WO2019155751A1 - 車載充電装置、及び車載充電装置の制御方法 - Google Patents

車載充電装置、及び車載充電装置の制御方法 Download PDF

Info

Publication number
WO2019155751A1
WO2019155751A1 PCT/JP2018/045287 JP2018045287W WO2019155751A1 WO 2019155751 A1 WO2019155751 A1 WO 2019155751A1 JP 2018045287 W JP2018045287 W JP 2018045287W WO 2019155751 A1 WO2019155751 A1 WO 2019155751A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
current
vehicle
control device
Prior art date
Application number
PCT/JP2018/045287
Other languages
English (en)
French (fr)
Inventor
暢晃 佐藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880088948.3A priority Critical patent/CN111699608B/zh
Priority to DE112018007053.0T priority patent/DE112018007053T5/de
Publication of WO2019155751A1 publication Critical patent/WO2019155751A1/ja
Priority to US16/985,002 priority patent/US11919415B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present disclosure relates to a vehicle-mounted charging device and a method for controlling the vehicle-mounted charging device.
  • Hybrid vehicles, electric vehicles, and other various electric vehicles are equipped with a charging device for charging a battery using electric power supplied from an external power source (for example, a commercial power source).
  • an external power source for example, a commercial power source.
  • this type of battery deteriorates in charging characteristics under a low temperature environment (for example, a temperature of 0 ° C. or lower) (for example, the supplied power cannot be sufficiently stored and power loss is increased. Or inducing partial overheating conditions).
  • an electric vehicle charging device when charging a battery in a low-temperature environment, an electric vehicle charging device also supplies power to a battery temperature control device (for example, a resistance heater or a PTC heater). , And after the temperature of the battery is raised or while the temperature of the battery is raised, the power is supplied to the battery (for example, see Patent Document 1).
  • a battery temperature control device for example, a resistance heater or a PTC heater.
  • an overcurrent countermeasure in this type of battery is that when the battery is being charged, the current level that is an allowable limit for the battery changes according to the charge rate and temperature of the battery, and There is also a difficulty in that the power load of the battery temperature control device also changes.
  • the overcurrent state in the battery is, for example, inducing an unintended chemical reaction in the battery to generate impurities, generating ions that are not absorbed by the electrode of the battery, or a plurality of constituents of the battery. This causes a variation in the cell voltage of each of the battery cells, causing deterioration of charge / discharge characteristics of the battery and damage of the battery.
  • the present disclosure has been made in view of the above-described problems. Even when the battery temperature adjustment and the battery charging are simultaneously performed by the battery temperature adjusting device, the battery does not generate an overcurrent state. It is an object of the present invention to provide a vehicle-mounted charging device and a method for controlling the vehicle-mounted charging device that can perform charging with high power.
  • An in-vehicle charging device that converts power supplied from an external power source in a charging circuit and supplies power in parallel to a battery and a battery temperature control device, When simultaneously performing the temperature adjustment of the battery and the charging of the battery by the battery temperature adjusting device, the allowable value of the charging current of the battery and the total consumption current of the battery temperature adjusting device at each time during the charging are performed.
  • the on-vehicle charging wherein the allowable value of the charging current of the battery and the consumption current of the battery temperature adjustment device are specified based on the battery characteristic information of the battery and the heater characteristic information of the battery temperature adjustment device stored in advance. Device.
  • a control method for an in-vehicle charging device that converts power supplied from an external power source in a charging circuit and supplies power in parallel to a battery and a battery temperature control device,
  • the allowable value of the charging current of the battery and the total consumption current of the battery temperature adjusting device at each time during the charging are performed.
  • Control the output current of the charging circuit so that it approaches,
  • the allowable value of the charging current of the battery and the current consumption of the battery temperature control device are specified based on the battery characteristic information of the battery and the heater characteristic information of the battery temperature control device stored in advance. It is.
  • the battery temperature control device even when the battery temperature adjustment and the battery charging are simultaneously performed by the battery temperature control device, the battery is largely charged without generating an overcurrent state. It is possible to run with power.
  • the figure which shows an example of the electric power system of the vehicle which concerns on 1st Embodiment The figure which shows an example of a structure of the vehicle-mounted charging system which concerns on 1st Embodiment.
  • the figure which shows an example of the heater characteristic information which concerns on 1st Embodiment The flowchart which shows an example of operation
  • FIG. 1 is a diagram illustrating an example of an electric power system of a vehicle A according to the present embodiment.
  • the vehicle A includes a vehicle ECU 10, a junction box 20, a charging device 30, a power storage device 40, a power conversion device 50, and an inverter device 60.
  • a thick line L represents a power line in the vehicle A.
  • An arrow on the thick line L indicates a path of current that flows from the charging device 30 toward the battery 41 or the like during charging.
  • the charging device 30 is a power module that converts power supplied from the external power source S into power (for example, converts AC power into DC power) and supplies power to the battery 41 and the like.
  • the charging device 30 includes a charging circuit 31 (for example, an AC / DC converter 31a and a DC / DC converter 31b), and an electronic control unit 32 (hereinafter referred to as “charger ECU 32”) that controls the charging circuit 31. ing.
  • the power storage device 40 is a power module that stores power that is a drive source of the vehicle A.
  • the power storage device 40 includes a battery 41, a PTC heater 43, and an electronic control unit 42 (hereinafter referred to as “battery ECU 42”) that controls the execution of charging / discharging in the battery 41 or monitors the state of the battery 41. I have.
  • the battery 41 is typically a lithium ion secondary battery, but may be any battery such as a nickel hydride secondary battery or an electric double layer capacitor. Further, these battery cells may be connected in series or in parallel to constitute one battery.
  • the PTC heater 43 is a battery temperature control device that heats the battery 41 by converting electric power supplied from the charging circuit 31 or the battery 41 into heat.
  • the PTC heater 43 raises the temperature of the battery 41 when the battery 41 is charged and discharged at a low temperature.
  • the PTC heater 43 is disposed adjacent to the battery 41 so that heat transfer to the battery 41 can be satisfactorily performed.
  • a mode in which the PTC heater 43 is used as the battery temperature adjustment device is shown, but a resistance heater that does not change its electrical resistance depending on the temperature may be used as the battery temperature adjustment device.
  • the power conversion device 50 converts the power supplied from the power storage device 40 or the external power source S (for example, converts high-voltage DC power to low-voltage DC power) and applies the power to the load device R.
  • the power conversion device 50 includes a DC / DC converter 51 and an electronic control unit 52 that controls the DC / DC converter 51.
  • the load device R connected to the power conversion device 50 is, for example, an electrical component (headlight, wiper, audio device, or the like) mounted on the vehicle A, or a low-voltage battery for driving the electrical component. is there.
  • the power conversion device 50 receives power from the charging circuit 31 and operates the built-in DC / DC converter 51 so as to output power (for example, constant voltage output) required by the load device R connected in the subsequent stage. ing.
  • the inverter device 60 is a power module that converts DC power received from the battery 41 or the like into AC power and supplies it to a motor or the like.
  • the inverter device 60 includes an inverter circuit 61 and an electronic control unit 62 that controls the inverter circuit 61.
  • the junction box 20 connects power lines L extending from each power module (here, the charging device 30, the power storage device 40, the power conversion device 50, and the inverter device 60) to transfer power between the power modules. Relay.
  • the junction box 20 includes, for example, an electric circuit switching circuit 21 that switches a connection state between the power modules, and an electronic control unit that controls the connection state of the electric circuit switching circuit 21 or relays communication between the power modules. 22 (hereinafter referred to as “relay ECU 22”).
  • the vehicle ECU 10 is a vehicle control unit that comprehensively controls each part of the vehicle A.
  • the vehicle ECU 10 outputs a command signal to the relay ECU 22 and causes each power module to execute a desired operation via the relay ECU 22.
  • the vehicle A when charging the battery 41, first, as shown by an arrow on the power line L in FIG. 1, first, an input unit C (for example, a connection plug) of the vehicle A
  • the electric power from the external power source S (for example, a single-phase AC commercial AC power source) is supplied to the charging device 30.
  • the power received by the charging device 30 from the external power source S is converted into power by the charging circuit 31 (for example, converted from AC power to DC power), and is supplied to the battery 41 via the junction box 20. Will be supplied.
  • the power received by the charging device 30 from the external power source S is supplied to the PTC heater 43 in parallel with the battery 41 in addition to the battery 41 when the PTC heater 43 is operating. become.
  • the power received by the charging device 30 from the external power source S can be supplied to the load device R (for example, when the charging rate of the low voltage battery is reduced). At this time, the power received by the charging device 30 from the external power source S is supplied in parallel to the load device R in addition to the battery 41 and the PTC heater 43.
  • FIG. 2 is a diagram illustrating an example of the configuration of the in-vehicle charging system U according to the present embodiment.
  • the in-vehicle charging system U includes a charging circuit 31 of a charging device 30 (corresponding to the in-vehicle charging device of the present invention), a charger ECU 32 (corresponding to the control device of the present invention), a battery ECU 42, and a relay ECU 22. Consists of including. These configurations are mounted on the vehicle A as shown in FIG.
  • FIG. 2 shows a state in which a single-phase AC commercial AC power source is connected to the input side of the charging circuit 31 of the charging device 30 as the external power source S.
  • the two power lines L in FIG. 2 are a high-side power line and a low-side power line.
  • the in-vehicle charging system U controls the output power (particularly, output current) of the charging circuit 31 and cooperates with the battery ECU 42, the charger ECU 32, and the relay ECU 22 to supply current to the battery 41. (Hereinafter referred to as “charging current”) level is optimized.
  • the in-vehicle charging system U When the PTC heater 43 is operated, the in-vehicle charging system U according to the present embodiment performs charging of the battery 41 while raising the temperature of the battery 41 with the PTC heater 43. At this time, the power received from the external power source S by the charging circuit 31 is supplied in parallel to both the battery 41 and the PTC heater 43.
  • the in-vehicle charging system U takes into account both the consumption current of the PTC heater 43 (I2 in FIG. 2) and the charging current to the battery 41 (I1 in FIG. 2) when the PTC heater 43 operates.
  • the output current from the charging circuit 31 (Iout in FIG. 2) is controlled (details will be described later).
  • the operation state of the PTC heater 43 is controlled by turning on / off a switch 43a (for example, a relay) in which the relay ECU 22 is disposed in front of the PTC heater 43. Is done by switching control.
  • a switch 43a for example, a relay
  • the on-vehicle charging system U when the on-vehicle charging system U according to the present embodiment supplies power to the load device R, the battery 41, the PTC heater 43, and the load device R are supplied with power in parallel.
  • the in-vehicle charging system U according to the present embodiment includes the consumption current of the PTC heater 43 (I2 in FIG. 2), the charging current to the battery 41 (I1 in FIG. 2), and the consumption current of the load device R. 2 is controlled (details will be described later).
  • the battery ECU 42, the charger ECU 32, and the relay ECU 22 include, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, an output port, and the like.
  • a microcomputer is used.
  • the functions (details will be described later) of the battery ECU 42, the charger ECU 32, and the relay ECU 22 are realized by the CPU referring to a control program and various data stored in the ROM or RAM, for example.
  • some or all of the functions of the battery ECU 42, the charger ECU 32, and the relay ECU 22 may be realized by a dedicated hardware circuit.
  • the battery ECU 42, the charger ECU 32, and the relay ECU 22 have a communication interface (for example, a communication interface that conforms to a CAN (Controller Area Network) communication protocol) and are connected to be communicable with each other.
  • a communication interface for example, a communication interface that conforms to a CAN (Controller Area Network) communication protocol
  • the charger ECU 32 is a control device that is disposed in the casing of the charging device 30 together with the charging circuit 31 and operates the charging circuit 31.
  • the charging circuit 31 is a circuit that converts electric power received from the external power source S into DC power having a predetermined current level and voltage level, and includes, for example, an AC / DC converter 31a and a DC / DC converter 31b.
  • the AC / DC converter 31a includes, for example, a rectifier circuit and a smoothing capacitor, converts AC power received from the external power source S into DC power, and sends the DC power to the DC / DC converter 31b.
  • the DC / DC converter 31b includes, for example, an LLC resonant converter circuit, converts the voltage of DC power sent from the AC / DC converter 31a, and is connected in parallel to the output side and a battery 41 and a PTC heater 43 for output.
  • the charging circuit 31 (here, the DC / DC converter 31b) is operated by, for example, a switching signal (for example, a PWM (Pulse Width Modulation) signal) output from the charger ECU 32.
  • a switching signal for example, a PWM (Pulse Width Modulation) signal
  • the output current and output voltage of the charging circuit 31 are controlled by the switching signal from the charger ECU 32.
  • the charger ECU 32 operates the charging circuit 31 based on the target value of the output current or the target value of the output voltage set in its own RAM or the like.
  • the charger ECU 32 outputs an output current and an output based on, for example, a sensor value of a current detection circuit (not shown) provided on the output side of the charging circuit 31 and a sensor value of a voltage detection circuit (not shown).
  • the charging circuit 31 (DC / DC converter 31b) is feedback-controlled so that the voltage becomes a target value.
  • the operation of the charging circuit 31 according to the present embodiment is controlled by a constant current constant voltage charging (CCCV) method.
  • CCCV constant current constant voltage charging
  • the “target value of the output current of the charging circuit 31” preferably means the actual value of the charging current to the battery 41 (the actual value of the charging current) from the viewpoint of shortening the charging time, as described above. The same applies hereinafter), which is a value that matches the allowable value of the charging current of the battery 41 (details will be described later).
  • the output current of the charging circuit 31 is also used as the consumption current of the PTC heater 43 in addition to the charging current to the battery 41 when the PTC heater 43 operates. Further, the allowable value of the charging current of the battery 41 changes according to the state of the battery 41 at the time of charging (details will be described later).
  • the optimum value as the “target value of the output current of the charging circuit 31” varies with time according to the operating state of the PTC heater 43, the state of the battery 41, and the like.
  • the relay ECU 22 comprehensively monitors the state of the battery 41 and the state of the PTC heater 43 and determines the target value of the output current of the charging circuit 31.
  • the charger ECU 32 controls the operation of the charging circuit 31 based on a command relating to the target value of the output current of the charging circuit 31 from the relay ECU 22.
  • the target value of the output voltage of the charging circuit 31 is, for example, the voltage between the terminals of the battery 41 at the time of charge execution acquired from the relay ECU 22. However, as long as the backflow of the current from the battery 41 can be prevented, the target value of the output voltage may not be set.
  • the battery ECU 42 is disposed in the housing of the power storage device 40 together with the battery 41, and controls the charge / discharge operation of the battery 41. And the voltage between terminals of the battery 41).
  • the battery ECU 42 acquires sensor signals from sensors (current sensor 44 and temperature sensor 45 in the present embodiment) built in the battery 41, and the state of the battery 41 (this embodiment) based on the sensor signals of the sensors. Then, the temperature of the battery 41, the charging rate of the battery 41, and the voltage between the terminals of the battery 41) are monitored. The battery ECU 42 determines the allowable value of the charging current according to the state of the battery 41 when the battery 41 is charged.
  • the battery ECU 42 detects the temperature of the battery 41 based on a sensor signal acquired from a temperature sensor 45 (for example, a thermistor or a thermocouple).
  • Information on the temperature of the battery 41 detected by the battery ECU 42 is, for example, as reference information when adjusting the temperature of the battery 41 using the PTC heater 43, and as reference information when determining the allowable value of the charging current of the battery 41. Used.
  • the temperature sensor 45 is used as means for detecting the temperature of the battery 41 and also as means for estimating the temperature of the PTC heater 43 (details will be described later). However, in addition to the temperature sensor 45, a sensor that directly measures the temperature of the PTC heater 43 may be provided.
  • the battery ECU 42 determines the current level of the charging current to the battery 41 and the discharge current from the battery 41 based on the sensor signal acquired from the current sensor 44 (for example, shunt resistor or Hall element).
  • the current level is detected, and the charging rate of the battery 41 is calculated by integrating the current level and the charging time for the battery 41 and the discharging time from the battery 41.
