WO2019097568A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2019097568A1
WO2019097568A1 PCT/JP2017/040912 JP2017040912W WO2019097568A1 WO 2019097568 A1 WO2019097568 A1 WO 2019097568A1 JP 2017040912 W JP2017040912 W JP 2017040912W WO 2019097568 A1 WO2019097568 A1 WO 2019097568A1
Authority
WO
WIPO (PCT)
Prior art keywords
field effect
effect transistor
semiconductor device
region
channel
Prior art date
Application number
PCT/JP2017/040912
Other languages
English (en)
French (fr)
Inventor
和也 上嶋
蒲原 史朗
道雄 恩田
卓 長谷
西野 辰郎
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to PCT/JP2017/040912 priority Critical patent/WO2019097568A1/ja
Priority to JP2019554065A priority patent/JP6983905B2/ja
Priority to CN202311238705.2A priority patent/CN117096160A/zh
Priority to CN201780094075.2A priority patent/CN111033721B/zh
Priority to US16/753,949 priority patent/US20200313000A1/en
Publication of WO2019097568A1 publication Critical patent/WO2019097568A1/ja
Priority to JP2021189817A priority patent/JP7228020B2/ja
Priority to US17/897,844 priority patent/US20220406936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel

Definitions

  • the present invention relates to a semiconductor device, and, for example, to a technology effectively applied to a semiconductor device including a field effect transistor formed on an SOI (Silicon On Insulator) substrate.
  • SOI Silicon On Insulator
  • Patent Document 1 JP-A-2009-135140 discloses a high-speed operation of a logic circuit including a first field effect transistor formed on an SOI substrate and a memory circuit including a second field effect transistor formed on an SOI substrate. The technology which makes compatible with the stable operation of is described.
  • Patent Document 2 JP-A-2013-84766 (Patent Document 2) describes a technology related to a semiconductor device in which a first field effect transistor formed in an SOI region and a second field effect transistor formed in a bulk region are mixed. ing.
  • Patent Document 3 describes a technology related to a semiconductor device in which a first field effect transistor formed in an SOI region and a second field effect transistor formed in a bulk region are mixed. ing.
  • Patent Document 4 describes a technique of using a high dielectric constant film as a gate insulating film of a field effect transistor formed on an SOI substrate.
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2012-29155 (Patent Document 5) describes a technique for forming an analog circuit and a digital circuit on an SOI substrate.
  • semiconductor devices include digital circuits, analog circuits, and the like. And as a result of examination of this inventor, when using "SOTB technology" for an analog circuit especially, in order to improve the characteristic of the field effect transistor which comprises an analog circuit, various devices, such as the structure, how to use, etc. It became clear that it was necessary.
  • the thickness of the semiconductor layer of the SOI substrate on which the field effect transistor forming the analog circuit is formed is 2 nm or more and 24 nm or less.
  • the power consumption of the semiconductor device can be reduced while improving the characteristics of the semiconductor device.
  • FIG. 1 It is a figure showing an example of the analog amplification circuit which uses a field effect transistor and a constant current source. It is a figure explaining that the gain (amplification factor) of the analog amplification circuit shown in FIG. 1 is dependent on the saturation characteristic of a field effect transistor. It is a figure explaining that the gain (amplification factor) of the analog amplification circuit shown in FIG. 1 is dependent on the saturation characteristic of a field effect transistor. The figure explaining the mechanism by which deterioration of the saturation characteristic of a field effect transistor does not easily occur when the gate length of the gate electrode is formed on the thick semiconductor layer formed on the buried insulating layer. It is.
  • FIG. 2 is a schematic cross sectional view showing a device structure of the semiconductor device in the first embodiment.
  • FIG. 14C is a graph showing the relationship between drain voltage and drain current when a field effect transistor having a gate length of 60 nm is formed on the SOI substrate of FIG. 14C, wherein the thickness of the semiconductor layer is 12 nm 6 is a graph showing the relationship between drain voltage and drain current when a field effect transistor having a gate length of 60 nm is formed.
  • (A) is a circuit diagram in which a specific voltage to be applied to the analog amplification circuit is entered when driving the analog amplification circuit described in FIG. 1 at a low voltage
  • (b) is a gate electrode of a field effect transistor It is a graph which shows the relationship between the gate length of and the gain in the analog amplification circuit shown to Fig.9 (a).
  • (A) is a circuit diagram in which a specific voltage to be applied to the analog amplifier circuit is entered when the analog amplifier circuit described in FIG. 1 is driven at a higher voltage than the operating condition of FIG. 9 (a)
  • (B) is a graph which shows the relationship between the gate length of the gate electrode of a field effect transistor, and the gain in the analog amplification circuit shown to Fig.10 (a).
  • FIG. 16 is a cross-sectional view showing a device structure of a plurality of field effect transistors in the second embodiment.
  • FIG. 2 is a circuit block diagram showing a circuit configuration of a successive approximation A / D converter.
  • Embodiment 1 ⁇ Utility of SOI technology> From the viewpoint of reducing the manufacturing cost of semiconductor devices, it is desirable to increase the number of semiconductor chips obtained from one semiconductor wafer, and to increase the number of semiconductor chips obtained from one semiconductor wafer. In addition, miniaturization of field effect transistors is being performed. Further, miniaturization of the field effect transistor is required to be able to reduce the drive voltage (drain voltage and gate voltage) of the field effect transistor. Therefore, miniaturization of the field effect transistor leads to the realization of low power consumption of the semiconductor device through reduction of the drive voltage of the field effect transistor.
  • a field effect transistor when a field effect transistor is formed on an SOI substrate including a supporting substrate, a buried insulating layer formed on the supporting substrate, and a semiconductor layer formed on the buried insulating layer, a bulk substrate ( The field effect can be enhanced as compared to the case of forming a field effect transistor on a semiconductor substrate). This is because, in the field effect transistor formed on the SOI substrate, the embedded electric field from the drain is blocked by the buried insulating layer, and the channel formed in the semiconductor layer is controlled only by the gate electric field. This makes it possible to reduce the “short channel effect” in which the on / off ratio is significantly degraded by the drain electric field.
  • the improvement of the controllability of the channel by the gate electric field also means that the gate voltage can be reduced. That is, it means that low power consumption of a semiconductor device including a field effect transistor can be realized.
  • the SOI technology is a useful technology from the viewpoint of reducing the power consumption of the semiconductor device. That is, since the SOI technology is a technology suitable for reducing the drive voltage of the field effect transistor, the miniaturization of the field effect transistor can be promoted by using the SOI technology.
  • the semiconductor device includes a digital circuit and an analog circuit, but as a result of the study of the inventor, in particular, when using the SOI technology for the analog circuit, it is necessary to improve the characteristics of the analog circuit. Since it became clear that a device for improving the characteristics of the field effect transistor constituting the analog circuit is necessary, this point will be described below.
  • FIG. 1 is a diagram showing an example of an analog amplification circuit using a field effect transistor and a constant current source.
  • the analog amplification circuit includes, for example, a constant current source CS formed of a current mirror circuit, and a field effect transistor Q.
  • the constant current source CS and the field effect transistor Q are connected in series between the power supply terminal VDD and the ground terminal VSS. That is, while the drain D of the field effect transistor Q and the constant current source CS are connected, the source S of the field effect transistor Q is connected to the ground terminal VSS.
  • the gate electrode G of the field effect transistor Q functions as the input terminal IT of the analog amplification circuit, and the connection node between the drain D of the field effect transistor Q and the constant current source CS is the output terminal OT of the analog amplification circuit.
  • the gate voltage Vgs is applied to the gate electrode G of the field effect transistor Q, and the drain voltage Vds is applied to the drain D of the field effect transistor Q. Is applied.
  • the field effect transistor is configured to operate in the saturation region.
  • an input voltage ⁇ Vgs is applied to the gate electrode G of the field effect transistor Q which is turned on in this manner.
  • the constant current source CS controls the drain current of the field effect transistor Q to be constant. Specifically, even if the input voltage ⁇ Vgs is applied to the field effect transistor Q, the drain voltage Vds of the field effect transistor Q changes to Vds + ⁇ Vds so that the drain current of the field effect transistor Q becomes constant by the constant current source CS. Do. As a result, the drain voltage (Vds + ⁇ Vds) is output from the output terminal OT of the analog amplifier circuit.
  • the drain voltage (output voltage) output from the output terminal OT changes by ⁇ Vds in accordance with the input voltage ⁇ Vgs input to the input terminal IT.
  • the gain of the analog amplification circuit is improved as the change amount ⁇ Vds of the drain voltage (output voltage) becomes larger than the input voltage ⁇ Vgs.
  • the drain current of the field effect transistor Q is controlled to be constant by the constant current source CS. Be done.
  • the field effect transistor Q changes from the “B” state to the “C” state.
  • the input voltage ⁇ Vgs is applied to the gate electrode of the field effect transistor Q
  • the field effect transistor Q changes from the state of “A” to the state of “C”
  • the drain voltage of the field effect transistor Q will change by ⁇ Vds. That is, in the analog amplification circuit shown in FIG.
  • FIG. 1 shows a characteristic in which the change of the drain current Ids is smaller than the change of the drain voltage Vds in the saturation region of the field effect transistor Q than in FIG. In this case, as can be seen by comparing FIG. 2 with FIG.
  • the saturation characteristic of the field effect transistor Q depends on the saturation characteristic of the field effect transistor Q, and the better the saturation characteristic of the field effect transistor Q, the larger the gain of the analog amplifier circuit shown in FIG. It turns out that From this, it is understood that it is important to improve the saturation characteristics of the field effect transistor Q in the field effect transistor Q used in the analog amplification circuit.
  • the characteristic of the digital circuit is that the field effect transistor is saturated because the switching operation may be performed so as to turn on in the saturation region and turn off in the subthreshold region. Insensitive to the slope of the characteristics.
  • the gain of the analog amplification circuit largely depends on the slope of the saturation characteristic of the field effect transistor Q.
  • the saturation characteristic of the field effect transistor Q corresponds to that of the analog amplification circuit. It has a big influence. Therefore, in the field effect transistor Q used in the analog amplifier circuit, it is important to improve the saturation characteristic of the field effect transistor Q from the viewpoint of improving the characteristic represented by the gain of the analog amplifier circuit.
  • FIG. 4 shows the saturation characteristics of the field effect transistor when the field effect transistor having a long gate length L1 of the gate electrode GE is formed on the thick semiconductor layer SL of thickness T1 formed on the buried insulating layer BOX. It is a figure explaining the mechanism which becomes difficult to produce degradation of. On the left side of FIG.
  • the SOI substrate is composed of a supporting substrate SUB, a buried insulating layer BOX formed on the supporting substrate SUB, and a semiconductor layer (silicon layer, SOI layer) SL formed on the buried insulating layer BOX. It is done.
  • the semiconductor layer SL of the SOI substrate the source region SR of the field effect transistor and the drain region DR of the field effect transistor are formed separately.
  • a semiconductor region sandwiched between the source region SR and the drain region DR serves as a channel formation region CH, and the gate insulating film GOX of the field effect transistor is formed over the channel formation region CH.
  • the gate electrode GE of the field effect transistor is formed over the gate insulating film GOX.
  • the gate length L1 is the length of the gate electrode GE along the direction from one of the source region SR and the drain region DR to the other as shown in FIG.
