WO2019181570A1 - 放射線検出器、放射線画像撮影装置、及び製造方法 - Google Patents

放射線検出器、放射線画像撮影装置、及び製造方法 Download PDF

Info

Publication number
WO2019181570A1
WO2019181570A1 PCT/JP2019/009428 JP2019009428W WO2019181570A1 WO 2019181570 A1 WO2019181570 A1 WO 2019181570A1 JP 2019009428 W JP2019009428 W JP 2019009428W WO 2019181570 A1 WO2019181570 A1 WO 2019181570A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
radiation detector
conversion layer
reinforcing
layer
Prior art date
Application number
PCT/JP2019/009428
Other languages
English (en)
French (fr)
Inventor
宗貴 加藤
信一 牛倉
美広 岡田
赤松 圭一
中津川 晴康
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP19770823.3A priority Critical patent/EP3770640A4/en
Priority to JP2020508197A priority patent/JP6880309B2/ja
Publication of WO2019181570A1 publication Critical patent/WO2019181570A1/ja
Priority to US17/025,621 priority patent/US11630221B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20181Stacked detectors, e.g. for measuring energy and positional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14661X-ray, gamma-ray or corpuscular radiation imagers of the hybrid type

Definitions

  • the present disclosure relates to a radiation detector, a radiographic imaging device, and a manufacturing method.
  • a radiographic imaging apparatus that performs radiography for the purpose of medical diagnosis.
  • a radiation detector for detecting radiation transmitted through a subject and generating a radiographic image is used (for example, Japanese Unexamined Patent Application Publication Nos. 2009-133837 and 2012-177624). See the official gazette).
  • a conversion layer such as a scintillator that converts radiation into light, and a plurality of pixels that accumulate charges generated according to the light converted in the conversion layer are provided in the pixel region of the substrate.
  • a substrate provided with the same.
  • a radiation detector substrate a substrate using a flexible substrate is known.
  • a radiographic imaging device radiation detector
  • the radiation detector may be handled alone.
  • the conversion layer may be peeled off from the substrate due to the influence of the bending of the flexible substrate.
  • an electromagnetic shield layer that covers the conversion layer is provided on the surface of the conversion layer that faces the substrate side surface.
  • a support body that supports the conversion layer is provided on the surface of the conversion layer that faces the surface on the substrate side.
  • the techniques described in Japanese Patent Application Laid-Open Nos. 2009-133837 and 2012-177624 do not consider the case where the radiation detector is handled alone. Therefore, in the electromagnetic shield layer in JP2009-133737A and the support in JP2012-177624A, when the radiation detector is handled alone, there is a concern that the conversion layer cannot be prevented from peeling from the substrate. there were.
  • the present disclosure provides radiation detection capable of suppressing the destruction of the conversion layer in the radiation detector alone, as compared with the case where the material of the reinforcing substrate provided on the surface of the conversion layer facing the substrate side is not considered.
  • Device, radiographic imaging apparatus, and manufacturing method are provided.
  • 1st aspect of this indication is a radiation detector, Comprising: The board
  • the reinforcing substrate is provided in an area wider than an area where the conversion layer is provided.
  • a radiation detector according to a third aspect of the present disclosure is the radiation detector according to the first aspect or the radiation detector according to the second aspect, wherein a plurality of substrates are provided in a region on an outer periphery of a surface on which a plurality of pixels are formed.
  • the radiation detector according to the fourth aspect of the present disclosure is the radiation detector according to any one of the first aspect to the third aspect, on the surface of the substrate that faces the surface on which the plurality of pixels are formed.
  • a reinforcing member having higher rigidity than the base material was further provided.
  • a radiation detector according to a fifth aspect of the present disclosure is the radiation detector according to any one of the first to fourth aspects, further including a buffer layer provided between the substrate and the conversion layer. It was.
  • the reinforcing substrate has a flexural modulus of 1000 MPa or more and 2500 MPa or less.
  • the radiation detector according to the seventh aspect of the present disclosure is the radiation detector according to any one of the first to sixth aspects, wherein the material having a yield point is at least one of polycarbonate and polyethylene terephthalate. is there.
  • a radiation detector according to an eighth aspect of the present disclosure is the radiation detector according to any one of the first to seventh aspects, wherein the ratio of the thermal expansion coefficient of the reinforcing substrate to the thermal expansion coefficient of the conversion layer is 0. .5 or more and 2 or less.
  • a radiation detector according to a ninth aspect of the present disclosure is the radiation detector according to any one of the first to eighth aspects, wherein the reinforcing substrate has a thermal expansion coefficient of 30 ppm / K or more and 80 ppm / or less. is there.
  • the radiation detector according to the tenth aspect of the present disclosure is the radiation detector according to any one of the first aspect to the ninth aspect, in which the conversion layer includes a columnar crystal of CsI.
  • the plurality of pixels are formed in the pixel region by a direct formation method.
  • a radiographic imaging device includes a radiation detector according to any one of the first to eleventh aspects and a control signal for reading out charges accumulated in a plurality of pixels. And a circuit unit that is electrically connected to the radiation detector by a flexible wiring and reads charges from a plurality of pixels in response to a control signal.
  • a thirteenth aspect of the present disclosure is a method for manufacturing a radiation detector, the step of applying an adhesive layer to a reinforcing substrate having a size corresponding to the radiation detector, and a support with a release layer interposed therebetween.
  • Forming a substrate having a plurality of pixels for storing charges generated according to light converted from radiation in a pixel region of the substrate, and a pixel of the substrate A step of forming a conversion layer for converting radiation into light on the surface provided with the region, and a material having a yield point on the surface of the conversion layer opposite to the surface facing the substrate side.
  • a manufacturing method according to a fourteenth aspect of the present disclosure is the same as the manufacturing method according to the thirteenth aspect, wherein the substrate is connected to a circuit unit that reads out charges accumulated in a plurality of pixels on the substrate before the step of attaching the reinforcing substrate.
  • the method further includes a step of connecting one end of the flexible wiring.
  • the present disclosure it is possible to suppress the destruction of the conversion layer in the radiation detector alone as compared with the case where the material of the reinforcing substrate provided on the surface of the conversion layer facing the substrate side is not considered. .
  • FIG. 4 is a cross-sectional view of the radiation detector shown in FIG. 3 along the line AA. It is the top view which looked at an example of the radiation detector of a 1st exemplary embodiment from the 1st surface side of a TFT substrate. It is explanatory drawing explaining an example of the manufacturing method of the radiation detector of 1st exemplary embodiment.
  • the radiation detector of this exemplary embodiment has a function of detecting radiation transmitted through a subject and outputting image information representing a radiation image of the subject.
  • the radiation detector of this exemplary embodiment includes a TFT (Thin Film Transistor) substrate and a conversion layer that converts radiation into light (FIG. 4, TFT substrate 12 and conversion layer 14 of the radiation detector 10). reference).
  • TFT Thin Film Transistor
  • the TFT substrate 12 of this exemplary embodiment is a substrate in which a pixel array 31 including a plurality of pixels 30 is formed in the pixel region 35 of the base material 11. Therefore, hereinafter, the expression “pixel region 35” is used synonymously with “pixel array 31”.
  • the TFT substrate 12 of this exemplary embodiment is an example of a substrate of the disclosed technology.
  • the base material 11 is made of resin and has flexibility.
  • the base material 11 is, for example, a resin sheet containing a plastic such as polyimide.
  • the thickness of the base material 11 should just be thickness which can obtain desired flexibility according to the hardness of a material, the magnitude
  • the thickness may be 5 ⁇ m to 125 ⁇ m, and more preferably 20 ⁇ m to 50 ⁇ m.
  • the base material 11 has characteristics that can withstand the manufacture of the pixel 30 described in detail later.
  • the base material 11 has characteristics that can withstand the manufacture of an amorphous silicon TFT (a-Si TFT). ing.
  • a-Si TFT amorphous silicon TFT
  • the thermal expansion coefficient at 300 ° C. to 400 ° C. is approximately the same as that of a silicon (Si) wafer (for example, ⁇ 5 ppm / K), specifically, 20 ppm / K or less is preferable.
  • the heat shrinkage rate of the base material 11 is preferably 0.5% or less in the MD (Machine-Direction) direction at 400 ° C. when the thickness is 25 ⁇ m.
  • the elastic modulus of the substrate 11 does not have a transition point of general polyimide in a temperature range between 300 ° C. and 400 ° C., and the elastic modulus at 500 ° C. is preferably 1 GPa or more.
  • the substrate 11 of the present exemplary embodiment is an inorganic material having an average particle diameter of 0.05 ⁇ m or more and 2.5 ⁇ m or less on the surface opposite to the side on which the conversion layer 14 is provided. It is preferable to have a fine particle layer 11L containing the fine particles 11P.
  • a specific example of the resin sheet having such characteristics is XENOMAX (registered trademark).
  • the coefficient of thermal expansion was measured in accordance with JIS K7197: 1991. The measurement was performed by changing the angle from the main surface of the base material 11 by 15 degrees, cutting out the test piece, measuring the thermal expansion coefficient of each cut out test piece, and setting the highest value as the thermal expansion coefficient of the base material 11. .
  • the coefficient of thermal expansion is measured at intervals of 10 ° C between -50 ° C and 450 ° C for each of the MD (Machine Direction) and TD (Transverse Direction) directions, and (ppm / ° C) is converted to (ppm / K). did.
  • the thermal expansion coefficient was measured using a TMA4000S device manufactured by MAC Science Co., Ltd., with a sample length of 10 mm, a sample width of 2 mm, an initial load of 34.5 g / mm2, a heating rate of 5 ° C./min, and an atmosphere of argon. It was.
  • the elastic modulus was measured according to JIS K 7171: 2016. The measurement was performed by changing the angle from the main surface of the base material 11 by 15 degrees, cutting out the test piece, performing a tensile test on each cut out test piece, and setting the highest value as the elastic modulus of the base material 11.
  • Each of the pixels 30 includes a sensor unit 34 that generates and accumulates charges according to light converted by the conversion layer, and a switching element 32 that reads the charges accumulated in the sensor unit 34.
  • a thin film transistor TFT
  • the switching element 32 is referred to as “TFT 32”.
  • the plurality of pixels 30 are provided in the pixel region 35 of the TFT substrate 12 in one direction (scanning wiring direction corresponding to the horizontal direction in FIG. 1, hereinafter also referred to as “row direction”) and the cross direction with respect to the row direction (vertical direction in FIG. 1). Are arranged in a two-dimensional manner in a signal wiring direction corresponding to (hereinafter also referred to as “column direction”). In FIG. 1, the arrangement of the pixels 30 is shown in a simplified manner. For example, 1024 ⁇ 1024 pixels 30 are arranged in the row direction and the column direction.
  • the radiation detector 10 reads out the charges accumulated in the sensor unit 34 provided for each column of the pixels 30 and the plurality of scanning wirings 38 for controlling the switching state (ON and OFF) of the TFT 32.
  • a plurality of signal wirings 36 are provided so as to cross each other.
  • Each of the plurality of scanning wirings 38 is connected to a driving unit 103 (see FIG. 5) outside the radiation detector 10 via a connection region 43 (see FIGS. 4 and 5) provided on the TFT substrate 12, respectively.
  • a control signal for controlling the switching state of the TFT 32 outputted from the driving unit 103 flows.
  • Each of the plurality of signal wirings 36 is connected to a signal processing unit 104 (see FIG. 5) outside the radiation detector 10 via a connection region 43 (see FIGS. 4 and 5) provided on the TFT substrate 12, respectively.
  • the electric charge read from each pixel 30 is output to the signal processing unit 104.
  • a common wiring 39 is provided in the wiring direction of the signal wiring 36 in order to apply a bias voltage to each pixel 30.
  • the common wiring 39 is connected to a bias power supply outside the radiation detector 10 via a pad (not shown) provided on the TFT substrate 12, whereby a bias voltage is applied to each pixel 30 from the bias power supply. .
  • FIG. 3 is a plan view of the radiation detector 10 of the present exemplary embodiment as viewed from the side on which the conversion layer 14 is formed.
  • 4 is a cross-sectional view of the radiation detector 10 taken along the line AA in FIG.
  • “up” in the structure of the radiation detector 10 indicates that it is above in the positional relationship with respect to the TFT substrate 12 side.
  • the conversion layer 14 is provided on the TFT substrate 12.
  • the conversion layer 14 of the present exemplary embodiment is provided on a partial region including the pixel region 35 on the first surface 12A of the TFT substrate 12.
  • the conversion layer 14 of the present exemplary embodiment is not provided on the region of the outer peripheral portion of the first surface 12A of the TFT substrate 12.
  • the first surface 12A of the present exemplary embodiment is an example of a surface provided with a pixel region according to the present disclosure.
  • a scintillator including CsI is used as an example of the conversion layer 14.
  • CsI cesium iodide
  • CsI Tl (cesium iodide to which thallium is added) or CsI: Na (cesium iodide to which sodium is added) whose emission spectrum upon X-ray irradiation is 400 nm to 700 nm is used. It is preferable to include. Note that the emission peak wavelength in the visible light region of CsI: Tl is 565 nm.
  • the conversion layer 14 is formed in a rectangular column shape directly on the TFT substrate 12 by a vapor deposition method such as a vacuum evaporation method, a sputtering method, and a CVD (Chemical Vapor Deposition) method. It is formed as a crystal (not shown).
  • a vapor deposition method such as a vacuum evaporation method, a sputtering method, and a CVD (Chemical Vapor Deposition) method. It is formed as a crystal (not shown).
  • a method for forming the conversion layer 14 for example, when CsI: Tl is used as the conversion layer 14, the CsI: Tl is heated by a heating means such as a resistance heating crucible in an environment with a degree of vacuum of 0.01 Pa to 10 Pa.
  • a vacuum vapor deposition method in which the temperature of the TFT substrate 12 is set to room temperature (20 ° C.) to 300 ° C. and CsI: Tl is deposited on the TFT substrate 12.
  • a buffer layer 13 is provided between the TFT substrate 12 and the conversion layer 14.
  • the buffer layer 13 has a function of buffering the difference between the thermal expansion coefficient of the conversion layer 14 and the thermal expansion coefficient of the substrate 11.
  • the buffer layer 13 may not be provided, but the greater the difference between the thermal expansion coefficient of the conversion layer 14 and the thermal expansion coefficient of the base material 11, It is preferable to provide the buffer layer 13.
  • the buffer layer 13 a PI (PolyImide: polyimide) film or a Parylene (registered trademark) film is used.
  • the protective layer 22 has a function of protecting the conversion layer 14 from moisture such as moisture.
  • the material of the protective layer 22 include an organic film. Specifically, PET (Polyethylene terephthalate), PPS (PolyPhenylene Sulfide), OPP (Oriented PolyPropylene: biaxially stretched polypropylene film) ), PEN (PolyEthylene Naphthalate), PI or the like, or a single layer film or a laminated film.
  • PET Polyethylene terephthalate
  • PPS PolyPhenylene Sulfide
  • OPP Oriented PolyPropylene: biaxially stretched polypropylene film
  • PEN PolyEthylene Naphthalate
  • PI PolyEthylene Naphthalate
  • the reinforcing substrate 40 is provided by the adhesive layer 48. It has been.
  • the reinforcing substrate 40 has higher rigidity than the base material 11, and the dimensional change (deformation) with respect to the force applied in the direction perpendicular to the surface facing the conversion layer 14 is changed with respect to the first surface 12 ⁇ / b> A of the TFT substrate 12. Smaller than the dimensional change with respect to the force applied in the vertical direction.
  • the thickness of the reinforcing substrate 40 of the present exemplary embodiment is thicker than the thickness of the base material 11.
  • the rigidity here means the difficulty of bending of the reinforcement board
  • the reinforcing substrate 40 of the present exemplary embodiment is a substrate including a material having a yield point.
  • the “yield point” refers to a phenomenon in which the stress is suddenly lowered once when a material is pulled, and indicates yield on a curve representing the relationship between stress and strain. It means a point.
  • Resin having a yield point generally includes a hard and strong resin, and a soft, strong and medium strength resin.
  • the hard and strong resin include at least one of PC (polycarbonate) and polyamide.
  • examples of the soft, strong, and medium-strength resin include at least one of high-density polyethylene and polypropylene.
  • the reinforcing substrate 40 of the present exemplary embodiment preferably has a flexural modulus of 1000 MPa or more and 2500 MPa or less.
  • the method for measuring the flexural modulus is based on, for example, JIS K 7171: 2016. If the bending elastic modulus is lower, the thickness of the reinforcing substrate 40 must be increased for rigidity. Therefore, from the viewpoint of suppressing the thickness, the reinforcing substrate 40 preferably has a flexural modulus of 2000 MPa or more and 2500 MPa or less.
  • the coefficient of thermal expansion (CTE) of the reinforcing substrate 40 of the exemplary embodiment is preferably close to the coefficient of thermal expansion of the material of the conversion layer 14, and more preferably, the thermal expansion of the conversion layer 14.
  • the ratio of the thermal expansion coefficient of the reinforcing substrate 40 to the rate is preferably 0.5 or more and 2 or less.
  • the coefficient of thermal expansion is 50 ppm / K.
  • polyvinyl chloride having a thermal expansion coefficient of 60 ppm / K to 80 ppm / K, acrylic having a thermal expansion coefficient of 70 ppm / K to 80 ppm / K, and a thermal expansion coefficient of 65 to 70 ppm / K.
  • the material of the reinforcing substrate 40 are PET, PC having a thermal expansion coefficient of 65 ppm / K, and Teflon (registered trademark) having a thermal expansion coefficient of 45 ppm / K to 70 ppm / K.
  • the material of the reinforcing substrate 40 is more preferably a material containing at least one of PET and PC.
  • the reinforcing substrate 40 of the present exemplary embodiment is provided in an area wider than the area where the conversion layer 14 is provided on the first surface 12 ⁇ / b> A of the TFT substrate 12. Therefore, as shown in FIGS. 3 and 4, the end portion of the reinforcing substrate 40 protrudes to the outer side (outer peripheral side of the TFT substrate 12) than the outer peripheral portion of the conversion layer 14.
  • FIG. 5 is a plan view of an example of a state in which the driving unit 103 and the signal processing unit 104 are connected to the radiation detector 10 of the present exemplary embodiment, as viewed from the first surface 12A side of the TFT substrate 12. .
  • the flexible cable 112 is electrically connected to the connection region 43 of the TFT substrate 12.
  • the connection relating to the component called “cable” including the flexible cable 112 means an electrical connection unless otherwise specified.
  • the flexible cable 112 includes a signal line (not shown) made of a conductor, and is electrically connected by connecting the signal line to the connection region 43.
  • the flexible cable 112 of the present exemplary embodiment is an example of the flexible wiring of the present disclosure.
  • the term “cable” refers to a flexible cable (having flexibility).
  • the flexible cable 112 has a function of connecting the drive unit 103 and the scanning wiring 38 (see FIG. 1).
  • a plurality of signal lines (not shown) included in the flexible cable 112 are connected to the scanning wiring 38 (see FIG. 1) of the TFT substrate 12 via the connection region 43.
  • connection region 243 (243A) provided in an outer peripheral region of the drive substrate 202.
  • a plurality of signal lines (not shown) included in the flexible cable 112 are connected to a driving component 250 such as a circuit and an element mounted on the driving substrate 202 via a connection region 243.
  • FIG. 5 shows a state where nine drive components 250 (250A to 250I) are mounted on the drive board 202 as an example.
  • the driving component 250 of the present exemplary embodiment includes a crossing direction X that is a direction that intersects a bending direction Y that is a direction along the side corresponding to the connection region 43 (43 ⁇ / b> A) of the TFT substrate 12. Are arranged along.
  • the driving board 202 of the present exemplary embodiment is a flexible PCB (Printed Circuit Board) board, which is a so-called flexible board.
  • the drive component 250 mounted on the drive substrate 202 is a component mainly used for processing digital signals (hereinafter referred to as “digital component”).
  • Specific examples of the driving component 250 include a digital buffer, a bypass capacitor, a pull-up / pull-down resistor, a damping resistor, and an EMC (Electro Magnetic Compatibility) countermeasure chip component.
  • the drive substrate 202 is not necessarily a flexible substrate, and may be a non-flexible rigid substrate described later.
  • Digital parts tend to have a relatively smaller area (size) than analog parts described later. Digital parts tend to be less susceptible to electrical interference, in other words, noise than analog parts. For this reason, in the exemplary embodiment, when the TFT substrate 12 is bent, the substrate that is bent along with the bending of the TFT substrate 12 is the drive substrate 202 on which the drive component 250 is mounted.
  • a drive circuit unit 212 is mounted on the flexible cable 112 connected to the drive board 202.
  • the drive circuit unit 212 is connected to a plurality of signal lines (not shown) included in the flexible cable 112.
  • the drive unit 103 is realized by the drive component 250 mounted on the drive substrate 202 and the drive circuit unit 212.
  • the drive circuit unit 212 is an integrated circuit (IC) including a circuit different from the drive component 250 mounted on the drive substrate 202 among various circuits and elements that realize the drive unit 103.
  • the TFT substrate 12 and the drive substrate 202 are electrically connected by the flexible cable 112, so that the drive unit 103 and the scanning wiring 38 are connected to each other. Connected.
  • one end of a plurality (four in FIG. 5) of flexible cables 112 is thermocompression bonded to the connection region 43 (43B) of the TFT substrate 12.
  • a plurality of signal lines (not shown) included in the flexible cable 112 are connected to the signal wiring 36 (see FIG. 1) via the connection region 43.
  • the flexible cable 112 has a function of connecting the signal processing unit 104 and the signal wiring 36 (see FIG. 1).
  • the other end of the flexible cable 112 is electrically connected to a connector 330 provided in the connection region 243 (243B) of the signal processing board 304.
  • a plurality of signal lines (not shown) included in the flexible cable 112 are connected to a signal processing component 350 such as a circuit and an element mounted on the signal processing board 304 via the connector 330.
  • the connector 330 include a ZIF (ZeroZInsertion Force) structure connector and a Non-ZIF structure connector.
  • FIG. 5 shows a state in which nine signal processing components 350 (350A to 350I) are mounted on the signal processing board 304 as an example.
  • the signal processing component 350 of the present exemplary embodiment is arranged along the crossing direction X, which is the direction along the connection region 43 (43 ⁇ / b> B) of the TFT substrate 12.
  • the signal processing board 304 of the present exemplary embodiment is a non-flexible PCB board, which is a so-called rigid board. Therefore, the thickness of the signal processing board 304 is thicker than the thickness of the driving board 202. Further, the rigidity is higher than that of the drive substrate 202.
  • the signal processing component 350 mounted on the signal processing board 304 is a component mainly used for analog signal processing (hereinafter referred to as “analog system component”).
  • the signal processing component 350 include an operational amplifier, an analog-digital converter (ADC), a digital-analog converter (DAC), and a power supply IC.
  • the signal processing component 350 of the present exemplary embodiment also includes a coil around a power source having a relatively large component size and a smoothing large-capacitance capacitor.
  • analog parts tend to have a relatively large area (size) than digital parts. Also, analog parts tend to be more susceptible to electrical interference, in other words, noise than digital parts. Therefore, in this exemplary embodiment, even when the TFT substrate 12 is bent, the signal processing substrate 304 on which the signal processing component 350 is mounted is the substrate that is not bent (not affected by the bending).
  • a signal processing circuit unit 314 is mounted on the flexible cable 112 connected to the signal processing board 304.
  • the signal processing circuit unit 314 is connected to a plurality of signal lines (not shown) included in the flexible cable 112.
  • the signal processing unit 104 is realized by the signal processing component 350 mounted on the signal processing board 304 and the signal processing circuit unit 314.
  • the signal processing circuit unit 314 is an IC including a circuit different from the signal processing component 350 mounted on the signal processing board 304 among various circuits and elements that realize the signal processing unit 104.
  • the TFT substrate 12 and the signal processing substrate 304 are electrically connected by the flexible cable 112, whereby each of the signal processing unit 104 and the signal wiring 36. And connected to.
  • the radiation detector 10 of the exemplary embodiment includes the flexible cable 112 and the moisture-proof agent 44 between the reinforcing substrate 40 and the first surface 12 ⁇ / b> A of the TFT substrate 12. And a spacer 46 for sealing the side surface of the conversion layer 14 with the adhesive layer 45 interposed therebetween.