  • the information on the charging rate of the battery 41 detected by the battery ECU 42 is used, for example, as reference information when charging is stopped and as reference information when determining an allowable value of the charging current of the battery 41.
  • the method by which the battery ECU 42 detects the temperature and the charging rate of the battery 41 is arbitrary.
  • the battery ECU 42 may use another temperature sensor provided in the vehicle instead of the temperature sensor 45 built in the battery 41.
  • the battery ECU 42 may detect the charging rate of the battery 41 from the voltage between the positive and negative terminals of the battery 41, for example.
  • the battery ECU 42 stores battery characteristic information of the battery 41 in advance in its own ROM or the like in order to determine the allowable value of the charging current according to the state of the battery 41.
  • the battery characteristic information according to the present embodiment is stored, for example, as table data in which the allowable value of the charging current of the battery 41 is associated with two variables of the temperature and the charging rate of the battery 41 at that time during charging. Has been.
  • the battery ECU 42 refers to the battery characteristic information, and determines the allowable value of the charging current supplied to the battery 41 from the current temperature and charging rate of the battery 41. Then, the battery ECU 42 outputs information indicating the allowable value of the charging current at the current time to the relay ECU 22.
  • the “allowable value of the charging current of the battery 41” means that the battery 41 is charged safely and without causing deterioration due to the characteristics of the battery 41 (for example, the chemical reaction mode, the specific gravity of the electrolyte, or the generated gas in the electrolyte).
  • the current level is an allowable limit, and is preset for each type of the battery 41 or individually.
  • the allowable value of the charging current generally changes according to the temperature of the battery 41, the charging rate, and the like.
  • FIG. 3 is a diagram showing an example of temperature-based battery characteristic information of the battery 41.
  • the battery characteristic information shown in FIG. 3 is an example of a relationship between the temperature [° C.] of the battery 41 and the allowable value [A] of the charging current of the battery 41 when the charging rate of the battery 41 is the same (for example, 20%). Show.
  • the horizontal axis of FIG. 3 represents the temperature of the battery 41, and the vertical axis represents the allowable value of the charging current of the battery 41.
  • the allowable value of the charging current of the battery 41 is extremely small when the temperature of the battery 41 is a predetermined value or less (for example, 0 ° C. or less), and the temperature of the battery 41 increases. Take it bigger.
  • the temperature of the battery 41 mainly depends on the external environment of the vehicle A, but also changes due to the heat generated by the battery 41 itself while the battery 41 is being charged.
  • the allowable value of the charging current of the battery 41 is determined according to the temperature of the battery 41 at that time during the execution of charging.
  • the allowable value of the charging current of the battery 41 generally decreases as the charging rate of the battery 41 increases. Therefore, the allowable value of the charging current of the battery 41 is more preferably determined in accordance with the charging rate of the battery 41 at that time during the execution of charging.
  • the battery ECU 42 changes the allowable value of the charging current of the battery 41 over time based on both the temperature and the charging rate of the battery 41, for example, the charging current of the battery 41 is shown in FIG. It behaves like a solid line graph at low temperatures.
  • the allowable value of the charging current in the battery characteristic information is not necessarily a value uniquely determined by the provider of the battery 41, and may be changed as appropriate from the viewpoint of control stability, safety standards, and the like. Of course, it is good. Further, the battery characteristic information that defines the allowable value of the charging current is set only for the section (CC charging section of FIG. 6 described later) in which the charging circuit 31 is feedback-controlled based on at least the allowable value of the charging current. That's fine.
  • the allowable value of the charging current in the battery characteristic information mainly depends only on the temperature of the battery 41 when the battery 41 is in a low temperature state, such as immediately after the start of charging. Therefore, the allowable value of the charging current immediately after the start of charging may be determined only by the temperature of the battery 41 without depending on the charging rate of the battery 41.
  • the relay ECU 22 is an ECU that is disposed in the junction box 20 and relays communication between the battery ECU 42 and the charger ECU 32.
  • the relay ECU 22 includes a battery state acquisition unit 22a, a heater control unit 22b, an output adjustment unit 22c, and a current detection unit 22d.
  • the battery state acquisition unit 22a acquires information related to the state of the battery 41 from the battery ECU 42 through communication with the battery ECU 42.
  • the battery state acquisition unit 22a has a predetermined frequency (for example, a frequency of one or more times per second) in order to optimize the output current of the charging circuit 31 during charging.
  • Information relating to the allowable value of the charging current of the battery 41, the charging rate of the battery 41, the temperature of the battery 41, and the like is acquired from the battery ECU.
  • the heater control unit 22b controls the operation state of the PTC heater 43 based on the information regarding the temperature of the battery 41 acquired by the battery state acquisition unit 22a.
  • the temperature of the battery 41 is also referred to as a preset threshold temperature (hereinafter referred to as “low temperature side threshold temperature”) that causes charging failure of the battery 41.
  • a preset threshold temperature hereinafter referred to as “low temperature side threshold temperature”
  • the switch 43 a is turned on so that the output power of the charging circuit 31 is also supplied to the PTC heater 43.
  • the heater control unit 22b determines that the temperature of the battery 41 exceeds a preset threshold temperature at which the battery 41 can be satisfactorily charged (hereinafter also referred to as “high temperature side threshold temperature”, for example, 30 ° C.). Then, the switch 43a is turned off and the operation of the PTC heater 43 is stopped.
  • the output adjustment unit 22c calculates the allowable value of the charging current of the battery 41 at that time during charging and the total value of the current consumption of the PTC heater 43 at the time of charging, and calculates the total value and the total value.
  • the target value of the output current of the charging circuit 31 is determined so as to correspond to the increase / decrease. Then, the output adjusting unit 22c instructs the charger ECU 32 to set a target value for the output current of the charging circuit 31.
  • the output adjustment unit 22c further determines the charging circuit based on the current consumption of the load device R detected by the current detection unit 22d.
  • the target value of the output current 31 is corrected (details will be described later).
  • the output current of the charging circuit 31 is adjusted so that the actual value of the charging current of the battery 41 is within the allowable value range of the charging current of the battery 41 and approaches the allowable value at any time during charging. Will be controlled.
  • the target value of the output current of the charging circuit 31 is typically a value that matches the allowable value of the charging current of the battery 41 and the total current consumption of the PTC heater 43 at that time during charging. Including the margin at the time of load fluctuation, for example, the allowable value of the charging current of the battery 41 at that time during the execution of charging, and the allowable value of the charging current of the battery 41 at the time of the charging What is necessary is just to be below the total value of the consumption current of the PTC heater 43.
  • the output adjustment unit 22c specifies the allowable value of the charging current of the battery 41 determined by the battery ECU 42 based on the allowable value information of the charging current acquired by the battery state acquisition unit 22a, for example. Further, the output adjustment unit 22c, for example, based on the heater characteristic information of the PTC heater 43, the voltage applied to the PTC heater 43, and the temperature of the PTC heater 43, consumes the PTC heater 43 at that time during the execution of charging. Identify the current.
  • the relay ECU 22 stores the heater characteristic information of the PTC heater 43 in advance in its own ROM or the like in order to calculate the consumption current according to the voltage applied to the PTC heater 43 and the temperature of the PTC heater 43.
  • the heater characteristic information according to the present embodiment, for example, the current consumption of the PTC heater 43 is associated with two variables of the temperature of the PTC heater 43 and the voltage applied to the PTC heater 43 at the time of charge execution. It is stored as table data.
  • FIG. 4 is a diagram showing an example of the heater characteristic information of the PTC heater 43.
  • the horizontal axis of FIG. 4 represents the temperature [° C.] of the PTC heater 43, and the vertical axis represents the current consumption [A] of the PTC heater 43 at the temperature.
  • the PTC heater 43 generally has a characteristic that the electrical resistance is large at low temperatures and the electrical resistance increases as the temperature rises. Therefore, the current consumption of the PTC heater 43 changes depending on the temperature of the PTC heater 43 at that time during charging.
  • the heater characteristic information of the PTC heater 43 in FIG. 4 represents the current consumption of the PTC heater 43 when it is assumed that the voltage applied to the PTC heater 43 is constant. However, the voltage applied to the PTC heater 43 is a voltage corresponding to the voltage between the terminals of the battery 41.
  • the heater characteristic information referred to by the output adjustment unit 22 c can be used to estimate the current consumption of the PTC heater 43 from the temperature of the PTC heater 43 and the voltage applied to the PTC heater 43 in consideration of the characteristics of the PTC heater 43. Is set to More specifically, the output adjustment unit 22c estimates the temperature of the PTC heater 43 and the voltage applied to the PTC heater 43 from the temperature information of the battery 41 acquired by the battery state acquisition unit 22a and the voltage between the terminals, and performs charging. The current consumption of the PTC heater 43 at that time is estimated.
  • the actual value of the charging current supplied to the battery 41 approaches the allowable value of the charging current from the viewpoint of shortening the charging time and preventing overcurrent in the battery 41.
  • the output current of the charging circuit 31 is controlled.
  • the in-vehicle charging system U determines that the actual value of the charging current is an allowable value of the charging current according to the charging rate in accordance with the change in the state of the battery 41 and the state of the PTC heater 43 at that time during the charging.
  • the output current of the charging circuit 31 is controlled so as to approach the permissible value within the range.
  • the output adjustment unit 22c is connected to the battery 41 and the PTC heater from the charging circuit 31. 43, the target value of the output current of the charging circuit 31 is determined within a range in which the total power supplied to the charging circuit 31 does not exceed the output possible power of the charging circuit 31.
  • the frequency at which the battery ECU 42 detects the state of the battery 41 the frequency at which the relay ECU 22 detects the state of the PTC heater 43, and the output current of the charging circuit 31 by the relay ECU 22.
  • the frequency or the like for determining the target value may be a frequency that does not cause a problem from the viewpoint of shortening the charging time and preventing overcurrent in the battery 41, and is at least a plurality of times (ie, two or more times) during charging. Good.
  • the output of the charging circuit 31 may be supplied to the load device R connected in parallel with the battery 41 via the power conversion device 50.
  • the current detection unit 22d operates in such a case, detects the current consumption of the load device R, and corrects the target value of the output current of the charging circuit 31 set by the output adjustment unit 22c.
  • the power consumption of the load device R (for example, the headlight and the acoustic device of the vehicle A) is small compared to the power consumption of the PTC heater 43, the charging current of the battery 41 due to the load fluctuation of the load device R is reduced. The degree of induction is small. However, since the load device R is operated by an operation of a driver or the like, it is difficult to predict the power consumption (current consumption) of the load device R.
  • a current sensor 23 (for example, a shunt resistor or a Hall element) is provided in order to detect the consumption current of the load device R from this viewpoint.
  • the current sensor 23 is disposed on the battery 41 side of the current path between the charging circuit 31 and the battery 41 with respect to the battery 41 and the load device R.
  • the current detection unit 22d sequentially acquires sensor values from the current sensor 23.
  • the current detection unit 22d detects an actual value corresponding to the total of the charging current supplied to the battery 41 and the consumption current supplied to the PTC heater 43, in other words, the target value of the output current of the charging circuit 31.
  • the current consumption of the load device R is detected as the amount of deviation of the actual value with respect to the predicted value of the total of the current consumption supplied to the battery 41 and the current consumption supplied to the PTC heater 43.
  • the output adjustment unit 22c increases the target value of the output current of the charging circuit 31 so as to supplement the consumption current (I3) of the load device R detected in this way.
  • the configuration of the relay ECU 22 can be variously changed as follows.
  • the relay ECU 22 output adjustment unit 22c
  • a sensor that directly detects temperature information of the PTC heater 43 and a voltage applied to the PTC heater 43 is used. May be.
  • a method of estimating the current consumption of the PTC heater 43 based on the elapsed time from the start of the operation of the PTC heater 43 or the like without using a sensor may be used.
  • the relay ECU 22 (output adjustment unit 22c) is connected between the terminals of the battery 41.
  • the current consumption of the resistance heater may be detected from only the voltage and the electric resistance of the resistance heater.
  • the battery characteristic information is stored in the ROM or the like of the relay ECU 22 itself and acquired from the battery ECU 42.
  • a method of calculating an allowable value of the charging current based on information on the state may be used.
  • the target value of the output current of the charging circuit 31 that the relay ECU 22 (the output adjusting unit 22c) commands to the charger ECU 32 may be the target value itself of the output current of the charging circuit 31, or a predetermined reference. An increase / decrease command from the value may be used.
  • the relay ECU 22 (output adjustment unit 22c) performs charge control in the current-based constant current mode only at the start of charging, and determines only the target value of the output voltage of the charging circuit 31 at the end of charging. Thus, charging control may be performed in the constant voltage mode.
  • FIG. 5 is a flowchart showing an example of the operation of the relay ECU 22 according to the present embodiment.
  • FIG. 5 is a process that the relay ECU 22 executes in order according to the computer program. This flowchart is executed when, for example, a charging start command for the battery 41 is input from the vehicle ECU 10 to the relay ECU 22.
  • FIG. 6 is a diagram illustrating an example of the behavior of the charging current when the battery 41 is charged in the in-vehicle charging system U according to the present embodiment.
  • the vertical axis represents the charging current [A] to the battery 41
  • the horizontal axis represents the charging rate [%] of the battery 41.
  • the dotted line graph in FIG. 6 shows an example of a temporal change in the charging current to the battery 41 when the battery 41 is charged in a normal temperature environment (for example, 10 ° C.).
  • the solid line graph of FIG. 6 shows an example of a temporal change in the charging current to the battery 41 when the battery 41 is charged in a low temperature environment (for example, ⁇ 10 ° C.).
  • the in-vehicle charging system U employs a constant current constant voltage charging (Constant-Current-Constant Voltage: CCCV) system, and the charging rate of the battery 41 is less than a threshold (CC charging in FIG. 6). ),
  • CC charging in FIG. 6 a threshold
  • the output of the charging circuit 31 is adjusted based on the allowable value of the charging current in the battery 41 and the charging rate of the battery 41 is equal to or higher than the threshold (CV charging area in FIG. 6)
  • the charging in the battery 41 is performed.
  • the output of the charging circuit 31 is adjusted based on an allowable value (not shown in FIG. 6) of a voltage (that is, a voltage between terminals of the battery 41).
  • the CC charging area in FIG. 6 performs the processing in FIG. 5 so that the actual value of the charging current of the battery 41 is charged in the battery 41. Charging is performed so that the current level is substantially the same as the allowable current value.
  • the region of CV charging in FIG. 6 is a region where charging is performed in a constant voltage state at a predetermined voltage level.
  • description is abbreviate
  • steps S3t to S9t on the right side show the processing flow when the PTC heater 43 is not operated, and the left side (Sa: NO: Steps S3 to S9 in this case show the processing flow when the PTC heater 43 is operating.
  • step S1 the relay ECU 22 first acquires allowable value information of the charging current in the battery 41 from the battery ECU 42 through communication with the battery ECU 42, and sets it in its own RAM or the like.
  • the battery ECU 42 refers to the battery characteristic information of the battery 41 in response to a request signal from the relay ECU 22, for example, from the current charging rate and temperature of the battery 41 in the battery 41.
  • the allowable value of the charging current is determined and transmitted to the relay ECU 22.
  • step S2 the relay ECU 22 acquires the power that can be output from the charging circuit 31 stored in advance in its own ROM or the like.
  • step Sa the relay ECU 22 acquires the temperature information of the battery 41 from the battery ECU 42, and the temperature of the battery 41 is a low temperature side threshold temperature (a reference temperature for determining whether to use the PTC heater 43, for example, 0 ° C.) or higher. And relay ECU22 performs charge of the battery 41, without using the PTC heater 43, when the temperature of the battery 41 is more than low temperature side threshold temperature (Sa: YES). On the other hand, when the temperature of the battery 41 is lower than the low temperature side threshold temperature (Sa: NO), the relay ECU 22 performs the charging of the battery 41 while increasing the temperature by the PTC heater 43.
  • a low temperature side threshold temperature a reference temperature for determining whether to use the PTC heater 43, for example, 0 ° C.
  • steps S3t to S9t on the right side (in the case of Sa: YES), which is a processing flow when the PTC heater 43 is not operated, will be described.