  • potential barrier V1 is also generated between source region SR and channel formation region CH at the time of off operation of the field effect transistor. Is formed.
  • the gate length of the gate electrode GE of the field effect transistor becomes short due to the miniaturization of the field effect transistor, the short channel effect becomes apparent.
  • to miniaturize the field effect transistor means to reduce the drive voltage (drain voltage and gate voltage) of the field effect transistor by the scaling law.
  • the gate length of the gate electrode GE is shortened, short channel effects become apparent. Therefore, even if the drive voltage (drain voltage or gate voltage) is lowered based on the scaling law, miniaturization is achieved. It becomes difficult to improve the saturation characteristics of the field effect transistor. That is, in a miniaturized field-effect transistor with a short gate length, it is necessary to devise the thickness of the semiconductor layer constituting the SOI substrate in order to improve the saturation characteristic of the field-effect transistor. Below, this point is explained.
  • FIG. 5 shows the saturation when the field effect transistor in which the gate length L2 of the gate electrode GE is short is formed on the thick semiconductor layer SL having a thickness T2 (for example, larger than 25 nm) formed on the buried insulating layer BOX. It is a figure explaining the mechanism which degradation of a characteristic produces.
  • a schematic cross-sectional structure of the field effect transistor is shown.
  • the SOI substrate is composed of a supporting substrate SUB, a buried insulating layer BOX formed on the supporting substrate SUB, and a semiconductor layer (silicon layer, SOI layer) SL formed on the buried insulating layer BOX. It is done.
  • the source region SR of the field effect transistor and the drain region DR of the field effect transistor are formed separately.
  • a semiconductor region sandwiched between the source region SR and the drain region DR serves as a channel formation region CH, and the gate insulating film GOX of the field effect transistor is formed over the channel formation region CH.
  • the gate electrode GE of the field effect transistor is formed over the gate insulating film GOX.
  • the gate length L2 is the length of the gate electrode GE along the direction from one of the source region SR and the drain region DR to the other.
  • potential barrier V1 is also generated between source region SR and channel formation region CH at the time of off operation of the field effect transistor. It is formed.
  • the potential barrier V1 formed between CH and CH is substantially maintained, and that electrons do not flow from the source region SR toward the drain region DR via the channel formation region CH.
  • the driving voltage the drain voltage and the gate voltage
  • the source is caused by the short gate length L2 of the gate electrode GE.
  • the potential barrier formed between the region SR and the channel formation region CH is susceptible to the drain voltage applied to the drain region DR.
  • the field effect transistor in which the gate length L2 of the gate electrode GE is short is formed on the thick semiconductor layer SL having a thickness T2 formed on the buried insulating layer BOX, at a position away from the gate electrode GE
  • the potential barrier formed between the source region SR and the channel formation region CH becomes small as a result of being largely influenced by the drain voltage (short channel effect).
  • the electron potential in the back surface region of the channel formation region CH in contact with the buried insulating layer BOX is higher than the potential of the electrons in the surface region of the channel formation region CH in contact with the gate insulating film GOX. The potential is lowered.
  • FIG. 6 is a view for explaining the mechanism by which the deterioration of the saturation characteristic is less likely to occur when the field effect transistor is formed on the thin semiconductor layer SL of thickness T3 ( ⁇ T2) formed on the buried insulating layer BOX. .
  • T3 thickness
  • FIG. 6 On the left side of FIG. 6, a schematic cross-sectional structure of the field effect transistor is shown.
  • the SOI substrate is composed of a supporting substrate SUB, a buried insulating layer BOX formed on the supporting substrate SUB, and a semiconductor layer (silicon layer, SOI layer) SL formed on the buried insulating layer BOX. It is done.
  • the source region SR of the field effect transistor and the drain region DR of the field effect transistor are formed separately.
  • a semiconductor region sandwiched between the source region SR and the drain region DR serves as a channel formation region CH, and the gate insulating film GOX of the field effect transistor is formed over the channel formation region CH.
  • the gate electrode GE of the field effect transistor is formed over the gate insulating film GOX.
  • a potential barrier V1 is formed between the source region SR and the channel formation region CH when the field effect transistor is off. It is formed.
  • the semiconductor layer SL of the SOI substrate is thin, so that the junction depth of the drain region DR is shallow. Become.
  • the amount of charge in the channel formation region CH controlled by the gate electrode GE becomes large (charge sharing model).
  • the controllability by the gate electrode GE is improved.
  • the controllability by the gate electrode GE is improved even at a position away from the gate electrode GE, and thus the drain voltage applied to the drain region DR The influence of (Vds) is reduced. Therefore, when a field effect transistor is formed on a thin semiconductor layer formed on buried insulating layer BOX, it is formed between source region SR and channel formation region CH at a position away from gate electrode GE. Potential barriers are maintained. As a result, when a field effect transistor having a short gate length L2 of the gate electrode GE is formed on the thin semiconductor layer SL formed on the buried insulating layer BOX, in the saturation region of the field effect transistor, the gate electrode GE is formed. Since the increase of the drain current at the position away from is suppressed, the saturation characteristic of the field effect transistor is improved.
  • the short channel is realized. It is possible to suppress the occurrence of the deterioration of the saturation characteristic of the field effect transistor due to the manifestation of the effect. That is, by devising the thickness of the semiconductor layer constituting the SOI substrate, it is possible to suppress the manifestation of the short channel effect while achieving the miniaturization of the field effect transistor (the reduction of the drive voltage).
  • FIG. 7 is a schematic cross-sectional view showing the device structure of the semiconductor device in the first embodiment.
  • an n-channel field effect transistor formation region R1 and a p-channel field effect transistor formation region R2 are illustrated, and an n-channel field effect transistor Qn is formed in the n-channel field effect transistor formation region R1.
  • the p-channel field effect transistor Qp is formed in the p-channel field effect transistor formation region R2.
  • an element isolation region STI is formed in an SOI substrate including a support substrate SUB, a buried insulating layer BOX, and a semiconductor layer SL, and formation of an n-channel field effect transistor partitioned by the element isolation region STI.
  • An n-channel field effect transistor Qn is formed in the region R1.
  • the n-channel type field effect transistor Qn is formed in the semiconductor region SL of the SOI substrate and the source region SR1 formed in the semiconductor layer SL of the SOI substrate, and is formed at a distance from the source region SR1. And a region DR1.
  • the source region SR1 is formed of an n-type semiconductor region NR and an extension region EX1 which is an n-type semiconductor region having a smaller impurity concentration than the n-type semiconductor region NR.
  • the drain region DR1 is composed of an n-type semiconductor region NR and an extension region EX1 which is an n-type semiconductor region having a smaller impurity concentration than the n-type semiconductor region NR.
  • the n-channel field effect transistor Qn includes a channel formation region CH1 sandwiched between the source region SR1 and the drain region DR1, a gate insulation film GOX1 formed on the channel formation region CH1, and a gate insulation film GOX1. And the formed gate electrode GE1.
  • sidewall spacers SW are formed on the sidewalls on both sides of the gate electrode GE1.
  • a silicide film is formed on the surface of the gate electrode GE1, the surface of the source region SR1, and the surface of the drain region DR1.
  • An interlayer insulating film IL is formed so as to cover the n-channel field effect transistor Qn configured as described above, and a plurality of plugs PLG penetrating the interlayer insulating film IL are formed.
  • One of the plurality of plugs PLG is electrically connected to the source region SR, and the other one of the plurality of plugs PLG is electrically connected to the drain region DR.
  • a p-type well PWL formed of a p-type semiconductor region is formed in the support substrate SUB located under the semiconductor layer SL of the SOI substrate in which the n-channel field effect transistor Qn is formed.
  • An n-type well NWL formed of an n-type semiconductor region is formed in the support substrate SUB of the SOI substrate so as to include PWL.
  • the buried insulating layer BOX and the semiconductor layer SL formed on a part of the p-type well PWL are removed.
  • a portion of the p-type well PWL is electrically connected to the plug PLG penetrating the interlayer insulating film IL formed on the support substrate SUB, and a silicide film is formed on the surface of a portion of the p-type well PWL. Is formed.
  • an element isolation region STI is formed in an SOI substrate including a support substrate SUB, a buried insulating layer BOX, and a semiconductor layer SL, and a p-channel field effect transistor formed by the element isolation region STI is formed.
  • the p-channel field effect transistor Qp is formed in the region R2.
  • the p-channel field effect transistor Qp is formed in the source region SR2 formed in the semiconductor layer SL of the SOI substrate and in the semiconductor layer SL of the SOI substrate, and a drain formed apart from the source region SR2. And a region DR2.
  • the source region SR2 is composed of a p-type semiconductor region PR and an extension region EX2 which is a p-type semiconductor region having a smaller impurity concentration than the p-type semiconductor region PR.
  • the drain region DR2 is composed of a p-type semiconductor region PR and an extension region EX2 which is a p-type semiconductor region having a smaller impurity concentration than the p-type semiconductor region PR.
  • the p-channel field effect transistor Qp is formed on the channel formation region CH2 sandwiched between the source region SR2 and the drain region DR2, the gate insulation film GOX2 formed on the channel formation region CH2, and the gate insulation film GOX2. And the formed gate electrode GE2.
  • sidewall spacers SW are formed on the sidewalls on both sides of the gate electrode GE2.
  • a silicide film is formed on the surface of the gate electrode GE2, the surface of the source region SR2, and the surface of the drain region DR2.
  • An interlayer insulating film IL is formed so as to cover the p-channel field effect transistor Qp configured as described above, and a plurality of plugs PLG penetrating the interlayer insulating film IL are formed.
  • One of the plurality of plugs PLG is electrically connected to the source region SR2, and the other one of the plurality of plugs PLG is electrically connected to the drain region DR2.
  • an n-type well NWL formed of an n-type semiconductor region is formed in the support substrate SUB located under the semiconductor layer SL of the SOI substrate in which the p-channel field effect transistor Qp is formed.
  • the buried insulating layer BOX and the semiconductor layer SL formed on a part of the n-type well NWL are removed.
  • a portion of n-type well NWL is electrically connected to plug PLG penetrating through interlayer insulating film IL formed on support substrate SUB, and a silicide film is formed on the surface of a portion of n-type well NWL. Is formed.
  • the n-channel field effect transistor Qn in the first embodiment is formed in the n-channel field effect transistor formation region R1 of the SOI substrate, and the p-channel field effect transistor formation region of the SOI substrate
  • the p-channel field effect transistor Qp in the first embodiment is formed in R2.
  • the n-channel type field effect transistor Qn including the gate insulating film GOX1, the gate electrode GE1, the channel forming region CH1, the source region SR1, and the drain region DR1 is a component of an analog circuit.
  • This analog circuit includes at least one or more n-channel field effect transistors Qn, and the thickness of the semiconductor layer SL of the SOI substrate is 2 nm or more and 24 nm or less.
  • the gate length of the gate electrode GE1 is 100 nm or less.
  • the absolute value of the difference between the potential applied to the source region SR1 of the n-channel field effect transistor Qn and the potential applied to the drain region DR1 is 0.4 V or more and 1.2 V or less.
  • the condition of the lower limit of 0.4 V or more is determined from the condition of using the field effect transistor in the saturation region, while the condition of the upper limit of 1.2 V or less results in punch-through of the field effect transistor. It is determined from the condition that does not cause.
