained by epoxidizing an aralkyl type phenol resin; Further examples of epoxy resins include epoxidized acrylic resins and the like. These epoxy resins may be used singly or in combination of two or more.
 エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、エポキシ樹脂のエポキシ当量は、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。
The epoxy equivalent (molecular weight/number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, the epoxy equivalent of the epoxy resin is preferably 100 g/eq to 1000 g/eq, more preferably 150 g/eq to 500 g/eq. is more preferable.
Let the epoxy equivalent of an epoxy resin be the value measured by the method according to JISK7236:2009.
 エポキシ樹脂が固体である場合、エポキシ樹脂の軟化点又は融点は特に制限されない。エポキシ樹脂の軟化点又は融点は、成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、封止材の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。
 エポキシ樹脂の融点又は軟化点は、示差走査熱量測定(DSC)又はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。
If the epoxy resin is solid, the softening point or melting point of the epoxy resin is not particularly limited. The softening point or melting point of the epoxy resin is preferably 40° C. to 180° C. from the viewpoint of moldability and reflow resistance, and 50° C. to 130° C. from the viewpoint of handleability during preparation of the encapsulant. It is more preferable to have
The melting point or softening point of the epoxy resin is a value measured by differential scanning calorimetry (DSC) or a method (ring and ball method) according to JIS K 7234:1986.
 封止材が樹脂としてエポキシ樹脂を含む場合、封止材の全量に占めるエポキシ樹脂の質量割合は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~30質量%であることが好ましく、2質量%~20質量%であることがより好ましく、3.5質量%~13質量%であることがさらに好ましい。 When the encapsulant contains an epoxy resin as a resin, the mass ratio of the epoxy resin to the total amount of the encapsulant is 0.5% by mass to 30% by mass from the viewpoint of strength, fluidity, heat resistance, moldability, and the like. preferably 2% by mass to 20% by mass, and even more preferably 3.5% by mass to 13% by mass.
-硬化剤-
 硬化剤としては、フェノール硬化剤、活性エステル硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。
-Curing agent-
Curing agents include phenol curing agents, active ester curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents, and the like.
 フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等と、から合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン変性フェノール樹脂、メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンと、から共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of phenol curing agents include polyhydric phenol compounds such as resorcinol, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol , At least one phenolic compound selected from the group consisting of phenol compounds such as aminophenol and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde, are acidified. Novolak-type phenolic resins obtained by condensation or co-condensation in the presence of a catalyst; aralkyl-type resins such as phenol aralkyl resins and naphthol aralkyl resins synthesized from the above phenolic compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc. Phenolic resin; para-xylylene-modified phenolic resin, meta-xylylene-modified phenolic resin; melamine-modified phenolic resin; terpene-modified phenolic resin; Pentadiene-type naphthol resin; cyclopentadiene-modified phenol resin; polycyclic aromatic ring-modified phenol resin; biphenyl-type phenol resin; triphenylmethane-type phenolic resins obtained by condensation; phenolic resins obtained by copolymerizing two or more of these. These phenol curing agents may be used singly or in combination of two or more.
 活性エステル硬化剤は、エポキシ基と反応するエステル基を1分子中に1個以上有し、
エポキシ樹脂の硬化作用を有する硬化剤である。
 活性エステル硬化剤としては、フェノールエステル化合物、チオフェノールエステル化合物、N-ヒドロキシアミンエステル化合物、複素環ヒドロキシ化合物のエステル化物等が挙げられる。
 活性エステル硬化剤の具体例としては、例えば、脂肪族カルボン酸及び芳香族カルボン酸の少なくとも1種と脂肪族ヒドロキシ化合物及び芳香族ヒドロキシ化合物の少なくとも1種とから得られるエステル化合物が挙げられる。
The active ester curing agent has one or more ester groups in one molecule that react with epoxy groups,
It is a curing agent that has the effect of curing epoxy resin.
Examples of active ester curing agents include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esters of heterocyclic hydroxy compounds.
Specific examples of active ester curing agents include ester compounds obtained from at least one of aliphatic carboxylic acids and aromatic carboxylic acids and at least one of aliphatic hydroxy compounds and aromatic hydroxy compounds.
 活性エステル硬化剤は、これらの中でも、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2~4個をカルボキシ基で置換した芳香族カルボン酸成分と、前記した芳香環の水素原子の1個を水酸基で置換した1価フェノールと、前記した芳香環の水素原子の2~4個を水酸基で置換した多価フェノールと、の混合物を原材料として、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが好ましい。すなわち、上記芳香族カルボン酸成分由来の構造単位と上記1価フェノール由来の構造単位と上記多価フェノール由来の構造単位とを有する芳香族エステルが好ましい。 Among these, the active ester curing agent is an aromatic carboxylic acid component in which 2 to 4 hydrogen atoms on the aromatic ring are substituted with carboxy groups, such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenylether, and diphenylsulfonic acid. , a mixture of a monohydric phenol in which one of the hydrogen atoms on the aromatic ring is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 of the hydrogen atoms on the aromatic ring are substituted with a hydroxyl group. An aromatic ester obtained by a condensation reaction between a group carboxylic acid and a phenolic hydroxyl group is preferred. That is, aromatic esters having structural units derived from the aromatic carboxylic acid component, structural units derived from the monohydric phenol, and structural units derived from the polyhydric phenol are preferred.
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、硬化剤の官能基当量は70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。
 その他の硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、JIS K
 0070:1992に準じた方法により測定される値とする。
The functional group equivalent weight of the curing agent (hydroxyl group equivalent weight in the case of a phenol curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, the functional group equivalent weight of the curing agent is preferably 70 g/eq to 1000 g/eq, more preferably 80 g/eq to 500 g/eq. is more preferable.
The functional group equivalent of other curing agents (hydroxyl group equivalent in the case of phenol curing agents) is JIS K
0070:1992.
 硬化剤の軟化点又は融点は、特に制限されない。硬化剤の軟化点又は融点は、成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、封止材の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。
 硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。
The softening point or melting point of the curing agent is not particularly limited. The softening point or melting point of the curing agent is preferably 40° C. to 180° C. from the viewpoint of moldability and reflow resistance, and from the viewpoint of handleability during production of the encapsulant, 50° C. to 130° C. is more preferable.
The melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
 エポキシ樹脂と硬化剤(硬化剤を複数種用いた場合はすべての硬化剤)との当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。 The equivalent ratio of the epoxy resin and the curing agent (all curing agents when multiple curing agents are used), that is, the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (number of functional groups in the curing agent / epoxy The number of functional groups in the resin) is not particularly limited. From the viewpoint of suppressing the unreacted amount of each, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
(その他の成分)
-硬化促進剤-
 封止材は、必要に応じて硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、樹脂の種類、封止材の所望の特性等に応じて選択できる。
 樹脂としてエポキシ樹脂及び硬化剤を含む封止材に用いる硬化促進剤としては、N,N”-(4-メチル-1,3-フェニレン)ビス[N’,N’-ジメチルウレア]、N’-[3-[[[(ジメチルアミノ)カルボニル]アミノ]メチル]-3,5,5-トリメチルシクロヘキシル]-N,N-ジメチルウレア、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-(4-クロロフェニル)-1,1-ジメチルウレア、フェニルジメチルウレア、トルエンビスジメチルウレア等の芳香族ウレア;1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミ
ダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;エチルホスフィン、フェニルホスフィン等の第1ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の三級ホスフィンなどの、有機ホスフィン;前記有機ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記有機ホスフィン又は前記ホスフィン化合物に、無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン、アントラキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記有機ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物とを反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラフェニルホスホニウムテトラ-p-トリルボレート等のテトラ置換ホスホニウムのテトラフェニルボレート塩、テトラ置換ホスホニウムとフェノール化合物との塩などの、テトラ置換ホスホニウム化合物;テトラアルキルホスホニウムと芳香族カルボン酸無水物の部分加水分解物との塩;ホスホベタイン化合物;ホスホニウム化合物とシラン化合物との付加物;などが挙げられる。
 硬化促進剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
(other ingredients)
- Curing accelerator -
The encapsulant may contain a curing accelerator as necessary. The type of curing accelerator is not particularly limited, and can be selected according to the type of resin, desired properties of the encapsulant, and the like.
Curing accelerators used in sealing materials containing epoxy resins and curing agents as resins include N,N″-(4-methyl-1,3-phenylene)bis[N′,N′-dimethylurea], N′ -[3-[[[(dimethylamino)carbonyl]amino]methyl]-3,5,5-trimethylcyclohexyl]-N,N-dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethyl aromatic ureas such as urea, 3-(4-chlorophenyl)-1,1-dimethylurea, phenyldimethylurea, toluenebisdimethylurea; 1,5-diazabicyclo[4.3.0]nonene-5 (DBN), diazabicycloalkenes such as 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4- cyclic amidine compounds such as methylimidazole and 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolak salts of the cyclic amidine compounds or derivatives thereof; -toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone , a quinone compound such as phenyl-1,4-benzoquinone, a compound having intramolecular polarization obtained by adding a compound having a π bond such as diazophenylmethane; tetraphenylborate salt of DBU, tetraphenylborate salt of DBN, Cyclic amidinium compounds such as tetraphenylborate salt of 2-ethyl-4-methylimidazole and tetraphenylborate salt of N-methylmorpholine; pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris ( dimethylaminomethyl)phenol; derivatives of the tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, tetra-n-hexylammonium benzoate, Ammonium salt compounds such as tetrapropylammonium hydroxide; primary phosphines such as ethylphosphine and phenylphosphine, secondary phosphines such as dimethylphosphine and diphenylphosphine, triphenylphosphine, diphenyl(p-tolyl)phosphine, tris(alkylphenyl) Phosphine, Tris(alkoxyphenyl)phosphine, Tris(alkyl/alkoxyphenyl)phosphine, Tris(dialkylphenyl)phosphine, Tris(trialkylphenyl)phosphine, Tris(tetraalkylphenyl)phosphine, Tris(dialkoxyphenyl)phosphine, Tris Organic phosphines, such as tertiary phosphines such as (trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiarylphosphine, trinaphthylphosphine, tris(benzyl)phosphine; said organic phosphines; phosphine compounds such as complexes of and organic borons; the organic phosphine or the phosphine compound, maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, quinone compounds such as 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, anthraquinone; A compound having intramolecular polarization obtained by adding a compound having a π bond such as phenylmethane; 3-chlorophenol, 2-chlorophenol, 4-iodinated phenol, 3-iodinated phenol, 2-iodinated phenol, 4-bromo-2-methylphenol, 4-bromo-3-methylphenol, 4-bromo- 2,6-dimethylphenol, 4-bromo-3,5-dimethylphenol, 4-bromo-2,6-di-tert-butylphenol, 4-chloro-1-naphthol, 1-bromo-2-naphthol, 6- A compound having intramolecular polarization obtained through a dehydrohalogenation step after reacting with a halogenated phenol compound such as bromo-2-naphthol and 4-bromo-4'-hydroxybiphenyl; tetraphenylphosphonium, etc. Tetrasubstituted phosphonium compounds such as tetrasubstituted phosphoniums, tetraphenylborate salts of tetrasubstituted phosphoniums such as tetraphenylphosphonium tetra-p-tolylborate, salts of tetrasubstituted phosphoniums and phenolic compounds; tetraalkylphosphoniums and aromatic carboxylic acids salts with partial hydrolysates of anhydrides; phosphobetaine compounds; adducts of phosphonium compounds and silane compounds;
A hardening accelerator may be used individually by 1 type, or may be used in combination of 2 or more type.
 封止材が硬化促進剤を含む場合、その量は、樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部
以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。
 なお、「樹脂成分の量」は、封止材に含有される樹脂がエポキシ樹脂及び硬化剤を含む場合、エポキシ樹脂と硬化剤との合計量を意味する。
When the encapsulant contains a curing accelerator, the amount thereof is preferably 0.1 to 30 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the resin component. preferable. When the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency for satisfactory curing in a short period of time. When the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing speed is not too fast and a good molded article tends to be obtained.
The "amount of resin component" means the total amount of the epoxy resin and the curing agent when the resin contained in the sealing material contains the epoxy resin and the curing agent.
-応力緩和剤-
 封止材は、必要に応じて応力緩和剤を含んでもよい。応力緩和剤を含むことにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。応力緩和剤としては、一般に使用されている公知の応力緩和剤(可とう剤)が挙げられる。具体的には、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
-Stress Relief Agent-
The encapsulant may optionally contain a stress-relieving agent. By containing the stress relaxation agent, it is possible to further reduce the warpage deformation of the package and the occurrence of package cracks. Examples of the stress relaxation agent include commonly used known stress relaxation agents (flexible agents). Specifically, silicone-based, styrene-based, olefin-based, urethane-based, polyester-based, polyether-based, polyamide-based, polybutadiene-based thermoplastic elastomers, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic Rubber particles such as rubber, urethane rubber, and silicone powder, core-shell such as methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, and methyl methacrylate-butyl acrylate copolymer Structured rubber particles and the like can be mentioned. A stress relaxation agent may be used individually by 1 type, or may be used in combination of 2 or more type.
 封止材に含有される応力緩和剤としては、これらの中でも、封止材の接着性向上の観点から、シリコーン化合物が好ましい。
 シリコーン化合物とは、有機基が結合したシロキサン結合を主骨格とする高分子化合物であり、一般的な有機ポリシロキサン化合物を特に制限なく用いることができる。
 シリコーン化合物として具体的には、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、両末端ハイドロジェンメチルポリシロキサン、両末端カプロラクトン変性ジメチルポリシロキサン、メチルフェニルポリシロキサン、アルキル変性ポリシロキサン、アミノ変性ポリシロキサン、カルボキシル変性ポリシロキサン、エポキシ変性ポリシロキサン、エポキシ・ポリエーテル変性ポリシロキサン、アルコール変性ポリシロキサン、ポリエーテル変性ポリシロキサン、高級脂肪酸変性ポリシロキサン、ビニル基含有ポリシロキサン、アルキル・ポリエーテル変性ポリシロキサン、アルキル・アラルキル・ポリエーテル変性ポリシロキサン、フッ素変性ポリシロキサン、メルカプト変性ポリシロキサン、クロロアルキル変性ポリシロキサン、(メタ)アクリロイル変性ポリシロキサン等を挙げることができる。シリコーン化合物は1種単独で用いても、2種以上を組み合わせて用いてもよい。また、シリコーン化合物は工業製品又は試薬として市販されているものを用いても、公知の方法で合成したものを用いてもよい。シリコーン化合物の分子量は特に制限されず、用途に応じて選択することができる。
As the stress relaxation agent contained in the encapsulant, among these, a silicone compound is preferable from the viewpoint of improving the adhesiveness of the encapsulant.