  • step S3t the relay ECU 22 determines that the battery 41 within the range of current that can be output from the charging circuit 31 based on the allowable value of the charging current acquired in step S1 and the current consumption requested by the load device R at the present time.
  • the target value of the current supplied to the battery in this case, the charging current of the battery 41
  • the target value of the output current of the charging circuit 31 are determined.
  • the relay ECU 22 determines the allowable value of the charging current of the battery 41 as a target value of the current supplied to the battery 41 (in this case, the charging current of the battery 41).
  • the relay ECU 22 sets a current level obtained by adding the current consumption requested by the load device R to the target value of the current supplied to the battery 41 side.
  • step S3t when the sum of the power consumption supplied to the load device R and the charging power supplied to the battery 41 exceeds the outputable power of the charging circuit 31, the relay ECU 22 outputs the current that can be output from the charging circuit 31. Is the target value of the output current of the charging circuit 31.
  • step S3t the relay ECU 22 detects the current consumption of the load device R by storing the current corrected in S5 to S7 described later in its own RAM or the like.
  • step S4t the relay ECU 22 commands the target value of the output current of the charging circuit 31 to the charger ECU 32.
  • the charger ECU 32 controls the operation of the charging circuit 31 so that the output current of the charging circuit 31 becomes the target value commanded from the relay ECU 22 in accordance with the command signal from the relay ECU 22. .
  • step S5t the relay ECU 22 acquires a signal indicating the detected value of the current (in this case, the charging current of the battery 41) supplied to the battery 41 input from the current sensor 23, and stores it in its own RAM or the like.
  • step S6t the relay ECU 22 compares the detected value of the current supplied to the battery 41 side with the target value of the current supplied to the battery 41 calculated in step S3t.
  • the relay ECU 22 determines whether or not the target value of the current supplied to the battery 41 side is larger than the detected value of the current supplied to the battery 41 side by a threshold (for example, 1 ampere) or more, It is determined whether or not the detected value of the current supplied to the battery 41 side is larger than the target value of the current supplied to the battery 41 side by a threshold or more.
  • a threshold for example, 1 ampere
  • step S7t the relay ECU 22 transmits a correction command to the charger ECU 32 based on the comparison result in step S6t.
  • step S7t for example, when the target value of the current supplied to the battery 41 side is larger than the detected value of the current supplied to the battery 41 side, the relay ECU 22 sets the target value of the output current of the charging circuit 31. Is incremented by one level (for example, 1 ampere), and a correction command related to the output current of the charging circuit 31 is transmitted to the charger ECU 32.
  • the target value of the output current of the charging circuit 31 is decremented by one level and the charger A correction command related to the output current of the charging circuit 31 is transmitted to the ECU 32.
  • step S8t the relay ECU 22 determines whether or not it is time to check the state of the battery 41. If it is not time to check the state of the battery 41 (step S8t: NO), the relay ECU 22 returns to step S5t.
  • the relay ECU 22 adjusts the target value of the output current of the charging circuit 31 so as to coincide with the detected value of the current supplied to the battery 41 by repeatedly executing the processes of steps S5t to S7t. Become.
  • step S8t when it is time to check the state of the battery 41 (step S8t: YES), the relay ECU 22 proceeds to step S9t and transmits a request signal related to the state of the battery 41 to the battery ECU.
  • step S9t the relay ECU 22 communicates with the battery ECU 42 to determine whether or not to end the charging of the battery 41.
  • step S9t: NO the relay ECU 22 returns to step S1, acquires the charge current allowable value information from the battery ECU 42 again, and actually calculates the charging current to the battery 41. The process of adjusting the value so as to approach the allowable value of the charging current of the battery 41 at each time point during the charging is continued.
  • steps S3 to S9 on the left side (in the case of Sa: NO), which is a processing flow when the PTC heater 43 is operated, will be described.
  • step Sb the relay ECU 22 estimates the temperature of the PTC heater 43 and the voltage applied to the PTC heater 43 from the current temperature of the battery 41 and the inter-terminal voltage acquired in step Sb2, and stores them in its own ROM or the like. Based on the heater characteristic information, the current consumption of the PTC heater 43 at the present time is calculated.
  • step S3 the relay ECU 22 determines the battery 41 within the range of current that can be output from the charging circuit 31 based on the allowable value information of the charging current acquired in step S1 and the current consumption of the PTC heater 43 calculated in step Sb.
  • the target value of the current supplied to the battery in this case, the sum of the charging current of the battery 41 and the consumption current of the PTC heater 43
  • the target value of the output current of the charging circuit 31 are determined.
  • the relay ECU 22 supplies the battery 41 with the allowable value of the charging current of the battery 41 and the total consumption current of the PTC heater 43 (in this case, the charging current of the battery 41 and the PTC heater 43. It is determined as the target value of (total current consumption).
  • the relay ECU 22 sets a current level obtained by adding the current consumption requested by the load device R to the target value of the current supplied to the battery 41 side.
  • step Sc the relay ECU 22 turns on the switch 43a of the PTC heater 43 and supplies power to the PTC heater 43 from the charging circuit 31. Thereby, heating of the battery 41 by the PTC heater 43 is started. Then, heating of the battery 41 by the PTC heater 43 is continued until it is determined in step Sd described later that the heating of the battery 41 is finished.
  • the relay ECU 22 continues the heating operation by the PTC heater 43 without performing any particular processing.
  • step S4 to step S7 is the same as the processing from step S4t to step S7t described above.
  • step S4 the relay ECU 22 commands the target value of the output current of the charging circuit 31 to the charger ECU 32.
  • the relay ECU 22 acquires a signal indicating the detected value of the current supplied from the current sensor 23 to the battery 41 side (in this case, the charging current I1 of the battery 41 + the current consumption I2 of the PTC heater 43) and Stored in the RAM.
  • step S6 the relay ECU 22 compares the detected value of the current supplied to the battery 41 side with the target value of the current supplied to the battery 41 side, and the target value of the current supplied to the battery 41 side is set to the battery 41 side.
  • step S7 the relay ECU 22 decrements or decrements the target value of the output current of the charging circuit 31 based on the comparison result of step S6, and also issues a correction command related to the output current of the charging circuit 31 to the charger ECU 32. Send.
  • a threshold value for example, 1 ampere
  • step Sd the relay ECU 22 determines whether or not the allowable value of the charging current of the battery 41 at the present time exceeds the outputable current of the charging circuit 31 as the temperature of the battery 41 rises. Then, when the allowable value of the charging current of the battery 41 at the current time exceeds the outputable current of the charging circuit 31 (step Sd: YES), the relay ECU 22 proceeds to step Se and outputs the charging circuit 31. If the current is less than the possible current (step Sd: NO), the process returns to step S5 and the processes of steps S5 to S7 are repeatedly executed.
  • This step Sd is a process for determining the operation stop timing of the PTC heater 43.
  • the operation stop timing of the PTC heater 43 is the first condition that the temperature of the battery 41 has reached a high temperature side threshold temperature (for example, 30 ° C.) or higher, and the operation of the PTC heater 43 is temporarily stopped. Even when the surplus current accompanying the stop flows into the battery 41, both the second condition that the actual value of the charging current of the battery 41 does not exceed the allowable value of the charging current of the battery 41 is satisfied. It needs to be timing.
  • the first condition and the second condition are determined by determining whether or not the allowable value of the charging current of the battery 41 at the present time exceeds the outputable current of the charging circuit 31 as in step Sd. It can be substantially determined whether both of the above are satisfied.
  • the relay ECU 22 may execute the first condition and the second condition separately.
  • step Sd the relay ECU 22 may return to step S1 if it is less than the current that can be output from the charging circuit 31 (step Sd: NO). Thereby, the target value of the output current according to the state of the battery 41 and the state of the PTC heater 43 can be determined more frequently.
  • step Se the relay ECU 22 turns off the switch 43a of the PTC heater 43. Thereby, heating of the battery 41 by the PTC heater 43 is completed.
  • step S9 the relay ECU 22 determines whether or not the charging is finished through communication with the battery ECU 42.
  • the relay ECU 22 When the charging is finished (S9: YES), the relay ECU 22 outputs a charging end command to the charger ECU 32 and ends the series of processes. On the other hand, if it is not the end of charging (S9: NO), the relay ECU 22 returns to step S1 and continues the process again. In the subsequent flow of the relay ECU 22, processing corresponding to steps S3t to S9t on the right side (in the case of Sa: YES) is executed.
  • the relay ECU 22 adjusts the output current of the charging circuit 31 so that the actual value of the charging current supplied to the battery 41 matches the allowable value of the charging current by repeatedly executing the processes of steps S1 to S9. become.
  • FIG. 7A is a diagram schematically illustrating a method for setting a target value of the output current of the charging circuit 31 in the in-vehicle charging system according to the related art.
  • FIG. 7B is a diagram schematically illustrating a method for setting a target value of the output current of the charging circuit 31 in the in-vehicle charging system U according to the present embodiment.
  • 7A and 7B show the target value (solid line graph) of the output current of the charging circuit 31 and the allowable value (dotted line graph) of the charging current of the battery 41 at that time during charging from the start of charging to the completion of charging. It shows changes over time. 7A and 7B represent the respective graphs on the same scale so that they can be compared with each other.
  • the horizontal axis represents the time axis from the start of charging to the completion of charging
  • the vertical axis represents the target value of the output current of the charging circuit 31.
  • 7A and 7B, T1, T2, and T3 on the horizontal axis represent the charging start timing, the operation stop timing of the PTC heater 43, and the charging end timing, respectively.
  • the dotted line graphs in FIGS. 7A and 7B represent the allowable value of the charging current of the battery 41 at that time during the charging on the same time scale and current scale as the solid line graph.
  • the one-dot chain line graph of FIG. 7A and FIG. 7B represents the time change of the temperature of the battery 41 from the charge start to the charge completion on the same time scale as the solid line graph.
  • the target value (solid line graph) of the output current of the charging circuit 31 is the same value as the allowable value (dotted line graph) of the charging current of the battery 41. It has been decided.
  • the reason for this configuration is that when the current consumption of the PTC heater 43 decreases, the surplus flows into the battery 41 side, and the actual value of the charging current of the battery 41 is This is to prevent an overcurrent state in the battery 41 from occurring due to exceeding the allowable value of the charging current 41.
  • the permissible value of the charging current of the battery 41 at that time during the charging is recognized.
  • the battery 41 is forced to be charged at a current level that is considerably smaller than the allowable current value.
  • the allowable value of the charging current of the battery 41, the consumption current of the PTC heater 43, and the consumption of the load device R at that time during the execution of charging. Recognizing each current, the target value (solid line graph) of the output current of the charging circuit 31 is determined.
  • the target value (solid line graph) of the output current of the charging circuit 31 is set to the allowable value (dotted line graph) of the charging current of the battery 41 and the current consumption of the PTC heater 43 and It is determined to be a value obtained by adding the current consumption of the load device R.
  • this allows the battery 41 to generate an overcurrent state with the allowable charging current of the battery 41 even when the PTC heater 43 is operated. It is possible to perform charging.
  • the in-vehicle charging system U when the heating by the PTC heater 43 (that is, the battery temperature control device) and the charging of the battery 41 are performed simultaneously, the battery characteristic information of the battery 41 and the PTC Based on the heater characteristic information of the heater 43, the allowable value of the charging current of the battery 41 and the current consumption of the PTC heater 43 at that time during the charging are specified, and the charging circuit 41 is configured so as to correspond to these total values. Controls the output current.
  • the control device (charger ECU 32) of the in-vehicle charging device 30 according to the present embodiment is performing charging, which is specified based on the previously stored battery characteristic information of the battery 41 and heater characteristic information of the PTC heater 43.
  • the output current of the charging circuit 31 is controlled so as to approach the allowable value of the charging current of the battery 41 and the total current consumption of the PTC heater 43 at each time point.
  • the on-vehicle charging system U even when the temperature of the battery 41 is adjusted by the PTC heater 43, the actual value of the charging current of the battery 41 does not exceed the allowable value of the charging current of the battery 41.
  • the output current of the charging circuit 41 can be controlled so as to approach the permissible value within the range.
  • the battery 41 is overloaded. It is possible to suppress the occurrence of a current state. That is, it is possible to shorten the charging time of the battery 41.
  • the in-vehicle charging system U detects the state of the battery 41 (the temperature of the battery 41 and the charging rate of the battery), and based on the state of the battery 41 at each time point during execution of charging, the battery 41 The allowable value of the charging current is determined. Thereby, it is possible to determine the allowable value of the charging current of the battery 41 so as to correspond to the state of the battery 41 (the temperature of the battery 41 and the charging rate of the battery) at the time when charging is being performed.
  • the in-vehicle charging system U detects the temperature and applied voltage of the PTC heater 43, and determines the current consumption of the PTC heater 43 at each time point during execution of charging. Thereby, the current consumption of the PTC heater 43 can be calculated so as to correspond to the temperature change of the PTC heater 43 and the like.
  • the allowable value of the charging current of the battery 41 exceeds the current that can be output from the charging circuit 31. After reaching, the operation of the PTC heater 43 is stopped. As a result, the actual value of the charging current of the battery 41 exceeds the allowable value of the charging current of the battery 41 even if an excess of the consumption current of the PTC heater 43 flows into the battery 41 due to the operation stop of the PTC heater 43. It is possible to avoid it.
  • the in-vehicle charging system U based on the sensor value of the current sensor 23, the current consumption of the load device R at that time during charging is detected, and the consumption of the load device R is detected.
  • the output current of the charging circuit 31 can be adjusted so as to correct the current component.
  • the control method of the charging circuit 31 may be a mode (also referred to as a current mode control method) in which the charging circuit 31 is feedback-controlled based on the allowable value of the charging current over the entire period during charging.
  • a mode also referred to as a current mode control method
  • the aspect which controls the output current of the charging circuit 31 by cooperation of charger ECU32, battery ECU42, and relay ECU22 was shown as an example of the vehicle-mounted charging system U.
  • the functions of the charger ECU 32, the battery ECU 42, and the relay ECU 22 may be realized by a single computer (for example, the vehicle ECU 10), or distributed to a plurality of computers as in the above embodiment. And may be realized.
  • the current sensor 23, the current sensor 44, and the temperature sensor 45 were shown as an example of the various sensors for the vehicle-mounted charging system U to detect the state of the battery 41, etc.
  • the method by which the in-vehicle charging system U detects the state or the like of the battery 41 is arbitrary, and may be obtained indirectly through arithmetic processing using the sensor value or the like of another sensor.
  • the AC / DC converter 31a and the DC / DC converter 31b were shown as an example of the charging circuit 31.
  • the configuration of the charging circuit 31 can be variously changed according to the configuration of the external power source S and the power system of the vehicle A.
  • the DC / DC converter 31b for example, a linear DC / DC converter may be used instead of the switching drive DC / DC converter.
  • a configuration for adjusting the level of the output current of the charging circuit 31 a configuration may be provided in which a constant current circuit that makes the current level variable is provided after the DC / DC converter 31b.
  • the configuration including the power conversion device 50 and the junction box 20 is shown as an example of the power system of the vehicle A.
  • the power converter 50 and the junction box 20 may be omitted.
  • the relay ECU 22 may be configured integrally with the vehicle ECU 10, for example.
  • the in-vehicle charging system U can be applied to a mode in which the battery 41 is charged from an arbitrary external power source S.
  • the external power source S may be a three-phase AC external power source or an external power source that supplies DC power.
  • the battery temperature control device even when the battery temperature adjustment and the battery charging are simultaneously performed by the battery temperature control device, the battery is largely charged without generating an overcurrent state. It is possible to run with power.
  • a vehicle S external power supply U in-vehicle charging system R load device 10 vehicle ECU 20 Junction box 21 Electric circuit switching circuit 22 Relay ECU 22a Battery state acquisition unit 22b Heater control unit 22c Output adjustment unit 22d Current detection unit 23 Current sensor 30 Charging device 31 Charging circuit 31a AC / DC converter 31b DC / DC converter 32 Charger ECU 40 power storage device 41 battery 42 battery ECU 43 PTC heater (battery temperature control device) 43a Switch 44 Current sensor 45 Temperature sensor 50 Power conversion device 60 Inverter device