  • the method of providing the spacer 46 is not particularly limited.
  • the spacer 46 is attached to the adhesive layer 48 at the end of the reinforcing substrate 40, and the reinforcing substrate 40 in a state where the spacer 46 is provided is used for the laminate 19.
  • the spacer 46 may be provided between the TFT substrate 12 and the reinforcing substrate 40 by being attached to the TFT substrate 12 in a state where the flexible cable 112, the moisture-proofing agent 44, and the adhesive layer 45 are provided.
  • the width of the spacer 46 (direction intersecting with the stacking direction of the stacked body 19) is not limited to the example shown in FIG.
  • the width of the spacer 46 may be expanded to a position closer to the conversion layer 14 than in the example shown in FIG.
  • the spacer 46 may be formed by caulking resin, ceramic, or the like on the first surface 12A of the TFT substrate 12.
  • a protective film 42 having a function of protecting from moisture such as moisture is provided on the second surface 12B on the TFT substrate 12 side of the exemplary embodiment.
  • Examples of the material of the protective film 42 include the same material as that of the protective layer 22.
  • the following method may be mentioned.
  • FIG.6 and FIG.7 an example of the manufacturing method of the radiation detector 10 of this exemplary embodiment is demonstrated.
  • Preparation of a state in which the adhesive layer 48 is applied to the reinforcing substrate 40 having a desired size according to the radiation detector 10 and the spacer 46 is provided on the adhesive layer 48 is prepared in advance.
  • the base material 11 is formed on a support 400 such as a glass substrate that is thicker than the base material 11 via a release layer (not shown).
  • a sheet to be the base material 11 is bonded onto the support 400.
  • a surface of the base 11 corresponding to the second surface 12B of the TFT substrate 12 is in contact with a release layer (not shown).
  • a plurality of pixels 30 are formed in the pixel region 35 of the substrate 11.
  • the plurality of pixels 30 are formed in the pixel region 35 of the substrate 11 via an undercoat layer (not shown) using SiN or the like.
  • the conversion layer 14 is formed on the pixel region 35.
  • the buffer layer 13 is formed in the region where the conversion layer 14 is provided on the first surface 12 ⁇ / b> A of the TFT substrate 12.
  • the CsI conversion layer 14 is formed as a columnar crystal on the TFT substrate 12, more specifically, directly on the buffer layer 13 by a vapor deposition method such as a vacuum evaporation method, a sputtering method, and a CVD (Chemical Vapor Deposition) method. It is formed.
  • the side in contact with the pixel 30 in the conversion layer 14 is the base direction side of the columnar crystal growth direction.
  • the conversion layer 14 has, for example, a conversion layer on the surface opposite to the side in contact with the TFT substrate 12.
  • a reflection layer (not shown) having a function of reflecting the light converted at 14 may be provided.
  • the reflective layer may be provided directly on the conversion layer 14 or may be provided via an adhesion layer or the like.
  • the material of the reflective layer is preferably a material using an organic material, for example, at least one of white PET, TiO 2 , Al 2 O 3 , foamed white PET, polyester-based highly reflective sheet, and specular reflective aluminum. Those using as a material are preferred. In particular, from the viewpoint of reflectance, those using white PET as a material are preferable.
  • the polyester-based highly reflective sheet is a sheet (film) having a multilayer structure in which a plurality of thin polyester sheets are stacked.
  • the conversion layer 14 can be formed on the TFT substrate 12 by a method different from that of the present exemplary embodiment.
  • an aluminum plate or the like obtained by vapor-depositing CsI by vapor deposition is prepared, and the side of the CsI that is not in contact with the aluminum plate is bonded to the pixel 30 of the TFT substrate 12 with an adhesive sheet or the like.
  • the conversion layer 14 may be formed on the TFT substrate 12.
  • the entire conversion layer 14 including the aluminum plate is covered with the protective film and bonded to the pixel region 35 of the TFT substrate 12.
  • the side in contact with the pixel region 35 in the conversion layer 14 is the tip side in the growth direction of the columnar crystals.
  • GOS Ga 2 O 2 S: Tb
  • a sheet in which GOS is dispersed in a binder such as a resin is prepared by bonding a support formed of white PET or the like with an adhesive layer or the like, and the GOS support is not bonded.
  • the conversion layer 14 can be formed on the TFT substrate 12 by bonding the side and the pixel region 35 of the TFT substrate 12 with an adhesive sheet or the like. Note that the conversion efficiency from radiation to visible light is higher when CsI is used for the conversion layer 14 than when GOS is used.
  • the flexible cable 112 is thermocompression bonded to the connection region 43 (43A and 43B) of the TFT substrate 12, and a plurality of signal lines (not shown) included in the flexible cable 112 and the connection region 43 (43A and 43B) of the TFT substrate 12 are used. Are electrically connected to each other.
  • the flexible cable 112 is thermocompression bonded to the connection region 243 (243A) of the drive board 202, and a plurality of signal lines (not shown) included in the flexible cable 112 and the drive component 250 mounted on the drive board 202 are electrically connected. Connect to.
  • the reinforcing substrate 40 provided with the spacer 46 prepared in advance is bonded to the TFT substrate 12 on which the conversion layer 14 is formed and the flexible cable 112 is connected, thereby sealing the conversion layer 14. .
  • the above bonding is performed under atmospheric pressure or under reduced pressure (vacuum), but it is preferable to perform under reduced pressure in order to prevent air and the like from entering during the bonding.
  • the radiation detector 10 is peeled off from the support 400 as shown in FIG.
  • the side of the TFT substrate 12 that faces the side to which the flexible cable 112 is connected is the starting point of peeling, and the flexible cable 112 is connected from the side that is the starting point.
  • mechanical peeling is performed, and the radiation detector 10 with the flexible cable 112 connected is obtained. It is done.
  • the side that is the starting point of peeling is preferably the side that intersects the longest side when the TFT substrate 12 is viewed in plan. In other words, it is preferable that the side along the bending direction Y in which bending occurs due to peeling is the longest side.
  • the side where the drive board 202 is connected by the flexible cable 112 is longer than the side where the signal processing board 304 side is connected by the flexible cable 112. For this reason, the starting point of peeling is the side opposite to the side where the connection region 43 (43B) is provided.
  • the TFT substrate 12 is further peeled from the support 400, and then the flexible cable 112 of the radiation detector 10 and the connector 330 of the signal processing substrate 304 are electrically connected.
  • the radiation detector 10 shown as an example in FIGS. 3 to 5 is manufactured.
  • the present invention is not limited to this exemplary embodiment, and the mechanical peeling may be performed after electrically connecting the flexible cable 112 of the radiation detector 10 and the connector 330 of the signal processing board 304.
  • the drive substrate 202 is a flexible substrate, so that the drive is performed according to the deflection of the TFT substrate 12.
  • the substrate 202 is also bent.
  • the TFT substrate 12 when the TFT substrate 12 is peeled from the support 400, the TFT substrate 12 is easily bent because the base material 11 has flexibility.
  • the TFT substrate 12 is greatly bent, there is a concern that the conversion layer 14 may be peeled off from the TFT substrate 12 as a result of the TFT substrate 12 also being greatly bent. In particular, the end portion of the conversion layer 14 is easily peeled off from the TFT substrate 12.
  • the present invention is not limited to the case where the TFT substrate 12 is peeled off from the support 400, and when the radiation detector 10 such as in the middle of the manufacturing process of the radiographic imaging device 1 is handled alone, the TFT substrate 12 is bent, There is a concern that the conversion layer 14 may be peeled off from the TFT substrate 12.
  • the reinforcing substrate 40 that includes a material having a yield point and has higher rigidity than the base material 11 faces the first surface 12A of the TFT substrate 12. It is provided on the first surface 19A, which is the side surface. Therefore, according to the radiation detector 10 of the present exemplary embodiment, the TFT substrate 12 can be prevented from being greatly bent, and the conversion layer 14 can be prevented from peeling from the TFT substrate 12.
  • FIG. 8 shows a cross-sectional view of an example of the radiation detector 10 of the present exemplary embodiment.
  • a reinforcing member 41 is provided on the second surface 12B on the TFT substrate 12 side.
  • a protective film 42 is provided between the TFT substrate 12 and the reinforcing member 41 as in the above exemplary embodiment.
  • the reinforcing member 41 is higher in rigidity than the base material 11, similarly to the reinforcing substrate 40, and the dimensional change (deformation) with respect to the force applied in the direction perpendicular to the first surface 12 ⁇ / b> A is the first in the base material 11. This is smaller than the dimensional change with respect to the force applied in the direction perpendicular to the surface 12B.
  • the thickness of the reinforcing member 41 of the exemplary embodiment is thicker than the thickness of the base material 11 and thinner than the thickness of the reinforcing substrate 40.
  • the material of the reinforcing member 41 of the exemplary embodiment is preferably a thermoplastic resin, and the same material as that of the reinforcing substrate 40 can be used.
  • the rigidity here also means the difficulty of bending of the reinforcing member 41 and the base material 11 including the thickness of the reinforcing member 41 and the base material 11, and indicates that the higher the rigidity, the harder it is to bend.
  • the radiation detector 10 of the present exemplary embodiment is formed by, for example, applying a spacer to the TFT substrate 12 provided with the stacked body 19 by a manufacturing method similar to the manufacturing method of the radiation detector 10 described above in the first exemplary embodiment. After the reinforcing substrate 40 provided with 46 is bonded, the TFT substrate 12 is peeled from the support 400. Thereafter, the radiation detector 10 of the exemplary embodiment can be manufactured by providing the protective film 42 and the reinforcing member 41 on the second surface 12B of the TFT substrate 12 by coating or the like.
  • a reinforcing member having a rigidity higher than that of the base material 11 is provided on the second surface 12B of the TFT substrate 12 facing the first surface 12A on which the plurality of pixels 30 are formed. 41 is provided. Therefore, the TFT substrate 12 can be further prevented from being greatly bent and the conversion layer 14 can be prevented from being peeled off from the TFT substrate 12 as compared with the radiation detector 10 of each of the above exemplary embodiments.
  • the TFT substrate 12 tends to warp.
  • the radiation detector 10 of this exemplary embodiment since the TFT substrate 12 is sandwiched between the reinforcing substrate 40 and the reinforcing member 41, the TFT substrate 12 is prevented from warping due to a difference in thermal expansion coefficient or the like. be able to.
  • the radiation detector 10 of each of the exemplary embodiments described above includes a plurality of pixels that accumulates charges generated according to light converted from radiation in the pixel region 35 of the flexible substrate 11.
  • the TFT substrate 12 is large. Bending can be suppressed. Therefore, according to the radiation detector 10 of each of the exemplary embodiments described above, the conversion layer 14 can be prevented from peeling from the TFT substrate 12 when the radiation detector 10 is handled alone.
  • substrate 40 is not limited to said each exemplary embodiment.
  • the end portions (outer periphery) of the reinforcing substrate 40 and the adhesive layer 48 and the end portion (outer periphery) of the protective layer 22 may be in the same position.
  • a layer 90 made of an inorganic material is provided between the base material 11 and the pixel 30, in particular, the gate electrode 80 of the TFT 32 of the pixel 30.
  • examples of the inorganic material in this case include SiNx and SiOx.
  • the drain electrode 81 and the source electrode 82 of the TFT 32 are formed in the same layer, and the gate electrode 80 is formed between the substrate 11 and the layer where the drain electrode 81 and the source electrode are formed.
  • a layer 90 made of an inorganic material is provided between the base material 11 and the gate electrode 80.
  • the mode in which the pixels 30 are two-dimensionally arranged in a matrix as illustrated in FIG. 1 has been described.
  • the present invention is not limited to this.
  • a one-dimensional array may be used.
  • a honeycomb arrangement may be used.
  • the shape of the pixel is not limited, and may be a rectangle or a polygon such as a hexagon.
  • the shape of the pixel array 31 (pixel region 35) is not limited.
  • the shape of the conversion layer 14 is not limited to the above exemplary embodiments. In each of the exemplary embodiments described above, the mode in which the shape of the conversion layer 14 is rectangular like the shape of the pixel array 31 (pixel region 35) has been described. However, the shape of the conversion layer 14 may be the pixel array 31 (pixel region). The shape may not be the same as 35). Further, the shape of the pixel array 31 (pixel region 35) is not rectangular, but may be other polygons or a circle, for example.
  • the peeling method is not limited to the form demonstrated.
  • a so-called laser peeling may be performed in which the TFT substrate 12 is peeled off by irradiating a laser from the opposite surface of the support 400 on which the TFT substrate 12 is formed.
  • the conversion layer 14 is peeled from the TFT substrate 12 when the radiation detector 10 is handled alone. Can be suppressed.
  • the radiation detector 10 of each of the above exemplary embodiments may be applied to an ISS (Irradiation Side Sampling) type radiation image capturing apparatus in which radiation is irradiated from the TFT substrate 12 side, or from the conversion layer 14 side.
  • the present invention may be applied to a PSS (Penetration Side Sampling) type radiation image capturing apparatus to which radiation is irradiated.
  • FIG. 11 shows a cross-sectional view of an example of a state in which the radiation detector 10 of the first exemplary embodiment is applied to the ISS type radiographic imaging apparatus 1.
  • the radiation detector 10, the power supply unit 108, and the control board 110 are provided in the housing 120 side by side in a direction intersecting with the incident direction of radiation.
  • the radiation detector 10 is provided so that the side on which the conversion layer 14 of the pixel array 31 is not provided faces the imaging surface 120A side of the housing 120 irradiated with radiation that has passed through the subject.
  • the housing 120 is lightweight, preferably has a low absorption rate of radiation R, particularly X-rays, and is highly rigid, and is preferably made of a material having a sufficiently high elastic modulus.
  • As a material for the housing 120 it is preferable to use a material having a flexural modulus of 10,000 MPa or more.
  • CFRP Carbon Fiber Reinforced Plastics
  • a load from the subject is applied to the imaging surface 120A of the housing 120.
  • the rigidity of the housing 120 is insufficient, the TFT substrate 12 is bent due to the load from the subject, and there is a possibility that a malfunction such as damage to the pixels 30 may occur.
  • the radiation detector 10 in the housing 120 made of a material having a bending elastic modulus of 10,000 MPa or more, it becomes possible to suppress the bending of the TFT substrate 12 due to a load from the subject.
  • the control substrate 110 is a substrate on which an image memory 380 that stores image data corresponding to the charges read from the pixels 30 of the pixel array 31, a control unit 382 that controls reading of charges from the pixels 30, and the like are formed. Yes, and electrically connected to the pixels 30 of the pixel array 31 by a flexible cable 112 including a plurality of signal wirings.
  • the drive unit 103 that controls the switching state of the TFT 32 of the pixel 30 under the control of the control unit 382, and the image data corresponding to the charges read from the pixel 30 are generated.
  • the signal processing unit 104 that outputs the signal is a so-called COF (Chip-on-Film) provided on the flexible cable 112, but at least one of the drive unit 103 and the signal processing unit 104 is formed on the control board 110. Also good.
  • COF Chip-on-Film
  • control board 110 is connected to the power supply section 108 that supplies power to the image memory 380, the control section 382, and the like formed on the control board 110 by the power supply line 114.
  • a sheet 116 is further provided on the side from which the radiation transmitted through the radiation detector 10 is emitted.
  • An example of the sheet 116 is a copper sheet.
  • the copper sheet is less likely to generate secondary radiation by incident radiation, and thus has a function of preventing scattering toward the rear, that is, the conversion layer 14 side.
  • the sheet 116 preferably covers at least the entire surface of the conversion layer 14 on the side from which the radiation is emitted and also covers the entire conversion layer 14.
  • a protective layer 117 is further provided on the radiation incident side (imaging surface 120A side) in the housing 120 of the radiographic image capturing apparatus 1 shown in FIG.
  • an insulating sheet (film) such as an Alpet (registered trademark) sheet obtained by laminating aluminum by bonding an aluminum foil, a parylene (registered trademark) film, and insulating properties such as polyethylene terephthalate
  • a moisture-proof film such as a sheet can be applied.
  • the protective layer 117 has a moistureproof function and an antistatic function for the pixel array 31. Therefore, the protective layer 117 preferably covers at least the entire surface on the side where the radiation of the pixel array 31 is incident, and preferably covers the entire surface of the TFT substrate 12 on the side where the radiation is incident.
  • FIG. 11 shows a configuration in which both the power supply unit 108 and the control board 110 are provided on one side of the radiation detector 10, specifically, one side of the rectangular pixel array 31.
  • the positions where the power supply unit 108 and the control board 110 are provided are not limited to the form shown in FIG.
  • the power supply unit 108 and the control substrate 110 may be provided dispersed on each of the two opposing sides of the pixel array 31 or may be provided on each of the two adjacent sides.
  • FIG. 12 shows a cross-sectional view of another example in which the radiation detector 10 of the first exemplary embodiment is applied to the ISS type radiographic imaging apparatus 1.
  • the power supply unit 108 and the control board 110 are provided in the casing 120 side by side in a direction intersecting with the incident direction of radiation, and the radiation detector 10, the power supply unit 108, and the control board 110. Are arranged side by side in the incident direction of radiation.
  • a base 118 for supporting the radiation detector 10 and the control board 110 is provided between the control board 110 and the power supply unit 108 and the sheet 116.
  • the base 118 for example, carbon or the like is used.
  • the configuration, the manufacturing method, and the like of the radiation detector 10 described in each of the exemplary embodiments are examples, and it goes without saying that they can be changed according to the situation without departing from the gist of the present invention. Absent. [Other exemplary embodiments]
  • the conversion layer 14 is formed using a vapor deposition method, as shown in FIGS. 13 to 34, the conversion layer 14 is formed with a slope that gradually decreases in thickness toward the outer edge. Is done.
  • the central region of the conversion layer 14 in which the thickness when the manufacturing error and the measurement error are ignored can be regarded as substantially constant is referred to as a central portion 14A.
  • region of the conversion layer 14 which has thickness of 90% or less with respect to the average thickness of 14 A of center parts of the conversion layer 14 is called the peripheral part 14B. That is, the conversion layer 14 has an inclined surface that is inclined with respect to the TFT substrate 12 at the peripheral edge portion 14B.
  • an adhesive layer 60, a reflective layer 62, an adhesive layer 64, a protective layer 22, and an adhesive layer 48 may be provided between the conversion layer 14 and the reinforcing substrate 40.
  • the adhesive layer 60 covers the entire surface of the conversion layer 14 including the central portion 14A and the peripheral edge portion 14B of the conversion layer 14.
  • the adhesive layer 60 has a function of fixing the reflective layer 62 on the conversion layer 14.
  • the adhesive layer 60 is preferably light transmissive.
  • an acrylic adhesive, a hot-melt adhesive, and a silicone adhesive can be used as a material for the adhesive layer 60.
  • the acrylic pressure-sensitive adhesive include urethane acrylate, acrylic resin acrylate, and epoxy acrylate.
  • the hot melt adhesive examples include EVA (ethylene-vinyl acetate copolymer resin), EAA (ethylene-acrylic acid copolymer resin), EEA (ethylene-ethyl acrylate copolymer resin), and EMMA (ethylene-methacrylic resin).
  • Thermoplastic plastics such as acid methyl copolymer).
  • the thickness of the adhesive layer 60 is preferably 2 ⁇ m or more and 7 ⁇ m or less. By setting the thickness of the adhesive layer 60 to 2 ⁇ m or more, the effect of fixing the reflective layer 62 on the conversion layer 14 can be sufficiently exhibited. Furthermore, the risk that an air layer is formed between the conversion layer 14 and the reflective layer 62 can be suppressed.
  • the reflective layer 62 covers the entire surface of the adhesive layer 60.
  • the reflective layer 62 has a function of reflecting the light converted by the conversion layer 14.
  • the reflective layer 62 is preferably made of an organic material.
  • a material of the reflective layer 62 for example, white PET, TiO 2 , Al 2 O 3 , foamed white PET, a polyester-based highly reflective sheet, and specular reflective aluminum can be used.
  • the thickness of the reflective layer 62 is preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the adhesive layer 64 covers the entire surface of the reflective layer 62.
  • the end of the adhesive layer 64 extends to the surface of the TFT substrate 12. That is, the adhesive layer 64 is bonded to the TFT substrate 12 at the end thereof.
  • the adhesive layer 64 has a function of fixing the reflective layer 62 and the protective layer 22 to the conversion layer 14.
  • the material of the adhesive layer 64 the same material as that of the adhesive layer 60 can be used.
  • the adhesive force of the adhesive layer 64 is preferably larger than the adhesive force of the adhesive layer 60.
  • the protective layer 22 covers the entire surface of the adhesive layer 64. That is, the protective layer 22 is provided in a state in which the entire conversion layer 14 is covered and an end thereof covers a part of the TFT substrate 12.
  • the protective layer 22 functions as a moisture-proof film that prevents moisture from entering the conversion layer 14.
  • a material of the protective layer 22 for example, an organic film containing an organic material such as PET, PPS, OPP, PEN, and PI can be used. Further, an Alpet (registered trademark) sheet may be used as the protective layer 22.
  • the reinforcing substrate 40 is provided on the surface of the protective layer 22 via an adhesive layer 48.
  • the material of the adhesive layer 48 for example, the same material as the material of the adhesive layer 60 and the adhesive layer 48 can be used.
  • the reinforcing substrate 40 extends in a region corresponding to the central portion 14 ⁇ / b> A and the peripheral portion 14 ⁇ / b> B of the conversion layer 14, and the outer peripheral portion of the reinforcing substrate 40 is in the peripheral portion 14 ⁇ / b> B of the conversion layer 14. It is bent along the slope.
  • the reinforcing substrate 40 is bonded to the protective layer 22 via the adhesive layer 48 in both the region corresponding to the central portion 14A of the conversion layer 14 and the region corresponding to the peripheral portion 14B.
  • the end portion of the reinforcing substrate 40 is disposed in a region corresponding to the peripheral edge portion 14 ⁇ / b> B of the conversion layer 14.
  • the reinforcing substrate 40 may be provided only in a region corresponding to the central portion 14 ⁇ / b> A of the conversion layer 14.
  • the reinforcing substrate 40 is bonded to the protective layer 22 via the adhesive layer 48 in a region corresponding to the central portion 14A of the conversion layer 14.
  • the reinforcing substrate 40 when the reinforcing substrate 40 extends in a region corresponding to the central portion 14 ⁇ / b> A and the peripheral portion 14 ⁇ / b> B of the conversion layer 14, the reinforcing substrate 40 follows the inclination in the outer peripheral portion of the conversion layer 14. It is not necessary to have a bent portion.
  • the reinforcing substrate 40 is bonded to the protective layer 22 via the adhesive layer 48 in a region corresponding to the central portion 14 ⁇ / b> A of the conversion layer 14.
  • a space corresponding to the inclination of the peripheral edge portion 14B of the conversion layer 14 is formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40.
  • the flexible cable 112 is connected to the terminal 113 provided in the connection region of the outer peripheral portion of the TFT substrate 12.
  • the TFT substrate 12 is connected to a control substrate (control substrate 110, see FIG. 47, etc.) via a flexible cable 112.
  • control substrate 110 see FIG. 47, etc.
  • the flexible cable 112 may be peeled off from the TFT substrate 12 or may be displaced. In this case, it is necessary to redo the connection between the flexible cable 112 and the TFT substrate 12.
  • the operation of reconnecting the flexible cable 112 and the TFT substrate 12 is called rework. As shown in FIGS. 13 to 15, when the end portion of the reinforcing substrate 40 is arranged inside the end portion of the conversion layer 14, the reinforcing substrate 40 extends to the vicinity of the connection region. In comparison, rework can be easily performed.
  • the reinforcing substrate 40 has an end portion arranged outside the end portion of the conversion layer 14 and extends to the TFT substrate 12 and the protective layer 22. It may be provided so as to be aligned with the end of the. Note that the positions of the end portions of the reinforcing substrate 40 and the positions of the end portions of the adhesive layer 64 and the protective layer 22 do not have to be completely coincident.
  • the reinforcing substrate 40 is bonded to the protective layer 22 via the adhesive layer 48 in the region corresponding to the central portion 14 ⁇ / b> A of the conversion layer 14, and corresponds to the peripheral portion 14 ⁇ / b> B of the conversion layer 14.