A silicone compound is a polymer compound having a siloxane bond to which an organic group is bonded as a main skeleton, and a general organic polysiloxane compound can be used without particular limitation.
Specific examples of silicone compounds include dimethylpolysiloxane, methylhydrogenpolysiloxane, hydrogenmethylpolysiloxane at both ends, caprolactone-modified dimethylpolysiloxane at both ends, methylphenylpolysiloxane, alkyl-modified polysiloxane, amino-modified polysiloxane, carboxyl Modified polysiloxane, epoxy-modified polysiloxane, epoxy-polyether-modified polysiloxane, alcohol-modified polysiloxane, polyether-modified polysiloxane, higher fatty acid-modified polysiloxane, vinyl group-containing polysiloxane, alkyl-polyether-modified polysiloxane, alkyl-polyether-modified polysiloxane, Aralkyl-polyether-modified polysiloxane, fluorine-modified polysiloxane, mercapto-modified polysiloxane, chloroalkyl-modified polysiloxane, (meth)acryloyl-modified polysiloxane and the like can be mentioned. A silicone compound may be used individually by 1 type, or may be used in combination of 2 or more type. As the silicone compound, one commercially available as an industrial product or reagent may be used, or one synthesized by a known method may be used. The molecular weight of the silicone compound is not particularly limited and can be selected depending on the application.
 シリコーン化合物の含有量は、樹脂の合計含有量100質量部に対し、10質量部以上であってもよく、15質量部以上であってもよく、17質量部以上であってもよい。
 本実施形態の梱包体では、シリコーン化合物の含有量が15質量部以上の封止材を用いても、封止材粒子のブロッキング抑制と運搬に伴う封止材粒子の移動抑制との両立が可能となる。シリコーン化合物を多く含有する封止材は、低融点成分の割合が増えることで常温での粘着性及びタック性が増すため、封止材粒子のブロッキングがより生じやすくなる。しかしながら、本実施形態では、堆積物における平均堆積高さ及び梱包容器内における空間の容積が前記範囲であるため、封止材粒子のブロッキング抑制と運搬に伴う封止材粒子の移動抑制との両立が可能となる。
 なお、シリコーン化合物の含有量は、樹脂の合計含有量100質量部に対し、30質量部以下であってもよく、27質量部以下であってもよく、21質量部以下であってもよい。
The content of the silicone compound may be 10 parts by mass or more, 15 parts by mass or more, or 17 parts by mass or more with respect to 100 parts by mass of the total resin content.
In the package of the present embodiment, even when a sealing material having a silicone compound content of 15 parts by mass or more is used, it is possible to suppress blocking of the sealing material particles and suppress movement of the sealing material particles during transportation. becomes. A sealing material containing a large amount of a silicone compound has increased adhesiveness and tackiness at room temperature due to an increase in the proportion of the low-melting point component, so blocking of the sealing material particles is more likely to occur. However, in the present embodiment, since the average pile height of the sediment and the volume of the space in the packing container are within the above ranges, both blocking suppression of the sealing material particles and suppression of movement of the sealing material particles during transportation can be achieved. becomes possible.
The content of the silicone compound may be 30 parts by mass or less, 27 parts by mass or less, or 21 parts by mass or less with respect to 100 parts by mass of the total resin content.
 封止材が応力緩和剤を含有する場合、その量は、例えば、樹脂成分100質量部に対し、1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。 When the sealing material contains a stress relaxation agent, the amount thereof is preferably 1 part by mass to 30 parts by mass, more preferably 2 parts by mass to 20 parts by mass, with respect to 100 parts by mass of the resin component. more preferred.
-カップリング剤-
 封止材は、カップリング剤を含んでもよい。カップリング剤の種類は、特に制限されず、公知のカップリング剤を使用することができる。カップリング剤としては、シランカップリング剤、チタンカップリング剤等が挙げられる。カップリング剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
- Coupling agent -
The encapsulant may contain a coupling agent. The type of coupling agent is not particularly limited, and known coupling agents can be used. Examples of coupling agents include silane coupling agents and titanium coupling agents. A coupling agent may be used individually by 1 type, or may use 2 or more types together.
 シランカップリング剤としては、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、8-メタクリロキシオクチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、γ-アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等が挙げられる。 Silane coupling agents include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-methacryloxypropyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane, β-(3,4- epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-[bis(β-hydroxyethyl)] aminopropyltriethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, γ-(β-aminoethyl)aminopropyldimethoxymethylsilane, N-(trimethoxysilylpropyl)ethylenediamine, N-( dimethoxymethylsilylisopropyl)ethylenediamine, methyltrimethoxysilane, methyltriethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, γ-anilinopropyltrimethoxysilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane and the like.
 チタンカップリング剤としては、イソプロピルトリイソステアロイルチタネート、イ
ソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等が挙げられる。
Titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2, 2-diallyloxymethyl-1-butyl)bis(ditridecylphosphite)titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctanoyltitanate, isopropyldimethacrylisostearoyltitanate , isopropyltridodecylbenzenesulfonyltitanate, isopropylisostearoyldiacryltitanate, isopropyltri(dioctylphosphate)titanate, isopropyltricumylphenyltitanate, tetraisopropylbis(dioctylphosphite)titanate and the like.
 封止材がカップリング剤を含む場合、カップリング剤の量は、金属粉100質量部に対して0.05質量部~5質量部であることが好ましく、0.08質量部~2.5質量部であることがより好ましい。 When the sealing material contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass of the metal powder, and 0.08 parts by mass to 2.5 parts by mass. Parts by mass are more preferred.
-離型剤-
 封止材は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ラウリン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 封止材が離型剤を含む場合、その量は樹脂成分100質量部に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。
-Release agent-
The encapsulant may contain a mold release agent from the viewpoint of obtaining good releasability from the mold during molding. The release agent is not particularly limited, and conventionally known agents can be used. Specific examples include carnauba wax, higher fatty acids such as montanic acid, lauric acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. . The release agent may be used alone or in combination of two or more.
When the encapsulant contains a release agent, the amount thereof is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, per 100 parts by mass of the resin component.
-イオン交換体-
 封止材は、イオン交換体を含んでもよい。イオン交換体は特に制限されず、従来公知の
ものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム、及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
  Mg(1-X)Al(OH)(COX/2・mHO ……(A)
  (0<X≦0.5、mは正の数)
 封止材がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、イオン交換体の含有量は、樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。
-Ion exchanger-
The encapsulant may contain an ion exchanger. The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. The ion exchangers may be used singly or in combination of two or more. Among them, hydrotalcite represented by the following general formula (A) is preferable.