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

充電回路(31)にて外部電源(S)から供給される電力を電力変換して、バッテリ(41)及びPTCヒータ(43)に対して並列に電力供給する車載充電装置(30)であって、前記PTCヒータ(43)による前記バッテリ(41)の温度調整と前記バッテリ(41)の充電を同時に実行する際、充電実行中の各時点における前記バッテリ(41)の充電電流の許容値及び前記PTCヒータ(43)の消費電流の合計値に近づけるように、前記充電回路(31)の出力電流を制御する制御装置(32)を備え、前記バッテリ(41)の充電電流の前記許容値及び前記PTCヒータ(43)の前記消費電流は、予め記憶された前記バッテリ(41)のバッテリ特性情報及び前記PTCヒータ(43)のヒータ特性情報に基づいて特定される。

Description

車載充電装置、及び車載充電装置の制御方法
 本開示は、車載充電装置、及び車載充電装置の制御方法に関する。
 ハイブリッド自動車、電気自動車又はその他の種々の電動車輌には、外部電源(例えば、商用電源)から供給される電力を用いて、バッテリを充電するための充電装置が搭載されている。
 ところで、この種のバッテリは、低温環境下(例えば、0℃以下の温度)では、充電特性が悪化する(例えば、供給される電力を十分に蓄電することができず、電力損失を増大させたり、又は部分的な過熱状態を誘起する)ことが知られている。
 このような背景から、従来、電気自動車の充電装置は、低温環境下でバッテリの充電を実行する際には、バッテリ温調装置(例えば、抵抗式ヒータ、又はPTCヒータ等)に対しても電力を供給して、バッテリを昇温した後に又はバッテリを昇温しながら、当該バッテリに対して電力供給する制御を行っている(例えば、特許文献1を参照)。
特開2016-092953号公報
 ところで、この種の充電装置においては、バッテリの充電時間の短縮化のため、バッテリを昇温しつつ、より大電力でバッテリへの充電を実行する要請がある。そのため、かかる充電装置においては、バッテリ温調装置に対して電力供給しつつ、バッテリに供給する電力の電流レベルを当該バッテリの許容限界まで上昇させた状態で、充電を実行すること等が検討されている。
 しかしながら、このような条件下での充電は、バッテリと並列に電力供給するバッテリ温調装置の負荷変動に起因して、バッテリに対して過電流状態を発生させるおそれがある。特に、この種のバッテリにおける過電流対策は、バッテリの充電を実行している際に、当該バッテリにとって許容限界となる電流レベルが、当該バッテリの充電率や温度に応じて変化する点、及び、バッテリ温調装置の電力負荷も変化する点においても、困難性を有している。
 尚、バッテリにおける過電流状態は、例えば、当該バッテリ内で意図しない化学反応を誘起して不純物を発生させたり、当該バッテリの電極で吸収されないイオンを発生させたり、又は、当該バッテリを構成する複数の電池セルそれぞれのセル電圧にばらつきを発生させる等、当該バッテリの充放電特性の劣化及び当該バッテリの破損の要因となる。
 本開示は、上記問題点に鑑みてなされたもので、バッテリ温調装置によるバッテリの温度調整とバッテリの充電を同時に実行する際にも、バッテリに対して過電流状態を発生させることなく、バッテリに対する充電を大電力で実行することを可能とする車載充電装置、及び車載充電装置の制御方法を提供することを目的とする。
 前述した課題を解決する主たる本開示は、
 充電回路にて外部電源から供給される電力を電力変換して、バッテリ及びバッテリ温調装置に対して並列に電力供給する車載充電装置であって、
 前記バッテリ温調装置による前記バッテリの温度調整と前記バッテリの充電を同時に実行する際、充電実行中の各時点における前記バッテリの充電電流の許容値及び前記バッテリ温調装置の消費電流の合計値に近づけるように、前記充電回路の出力電流を制御する制御装置
 を備え、
 前記バッテリの充電電流の前記許容値及び前記バッテリ温調装置の前記消費電流は、予め記憶された前記バッテリのバッテリ特性情報及び前記バッテリ温調装置のヒータ特性情報に基づいて特定される、車載充電装置である。
 又、他の局面では、
 充電回路にて外部電源から供給される電力を電力変換して、バッテリ及びバッテリ温調装置に対して並列に電力供給する車載充電装置の制御方法であって、
 前記バッテリ温調装置による前記バッテリの温度調整と前記バッテリの充電を同時に実行する際、充電実行中の各時点における前記バッテリの充電電流の許容値及び前記バッテリ温調装置の消費電流の合計値に近づけるように、前記充電回路の出力電流を制御し、
 前記バッテリの充電電流の前記許容値及び前記バッテリ温調装置の前記消費電流は、予め記憶された前記バッテリのバッテリ特性情報及び前記バッテリ温調装置のヒータ特性情報に基づいて特定される、制御方法である。
 本開示に係る車載充電システムによれば、バッテリ温調装置によるバッテリの温度調整とバッテリの充電を同時に実行する際にも、バッテリに対して過電流状態を発生させることなく、バッテリに対する充電を大電力で実行することを可能である。
第1の実施形態に係る車輌の電力系統の一例を示す図 第1の実施形態に係る車載充電システムの構成の一例を示す図 第1の実施形態に係るバッテリ特性情報の一例を示す図 第1の実施形態に係るヒータ特性情報の一例を示す図 第1の実施形態に係る中継ECUの動作の一例を示すフローチャート 第1の実施形態に係る車載充電システムにおけるバッテリ充電時の充電電流の挙動の一例を示す図 従来技術に係る車載充電システムにおける充電回路の出力電流の目標値の設定手法を模式的に示す図 第1の実施形態に係る車載充電システムにおける充電回路の出力電流の目標値の設定手法を模式的に示す図
 以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(第1の実施形態)
[車輌の電力系統]
 以下では、本発明に係る車載充電システムの好適な適用対象の一例として、電気自動車に搭載される態様について説明する。
 まず、図1を参照して、本実施形態に係る車輌の電力系統の一例について説明する。
 図1は、本実施形態に係る車輌Aの電力系統の一例を示す図である。
 本実施形態に係る車輌Aは、車輌ECU10、ジャンクションボックス20、充電装置30、蓄電装置40、電力変換装置50、及び、インバータ装置60を備えている。
 尚、図1において、点線矢印は、各部の間での信号の授受を表す。太線Lは、車輌A内の電力ラインを表している。太線L上の矢印は、充電時に、充電装置30からバッテリ41等に向かって通流する電流の経路を示している。
 充電装置30は、外部電源Sから供給される電力を電力変換して(例えば、交流電力を直流電力に電力変換して)、バッテリ41等に対して電力供給する電力モジュールである。充電装置30は、充電回路31(例えば、AC/DCコンバータ31a及びDC/DCコンバータ31b)、及び、当該充電回路31を制御する電子制御ユニット32(以下、「充電器ECU32」と称する)を備えている。
 蓄電装置40は、車輌Aの駆動源となる電力を蓄積する電力モジュールである。蓄電装置40は、バッテリ41、PTCヒータ43、及び、バッテリ41における充放電の実行を制御したり又は当該バッテリ41の状態の監視を行う電子制御ユニット42(以下、「バッテリECU42」と称する)を備えている。
 バッテリ41は、典型的には、リチウムイオン二次電池が用いられるが、例えば、ニッケル水素二次電池、又は、電気二重層キャパシタ等、任意のバッテリであってよい。又、これらの電池セルが直列若しくは並列に接続されて、一のバッテリを構成するものであってもよい。
 PTCヒータ43は、充電回路31又はバッテリ41から供給される電力を熱に変換して、バッテリ41を加熱するバッテリ温調装置である。PTCヒータ43は、低温でバッテリ41に充放電を行わせる場合に、バッテリ41を昇温する。PTCヒータ43は、バッテリ41への熱伝達が良好に行われるように、当該バッテリ41に隣接して配設されている。尚、本実施形態では、バッテリ温調装置として、PTCヒータ43を用いる態様を示すが、バッテリ温調装置としては、温度に依拠して電気抵抗が変化しない抵抗式ヒータが用いられてもよい。
 電力変換装置50は、蓄電装置40又は外部電源Sから供給される電力を電力変換して(例えば、高電圧の直流電力を低電圧の直流電力に電力変換して)、負荷装置Rに対して供給する電力モジュールである。電力変換装置50は、DC/DCコンバータ51、及び、当該DC/DCコンバータ51を制御する電子制御ユニット52を備えている。
 尚、電力変換装置50に接続された負荷装置Rは、例えば、車輌Aに搭載された電装品(ヘッドライト、ワイパー又はオーディオ機器等)、又は、当該電装品を駆動させるための低圧バッテリ等である。電力変換装置50は、例えば、後段に接続された負荷装置Rが要求する電力を出力(例えば、定電圧出力)するように、充電回路31から受電し、内蔵するDC/DCコンバータ51を動作させている。
 インバータ装置60は、バッテリ41等から受電する直流電力を交流電力に変換し、モータ等に供給する電力モジュールである。インバータ装置60は、インバータ回路61、及び、当該インバータ回路61を制御する電子制御ユニット62を備えている。
 ジャンクションボックス20は、各電力モジュール(ここでは、充電装置30、蓄電装置40、電力変換装置50、及びインバータ装置60)から延在する電力ラインLを互いに接続し、各電力モジュール間における電力授受の中継を行う。
 ジャンクションボックス20は、例えば、各電力モジュールの間の接続状態を切り替える電路切替回路21、及び、当該電路切替回路21の接続状態を制御したり又は各電力モジュールの間の通信を中継する電子制御ユニット22(以下、「中継ECU22」と称する)を備えている。
 車輌ECU10は、車輌Aの各部を統括制御する車輌制御ユニットである。車輌ECU10は、例えば、中継ECU22に対して指令信号を出力し、中継ECU22を介して各電力モジュールに対して所望の動作を実行させる。
 本実施形態に係る車輌Aにおいて、バッテリ41に対して充電を実行する際には、図1の電力ラインL上の矢印に示すように、まず、車輌Aの入力部C(例えば、接続プラグ)を介して、充電装置30に、外部電源S(例えば、単相交流の商用交流電源)からの電力が供給される。
 充電装置30が外部電源Sから受電した電力は、充電回路31にて電力変換されて(例えば、交流電力から直流電力に電力変換されて)、ジャンクションボックス20を経由して、バッテリ41に対して供給されることになる。
 又、充電装置30が外部電源Sから受電した電力は、PTCヒータ43が動作している際には、バッテリ41に加えて、当該PTCヒータ43に対してもバッテリ41と並列に供給されることになる。
 又、充電装置30が外部電源Sから受電した電力は、負荷装置Rに対しても供給され得る(例えば、低電圧バッテリの充電率が低下した場合)。この際には、充電装置30が外部電源Sから受電した電力は、バッテリ41及びPTCヒータ43に加えて、当該負荷装置Rに対しても並列に電力供給することになる。
[車載充電システムの構成]
 次に、図2~図4を参照して、上記した車輌Aにおいて、バッテリ41に対して充電を実行する車載充電システムUについて、説明する。
 図2は、本実施形態に係る車載充電システムUの構成の一例を示す図である。
 本実施形態に係る車載充電システムUは、充電装置30(本発明の車載充電装置に相当)の充電回路31、充電器ECU32(本発明の制御装置に相当)、バッテリECU42、及び、中継ECU22を含んで構成される。尚、これらの構成は、図1に示したように、車輌Aに搭載されている。
 図2では、外部電源Sとして、単相交流の商用交流電源が、充電装置30の充電回路31の入力側に接続された状態を示している。尚、図2の2本の電力ラインLは、ハイサイド側の電力ラインとローサイド側の電力ラインである。
 本実施形態に係る車載充電システムUは、バッテリECU42、充電器ECU32、及び中継ECU22の協働によって、充電回路31の出力電力(特に、出力電流)を制御し、バッテリ41に対して供給する電流(以下、「充電電流」と称する)のレベルを最適化する。
 本実施形態に係る車載充電システムUは、PTCヒータ43を動作させる際には、PTCヒータ43にてバッテリ41を昇温しながら、バッテリ41への充電を実行する。この際、充電回路31が外部電源Sから受電した電力は、バッテリ41とPTCヒータ43の両方に並列に電力供給されることになる。
 従って、本実施形態に係る車載充電システムUは、PTCヒータ43動作時には、PTCヒータ43の消費電流(図2のI2)とバッテリ41への充電電流(図2のI1)の両方を考慮しながら、充電回路31からの出力電流(図2のIout)を制御する(詳細は後述)。
 尚、本実施形態に係る車載充電システムUにおいては、PTCヒータ43の動作状態の制御は、中継ECU22が当該PTCヒータ43の前段に配設された開閉器43a(例えば、リレー)のオン/オフを切り替え制御することによって行われている。
 又、本実施形態に係る車載充電システムUは、負荷装置Rに対しても電力供給する際には、バッテリ41、PTCヒータ43、及び負荷装置Rに並列に電力供給することになる。この際には、本実施形態に係る車載充電システムUは、PTCヒータ43の消費電流(図2のI2)、バッテリ41への充電電流(図2のI1)、及び、負荷装置Rの消費電流を考慮しながら、充電回路31からの出力電流(図2のIout)を制御する(詳細は後述)。
 バッテリECU42、充電器ECU32、及び、中継ECU22としては、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、及び、出力ポート等を含んで構成されるマイコンが用いられている。そして、バッテリECU42、充電器ECU32、及び、中継ECU22それぞれが有する機能(詳細は後述)は、例えば、CPUがROMやRAMに格納された制御プログラムや各種データを参照することによって実現される。但し、バッテリECU42、充電器ECU32、及び、中継ECU22それぞれが有する機能の一部又は全部は、専用のハードウェア回路によって実現されてもよいのは勿論である。
 尚、バッテリECU42、充電器ECU32、及び、中継ECU22は、通信インターフェース(例えば、CAN(Controller Area Network)通信プロトコルに準拠した通信インターフェース)を有し、互いに通信可能に接続されている。
<充電器ECU32について>
 充電器ECU32は、充電回路31と共に充電装置30の筐体内に配設され、充電回路31を動作させる制御装置である。