  • the impurity concentration of the conductive impurity in the channel formation region CH1 of the n-channel field effect transistor Qn is higher than 1 ⁇ 10 17 / cm 3 and not higher than 1 ⁇ 10 18 / cm 3 .
  • the thickness of the semiconductor layer SL of the SOI substrate is, for example, 8 nm or more and 12 nm or less.
  • the gate length of the gate electrode GE1 is 150 nm or less.
  • the absolute value of the difference between the potential applied to the source region SR1 of the n-channel field effect transistor Qn and the potential applied to the drain region DR1 is 0.4 V or more and 1.6 V or less.
  • the condition of the lower limit of 0.4 V or more is determined from the condition of using the field effect transistor in the saturation region, while the condition of the upper limit of 1.6 V or less results in punch-through of the field effect transistor. It is determined from the condition that does not cause.
  • the impurity concentration of the conductive impurity in the channel formation region CH1 of the n-channel field effect transistor Qn is 1 ⁇ 10 17 / cm 3 or less.
  • ap channel type field effect transistor Qp including the gate insulating film GOX2, the gate electrode GE2, the channel forming region CH2, the source region SR2, and the drain region DR2 is also a component of the analog circuit.
  • This analog circuit includes at least one or more p-channel field effect transistors Qp, and the thickness of the semiconductor layer SL of the SOI substrate is 2 nm or more and 24 nm or less.
  • the gate length of the gate electrode GE2 is 100 nm or less.
  • the absolute value of the difference between the potential applied to the source region SR2 of the p-channel field effect transistor Qp and the potential applied to the drain region DR2 is 0.4 V or more and 1.2 V or less.
  • the condition of the lower limit of 0.4 V or more is determined from the condition of using the field effect transistor in the saturation region, while the condition of the upper limit of 1.2 V or less results in punch-through of the field effect transistor. It is determined from the condition that does not cause.
  • the impurity concentration of the conductive impurity in the channel formation region CH2 of the p-channel field effect transistor Qp is higher than 1 ⁇ 10 17 / cm 3 and not higher than 1 ⁇ 10 18 / cm 3 .
  • the thickness of the semiconductor layer SL of the SOI substrate is, for example, 8 nm or more and 12 nm or less.
  • the gate length of the gate electrode GE2 is 150 nm or less.
  • the absolute value of the difference between the potential applied to the source region SR2 of the p-channel field effect transistor Qp and the potential applied to the drain region DR2 is 0.4 V or more and 1.6 V or less.
  • the condition of the lower limit of 0.4 V or more is determined from the condition of using the field effect transistor in the saturation region, while the condition of the upper limit of 1.6 V or less results in punch-through of the field effect transistor. It is determined from the condition that does not cause.
  • the impurity concentration of the conductive impurity in the channel formation region CH2 of the p-channel field effect transistor Qp is 1 ⁇ 10 17 / cm 3 or less.
  • the thickness of the buried insulating layer BOX of the SOI substrate is 10 nm or more and 20 nm or less, and is located below the channel formation region CH1 of the n-channel field effect transistor Qn in the support substrate SUB of the SOI substrate. Also, a p-type well PWL in contact with the buried insulating layer BOX is formed. On the other hand, in the support substrate SUB of the SOI substrate, there is also formed an n-type well NWL located below the channel formation region CH2 of the p-channel field effect transistor Qp and in contact with the buried insulating layer BOX.
  • the first feature point in the first embodiment is that the thickness of the semiconductor layer of the SOI substrate on which the field effect transistor constituting the analog circuit is formed is 2 nm or more and 24 nm or less. Thereby, the saturation characteristic of the field effect transistor which constitutes an analog circuit can be improved. As a result, circuit characteristics represented by the gain of the analog circuit can be improved.
  • FIG. 8A shows the drain when a gate voltage in the range of 0.5 V to 1.2 V is applied to the gate electrode when the field effect transistor having a gate length of 60 nm is formed on the bulk substrate. It is a graph which shows the relationship between voltage (Vds) and drain current (Ids).
  • FIG. 8B when a field effect transistor having a gate length of 60 nm is formed on an SOI substrate having a semiconductor layer (silicon layer) having a thickness of 24 nm, 0.5 V to 1 V is applied to the gate electrode.
  • 7 is a graph showing the relationship between drain voltage (Vds) and drain current (Ids) when a gate voltage in the range of 2 V is applied. Further, in FIG.
  • FIG. 8C when a field effect transistor having a gate length of 60 nm is formed on an SOI substrate having a thickness of 12 nm of a semiconductor layer (silicon layer), 0.5 V to 1 V is applied to the gate electrode.
  • 7 is a graph showing the relationship between drain voltage (Vds) and drain current (Ids) when a gate voltage in the range of 2 V is applied.
  • the saturation characteristics of the field effect transistor are most excellent in the graph showing the relationship between the drain voltage and the drain current shown in FIG. 8C. .
  • the saturation characteristics of the field effect transistor in the graph showing the relationship between the drain voltage and the drain current shown in FIG. 8B are the field effect in the graph showing the relationship between the drain voltage and the drain current shown in FIG. It is inferior to the saturation characteristic of the transistor.
  • the saturation characteristics of the field effect transistor in the graph showing the relationship between the drain voltage and the drain current shown in FIG. 8B are the same as the drain voltage shown in FIG.
  • the saturation characteristics of the field effect transistor is more pronounced when forming the miniaturized field effect transistor in which the short channel effect is realized on the SOI substrate rather than on the bulk substrate.
  • the idea is that the saturation characteristics of the field effect transistor can be improved more easily as it is formed on the SOI substrate which is easy to improve and the semiconductor layer (silicon layer) of the SOI substrate is thinner.
  • the field effect transistor constituting the analog circuit is formed on the thin SOI substrate of the semiconductor layer (silicon layer). Is useful.
  • the basic idea in the first embodiment is, for example, that the thickness of the semiconductor layer of the SOI substrate on which the field effect transistor forming the analog circuit is formed is 2 nm or more and 24 nm or less. This can be realized by adopting the first feature point in 1.
  • the first feature point in the first embodiment is that the saturation characteristics of the field effect transistor can be obtained by applying the present invention to a field effect transistor in which the gate length of the gate electrode is miniaturized to 150 nm or less and the short channel effect easily appears. Can be effectively suppressed.
  • the SOI substrate has a substrate structure suitable for achieving low voltage driving (drain voltage and gate voltage) of the field effect transistor as compared to a bulk substrate
  • the field effect transistor is formed on the SOI substrate
  • the field effect transistor can be miniaturized. That is, when the field effect transistor constituting the analog circuit is formed on the SOI substrate, low voltage driving of the field effect transistor can be realized, and therefore, the field effect transistor can be miniaturized. At this time, when the field effect transistor is miniaturized, it is considered that the short channel effect tends to be obvious and the saturation characteristic which largely affects the circuit characteristic of the analog circuit is easily deteriorated.
  • the first feature point in the first embodiment it is possible to improve the saturation characteristics of the field effect transistor even in the miniaturized field effect transistor in which the short channel effect is likely to be manifested.
  • Can As described above, according to the first feature point in the first embodiment, it is possible to improve the saturation characteristic which greatly affects the circuit characteristic of the analog circuit while achieving the miniaturization of the field effect transistor constituting the analog circuit. Can.
  • FIG. 9A is a circuit diagram in which a specific voltage to be applied to the analog amplification circuit is entered when the analog amplification circuit described in FIG. 1 is driven at a low voltage.
  • 1.6 V is applied to the power supply terminal VDD
  • 0 V is applied to the ground terminal VSS.
  • 0.6 V is applied to the gate electrode G (input terminal IT) of the field effect transistor Q
  • 0 is applied to the drain D (output terminal OT) of the field effect transistor Q. .8 V is applied.
  • the field effect transistor is formed on the SOI substrate, and the low voltage drive of the field effect transistor becomes possible. Therefore, even when the voltage is low as shown in FIG.
  • the amplifier circuit can be operated.
  • FIG. 9A when 0.6 V (bias reference point) is applied to the gate electrode of the field effect transistor Q, and an input voltage (input signal voltage) is applied, the field effect transistor Q An output voltage (output signal voltage) of, for example, 0.8 V ⁇ 0.5 V is output from the output terminal OT connected to the drain D, with 0.8 V as a bias reference point.
  • a field effect transistor having current-voltage characteristics shown in FIG. 8C is adopted as the field effect transistor Q
  • a drain voltage of up to 1.6 V is applied to the field effect transistor shown in FIG. 9 (a), it does not cause punch-through within the range of conditions shown in FIG. 9 (a), and it has good saturation characteristics. It can be seen that at low voltage as shown in the above, the field effect transistor is suitable for operating the analog amplifier circuit.
  • FIG. 9 (b) is a graph showing the relationship between the gate length of the gate electrode of the field effect transistor and the gain in the analog amplifier circuit shown in FIG. 9 (a).
  • the broken line graph (1) shown in FIG. 9 (b) shows the gate length in the case where the analog amplification circuit shown in FIG. 9 (a) is configured using a field effect transistor formed on the bulk substrate. It is a graph which shows a relation with gain.
  • the broken line graph (2) shown in FIG. 9 (b) corresponds to FIG. 9 (a) using a field effect transistor formed on an SOI substrate in which the thickness of the semiconductor layer (silicon layer) is 24 nm.
  • a line graph (3) shown in FIG. 9 (b) corresponds to FIG. 9 (a) using a field effect transistor formed on an SOI substrate in which the thickness of the semiconductor layer (silicon layer) is 12 nm. It is a graph which shows the relationship of the gate length and gain in the case of comprising the analog amplification circuit to show.
  • the thickness of the semiconductor layer (silicon layer) is 24 nm with respect to a line graph (1) showing the relationship between the gate length and the gain in the case of using the field effect transistor formed on the bulk substrate.
  • the change in the gain when the gate length is changed is extremely large. Furthermore, in contrast to the line graph (1) showing the relationship between the gate length and the gain in the case of using a field effect transistor formed on a bulk substrate, an SOI substrate having a semiconductor layer (silicon layer) thickness of 12 nm is used. In the line graph (3) showing the relationship between the gate length and the gain when the formed field effect transistor is used, the change in the gain when the gate length is changed is extremely large.
  • the saturation characteristic of the field effect transistor formed on the SOI substrate having a thickness of 12 nm) is excellent. Therefore, according to the result shown in FIG. 9B, when the gate length of the gate electrode is made the same, the SOI substrate in which the thickness of the semiconductor layer is 24 nm is used rather than using the field effect transistor formed on the bulk substrate.
  • the gain of the analog amplification circuit can be increased by using the formed field effect transistor or the field effect transistor formed on an SOI substrate having a semiconductor layer thickness of 12 nm.
  • the thickness of a field effect transistor formed on an SOI substrate having a semiconductor layer (silicon layer) thickness of 24 nm, or the thickness of a semiconductor layer (silicon layer) can improve the circuit characteristics of the analog amplifier circuit. From this, it is understood that when the thickness of the semiconductor layer of the SOI substrate on which the field effect transistor constituting the analog amplification circuit is formed is 24 nm or less, the circuit characteristics of the analog amplification circuit can be improved.