Mg (1-X) Al X (OH) 2 (CO 3 ) X/2 ·mH 2 O (A)
(0<X≤0.5, m is a positive number)
When the sealing material contains an ion exchanger, its content is not particularly limited as long as it is sufficient to capture ions such as halogen ions. For example, the content of the ion exchanger is preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass, per 100 parts by mass of the resin component.
-難燃剤-
 封止材は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 封止材が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、難燃剤の量は、樹脂成分100質量部に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。
-Flame retardants-
The encapsulant may contain a flame retardant. The flame retardant is not particularly limited, and conventionally known ones can be used. Specific examples include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, and metal hydroxides. A flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.
When the encapsulant contains a flame retardant, its amount is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect. For example, the amount of the flame retardant is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, with respect to 100 parts by mass of the resin component.
-着色剤-
 封止材は、着色剤を含んでもよい。着色剤としては、カーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は、目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
-coloring agent-
The encapsulant may contain a colorant. Examples of the coloring agent include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron oxide. The content of the coloring agent can be appropriately selected according to the purpose and the like. A coloring agent may be used individually by 1 type, or may be used in combination of 2 or more type.
-その他の充填剤-
 封止材は、必要に応じて、その他の充填剤を含んでもよい。その他の充填剤としては、シリカ等が挙げられる。
-Other fillers-
The encapsulant may optionally contain other fillers. Other fillers include silica and the like.
-封止材の調製方法-
 封止材の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
-Method for preparing sealing material-
A method for preparing the encapsulant is not particularly limited. As a general method, there can be mentioned a method of thoroughly mixing components in predetermined amounts with a mixer or the like, melt-kneading the mixture with a mixing roll, an extruder or the like, cooling, and pulverizing. More specifically, for example, predetermined amounts of the above components are stirred and mixed, kneaded with a kneader, rolls, extruder, etc. preheated to 70° C. to 140° C., cooled, and pulverized. be able to.
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。 Although the above embodiment will be specifically described below with reference to examples, the scope of the above embodiment is not limited to these examples.
[封止材の調製]
<封止材Aの調製>
 下記に示す成分を下記に示す配合割合(質量部)で混合し、封止材Aを調製した。
 得られた封止材Aは、25℃かつ大気圧下において固体であり、嵩密度4.07g/cm、質量平均粒径300μm以上500μm未満のパウダー状封止材であった。
 なお、樹脂全体の150℃におけるICI粘度は、0.11Pa・sであった。
 また、封止材A全体に対する金属粉の含有率は96.4質量%であった。
[Preparation of sealing material]
<Preparation of sealing material A>
A sealing material A was prepared by mixing the components shown below in the proportions (parts by mass) shown below.
The resulting encapsulating material A was a powdery encapsulating material that was solid at 25° C. and atmospheric pressure and had a bulk density of 4.07 g/cm 3 and a mass average particle size of 300 μm or more and less than 500 μm.
The ICI viscosity of the entire resin at 150° C. was 0.11 Pa·s.
Moreover, the content rate of the metal powder with respect to the whole sealing material A was 96.4% by mass.
・エポキシ樹脂1(ビフェニレンアラルキル型エポキシ樹脂、エポキシ当量275g/eq、軟化点58℃、日本化薬株式会社):50質量部
・エポキシ樹脂2(3官能エポキシ樹脂、エポキシ当量210g/eq、軟化点60℃、株式会社プリンテック):50質量部
・硬化剤1(トリフェニルメタン型フェノール樹脂、エア・ウォーター株式会社、水酸基当量101g/eq、軟化点78℃):26質量部
・硬化剤2(ビフェニレンアラルキル型フェノール樹脂、水酸基当量203g/eq、軟化点67℃、明和化成株式会社):42質量部
・ Epoxy resin 1 (biphenylene aralkyl type epoxy resin, epoxy equivalent 275 g / eq, softening point 58 ° C., Nippon Kayaku Co., Ltd.): 50 parts by mass ・ Epoxy resin 2 (trifunctional epoxy resin, epoxy equivalent 210 g / eq, softening point 60 ° C., Printec Co., Ltd.): 50 parts by mass Curing agent 1 (triphenylmethane type phenolic resin, Air Water Co., Ltd., hydroxyl equivalent 101 g / eq, softening point 78 ° C.): 26 parts by mass Curing agent 2 ( Biphenylene aralkyl type phenol resin, hydroxyl equivalent 203 g / eq, softening point 67 ° C., Meiwa Kasei Co., Ltd.): 42 parts by mass
・硬化促進剤(芳香族ウレア、サンアプロ株式会社):6.0質量部
・シラン化合物1(メタクリロキシオクチルトリメトキシシラン、信越化学工業株式会社):3.0質量部
・シラン化合物2(3-メルカプトプロピルトリメトキシシラン、信越化学工業株式会社):2.0質量部
・離型剤1(ラウリン酸亜鉛、日油株式会社):4.0質量部
・離型剤2(部分ケン化モンタン酸エステル、クラリアントケミカルズ株式会社):2.0質量部
・シリコーン化合物1(ポリカプロラクトン変性ジメチルシリコーン、Gelest社):30質量部
Curing accelerator (aromatic urea, San-Apro Co., Ltd.): 6.0 parts by mass Silane compound 1 (methacryloxyoctyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.): 3.0 parts by mass Silane compound 2 (3- Mercaptopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.): 2.0 parts by mass Release agent 1 (zinc laurate, NOF Corporation): 4.0 parts by mass Release agent 2 (partially saponified montanic acid Ester, Clariant Chemicals Co., Ltd.): 2.0 parts by mass Silicone compound 1 (polycaprolactone-modified dimethyl silicone, Gelest): 30 parts by mass
・金属粉1(Feアモルファス合金、体積平均粒径:24μm、真比重:6.7g/cm、鉄の含有率:93質量%、エプソンアトミックス株式会社):4725質量部
・金属粉2(Feアモルファス合金、体積平均粒径:5.3μm、真比重:6.9g/cm、鉄の含有率:87質量%、エプソンアトミックス株式会社):1037質量部
・Metal powder 1 (Fe amorphous alloy, volume average particle size: 24 μm, true specific gravity: 6.7 g/cm 3 , iron content: 93% by mass, Epson Atmix Co., Ltd.): 4725 parts by mass ・Metal powder 2 ( Fe amorphous alloy, volume average particle size: 5.3 μm, true specific gravity: 6.9 g/cm 3 , iron content: 87% by mass, Epson Atmix Co., Ltd.): 1037 parts by mass
<封止材Bの調製>
 金属粉1の配合割合を5706質量部、金属粉2の配合割合を1252質量部に変更した以外は、封止材Aと同様にして、封止材Bを得た。
 得られた封止材Bは、25℃かつ大気圧下において固体であり、嵩密度4.58g/cm、質量平均粒径300μm以上500μm未満のパウダー状封止材であった。
 また、封止材B全体に対する金属粉の含有率は97.0質量%であった。
<Preparation of sealing material B>
A sealing material B was obtained in the same manner as the sealing material A, except that the mixing ratio of the metal powder 1 was changed to 5706 parts by mass and the mixing ratio of the metal powder 2 was changed to 1252 parts by mass.
The resulting encapsulating material B was a powdery encapsulating material that was solid at 25° C. and atmospheric pressure and had a bulk density of 4.58 g/cm 3 and a mass average particle size of 300 μm or more and less than 500 μm.