 充電回路31は、外部電源Sから受電した電力を、所定の電流レベル及び電圧レベルの直流電力に電力変換する回路であり、例えば、AC/DCコンバータ31a及びDC/DCコンバータ31bを含んで構成される。AC/DCコンバータ31aは、例えば、整流回路及び平滑化コンデンサ等を含んで構成され、外部電源Sから受電した交流電力を直流電力に変換して、DC/DCコンバータ31bに対して送出する。DC/DCコンバータ31bは、例えば、LLC共振コンバータ回路を含んで構成され、AC/DCコンバータ31aから送出される直流電力の電圧を変換して、出力側に並列に接続されたバッテリ41及びPTCヒータ43に対して出力する。
 充電回路31(ここでは、DC/DCコンバータ31b)は、例えば、充電器ECU32が出力するスイッチング信号(例えば、PWM(Pulse Width Modulation)信号)によって動作する。そして、充電回路31の出力電流及び出力電圧は、充電器ECU32からの当該スイッチング信号によって制御される。
 充電器ECU32は、自身のRAM等に設定された出力電流の目標値又は出力電圧の目標値に基づいて、充電回路31を動作させる。尚、充電器ECU32は、例えば、充電回路31の出力側に設けた電流検知回路(図示せず)のセンサ値、及び電圧検知回路(図示せず)のセンサ値に基づいて、出力電流及び出力電圧が目標値となるように、充電回路31(DC/DCコンバータ31b)をフィードバック制御している。
 尚、本実施形態に係る充電回路31は、定電流定電圧充電(CCCV)方式で動作制御されている。ここでは、特に、バッテリ41の許容限界付近の充電電流にてバッテリ41の充電を実行する定電流区間(後述する図6のCC充電区間)について、説明する。
 「充電回路31の出力電流の目標値」は、好適には、上記したように、充電時間の短縮化の観点から、バッテリ41への充電電流の実際値(充電電流の実際の値を意味する。以下同じ)が、バッテリ41の充電電流の許容値(詳細は後述する)に一致する値である。
 但し、充電回路31の出力電流は、PTCヒータ43動作時には、バッテリ41への充電電流に加えて、PTCヒータ43の消費電流としても用いられる。又、バッテリ41の充電電流の許容値は、充電実行時のその時々におけるバッテリ41の状態に応じて変化する(詳細は後述)。
 従って、「充電回路31の出力電流の目標値」として最適な値は、PTCヒータ43の動作状態及びバッテリ41の状態等に応じて時間的に変化する。
 かかる観点から、本実施形態に係る車載充電システムUにおいては、中継ECU22が、バッテリ41の状態やPTCヒータ43の状態を統括的に監視し、充電回路31の出力電流の目標値を決定する。尚、充電器ECU32は、当該中継ECU22からの充電回路31の出力電流の目標値に係る指令に基づいて、充電回路31を動作制御する。
 尚、充電回路31の出力電圧の目標値は、例えば、中継ECU22から取得した充電実行時のその時々におけるバッテリ41の端子間電圧とされている。但し、バッテリ41からの電流の逆流等が防止できれば、当該出力電圧の目標値については、設定しない構成としてもよい。
<バッテリECU42について>
 バッテリECU42は、バッテリ41と共に蓄電装置40の筐体内に配設され、バッテリ41における充放電の動作を制御したり、バッテリ41の状態(例えば、バッテリ41の充電率(State Of Charge)、バッテリ41の温度、及びバッテリ41の端子間電圧等)を監視するECUである。
 バッテリECU42は、バッテリ41が内蔵するセンサ(本実施形態では、電流センサ44及び温度センサ45)からセンサ信号を取得しており、当該センサのセンサ信号に基づいて、バッテリ41の状態(本実施形態では、バッテリ41の温度、バッテリ41の充電率、及びバッテリ41の端子間電圧)を監視している。そして、バッテリECU42は、バッテリ41の充電を実行する際には、バッテリ41の状態に応じた充電電流の許容値を決定する。
 本実施形態に係るバッテリECU42は、温度センサ45(例えば、サーミスタ、又は熱電対)から取得したセンサ信号に基づいて、バッテリ41の温度を検知している。バッテリECU42が検知するバッテリ41の温度の情報は、例えば、PTCヒータ43を用いたバッテリ41の温度調整時の参考情報として、及び、バッテリ41の充電電流の許容値を決定する際の参考情報として、利用される。
 尚、本実施形態に係る温度センサ45は、バッテリ41の温度を検知する手段として用いられると共に、PTCヒータ43の温度を推定する手段としても用いられている(詳細は後述)。但し、温度センサ45に加えて、PTCヒータ43の温度を直接的に測定するセンサが設けられてもよい。
 又、本実施形態に係るバッテリECU42は、電流センサ44(例えば、シャント抵抗、又はホール素子)から取得したセンサ信号に基づいて、バッテリ41への充電電流の電流レベル及びバッテリ41からの放電電流の電流レベルを検知しており、これらの電流レベルとバッテリ41に対する充電時間の積算やバッテリ41からの放電時間の積算によって、バッテリ41の充電率を算出している。バッテリECU42が検知するバッテリ41の充電率の情報は、例えば、充電停止時の参考情報として、及び、バッテリ41の充電電流の許容値を決定する際の参考情報として、利用される。
 但し、バッテリECU42がバッテリ41の温度や充電率を検知する手法は、任意である。バッテリECU42は、例えば、バッテリ41が内蔵する温度センサ45に代えて、車両に設けられたその他の温度センサを用いてもよい。又、バッテリECU42は、例えば、バッテリ41の正極と負極の端子間電圧から、バッテリ41の充電率を検知してもよい。
 バッテリECU42は、バッテリ41の状態に応じた充電電流の許容値を決定するため、自身のROM等に、予めバッテリ41のバッテリ特性情報を記憶している。本実施形態に係るバッテリ特性情報は、例えば、充電実行中のその時々におけるバッテリ41の温度及び充電率の二変数に対して、バッテリ41の充電電流の許容値が関連付けられたテーブルデータとして、記憶されている。
 バッテリECU42は、当該バッテリ特性情報を参照して、現時点でのバッテリ41の温度及び充電率から、当該バッテリ41に対して供給する充電電流の許容値を決定する。そして、バッテリECU42は、中継ECU22に対して、現時点における充電電流の許容値を示す情報を出力する。
 「バッテリ41の充電電流の許容値」とは、バッテリ41の特性(例えば、化学反応の態様、電解質の比重、又は、電解質内での発生ガス等)から、安全に且つ劣化を引き起こすことなく充電し得る許容限界の電流のレベルであり、当該バッテリ41の種別毎又は個別に予め設定されている。充電電流の許容値は、一般に、当該バッテリ41の温度及び充電率等に応じて変化する。
 図3は、バッテリ41の温度ベースのバッテリ特性情報の一例を示す図である。
 図3に示すバッテリ特性情報は、バッテリ41の充電率が同一(例えば、20%)であるときのバッテリ41の温度[℃]とバッテリ41の充電電流の許容値[A]の関係の一例を示す。図3の横軸は、バッテリ41の温度を表し、縦軸は、バッテリ41の充電電流の許容値を表す。
 バッテリ41の充電電流の許容値は、一般に、図3に示すように、バッテリ41の温度が所定値以下(例えば、0℃以下)の温度のときには、著しく小さく、バッテリ41の温度が上昇するに連れて大きくなる。当該バッテリ41の温度は、主に、車輌Aの外部環境に依拠するが、バッテリ41の充電実行中の当該バッテリ41自身が発生する熱に起因しても変化する。
 従って、バッテリ41の充電電流の許容値は、充電実行中のその時々における当該バッテリ41の温度に応じて決定されるのが望ましい。
 更に、バッテリ41の充電電流の許容値は、一般に、バッテリ41の充電率が大きくなるに連れて小さくなる。従って、バッテリ41の充電電流の許容値は、より好適には、充電実行中のその時々における当該バッテリ41の充電率に応じて決定されるのが望ましい。
 尚、バッテリECU42が、バッテリ41の温度及び充電率の両方に基づいて、バッテリ41の充電電流の許容値を時間的に変化させた場合、例えば、バッテリ41の充電電流は、後述する図6の低温時の実線グラフのような挙動を示す。
 但し、バッテリ特性情報における充電電流の許容値は、必ずしもバッテリ41の提供者が一意に定めた値である必要はなく、制御の安定性の観点や安全基準の観点等から、適宜変更されてもよいのは、勿論である。又、充電電流の許容値等を規定するバッテリ特性情報は、少なくとも充電電流の許容値を基準として充電回路31をフィードバック制御する区間(後述する図6のCC充電の区間)についてのみ設定されていればよい。
 又、バッテリ特性情報における充電電流の許容値は、充電開始直後等のようにバッテリ41が低温状態の際には、主に、バッテリ41の温度のみに依拠する。従って、かかる充電開始直後等の充電電流の許容値は、バッテリ41の充電率に依拠することなく、バッテリ41の温度のみによって決定されてもよい。
<中継ECU22について>
 中継ECU22は、ジャンクションボックス20内に配設されており、バッテリECU42と充電器ECU32との間における通信の中継等を行うECUである。
 本実施形態に係る中継ECU22は、バッテリ状態取得部22a、ヒータ制御部22b、出力調整部22c、及び、電流検知部22dを備えている。
 バッテリ状態取得部22aは、バッテリECU42との通信により、当該バッテリECU42からバッテリ41の状態に係る情報を取得する。
 本実施形態に係るバッテリ状態取得部22aは、充電実行中には、充電回路31の出力電流の最適化を図るべく、所定の頻度(例えば、1秒間のうちに1回以上の頻度)で、バッテリECU42から、バッテリ41の充電電流の許容値、バッテリ41の充電率、及びバッテリ41の温度等に係る情報を取得している。
 ヒータ制御部22bは、バッテリ状態取得部22aが取得したバッテリ41の温度に係る情報に基づいて、PTCヒータ43の動作状態の制御を行う。
 本実施形態に係るヒータ制御部22bは、バッテリ41の充電を実行する際、バッテリ41の温度が、予め設定したバッテリ41の充電不良を引き起こす閾値温度(以下、「低温側閾値温度」とも称する。例えば、0℃)以下の場合に、開閉器43aをオンして、充電回路31の出力電力がPTCヒータ43にも供給されるようにする。又、ヒータ制御部22bは、バッテリ41の温度が、予め設定したバッテリ41の良好な充電が可能な閾値温度(以下、「高温側閾値温度」とも称する。例えば、30℃)を超えた場合に、開閉器43aをオフして、PTCヒータ43の動作を停止する。
 出力調整部22cは、充電実行中のその時々におけるバッテリ41の充電電流の許容値と、充電実行中のその時々におけるPTCヒータ43の消費電流の合計値を算出し、当該合計値及び当該合計値の増減に対応させるように、充電回路31の出力電流の目標値を決定する。そして、出力調整部22cは、充電器ECU32に対して当該充電回路31の出力電流の目標値を指令する。
 尚、充電回路31が、負荷装置Rに対しても電力供給している場合には、出力調整部22cは、更に、電流検知部22dが検知する負荷装置Rの消費電流に基づいて、充電回路31の出力電流の目標値を補正する(詳細は後述)。
 これによって、充電回路31の出力電流は、充電実行中のその時々において、バッテリ41の充電電流の実際値が当該バッテリ41の充電電流の許容値の範囲内で且つ当該許容値に近づくように、制御されることになる。
 尚、充電回路31の出力電流の目標値は、典型的には、充電実行中のその時々におけるバッテリ41の充電電流の許容値とPTCヒータ43の消費電流の合計値と一致する値であるが、負荷変動時の余裕分を含めて、例えば、充電実行中のその時々におけるバッテリ41の充電電流の許容値よりも大きく、且つ、充電実行中のその時々におけるバッテリ41の充電電流の許容値とPTCヒータ43の消費電流の合計値以下とされればよい。
 出力調整部22cは、例えば、バッテリ状態取得部22aが取得した充電電流の許容値情報によって、バッテリECU42が決定したバッテリ41の充電電流の許容値を特定する。又、出力調整部22cは、例えば、PTCヒータ43のヒータ特性情報、並びに、PTCヒータ43に印加される電圧及びPTCヒータ43の温度に基づいて、充電実行中のその時々におけるPTCヒータ43の消費電流を特定する。
 中継ECU22は、PTCヒータ43に印加される電圧及びPTCヒータ43の温度に応じた消費電流を算出するため、自身のROM等に、予めPTCヒータ43のヒータ特性情報を記憶している。本実施形態に係るヒータ特性情報は、例えば、充電実行中のその時々におけるPTCヒータ43の温度及びPTCヒータ43に印加される電圧の二変数に対して、PTCヒータ43の消費電流が関連付けられたテーブルデータとして、記憶されている。
 図4は、PTCヒータ43のヒータ特性情報の一例を示す図である。図4の横軸は、PTCヒータ43の温度[℃]を表し、縦軸は、当該温度の際のPTCヒータ43の消費電流[A]を表す。
 PTCヒータ43は、一般に、図4の点線(ヒータ抵抗曲線)に示すように、低温時には電気抵抗が大きく、温度上昇に伴い電気抵抗が増加する特性を有する。従って、PTCヒータ43の消費電流は、充電実行中のその時々におけるPTCヒータ43の温度に依拠して変化する。
 図4のPTCヒータ43のヒータ特性情報は、PTCヒータ43に印加される電圧が一定であると仮定した場合のPTCヒータ43の消費電流を表している。但し、PTCヒータ43に印加される電圧は、バッテリ41の端子間電圧に対応する電圧となる。
 出力調整部22cが参照するヒータ特性情報は、当該PTCヒータ43の特性を考慮して、PTCヒータ43の温度及びPTCヒータ43に印加される電圧から、PTCヒータ43の消費電流を推定し得るように設定されている。より詳細には、出力調整部22cは、バッテリ状態取得部22aが取得するバッテリ41の温度情報及び端子間電圧から、PTCヒータ43の温度及びPTCヒータ43に印加される電圧を推定し、充電実行中のその時々におけるPTCヒータ43の消費電流を推定する構成となっている。
 このように、本実施形態に係る車載充電システムUは、充電時間の短縮化及びバッテリ41における過電流防止の観点から、バッテリ41に供給する充電電流の実際値が、充電電流の許容値に近づくように、充電回路31の出力電流を制御する。そして、車載充電システムUは、充電実行中のその時々におけるバッテリ41の状態及びPTCヒータ43の状態の変化にあわせて、充電電流の実際値が、当該充電率に応じた充電電流の許容値の範囲内で且つ当該許容値に近づくように、充電回路31の出力電流を制御する。
 但し、充電回路31の出力電力には、出力限界(以下、「出力可能電力」又は「出力可能電流」と称する)が存在するため、出力調整部22cは、充電回路31からバッテリ41とPTCヒータ43とに供給する電力の合計が充電回路31の出力可能電力を超えない範囲で、充電回路31の出力電流の目標値を決定する。
 尚、本実施形態に係る車載充電システムUにおいて、バッテリECU42がバッテリ41の状態を検知する頻度、中継ECU22がPTCヒータ43の状態を検知する頻度、及び、中継ECU22が充電回路31の出力電流の目標値を決定する頻度等は、充電時間の短縮化及びバッテリ41における過電流防止の観点から問題が生じない頻度であってよく、少なくとも充電実行中に複数回(即ち、2回以上)あればよい。