  • a space corresponding to the inclination of the peripheral edge portion 14B of the conversion layer 14 is formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 in the region and further outside the region.
  • a filler is formed in a space formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 in a region corresponding to the peripheral edge portion 14 ⁇ / b> B of the conversion layer 14 and a region outside thereof. 70 is provided.
  • the material of the filler 70 is not specifically limited, For example, it is possible to use resin.
  • the adhesive layer 48 is provided in the entire area between the reinforcing substrate 40 and the filler 70 in order to fix the reinforcing substrate 40 to the filler 70.
  • the method for forming the filler 70 is not particularly limited. For example, after the adhesive layer 48 and the reinforcing substrate 40 are sequentially formed on the conversion layer 14 covered with the adhesive layer 60, the reflective layer 62, the adhesive layer 64, and the protective layer 22, the conversion layer 14 (protective layer 22) and the reinforcement are formed.
  • the filler 70 having fluidity may be injected into the space formed between the substrate 40 and the filler 70 may be cured. Further, for example, after the conversion layer 14, the adhesive layer 60, the reflective layer 62, the adhesive layer 64 and the protective layer 22 are sequentially formed on the TFT substrate 12, the filler 70 is formed, and the adhesive layer 60, the reflective layer 62, and the adhesive are formed.
  • the adhesive layer 48 and the reinforcing substrate 40 may be sequentially formed so as to cover the conversion layer 14 and the filler 70 covered with the layer 64 and the protective layer 22.
  • the space formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 is filled with the filler 70, so that the conversion of the reinforcing substrate 40 can be performed as compared with the embodiment shown in FIG. Peeling from the layer 14 (protective layer 22) can be suppressed. Furthermore, since the conversion layer 14 has a structure that is fixed to the TFT substrate 12 by both the reinforcing substrate 40 and the filler 70, it is possible to suppress peeling of the conversion layer 14 from the TFT substrate 12.
  • the outer peripheral portion of the reinforcing substrate 40 is bent along the inclination of the peripheral portion 14 ⁇ / b> B of the conversion layer 14, and the portion where the adhesive layer 64 and the protective layer 22 cover the TFT substrate 12 is covered. It also covers.
  • the end portions of the reinforcing substrate 40 are aligned with the end portions of the adhesive layer 64 and the protective layer 22. Note that the positions of the end portions of the reinforcing substrate 40 and the positions of the end portions of the adhesive layer 64 and the protective layer 22 do not have to be completely coincident.
  • the ends of the reinforcing substrate 40, the adhesive layer 48, the protective layer 22, and the adhesive layer 64 are sealed with a sealing member 72.
  • the sealing member 72 is preferably provided in a region extending from the surface of the TFT substrate 12 to the surface of the reinforcing substrate 40 and not covering the pixel region 35.
  • a resin can be used, and a thermoplastic resin is particularly preferable. Specifically, acrylic glue, urethane glue, or the like can be used as the sealing member 72.
  • the reinforcing substrate 40 has higher rigidity than the protective layer 22, and a restoring force that attempts to eliminate the bending acts on the bent portion of the reinforcing substrate 40, which may cause the protective layer 22 to peel off.
  • the conversion layer 14 protective layer 22
  • the reinforcing substrate 40 in the region corresponding to the peripheral edge 14 ⁇ / b> B of the conversion layer 14 and the region outside the region.
  • the filler 70 is provided in the space formed in the above.
  • another reinforcing substrate 40A is laminated on the surface of the reinforcing substrate 40 via the adhesive layer 48A. More specifically, the reinforcing substrate 40 ⁇ / b> A is provided in a region straddling the end (outer edge, edge) of the conversion layer 14.
  • the reinforcing substrate 40A may be made of the same material as that of the reinforcing substrate 40.
  • the bending amount of the TFT substrate 12 is relatively large at the end of the conversion layer 14.
  • the effect of suppressing the bending of the TFT substrate 12 at the end portion of the conversion layer 14 can be promoted. .
  • the end portion of the reinforcing substrate 40 is outside the end portions of the adhesive layer 64 and the protective layer 22 extending to the TFT substrate 12, and the TFT substrate. You may be provided in the state located inside 12 edge part.
  • the reinforcing substrate 40 is bonded to the protective layer 22 via the adhesive layer 48 in a region corresponding to the central portion 14 ⁇ / b> A of the conversion layer 14, and corresponds to the peripheral portion 14 ⁇ / b> B of the conversion layer 14.
  • a corresponding space is formed.
  • the end portion of the reinforcing substrate 40 is supported by the spacer 46. That is, one end of the spacer 46 is connected to the first surface 12 ⁇ / b> A of the TFT substrate 12, and the other end of the spacer 46 is connected to the end of the reinforcing substrate 40 through the adhesive layer 47.
  • the filler may be filled in a space formed between the reinforcing substrate 40 and the reinforcing substrate 40.
  • the outer peripheral portion of the reinforcing substrate 40 is bent so as to follow the inclination in the peripheral edge portion 14 ⁇ / b> B of the conversion layer 14, and the adhesive layer 64 and the protective layer 22 cover the TFT substrate 12.
  • the TFT substrate 12 on the outer side is also covered. That is, the end portions of the adhesive layer 64 and the protective layer 22 are sealed by the reinforcing substrate 40.
  • a portion of the reinforcing substrate 40 that extends on the TFT substrate 12 is bonded to the TFT substrate 12 via an adhesive layer 48. In this way, it is possible to suppress the peeling of the protective layer 22 by covering the end portions of the adhesive layer 64 and the protective layer 22 with the reinforcing substrate 40. 18, the end portion of the reinforcing substrate 40 may be sealed using the sealing member 72.
  • another reinforcing substrate 40 ⁇ / b> A is provided in a region corresponding to the end portion of the conversion layer 14 on the surface of the reinforcing substrate 40.
  • the reinforcing substrate 40 ⁇ / b> A is provided in a region straddling the end (outer edge, edge) of the conversion layer 14.
  • the reinforcing substrate 40A may be made of the same material as that of the reinforcing substrate 40. In the radiation detector 10, the amount of bending of the TFT substrate 12 at the end of the conversion layer 14 is relatively large.
  • the effect of suppressing the bending of the TFT substrate 12 at the end portion of the conversion layer 14 can be promoted.
  • the spacer 46 instead of providing the spacer 46, following the example shown in FIG. 17, it is formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40.
  • the space 70 may be filled with the filler 70.
  • the reinforcing substrate 40 may be provided so that the end portion thereof is aligned with the end portion of the TFT substrate 12. Note that the position of the end portion of the reinforcing substrate 40 and the position of the end portion of the TFT substrate 12 do not have to be completely coincident.
  • the reinforcing substrate 40 is bonded to the protective layer 22 via the adhesive layer 48 in the region corresponding to the central portion 14A of the conversion layer 14, and corresponds to the peripheral portion 14B of the conversion layer 14. In the region and further outside the region, there is an inclination in the peripheral portion 14B of the conversion layer 14 between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40. A corresponding space is formed.
  • the end portion of the reinforcing substrate 40 is supported by the spacer 46. That is, one end of the spacer 46 is connected to the flexible cable 112 provided at the end of the TFT substrate 12, and the other end of the spacer 46 is connected to the end of the reinforcing substrate 40 through the adhesive layer 47.
  • a filler 70 is filled in a space formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40.
  • the connection between the flexible cable 112 and the terminal 113 is covered with the filler 70.
  • the space 70 formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40 is filled with the filler 70, so that FIG. Compared with the form to show, peeling from the conversion layer 14 (protective layer 22) of the reinforcement board
  • substrate 40 can be suppressed.
  • the conversion layer 14 has a structure that is fixed to the TFT substrate 12 by both the reinforcing substrate 40 and the filler 70, it is possible to suppress peeling of the conversion layer 14 from the TFT substrate 12. Moreover, since the connection part of the flexible cable 112 and the terminal 113 is covered with the filler 70, it becomes possible to suppress peeling of the flexible cable 112.
  • the outer peripheral portion of the reinforcing substrate 40 is bent along the inclination in the peripheral edge portion 14B of the conversion layer 14, and the adhesive layer 64 and the protective layer 22 cover the TFT substrate 12, The connection part of the board
  • the portions of the reinforcing substrate 40 that extend on the TFT substrate 12 and the flexible cable 112 are bonded to the TFT substrate 12 and the flexible cable 112 via the adhesive layer 48, respectively. Since the connection portion between the flexible cable 112 and the terminal 113 is bent and covered with the reinforcing substrate 40, peeling of the flexible cable 112 can be suppressed.
  • the space 70 formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40 is filled with the filler 70.
  • another flexible reinforcing substrate 40A is laminated on the surface of the reinforcing substrate 40 via the adhesive layer 48A. More specifically, the reinforcing substrate 40 ⁇ / b> A is provided in a region straddling the end (outer edge, edge) of the conversion layer 14.
  • the reinforcing substrate 40A may be made of the same material as that of the reinforcing substrate 40. In the radiation detector 10, the bending amount of the TFT substrate 12 is relatively large at the end of the conversion layer 14.
  • the reinforcing substrate 40 may be provided so that the end portion thereof is located outside the end portion of the TFT substrate 12.
  • the reinforcing substrate 40 is bonded to the protective layer 22 via the adhesive layer 48 in the region corresponding to the central portion 14A of the conversion layer 14, and corresponds to the peripheral portion 14B of the conversion layer 14. In the region and further outside the region, there is an inclination in the peripheral portion 14B of the conversion layer 14 between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40. A corresponding space is formed.
  • the end portion of the reinforcing substrate 40 is supported by the spacer 46. That is, one end of the spacer 46 is connected to the flexible cable 112 provided at the end of the TFT substrate 12, and the other end of the spacer 46 is connected to the end of the reinforcing substrate 40 through the adhesive layer 47.
  • a filler 70 is filled in a space formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40.
  • the connection between the flexible cable 112 and the terminal 113 is covered with the filler 70.
  • the space 70 formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40 is filled with the filler 70, so that FIG. Compared with the form to show, peeling from the conversion layer 14 (protective layer 22) of the reinforcement board
  • substrate 40 can be suppressed.
  • the conversion layer 14 has a structure that is fixed to the TFT substrate 12 by both the reinforcing substrate 40 and the filler 70, it is possible to suppress peeling of the conversion layer 14 from the TFT substrate 12. Moreover, since the connection part of the flexible cable 112 and the terminal 113 is covered with the filler 70, it becomes possible to suppress peeling of the flexible cable 112.
  • the outer peripheral portion of the reinforcing substrate 40 is bent along the inclination in the peripheral edge portion 14B of the conversion layer 14, and the adhesive layer 64 and the protective layer 22 cover the TFT substrate 12, The connection part of the board
  • the portions of the reinforcing substrate 40 that extend on the TFT substrate 12 and the flexible cable 112 are bonded to the TFT substrate 12 and the flexible cable 112 via the adhesive layer 48, respectively. Since the connection portion between the flexible cable 112 and the terminal 113 is covered with the reinforcing substrate 40, it is possible to suppress the peeling of the flexible cable 112.
  • the TFT substrate 12 is relatively connected to the connection portion between the flexible cable 112 and the terminal 113. Large deflection may occur. Since the connection portion between the flexible cable 112 and the terminal 113 is covered with the reinforcing substrate 40, it is possible to suppress the bending of the TFT substrate 12 in the portion.
  • the space 70 formed between the conversion layer 14 (protective layer 22) and the reinforcing substrate 40 and between the TFT substrate 12 and the reinforcing substrate 40 is filled with the filler 70.
  • another reinforcing substrate 40A is laminated on the surface of the reinforcing substrate 40 via the adhesive layer 48A. More specifically, the reinforcing substrate 40 ⁇ / b> A is provided in a region straddling the end (outer edge, edge) of the conversion layer 14.
  • the reinforcing substrate 40A may be made of the same material as that of the reinforcing substrate 40. In the radiation detector 10, the bending amount of the TFT substrate 12 is relatively large at the end of the conversion layer 14.
  • the flexible TFT substrate 12 is attached to the support body 400 such as a glass substrate, and the conversion layer 14 is laminated on the TFT substrate 12.
  • the body 400 is peeled from the TFT substrate 12.
  • the flexible TFT substrate 12 is bent, which may damage the pixels 30 formed on the TFT substrate 12.
  • the support 400 is peeled from the TFT substrate 12 by laminating the reinforcing substrate 40 on the conversion layer 14 in the form illustrated in FIGS. It is possible to suppress the bending of the TFT substrate 12 that occurs during the process, and to reduce the risk of damage to the pixels 30.
  • the reinforcing substrate 40 is not limited to a single layer (single layer), and may be composed of multiple layers.
  • the radiation detector 10 includes a first reinforcing substrate 40 ⁇ / b> B, a second reinforcing substrate 40 ⁇ / b> C, and a third reinforcing substrate 40 ⁇ / b> D that are stacked in this order from the reinforcement substrate 40 and the conversion layer 14. The form which made the multilayer film of 3 layers is shown.
  • each layer included in the reinforcing substrate 40 has a different function.
  • the first reinforcing substrate 40B and the third reinforcing substrate 40D are non-conductive layers having an antistatic function
  • the second reinforcing substrate 40C is a conductive layer, thereby reinforcing.
  • the substrate 40 may be provided with an electromagnetic shielding function.
  • the first reinforcing substrate 40B and the third reinforcing substrate 40D in this case include an antistatic film such as a film using an antistatic paint “Colcoat” (trade name: manufactured by Colcoat).
  • examples of the second reinforcing substrate 40C include a conductive sheet and a conductive mesh sheet such as Cu.
  • the control substrate 110, the power supply unit 108, and the like may be provided on the conversion layer 14 side (see FIG. 52).
  • electromagnetic noise from the control board 110 and the power supply unit 108 can be shielded.
  • FIG. 35 is a plan view showing an example of the structure of the reinforcing substrate 40.
  • the reinforcing substrate 40 may have a plurality of through holes 40H on its main surface. The size and pitch of the through holes 40H are determined so that desired rigidity can be obtained in the reinforcing substrate 40.
  • bubbles may be generated on the joint surface.
  • the adhesion between the reinforcing substrate 40 and the conversion layer 14 decreases. Thereby, there is a possibility that the effect of suppressing the bending by the reinforcing substrate 40 may not be sufficiently exhibited. As shown in FIG.
  • FIG. 36 is a perspective view showing another example of the structure of the reinforcing substrate 40.
  • the reinforcing substrate 40 has a concavo-convex structure on the joint surface with the conversion layer 14.
  • the uneven structure may include a plurality of grooves 63 arranged in parallel to each other.
  • the reinforcing substrate 40 has a surface having a concavo-convex structure formed by a plurality of grooves 63 bonded to the conversion layer 14 covered with the reflective layer 62.
  • the reinforcing substrate 40 has a concavo-convex structure on the joint surface with the conversion layer 14, air introduced into the joint portion between the reinforcing substrate 40 and the conversion layer 14 can be discharged from the groove 63. . Thereby, it becomes possible to suppress generation
  • the reinforcing substrate 40 may be divided into a plurality of pieces 49. As shown in FIG. 38, the reinforcing substrate 40 may be divided so that a plurality of pieces 49 (FIGS. 49 5 to 49 11 ) are arranged in one direction. Further, as shown in FIG. 39, the reinforcing substrate 40 may be divided so that a plurality of pieces 49 (FIGS. 49 1 to 49 4 ) are arranged in the vertical direction and the horizontal direction.
  • FIGS. 38 and 39 by dividing the reinforcing substrate 40 into a plurality of pieces 49, it is possible to suppress the generation of bubbles at the joint surface between the reinforcing substrate 40 and the conversion layer 14. Thereby, it becomes possible to maintain the adhesiveness of the reinforcement board
  • the reinforcing member 51 may be provided on the side of the reinforcing member 41 opposite to the side in contact with the TFT substrate 12 (second surface 12B).
  • 40 to 44 are cross-sectional views showing examples of installation forms of the reinforcing member 51, respectively.
  • the reinforcing member 51 is laminated on the surface of the reinforcing member 41 opposite to the surface on the TFT substrate 12 side with the adhesive layer 52 interposed therebetween.
  • the reinforcing member 51 may be made of the same material as that of the reinforcing substrate 40.
  • the reinforcing member 51 may be provided only on the outer peripheral portion of the TFT substrate 12 in order to minimize the area of the portion where the reinforcing member 51 and the pixel region 35 overlap. preferable. That is, the reinforcing member 51 may have an annular shape having an opening 61 in a portion corresponding to the pixel region 35, as shown in FIGS.
  • the rigidity of the outer peripheral portion of the TFT substrate 12 that is relatively likely to be bent can be reinforced.
  • the reinforcing member 51 is provided in a region straddling the end portion (outer edge, edge) of the conversion layer 14.
  • the bending amount of the TFT substrate 12 is relatively large at the end of the conversion layer 14.
  • the radiation detector 10 When the radiation detector 10 is used as the ISS system, as shown in FIG. 40, when a part of the reinforcing member 51 overlaps the pixel region 35, the image may be affected depending on the material of the reinforcing member 51. is there. Therefore, when a part of the reinforcing member 51 overlaps the pixel region 35, it is preferable to use plastic as the material of the reinforcing member 51.
  • the reinforcing member 51 straddles the end portion (outer edge, edge) of the conversion layer 14 and does not overlap the pixel region 35 (that is, the end portion of the opening 61 of the reinforcing member 51
  • the configuration in which the pixel region 35 is arranged outside the pixel region 35 is most preferable.
  • the position of the end portion of the opening 61 of the reinforcing member 51 and the position of the end portion of the pixel region 35 are substantially the same.
  • the end of the opening 61 of the reinforcing member 51 is disposed between the end of the pixel region 35 and the end of the conversion layer 14.
  • the position of the end portion of the opening 61 of the reinforcing member 51 may substantially coincide with the position of the end portion of the conversion layer 14 as shown in FIG. 43, and the conversion layer as shown in FIG. It may be arranged outside the end of 14. In this case, since the reinforcing member 51 does not have a structure straddling the end portion (outer edge, edge) of the conversion layer 14, the effect of suppressing the bending of the TFT substrate 12 at the end portion of the conversion layer 14 may be reduced. .
  • connection portion between the flexible cable 112 and the terminal 113 is formed by forming a laminated structure of the reinforcement member 41 and the reinforcement member 51. The effect of suppressing the bending of the TFT substrate 12 is maintained.
  • the TFT substrate 12 (base material 11) and the reinforcing member 41 have the same size. However, the TFT substrate 12 and the reinforcing member 41 are different from each other. The size may be different.
  • the radiation detector 10 when the radiation detector 10 is applied to the radiation image capturing apparatus 1, the radiation detector 10 may be fixed to a housing 120 (see FIG. 11 or the like) that houses the radiation detector 10 or the like.
  • the reinforcing member 41 is made larger than the TFT substrate 12, a flap is provided, and the radiation detector 10 is fixed using a portion such as the flap. You may go.
  • the form which makes the reinforcement member 41 larger than the TFT substrate 12 is not limited to the form shown in FIG. 45A.
  • the reinforcing member 41 may be composed of a plurality of stacked layers, and some layers may be larger than the TFT substrate 12.
  • the reinforcing member 41 has a two-layer structure of a first layer 41A having the same size as the TFT substrate 12 (base material 11) and a second layer 41B larger than the TFT substrate 12. Also good.
  • the first layer 41A and the second layer 41B are bonded together by a double-sided tape, an adhesive layer or the like (not shown).
  • the first layer 41A for example, it is preferable that the first layer 41A is made of the same material as that of the reinforcing member 41 and has the same properties as the reinforcing member 41.
  • the second layer 41B is bonded to the second surface 12B of the substrate 11 with a double-sided tape, an adhesive layer, or the like (not shown).
  • Alpet registered trademark
  • the first layer 41A is bonded to the second surface 12B of the substrate 11 as shown in FIG. 45C, contrary to the form shown in FIG. 45B. Also good.
  • the flap portion may be fixed in a bent state.
  • the flap portion of the reinforcing member 41 becomes easier to bend, and only the flap portion can be bent without affecting the main body of the radiation detector 10.
  • a configuration in which the reinforcing member 41 is configured by a plurality of stacked layers as in the example shown in FIGS. 45B and 45C and a part of the layers is made larger than the TFT substrate 12. It is preferable that
  • the reinforcing member 41 may be made smaller than the TFT substrate 12, contrary to the radiation detector 10 in FIGS. 45A to 45C.
  • the end of the TFT substrate 12 is positioned outside the end of the reinforcing member 41, for example, when the radiation detector 10 is housed in the housing 120 (see FIG. 7 etc.)
  • the positioning accuracy can be improved. Note that the present invention is not limited to the form shown in FIG. 46, and the same effect can be obtained if at least a part of the end portion of the TFT substrate 12 (base material 11) is located outside the reinforcing member 41. preferable.
  • FIGS. 47 to 53 are diagrams showing other configuration examples of the radiographic image capturing apparatus 1, respectively.
  • FIG. 47 an example of the ISS type radiographic imaging apparatus 1 is shown in the same manner as the radiographic imaging apparatus 1 shown in FIG. Further, in the example shown in FIG. 48, an example of the PSS-type radiographic image capturing apparatus 1 is shown. 47 and 48, a configuration in which the radiation detector 10, the control board 110, and the power supply unit 108 are juxtaposed in the horizontal direction in the drawing is illustrated.
  • the power supply unit 108 and the control board 110 are both provided on one side of the radiation detector 10, specifically, on one side of the rectangular pixel region 35.
  • the positions where the power supply unit 108 and the control board 110 are provided are not limited to the forms shown in FIGS.
  • the power supply unit 108 and the control substrate 110 may be distributed on each of the two opposing sides of the pixel region 35 or may be distributed on each of the two adjacent sides.
  • the thickness of the housing 120 may be different between the portion of the housing 120 where the power supply unit 108 and the control board 110 are provided and the portion of the housing 120 where the radiation detector 10 is provided. .
  • the power supply unit 108 and the control board 110 are often thicker than the radiation detector 10 in many cases.
  • the casing 120 in which the radiation detector 10 is provided rather than the thickness of the portion of the casing 120 in which the power supply unit 108 and the control board 110 are provided. The thickness of this part may be thinner.
  • the thickness of the portion of the housing 120 where the power supply unit 108 and the control board 110 are provided is different from the portion of the housing 120 where the radiation detector 10 is provided, If there is a step at the boundary between the two parts, there is a concern that the subject in contact with the boundary 120B may feel uncomfortable, and therefore the shape of the boundary 120B is preferably inclined.
  • the material of the housing 120 is composed of a portion of the housing 120 where the power supply unit 108 and the control board 110 are provided and a portion of the housing 120 where the radiation detector 10 is provided. May be different. Furthermore, for example, even if the portion of the casing 120 in which each of the power supply unit 108 and the control board 110 is provided and the portion of the casing 120 in which the radiation detector 10 is provided are configured separately. Good.
  • the housing 120 is preferably made of a material having a low absorption rate of radiation R, particularly X-rays, and preferably having a high rigidity and a sufficiently high elastic modulus.
  • the portion 120C corresponding to the imaging surface 120A of the housing 120 is made of a material having a low absorption rate of radiation R, a high rigidity, and a sufficiently high elastic modulus, and the other portions.
  • the radiation detector 10 and the inner wall surface of the housing 120 may be in contact with each other.
  • the radiation detector 10 and the wall surface without the housing 120 may be bonded via an adhesive layer, or may simply be in contact with each other without an adhesive layer.
  • the radiation detector 10 and the inner wall surface of the housing 120 are in contact with each other, so that the rigidity of the radiation detector 10 is further ensured.
  • an example of the ISS type radiographic imaging apparatus 1 is shown in the same manner as the radiographic imaging apparatus 1 shown in FIG.
  • FIG. 53 an example of the PSS type radiographic image capturing apparatus 1 is shown.
  • the TFT substrate 12, the control substrate 110, and the power supply unit 108 are provided with the sheet 116 and the base 118 interposed therebetween. According to this configuration, in comparison with the case where the radiation detector 10, the control board 110, and the power supply unit 108 are juxtaposed in the horizontal direction in the figure (see FIGS. 47 to 51), the radiographic imaging apparatus 1 in plan view The size can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