Also, the content of the metal powder with respect to the entire sealing material B was 97.0% by mass.
<封止材Cの調製>
 金属粉1の配合割合を3745質量部、金属粉2の配合割合を822質量部に変更した以外は、封止材Aと同様にして、封止材Cを得た。
 得られた封止材Cは、25℃かつ大気圧下において固体であり、嵩密度3.31g/cm、質量平均粒径300μm以上500μm未満のパウダー状封止材であった。
 また、封止材C全体に対する金属粉の含有率は95.5質量%であった。
<Preparation of sealing material C>
A sealing material C was obtained in the same manner as the sealing material A, except that the mixing ratio of the metal powder 1 was changed to 3745 parts by mass and the mixing ratio of the metal powder 2 was changed to 822 parts by mass.
The resulting encapsulating material C was a powdery encapsulating material that was solid at 25° C. and atmospheric pressure and had a bulk density of 3.31 g/cm 3 and a mass average particle diameter of 300 μm or more and less than 500 μm.
Also, the content of the metal powder with respect to the entire sealing material C was 95.5% by mass.
[梱包体の製造]
<梱包容器>
 下記に示す梱包容器を準備した。
・梱包容器1:段ボール箱、紙製、内寸(幅232mm、長さ183mm、高さ128mm)、全体の容積(内寸から算出):5434cm、厚み5mm、昭和電工マテリアルズ・テクノサービス社製、品番「A-20」、材質「K7×MM180×K7、A/F」、質量0.23kg
・梱包容器2:段ボール箱、紙製、内寸(幅254mm、長さ254mm、高さ268mm)、全体の容積(内寸から算出):17290cm、厚み5mm、昭和電工マテリアルズ・テクノサービス社製、品番「A-CEL-15」、材質「K7×MM180×K7、A/F」、質量0.48kg
・梱包容器3:ビード缶、金属(TFS-ET)製、内寸(幅240mm、長さ240mm、高さ349mm)、全体の容積(内寸から算出):20102cm、厚み0.32mm、大日製管株式会社製、品番「ビード缶」、質量1.09kg
[Production of package]
<Packing container>
A packing container shown below was prepared.
・Packing container 1: Cardboard box, made of paper, internal dimensions (width 232 mm, length 183 mm, height 128 mm), total volume (calculated from internal dimensions): 5434 cm 3 , thickness 5 mm, Showa Denko Materials Techno Service Co., Ltd. Product, product number "A-20", material "K7 x MM180 x K7, A/F", mass 0.23 kg
・Packing container 2: Cardboard box, made of paper, inner dimensions (width 254 mm, length 254 mm, height 268 mm), total volume (calculated from inner dimensions): 17290 cm 3 , thickness 5 mm, Showa Denko Materials Techno Service Co., Ltd. Product, product number "A-CEL-15", material "K7 x MM180 x K7, A/F", mass 0.48 kg
・Packing container 3: bead can, made of metal (TFS-ET), inner dimensions (width 240 mm, length 240 mm, height 349 mm), total volume (calculated from inner dimensions): 20102 cm 3 , thickness 0.32 mm, large Made by Nisseikan Co., Ltd., product number “Bead can”, mass 1.09 kg
<包装袋、乾燥剤、緩衝材>
 下記に示す包装袋、乾燥剤、及び緩衝材を準備した。
・包装袋:ポリエチレン袋、寸法(幅500mm、高さ700mm、マチなし)、厚み0.06mm、スタープラスチック社製、品番「S-60V」、質量0.04kg/枚
・乾燥剤:クレイを多孔質樹脂フィルムにより包装した乾燥剤、吸湿成分の質量:50g、体積:102cm、大江化学工業株式会社製、品名:ケアドライ
・緩衝材:樹脂製気泡緩衝材、和泉社製、品名「AC-230」、体積900cm/個~1800cm/個、質量0.03kg/個
<Packaging bag, desiccant, cushioning material>
A packaging bag, a desiccant, and a cushioning material shown below were prepared.
・Packaging bag: Polyethylene bag, dimensions (width 500 mm, height 700 mm, no gusset), thickness 0.06 mm, product number “S-60V” manufactured by Star Plastics, mass 0.04 kg/piece ・Drying agent: porous clay Desiccant packaged in high-quality resin film, mass of moisture absorbing component: 50 g, volume: 102 cm 3 , manufactured by Ohe Chemical Industry Co., Ltd., product name: Care Dry, cushioning material: resin bubble cushioning material, manufactured by Izumi Co., product name “AC-230” ”, volume 900 cm 3 /unit to 1800 cm 3 /unit, mass 0.03 kg/unit
<実施例1>
 1つの包装袋に前記封止材A5kgと乾燥剤1個と入れ、包装袋の開口部を結んで輪ゴムで留めて密閉した包装体を、2つ準備した。
 一方、梱包容器1に3枚目の包装袋を入れ、前記3枚目の包装袋に2つの包装体を水平方向に並べて入れ、3枚目の包装袋の開口部を結んで輪ゴムで留めて密閉し、梱包容器を密閉することで、図1に示す形態の梱包体1を得た。
<Example 1>
Two packages were prepared by putting 5 kg of the sealing material A and one desiccant in one packaging bag, and sealing the opening of the packaging bag with a rubber band.
On the other hand, a third packaging bag is put in the packing container 1, two packages are put in parallel in the third packaging bag in the horizontal direction, and the opening of the third packaging bag is tied and fastened with a rubber band. By sealing and sealing the packaging container, a package 1 having the form shown in FIG. 1 was obtained.
<実施例2>
 1つの包装袋に入れる封止材Aの質量を4kgに変更した以外は、実施例1と同様にして、梱包体2を得た。
<実施例3>
 2つの乾燥剤を、包装体の外側かつ3枚目の包装袋の内部に収容した以外は、実施例1と同様にして、梱包体3を得た。
<実施例4>
 用いる乾燥剤の数を全部で1つのみとし、包装体の外側かつ3枚目の包装袋の内部に収容した以外は、実施例1と同様にして、梱包体4を得た。
<Example 2>
A package 2 was obtained in the same manner as in Example 1, except that the mass of the sealing material A put into one packaging bag was changed to 4 kg.
<Example 3>
A package 3 was obtained in the same manner as in Example 1, except that the two desiccants were accommodated outside the package and inside the third packaging bag.
<Example 4>
A package 4 was obtained in the same manner as in Example 1, except that the total number of desiccants used was only one, and it was housed outside the package and inside the third packaging bag.
<実施例5>
 乾燥剤を全く用いない以外は、実施例1と同様にして、梱包体5を得た。
<実施例6>
 用いる乾燥剤の数を全部で4つとし、包装体の外側かつ3枚目の包装袋の内部に収容した以外は、実施例1と同様にして、梱包体6を得た。
<Example 5>
A package 5 was obtained in the same manner as in Example 1, except that no desiccant was used.
<Example 6>
A package 6 was obtained in the same manner as in Example 1, except that a total of four desiccants were used, and the desiccants were housed outside the package and inside the third packaging bag.