 但し、図2に示すように、充電回路31の出力は、電力変換装置50を介して、バッテリ41と並列に接続された負荷装置Rに対しても電力供給されている場合がある。
 電流検知部22dは、かかる場合に動作し、負荷装置Rの消費電流を検知して、出力調整部22cが設定する充電回路31の出力電流の目標値を補正する。
 負荷装置R(例えば、車輌Aのヘッドライトや音響機器)の消費電力は、PTCヒータ43の消費電力と比較して小さいため、当該負荷装置Rの負荷変動に伴うバッテリ41の充電電流に対して誘起する度合いも小さい。しかしながら、かかる負荷装置Rは、運転者等の操作によって作動するため、当該負荷装置Rの消費電力(消費電流)の予測が困難である。
 本実施形態に係る車載充電システムUにおいては、かかる観点から、負荷装置Rの消費電流を検知するべく、電流センサ23(例えば、シャント抵抗又はホール素子)を設けている。電流センサ23は、例えば、充電回路31とバッテリ41の間の電流経路において、バッテリ41と負荷装置Rとに分岐する位置よりもバッテリ41側に配設されている。
 本実施形態に係る電流検知部22dは、逐次的に、電流センサ23からセンサ値を取得する。これにより、電流検知部22dは、バッテリ41に供給する充電電流とPTCヒータ43に供給する消費電流の合計分の実際値を検知することになり、換言すると、充電回路31の出力電流の目標値を決定した際におけるバッテリ41に供給する充電電流とPTCヒータ43に供給する消費電流の合計分の予測値に対する、当該実際値のずれ量として、負荷装置Rの消費電流を検知する。
 本実施形態に係る出力調整部22cは、このようにして検知された負荷装置Rの消費電流(I3)を補充するように、充電回路31の出力電流の目標値を増加させる。尚、出力調整部22cは、例えば、バッテリ41の充電電流の許容値、PTCヒータ43の消費電流、及び負荷装置Rの消費電流を合計した値(即ち、Iout=I1+I2+I3)に近づけるように(例えば、一致させるように)、充電回路31の出力電流の目標値を決定する。
 尚、中継ECU22の構成は、以下のように種々に変更可能である。
 中継ECU22(出力調整部22c)がPTCヒータ43の消費電流を特定する方法としては、例えば、別途、PTCヒータ43の温度情報及びPTCヒータ43に印加される電圧を直接的に検知するセンサが用いられてもよい。又、その他、特にセンサを用いることなく、PTCヒータ43の動作開始からの経過時間等に基づいて、PTCヒータ43の消費電流を推定する手法等が用いられてもよい。
 他方、バッテリ温調装置として、PTCヒータ43に代えて、温度に依拠して電気抵抗が変化しない抵抗式ヒータが用いられる場合には、中継ECU22(出力調整部22c)は、バッテリ41の端子間電圧と当該抵抗式ヒータの電気抵抗のみから、該抵抗式ヒータの消費電流を検知する構成とすればよい。
 又、中継ECU22(出力調整部22c)がバッテリ41の充電電流の許容値を特定する方法としては、中継ECU22自身のROM等にバッテリ特性情報を記憶しておき、バッテリECU42から取得するバッテリ41の状態に係る情報に基づいて、当該充電電流の許容値を算出する手法が用いられてもよい。
 又、中継ECU22(出力調整部22c)が充電器ECU32に対して指令する充電回路31の出力電流の目標値は、充電回路31の出力電流の目標値そのものであってもよいし、所定の基準値からの増減指令であってもよい。
 又、中継ECU22(出力調整部22c)は、充電開始時のみについて、上記した電流ベースの定電流モードで充電制御を行い、充電終期においては、充電回路31の出力電圧の目標値のみを決定して、定電圧モードで充電制御を行ってもよい。
[車載充電システムの動作]
 次に、図5~図7を参照して、本実施形態に係る車載充電システムUの充電時の動作の一例について説明する。
 図5は、本実施形態に係る中継ECU22の動作の一例を示すフローチャートである。
 図5のフローチャートは、中継ECU22が、コンピュータプログラムに従って順に実行する処理である。このフローチャートは、例えば、車輌ECU10から、中継ECU22に対してバッテリ41の充電開始指令が入力された際に実行される。
 図6は、本実施形態に係る車載充電システムUにおけるバッテリ41充電時の充電電流の挙動の一例を示す図である。図6において、縦軸はバッテリ41への充電電流[A]を表し、横軸はバッテリ41の充電率[%]を表す。
 図6の点線グラフは、常温環境(例えば、10℃)でバッテリ41の充電を実行した場合のバッテリ41への充電電流の時間的変化の一例を示す。又、図6の実線グラフは、低温環境(例えば、-10℃)でバッテリ41の充電を実行した場合のバッテリ41への充電電流の時間的変化の一例を示す。
 尚、本実施形態に係る車載充電システムUは、定電流定電圧充電(Constant Current-Constant Voltage:CCCV)方式を採用しており、バッテリ41の充電率が閾値未満までは(図6のCC充電の領域)、バッテリ41における充電電流の許容値を基準に充電回路31の出力調整を行い、バッテリ41の充電率が閾値以上になった場合(図6のCV充電の領域)、バッテリ41における充電電圧(即ち、バッテリ41の端子間電圧)の許容値(図6には図示せず)を基準として充電回路31の出力調整を行っている。
 より詳細には、本実施形態に係る車載充電システムUにおいては、図6のCC充電の領域は、図5の処理を実行することで、バッテリ41の充電電流の実際値が、バッテリ41における充電電流の許容値と略同じ電流レベルとなるように、充電が実行される。一方、図6のCV充電の領域は、所定の電圧レベルにて、定電圧状態にて、充電が実行される領域である。尚、図5のフローチャートにおいては、当該CV充電時の制御については、説明は省略している。
 図5の動作フローに戻って、充電時の一連の処理について説明する。尚、図5の動作フローにおいて、ステップSaを起点として、右側(Sa:YESの場合)のステップS3t~S9tは、PTCヒータ43を動作させていないときの処理フローを示し、左側(Sa:NOの場合)のステップS3~S9は、PTCヒータ43を動作させているときの処理フローを示している。
 ステップS1において、中継ECU22は、まず、バッテリECU42との通信により、バッテリECU42からバッテリ41における充電電流の許容値情報を取得し、自身のRAM等に設定する。
 尚、このステップS1において、バッテリECU42は、例えば、中継ECU22からの要求信号に応じて、バッテリ41のバッテリ特性情報を参照して、現時点の当該バッテリ41の充電率及び温度から、当該バッテリ41における充電電流の許容値を決定し、中継ECU22に対して送信する。
 ステップS2において、中継ECU22は、予め自身のROM等に記憶した充電回路31の出力可能電力を取得する。
 ステップSaにおいて、中継ECU22は、バッテリECU42からバッテリ41の温度情報を取得し、バッテリ41の温度が低温側閾値温度(PTCヒータ43を用いるか否かを判定するための基準温度であり、例えば、0℃)以上か否かを判定する。そして、中継ECU22は、バッテリ41の温度が低温側閾値温度以上の場合(Sa:YES)、PTCヒータ43を用いずに、バッテリ41の充電を実行する。一方、中継ECU22は、バッテリ41の温度が低温側閾値温度未満の場合(Sa:NO)、PTCヒータ43による昇温を行いながら、バッテリ41の充電を実行する。
 まず、PTCヒータ43を動作させていないときの処理フローである右側(Sa:YESの場合)のステップS3t~S9tについて、説明する。
 ステップS3tにおいて、中継ECU22は、ステップS1で取得した充電電流の許容値と、現時点において負荷装置Rが要求する消費電流と、に基づいて、充電回路31の出力可能電流の範囲内で、バッテリ41側に供給する電流(この場合、バッテリ41の充電電流)の目標値、及び、充電回路31の出力電流の目標値を決定する。この際、中継ECU22は、例えば、バッテリ41の充電電流の許容値を、バッテリ41側に供給する電流(この場合、バッテリ41の充電電流)の目標値として決定する。又、この際、中継ECU22は、負荷装置Rの消費電流がゼロである場合には、バッテリ41側に供給する電流の目標値を、充電回路31の出力電流の目標値(Iout=I1)として決定する。又、負荷装置Rの消費電流がゼロでない場合には、中継ECU22は、バッテリ41側に供給する電流の目標値に対して、現時点において負荷装置Rが要求する消費電流を加算した電流レベルを、充電回路31の出力電流の目標値(Iout=I1+I3)として決定する。
 又、このステップS3tにおいて、中継ECU22は、負荷装置Rに供給する消費電力とバッテリ41に供給する充電電力の合計が充電回路31の出力可能電力を超える場合には、充電回路31の出力可能電流を充電回路31の出力電流の目標値とする。
 尚、このステップS3tにおいて、中継ECU22は、例えば、後述するS5~S7で補正した電流を自身のRAM等に記憶しておくことによって、負荷装置Rの消費電流を検知している。
 ステップS4tにおいて、中継ECU22は、充電器ECU32に対して、充電回路31の出力電流の目標値を指令する。
 尚、このステップS4tにおいて、充電器ECU32は、中継ECU22からの指令信号に応じて、充電回路31の出力電流が中継ECU22から指令された目標値となるように、充電回路31の動作を制御する。
 ステップS5tにおいて、中継ECU22は、電流センサ23から入力されるバッテリ41側に供給する電流(この場合、バッテリ41の充電電流)の検出値を示す信号を取得し、自身のRAM等に記憶する。
 ステップS6tにおいて、中継ECU22は、バッテリ41側に供給する電流の検出値と、ステップS3tで算出したバッテリ41側に供給する電流の目標値とを比較する。このステップS6tにおいて、中継ECU22は、例えば、バッテリ41側に供給する電流の目標値が、バッテリ41側に供給する電流の検出値よりも閾値(例えば、1アンペア)以上大きいか否か、又は、バッテリ41側に供給する電流の検出値がバッテリ41側に供給する電流の目標値よりも閾値以上大きいか否かを判定する。
 ステップS7tにおいて、中継ECU22は、ステップS6tの比較結果に基づいて、充電器ECU32に対して、補正指令を送信する。これによって、充電回路31の出力電流の目標値は、バッテリ41に供給する充電電流と他の負荷装置Rの負荷電流の合計値(Iout=I1+I3)に近づくように、補正される。
 このステップS7tにおいて、中継ECU22は、例えば、バッテリ41側に供給する電流の目標値がバッテリ41側に供給する電流の検出値よりも閾値以上大きい場合には、充電回路31の出力電流の目標値を1レベル分(例えば、1アンペア)だけインクリメントすると共に、充電器ECU32に対して、充電回路31の出力電流に係る補正指令を送信する。バッテリ41側に供給する電流の検出値がバッテリ41側に供給する電流の目標値よりも閾値以上大きい場合には、充電回路31の出力電流の目標値を1レベル分だけデクリメントすると共に、充電器ECU32に対して、充電回路31の出力電流に係る補正指令を送信する。
 ステップS8tにおいて、中継ECU22は、バッテリ41の状態確認タイミングか否かを判定し、バッテリ41の状態確認タイミングでない場合(ステップS8t:NO)、ステップS5tに戻る。そして、中継ECU22は、かかるステップS5t~S7tの処理を繰り返し実行することによって、バッテリ41側に供給する電流の検出値と一致するように、充電回路31の出力電流の目標値を調整することになる。
 一方、中継ECU22は、バッテリ41の状態確認タイミングとなった場合(ステップS8t:YES)、ステップS9tに処理を進めて,バッテリECU42に対してバッテリ41の状態に係る要求信号を送信する。
 ステップS9tにおいて、中継ECU22は、バッテリECU42と通信して、バッテリ41の充電を終了するか否かを判定する。中継ECU22は、バッテリ41の充電を終了する場合(ステップS9t:YES)、一連のフローを終了する。一方、バッテリ41の充電を終了しない場合(ステップS9t:NO)、中継ECU22は、ステップS1に戻って、再度、バッテリECU42から充電電流の許容値情報を取得し、バッテリ41への充電電流の実際値が、充電実行中の各時点におけるバッテリ41の充電電流の許容値に近づくように調整する処理を継続する。
 次に、PTCヒータ43を動作させている際の処理フローである左側(Sa:NOの場合)のステップS3~S9について、説明する。
 ステップSbにおいて、中継ECU22は、ステップSb2で取得した現時点におけるバッテリ41の温度及び端子間電圧からPTCヒータ43の温度及びPTCヒータ43に印加される電圧を推定すると共に、自身のROM等に記憶するヒータ特性情報に基づいて、現時点におけるPTCヒータ43の消費電流を算出する。
 ステップS3において、中継ECU22は、ステップS1で取得した充電電流の許容値情報、及びステップSbで算出したPTCヒータ43の消費電流に基づいて、充電回路31の出力可能電流の範囲内で、バッテリ41側に供給する電流(この場合、バッテリ41の充電電流とPTCヒータ43の消費電流の合計)の目標値、及び、充電回路31の出力電流の目標値を決定する。
 この際、中継ECU22は、例えば、バッテリ41の充電電流の許容値とPTCヒータ43の消費電流の合計値を、バッテリ41側に供給する電流(この場合、バッテリ41の充電電流とPTCヒータ43の消費電流の合計)の目標値として決定する。又、この際、中継ECU22は、負荷装置Rの消費電流がゼロである場合には、バッテリ41側に供給する電流の目標値を、充電回路31の出力電流の目標値(Iout=I1+I2)として決定する。又、中継ECU22は、負荷装置Rの消費電流がゼロでない場合には、バッテリ41側に供給する電流の目標値に対して、現時点において負荷装置Rが要求する消費電流を加算した電流レベルを、充電回路31の出力電流の目標値(Iout=I1+I2+I3)として決定する。
 ステップScにおいて、中継ECU22は、PTCヒータ43の開閉器43aをオンして、充電回路31からPTCヒータ43に電力供給する。これによって、PTCヒータ43によるバッテリ41の加熱を開始する。そして、後述するステップSdにて、バッテリ41の加熱を終了すると判断するまで、PTCヒータ43によるバッテリ41の加熱を続行する。尚、既に、PTCヒータ43による加熱動作を実行している場合には、中継ECU22は、特に処理を実行することなく、PTCヒータ43による加熱動作を継続する。
 ステップS4~ステップS7の処理は、上記したステップS4t~ステップS7tと同様の処理である。