可撓性の基材の画素領域に、放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が形成された基板と、前記基材の前記画素領域が設けられた面に設けられ、前記放射線を光に変換する変換層と、前記変換層における前記基板側の面と対向する側の面に設けられ、降伏点を有する材料を含み、前記基材よりも剛性が高い補強基板と、を備えた放射線検出器。

Description

放射線検出器、放射線画像撮影装置、及び製造方法
 本開示は、放射線検出器、放射線画像撮影装置、及び製造方法に関する。
 従来、医療診断を目的とした放射線撮影を行う放射線画像撮影装置が知られている。このような放射線画像撮影装置には、被写体を透過した放射線を検出し放射線画像を生成するための放射線検出器が用いられている(例えば、特開2009-133837号公報及び特開2012-177624号公報参照)。
 この種の放射線検出器としては、放射線を光に変換するシンチレータ等の変換層と、変換層で変換された光に応じて発生した電荷を蓄積する複数の画素が基材の画素領域に設けられた基板と、を備えたものがある。このような放射線検出器の基板の基材として、可撓性の基材を用いたものが知られている。可撓性の基材を用いることにより、例えば、放射線画像撮影装置(放射線検出器)を軽量化でき、また、被写体の撮影が容易となる場合がある。
 ところで、放射線画像撮影装置の製造工程の途中等では、放射線検出器が単体で扱われる場合がある。放射線検出器を単体で扱う場合、可撓性の基板の撓み等の影響により、変換層が基板から剥離してしまう懸念があった。
 ところで、特開2009-133837号公報に記載の技術では、変換層における基板側の面と対向する側の面に、変換層を覆う電磁シールド層が設けられている。また、特開2012-177624号公報に記載の技術では、変換層における基板側の面と対向する側の面に、変換層を支持する支持体が設けられている。しかしながら、特開2009-133837号公報及び特開2012-177624号に記載の技術では、放射線検出器単体で扱われる場合が考慮されていない。そのため、特開2009-133837号公報における電磁シールド層や、特開2012-177624号公報における支持体では、放射線検出器が単体で扱われる場合、変換層が基板から剥離するのを抑制できない懸念があった。
 本開示は、変換層における基板側の面と対向する側の面に設けられた補強基板の材質を考慮しない場合に比べて、放射線検出器単体における変換層の破壊を抑制することができる放射線検出器、放射線画像撮影装置、及び製造方法を提供する。
 本開示の第1の態様は、放射線検出器であって、可撓性の基材の画素領域に、放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が形成された基板と基材の画素領域が設けられた面に設けられ、放射線を光に変換する変換層と、変換層における基板側の面と対向する側の面に設けられ、降伏点を有する材料を含み、基材よりも剛性が高い補強基板と、を備える。
 本開示の第2の態様の放射線検出器は、第1の態様の放射線検出器において、補強基板は、変換層が設けられた領域よりも広い領域に設けられている。
 本開示の第3の態様の放射線検出器は、第1の態様の放射線検出器または第2の態様の放射線検出器において、基板は、複数の画素が形成された面の外周の領域に、複数の画素に蓄積された電荷を読み出す回路部に接続された可撓性の配線の他端が接続される接続領域を有し、補強基板は、接続領域の少なくとも一部及び変換層を覆う領域に設けられている。
 本開示の第4の態様の放射線検出器は、第1の態様から第3の態様のいずれか1態様の放射線検出器において、基板の、複数の画素が形成された面と対向する面に、基材よりも剛性が高い補強部材をさらに備えた。
 本開示の第5の態様の放射線検出器は、第1の態様から第4の態様のいずれか1態様の放射線検出器において、基板と、変換層との間に設けられた緩衝層をさらに備えた。
 本開示の第6の態様の放射線検出器は、第1の態様から第5の態様のいずれか1態様の放射線検出器において、補強基板は、曲げ弾性率が1000MPa以上、2500MPa以下である。
 本開示の第7の態様の放射線検出器は、第1の態様から第6の態様のいずれか1態様の放射線検出器において、降伏点を有する材料は、ポリカーボネート、及びポリエチレンテレフタレートの少なくとも一つである。
 本開示の第8の態様の放射線検出器は、第1の態様から第7の態様のいずれか1態様の放射線検出器において、変換層の熱膨張率に対する補強基板の熱膨張率の比が0.5以上、2以下である。
 本開示の第9の態様の放射線検出器は、第1の態様から第8の態様のいずれか1態様の放射線検出器において、補強基板は、熱膨張率が30ppm/K以上、80ppm/以下である。
 本開示の第10の態様の放射線検出器は、第1の態様から第9の態様のいずれか1態様の放射線検出器において、変換層は、CsIの柱状結晶を含む。
 本開示の第11の態様の放射線検出器は、第1の態様から第10の態様のいずれか1態様の放射線検出器において、複数の画素は、画素領域に、直接形成法により形成される。
 また、本開示の第12の態様の放射線画像撮影装置は、第1の態様から第11の態様のいずれか1態様の放射線検出器と、複数の画素に蓄積された電荷を読み出すための制御信号を出力する制御部と、放射線検出器に可撓性の配線により電気的に接続され、制御信号に応じて複数の画素から電荷を読み出す回路部と、を備える。
 また、本開示の第13の態様は、放射線検出器の製造方法であって、放射線検出器に応じた大きさの補強基板に、粘着層を塗布する工程と、支持体に、剥離層を介して可撓性の基材を設け、基材の画素領域に、放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が設けられた基板を形成する工程と、基材の画素領域が設けられた面に、放射線を光に変換する変換層を形成する工程と、変換層の、基板側の面と対向する側の面と反対側の面に、降伏点を有する材料を含み、基材よりも剛性が高い補強基板を貼り合わせる工程と、変換層及び補強基板が設けられた基板を、支持体から剥離する工程と、を備えた。
 本開示の第14の態様の製造方法は、第13の態様の製造方法において、補強基板を貼り合わせる工程の前に、基板に複数の画素に蓄積された電荷を読み出す回路部に接続された可撓性の配線の一端を接続する工程をさらに含む。
 本開示によれば、変換層における基板側の面と対向する側の面に設けられた補強基板の材質を考慮しない場合に比べて、放射線検出器単体における変換層の破壊を抑制することができる。
第1例示的実施形態の放射線検出器におけるTFT(Thin Film Transistor)基板の構成の一例を示す構成図である。 例示的実施形態の基材の一例を説明するための断面図である。 第1例示的実施形態の放射線検出器の一例を、変換層が設けられた側からみた平面図である。 図3に示した放射線検出器のA-A線断面図である。 第1例示的実施形態の放射線検出器の一例を、TFT基板の第1の面の側からみた平面図である。 第1例示的実施形態の放射線検出器の製造方法の一例を説明する説明図である。 第1例示的実施形態の放射線検出器の製造方法の一例を説明する説明図である。 第2例示的実施形態の放射線検出器の一例の断面図である。 例示的実施形態の放射線検出器の他の一例の断面図である。 例示的実施形態の放射線検出器の他の例の一画素部分についての断面図である。 例示的実施形態の放射線検出器を適用した放射線画像撮影装置の一例の断面を表す断面図である。 例示的実施形態の放射線検出器を適用した放射線画像撮影装置の他の例の断面を表す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の補強部材の構造の一例を示す平面図である。 開示の技術の例示的実施形態の補強部材の構造の一例を示す斜視図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の補強部材の構造の一例を示す平面図である。 開示の技術の例示的実施形態の補強部材の構造の一例を示す平面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線検出器の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線画像撮影装置の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線画像撮影装置の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線画像撮影装置の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線画像撮影装置の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線画像撮影装置の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線画像撮影装置の構成の一例を示す断面図である。 開示の技術の例示的実施形態の放射線画像撮影装置の構成の一例を示す断面図である。
 以下、図面を参照して本発明の例示的実施形態を詳細に説明する。なお、本例示的実施形態は本発明を限定するものではない。
[第1例示的実施形態]
 本例示的実施形態の放射線検出器は、被写体を透過した放射線を検出して被写体の放射線画像を表す画像情報を出力する機能を有する。本例示的実施形態の放射線検出器は、TFT(Thin Film Transistor)基板と、放射線を光に変換する変換層と、を備えている(図4、放射線検出器10のTFT基板12及び変換層14参照)。
 まず、図1を参照して本例示的実施形態の放射線検出器におけるTFT基板12の構成の一例について説明する。なお、本例示的実施形態のTFT基板12は、基材11の画素領域35に、複数の画素30を含む画素アレイ31が形成された基板である。従って、以下では、「画素領域35」との表現を、「画素アレイ31」と同義として用いる。本例示的実施形態のTFT基板12が、開示の技術の基板の一例である。
 基材11は、樹脂製、かつ、可撓性を有する。基材11は、例えば、ポリイミド等のプラスチックを含む樹脂シート等である。基材11の厚みは、材質の硬度、及びTFT基板12の大きさ等に応じて、所望の可撓性が得られる厚みであればよい。例えば、基材11が樹脂シートの場合、厚みが5μm~125μmのものであればよく、厚みが20μm~50μmのものであればより好ましい。
 なお、基材11は、詳細を後述する画素30の製造に耐え得る特性を有しており、本例示的実施形態では、アモルファスシリコンTFT(a-Si TFT)の製造に耐え得る特性を有している。このような、基材11が有する特性としては、300℃~400℃における熱膨張率が、シリコン(Si)ウェハと同程度(例えば、±5ppm/K)であることが好ましく、具体的には、20ppm/K以下であることが好ましい。また、基材11の熱収縮率としては、厚みが25μmの状態において400℃におけるMD(Machine Direction)方向の熱収縮率が0.5%以下であることが好ましい。また、基材11の弾性率は、300℃~400℃間の温度領域において、一般的なポリイミドが有する転移点を有さず、500℃における弾性率が1GPa以上であることが好ましい。
 また、本例示的実施形態の基材11は、図2に示したように、変換層14が設けられる側と反対側の面に、平均粒子径が0.05μm以上、2.5μm以下の無機の微粒子11Pを含む微粒子層11Lを有することが好ましい。このような特性を有する樹脂シートの具体例としては、XENOMAX(登録商標)が挙げられる。
 なお、本例示的実施形態において述べる厚みについては、マイクロメーターを用いて測定した。熱膨張率については、JIS K7197:1991に則して測定した。なお測定は、基材11の主面から、15度ずつ角度を変えて試験片を切り出し、切り出した各試験片について熱膨張率を測定し、最も高い値を基材11の熱膨張率とした。熱膨張率の測定は、MD(Machine Direction)方向およびTD(Transverse Direction)方向のそれぞれについて、-50℃~450℃において10℃間隔で行い、(ppm/℃)を(ppm/K)に換算した。熱膨張率の測定には、MACサイエンス社製 TMA4000S装置を用い、サンプル長さを10mm、サンプル幅を2mm、初荷重を34.5g/mm2、昇温速度を5℃/min、及び雰囲気をアルゴンとした。弾性率については、JIS K 7171:2016に則して測定した。なお測定は、基材11の主面から、15度ずつ角度を変えて試験片を切り出し、切り出した各試験片について引っ張り試験を行い、最も高い値を基材11の弾性率とした。
 画素30の各々は、変換層が変換した光に応じて電荷を発生して蓄積するセンサ部34及びセンサ部34にて蓄積された電荷を読み出すスイッチング素子32を含む。本例示的実施形態では、一例として、薄膜トランジスタ(TFT)をスイッチング素子32として用いている。そのため、以下では、スイッチング素子32を「TFT32」という。
 複数の画素30は、TFT基板12の画素領域35に、一方向(図1の横方向に対応する走査配線方向、以下「行方向」ともいう)及び行方向に対する交差方向(図1の縦方向に対応する信号配線方向、以下「列方向」ともいう)に二次元状に配置されている。図1では、画素30の配列を簡略化して示しているが、例えば、画素30は行方向及び列方向に1024個×1024個配置される。
 また、放射線検出器10には、TFT32のスイッチング状態(オン及びオフ)を制御するための複数の走査配線38と、画素30の列毎に備えられた、センサ部34に蓄積された電荷が読み出される複数の信号配線36と、が互いに交差して設けられている。複数の走査配線38の各々は、それぞれTFT基板12に設けられた接続領域43(図4及び図5参照)を介して、放射線検出器10の外部の駆動部103(図5参照)に接続されることにより、駆動部103から出力される、TFT32のスイッチング状態を制御する制御信号が流れる。また、複数の信号配線36の各々が、それぞれTFT基板12に設けられた接続領域43(図4及び図5参照)を介して、放射線検出器10の外部の信号処理部104(図5参照)に接続されることにより、各画素30から読み出された電荷が、信号処理部104に出力される。
 また、各画素30のセンサ部34には、各画素30にバイアス電圧を印加するために、共通配線39が信号配線36の配線方向に設けられている。共通配線39が、TFT基板12に設けられたパッド(図示省略)を介して、放射線検出器10の外部のバイアス電源に接続されることにより、バイアス電源から各画素30にバイアス電圧が印加される。
 本例示的実施形態の放射線検出器10では、TFT基板12上には、変換層が形成されている。図3は、本例示的実施形態の放射線検出器10を変換層14が形成された側からみた平面図である。また、図4は、図3における放射線検出器10のA-A線断面図である。なお、以下では、放射線検出器10の構造において「上」という場合、TFT基板12側を基準とした位置関係において上であることを表している。例えば、変換層14は、TFT基板12の上に設けられている。
 図3及び図4に示すように、本例示的実施形態の変換層14は、TFT基板12の第1の面12Aにおける画素領域35を含む一部の領域上に設けられている。このように、本例示的実施形態の変換層14は、TFT基板12の第1の面12Aの外周部の領域上には設けられていない。本例示的実施形態の第1の面12Aが、本開示の、画素領域が設けられた面の一例である。
 本例示的実施形態では、変換層14の一例としてCsI(ヨウ化セシウム)を含むシンチレータを用いている。このようなシンチレータとしては、例えば、X線照射時の発光スペクトルが400nm~700nmであるCsI:Tl(タリウムが添加されたヨウ化セシウム)やCsI:Na(ナトリウムが添加されたヨウ化セシウム)を含むことが好ましい。なお、CsI:Tlの可視光域における発光ピーク波長は565nmである。
 本例示的実施形態の放射線検出器10では、変換層14は、TFT基板12上に直接、真空蒸着法、スパッタリング法、及びCVD(Chemical Vapor Deposition)法等の気相堆積法によって短冊状の柱状結晶(図示省略)として形成される。変換層14の形成方法としては、例えば、変換層14としてCsI:Tlを用いた場合、真空度0.01Pa~10Paの環境下、CsI:Tlを抵抗加熱式のるつぼ等の加熱手段により加熱して気化させ、TFT基板12の温度を室温(20℃)~300℃としてCsI:TlをTFT基板12上に堆積させる真空蒸着法が挙げられる。変換層14の厚さとしては、100μm~800μmが好ましい。
 本例示的実施形態では、一例として図4に示すように、TFT基板12と変換層14との間には緩衝層13が設けられている。緩衝層13は、変換層14の熱膨張率と、基材11の熱膨張率との差を緩衝させる機能を有する。なお、本例示的実施形態の放射線検出器10と異なり、緩衝層13を設けない構成としてもよいが、変換層14の熱膨張率と、基材11の熱膨張率との差が大きいほど、緩衝層13を設けることが好ましい。例えば、基材11に、上記XENOMAX(登録商標)を用いる場合、他の材質に比べて、変換層14の熱膨張率との差が大きくなるため、図4に示した放射線検出器10のように、緩衝層13を設けることが好ましい。緩衝層13としては、PI(PolyImide:ポリイミド)膜や、パリレン(登録商標)膜が用いられる。
 保護層22は、変換層14を湿気等の水分から保護する機能を有する。保護層22の材料としては、例えば、有機膜が挙げられ、具体的には、PET(Polyethylene terephthalate:ポリエチレンテレフタレート)、PPS(PolyPhenylene Sulfide:ポリフェニレンサルファイド:)、OPP(Oriented PolyPropylene:二軸延伸ポリプロピレンフィルム)、PEN(PolyEthylene Naphthalate:ポリエチレンナフタレート)、PI等による単層膜または積層膜が挙げられる。また、保護層22としては、PET等の絶縁性のシート(フィルム)に、アルミ箔を接着させる等してアルミを積層したアルペット(登録商標)のシートを用いてもよい。
 TFT基板12、緩衝層13、変換層14、及び保護層22が積層された積層体19の変換層14側の面である第1の面19Aには、粘着層48により、補強基板40が設けられている。
補強基板40は、基材11よりも剛性が高く、変換層14と対向する面に対して垂直方向に加えられる力に対する、寸法変化(変形)が、TFT基板12の第1の面12Aに対して垂直方向に加えられる力に対する、寸法変化よりも小さい。また、本例示的実施形態の補強基板40の厚みは、基材11の厚みよりも厚い。なお、ここでいう剛性とは、補強基板40及び基材11の厚さも含めた補強基板40及び基材11の曲げ難さを意味し、剛性が高いほど曲げ難いことを表している。
 また、本例示的実施形態の補強基板40は、降伏点を有する材料を含む基板である。なお、本例示的実施形態において「降伏点」とは、材料を引張った場合に、応力が一旦、急激に下がる現象をいい、応力とひずみとの関係を表す曲線上で、降伏を示している点のことをいう。降伏点を有する樹脂としては、一般的に、硬くて粘りが強い樹脂、及び柔らかくて粘りが強く、かつ中程度の強度の樹脂が挙げられる。硬くて粘りが強い樹脂としては、例えば、PC(Polycarbonate:ポリカーボネート)、及びポリアミドの少なくとも一つが挙げられる。また、柔らかくて粘りが強く、かつ中程度の強度の樹脂としては、例えば、高密度ポリエチレン、及びポリプロピレンの少なくとも一つが挙げられる。
 また、本例示的実施形態の補強基板40は、曲げ弾性率が1000MPa以上、2500MPa以下であることが好ましい。曲げ弾性率の測定方法は、例えば、JIS K 7171:2016準拠に基づく。曲げ弾性率がより低くなると、剛性のために補強基板40の厚みを厚くしなくてはならない。そのため、厚みを抑制する観点から、補強基板40は、曲げ弾性率が2000MPa以上、2500MPa以下であることがより好ましい。
 また、本例示的実施形態の補強基板40の熱膨張率(CTE:Coefficient of Thermal Expansion)は、変換層14の材料の熱膨張率に近い方が好ましく、より好ましくは、変換層14の熱膨張率に対する補強基板40の熱膨張率の比が、0.5以上、2以下であることが好ましい。例えば、変換層14がCsI:Tlを材料とする場合、熱膨張率は、50ppm/Kである。この場合、熱膨張率が60ppm/K~80ppm/Kであるポリ塩化ビニル(PVC:Polyvinyl Chloride)、熱膨張率が70ppm/K~80ppm/Kであるアクリル、熱膨張率が65~70ppm/KであるPET、熱膨張率が65ppm/KであるPC、及び熱膨張率が45ppm/K~70ppm/Kであるテフロン(登録商標)等が、補強基板40の材料としてあげられる。さらに、上述した曲げ弾性率を考慮すると、補強基板40の材料としては、PET及びPCの少なくとも一方を含む材料であることがより好ましい。
 図3及び図4に示すように、本例示的実施形態の補強基板40は、TFT基板12の第1の面12Aにおける、変換層14が設けられた領域よりも広い領域に設けられている。そのため、図3及び図4に示すように、補強基板40の端部は、変換層14の外周部よりも外側(TFT基板12の外周部側)に突出している。
 図4に示すように、TFT基板12の外周部には接続領域43が設けられている。接続領域43には、詳細を後述するフレキシブルケーブル112が接続されている。フレキシブルケーブル112は、駆動部103及び信号処理部104(いずれも図5参照)の少なくとも一方に接続されている。本例示的実施形態の駆動部103及び信号処理部104が、本開示の回路部の一例である。図5には、本例示的実施形態の放射線検出器10に駆動部103及び信号処理部104が接続された状態の一例を、TFT基板12の第1の面12Aの側からみた平面図を示す。
 図5に示した一例のように、TFT基板12の接続領域43には、フレキシブルケーブル112が電気的に接続される。なお、本例示的実施形態では、フレキシブルケーブル112を含め、「ケーブル」と称する部品に関する接続は、特に言及しない限り、電気的な接続を意味する。なお、フレキシブルケーブル112は、導体からなる信号線(図示省略)を含み、この信号線が接続領域43に接続されることにより、電気的に接続される。本例示的実施形態のフレキシブルケーブル112が本開示の可撓性の配線の一例である。また、以下で「ケーブル」という場合、フレキシブルな(可撓性を有する)もののことである。