<実施例7>
 1つの包装袋に入れる封止材を、封止材B5kgに変更した以外は、実施例1と同様にして、梱包体7を得た。
<実施例8>
 1つの包装袋に入れる封止材を、封止材C4kgに変更した以外は、実施例1と同様にして、梱包体8を得た。
<Example 7>
A package 7 was obtained in the same manner as in Example 1, except that the sealing material put into one packaging bag was changed to 5 kg of sealing material B.
<Example 8>
A package 8 was obtained in the same manner as in Example 1, except that the sealing material put into one packaging bag was changed to 4 kg of sealing material C.
<実施例9>
 1つの包装袋に前記封止材A10kgと乾燥剤2個と入れ、包装袋の開口部を結んで輪ゴムで留めて密閉した包装体を、1つ準備した。
 梱包容器1に前記包装体を入れ、梱包容器を密閉することで、梱包体9を得た。
<Example 9>
10 kg of the sealing material A and two desiccants were placed in one packaging bag, and one packaging body was prepared by tying the opening of the packaging bag and fixing it with a rubber band to seal it.
The package 9 was obtained by putting the package in the package 1 and sealing the package.
<実施例10>
 1つの包装袋に前記封止材A5kgと乾燥剤1個と入れ、包装袋の開口部を結んで輪ゴ
ムで留めて密閉した包装体を、2つ準備した。
 一方、梱包容器2に3枚目の包装袋を入れ、前記3枚目の包装袋に2つの包装体を水平方向に並べて入れ、3枚目の包装袋の開口部を結んで輪ゴムで留めて密閉した。
 次に、3枚目の包装袋の外部かつ梱包容器の内部に10660cmの緩衝材を収容し、梱包容器を密閉することで、梱包体10を得た。
<Example 10>
Two packages were prepared by putting 5 kg of the sealing material A and one desiccant in one packaging bag, and sealing the opening of the packaging bag with a rubber band.
On the other hand, a third packaging bag is placed in the packaging container 2, two packages are placed in the third packaging bag horizontally, and the opening of the third packaging bag is tied and fastened with a rubber band. sealed.
Next, a 10660 cm 3 cushioning material was accommodated outside the third packaging bag and inside the packaging container, and the packaging container was sealed to obtain the package 10 .
<実施例11>
 1つの包装袋に前記封止材A5kgと乾燥剤1個と入れ、包装袋の開口部を結んで輪ゴムで留めて密閉した包装体を、2つ準備した。
 一方、梱包容器3に3枚目の包装袋を入れ、前記3枚目の包装袋に2つの包装体を鉛直方向に並べて入れ、3枚目の包装袋の開口部を結んで輪ゴムで留めて密閉した。
 次に、3枚目の包装袋の外部かつ梱包容器の内部に14000cmの緩衝材を収容し、梱包容器を密閉することで、梱包体11を得た。
<Example 11>
Two packages were prepared by putting 5 kg of the sealing material A and one desiccant in one packaging bag, and sealing the opening of the packaging bag with a rubber band.
On the other hand, a third packaging bag is put in the packing container 3, two packages are put in parallel in the vertical direction in the third packaging bag, and the opening of the third packaging bag is tied and fastened with a rubber band. sealed.
Next, a 14000 cm 3 cushioning material was accommodated outside the third packaging bag and inside the packaging container, and the packaging container was sealed to obtain the package 11 .
<比較例1>
 1つの包装袋に入れる封止材Aの質量を7.5kgに変更した以外は、実施例1と同様にして、梱包体C1を得た。
<比較例2>
 1つの包装袋に前記封止材A15kgと乾燥剤1個と入れ、包装袋の開口部を結んで輪ゴムで留めて密閉した包装体を、1つ準備した。
 一方、梱包容器1に2枚目の包装袋を入れ、前記2枚目の包装袋に前記包装体を入れ、2枚目の包装袋の開口部を結んで輪ゴムで留めて密閉し、梱包容器を密閉することで、梱包体C2を得た。
<比較例3>
 乾燥剤を、包装体の外側かつ2枚目の包装袋の内部に収容した以外は、比較例2と同様にして、梱包体C3を得た。
<Comparative Example 1>
A package C1 was obtained in the same manner as in Example 1, except that the mass of the sealing material A put into one packaging bag was changed to 7.5 kg.
<Comparative Example 2>
15 kg of the sealing material A and one desiccant were placed in one packaging bag, and one packaging body was prepared by tying the opening of the packaging bag and fixing it with a rubber band to seal it.
On the other hand, a second packaging bag is put in the packaging container 1, the package is put in the second packaging bag, the opening of the second packaging bag is tied and fastened with a rubber band to seal, and the packaging container is was sealed to obtain a package C2.
<Comparative Example 3>
A package C3 was obtained in the same manner as in Comparative Example 2, except that the desiccant was accommodated outside the package and inside the second packaging bag.
<比較例4>
 3枚目の包装袋の外部かつ梱包容器の内部に930cmの緩衝材をさらに収容した以外は、実施例1と同様にして、梱包体C4を得た。
<比較例5>
 梱包容器として梱包容器2を用い、かつ、3枚目の包装袋の外部かつ梱包容器の内部に、5580cmの緩衝材を収容した以外は、実施例1と同様にして、梱包体C5を得た。
<Comparative Example 4>
A package C4 was obtained in the same manner as in Example 1, except that a 930 cm 3 cushioning material was further accommodated outside the third packaging bag and inside the packaging container.
<Comparative Example 5>
A package C5 was obtained in the same manner as in Example 1, except that the packaging container 2 was used as the packaging container, and a 5580 cm 3 cushioning material was accommodated outside the third packaging bag and inside the packaging container. rice field.
<比較例6>
 包装袋に入れる封止材を、封止材B15kgに変更した以外は、実施例9と同様にして、梱包体C6を得た。
<比較例7>
 1つの包装袋に入れる封止材を、封止材C7.5kgに変更した以外は、実施例1と同様にして、梱包体C7を得た。
<Comparative Example 6>
A package C6 was obtained in the same manner as in Example 9, except that the sealing material put into the packaging bag was changed to 15 kg of the sealing material B.
<Comparative Example 7>
A package C7 was obtained in the same manner as in Example 1, except that the sealing material put into one packaging bag was changed to 7.5 kg of sealing material C.
<比較例8>
 1つの包装袋に前記封止材A15kgと乾燥剤1個と入れ、包装袋の開口部を結んで輪ゴムで留めて密閉した包装体を、3つ準備した。
 一方、梱包容器2に4枚目の包装袋を入れ、前記4枚目の包装袋に3つの包装体を鉛直方向に並べて入れ、4枚目の包装袋の開口部を結んで輪ゴムで留めて密閉し、梱包容器を密閉することで、梱包体C8を得た。
<比較例9>
 梱包容器として梱包容器3を用いた以外は、比較例8と同様にして、梱包体C9を得た。
<Comparative Example 8>
Three packages were prepared by putting 15 kg of the sealing material A and one desiccant in one packaging bag, and sealing the opening of the packaging bag with a rubber band.
On the other hand, put a fourth packaging bag in the packaging container 2, put three packages in the fourth packaging bag in a vertical direction, tie the opening of the fourth packaging bag and fasten it with a rubber band. A package C8 was obtained by sealing and sealing the packaging container.
<Comparative Example 9>
A package C9 was obtained in the same manner as in Comparative Example 8, except that the package 3 was used as the package.