  • the thickness of the semiconductor layer of the SOI substrate on which the field effect transistor constituting the analog amplification circuit is formed is less than 2 nm, it becomes difficult to manufacture the SOI substrate itself. From this, when the thickness of the semiconductor layer of the SOI substrate on which the field effect transistor constituting the analog amplification circuit is formed is 2 nm or more and 24 nm or less, the manufacturing easiness of the SOI substrate itself is ensured. It is possible to obtain the remarkable effect that the circuit characteristics of the analog amplification circuit can be improved.
  • the gate electrode It is necessary to make the gate length of 400 nm (0.4 .mu.m).
  • the gate length of the gate electrode should be 90 nm (0.09 ⁇ m).
  • the planar size of the field effect transistor in the case of forming an analog amplifier circuit using the field effect transistor formed on the SOI substrate having a thickness of 12 nm of the semiconductor layer (silicon layer) is formed on the bulk substrate.
  • the field effect transistor can be used to reduce the planar size of the field effect transistor to about 5% when configuring an analog amplifier circuit.
  • the field effect transistor according to the first embodiment is used to constitute the analog amplification circuit shown in FIG. 9A, the area occupied by the field effect transistor can be significantly reduced.
  • the semiconductor device including the analog amplification circuit can be miniaturized.
  • the circuit characteristics of the amplifier circuit can be improved.
  • the analog amplification circuit composed of the field effect transistor formed on the bulk substrate of the gain of the analog amplification circuit composed of the field effect transistor according to the first embodiment When making the gain equal to that of the circuit, the semiconductor device including the analog amplifier circuit can be miniaturized. Note that if miniaturization of the semiconductor device can be realized, current for driving the circuit can be reduced, so that low consumption electrification of the semiconductor device can be achieved.
  • FIG. 10A when the analog amplifier circuit described in FIG. 1 is driven at a higher voltage than the operation condition of FIG. 9A, a specific voltage to be applied to the analog amplifier circuit is entered. It is a circuit diagram. In FIG. 10A, 3.0 V is applied to the power supply terminal VDD, and 0 V is applied to the ground terminal VSS. Further, in FIG. 10A, 1.1 V is applied to the gate electrode G (input terminal IT) of the field effect transistor Q, and 1 is applied to the drain D (output terminal OT) of the field effect transistor Q. .5 V is applied.
  • FIG. 10A when an input voltage (input signal voltage) is applied in a state where 1.1 V (bias reference point) is applied to the gate electrode of the field effect transistor Q, the field effect transistor Q An output voltage (output signal voltage) of, for example, 1.5 V ⁇ 1.0 V is output from the output terminal OT connected to the drain D, with 1.5 V as a bias reference point.
  • a field effect transistor having current-voltage characteristics shown in FIG. 8C is adopted as the field effect transistor Q, a drain voltage of up to 1.6 V is applied to the field effect transistor shown in FIG. If the drain voltage is higher than that, punch-through will occur.
  • FIG. 10 (b) is a graph showing the relationship between the gate length of the gate electrode of the field effect transistor and the gain in the analog amplification circuit shown in FIG. 10 (a).
  • the broken line graph (1) shown in FIG. 10 (b) shows the gate length in the case where the analog amplification circuit shown in FIG. 10 (a) is configured using the field effect transistor formed on the bulk substrate. It is a graph which shows a relation with gain.
  • the broken line graph (2) shown in FIG. 10 (b) corresponds to FIG. 10 (a) using a field effect transistor formed on an SOI substrate in which the thickness of the semiconductor layer (silicon layer) is 24 nm.
  • FIG. 10 (b) It is a graph which shows the relationship of the gate length and gain in the case of comprising the analog amplification circuit to show.
  • the line graph (3) shown in FIG. 10 (b) corresponds to FIG. 10 (a) using a field effect transistor formed on an SOI substrate in which the thickness of the semiconductor layer (silicon layer) is 12 nm. It is a graph which shows the relationship of the gate length and gain in the case of comprising the analog amplification circuit to show.
  • the thickness of the semiconductor layer (silicon layer) is 24 nm with respect to a line graph (1) showing the relationship between the gate length and the gain when the field effect transistor formed on the bulk substrate is used.
  • the line graph (2) showing the relationship between the gate length and the gain when using the field effect transistor formed on the SOI substrate is the same as in FIG. 9 (b). This is because the drain voltage is 1.0 V in the field effect transistor formed on the SOI substrate in which the thickness of the semiconductor layer (silicon layer) is 24 nm, as shown in the region surrounded by the broken line in FIG. The punch-through occurs, and the resistance (rds) between the source region and the drain region decreases.
  • the gain of the analog amplification circuit is expressed by "rds” x "gm", so punch-through When the resistance (rds) between the source region and the drain region is lowered due to the occurrence of the noise, the gain of the analog amplification circuit is lowered.
  • the line graph (1) showing the relationship between the gate length and the gain when using a field effect transistor formed on a bulk substrate
  • the SOI substrate in which the thickness of the semiconductor layer (silicon layer) is 12 nm.
  • the line graph (3) showing the relationship between the gate length and the gain when the formed field effect transistor is used the change in the gain when the gate length is changed is extremely large.
  • this is an SOI substrate in which the semiconductor layer (silicon layer) has a thickness of 12 nm over the wide range of the drain voltage than the saturation characteristics of the field effect transistor formed on the bulk substrate.
  • the thickness of the semiconductor layer of the SOI substrate on which the field effect transistor constituting the analog amplifier circuit is formed be 12 nm or less .
  • the resistance (rds) between the source region and the drain region becomes too high when the thickness of the semiconductor layer of the SOI substrate is less than 8 nm, the SOI in which the field effect transistor constituting the analog amplifier circuit is formed
  • the thickness of the semiconductor layer of the substrate is preferably 8 nm or more.
  • the thickness of the semiconductor layer of the SOI substrate on which the field effect transistor constituting the analog amplifier circuit is formed is 8 nm It is desirable that the thickness be 12 nm or less.
  • the impurity concentration of the conductive impurity in the channel formation region of the field effect transistor formed on the SOI substrate is 1 ⁇ 10 18 / cm 3 or less. Desirably, it is 3 ⁇ 10 17 / cm 3 , more desirably, 1 ⁇ 10 17 / cm 3 or less.
  • the second feature point in the first embodiment is, for example, the impurity concentration of the p-type impurity (such as boron) contained in the channel forming region CH1 of the n-channel type field effect transistor Qn in FIG. And 1 ⁇ 10 18 / cm 3 or less, preferably 1 ⁇ 10 17 / cm 3 or less.
  • the impurity concentration of the n-type impurity (phosphorus or arsenic) contained in the channel formation region CH2 of the p-channel field effect transistor Qp is And 1 ⁇ 10 18 / cm 3 or less, preferably 1 ⁇ 10 17 / cm 3 or less.
  • the analog circuit includes a plurality of n-channel field effect transistors Qn
  • variation in the impurity concentration of the p-type impurity included in the channel formation region CH1 among the plurality of n-channel field effect transistors Qn. can be reduced.
  • a differential amplifier may be included as a component of the analog circuit, and the differential amplifier is configured to include a plurality of n-channel field effect transistors Qn having the same characteristics as each other.
  • FIG. 11 is a diagram schematically showing the function and circuit configuration of the differential amplifier.
  • the differential amplifier has an input terminal "A” and an input terminal "B", and the input signal input to the input terminal "A” is larger than the input signal input to the input terminal “B”.
  • the output terminal “OUT” outputs “1” to the output terminal, and in other cases, it has a function of outputting “0” from the output terminal “OUT”.
  • the differential amplifier having such a function is composed of a bias unit, a differential amplification unit, an amplification unit, and an output unit.
  • the gate electrode of the n-channel field effect transistor Q1 is connected to the input terminal "A"
  • the gate electrode of the n-channel field effect transistor Q2 is connected to the input terminal "B” It is done.
  • the n-channel field effect transistor Q1 and the n-channel field effect transistor Q2 are required to have the same characteristics. That is, it is desirable that the threshold voltage of the n-channel field effect transistor Q1 and the threshold voltage of the n-channel field effect transistor Q2 be the same. Because, when the input signal input to the input terminal “A” and the input signal input to the input terminal “B” are equal, it is necessary to output “0” from the output terminal “OUT”. is there.
  • the threshold voltage of the n-channel field effect transistor Q1 and the threshold voltage of the n-channel field effect transistor Q2 are different, the input signal input to the input terminal "A" and the input terminal “B” In spite of the fact that the input signal input to “1” is equal, malfunction may occur due to variations in threshold voltage. Then, for example, in order to equalize the threshold voltage of the n-channel field effect transistor Q1 and the threshold voltage of the n-channel field effect transistor Q2, the channel formation region of the n-channel field effect transistor Q1 is It is necessary to equalize the impurity concentration of the contained p-type impurity and the impurity concentration of the p-type impurity contained in the channel formation region of the n-channel field effect transistor Q2.
  • the impurity concentration of the p-type impurity contained in the channel formation region of the n-channel field effect transistor Q1 is set to 1 ⁇ 10 18 / cm 3 or less, preferably 1 ⁇ 10 10. It is less than 17 / cm 3 .
  • the impurity concentration of the p-type impurity contained in the channel formation region of the n-channel field effect transistor Q1 is 1 ⁇ 10 18 / cm 3 or less, preferably 1 ⁇ . It is less than 10 17 / cm 3 .
  • the impurity concentration of the p-type impurity can be reduced.
  • the variation in the threshold voltage of the n-channel field effect transistor Q1 and the threshold voltage of the n-channel field effect transistor Q2 is reduced. This can improve the operational reliability of the differential amplifier.
  • the impurity concentration of the conductive impurity in the channel formation region of the field effect transistor formed on the SOI substrate is 1 ⁇ 10 18 / cm 3 or less, preferably 1 ⁇ 10 17 / cm 3 or less. If the second feature point in the first embodiment is adopted, there arises a side effect that the threshold voltage of the field effect transistor is lowered. Such a decrease in the threshold voltage of the field effect transistor leads to an increase in subthread leakage current, which results in an increase in power consumption of the semiconductor device. Therefore, in order to suppress the increase in the subthreshold leakage current, it is necessary to suppress the decrease in the threshold voltage of the field effect transistor, and the threshold voltage of the field effect transistor formed on the SOI substrate is maintained.
  • the device which suppresses the side effect called the fall of the threshold voltage induced by employ
  • Measures to suppress side effects 1 The basic idea of measure 1 for suppressing the side effects is that the portion of the support substrate of the SOI substrate is located below the channel formation region of the field effect transistor formed on the SOI substrate and in contact with the buried insulating layer. The idea is to form a well region and apply a back gate voltage to this well region. Accordingly, the impurity concentration of the conductive impurity contained in the channel formation region of the field effect transistor is 1 ⁇ 10 18 / cm 3 or less, preferably 1 ⁇ 10 17 / cm 3 or less according to this embodiment. Even if the second feature point in 1 is adopted, the increase of the subthreshold leakage current of the field effect transistor can be suppressed by the back gate voltage applied to the well region.
  • the p-type well PWL is located below the channel formation region CH1 of the n-channel field effect transistor Q1 formed on the SOI substrate and in contact with the buried insulating layer BOX.
  • a back gate voltage consisting of a negative bias is applied to the p-type well PWL.