 TFT基板12の接続領域43(43A)には、複数(図5では、4つ)のフレキシブルケーブル112の一端が、熱圧着されている。フレキシブルケーブル112は、駆動部103と走査配線38(図1参照)とを接続する機能を有する。フレキシブルケーブル112に含まれる複数の信号線(図示省略)は、接続領域43を介して、TFT基板12の走査配線38(図1参照)に接続される。
 一方、フレキシブルケーブル112の他端は、駆動基板202の外周の領域に設けられた接続領域243(243A)に熱圧着されている。フレキシブルケーブル112に含まれる複数の信号線(図示省略)は、接続領域243を介して、駆動基板202に搭載された回路及び素子等である駆動部品250と接続される。
 図5では、一例として、9個の駆動部品250(250A~250I)が駆動基板202に搭載された状態を示している。図5に示すように、本例示的実施形態の駆動部品250は、TFT基板12の接続領域43(43A)に対応する辺に沿った方向である撓み方向Yと交差する方向である交差方向Xに、沿って配置されている。
 本例示的実施形態の駆動基板202は、可撓性のPCB(Printed Circuit Board)基板であり、いわゆるフレキシブル基板である。駆動基板202に搭載される駆動部品250は主にデジタル信号の処理に用いられる部品(以下、「デジタル系部品」という)である。駆動部品250の具体例としては、デジタルバッファ、バイパスコンデンサ、プルアップ/プルダウン抵抗、ダンピング抵抗、及びEMC(Electro Magnetic Compatibility)対策チップ部品等が挙げられる。なお、駆動基板202は、必ずしもフレキシブル基板でなくてもよく、後述する、非可撓性のリジッド基板としてもよい。
 デジタル系部品は、後述するアナログ系部品よりも、比較的面積(大きさ)が小さい傾向がある。また、デジタル系部品は、アナログ系部品よりも電気的な干渉、換言するとノイズの影響を大きく受け難い傾向がある。そのため、本例示的実施形態では、TFT基板12が撓んだ場合に、TFT基板12の撓みに伴って撓む側の基板を、駆動部品250を搭載した駆動基板202としている。
 また、駆動基板202と接続されるフレキシブルケーブル112には、駆動回路部212が搭載されている。駆動回路部212は、フレキシブルケーブル112に含まれる複数の信号線(図示省略)に接続されている。
 本例示的実施形態では、駆動基板202に搭載された駆動部品250と、駆動回路部212とにより、駆動部103が実現される。駆動回路部212は、駆動部103を実現する各種回路及び素子のうち、駆動基板202に搭載されている駆動部品250と異なる回路を含むIC(Integrated Circuit)である。
 このように、本例示的実施形態の放射線検出器10では、フレキシブルケーブル112により、TFT基板12と駆動基板202とが電気的に接続されることにより、駆動部103と走査配線38の各々とに接続される。
 一方、TFT基板12の接続領域43(43B)には、複数(図5では、4つ)のフレキシブルケーブル112の一端が、熱圧着されている。フレキシブルケーブル112に含まれる複数の信号線(図示省略)は、接続領域43を介して、信号配線36(図1参照)に接続される。フレキシブルケーブル112は、信号処理部104と信号配線36(図1参照)とを接続する機能を有する。
 一方、フレキシブルケーブル112の他端は、信号処理基板304の接続領域243(243B)に設けられたコネクタ330に電気的に接続されている。フレキシブルケーブル112に含まれる複数の信号線(図示省略)は、コネクタ330を介して、信号処理基板304に搭載された回路及び素子等である信号処理部品350と接続される。例えばコネクタ330としては、ZIF(Zero Insertion Force)構造のコネクタや、Non-ZIF構造のコネクタが挙げられる。図5では、一例として、9個の信号処理部品350(350A~350I)が信号処理基板304に搭載された状態を示している。図5に示すように、本例示的実施形態の信号処理部品350は、TFT基板12の接続領域43(43B)に沿った方向である交差方向Xに沿って配置されている。
 なお、本例示的実施形態の信号処理基板304は、非可撓性のPCB基板であり、いわゆるリジッド基板である。そのため、信号処理基板304の厚みは、駆動基板202の厚みよりも厚い。また、駆動基板202よりも剛性が高い。
 信号処理基板304に搭載される信号処理部品350は主にアナログ信号の処理に用いられる部品(以下、「アナログ系部品」という)である。信号処理部品350の具体例としては、オペアンプ、アナログデジタルコンバータ(ADC)、デジタルアナログコンバータ(DAC)、電源IC等が挙げられる。また、本例示的実施形態の信号処理部品350は、比較的部品サイズが大きい電源周りのコイル、及び平滑用大容量コンデンサも含む。
 上述したように、アナログ系部品は、デジタル系部品よりも、比較的面積(大きさ)が大きい傾向がある。また、アナログ系部品は、デジタル系部品よりも電気的な干渉、換言するとノイズの影響を受け易い傾向がある。そのため、本例示的実施形態では、TFT基板12が撓んだ場合でも、撓まない(撓みの影響を受けない)側の基板を、信号処理部品350を搭載した信号処理基板304としている。
 また、信号処理基板304に接続されるフレキシブルケーブル112には、信号処理回路部314が搭載されている。信号処理回路部314は、フレキシブルケーブル112に含まれる複数の信号線(図示省略)に接続されている。
 本例示的実施形態では、信号処理基板304に搭載された信号処理部品350と、信号処理回路部314とにより、信号処理部104が実現される。信号処理回路部314は、信号処理部104を実現する各種回路及び素子のうち、信号処理基板304に搭載されている信号処理部品350と異なる回路を含むICである。
 このように、本例示的実施形態の放射線検出器10では、フレキシブルケーブル112により、TFT基板12と信号処理基板304とが電気的に接続されることにより、信号処理部104と信号配線36の各々とに接続される。
 また、図4に示した一例のように、本例示的実施形態の放射線検出器10は、補強基板40と、TFT基板12の第1の面12Aとの間に、フレキシブルケーブル112、防湿剤44、及び粘着層45を挟んで、変換層14の側面を封止するスペーサ46が設けられている。
 スペーサ46を設ける方法は特に限定されず、例えば、補強基板40の端部の粘着層48に、スペーサ46を貼り付けておき、スペーサ46が設けられた状態の補強基板40を、積層体19、フレキシブルケーブル112、防湿剤44、及び粘着層45が設けられた状態のTFT基板12に貼り付けることで、スペーサ46をTFT基板12と補強基板40との間に設けてもよい。なお、スペーサ46の幅(積層体19の積層方向と交差する方向)は、図4に示した例に限定されない。例えば、図4に示した例よりも変換層14に近い位置までスペーサ46の幅が拡がっていてもよい。また、スペーサ46はTFT基板12の第1の面12A上に樹脂やセラミックなどをコーキングして形成してもよい。
 また、本例示的実施形態のTFT基板12側の第2の面12Bには、湿気等の水分から保護する機能を有する保護膜42が設けられている。保護膜42の材料としては、例えば、保護層22と同様の材料が挙げられる。
 本例示的実施形態の放射線検出器10の製造方法の一例としては、以下の方法が挙げられる。図6及び図7を参照して、本例示的実施形態の放射線検出器10の製造方法の一例を説明する。
 予め、放射線検出器10に合わせた所望の大きさとした補強基板40に、粘着層48を塗布し、粘着層48にスペーサ46を設けた状態のものを準備しておく。
 一方、図6に示すように、基材11に比べて厚さの厚いガラス基板等の支持体400に、剥離層(図示省略)を介して、基材11が形成される。ラミネート法により基材11を形成する場合、支持体400上に、基材11となるシートを貼り合わせる。基材11におけるTFT基板12の第2の面12Bに対応する面が剥離層(図示省略)に接する。
 さらに、基材11の画素領域35に、複数の画素30が形成される。なお、本例示的実施形態では、一例として、基材11の画素領域35に、SiN等を用いたアンダーコート層(図示省略)を介して、複数の画素30が形成される。
 さらに、画素領域35の上に、変換層14が形成される。本例示的実施形態では、まず、TFT基板12の第1の面12Aにおける変換層14を設ける領域に、緩衝層13を形成する。その後、TFT基板12上、より具体的には緩衝層13上に直接、真空蒸着法、スパッタリング法、及びCVD(Chemical Vapor Deposition)法等の気相堆積法によって柱状結晶としてCsIの変換層14が形成される。この場合、変換層14における画素30と接する側が、柱状結晶の成長方向基点側となる。
 なお、このように、TFT基板12上に直接、気相堆積法によってCsIの変換層14を設けた場合、変換層14のTFT基板12と接する側と反対側の面には、例えば、変換層14で変換した光を反射する機能を有する反射層(図示省略)が設けられていてもよい。反射層は、変換層14に直接設けられてもよいし、密着層等を介して設けられてもよい。反射層の材料としては、有機系の材料を用いたものが好ましく、例えば、白PET、TiO、Al、発泡白PET、ポリエステル系高反射シート、及び鏡面反射アルミ等の少なくとも1つを材料として用いたものが好ましい。特に、反射率の観点から、白PETを材料として用いたものが好ましい。なお、ポリエステル系高反射シートとは、薄いポリエステルのシートを複数重ねた多層構造を有するシート(フィルム)である。
 また、変換層14としてCsIのシンチレータを用いる場合、本例示的実施形態と異なる方法で、TFT基板12に変換層14を形成することもできる。例えば、アルミの板等に気相堆積法によってCsIを蒸着させたものを用意し、CsIのアルミの板と接していない側と、TFT基板12の画素30とを粘着性のシート等により貼り合わせることにより、TFT基板12に変換層14を形成してもよい。この場合、アルミの板も含めた状態の変換層14全体を保護膜により覆った状態のものを、TFT基板12の画素領域35と貼り合わせることが好ましい。なお、この場合、変換層14における画素領域35と接する側が、柱状結晶の成長方向の先端側となる。
 また、本例示的実施形態の放射線検出器10と異なり、変換層14としてCsIに替わり、GOS(GdS:Tb)等を用いてもよい。この場合、例えば、GOSを樹脂等のバインダに分散させたシートを、白PET等により形成された支持体に粘着層等により貼り合わせたものを用意し、GOSの支持体が貼り合わせられていない側と、TFT基板12の画素領域35とを粘着性のシート等により貼り合わせることにより、TFT基板12に変換層14を形成することができる。なお、変換層14にCsIを用いる場合の方が、GOSを用いる場合に比べて、放射線から可視光への変換効率が高くなる。
 さらに、TFT基板12の接続領域43(43A及び43B)にフレキシブルケーブル112を熱圧着し、フレキシブルケーブル112に含まれる複数の信号線(図示省略)とTFT基板12の接続領域43(43A及び43B)とを電気的に接続させる。
 さらに、駆動基板202の接続領域243(243A)にフレキシブルケーブル112を熱圧着し、フレキシブルケーブル112に含まれる複数の信号線(図示省略)と駆動基板202に搭載された駆動部品250とを電気的に接続させる。
 そして、予め準備しておいた、スペーサ46が設けられた補強基板40を、変換層14が形成され、フレキシブルケーブル112が接続されたTFT基板12に貼り合わせることで、変換層14を封止する。なお、上記の貼り合わせを行う場合は、大気圧下または、減圧下(真空下)で行うが、貼り合わせた間に空気等が入り込むのを抑制するために、減圧下で行うことが好ましい。
 この後、図7に示すように放射線検出器10を支持体400から剥離する。メカニカル剥離により剥離を行う場合、図7に示した一例では、TFT基板12における、フレキシブルケーブル112が接続された辺と対向する辺を剥離の起点とし、起点となる辺からフレキシブルケーブル112が接続された辺に向けて徐々にTFT基板12を支持体400から、図7に示した矢印D方向に引きはがすことにより、メカニカル剥離を行い、フレキシブルケーブル112が接続された状態の放射線検出器10が得られる。
 なお、剥離の起点とする辺は、TFT基板12を平面視した場合における、最長の辺と交差する辺が好ましい。換言すると、剥離により撓みが生じる撓み方向Yに沿った辺は、最長の辺であることが好ましい。本例示的実施形態では、駆動基板202がフレキシブルケーブル112により接続される辺の方が、信号処理基板304側がフレキシブルケーブル112により接続される辺よりも長い。そのため、剥離の起点を、接続領域43(43B)が設けられた辺と対向する辺としている。
 本例示的実施形態では、さらに、支持体400からTFT基板12を剥離した後、放射線検出器10のフレキシブルケーブル112と、信号処理基板304のコネクタ330とを電気的に接続する。このようにして本例示的実施形態では、図3~図5に一例を示した放射線検出器10が製造される。
 なお、本例示的実施形態に限定されず、放射線検出器10のフレキシブルケーブル112と、信号処理基板304のコネクタ330とを電気的に接続させたのち、上記メカニカル剥離を行ってもよい。
 メカニカル剥離を行うにあたり、本例示的実施形態の放射線画像撮影装置1では、図6及び図7に示したように、駆動基板202がフレキシブルな基板であるため、TFT基板12の撓みに応じて駆動基板202も撓む。
 ここで、支持体400からTFT基板12を剥離する場合、基材11が可撓性を有するため、TFT基板12が撓み易い。TFT基板12が大きく撓んだ場合、TFT基板12も大きく撓む結果、変換層14がTFT基板12から剥離されてしまう懸念がある。特に、変換層14の端部がTFT基板12から剥離し易くなる。また、支持体400からTFT基板12を剥離する場合に限定されず、放射線画像撮影装置1の製造工程の途中等の放射線検出器10が単体で扱われる場合、TFT基板12が撓むことにより、変換層14がTFT基板12から剥離されてしまう懸念がある。これに対して、本例示的実施形態の放射線検出器10では、降伏点を有する材料を含み、基材11よりも剛性が高い補強基板40が、TFT基板12の第1の面12Aと対向する側の面である、第1の面19Aに設けられている。そのため、本例示的実施形態の放射線検出器10によれば、TFT基板12が大きく撓むことを抑制することができ、変換層14がTFT基板12から剥離するのを抑制することができる。
[第2例示的実施形態]
 次に、第2例示的実施形態について説明する。図8には、本例示的実施形態の放射線検出器10の一例の断面図を示す。
 図8に示すように、本例示的実施形態の放射線検出器10では、TFT基板12側の第2の面12Bに、補強部材41が設けられている。本例示的実施形態の放射線検出器10では、図8に示すように、TFT基板12と補強部材41との間には、上記例示的実施形態と同様に、保護膜42が設けられている。
 補強部材41は、補強基板40と同様に、基材11よりも剛性が高く、第1の面12Aに対して垂直方向に加えられる力に対する、寸法変化(変形)が、基材11における第1の面12Bに対して垂直方向に加えられる力に対する、寸法変化よりも小さい。また、本例示的実施形態の補強部材41の厚みは、基材11の厚みよりも厚く、補強基板40の厚みよりも薄い。本例示的実施形態の補強部材41の材料としては、熱可塑性の樹脂であることが好ましく、補強基板40と同様の材料を用いることができる。なお、ここでいう剛性も、補強部材41及び基材11の厚さも含めた補強部材41及び基材11の曲げ難さを意味し、剛性が高いほど曲げ難いことを表している。
 本例示的実施形態の放射線検出器10は、例えば、第1例示的実施形態において上述した放射線検出器10の製造方法と同様の製造方法により、積層体19が設けられたTFT基板12に、スペーサ46が設けられた補強基板40を貼り合わせた後、支持体400からTFT基板12を剥離する。その後、TFT基板12の第2の面12Bに、保護膜42及び補強部材41を塗布等により設けることにより、本例示的実施形態の放射線検出器10を製造することができる。
 本例示的実施形態の放射線検出器10では、TFT基板12の、複数の画素30が形成された第1の面12Aと対向する第2の面12Bに、基材11よりも剛性が高い補強部材41が設けられている。そのため、上記各例示的実施形態の放射線検出器10よりもさらに、TFT基板12が大きく撓むことを抑制することができ、変換層14がTFT基板12から剥離するのを抑制することができる。
 また、例えば、変換層14の熱膨張率と、補強基板40の熱膨張率との差が比較的大きい場合、TFT基板12が反り返り易くなる。これに対して本例示的実施形態の放射線検出器10では、TFT基板12を補強基板40と補強部材41とで挟みこむため、熱膨張率の差等により、TFT基板12が反り返るのを抑制することができる。
 以上説明したように、上記各例示的実施形態の放射線検出器10は、可撓性の基材11の画素領域35に、放射線から変換された光に応じて発生した電荷を蓄積する複数の画素30が形成されたTFT基板12と、基材11の画素領域35が設けられた面である第1の面12Aに設けられ、放射線を光に変換する変換層14と、変換層14におけるTFT基板12側の面と対向する側の面である第1の面19Aに設けられ、降伏点を有する材料を含み、基材11よりも剛性が高い補強基板40と、を備える。
 上記各例示的実施形態の放射線検出器10では、降伏点を有する材料を含み、基材11よりも剛性が高い補強基板40が変換層14の上に設けられているため、TFT基板12が大きく撓むことを抑制することができる。従って、上記各例示的実施形態の放射線検出器10によれば、放射線検出器10を単体で扱う場合において変換層14がTFT基板12から剥離することを抑制することができる。
 なお、補強基板40の大きさは、上記各例示的実施形態に限定されない。例えば、図9に示した一例のように、補強基板40及び粘着層48の端部(外周)と、保護層22の端部(外周)とが同様の位置であってもよい。なお、変換層14がTFT基板12の第1の面12Aを覆う領域よりも広い領域を補強基板40により覆うことが好ましく、変換層14の上面全体を覆う領域よりも広い領域を補強基板40により覆うことがより好ましい。
 また、図10に示した一例のように、基材11と画素30、特に画素30のTFT32のゲート電極80との間には、無機材料による層90が設けられていることが好ましい。図10に示した一例では、この場合の無機材料としては、SiNxや、SiOx等が挙げられる。TFT32のドレイン電極81と、ソース電極82とは同じ層に形成されており、ドレイン電極81及びソース電極が形成された層と、基材11との間にゲート電極80が形成されている。また、基材11とゲート電極80との間に、無機材料による層90が設けられている。
 また、上記各例示的実施形態では、図1に示したように画素30がマトリクス状に2次元配列されている態様について説明したがこれに限らず、例えば、1次元配列であってもよいし、ハニカム配列であってもよい。また、画素の形状も限定されず、矩形であってもよいし、六角形等の多角形であってもよい。さらに、画素アレイ31(画素領域35)の形状も限定されないことはいうまでもない。
 また、変換層14の形状等も上記各例示的実施形態に限定されない。上記各例示的実施形態では、変換層14の形状が画素アレイ31(画素領域35)の形状と同様に矩形状である態様について説明したが、変換層14の形状は、画素アレイ31(画素領域35)と同様の形状でなくてもよい。また、画素アレイ31(画素領域35)の形状が、矩形状ではなく、例えば、その他の多角形であってもよいし、円形であってもよい。
 なお、上述した放射線検出器10の製造方法では、TFT基板12を、支持体400からメカニカル剥離により、剥離する工程について説明したが、剥離方法は、説明した形態に限定されない。例えば、支持体400のTFT基板12が形成されている反対側の面からレーザを照射して、TFT基板12の剥離を行う、いわゆる、レーザ剥離を行う形態としてもよい。この場合であっても、放射線検出器10によれば、TFT基板12を支持体400から剥離した後、放射線検出器10が単体で扱われる場合に、変換層14がTFT基板12から剥離するのを抑制することができる。
 なお、上記各例示的実施形態の放射線検出器10は、TFT基板12側から放射線が照射されるISS(Irradiation Side Sampling)方式の放射線画像撮影装置に適用してもよいし、変換層14側から放射線が照射されるPSS(Penetration Side Sampling)方式の放射線画像撮影装置に適用してもよい。
 図11には、ISS方式の放射線画像撮影装置1に第1例示的実施形態の放射線検出器10を適用した状態の一例の断面図を示す。
 図11に示すように、筐体120内には、放射線検出器10、電源部108、及び制御基板110が放射線の入射方向と交差する方向に並んで設けられている。放射線検出器10は、被写体を透過した放射線が照射される筐体120の撮影面120A側に、画素アレイ31の変換層14が設けられていない側が対向するように設けられている。
 筐体120は、軽量であり、放射線R、特にX線の吸収率が低く、且つ高剛性であることが好ましく、弾性率が十分に高い材料により構成されることが好ましい。筐体120の材料として、曲げ弾性率が10000MPa以上である材料を用いることが好ましい。筐体120の材料として、20000~60000MPa程度の曲げ弾性率を有するカーボンまたはCFRP(Carbon Fiber Reinforced Plastics)を好適に用いることができる。
 放射線画像撮影装置1による放射線画像の撮影においては、筐体120の撮影面120Aに被写体からの荷重が印加される。筐体120の剛性が不足する場合、被写体からの荷重によりTFT基板12に撓みが生じ、画素30が損傷する等の不具合が発生するおそれがある。10000MPa以上の曲げ弾性率を有する材料からなる筐体120内部に、放射線検出器10が収容されることで、被写体からの荷重によるTFT基板12の撓みを抑制することが可能となる。
 制御基板110は、画素アレイ31の画素30から読み出された電荷に応じた画像データを記憶する画像メモリ380や画素30からの電荷の読み出し等を制御する制御部382等が形成された基板であり、複数の信号配線を含むフレキシブルケーブル112により画素アレイ31の画素30と電気的に接続されている。なお、図11に示した放射線画像撮影装置1では、制御部382の制御により画素30のTFT32のスイッチング状態を制御する駆動部103、及び画素30から読み出された電荷に応じた画像データを生成して出力する信号処理部104がフレキシブルケーブル112上に設けられた、いわゆる、COF(Chip on Film)としているが、駆動部103及び信号処理部104の少なくとも一方が制御基板110に形成されていてもよい。