[測定及び評価]
<測定>
 得られた梱包体における、堆積物の平均堆積高さ(表中の「堆積高さ」)、空間の容積(表中の「空間容積」)、及び梱包体全体の質量(表中の「全体質量」)を表1~表3に示す。
 なお、堆積物の平均堆積高さは、前述の方法により求めた値である。
 また、空間の容積については、梱包容器全体の容積から内容物の体積を差し引いて求めた値である。ただし、梱包容器全体の容積は内寸から理論的に算出し、包装袋の各領域における体積は採寸した上で理論的に算出し、堆積物の体積は質量及び嵩密度の値から算出し、乾燥剤及び緩衝材の体積は採寸した上で理論的に算出した。
 実施例1の梱包体1については、液体として水を用いた液体充填法により空間の容積を測定し、水の表面張力を考慮して値を補正した結果、±5%の範囲内で、梱包容器全体の容積から内容物の体積を差し引いて求めた値と同等の値が得られた。
[Measurement and evaluation]
<Measurement>
In the resulting package, the average pile height of the deposit ("pile height" in the table), the volume of the space ("space volume" in the table), and the mass of the entire package ("total mass”) are shown in Tables 1 to 3.
The average height of deposits is the value obtained by the method described above.
Moreover, the volume of the space is a value obtained by subtracting the volume of the contents from the volume of the entire packing container. However, the volume of the entire packaging container is calculated theoretically from the internal dimensions, the volume of each area of the packaging bag is calculated theoretically after taking measurements, and the volume of sediment is calculated from the mass and bulk density values, The volumes of the desiccant and buffer material were measured and theoretically calculated.
Regarding the package 1 of Example 1, the volume of the space was measured by a liquid filling method using water as the liquid, and the value was corrected in consideration of the surface tension of water. A value equivalent to the value obtained by subtracting the volume of the contents from the volume of the entire container was obtained.
<封止材粒子のブロッキング評価>
 得られた梱包体を、温度5℃湿度10%以下の冷蔵庫内で3か月間保管した後に、温度20℃湿度50%の環境下で5時間保管した。その後、梱包体を開封し、堆積物の下部における封止材を取り出して、2mm篩上に置き、封止材粒子の状態を目視で観察して、下記評価基準により評価した。結果を表1~表3に示す。
(評価基準)
 A :ブロッキングは全く発生せず
 A:ブロッキングがわずかに発生していたが、許容範囲
 B:ブロッキングが部分的に発生し、許容範囲を超えるレベル
 B :ブロッキングにより封止材が固結していたが、振動によりほぐれるレベル
 C :ブロッキングにより封止材が固結し、振動を与えてもほぐれないレベル
<Blocking Evaluation of Sealing Material Particles>
The obtained package was stored in a refrigerator at a temperature of 5° C. and a humidity of 10% or less for 3 months, and then stored in an environment of a temperature of 20° C. and a humidity of 50% for 5 hours. After that, the package was opened, the sealing material at the bottom of the deposit was taken out, placed on a 2 mm sieve, and the state of the sealing material particles was visually observed and evaluated according to the following evaluation criteria. The results are shown in Tables 1-3.
(Evaluation criteria)
A: No blocking occurred A : Blocking occurred slightly, but within the acceptable range B + : Blocking occurred partially and exceeded the acceptable range B : Sealing material solidified due to blocking Level C: Sealing material hardened due to blocking and could not be loosened by vibration
<運搬に伴う封止材粒子の移動評価>
 得られた梱包体を、角度可変な水平台の上に置き、台を180°回転させ上下を反転させてから元の位置に戻した後、梱包体を開封し、内容物の移動状態を目視で確認して、下記評価基準により評価した。結果を表1~表3に示す。
(評価基準)
 A :封止材の移動及び偏りが発生せず、包装袋の破損の危険性無し
 B :封止材の移動及び偏りが生じ、包装袋の破損の危険性有り
<Evaluation of movement of sealing material particles during transportation>
The resulting package is placed on a horizontal table with a variable angle, the table is rotated 180°, turned upside down, and then returned to the original position. and evaluated according to the following evaluation criteria. The results are shown in Tables 1-3.
(Evaluation criteria)
A: There is no risk of damage to the packaging bag due to no movement or deviation of the sealing material B: There is a risk of damage to the packaging bag due to movement or deviation of the sealing material
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示される通り、実施例の梱包体は、比較例の梱包体に比べて、封止材粒子のブロッキングの抑制と、運搬に伴う封止材粒子の移動の抑制と、が両立されている。 As shown in Tables 1 to 3, the packages of the examples are more effective in suppressing blocking of the sealing material particles and suppressing movement of the sealing material particles during transportation than the packages of the comparative examples. are compatible.
 2021年11月8日に出願された日本国特許出願2021-182070号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に取り込まれる。
The disclosure of Japanese Patent Application No. 2021-182070 filed on November 8, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein.
10、30 梱包体
12、32 梱包容器
14、16A、16B、36 包装袋
18A、18B、38 堆積物
20A、20B、40 乾燥剤
22A、22B、42 包装体
34 緩衝材
10, 30 packages 12, 32 packaging containers 14, 16A, 16B, 36 packaging bags 18A, 18B, 38 deposits 20A, 20B, 40 desiccants 22A, 22B, 42 packages 34 cushioning materials

Claims (14)

  1.  梱包容器と、
     前記梱包容器内に収容される包装袋と、
     樹脂と金属粉とを含有する封止材の堆積物であって、前記包装袋内に収容され、平均堆積高さが75mm以下である封止材の堆積物と、
     を含み
     前記梱包容器内における空間の容積が1600cm~3400cmである、封止材の梱包体。
    a packaging container;
    a packaging bag accommodated in the packaging container;
    a deposit of a sealing material containing a resin and a metal powder, which is housed in the packaging bag and has an average deposition height of 75 mm or less;
    A package of sealing material, wherein the volume of the space in the package is 1600 cm 3 to 3400 cm 3 .
  2.  前記包装袋内に収容される乾燥剤をさらに含む、請求項1に記載の封止材の梱包体。 The sealing material package according to claim 1, further comprising a desiccant contained in the packaging bag.
  3.  前記金属粉の含有率は、前記封止材全体に対し95質量%以上である、請求項1又は請求項2に記載の封止材の梱包体。 The sealing material package according to claim 1 or 2, wherein the content of the metal powder is 95% by mass or more with respect to the entire sealing material.
  4.  前記堆積物と、前記堆積物を内部に収容する前記包装袋と、を含む包装体は、1つの前記梱包容器に2以上収容される、請求項1~請求項3のいずれか1項に記載の封止材の梱包体。 The package according to any one of claims 1 to 3, wherein two or more packages containing the deposit and the packaging bag containing the deposit are housed in one packaging container. package of encapsulant.
  5.  前記2以上の包装体は、前記1つの梱包容器内において、水平方向に配置される、請求項4に記載の封止材の梱包体。 The package of sealing material according to claim 4, wherein the two or more packages are horizontally arranged in the one packaging container.
  6.  前記梱包容器の容積は、3500cm~9500cmである、請求項1~請求項5のいずれか1項に記載の封止材の梱包体。 The sealing material package according to any one of claims 1 to 5, wherein the volume of the packaging container is 3500 cm 3 to 9500 cm 3 .