 ステップS4において、中継ECU22は、充電器ECU32に対して、充電回路31の出力電流の目標値を指令する。ステップS5において、中継ECU22は、電流センサ23から入力されるバッテリ41側に供給する電流(この場合、バッテリ41の充電電流I1+PTCヒータ43の消費電流I2)の検出値を示す信号を取得し、自身のRAM等に記憶する。ステップS6において、中継ECU22は、バッテリ41側に供給する電流の検出値と、バッテリ41側に供給する電流の目標値とを比較し、バッテリ41側に供給する電流の目標値がバッテリ41側に供給する電流の検出値よりも閾値(例えば、1アンペア)以上大きいか否か、又は、バッテリ41側に供給する電流の検出値がバッテリ41側に供給する電流の目標値よりも閾値以上大きいか否かを判定する。ステップS7において、中継ECU22は、ステップS6の比較結果に基づいて、充電回路31の出力電流の目標値をデクリメント又はデクリメントすると共に、充電器ECU32に対して、充電回路31の出力電流に係る補正指令を送信する。
 これによって、充電回路31の出力電流の目標値は、バッテリ41の充電電流の許容値、PTCヒータ43の消費電流、及び、他の負荷装置Rの負荷電流の合計値(Iout=I1+I2+I3)に近づくように、補正される。
 ステップSdにおいて、中継ECU22は、バッテリ41の温度上昇に伴って、現時点におけるバッテリ41の充電電流の許容値が、充電回路31の出力可能電流以上に達したか否かを判定する。そして、中継ECU22は、現時点におけるバッテリ41の充電電流の許容値が、充電回路31の出力可能電流以上に達している場合(ステップSd:YES)、ステップSeに処理を進め、充電回路31の出力可能電流未満の場合(ステップSd:NO)、ステップS5に戻ってステップS5~S7の処理を繰り返し実行する。
 尚、このステップSdは、PTCヒータ43の動作停止タイミングを判定するための処理である。PTCヒータ43の動作停止タイミングは、バッテリ41の温度が高温側閾値温度(例えば、30℃)以上に達しているという第1条件と、仮にPTCヒータ43を動作停止して、PTCヒータ43の動作停止に伴う余剰分の電流がバッテリ41に流入した場合でも、バッテリ41の充電電流の実際値が、バッテリ41の充電電流の許容値を超えることがないという第2条件と、の両方を充足するタイミングである必要がある。
 この点、このステップSdのように、現時点におけるバッテリ41の充電電流の許容値が、充電回路31の出力可能電流以上に達したか否かを判定することによって、上記第1条件及び第2条件の両方を充足しているかを実質的に判定することができる。但し、中継ECU22は、PTCヒータ43の動作停止タイミングを判定する際、上記第1条件と第2条件とを別々に実行してもよいのは勿論である。
 他方、このステップSdにおいて、中継ECU22は、充電回路31の出力可能電流未満の場合(ステップSd:NO)、ステップS1に戻ってもよい。これによって、より高頻度に、バッテリ41の状態及びPTCヒータ43の状態に応じた出力電流の目標値を決定することができる。
 ステップSeにおいて、中継ECU22は、PTCヒータ43の開閉器43aをオフする。これによって、PTCヒータ43によるバッテリ41の加熱を終了する。
 ステップS9において、中継ECU22は、バッテリECU42との通信によって、充電終了か否かを判定する。中継ECU22は、充電終了の場合(S9:YES)、充電器ECU32に対して、充電終了指令を出力すると共に、一連の処理を終了する。一方、中継ECU22は、充電終了ではない場合(S9:NO)、ステップS1に戻って、再度、処理を継続する。中継ECU22のその後のフローは、右側(Sa:YESの場合)のステップS3t~S9tに対応する処理を実行することになる。
 中継ECU22は、かかるステップS1~S9の処理を繰り返し実行することによって、バッテリ41に供給する充電電流の実際値が充電電流の許容値と一致するように、充電回路31の出力電流を調整することになる。
 ここで、図7A、図7Bを参照して、本実施形態に係る車載充電システムUにおける充電回路31の出力電流の目標値の設定手法について、従来技術に係る車載充電システムにおける充電回路31の出力電流の目標値の設定手法と比較して、説明する。
 図7Aは、従来技術に係る車載充電システムにおける充電回路31の出力電流の目標値の設定手法を模式的に示す図である。又、図7Bは、本実施形態に係る車載充電システムUにおける充電回路31の出力電流の目標値の設定手法を模式的に示す図である。
 図7Aと図7Bは、充電開始から充電完了までの充電実行中のその時々における充電回路31の出力電流の目標値(実線グラフ)、及び、バッテリ41の充電電流の許容値(点線グラフ)の時間的変化を示している。図7Aと図7Bは、互いに比較可能に、同一のスケールにて、各グラフを表している。
 図7A、図7Bの横軸は、充電開始から充電完了までの時間軸を表し、縦軸は、充電回路31の出力電流の目標値を表している。図7A、図7Bの横軸のT1、T2、T3は、それぞれ、充電開始タイミング、PTCヒータ43の動作停止タイミング、充電終了タイミングを表している。
 図7A、図7Bの実線グラフには、充電実行中のその時々における充電回路31の出力電流のうち、バッテリ41の充電電流とPTCヒータ43の消費電流それぞれが占める割合(斜線領域がバッテリ41の充電電流に相当し、ドット領域がPTCヒータ43の消費電流に相当する。)を付している。
 又、図7A、図7Bの点線グラフは、実線グラフと同じタイムスケール及び電流スケールにて、充電実行中のその時々におけるバッテリ41の充電電流の許容値を表している。
 又、図7A、図7Bの一点鎖線グラフは、実線グラフと同じタイムスケールにて、充電開始から充電完了までの間におけるバッテリ41の温度の時間的変化を表している。
 従来技術に係る車載充電システムにおいては、図7Aに示すように、充電回路31の出力電流の目標値(実線グラフ)は、バッテリ41の充電電流の許容値(点線グラフ)と同一値となるように、決定されている。
 従来技術に係る車載充電システムにおいて、かかる構成としている理由としては、PTCヒータ43の消費電流が低下した際に、その余剰分がバッテリ41側に流れ込み、バッテリ41の充電電流の実際値が、バッテリ41の充電電流の許容値を超えてしまい、バッテリ41における過電流状態が発生することを防止するためである。換言すると、従来技術に係る車載充電システムにおいては、PTCヒータ43を動作させる際には、これが故に、充電実行中のその時々におけるバッテリ41の充電電流の許容値を認識しているものの、当該充電電流の許容値よりも相当に小さい電流レベルにおいて、バッテリ41の充電を実行せざるを得ない状態となっている。
 この点、本実施形態に係る車載充電システムUにおいては、図7Bに示すように、充電実行中のその時々におけるバッテリ41の充電電流の許容値、PTCヒータ43の消費電流及び負荷装置Rの消費電流それぞれを認識して、充電回路31の出力電流の目標値(実線グラフ)を決定する。
 従って、本実施形態に係る車載充電システムUにおいては、充電回路31の出力電流の目標値(実線グラフ)は、バッテリ41の充電電流の許容値(点線グラフ)に、PTCヒータ43の消費電流及び負荷装置Rの消費電流を加算した値となるように決定される。
 更に、本実施形態に係る車載充電システムUにおいては、PTCヒータ43の動作を停止する際には、図5のフローチャートにて説明したように、PTCヒータ43の消費電流の余剰分がバッテリ41側に流れ込んでも、バッテリ41の充電電流の実際値が、バッテリ41の充電電流の許容値を超えないか否かを判定した上で、PTCヒータ43の動作を停止する。
 本実施形態に係る車載充電システムUにおいては、これによって、PTCヒータ43を動作させている際にも、バッテリ41の許容限界の充電電流にて、バッテリ41に対して過電流状態を発生させることなく、充電を実行することを可能とする。
[効果]
 以上のように、本実施形態に係る車載充電システムUによれば、PTCヒータ43(即ち、バッテリ温調装置)による加熱とバッテリ41の充電を同時に実行する際、バッテリ41のバッテリ特性情報及びPTCヒータ43のヒータ特性情報に基づいて、充電実行中のその時々におけるバッテリ41の充電電流の許容値とPTCヒータ43の消費電流を特定し、これらの合計値に対応させるように、充電回路41の出力電流を制御する。換言すると、本実施形態に係る車載充電装置30の制御装置(充電器ECU32)は、予め記憶したバッテリ41のバッテリ特性情報及びPTCヒータ43のヒータ特性情報に基づいて特定された、充電実行中の各時点におけるバッテリ41の充電電流の許容値及びPTCヒータ43の消費電流の合計値に近づけるように、充電回路31の出力電流を制御する。
 従って、本実施形態に係る車載充電システムUは、PTCヒータ43にてバッテリ41を温度調整している際にも、バッテリ41の充電電流の実際値がバッテリ41の充電電流の許容値を超えない範囲で且つ当該許容値に近づくように、充電回路41の出力電流を制御することができる。
 これによって、大電力でのバッテリ41の充電を実行しつつ、PTCヒータ43の動作状態が変化した場合(典型的には、PTCヒータ43の消費電流が低下した場合)にも、バッテリ41における過電流状態が生じることを抑制することが可能である。つまり、これによって、バッテリ41の充電時間の短縮化を図ることが可能である。
 特に、本実施形態に係る車載充電システムUは、バッテリ41の状態(バッテリ41の温度及びバッテリの充電率)を検知して、充電実行中の各時点におけるバッテリ41の状態に基づいて、バッテリ41の充電電流の許容値を決定する。これによって、充電実行中のその時々におけるバッテリ41の状態(バッテリ41の温度及びバッテリの充電率)に対応させるように、バッテリ41の充電電流の許容値を決定することが可能である。
 又、特に、本実施形態に係る車載充電システムUは、PTCヒータ43の温度及び印加電圧を検知して、充電実行中の各時点におけるPTCヒータ43の消費電流を決定する。これによって、PTCヒータ43の温度変化等に対応させるように、PTCヒータ43の消費電流を算出することが可能である。
 又、特に、本実施形態に係る車載充電システムUは、PTCヒータ43によるバッテリ41の温度調整を終了する際には、バッテリ41の充電電流の許容値が、充電回路31の出力可能電流以上に達した後に、PTCヒータ43の動作を停止する。これによって、PTCヒータ43の動作停止に伴って、PTCヒータ43の消費電流の余剰分がバッテリ41側に流れ込んでも、バッテリ41の充電電流の実際値が、バッテリ41の充電電流の許容値を超えないようにすることが可能である。
 又、特に、本実施形態に係る車載充電システムUによれば、電流センサ23のセンサ値に基づいて、充電実行中のその時々における負荷装置Rの消費電流を検知し、当該負荷装置Rの消費電流分を補正するように、充電回路31の出力電流を調整することができる。これによって、充電回路31からバッテリ41、PTCヒータ43、及び負荷装置Rに対して、同時に、電力供給する場合であっても、バッテリ41に対する過電流状態を抑制しつつ、当該バッテリ41への充電を許容限界の電流レベルで行うことができる。
(その他の実施形態)
 本発明は、上記実施形態に限らず、種々に変形態様が考えられる。
 上記実施形態では、車載充電システムUの一例として、充電回路31を制御する際に定電流定電圧充電(CCCV)方式を用いる態様を示した。しかしながら、充電回路31の制御方式としては、充電中の全期間に亘って、充電電流の許容値を基準として、充電回路31をフィードバック制御する態様(電流モード制御方式とも称される)としてもよいのは、勿論である。
 又、上記実施形態では、車載充電システムUの一例として、充電器ECU32、バッテリECU42、及び、中継ECU22の協働によって、充電回路31の出力電流を制御する態様を示した。しかしながら、充電器ECU32、バッテリECU42、及び、中継ECU22の各機能は、一のコンピュータ(例えば、車輌ECU10)によって実現されるものであってもよいし、上記実施形態のように複数のコンピュータに分散されて実現されてもよい。
 又、上記実施形態では、車載充電システムUがバッテリ41の状態等を検知するための各種センサの一例として、電流センサ23、電流センサ44及び温度センサ45を示した。但し、車載充電システムUがバッテリ41の状態等を検知する手法は、任意であって、他のセンサのセンサ値等を用いて演算処理により、間接的に求められてもよい。
 又、上記実施形態では、充電回路31の一例として、AC/DCコンバータ31a及びDC/DCコンバータ31bを示した。しかしながら、充電回路31の構成は、外部電源Sや車輌Aの電力系統の構成に応じて種々に変更可能である。例えば、DC/DCコンバータ31bとしては、例えば、スイッチング駆動方式のDC/DCコンバータに代えて、リニア方式のDC/DCコンバータが用いられてもよい。又、充電回路31の出力電流のレベルを調整するための構成として、DC/DCコンバータ31bの後段に、電流レベルを可変とする定電流回路を設ける構成としてもよい。
 又、上記実施形態では、車輌Aの電力系統の一例として、電力変換装置50やジャンクションボックス20を有する構成を示した。しかしながら、電力変換装置50やジャンクションボックス20を設けない構成としてもよい。その場合、中継ECU22は、例えば、車輌ECU10と一体的に構成されてもよい。
 又、上記実施形態では、車輌Aに接続する外部電源Sの一例として、単相交流の商用電源を示した。しかしながら、本発明に係る車載充電システムUは、任意の外部電源Sからバッテリ41に充電する態様に適用し得るのは、勿論である。例えば、外部電源Sとしては、三相交流の外部電源であってもよいし、直流電力を供給する外部電源であってもよい。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 2018年2月8日出願の特願2018-021282の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示に係る車載充電システムによれば、バッテリ温調装置によるバッテリの温度調整とバッテリの充電を同時に実行する際にも、バッテリに対して過電流状態を発生させることなく、バッテリに対する充電を大電力で実行することを可能である。
 A 車輌
 S 外部電源
 U 車載充電システム
 R 負荷装置
 10 車輌ECU
 20 ジャンクションボックス
 21 電路切替回路
 22 中継ECU
 22a バッテリ状態取得部
 22b ヒータ制御部
 22c 出力調整部
 22d 電流検知部
 23 電流センサ
 30 充電装置
 31 充電回路
 31a AC/DCコンバータ
 31b DC/DCコンバータ
 32 充電器ECU
 40 蓄電装置
 41 バッテリ
 42 バッテリECU
 43 PTCヒータ(バッテリ温調装置)
 43a 開閉器
 44 電流センサ
 45 温度センサ
 50 電力変換装置
 60 インバータ装置