 また、制御基板110は、電源線114により、制御基板110に形成された画像メモリ380や制御部382等に電源を供給する電源部108と接続されている。
 図11に示した放射線画像撮影装置1の筐体120内には、放射線検出器10を透過した放射線が出射される側にシート116がさらに設けられている。シート116としては、例えば、銅製のシートが挙げられる。銅製のシートは入射放射線によって2次放射線を発生し難く、よって、後方、すなわち変換層14側への散乱を防止する機能を有する。なお、シート116は、少なくとも変換層14の放射線が出射する側の面全体を覆い、また、変換層14全体を覆うこと好ましい。
 また、図11に示した放射線画像撮影装置1の筐体120内には、放射線が入射される側(撮影面120A側)に保護層117がさらに設けられている。保護層117としては、絶縁性のシート(フィルム)に、アルミ箔を接着させる等してアルミを積層したアルペット(登録商標)のシート、パリレン(登録商標)膜、及びポリエチレンテレフタレート等の絶縁性のシート等の防湿膜が適用できる。保護層117は、画素アレイ31に対する防湿機能及び帯電防止機能を有している。そのため、保護層117は、少なくとも画素アレイ31の放射線が入射される側の面全体を覆うことが好ましく、放射線が入射される側のTFT基板12の面全体を覆うことが好ましい。
 なお、図11では、電源部108及び制御基板110の両方を放射線検出器10の一方の側、具体的には、矩形状の画素アレイ31の一方の辺の側に設けた形態を示したが、電源部108及び制御基板110を設ける位置は図11に示した形態に限定されない。例えば、電源部108及び制御基板110を、画素アレイ31の対向する2辺の各々に分散させて設けてもよいし、隣接する2辺の各々に分散させて設けてもよい。
 また、図12には、ISS方式の放射線画像撮影装置1に第1例示的実施形態の放射線検出器10を適用した状態の他の例の断面図を示す。
 図12に示すように、筐体120内には、電源部108及び制御基板110が放射線の入射方向と交差する方向に並んで設けられており、放射線検出器10と電源部108及び制御基板110とは放射線の入射方向に並んで設けられている。
 また、図12に示した放射線画像撮影装置1では、制御基板110及び電源部108とシート116との間に、放射線検出器10及び制御基板110を支持する基台118が設けられている。基台118には、例えば、カーボン等が用いられる。
 その他、上記各例示的実施形態で説明した放射線検出器10等の構成や製造方法等は一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることはいうまでもない。
[その他の例示的実施形態]
 まず、図13~図34を参照して補強基板40の他の例示的実施形態について説明する。
 なお、変換層14を気相堆積法を用いて形成した場合、図13~図34に示すように、変換層14は、その外縁に向けて厚さが徐々に薄くなる傾斜を有して形成される。以下において、製造誤差及び測定誤差を無視した場合の厚さが略一定とみなせる、変換層14の中央領域を中央部14Aという。また、変換層14の中央部14Aの平均厚さに対して例えば90%以下の厚さを有する、変換層14の外周領域を周縁部14Bという。すなわち、変換層14は、周縁部14BにおいてTFT基板12に対して傾斜した傾斜面を有する。
 図13~図34に示すように、変換層14と補強基板40との間には、粘着層60、反射層62、接着層64、保護層22、及び粘着層48が設けられていてもよい。
 粘着層60は、変換層14の中央部14A及び周縁部14Bを含む変換層14の表面全体を覆っている。粘着層60は、反射層62を変換層14上に固定する機能を有する。粘着層60は、光透過性を有していることが好ましい。粘着層60の材料として、例えば、アクリル系粘着剤、ホットメルト系粘着剤、及びシリコーン系接着剤を用いることが可能である。アクリル系粘着剤としては、例えば、ウレタンアクリレート、アクリル樹脂アクリレート、及びエポキシアクリレート等が挙げられる。ホットメルト系粘着剤としては、例えば、EVA(エチレン・酢酸ビニル共重合樹脂)、EAA(エチレンとアクリル酸の共重合樹脂)、EEA(エチレン-エチルアクリレート共重合樹脂)、及びEMMA(エチレン-メタクリル酸メチル共重合体)等の熱可塑性プラスチックが挙げられる。粘着層60の厚さは、2μm以上7μm以下であることが好ましい。粘着層60の厚さを2μm以上とすることで、反射層62を変換層14上に固定する効果を十分に発揮することができる。更に、変換層14と反射層62との間に空気層が形成されるリスクを抑制することができる。変換層14と反射層62との間に空気層が形成されると、変換層14から発せられた光が、空気層と変換層14との間、及び空気層と反射層62との間で反射を繰り返す多重反射を生じるおそれがある。また、粘着層60の厚さを7μm以下とすることで、MTF(Modulation Transfer Function)及びDQE(Detective Quantum Efficiency)の低下を抑制することが可能となる。
 反射層62は、粘着層60の表面全体を覆っている。反射層62は、変換層14で変換された光を反射する機能を有する。反射層62は有機系材料によって構成されていることが好ましい。反射層62の材料として、例えば、白PET、TiO、Al、発泡白PET、ポリエステル系高反射シート、及び鏡面反射アルミ等を用いることができる。反射層62の厚さは、10μm以上、40μm以下であることが好ましい。
 接着層64は反射層62の表面全体を覆っている。接着層64の端部は、TFT基板12の表面にまで延在している。すなわち、接着層64は、その端部においてTFT基板12に接着している。接着層64は、反射層62及び保護層22を変換層14に固定する機能を有する。接着層64の材料として、粘着層60の材料と同じ材料を用いることが可能であるが、接着層64が有する接着力は、粘着層60が有する接着力よりも大きいことが好ましい。
 保護層22は、接着層64の表面全体を覆っている。すなわち、保護層22は、変換層14の全体を覆うとともに、その端部がTFT基板12の一部を覆う状態に設けられている。保護層22は、変換層14への水分の浸入を防止する防湿膜として機能する。保護層22の材料として、例えば、PET、PPS、OPP、PEN、PI等の有機材料を含む有機膜を用いることができる。また、保護層22として、アルペット(登録商標)のシートを用いてもよい。
 補強基板40は、保護層22の表面に粘着層48を介して設けられている。粘着層48の材料として、例えば、粘着層60及び粘着層48の材料と同じ材料を用いることが可能である。
 図13に示す例では、補強基板40は、変換層14の中央部14A及び周縁部14Bに対応する領域に延在しており、補強基板40の外周部は、変換層14の周縁部14Bにおける傾斜に沿うように折り曲げられている。補強基板40は、変換層14の中央部14Aに対応する領域及び周縁部14Bに対応する領域の双方において、粘着層48を介して保護層22に接着されている。図13に示す例では、補強基板40の端部は、変換層14の周縁部14Bに対応する領域に配置されている。
 図14に示すように、補強基板40は、変換層14の中央部14Aに対応する領域にのみ設けられていてもよい。この場合、補強基板40は、変換層14の中央部14Aに対応する領域において粘着層48を介して保護層22に接着される。
 図15に示すように、補強基板40が変換層14の中央部14A及び周縁部14Bに対応する領域に延在している場合において、補強基板40は、変換層14の外周部における傾斜に沿った折り曲げ部を有していなくてもよい。この場合、補強基板40は、変換層14の中央部14Aに対応する領域において、粘着層48を介して保護層22に接着される。変換層14の周縁部14Bに対応する領域において、変換層14(保護層22)と補強基板40との間には、変換層14の周縁部14Bにおける傾斜に応じた空間が形成される。
 ここで、TFT基板12の外周部の続領域に設けられる端子113には、フレキシブルケーブル112が接続される。TFT基板12は、フレキシブルケーブル112を介して制御基板(制御基板110、図47等参照)に接続される。TFT基板12に撓みが生じた場合、フレキシブルケーブル112がTFT基板12から剥離したり、位置ズレを生じたりするおそれがある。この場合、フレキシブルケーブル112とTFT基板12との接続をやり直す作業が必要となる。このフレキシブルケーブル112とTFT基板12との接続をやり直す作業をリワークと呼ぶ。図13~図15に示すように、補強基板40の端部を変換層14の端部よりも内側に配置することで、補強基板40が、接続領域の近傍にまで延在している場合と比較して、容易にリワークを行うことができる。
 図16~図19に示すように、補強基板40は、その端部が、変換層14の端部よりも外側に配置され、且つTFT基板12上にまで延在する接着層64及び保護層22の端部に揃うように設けられていてもよい。なお、補強基板40の端部の位置と、接着層64及び保護層22の端部の位置とが完全に一致していることを要しない。
 図16に示す例では、補強基板40は、変換層14の中央部14Aに対応する領域において、粘着層48を介して保護層22に接着されており、変換層14の周縁部14Bに対応する領域及びさらに、その外側の領域において、変換層14(保護層22)と補強基板40との間には、変換層14の周縁部14Bにおける傾斜に応じた空間が形成されている。
 図17に示す例では、変換層14の周縁部14Bに対応する領域、及びさらにその外側の領域において、変換層14(保護層22)と補強基板40との間に形成された空間に充填材70が設けられている。充填材70の材料は特に限定されず、例えば、樹脂を用いることが可能である。なお、図17に示す例では、補強基板40を充填材70に固定するために、粘着層48が補強基板40と充填材70との間の全域に設けられている。
 充填材70を形成する方法は特に限定されない。例えば、粘着層60、反射層62、接着層64及び保護層22で覆われた変換層14上に、粘着層48及び補強基板40を順次形成した後、変換層14(保護層22)と補強基板40との間に形成された空間に、流動性を有する充填材70を注入し、充填材70を硬化させてもよい。また、例えば、TFT基板12上に変換層14、粘着層60、反射層62、接着層64及び保護層22を順次形成した後、充填材70を形成し、粘着層60、反射層62、接着層64及び保護層22で覆われた変換層14及び充填材70を覆う状態に、粘着層48及び補強基板40を順次形成してもよい。
 このように、変換層14(保護層22)と補強基板40との間に形成された空間に、充填材70を充填することで、図16に示す形態と比較して、補強基板40の変換層14(保護層22)からの剥離を抑制することができる。さらに、変換層14は、補強基板40及び充填材70の双方によりTFT基板12に固定される構造となるため、変換層14のTFT基板12からの剥離を抑制することが可能となる。
 図18に示す例では、補強基板40の外周部は、変換層14の周縁部14Bにおける傾斜に沿うように折り曲げられており、且つ接着層64及び保護層22がTFT基板12上を覆う部分をも覆っている。また、補強基板40の端部は、接着層64及び保護層22の端部に揃っている。なお、補強基板40の端部の位置と、接着層64及び保護層22の端部の位置とが完全に一致していることを要しない。
 補強基板40、粘着層48、保護層22、及び接着層64の端部は、封止部材72によって封止されている。封止部材72は、TFT基板12の表面から補強基板40の表面に亘る領域であり、且つ画素領域35を覆わない領域に設けられていることが好ましい。封止部材72の材料として、樹脂を用いることができ、特に熱可塑性樹脂が好ましい。具体的には、アクリル糊、及びウレタン系の糊等を封止部材72として用いることができる。補強基板40は、保護層22と比較して剛性が高く、補強基板40の折り曲げ部において、折り曲げを解消しようとする復元力が作用し、これによって保護層22が剥離するおそれがある。補強基板40、粘着層48、保護層22及び接着層64の端部を封止部材72によって封止することで、保護層22の剥離を抑制することが可能となる。
 図19に示す例では、図17に示す形態と同様、変換層14の周縁部14Bに対応する領域、及びさらにその外側の領域において、変換層14(保護層22)と補強基板40との間に形成された空間に充填材70が設けられている。また、変換層14の端部に対応する領域において、補強基板40の表面にさらに別の補強基板40Aが、粘着層48Aを介して積層されている。より具体的には、補強基板40Aは、変換層14の端部(外縁、エッジ)を跨ぐ領域に設けられている。補強基板40Aは、補強基板40と同一の材料で構成されていてもよい。放射線検出器10では、変換層14の端部において、TFT基板12の撓み量が比較的大きい。変換層14の端部に対応する領域において、補強基板40及び50Aによる積層構造を形成することで、変換層14の端部におけるTFT基板12の撓みを抑制する効果を促進させることが可能となる。
 図16~図19に示すように、補強基板40の端部が変換層14の端部よりも外側に配置され且つ接着層64及び保護層22の端部に揃う状態に設けられる場合においても、補強基板40が、接続領域の近傍にまで延在している場合と比較して、容易にリワークを行うことができる。
 また、図20~図23に示すように、補強基板40は、その端部が、TFT基板12上にまで延在する接着層64及び保護層22の端部よりも外側であり、且つTFT基板12の端部よりも内側に位置する状態に設けられていてもよい。
 図20に示す例では、補強基板40は、変換層14の中央部14Aに対応する領域において、粘着層48を介して保護層22に接着されており、変換層14の周縁部14Bに対応する領域、及びさらにその外側の領域において、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間には、変換層14の周縁部14Bにおける傾斜に応じた空間が形成されている。
 図21に示す例では、補強基板40の端部がスペーサ46によって支持されている。すなわち、スペーサ46の一端はTFT基板12の第1の面12Aに接続され、スペーサ46の他端は接着層47を介して補強基板40の端部に接続されている。TFT基板12との間に空間を形成しつつ延伸する補強基板40の端部をスペーサ46によって支持することで、補強基板40の剥離を抑制することが可能となる。また、TFT基板12の端部近傍にまで補強基板40による撓み抑制効果を作用させることができる。なお、スペーサ46を設けることに代えて、若しくはスペーサ46を設けることに加えて、図17に示す例に倣って、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間に形成された空間に充填材を充填してもよい。
 図22に示す例では、補強基板40の外周部が、変換層14の周縁部14Bにおける傾斜に沿うように折り曲げられており、且つ接着層64及び保護層22がTFT基板12上を覆う部分、及びその外側のTFT基板12上をも覆っている。すなわち、接着層64及び保護層22の端部が、補強基板40によって封止されている。補強基板40のTFT基板12上に延在する部分は、粘着層48を介してTFT基板12に接着されている。このように、接着層64及び保護層22の端部を補強基板40によって覆うことで、保護層22の剥離を抑制することが可能である。なお、図18に記載の例に倣って、封止部材72を用いて、補強基板40の端部を封止してもよい。
 図23に示す例では、補強基板40の端部がスペーサ46によって支持されている形態において、補強基板40の表面の、変換層14の端部に対応する領域に、さらに別の補強基板40Aが、粘着層48Aを介して積層されている。より具体的には、補強基板40Aは、変換層14の端部(外縁、エッジ)を跨ぐ領域に設けられている。補強基板40Aは、補強基板40と同一の材料で構成されていてもよい。放射線検出器10では、変換層14の端部におけるTFT基板12の撓み量が比較的大きい。変換層14の端部に対応する領域において、補強基板40及び40Aによる積層構造を形成することで、変換層14の端部におけるTFT基板12の撓みを抑制する効果を促進させることが可能となる。なお、スペーサ46を設けることに代えて、図17に示す例に倣って、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間に形成された空間に充填材70を充填してもよい。
 図24~図28に示すように、補強基板40は、その端部が、TFT基板12の端部に揃うように設けられていてもよい。なお、補強基板40の端部の位置とTFT基板12の端部の位置とが完全に一致していることを要しない。
 図24に示す例では、補強基板40は、変換層14の中央部14Aに対応する領域において、粘着層48を介して保護層22に接着されており、変換層14の周縁部14Bに対応する領域、及びさらにその外側の領域において、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間には、変換層14の周縁部14Bにおける傾斜に応じた空間が形成されている。
 図25に示す例では、補強基板40の端部がスペーサ46によって支持されている。すなわち、スペーサ46の一端は、TFT基板12の端部に設けられるフレキシブルケーブル112に接続され、スペーサ46の他端は接着層47を介して補強基板40の端部に接続されている。TFT基板12との間に空間を形成しつつ延伸する補強基板40の端部を、スペーサ46によって支持することで、補強基板40の剥離を抑制することが可能となる。また、TFT基板12の端部近傍にまで補強基板40による撓み抑制効果を作用させることができる。
 図26に示す例では、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間に形成された空間に充填材70が充填されている。本例示的実施形態において、フレキシブルケーブル112と端子113との接続部が充填材70によって覆われている。このように、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間に形成された空間に充填材70が充填されることで、図24に示す形態と比較して、補強基板40の変換層14(保護層22)からの剥離を抑制することができる。さらに、変換層14は、補強基板40及び充填材70の双方によりTFT基板12に固定される構造となるため、変換層14のTFT基板12からの剥離を抑制することが可能となる。また、フレキシブルケーブル112と端子113との接続部が充填材70によって覆われることで、フレキシブルケーブル112の剥離を抑制することが可能となる。
 図27に示す例では、補強基板40の外周部が、変換層14の周縁部14Bにおける傾斜に沿うように折り曲げられており、且つ接着層64及び保護層22がTFT基板12上を覆う部分、その外側の基板上、及び端子113とフレキシブルケーブル112との接続部をも覆っている。補強基板40のTFT基板12上及びフレキシブルケーブル112上に延在する部分は、それぞれ、粘着層48を介してTFT基板12及びフレキシブルケーブル112に接着されている。フレキシブルケーブル112と端子113との接続部が撓み補強基板40によって覆われることで、フレキシブルケーブル112の剥離を抑制することが可能となる。また、フレキシブルケーブル112の他端には、電子部品を搭載した制御基板が接続されることが想定されることから、フレキシブルケーブル112と端子113との接続部において、TFT基板12に比較的大きな撓みが生じるおそれがある。フレキシブルケーブル112と端子113との接続部が、補強基板40によって覆われることで、当該部分におけるTFT基板12の撓みを抑制することが可能となる。
 図28に示す例では、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間に形成された空間に充填材70が充填されている。また、変換層14の端部に対応する領域において、補強基板40の表面にさらに別の撓み補強基板40Aが、粘着層48Aを介して積層されている。より具体的には、補強基板40Aは、変換層14の端部(外縁、エッジ)を跨ぐ領域に設けられている。補強基板40Aは、補強基板40と同一の材料で構成されていてもよい。放射線検出器10では、変換層14の端部において、TFT基板12の撓み量が比較的大きい。変換層14の端部に対応する領域において、補強基板40及び40Aによる積層構造を形成することで、変換層14の端部におけるTFT基板12の撓みを抑制する効果を促進させることが可能となる。
 また、図29~図33に示すように、補強基板40は、その端部が、TFT基板12の端部よりも外側に位置するように設けられていてもよい。
 図29に示す例では、補強基板40は、変換層14の中央部14Aに対応する領域において、粘着層48を介して保護層22に接着されており、変換層14の周縁部14Bに対応する領域、及びさらにその外側の領域において、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間には、変換層14の周縁部14Bにおける傾斜に応じた空間が形成されている。
 図30に示す例では、補強基板40の端部がスペーサ46によって支持されている。すなわち、スペーサ46の一端は、TFT基板12の端部に設けられるフレキシブルケーブル112に接続され、スペーサ46の他端は接着層47を介して補強基板40の端部に接続されている。TFT基板12との間に空間を形成しつつ延伸する補強基板40の端部を、スペーサ46によって支持することで、補強基板40の剥離を抑制することが可能となる。また、TFT基板12の端部近傍にまで補強基板40による撓み抑制効果を作用させることができる。
 図31に示す例では、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間に形成された空間に充填材70が充填されている。本例示的実施形態において、フレキシブルケーブル112と端子113との接続部が充填材70によって覆われている。このように、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間に形成された空間に充填材70が充填されることで、図29に示す形態と比較して、補強基板40の変換層14(保護層22)からの剥離を抑制することができる。さらに、変換層14は、補強基板40及び充填材70の双方によりTFT基板12に固定される構造となるため、変換層14のTFT基板12からの剥離を抑制することが可能となる。また、フレキシブルケーブル112と端子113との接続部が充填材70によって覆われることで、フレキシブルケーブル112の剥離を抑制することが可能となる。