  • the potential of the channel forming region CH1 of the n-channel field effect transistor Q1 is pulled up by the back gate voltage, so that the increase of the subthreshold leakage current of the n-channel field effect transistor Q1 can be suppressed.
  • the back gate voltage can be applied from the time of non-operation of the n-channel field effect transistor Q1 to the time of operation.
  • the back gate voltage may be applied only during the non-operation time, and the back gate voltage may not be applied during the operation. As a result, it is possible to suppress the leak current when not in use, and to increase the drive current in a low threshold state during operation.
  • an n-type well NWL is formed in a portion located below the channel formation region CH2 of the p-channel field effect transistor Q2 formed on the SOI substrate and in contact with the buried insulating layer BOX. Then, a back gate voltage consisting of a positive bias is applied to the n-type well NWL.
  • a back gate voltage consisting of a positive bias is applied to the n-type well NWL.
  • the back gate voltage can be applied from the time of non-operation to the time of operation of the p-channel field effect transistor Q2.
  • the back gate voltage may be applied only during the non-operation time, and the back gate voltage may not be applied during the operation. As a result, it is possible to suppress the leak current when not in use, and to increase the drive current in a low threshold state during operation.
  • the SOTB technology is employed in which the thickness of the buried insulating layer BOX is 10 nm or more and 20 nm or less.
  • the basic idea of the countermeasure 2 for suppressing the side effect is the idea for suppressing the reduction of the threshold voltage of the field effect transistor using so-called "Fermi level pinning".
  • "Fermi level pinning" is a phenomenon shown below. For example, when focusing on an n-channel field effect transistor, an n-type polysilicon film is used for the gate electrode. At this time, when an element having a dielectric constant higher than that of a silicon oxide film such as hafnium or aluminum is added to the gate insulating film, for example, the Fermi level of the n-type polysilicon film is shifted.
  • the Fermi level of the n-type polysilicon film is located in the vicinity of the conduction band, but when hafnium or aluminum is added to the gate insulating film, the Fermi level of the n-type polysilicon film is the valence band Shift to the side. This means that the threshold voltage of the n-channel field effect transistor is increased.
  • the threshold voltage as designed can be secured, but when the above-mentioned "Fermi level pinning" occurs The threshold voltage of the n-channel field effect transistor deviates from the design value in the direction of becoming higher. Therefore, usually, an incentive to suppress "Fermi level pinning" works.
  • the inventor of the present invention focuses on the point that the threshold voltage of the n-channel type field effect transistor is raised when “fermi level pinning” is generated in order to change the idea, and the first embodiment described above
  • the side effect of lowering the threshold voltage caused by adopting the second feature point in the above is intentionally suppressed by causing “Fermi level pinning”. That is, as a countermeasure 2 for suppressing the side effect, in the first embodiment, for example, an element having a dielectric constant higher than that of a silicon oxide film represented by hafnium or aluminum is used for the gate insulating film of the n-channel field effect transistor. It is configured to include. As a result, according to the first embodiment, "Fermi level pinning" can be intentionally generated. As a result, the reduction in threshold voltage of the n-channel field effect transistor can be effectively suppressed.
  • a p-type polysilicon film is used for the gate electrode.
  • the Fermi level of the p-type polysilicon film is shifted ("Fermi level pinning").
  • the Fermi level of the p-type polysilicon film is usually located in the vicinity of the valence band, but when an element having a dielectric constant higher than that of the silicon oxide film is added to the gate insulating film, the p-type polysilicon film Fermi level shifts to the conduction band side. Therefore, even in the p-channel field effect transistor, as a result of which "Fermi level pinning" can be intentionally generated, the decrease in threshold voltage of the p-channel field effect transistor can be effectively suppressed.
  • the characteristics required for the field effect transistor constituting the analog circuit are different from the characteristics required for the field effect transistor constituting the digital circuit. Specifically, the field effect transistor constituting the analog circuit is required to have good saturation characteristics and high withstand voltage between the source and the drain and the withstand voltage of the gate insulating film. On the other hand, in the digital circuit, since switching of the field effect transistor constituting the digital circuit is frequently performed, high speed switching characteristics are required of the field effect transistor constituting the digital circuit. As described above, the required characteristics are different between the field effect transistor forming the analog circuit and the field effect transistor forming the digital circuit.
  • the device structure of the field effect transistor that constitutes the analog circuit and the device structure of the field effect transistor that constitutes the digital circuit are necessarily different.
  • the device structure of a field effect transistor that constitutes an analog circuit formed on the same SOI substrate and a field effect transistor that constitutes a digital circuit will be described below.
  • FIG. 12 is a cross-sectional view showing a device structure of a plurality of field effect transistors in the second embodiment.
  • an n-channel field effect transistor Qn1a constituting an analog circuit is formed in an analog circuit formation region ACR1, while an n-channel electric field constitutes a digital circuit in a digital circuit formation region DCR1.
  • An effect transistor Qn1 b is formed.
  • the analog circuit includes not only the n-channel field effect transistor Qn1a but also the p-channel field effect transistor as a component, and the digital circuit includes not only the n-channel field effect transistor Qn1b but also the p-channel electric field.
  • An effect transistor is also included as a component, but is omitted in FIG.
  • the thickness of the semiconductor layer (silicon layer) SL of the SOI substrate is 2 nm or more and 24 nm or less.
  • an n-channel type field effect transistor Qn1a is formed in the analog circuit formation region ACR1 of the SOI substrate.
  • the n-channel type field effect transistor Qn1a is formed in the source region SR1a formed in the semiconductor layer (silicon layer) SL of the SOI substrate and in the semiconductor layer (silicon layer) SL of the SOI substrate, and is formed apart from the source region SR1a And the drain region DR1a.
  • the source region SR1a is formed of an n-type semiconductor region NR1a and an extension region EX1a having an impurity concentration lower than that of the n-type semiconductor region NR1a.
  • the drain region DR1a also includes an n-type semiconductor region NR1a and an extension region EX1a having a lower impurity concentration than the n-type semiconductor region NR1a.
  • the n-channel field effect transistor Qn1a includes a channel forming region CH1a sandwiched between the source region SR1a and the drain region DR1a, a gate insulating film GOX1a formed on the channel forming region CH1a, and a gate insulating film GOX1a. And a gate electrode GE1a formed thereon.
  • sidewall spacers SW are formed on side walls on both sides of the gate electrode GE1a.
  • a p-type well PWL1a located below the channel formation region CH1a of the n-channel field effect transistor Qn1a and in contact with the buried insulating layer BOX is formed.
  • a back gate voltage composed of a negative bias can be applied to the p-type well PWL1a.
  • the n-channel field effect transistor Qn1a according to the second embodiment is formed in the analog circuit formation region ACR1 of the SOI substrate.
  • an n-channel type field effect transistor Qn1 b is formed in the digital circuit formation region DCR1 of the SOI substrate.
  • the n-channel type field effect transistor Qn1b is formed in a source region SR1b formed in a semiconductor layer (silicon layer) SL of the SOI substrate and in a semiconductor layer (silicon layer) SL of the SOI substrate, and is formed apart from the source region SR1b And the drain region DR1b.
  • the source region SR1b is composed of an n-type semiconductor region NR1b and an extension region EX1b having a lower impurity concentration than the n-type semiconductor region NR1b.
  • the drain region DR1b also includes an n-type semiconductor region NR1b and an extension region EX1b having a lower impurity concentration than the n-type semiconductor region NR1b.
  • the n-channel field effect transistor Qn1b includes a channel forming region CH1b sandwiched between the source region SR1b and the drain region DR1b, a gate insulating film GOX1b formed on the channel forming region CH1b, and a gate insulating film GOX1b.
  • a gate electrode GE1b formed thereon.
  • sidewall spacers SW are formed on side walls on both sides of the gate electrode GE1 b.
  • a p-type well PWL1b located below the channel formation region CH1b of the n-channel field effect transistor Qn1b and in contact with the buried insulating layer BOX is formed.
  • a back gate voltage composed of a negative bias can be applied to the p-type well PWL1b.
  • the n-channel field effect transistor Qn1b according to the second embodiment is formed in the digital circuit formation region DCR1 of the SOI substrate.
  • n-channel type field effect transistor Qn1a and the n-channel type field effect transistor Qn1b configured as described above are different in the device structure due to the difference in the characteristics required for each of the analog circuit and the digital circuit. Exists. Hereinafter, differences between the n-channel field effect transistor Qn1a and the n-channel field effect transistor Qn1b will be described.
  • the first difference is that the breakdown voltage between the source region SR1a and the drain region DR1a in the n-channel field effect transistor Qn1a is the same as that between the source region SR1b and the drain region DR1b in the n-channel field effect transistor Qn1b. It is larger than the withstand voltage. This is because analog circuits are required to have higher withstand voltage than digital circuits. Therefore, as shown in FIG. 12, in the second embodiment, the gate length of the gate electrode GE1a of the n-channel field effect transistor Qn1a is longer than the gate length of the gate electrode GE1b of the n-channel field effect transistor Qn1b.
  • the second difference is that the withstand voltage of the gate insulating film GOX1a in the n-channel field effect transistor Qn1a is larger than the withstand voltage of the gate insulating film GOX1b in the n-channel field effect transistor Qn1b.
  • the thickness of the gate insulating film GOX1a of the n-channel field effect transistor Qn1a is thicker than the thickness of the gate insulating film GOX1b of the n-channel field effect transistor Qn1b.
  • a third difference is that, for example, in the digital circuit, high-speed switching characteristics are required for the n-channel field effect transistor Qn1 b configuring the digital circuit. Therefore, the n-channel field effect transistor Qn1b constituting the digital circuit is required to have a large current drivability. Therefore, the threshold voltage of the n-channel field effect transistor Qn1b constituting the digital circuit needs to be lower than the threshold voltage of the n-channel field effect transistor Qn1a constituting the analog circuit.
  • a constituent material of a conductor film constituting gate electrode GE1a of n-channel field effect transistor Qn1a and a construction of a conductor film constituting gate electrode GE1b of n-channel field effect transistor Qn1b can be different from the material.
  • the work function of the gate electrode GE1a of the n-channel field effect transistor Qn1a and the work function of the gate electrode GE1b of the n-channel field effect transistor Qn1b can be made different.
  • an n-channel field effect transistor Qn1a constituting an analog circuit and an n-channel field effect transistor Qn1b constituting a digital circuit are formed on the same SOI substrate.
  • the semiconductor device according to the second embodiment in which the analog circuit and the digital circuit are mixedly mounted as described above can be applied to, for example, the configuration of an A / D converter including the analog circuit and the digital circuit.
  • the configuration of an A / D converter to which the semiconductor device in the second embodiment can be applied will be described below.
  • FIG. 13 is a circuit block diagram showing a circuit configuration of a successive approximation A / D converter.
  • the successive approximation type A / D converter comprises a sample and hold circuit for inputting an analog input voltage Vin based on a sampling clock, and a comparator for comparing an input voltage sampled and held by the sample and hold circuit with a reference voltage.
  • a successive approximation clock generation unit that generates a successive comparison clock based on the clock.
  • the successive approximation A / D converter has a successive approximation register (SAR), a DA converter, and an output register.
  • SAR successive approximation register
  • the successive approximation type A / D converter configured in this way is, for example, a first voltage (for example, FS / 2) generated by the DA converter and an input voltage “sampled and held by the sample and hold circuit”.