Claims (13)

  1.  充電回路にて外部電源から供給される電力を電力変換して、バッテリ及びバッテリ温調装置に対して並列に電力供給する車載充電装置であって、
     前記バッテリ温調装置による前記バッテリの温度調整と前記バッテリの充電を同時に実行する際、充電実行中の各時点における前記バッテリの充電電流の許容値及び前記バッテリ温調装置の消費電流の合計値に近づけるように、前記充電回路の出力電流を制御する制御装置
     を備え、
     前記バッテリの充電電流の前記許容値及び前記バッテリ温調装置の前記消費電流は、予め記憶された前記バッテリのバッテリ特性情報及び前記バッテリ温調装置のヒータ特性情報に基づいて特定される、車載充電装置。
  2.  前記制御装置は、充電実行中の各時点における前記バッテリの充電電流の前記許容値よりも大きく、且つ、充電実行中の各時点における前記バッテリの充電電流の前記許容値と前記バッテリ温調装置の前記消費電流の合計値以下となるように、前記充電回路の前記出力電流を制御する
     請求項1に記載の車載充電装置。
  3.  前記バッテリの充電電流の前記許容値は、充電実行中の各時点に検知された前記バッテリの状態と前記バッテリ特性情報とに基づいて、特定される
     請求項1に記載の車載充電装置。
  4.  前記バッテリの前記状態は、前記バッテリの温度を含む
     請求項3に記載の車載充電装置。
  5.  前記バッテリの前記状態は、前記バッテリの充電率を含む
     請求項3に記載の車載充電装置。
  6.  前記バッテリ温調装置の前記消費電流は、充電実行中の各時点に検知された前記バッテリ温調装置の前記温度と前記ヒータ特性情報とに基づいて、特定される
     請求項1に記載の車載充電装置。
  7.  前記バッテリ温調装置の前記消費電流は、充電実行中の各時点に検知された前記バッテリ温調装置に印加される電圧と前記ヒータ特性情報とに基づいて、特定される
     請求項1に記載の車載充電装置。
  8.  前記バッテリ温調装置は、PTCヒータであり、
     前記ヒータ特性情報には、前記バッテリ温調装置の前記消費電流が、前記バッテリ温調装置の温度及び前記バッテリ温調装置に印加される電圧と関連付けて記憶されている
     請求項1に記載の車載充電装置。
  9.  前記バッテリ温調装置は、抵抗式ヒータであり、
     前記ヒータ特性情報には、前記バッテリ温調装置の前記消費電流が、前記バッテリ温調装置に印加される電圧と関連付けて記憶されている
     請求項1に記載の車載充電装置。
  10.  前記バッテリ温調装置の前記温度調整の動作停止は、前記バッテリ温調装置による前記バッテリの温度調整を終了する際には、前記バッテリ温調装置への電力供給を停止しても、前記充電回路の前記出力電流が、前記バッテリの充電電流の前記許容値を超えないタイミングで実行される
     請求項1に記載の車載充電装置。
  11.  前記バッテリ温調装置の前記温度調整の動作停止は、前記バッテリの充電電流の前記許容値が、前記充電回路の出力可能電流以上の場合に実行される
     請求項10に記載の車載充電装置。
  12.  前記充電回路から、前記バッテリ及び前記バッテリ温調装置に加えて、他の負荷装置に対しても並列に電力供給する場合、
     前記制御装置は、充電実行中の各時点に検知された前記他の負荷装置の消費電流、並びに前記バッテリの充電電流の前記許容値及び前記バッテリ温調装置の前記消費電流の合計値に近づけるように、前記充電回路の前記出力電流を制御する
     請求項1に記載の車載充電装置。
  13.  充電回路にて外部電源から供給される電力を電力変換して、バッテリ及びバッテリ温調装置に対して並列に電力供給する車載充電装置の制御方法であって、
     前記バッテリ温調装置による前記バッテリの温度調整と前記バッテリの充電を同時に実行する際、充電実行中の各時点における前記バッテリの充電電流の許容値及び前記バッテリ温調装置の消費電流の合計値に近づけるように、前記充電回路の出力電流を制御し、
     前記バッテリの充電電流の前記許容値及び前記バッテリ温調装置の前記消費電流は、予め記憶された前記バッテリのバッテリ特性情報及び前記バッテリ温調装置のヒータ特性情報に基づいて特定される、
     制御方法。
     
     
PCT/JP2018/045287 2018-02-08 2018-12-10 車載充電装置、及び車載充電装置の制御方法 WO2019155751A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880088948.3A CN111699608B (zh) 2018-02-08 2018-12-10 车载充电装置及车载充电装置的控制方法
DE112018007053.0T DE112018007053T5 (de) 2018-02-08 2018-12-10 In einem Fahrzeug angebrachte Ladevorrichtung und Steuerverfahren für eine in einem Fahrzeug angebrachte Ladevorrichtung
US16/985,002 US11919415B2 (en) 2018-02-08 2020-08-04 Vehicle-mounted charging device and vehicle-mounted charging device control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018021282A JP7108869B2 (ja) 2018-02-08 2018-02-08 車載充電装置、及び車載充電装置の制御方法
JP2018-021282 2018-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/985,002 Continuation US11919415B2 (en) 2018-02-08 2020-08-04 Vehicle-mounted charging device and vehicle-mounted charging device control method

Publications (1)

Publication Number Publication Date
WO2019155751A1 true WO2019155751A1 (ja) 2019-08-15

Family

ID=67547918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045287 WO2019155751A1 (ja) 2018-02-08 2018-12-10 車載充電装置、及び車載充電装置の制御方法

Country Status (5)

Country Link
US (1) US11919415B2 (ja)
JP (1) JP7108869B2 (ja)
CN (1) CN111699608B (ja)
DE (1) DE112018007053T5 (ja)
WO (1) WO2019155751A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218012B2 (en) * 2018-10-23 2022-01-04 Toyota Jidosha Kabushiki Kaisha Secondary battery system and method for controlling charging of secondary battery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783652B (zh) * 2019-10-23 2021-06-29 北京小米移动软件有限公司 电池充电方法、电池充电装置及存储介质
JP7327147B2 (ja) * 2019-12-19 2023-08-16 トヨタ自動車株式会社 車両
JP7327146B2 (ja) * 2019-12-19 2023-08-16 トヨタ自動車株式会社 車両、車両制御システムおよび車両制御方法
JP7276114B2 (ja) 2019-12-19 2023-05-18 トヨタ自動車株式会社 車両
JP2021141775A (ja) * 2020-03-09 2021-09-16 トヨタ自動車株式会社 車載バッテリ充電システム
CN111942228A (zh) * 2020-07-28 2020-11-17 中国第一汽车股份有限公司 一种电动汽车低温充电控制***及其控制方法
CN112151888B (zh) * 2020-09-25 2022-02-15 上海航天计算机技术研究所 一种运载火箭锂电池智能管理设备
CN112277681A (zh) * 2020-10-23 2021-01-29 东风汽车股份有限公司 一种电动汽车低温交流充电***及其控制方法
CN112659978B (zh) * 2020-12-07 2022-12-16 北京车和家信息技术有限公司 动力电池的充电加热控制方法和装置、介质、设备、车辆
CN112918314B (zh) * 2021-02-22 2022-12-20 北京车和家信息技术有限公司 一种车辆充电电流调整方法和装置
CN113696789A (zh) * 2021-08-31 2021-11-26 东风小康汽车有限公司重庆分公司 一种用于电池的低温直流加热控制方法
CN115837856A (zh) * 2021-09-22 2023-03-24 北京车和家信息技术有限公司 车辆充电成本确定方法、装置、设备及存储介质
CN113859028A (zh) * 2021-09-30 2021-12-31 展宝有限公司 一种具有智能电网输入的电动车充电***及实现方法
CN113997828A (zh) * 2021-12-17 2022-02-01 宜宾凯翼汽车有限公司 一种电动汽车低温下的快充加热控制方法
CN115139829B (zh) * 2022-07-29 2024-06-18 潍柴动力股份有限公司 一种充电加热控制方法、装置、电子设备及存储介质
CN115241576B (zh) * 2022-09-21 2023-03-28 中创新航科技股份有限公司 电池加热控制方法及电池加热控制***、电池包

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036328A (ja) * 1998-07-21 2000-02-02 Hitachi Ltd 二次電池用温度制御装置
JP2012019678A (ja) * 2010-06-09 2012-01-26 Nissan Motor Co Ltd バッテリ充電システム
US20140266038A1 (en) * 2013-03-12 2014-09-18 Ford Global Technologies, Llc Method and system for controlling an electric vehicle while charging
JP2015225782A (ja) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 蓄電システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024684B2 (ja) * 2014-02-21 2016-11-16 トヨタ自動車株式会社 蓄電システム
US9751427B2 (en) * 2014-09-03 2017-09-05 Ford Global Technologies, Llc Vehicle traction battery thermal conditioning
JP6176223B2 (ja) 2014-11-04 2017-08-09 トヨタ自動車株式会社 バッテリシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036328A (ja) * 1998-07-21 2000-02-02 Hitachi Ltd 二次電池用温度制御装置
JP2012019678A (ja) * 2010-06-09 2012-01-26 Nissan Motor Co Ltd バッテリ充電システム
US20140266038A1 (en) * 2013-03-12 2014-09-18 Ford Global Technologies, Llc Method and system for controlling an electric vehicle while charging
JP2015225782A (ja) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 蓄電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218012B2 (en) * 2018-10-23 2022-01-04 Toyota Jidosha Kabushiki Kaisha Secondary battery system and method for controlling charging of secondary battery

Also Published As

Publication number Publication date
CN111699608A (zh) 2020-09-22
CN111699608B (zh) 2023-11-03
DE112018007053T5 (de) 2020-10-22
US20200361333A1 (en) 2020-11-19
JP7108869B2 (ja) 2022-07-29
JP2019140775A (ja) 2019-08-22
US11919415B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2019155751A1 (ja) 車載充電装置、及び車載充電装置の制御方法
KR101971324B1 (ko) 배터리 시스템
US10439417B2 (en) Battery temperature management and charging system
KR101896581B1 (ko) 차량 탑재 전지의 승온 장치 및 승온 방법
US10355509B2 (en) Management apparatus, charge and discharge control apparatus, power storage system, and charge and discharge control method
US10630098B2 (en) Charging control device
US9118197B2 (en) Charging control system
US10630194B2 (en) Power conversion device
US10343539B2 (en) Power supply device for supplying electricity to a load utilizing electric power of a storage-battery-equipped vehicle
JP4843921B2 (ja) 組電池の容量調整装置及び組電池の容量調整方法
JP2018207558A (ja) 車両
JP5835136B2 (ja) 車載充電制御装置
KR20170122062A (ko) 연료전지 차량의 시동 제어방법
US20210359533A1 (en) Controller for power supply circuit, storage medium storing program that controls power supply circuit, and control method for power supply circuit
JP6058647B2 (ja) 電気アクセサリが連結された電気バッテリを含む自動車の電気アクセサリに給電する方法
JP2017203748A (ja) 電源システム
JP2014058267A (ja) 車両の発電制御装置
CN112140888A (zh) 车载电源装置的控制装置
US20200381935A1 (en) Electric power supply system and control method therefor
JP6187180B2 (ja) 電力変換システム
KR20200112212A (ko) 친환경 차량의 배터리 충전 제어 방법
WO2019117083A1 (ja) 車載充電システム
JP2015186364A (ja) 車両用電力装置
JP2021083245A (ja) 蓄電ユニット及び蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904977

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18904977

Country of ref document: EP

Kind code of ref document: A1