 図32に示す例では、補強基板40の外周部が、変換層14の周縁部14Bにおける傾斜に沿うように折り曲げられており、且つ接着層64及び保護層22がTFT基板12上を覆う部分、その外側の基板上、及び端子113とフレキシブルケーブル112との接続部をも覆っている。補強基板40のTFT基板12上及びフレキシブルケーブル112上に延在する部分は、それぞれ、粘着層48を介してTFT基板12及びフレキシブルケーブル112に接着されている。フレキシブルケーブル112と端子113との接続部が補強基板40によって覆われることで、フレキシブルケーブル112の剥離を抑制することが可能となる。また、フレキシブルケーブル112の他端には、電子部品を搭載した制御基板が接続されることが想定されることから、フレキシブルケーブル112と端子113との接続部補愛において、TFT基板12に比較的大きな撓みが生じるおそれがある。フレキシブルケーブル112と端子113との接続部が、補強基板40によって覆われることで、当該部分におけるTFT基板12の撓みを抑制することが可能となる。
 図33に示す例では、変換層14(保護層22)と補強基板40との間、及びTFT基板12と補強基板40との間に形成された空間に充填材70が充填されている。また、変換層14の端部に対応する領域において、補強基板40の表面にさらに別の補強基板40Aが、粘着層48Aを介して積層されている。より具体的には、補強基板40Aは、変換層14の端部(外縁、エッジ)を跨ぐ領域に設けられている。補強基板40Aは、補強基板40と同一の材料で構成されていてもよい。放射線検出器10では、変換層14の端部において、TFT基板12の撓み量が比較的大きい。変換層14の端部に対応する領域において、補強基板40及び40Aによる積層構造を形成することで、変換層14の端部におけるTFT基板12の撓みを抑制する効果を促進させることが可能となる。
 上述したように、放射線検出器10の製造工程においては、ガラス基板等の支持体400に、可撓性を有するTFT基板12を貼り付け、TFT基板12上に変換層14を積層した後、支持体400をTFT基板12から剥離する。このとき、可撓性を有するTFT基板12に撓みが生じ、これによってTFT基板12上に形成された画素30が損傷するおそれがある。支持体400をTFT基板12から剥離する前に、図13~図33に例示したような形態で変換層14上に補強基板40を積層しておくことで、支持体400をTFT基板12から剥離する際に生じるTFT基板12の撓みを抑制することができ、画素30の損傷のリスクを低減することが可能となる。
 また、補強基板40は、単一の層(単層)に限らず、多層で構成されていてもよい。例えば、図34に示す例では、放射線検出器10は、補強基板40、変換層14に近い方から順に、第1補強基板40B、第2補強基板40C、及び第3補強基板40Dが積層された3層の多層膜とした形態を示している。
 補強基板40を多層とした場合、補強基板40に含まれる各層は、異なる機能を有していることが好ましい。例えば、図34に示した一例では、第1補強基板40B及び第3補強基板40Dを非導電性の帯電防止機能を有する層とし、第2補強基板40Cを導電性の層とすることで、補強基板40に電磁シールド機能をもたせてもよい。この場合の第1補強基板40B及び第3補強基板40Dとしては、例えば、帯電防止塗料「コルコート」(商品名:コルコート社製)を用いた膜等の帯電防止膜が挙げられる。 また、第2補強基板40Cとしては、例えば、導電性シートや、Cu等の導電性のメッシュシート等が挙げられる。
 例えば、放射線検出器10の読取方式がISS方式の場合、変換層14側に制御基板110や電源部108等が設けられる場合(図52参照)があるが、このように補強基板40が帯電防止機能を有する場合、制御基板110や電源部108からの電磁ノイズを遮蔽することができる。
 また、図35は、補強基板40の構造の一例を示す平面図である。補強基板40は、その主面に複数の貫通孔40Hを有していてもよい。貫通孔40Hの大きさ及びピッチは、補強基板40において所望の剛性が得られるように定められる。
 補強基板40が複数の貫通孔40Hを有することで、補強基板40と変換層14との接合面に導入される空気を貫通孔40Hから排出させることが可能となる。これにより、補強基板40と変換層14との接合面における気泡の発生を抑制することが可能となる。
 補強基板40と変換層14との接合面に導入される空気を排出させる手段が存在しない場合には、上記接合面に気泡が発生するおそれがある。例えば、放射線画像撮影装置1の稼働時における熱により、上記接合面に生じた気泡が膨張すると、補強基板40と変換層14との密着性が低下する。これにより補強基板40による撓み抑制効果が十分に発揮されないおそれがある。図35に示すように、複数の貫通孔40Hを有する補強基板40を用いることで、上記のように、補強基板40と変換層14との接合面における気泡の発生を抑制することができるので、補強基板40と変換層14との密着性を維持することが可能となり、補強基板40による撓み抑制効果を維持することが可能となる。
 図36は、補強基板40の構造の他の例を示す斜視図である。図36に示す例では、補強基板40は、変換層14との接合面に凹凸構造を有する。この凹凸構造は、図36に示すように、互いに平行に配置された複数の溝63を含んで構成されていてもよい。補強基板40は、例えば、図37に示すように、複数の溝63による凹凸構造を有する面が、反射層62で覆われた変換層14に接合される。このように、補強基板40が変換層14との接合面に凹凸構造を有することで、補強基板40と変換層14との接合部に導入される空気を溝63から排出させることが可能となる。これにより、図35に示す形態と同様、補強基板40と変換層14との接合面における気泡の発生を抑制することが可能となる。これにより、補強基板40と変換層14との密着性を維持することが可能となり、補強基板40による撓み抑制効果を維持することが可能となる。
 図38及び図39は、それぞれ、補強基板40の構造の他の例を示す平面図である。図38及び図39に示すように、補強基板40は、複数の断片49に分断されていてもよい。補強基板40は、図38に示すように、複数の断片49(図49~4911)、一方向に配列するように分断されていてもよい。また、補強基板40は、図39に示すように、複数の断片49(図49~49)が、縦方向及び横方向に配列するように分断されていてもよい。
 補強基板40の面積が大きくなる程、補強基板40と変換層14との接合面に気泡が発生しやすくなる。図38及び図39に示すように、補強基板40を複数の断片49に分断することで、補強基板40と変換層14との接合面における気泡の発生を抑制することが可能となる。これにより、補強基板40と変換層14との密着性を維持することが可能となり、補強基板40による撓み抑制効果を維持することが可能となる。
 また、補強部材41のTFT基板12(第2の面12B)と接する側とは反対の側に、補強部材51を設けてもよい。図40~図44は、それぞれ、補強部材51の設置形態の例を示す断面図である。
 図40~図44に示す例では、補強部材41のTFT基板12側の面とは反対側の面には、補強部材51が、接着層52を介して積層されている。補強部材51は、補強基板40と同一の材料で構成されていてもよい。放射線検出器10をISS方式として用いる場合、補強部材51と画素領域35とが重なる部分の面積を極力小さくするために、補強部材51は、TFT基板12の外周部にのみ設けられていることが好ましい。すなわち、補強部材51は、図40~図44に示すように、画素領域35に対応する部分に開口61を有する環状であってもよい。このように、TFT基板12の外周部に、補強部材41及び補強部材51による積層構造を形成することで、比較的撓みが生じやすいTFT基板12の外周部の剛性を補強することができる。
 図40~図42に示す例では、補強部材51は、変換層14の端部(外縁、エッジ)を跨ぐ領域に設けられている。放射線検出器10では、変換層14の端部において、TFT基板12の撓み量が比較的大きい。変換層14の端部に対応する領域において、補強部材41及び補強部材51による積層構造を形成することで、変換層14の端部におけるTFT基板12の撓みを抑制する効果を促進させることが可能となる。
 放射線検出器10をISS方式として用いる場合において、図40に示すように、補強部材51の一部が画素領域35と重なる場合には、補強部材51の材質によっては、画像に影響を与えるおそれがある。従って、補強部材51の一部が画素領域35と重なる場合には、補強部材51の材料としてプラスチックを用いることが好ましい。
 図41及び図42に示すように、補強部材51が、変換層14の端部(外縁、エッジ)を跨ぎ、且つ画素領域35と重ならない形態(すなわち、補強部材51の開口61の端部が、画素領域35の外側に配置されている形態)が最も好ましい。図41に示す例では、補強部材51の開口61の端部の位置と、画素領域35の端部の位置とが略一致している。図42に示す例では、補強部材51の開口61の端部が、画素領域35の端部と変換層14の端部との間に配置されている。
 また、補強部材51の開口61の端部の位置が、図43に示すように、変換層14の端部の位置と略一致していてもよく、また、図44に示すように、変換層14の端部よりも外側に配置されていてもよい。この場合、補強部材51が、変換層14の端部(外縁、エッジ)を跨ぐ構造となっていないため、変換層14の端部におけるTFT基板12の撓みを抑制する効果は低下するおそれがある。しかしながら、フレキシブルケーブル112と端子113との接続部が存在するTFT基板12の外周部において、補強部材41及び補強部材51による積層構造が形成されることで、フレキシブルケーブル112と端子113との接続部におけるTFT基板12の撓みを抑制する効果は維持される。
 また、上記各例示的実施形態の放射線検出器10では、TFT基板12(基材11)と補強部材41との大きさが同一である形態について説明したが、TFT基板12と補強部材41とは大きさが異なっていてもよい。
 例えば、放射線検出器10を放射線画像撮影装置1に適用する場合、放射線検出器10を収納する筐体120(図11等参照)等に放射線検出器10を固定して用いられることがある。このような場合、例えば、図45Aに示した一例のように、補強部材41をTFT基板12よりも大きくして、フラップ等を設けて、フラップ等の部分を用いて放射線検出器10の固定を行ってもよい。例えば、補強部材41のフラップ部分に穴を設け、穴を貫通するネジを用いて筐体120(図11等参照)と固定する形態としてもよい。
 なお、補強部材41をTFT基板12よりも大きくする形態は、図45Aに示した形態に限定されない。補強部材41を積層された複数の層で構成し、一部の層について、TFT基板12よりも大きくする形態としてもよい。例えば、図45Bに示すように、補強部材41をTFT基板12(基材11)と同程度の大きさを有する第1層41A、及びTFT基板12よりも大きな第2層41Bの2層構造としてもよい。第1層41Aと、第2層41Bとは両面テープや粘着層等(図示省略)により貼り合わせられる。第1層41Aとしては、例えば、上述の補強部材41と同様の材質で形成され、補強部材41と同様の性質を有することが好ましい。また、第2層41Bは、基材11の第2の面12Bに両面テープや粘着層等(図示省略)により貼り合わせられる。第2層41Bとしては、例えば、アルペット(登録商標)が適用できる。また、補強部材41を複数の層で構成する場合、図45Bに示す形態とは逆に、図45Cに示すように、第1層41Aを基材11の第2の面12Bに貼り合わせる形態としてもよい。
 上述したように、補強部材41に設けたフラップ等を用いて放射線検出器10を筐体120(図7等参照)等に固定する場合、フラップ部分を曲げた状態で固定を行う場合がある。厚みが薄くなるほど、補強部材41のフラップ部分が曲げ易くなり、放射線検出器10本体に影響を与えず、フラップ部分のみを曲げることができる。そのため、フラップ部分等を屈曲させる場合、図45B及び図45Cに示した一例のように、補強部材41を積層された複数の層で構成し、一部の層についてTFT基板12よりも大きくする形態とすることが好ましい。
 また、図46に示した例のように、上記図45A~図45Cの放射線検出器10とは逆に、補強部材41をTFT基板12よりも小さくしてもよい。TFT基板12の端部が、補強部材41の端部よりも外部に位置していることにより、例えば、放射線検出器10を筐体120(図7等参照)に収納する等、組み立てを行う場合に、TFT基板12の端部の位置が確認し易くなるため、位置決めの精度を向上させることができる。なお、図46に示した形態に限定されず、TFT基板12(基材11)の端部の少なくとも一部が、補強部材41よりも外部に位置していれば、同様の効果が得られるため好ましい。
 さらに、筐体120内に放射線検出器10を収容した、放射線画像撮影装置1の例について図47~図53を参照して説明する。図47~図53は、それぞれ、放射線画像撮影装置1の他の構成例を示す図である。
 図47に示す例では、上記図11に示した放射線画像撮影装置1と同様に、ISS方式の放射線画像撮影装置1の一例を示す。また、図48に示す例では、PSS方式の放射線画像撮影装置1の一例を示す。図47及び図48に示す例では、放射線検出器10、制御基板110、及び電源部108が図中横方向に並置されている構成が例示されている。
 なお、図47及び図48では、電源部108及び制御基板110の両方を放射線検出器10の一方の側、具体的には、矩形状の画素領域35の一方の辺の側に設けた形態を示したが、電源部108及び制御基板110を設ける位置は図47及び図48に示した形態に限定されない。例えば、電源部108及び制御基板110を、画素領域35の対向する2辺の各々に分散させて設けてもよいし、隣接する2辺の各々に分散させて設けてもよい。
 また、図47及び図48に示す例のように、放射線検出器10、制御基板110、及び電源部108を、TFT基板12及び変換層14が積層された方向と交差する方向に並べて配置する場合、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とで、筐体120の厚みが異なっていてもよい。
 図48に示す例のように、電源部108及び制御基板110の各々の方が、放射線検出器10よりも厚みを有している場合が多い。このような場合、図49に示す例のように、電源部108及び制御基板110の各々が設けられている筐体120の部分の厚みよりも、放射線検出器10が設けられている筐体120の部分の厚みの方が薄くてもよい。なお、このように、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とで、厚みを異ならせる場合、両部分の境界部に段差が生じていると境界部120Bに接触した被検者に違和感等を与える懸念があるため、境界部120Bの形態は傾斜を有する状態とすることが好ましい。
 これにより、放射線検出器10の厚さに応じた極薄型の可搬型電子カセッテを構成することが可能となる。
 また例えば、この場合、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とで、筐体120の材質が異なっていてもよい。さらに、例えば、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とが、別体として構成されていてもよい。
 また、上述したように、筐体120は、放射線R、特にX線の吸収率が低く、且つ高剛性であることが好ましく、弾性率が十分に高い材料により構成されることが好ましいが、図50に示す例のように、筐体120の撮影面120Aに対応する部分120Cについて、放射線Rの吸収率が低く、且つ高剛性であり、弾性率が十分に高い材料で構成し、その他の部分については、部分120Cと異なる材料、例えば、部分120Cよりも弾性率が低い材料で構成してもよい。
 また、図51に示す例のように、放射線検出器10と筐体120の内壁面とが接していてもよい。この場合、放射線検出器10と筐体120のない壁面とは、接着層を介して接着されていてもよいし、接着層を介さずに単に接触しているだけでもよい。このように、放射線検出器10と筐体120の内壁面とが接していることにより、放射線検出器10の剛性がより確保される。
 また、図52に示す例では、上記図12に示した放射線画像撮影装置1と同様に、ISS方式の放射線画像撮影装置1の一例を示す。また、図53に示す例では、PSS方式の放射線画像撮影装置1の一例を示す。図52及び図53に示す例では、シート116及び基台118を挟んで、TFT基板12と、制御基板110及び電源部108とが設けられている。この構成によれば、放射線検出器10、制御基板110及び電源部108が図中横方向に並置される場合(図47~図51参照)と比較して、放射線画像撮影装置1の平面視におけるサイズを小さくすることができる。
 日本出願2018-051690、2018-219696、2019-022148、2018-182730、2019-022149の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  可撓性の基材の画素領域に、放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が形成された基板と、
     前記基材の前記画素領域が設けられた面に設けられ、前記放射線を光に変換する変換層と、
     前記変換層における前記基板側の面と対向する側の面に設けられ、降伏点を有する材料を含み、前記基材よりも剛性が高い補強基板と、
     を備えた放射線検出器。
  2.  前記補強基板は、前記変換層が設けられた領域よりも広い領域に設けられている、
     請求項1に記載の放射線検出器。
  3.  前記基板は、前記複数の画素が形成された面の外周の領域に、前記複数の画素に蓄積された電荷を読み出す回路部に接続された可撓性の配線の他端が接続される接続領域を有し、
     前記補強基板は、前記接続領域の少なくとも一部及び前記変換層を覆う領域に設けられている、
     請求項1または請求項2に記載の放射線検出器。
  4.  前記基板の、前記複数の画素が形成された面と対向する面に、前記基材よりも剛性が高い補強部材をさらに備えた、
     請求項1から請求項3のいずれか1項に記載の放射線検出器。
  5.  前記基板と、前記変換層との間に設けられた緩衝層をさらに備えた、
     請求項1から請求項4のいずれか1項に記載の放射線検出器。
  6.  前記補強基板は、曲げ弾性率が1000MPa以上、2500MPa以下である、
     請求項1から請求項5のいずれか1項に記載の放射線検出器。
  7.  前記降伏点を有する材料は、ポリカーボネート、及びポリエチレンテレフタレートの少なくとも一つである、
     請求項1から請求項6のいずれか1項に記載の放射線検出器。
  8.  前記変換層の熱膨張率に対する前記補強基板の熱膨張率の比が0.5以上、2以下である、
     請求項1から請求項7のいずれか1項に記載の放射線検出器。
  9.  前記補強基板は、熱膨張率が30ppm/K以上、80ppm/以下である、
     請求項1から請求項8のいずれか1項に記載の放射線検出器。
  10.  前記変換層は、CsIの柱状結晶を含む、
     請求項1から請求項9のいずれか1項に記載の放射線検出器。
  11.  前記複数の画素は、前記画素領域に、直接形成法により形成される、
     請求項1から請求項10のいずれか1項に記載の放射線検出器。
  12.  請求項1から請求項11のいずれか1項に記載の放射線検出器と、
     前記複数の画素に蓄積された電荷を読み出すための制御信号を出力する制御部と、
     前記放射線検出器に可撓性の配線により電気的に接続され、前記制御信号に応じて前記複数の画素から電荷を読み出す回路部と、
     を備えた放射線画像撮影装置。
  13.  放射線検出器に応じた大きさの補強基板に、粘着層を塗布する工程と、
     支持体に、剥離層を介して可撓性の基材を設け、前記基材の画素領域に、放射線から変換された光に応じて発生した電荷を蓄積する複数の画素が設けられた基板を形成する工程と、
     前記基材の前記画素領域が設けられた面に、前記放射線を光に変換する変換層を形成する工程と、
     前記変換層の、前記基板側の面と対向する側の面と反対側の面に、降伏点を有する材料を含み、前記基材よりも剛性が高い補強基板を貼り合わせる工程と、
     前記変換層及び前記補強基板が設けられた前記基板を、前記支持体から剥離する工程と、
     を備えた放射線検出器の製造方法。
  14.  前記補強基板を貼り合わせる工程の前に、前記基板に前記複数の画素に蓄積された電荷を読み出す回路部に接続された可撓性の配線の一端を接続する工程をさらに含む、
     請求項13に記載の放射線検出器の製造方法。
PCT/JP2019/009428 2018-03-19 2019-03-08 放射線検出器、放射線画像撮影装置、及び製造方法 WO2019181570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19770823.3A EP3770640A4 (en) 2018-03-19 2019-03-08 RADIATION DETECTOR, RADIOLOGICAL IMAGING DEVICE AND MANUFACTURING PROCESS
JP2020508197A JP6880309B2 (ja) 2018-03-19 2019-03-08 放射線検出器、放射線画像撮影装置、及び製造方法
US17/025,621 US11630221B2 (en) 2018-03-19 2020-09-18 Radiation detector, radiographic imaging device, and manufacturing method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018-051690 2018-03-19
JP2018051690 2018-03-19
JP2018182730 2018-09-27
JP2018-182730 2018-09-27
JP2018219696 2018-11-22
JP2018-219696 2018-11-22
JP2019-022148 2019-02-08
JP2019022148 2019-02-08
JP2019-022149 2019-02-08
JP2019022149 2019-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/025,621 Continuation US11630221B2 (en) 2018-03-19 2020-09-18 Radiation detector, radiographic imaging device, and manufacturing method