  • the comparator compares with Vin. When the input voltage> the first voltage (FS / 2), the most significant bit is set to “1”, and when the input voltage ⁇ the first voltage (FS / 2), the most significant bit is set to “0” .
  • the DA converter generates a voltage of a second voltage (FS / 2 + FS / 4), and the second voltage and the input voltage are compared in a comparison, and based on the comparison result, the lowermost digit is Determine the bits of By repeating such an operation, a digital output corresponding to the input voltage is output from the output register. In this way, the successive approximation A / D converter operates.
  • Such a successive approximation type A / D converter includes, for example, an analog circuit represented by a sample and hold circuit and a digital circuit represented by a successive approximation register (SAR). Therefore, the semiconductor device according to the second embodiment in which an analog circuit and a digital circuit are mixedly mounted can be applied to, for example, the configuration of a successive approximation A / D converter including an analog circuit and a digital circuit.
  • SAR successive approximation register
  • the impurity concentration of the conductive impurity in the channel formation region CH1a of the n-channel field effect transistor Qn1a formed on the SOI substrate is 1 ⁇ 10 18 / cm 3 or less.
  • the second feature point in the first embodiment which is 1 ⁇ 10 17 / cm 3 or less, is employed.
  • the impurity concentration of the conductive impurity in the channel formation region CH1b of the n-channel field effect transistor Qn1b formed on the SOI substrate is 1 ⁇ 10 18 / cm 3 or less.
  • the second feature point in the above-mentioned Embodiment 1 of 1 ⁇ 10 17 / cm 3 or less is adopted.
  • Countermeasure 1 to suppress side effects
  • the basic idea of Countermeasure 1 for suppressing side effects is the channel of a field effect transistor (n-channel field effect transistor Qn1a, n-channel field effect transistor Qn1b) formed on an SOI substrate among portions of a support substrate of an SOI substrate A p-type well (PWL1a, PWL1b) is formed below the formation region (CH1a, CH1b) and in contact with the buried insulating layer BOX, and a back gate voltage is applied to the p-type well (PWL1a, PWL1b). It is the idea of applying.
  • the impurity concentration of the conductive impurity contained in the channel formation region (CH1a, CH1b) of the field effect transistor is 1 ⁇ 10 18 / cm 3. Even if the second feature point of 1 ⁇ 10 17 / cm 3 or less is preferably adopted, the field-effect transistor (n-channel field-effect transistor is selected by the back gate voltage applied to the p-type well PWL). It is possible to suppress a decrease in threshold voltage of the Qn1a and the n-channel field effect transistor Qn1b).
  • the gate insulating film GOX1a of the n-channel type field effect transistor Qn1a constituting the analog circuit includes a material (High-k) material having a dielectric constant higher than that of the silicon oxide film.
  • the gate insulating film GOX1b of the n-channel field effect transistor Qn1b constituting the digital circuit can be formed of a silicon oxide film.
  • the threshold voltage of the n-channel field effect transistor Qn1a constituting the analog circuit can be made higher than the threshold voltage of the n-channel field effect transistor Qn1b constituting the digital circuit.
  • the gate insulating film GOX1b of the n-channel field effect transistor Qn1b constituting the digital circuit is also provided to reduce the subthreshold leakage current in the n-channel field effect transistor Qn1b constituting the digital circuit.
  • a material having a dielectric constant higher than that of a silicon oxide film can be included.
  • the content of “High-k material” in the gate insulating film GOX1a of the n-channel field effect transistor Qn1a configuring the analog circuit is the gate insulating film of the n-channel field effect transistor Qn1a configuring the digital circuit It is desirable to make it less than the "High-k material” content in GOX 1b. The reason will be described below.
  • analog circuits are more susceptible to noise than digital circuits.
  • low voltage driving is realized by forming a field effect transistor constituting an analog circuit on an SOI substrate. This means that the signal component in the analog circuit becomes smaller.
  • the S / N ratio (signal / noise ratio) decreases because noise components do not decrease even when low voltage driving is realized. Then, when the fixed charge formed in the gate insulating film is increased, the electrical noise component is further increased, and the S / N ratio is further decreased. Therefore, in the second embodiment, in order to suppress the decrease in the threshold voltage of the field effect transistor constituting the analog circuit, the gate is taken while taking measures against adding “High-k material” to the gate insulating film.
  • the “High-k material” added to the insulating film is minimized. From this, in the second embodiment, the content of “High-k material” in the gate insulating film of the field effect transistor forming the analog circuit is “high” in the gate insulating film of the field effect transistor forming the digital circuit. It is less than the "k material” content. As a result, in the field effect transistor constituting the analog circuit, it is possible to obtain the remarkable effect that the reduction of the threshold voltage can be suppressed while suppressing the reduction of the S / N ratio.
  • the embodiment includes the following modes.
  • a supporting substrate An insulating layer formed on the support substrate; A semiconductor layer formed on the insulating layer; A first source region formed in the semiconductor layer; A first drain region formed in the semiconductor layer and separated from the first source region; A first channel formation region sandwiched between the first source region and the first drain region; A first gate insulating film formed on the first channel formation region; A first gate electrode formed on the first gate insulating film; Have A first field effect transistor including the first gate insulating film, the first gate electrode, the first channel formation region, the first source region, and the first drain region is a first analog circuit.
  • the first analog circuit includes at least one or more of the first field effect transistors,
  • the thickness of the semiconductor layer is 2 nm or more and 24 nm or less.
  • a second source region formed in the semiconductor layer and spaced apart from the first source region and the first drain region;
  • a second drain region formed in the semiconductor layer and separated from the first source region, the first drain region, and the second source region;
  • a second gate insulating film formed on the second channel formation region and separated from the first gate insulating film;
  • a second gate electrode formed on the second gate insulating film and separated from the first gate electrode;
  • Have A second field effect transistor including the second gate insulating film, the second gate electrode, the second channel formation region, the second source region, and the second drain region is a first digital circuit.
  • the impurity concentration of the conductive impurity in the second channel formation region is 1 ⁇ 10 17 / cm 3 or less
  • the first gate insulating film includes a material having a dielectric constant higher than that of a silicon oxide film,
  • the semiconductor device, wherein the second gate insulating film is composed of a silicon oxide film.