  7.  梱包体全体の質量は、14kg以下である、請求項1~請求項6のいずれか1項に記載の封止材の梱包体。 The package of sealing material according to any one of claims 1 to 6, wherein the mass of the entire package is 14 kg or less.
  8.  前記梱包容器の内部には、緩衝材が収容されていないか、又は合計体積が1200cm以下の緩衝材が収容されている、請求項1~請求項7のいずれか1項に記載の封止材の梱包体。 The sealing according to any one of claims 1 to 7, wherein the packing container contains no cushioning material or contains a cushioning material with a total volume of 1200 cm 3 or less. material packaging.
  9.  前記封止材は、前記樹脂として、エポキシ樹脂及び硬化剤を含有する請求項1~請求項8のいずれか1項に記載の封止材の梱包体。 The sealing material package according to any one of claims 1 to 8, wherein the sealing material contains an epoxy resin and a curing agent as the resin.
  10.  前記樹脂は、150℃におけるICI粘度が0.30Pa・s以下である請求項1~請求項9のいずれか1項に記載の封止材の梱包体。 The sealing material package according to any one of claims 1 to 9, wherein the resin has an ICI viscosity of 0.30 Pa·s or less at 150°C.
  11.  前記封止材は、さらにシリコーン化合物を含む、請求項1~請求項10のいずれか1項に記載の封止材の梱包体。 The sealing material package according to any one of claims 1 to 10, wherein the sealing material further contains a silicone compound.
  12.  前記シリコーン化合物の含有量は、前記樹脂の合計含有量100質量部に対し、15質量部以上である、請求項11に記載の封止材の梱包体。 The sealing material package according to claim 11, wherein the content of the silicone compound is 15 parts by mass or more with respect to the total content of 100 parts by mass of the resin.
  13.  前記金属粉は、鉄、コバルト、及びニッケルからなる群より選択される少なくとも1種の金属元素を含む、請求項1~請求項12のいずれか1項に記載の封止材の梱包体。 The sealing material package according to any one of claims 1 to 12, wherein the metal powder contains at least one metal element selected from the group consisting of iron, cobalt, and nickel.
  14.  梱包容器内に包装袋を収容することと、
     前記包装袋内に、樹脂と金属粉とを含有する封止材を収容し、前記封止材の堆積物における平均堆積高さを75mm以下とすることと、
     前記梱包容器内における空間の容積を1600cm~3400cmとすることと、
     を含む、封止材の梱包方法。
    housing the packaging bag within the packaging container;
    A sealing material containing resin and metal powder is accommodated in the packaging bag, and an average deposition height of the deposit of the sealing material is 75 mm or less;
    setting the volume of the space in the packaging container to 1600 cm 3 to 3400 cm 3 ;
    A method of packaging an encapsulant, comprising:
PCT/JP2022/038638 2021-11-08 2022-10-17 Packing body for sealing material and packing method for sealing material WO2023079940A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023557927A JPWO2023079940A1 (en) 2021-11-08 2022-10-17
CN202280053106.0A CN117715835A (en) 2021-11-08 2022-10-17 Packing body of sealing material and packing method of sealing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021182070 2021-11-08
JP2021-182070 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023079940A1 true WO2023079940A1 (en) 2023-05-11

Family

ID=86241471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038638 WO2023079940A1 (en) 2021-11-08 2022-10-17 Packing body for sealing material and packing method for sealing material

Country Status (4)

Country Link
JP (1) JPWO2023079940A1 (en)
CN (1) CN117715835A (en)
TW (1) TW202330362A (en)
WO (1) WO2023079940A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090971A (en) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd Packaging method for epoxide resin molding material for sealing semiconductor
JP2004210353A (en) * 2002-12-27 2004-07-29 Matsushita Electric Works Ltd Plastic film for packaging semiconductor sealing material, and semiconductor device
JP2009147376A (en) * 2009-03-23 2009-07-02 Nitto Denko Corp Packaging body for resin composition for sealing semiconductor, and method for manufacturing semiconductor device using the same
JP2019151408A (en) * 2013-07-10 2019-09-12 住友ベークライト株式会社 Conveying method of sealing resin composition, and packaging material thereof
WO2019202741A1 (en) * 2018-04-20 2019-10-24 日立化成株式会社 Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090971A (en) * 2002-08-30 2004-03-25 Hitachi Chem Co Ltd Packaging method for epoxide resin molding material for sealing semiconductor
JP2004210353A (en) * 2002-12-27 2004-07-29 Matsushita Electric Works Ltd Plastic film for packaging semiconductor sealing material, and semiconductor device
JP2009147376A (en) * 2009-03-23 2009-07-02 Nitto Denko Corp Packaging body for resin composition for sealing semiconductor, and method for manufacturing semiconductor device using the same
JP2019151408A (en) * 2013-07-10 2019-09-12 住友ベークライト株式会社 Conveying method of sealing resin composition, and packaging material thereof
WO2019202741A1 (en) * 2018-04-20 2019-10-24 日立化成株式会社 Sealing material, electronic component, electronic circuit board, and method for manufacturing sealing material

Also Published As

Publication number Publication date
TW202330362A (en) 2023-08-01
CN117715835A (en) 2024-03-15
JPWO2023079940A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP6551499B2 (en) Semiconductor molding resin material for compression molding and semiconductor device
JP7103413B2 (en) Compounds and moldings
US20230092703A1 (en) Resin composition for molding and electronic component apparatus
JP6384555B2 (en) Solid sealing resin composition for compression molding and semiconductor device
TW201922911A (en) Curable resin composition, electronic component device and method of producing electronic component device
JP2024091744A (en) Encapsulating resin composition, electronic component device, and method for producing electronic component device
JP2018172545A (en) Solid sealing material for compression molding, semiconductor device, and semiconductor device production method
WO2019054217A1 (en) Epoxy resin composition and electronic component device
WO2023079940A1 (en) Packing body for sealing material and packing method for sealing material
US11854919B2 (en) Sealing composition and semiconductor device
JP2008121003A (en) Epoxy resin molding material for use in sealing, and electronic component device using the same
CN111527146B (en) Epoxy resin composition for ball grid array package sealing, epoxy resin cured product, and electronic component device
JP2023059892A (en) Resin composition for sealing, electronic component device and method for manufacturing electronic component device
WO2019229961A1 (en) Compound, molded body and electronic component
JP2022125150A (en) Resin composition and electronic component device
CN116583548A (en) Resin composition for molding and electronic component device
TW202219168A (en) Compound material, molded body, and cured product of compound material
TW202116913A (en) Sealing material for compression molding and electronic component device
TW202112880A (en) Resin composition for coil sealing, electronic component apparatus, and method of manufacturing electronic component apparatus
JP2022042696A (en) Compound, molded body, and cured product of compound
JP2004331677A (en) Epoxy resin composition for sealing and electronic part device
JP6838345B2 (en) Epoxy resin composition for encapsulation, semiconductor device and its manufacturing method
WO2021149727A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2022154575A (en) Sealing resin composition
WO2020171004A1 (en) Curable resin composition and electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053106.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023557927

Country of ref document: JP

Kind code of ref document: A