Publications (1)

Publication Number Publication Date
WO2019181570A1 true WO2019181570A1 (ja) 2019-09-26

Family

ID=67987158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009428 WO2019181570A1 (ja) 2018-03-19 2019-03-08 放射線検出器、放射線画像撮影装置、及び製造方法

Country Status (6)

Country Link
US (1) US11630221B2 (ja)
EP (1) EP3770640A4 (ja)
JP (1) JP6880309B2 (ja)
CN (2) CN209992682U (ja)
TW (1) TWI805714B (ja)
WO (1) WO2019181570A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071380A (ja) * 2019-10-30 2021-05-06 キヤノン株式会社 放射線検出装置の製造方法
JPWO2021132396A1 (ja) * 2019-12-27 2021-07-01
JP2021107794A (ja) * 2019-12-27 2021-07-29 富士フイルム株式会社 放射線画像撮影装置及び放射線画像撮影装置の製造方法
WO2021166779A1 (ja) * 2020-02-20 2021-08-26 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び放射線検出器の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880309B2 (ja) * 2018-03-19 2021-06-02 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び製造方法
WO2019181569A1 (ja) * 2018-03-19 2019-09-26 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び製造方法
US20210048543A1 (en) * 2019-08-13 2021-02-18 Vieworks Co., Ltd. X-ray detector cover and x-ray detector having same
WO2021177118A1 (ja) 2020-03-05 2021-09-10 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び放射線検出器の製造方法
JP7332784B2 (ja) 2020-03-05 2023-08-23 富士フイルム株式会社 放射線検出器、及び放射線画像撮影装置
KR20230159493A (ko) * 2021-06-04 2023-11-21 엘지전자 주식회사 Aec 일체형 엑스선 디텍터

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058124A (ja) * 2004-08-19 2006-03-02 Canon Inc カセッテ型x線画像撮影装置
JP2009133837A (ja) 2007-11-05 2009-06-18 Canon Inc 放射線検出装置の製造方法、放射線検出装置及び放射線撮像システム
JP2012128091A (ja) * 2010-12-14 2012-07-05 Fujifilm Corp 放射線画像撮影装置
JP2012177624A (ja) 2011-02-25 2012-09-13 Fujifilm Corp 放射線画像検出装置及び放射線画像検出装置の製造方法
JP2012189487A (ja) * 2011-03-11 2012-10-04 Fujifilm Corp 放射線撮影装置
JP2012220659A (ja) * 2011-04-07 2012-11-12 Fujifilm Corp 放射線検出装置
JP2013050364A (ja) * 2011-08-30 2013-03-14 Fujifilm Corp 放射線画像検出装置
JP2018051690A (ja) 2016-09-29 2018-04-05 株式会社リケン リングケース
JP2018182730A (ja) 2017-04-18 2018-11-15 キヤノン株式会社 画像処理装置、画像処理方法、および撮像装置
JP2019022148A (ja) 2017-07-20 2019-02-07 ヤマハ株式会社 音処理装置及びパラメータ割り当て方法
JP2019022149A (ja) 2017-07-20 2019-02-07 キヤノン株式会社 画像処理装置、画像処理装置の制御方法、およびプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705943B2 (ja) * 1988-06-17 1998-01-28 コニカ株式会社 放射線画像変換パネル
WO2011089946A1 (ja) * 2010-01-25 2011-07-28 コニカミノルタエムジー株式会社 放射線画像変換パネルとそれを用いた放射線画像検出器
JP5791281B2 (ja) * 2010-02-18 2015-10-07 キヤノン株式会社 放射線検出装置及び放射線検出システム
WO2012014538A1 (ja) * 2010-07-26 2012-02-02 富士フイルム株式会社 放射線検出パネル
JP5966925B2 (ja) * 2010-09-07 2016-08-10 コニカミノルタ株式会社 放射線画像検出器の製造方法
JP2012172971A (ja) * 2011-02-17 2012-09-10 Konica Minolta Medical & Graphic Inc シンチレータパネル、その製造方法、フラットパネルディテクタ及びその製造方法
JP2012200373A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp 放射線撮影装置及び製造方法
JP6200173B2 (ja) * 2013-03-21 2017-09-20 キヤノン株式会社 放射線検出装置及び放射線検出システム
GB2516034A (en) 2013-07-08 2015-01-14 Plastic Logic Ltd Radiation imaging
JP6523620B2 (ja) * 2014-06-16 2019-06-05 キヤノン電子管デバイス株式会社 放射線検出器及びその製造方法
JP6880309B2 (ja) * 2018-03-19 2021-06-02 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058124A (ja) * 2004-08-19 2006-03-02 Canon Inc カセッテ型x線画像撮影装置
JP2009133837A (ja) 2007-11-05 2009-06-18 Canon Inc 放射線検出装置の製造方法、放射線検出装置及び放射線撮像システム
JP2012128091A (ja) * 2010-12-14 2012-07-05 Fujifilm Corp 放射線画像撮影装置
JP2012177624A (ja) 2011-02-25 2012-09-13 Fujifilm Corp 放射線画像検出装置及び放射線画像検出装置の製造方法
JP2012189487A (ja) * 2011-03-11 2012-10-04 Fujifilm Corp 放射線撮影装置
JP2012220659A (ja) * 2011-04-07 2012-11-12 Fujifilm Corp 放射線検出装置
JP2013050364A (ja) * 2011-08-30 2013-03-14 Fujifilm Corp 放射線画像検出装置
JP2018051690A (ja) 2016-09-29 2018-04-05 株式会社リケン リングケース
JP2018182730A (ja) 2017-04-18 2018-11-15 キヤノン株式会社 画像処理装置、画像処理方法、および撮像装置
JP2019022148A (ja) 2017-07-20 2019-02-07 ヤマハ株式会社 音処理装置及びパラメータ割り当て方法
JP2019022149A (ja) 2017-07-20 2019-02-07 キヤノン株式会社 画像処理装置、画像処理装置の制御方法、およびプログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071380A (ja) * 2019-10-30 2021-05-06 キヤノン株式会社 放射線検出装置の製造方法
JP7314019B2 (ja) 2019-10-30 2023-07-25 キヤノン株式会社 放射線検出装置の製造方法
JPWO2021132396A1 (ja) * 2019-12-27 2021-07-01
WO2021132396A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 放射線画像撮影装置の製造方法
JP2021107794A (ja) * 2019-12-27 2021-07-29 富士フイルム株式会社 放射線画像撮影装置及び放射線画像撮影装置の製造方法
JP7241676B2 (ja) 2019-12-27 2023-03-17 富士フイルム株式会社 放射線画像撮影装置及び放射線画像撮影装置の製造方法
JP7282922B2 (ja) 2019-12-27 2023-05-29 富士フイルム株式会社 放射線画像撮影装置の製造方法
JP7451787B2 (ja) 2019-12-27 2024-03-18 富士フイルム株式会社 放射線画像撮影装置
WO2021166779A1 (ja) * 2020-02-20 2021-08-26 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び放射線検出器の製造方法
JPWO2021166779A1 (ja) * 2020-02-20 2021-08-26
JP7303368B2 (ja) 2020-02-20 2023-07-04 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び放射線検出器の製造方法

Also Published As

Publication number Publication date
TW201944964A (zh) 2019-12-01
EP3770640A4 (en) 2021-04-28
JPWO2019181570A1 (ja) 2020-12-03
CN110286399A (zh) 2019-09-27
CN209992682U (zh) 2020-01-24
US20210003722A1 (en) 2021-01-07
JP6880309B2 (ja) 2021-06-02
TWI805714B (zh) 2023-06-21
US11630221B2 (en) 2023-04-18
EP3770640A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2019181570A1 (ja) 放射線検出器、放射線画像撮影装置、及び製造方法
JP6906687B2 (ja) 放射線検出器及び放射線画像撮影装置
JP7031014B2 (ja) 放射線検出器、放射線画像撮影装置、及び製造方法
JP6914422B2 (ja) 放射線検出器、放射線画像撮影装置、及び製造方法
WO2019181639A1 (ja) 放射線検出器及び放射線画像撮影装置
US11802981B2 (en) Method of manufacturing radiation detector and radiographic imaging apparatus
TWI834890B (zh) 放射線檢測器及放射線圖像攝影裝置
JP7125502B2 (ja) 放射線検出器、放射線画像撮影装置、及び製造方法
JP7332784B2 (ja) 放射線検出器、及び放射線画像撮影装置
JP7208941B2 (ja) 放射線検出器、放射線画像撮影装置、及び放射線検出器の製造方法
WO2021166779A1 (ja) 放射線検出器、放射線画像撮影装置、及び放射線検出器の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019770823

Country of ref document: EP

Effective date: 20201019