  • the impurity concentration of the conductive impurity in the second channel formation region is 1 ⁇ 10 17 / cm 3 or less
  • the first gate insulating film includes a material having a dielectric constant higher than that of a silicon oxide film
  • the second gate insulating film includes a material having a dielectric constant higher than that of a silicon oxide film
  • the semiconductor device wherein a content of the material in the first gate insulating film is smaller than a content of the material in the second gate insulating film.
  • a supporting substrate An insulating layer formed on the support substrate; A semiconductor layer formed on the insulating layer; A first source region formed in the semiconductor layer; A first drain region formed in the semiconductor layer and separated from the first source region; A first channel formation region sandwiched between the first source region and the first drain region; A first gate insulating film formed on the first channel formation region; A first gate electrode formed on the first gate insulating film; A second source region formed in the semiconductor layer and spaced apart from the first source region and the first drain region; A second drain region formed in the semiconductor layer and separated from the first source region, the first drain region, and the second source region; A second channel formation region sandwiched between the second source region and the second drain region; A second gate insulating film formed on the second channel formation region and separated from the first gate insulating film; A second gate electrode formed on the second gate insulating film and separated from the first gate electrode; Have A first field effect transistor including the first gate insulating film, the first gate electrode, the first channel formation region, the first
  • a second field effect transistor including the second gate insulating film, the second gate electrode, the second channel formation region, the second source region, and the second drain region is an A / D converter.
  • the withstand voltage between the first source region and the first drain region in the first field effect transistor is equal to the withstand voltage between the second source region and the second drain region in the second field effect transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一実施の形態における半導体装置では、アナログ回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さを2nm以上、かつ、24nm以下とする。

Description

半導体装置
 本発明は、半導体装置に関し、例えば、SOI(Silicon On Insulator)基板上に形成された電界効果トランジスタを含む半導体装置に適用して有効な技術に関する。
 特開2009-135140号公報(特許文献1)には、SOI基板に形成された第1電界効果トランジスタを含むロジック回路の高速動作と、SOI基板に形成された第2電界効果トランジスタを含むメモリ回路の安定動作とを両立する技術が記載されている。
 特開2013-84766号公報(特許文献2)には、SOI領域に形成された第1電界効果トランジスタと、バルク領域に形成された第2電界効果トランジスタとが混在する半導体装置に関する技術が記載されている。
 特開2013-219181号公報(特許文献3)には、SOI領域に形成された第1電界効果トランジスタと、バルク領域に形成された第2電界効果トランジスタとが混在する半導体装置に関する技術が記載されている。
 特開2016-18936号公報(特許文献4)には、SOI基板に形成された電界効果トランジスタのゲート絶縁膜に高誘電率膜を使用する技術が記載されている。
 特開2012-29155号公報(特許文献5)には、SOI基板上にアナログ回路とデジタル回路を形成する技術が記載されている。
特開2009-135140号公報 特開2013-84766号公報 特開2013-219181号公報 特開2016-18936号公報 特開2012-29155号公報
 例えば、半導体装置の消費電力を低減するためには、半導体装置を構成する電界効果トランジスタの駆動電圧を低減することが有効である。ここで、電界効果トランジスタの駆動電圧を低減するためには、いわゆる「薄型BOX-SOI(SOTB:Silicon On Thin Buried oxide)技術」を使用することが有効であるとされている。一方、半導体装置には、デジタル回路やアナログ回路等が含まれている。そして、本発明者の検討の結果、特に、アナログ回路に「SOTB技術」を使用する場合、アナログ回路を構成する電界効果トランジスタの特性を改善するには、その構造や使い方等、様々な工夫が必要であることが明らかになった。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態における半導体装置では、アナログ回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さを2nm以上、かつ、24nm以下とする。
 一実施の形態によれば、半導体装置の特性を向上しながら、半導体装置の低消費電力化を図ることができる。
電界効果トランジスタと定電流源とを使用したアナログ増幅回路の一例を示す図である。 図1に示すアナログ増幅回路のゲイン(増幅率)が電界効果トランジスタの飽和特性に依存していることについて説明する図である。 図1に示すアナログ増幅回路のゲイン(増幅率)が電界効果トランジスタの飽和特性に依存していることについて説明する図である。 埋め込み絶縁層上に形成された厚さの厚い半導体層上に、ゲート電極のゲート長が長い電界効果トランジスタを形成した場合において、電界効果トランジスタの飽和特性の劣化が生じにくくなるメカニズムを説明する図である。 埋め込み絶縁層上に形成された厚さの厚い半導体層上に、ゲート電極のゲート長が短い電界効果トランジスタを形成した場合における飽和特性の劣化が生じるメカニズムを説明する図である。 埋め込み絶縁層上に形成された厚さの薄い半導体層上に電界効果トランジスタを形成した場合における飽和特性の劣化が生じにくくなるメカニズムを説明する図である。 実施の形態1における半導体装置のデバイス構造を示す模式的な断面図である。 (a)は、ゲート電極のゲート長が60nmの電界効果トランジスタをバルク基板に形成した場合におけるドレイン電圧とドレイン電流との関係を示すグラフであり、(b)は、半導体層の厚さが24nmのSOI基板に、ゲート電極のゲート長が60nmの電界効果トランジスタを形成した場合におけるドレイン電圧とドレイン電流との関係を示すグラフであり、(c)は、半導体層の厚さが12nmのSOI基板に、ゲート電極のゲート長が60nmの電界効果トランジスタを形成した場合におけるドレイン電圧とドレイン電流との関係を示すグラフである。 (a)は、図1で説明したアナログ増幅回路を低電圧駆動させる場合において、アナログ増幅回路に印加する具体的な電圧を記入した回路図であり、(b)は、電界効果トランジスタのゲート電極のゲート長と、図9(a)に示すアナログ増幅回路におけるゲインとの関係を示すグラフである。 (a)は、図1で説明したアナログ増幅回路を、図9(a)の動作条件よりも高電圧駆動させる場合において、アナログ増幅回路に印加する具体的な電圧を記入した回路図であり、(b)は、電界効果トランジスタのゲート電極のゲート長と、図10(a)に示すアナログ増幅回路におけるゲインとの関係を示すグラフである。 差動アンプの機能および回路構成を模式的に示す図である。 実施の形態2における複数の電界効果トランジスタのデバイス構造を示す断面図である。 逐次比較型A/Dコンバータの回路構成を示す回路ブロック図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 (実施の形態1)
 <SOI技術の有用性>
 半導体装置の製造コストを削減する観点から、一枚の半導体ウェハから取得される半導体チップの個数を多くすることが望まれており、一枚の半導体ウェハからの半導体チップの取得数を増加させるために、電界効果トランジスタの微細化が行なわれている。そして、電界効果トランジスタの微細化には、電界効果トランジスタの駆動電圧(ドレイン電圧とゲート電圧)の低減を実現できることが要求される。したがって、電界効果トランジスタの微細化は、電界効果トランジスタの駆動電圧の低減を通じて、半導体装置の低消費電力化を実現できることに繋がる。
 この点に関し、例えば、支持基板と、支持基板上に形成された埋め込み絶縁層と、埋め込み絶縁層上に形成された半導体層とからなるSOI基板上に電界効果トランジスタを形成する場合、バルク基板(半導体基板)上に電界効果トランジスタを形成する場合に比べて、電界効果を高めることができる。なぜなら、SOI基板上に形成された電界効果トランジスタでは、ドレインからの回り込み電界が埋め込み絶縁層によって遮断されるため、半導体層に形成されたチャネルがゲート電界のみによって制御されるからである。これにより、ドレイン電界によってオン/オフ比が著しく劣化する「短チャネル効果」を小さくできる。なお、ゲート電界によるチャネルの制御性が向上することは、ゲート電圧を小さくできることも意味する。すなわち、電界効果トランジスタを含む半導体装置の低消費電力化を実現できることを意味する。このように、SOI技術は、半導体装置の低消費電力化を図る観点から有用な技術であることがわかる。つまり、SOI技術は、電界効果トランジスタの駆動電圧の低減に適した技術であることから、SOI技術を使用することによって、電界効果トランジスタの微細化を進めることができるのである。ここで、半導体装置には、デジタル回路やアナログ回路が含まれているが、本発明者の検討の結果、特に、アナログ回路にSOI技術を使用する場合、アナログ回路の特性を向上するためには、アナログ回路を構成する電界効果トランジスタの特性を改善するための工夫が必要であることが明らかになったので、以下に、この点について説明することにする。
 <アナログ増幅回路>
 図1は、電界効果トランジスタと定電流源とを使用したアナログ増幅回路の一例を示す図である。図1に示すように、アナログ増幅回路は、例えば、カレントミラー回路からなる定電流源CSと、電界効果トランジスタQとを備えている。具体的に、アナログ増幅回路においては、電源端子VDDとグランド端子VSSとの間に定電流源CSと電界効果トランジスタQとが直列接続されている。すなわち、電界効果トランジスタQのドレインDと定電流源CSとが接続されている一方、電界効果トランジスタQのソースSは、グランド端子VSSと接続されている。このとき、電界効果トランジスタQのゲート電極Gは、アナログ増幅回路の入力端子ITとして機能し、電界効果トランジスタQのドレインDと定電流源CSとの間の接続ノードがアナログ増幅回路の出力端子OTとして機能することになる。このように構成されているアナログ増幅回路では、まず、図1に示すように、電界効果トランジスタQのゲート電極Gにゲート電圧Vgsが印加され、かつ、電界効果トランジスタQのドレインDにドレイン電圧Vdsが印加される。この場合、電界効果トランジスタは、飽和領域で動作するように構成されている。そして、このようにオン動作している電界効果トランジスタQのゲート電極Gに入力電圧ΔVgsを加える。すると、電界効果トランジスタQのドレイン電流は、変化することになるが、図1に示すアナログ増幅回路では、電界効果トランジスタQと直列に定電流源CSが接続されているため、電界効果トランジスタQに入力電圧ΔVgsを加えても、定電流源CSによって、電界効果トランジスタQのドレイン電流が一定となるように制御される。具体的には、電界効果トランジスタQに入力電圧ΔVgsを加えても、定電流源CSによって、電界効果トランジスタQのドレイン電流が一定となるように、電界効果トランジスタQのドレイン電圧VdsがVds+ΔVdsに変化する。この結果、アナログ増幅回路の出力端子OTからは、ドレイン電圧(Vds+ΔVds)が出力される。以上のようにして、図1に示すアナログ増幅回路では、入力端子ITに入力された入力電圧ΔVgsに対応して、出力端子OTから出力されるドレイン電圧(出力電圧)がΔVdsだけ変化する。このとき、入力電圧ΔVgsに対して、ドレイン電圧(出力電圧)の変化量であるΔVdsが大きくなるほどアナログ増幅回路のゲインが向上することになる。
 <飽和特性の重要性>
 次に、図1に示すアナログ増幅回路では、アナログ増幅回路のゲイン(増幅率)が電界効果トランジスタQの飽和特性に依存していることについて、図2と図3とを参照しながら説明する。図2において、まず、電界効果トランジスタQが飽和領域の中の「A」の状態にあるとする。そして、この「A」の状態にある電界効果トランジスタQのゲート電極に入力電圧ΔVgsを加える。ここで、伝達コンダクタンスをgmとすると、電界効果トランジスタQのドレイン電流は、gm×ΔVgsだけ変化することになり、電界効果トランジスタQは、「A」の状態から「B」の状態に変化することになる。このとき、図1に示すアナログ増幅回路では、電界効果トランジスタQと直列に定電流源CSが接続されているため、定電流源CSによって、電界効果トランジスタQのドレイン電流が一定となるように制御される。この結果、図2において、電界効果トランジスタQは、「B」の状態から「C」の状態に変化する。このように、図1に示すアナログ増幅回路では、電界効果トランジスタQのゲート電極に入力電圧ΔVgsを印加すると、電界効果トランジスタQは、「A」の状態から「C」の状態に変化する結果、電界効果トランジスタQのドレイン電圧は、ΔVdsだけ変化することになる。すなわち、図1に示すアナログ増幅回路では、入力端子ITに入力電圧ΔVgsを入力すると、入力電圧ΔVgsに対応して、出力電圧がΔVdsだけ変化することになる。このとき、図1に示すアナログ増幅回路のゲインは、ΔVds/ΔVgsで定義される。したがって、図1に示すアナログ増幅回路のゲインは、入力電圧ΔVgsに対応する出力電圧の変化(ΔVds)が大きくなるほど大きくなることになる。この点に関し、図3では、図2よりも、電界効果トランジスタQの飽和領域において、ドレイン電圧Vdsの変化に対して、ドレイン電流Idsの変化が少ない特性を示している。この場合、図2と図3とを比較するとわかるように、電界効果トランジスタQに同じ入力電圧ΔVgsを加えた場合、ドレイン電圧の変化(ΔVds)が大きくなっていることがわかる。つまり、電界効果トランジスタQの飽和領域において、ドレイン電圧Vdsの変化に対して、ドレイン電流Idsの変化が少ない特性であるほど、図1に示すアナログ増幅回路のゲインが大きくなることになる。そして、電界効果トランジスタQの飽和領域において、ドレイン電圧Vdsの変化に対して、ドレイン電流Idsの変化が少ないということは、電界効果トランジスタQの飽和特性が良好であることを意味している。したがって、図1に示すアナログ増幅回路のゲインは、電界効果トランジスタQの飽和特性に依存しており、電界効果トランジスタQの飽和特性が良好であるほど、図1に示すアナログ増幅回路のゲインが大きくなることがわかる。このことから、アナログ増幅回路に使用される電界効果トランジスタQでは、電界効果トランジスタQの飽和特性を向上することが重要であることがわかる。例えば、デジタル回路に使用される電界効果トランジスタでは、飽和領域でオン動作させる一方、サブスレッショルド領域でオフ動作させるように切り換え動作させればよいことから、デジタル回路の特性は、電界効果トランジスタの飽和特性の傾きにはあまり影響を受けない。これに対し、上述したアナログ増幅回路では、アナログ増幅回路のゲインが電界効果トランジスタQの飽和特性の傾きに大きく依存していることから、電界効果トランジスタQの飽和特性は、アナログ増幅回路の特性に大きな影響を与えるのである。したがって、アナログ増幅回路に使用される電界効果トランジスタQでは、アナログ増幅回路のゲインに代表される特性を向上する観点から、電界効果トランジスタQの飽和特性を良好にすることが重要なのである。
 <飽和特性の改善に対する工夫の必要性>
 上述したように、アナログ増幅回路のゲインに代表される特性を向上するために、電界効果トランジスタの飽和特性を良好にすることが重要である。そして、本発明者は、SOI基板上に形成された電界効果トランジスタにおいて、アナログ増幅回路の特性向上に直結する電界効果トランジスタの飽和特性を改善するためには、特に、SOI基板を構成する半導体層の厚さに対する工夫を施す必要があるという知見を新規に見出したので、以下に、この新規な知見について説明する。
 まず、SOI基板上に形成される電界効果トランジスタのゲート電極のゲート長が長い場合には、電界効果トランジスタの飽和特性を良好にするために、SOI基板を構成する半導体層の厚さに対する工夫を施す必要性は低くなる。例えば、図4は、埋め込み絶縁層BOX上に形成された厚さT1の厚い半導体層SL上に、ゲート電極GEのゲート長L1が長い電界効果トランジスタを形成した場合において、電界効果トランジスタの飽和特性の劣化が生じにくくなるメカニズムを説明する図である。図4の左側において、SOI基板は、支持基板SUBと、支持基板SUB上に形成された埋め込み絶縁層BOXと、埋め込み絶縁層BOX上に形成された半導体層(シリコン層、SOI層)SLから構成されている。そして、SOI基板の半導体層SLに、電界効果トランジスタのソース領域SRと、電界効果トランジスタのドレイン領域DRとが離間して形成されている。このとき、ソース領域SRとドレイン領域DRで挟まれた半導体領域がチャネル形成領域CHとなり、このチャネル形成領域CH上に電界効果トランジスタのゲート絶縁膜GOXが形成されている。さらに、このゲート絶縁膜GOX上には、電界効果トランジスタのゲート電極GEが形成されている。
 なお、ゲート長L1とは、図4に示すように、ソース領域SRおよびドレイン領域DRのうちの一方から他方に向かう方向に沿ったゲート電極GEの長さである。
 ここで、図4の右側には、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域における電子のポテンシャルと、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域における電子のポテンシャルとが示されている。まず、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域における電子のポテンシャルに着目すると、電界効果トランジスタのオフ動作時において、ソース領域SRとチャネル形成領域CHとの間にポテンシャル障壁V1が形成されている。同様に、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域における電子のポテンシャルに着目すると、電界効果トランジスタのオフ動作時において、ソース領域SRとチャネル形成領域CHとの間にもポテンシャル障壁V1が形成されている。
 次に、電界効果トランジスタのオン動作時において、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍には、反転層が形成されるため、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域においては、ソース領域SRとチャネル形成領域CHとの間に形成されたポテンシャル障壁V1が消失して、チャネル形成領域CHを介して、電子がソース領域SRからドレイン領域DRに向って流れる。一方、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域には、反転層が形成されないため、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域においては、ソース領域SRとチャネル形成領域CHとの間に形成されたポテンシャル障壁V1がほぼ維持される結果、チャネル形成領域CHを介して、電子がソース領域SRからドレイン領域DRに向って流れない。このとき、ゲート電極GEのゲート長L1が長い電界効果トランジスタにおいては、ゲート長L1が長いため、ソース領域SRとチャネル形成領域CHとの間に形成されたポテンシャル障壁V1が、ドレイン領域DRに印加されているドレイン電圧(Vds)の影響を受けにくい。この結果、ゲート電極GEのゲート長L1の長い電界効果トランジスタの飽和領域においては、ゲート電極GEから離れた位置におけるドレイン電流の増加が抑制されることから、電界効果トランジスタの飽和特性が良好となる。つまり、ゲート電極GEのゲート長が長い電界効果トランジスタでは、電界効果トランジスタの飽和特性を良好にするために、SOI基板を構成する半導体層の厚さに対する工夫を施す必要性は低くなる。
 これに対し、電界効果トランジスタの微細化によって、電界効果トランジスタのゲート電極GEのゲート長が短くなると、短チャネル効果が顕在化する。すなわち、電界効果トランジスタの微細化を図ることは、スケーリング則によって、電界効果トランジスタの駆動電圧(ドレイン電圧とゲート電圧)の低電圧化を図ることを意味する。ところが、ゲート電極GEのゲート長を短くすると、短チャネル効果が顕在化することから、単に、スケーリング則に基づいて、駆動電圧(ドレイン電圧やゲート電圧)の低電圧化を図っても、微細化された電界効果トランジスタの飽和特性を良好にすることが困難になるのである。すなわち、微細化されたゲート長の短い電界効果トランジスタでは、電界効果トランジスタの飽和特性を良好にするために、SOI基板を構成する半導体層の厚さに対する工夫を施す必要性が生じることになる。以下に、この点について説明する。
 図5は、埋め込み絶縁層BOX上に形成された厚さT2の厚い(例えば、25nmよりも大きい)半導体層SL上に、ゲート電極GEのゲート長L2が短い電界効果トランジスタを形成した場合における飽和特性の劣化が生じるメカニズムを説明する図である。図5の左側には、電界効果トランジスタの模式的な断面構造が示されている。図5の左側において、SOI基板は、支持基板SUBと、支持基板SUB上に形成された埋め込み絶縁層BOXと、埋め込み絶縁層BOX上に形成された半導体層(シリコン層、SOI層)SLから構成されている。そして、SOI基板の半導体層SLに、電界効果トランジスタのソース領域SRと、電界効果トランジスタのドレイン領域DRとが離間して形成されている。このとき、ソース領域SRとドレイン領域DRで挟まれた半導体領域がチャネル形成領域CHとなり、このチャネル形成領域CH上に電界効果トランジスタのゲート絶縁膜GOXが形成されている。さらに、このゲート絶縁膜GOX上には、電界効果トランジスタのゲート電極GEが形成されている。
 なお、ゲート長L2とは、上記したように、ソース領域SRおよびドレイン領域DRのうちの一方から他方に向かう方向に沿ったゲート電極GEの長さである。
 ここで、図5の右側には、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域における電子のポテンシャルと、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域における電子のポテンシャルとが示されている。まず、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域における電子のポテンシャルに着目すると、電界効果トランジスタのオフ動作時において、ソース領域SRとチャネル形成領域CHとの間にポテンシャル障壁V1が形成されている。同様に、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域における電子のポテンシャルに着目すると、電界効果トランジスタのオフ動作時において、ソース領域SRとチャネル形成領域CHとの間にもポテンシャル障壁V1形成されている。
 次に、電界効果トランジスタのオン動作時において、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍には、反転層が形成されるため、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域においては、ソース領域SRとチャネル形成領域CHとの間に形成されたポテンシャル障壁V1が消失して、チャネル形成領域CHを介して、電子がソース領域SRからドレイン領域DRに向って流れる。一方、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域には、反転層が形成されないため、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域においては、ソース領域SRとチャネル形成領域CHとの間に形成されたポテンシャル障壁V1がほぼ維持されると考えられ、チャネル形成領域CHを介して、電子がソース領域SRからドレイン領域DRに向って流れないと考えられる。ところが、微細化された電界効果トランジスタにおいて、単に、スケーリング則に基づいて駆動電圧(ドレイン電圧とゲート電圧)を低電圧化しても、ゲート電極GEのゲート長L2が短いことに起因して、ソース領域SRとチャネル形成領域CHとの間に形成されるポテンシャル障壁が、ドレイン領域DRに印加したドレイン電圧の影響を受けやすくなる。このように、埋め込み絶縁層BOX上に形成された厚さT2の厚い半導体層SL上に、ゲート電極GEのゲート長L2が短い電界効果トランジスタを形成した場合、ゲート電極GEから離れた位置において、ソース領域SRとチャネル形成領域CHとの間に形成されるポテンシャル障壁は、ドレイン電圧の影響を大きく受ける結果、小さくなるのである(短チャネル効果)。これにより、電界効果トランジスタのオン動作時において、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域における電子のポテンシャルよりも、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域における電子のポテンシャルが低くなる。この結果、ゲート電極GEのゲート長L2の短い電界効果トランジスタの飽和領域においては、ゲート電極GEから離れた位置におけるドレイン電流の増加が生じることから、電界効果トランジスタの飽和特性が劣化することになる。つまり、ゲート電極GEのゲート長L2が短い電界効果トランジスタでは、単に、スケーリング則に基づく駆動電圧(ドレイン電圧とゲート電圧)の低電圧化を図っても、短チャネル効果の顕在化によって、電界効果トランジスタの飽和特性の劣化が生じてしまうのである。つまり、電界効果トランジスタの飽和特性を良好にするために、SOI基板を構成する半導体層SLの厚さに対する工夫を施す必要性が高くなるのである。
 図6は、埋め込み絶縁層BOX上に形成された厚さT3(<T2)の薄い半導体層SL上に電界効果トランジスタを形成した場合における飽和特性の劣化が生じにくくなるメカニズムを説明する図である。図6の左側には、電界効果トランジスタの模式的な断面構造が示されている。図6の左側において、SOI基板は、支持基板SUBと、支持基板SUB上に形成された埋め込み絶縁層BOXと、埋め込み絶縁層BOX上に形成された半導体層(シリコン層、SOI層)SLから構成されている。そして、SOI基板の半導体層SLに、電界効果トランジスタのソース領域SRと、電界効果トランジスタのドレイン領域DRとが離間して形成されている。このとき、ソース領域SRとドレイン領域DRで挟まれた半導体領域がチャネル形成領域CHとなり、このチャネル形成領域CH上に電界効果トランジスタのゲート絶縁膜GOXが形成されている。さらに、このゲート絶縁膜GOX上には、電界効果トランジスタのゲート電極GEが形成されている。
 ここで、図6の右側には、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域における電子のポテンシャルと、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域における電子のポテンシャルとが示されている。まず、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域における電子のポテンシャルに着目すると、電界効果トランジスタのオフ動作時において、ソース領域SRとチャネル形成領域CHとの間にポテンシャル障壁V1が形成されている。同様に、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域における電子のポテンシャルに着目すると、電界効果トランジスタのオフ動作時において、ソース領域SRとチャネル形成領域CHとの間にポテンシャル障壁V1が形成されている。
 次に、電界効果トランジスタのオン動作時において、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍には、反転層が形成されるため、ゲート絶縁膜GOXに接するチャネル形成領域CHの表面近傍領域においては、ソース領域SRとチャネル形成領域CHとの間に形成されたポテンシャル障壁V1が消失して、チャネル形成領域CHを介して、電子がソース領域SRからドレイン領域DRに向って流れる。一方、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域には、反転層が形成されないため、埋め込み絶縁層BOXに接するチャネル形成領域CHの裏面近傍領域においては、ソース領域SRとチャネル形成領域CHとの間に形成されたポテンシャル障壁V1がほぼ維持される結果、チャネル形成領域CHを介して、電子がソース領域SRからドレイン領域DRに向って流れない。
 ここで、埋め込み絶縁層BOX上に形成された厚さT3の薄い半導体層SL上に電界効果トランジスタを形成した場合では、SOI基板の半導体層SLが薄い結果、ドレイン領域DRの接合深さが浅くなる。このことは、ゲート電極GEで制御されるチャネル形成領域CHの電荷量が大きくなることを意味する(チャージシェアリングモデル)。言い換えれば、埋め込み絶縁層BOX上に形成された厚さT3の薄い半導体層SL上に形成された電界効果トランジスタでは、ゲート電極GEによる制御性が向上するのである。したがって、厚さT3の薄い半導体層SL上に形成された電界効果トランジスタでは、ゲート電極GEから離れた位置においても、ゲート電極GEによる制御性が向上する結果、ドレイン領域DRに印加されたドレイン電圧(Vds)の影響が小さくなるのである。したがって、埋め込み絶縁層BOX上に形成された厚さの薄い半導体層上に電界効果トランジスタを形成した場合、ゲート電極GEから離れた位置において、ソース領域SRとチャネル形成領域CHとの間に形成されるポテンシャル障壁は維持される。この結果、埋め込み絶縁層BOX上に形成された厚さの薄い半導体層SL上に、ゲート電極GEのゲート長L2が短い電界効果トランジスタを形成すると、電界効果トランジスタの飽和領域においては、ゲート電極GEから離れた位置におけるドレイン電流の増加が抑制されることから、電界効果トランジスタの飽和特性が良好となる。
 以上のことから、本発明者が新規に見出した知見である定性的なメカニズムの説明に基づくと、スケーリング則に基づく駆動電圧(ドレイン電圧とゲート電圧)の低電圧化を図っても、短チャネル効果の顕在化に起因する電界効果トランジスタの飽和特性の劣化が生じてしまうことを抑制できるのである。すなわち、SOI基板を構成する半導体層の厚さに対する工夫を施すことによって、電界効果トランジスタの微細化(駆動電圧の低電圧化)を図りながら、短チャネル効果の顕在化も抑制できる。つまり、本発明者が新規に見出した知見である定性的なメカニズムの説明に基づくと、SOI基板上に形成され、かつ、ゲート電極のゲート長の短い電界効果トランジスタにおいて、アナログ増幅回路の特性向上に直結する電界効果トランジスタの飽和特性を改善することができることがわかる。そこで、以下では、SOI基板を構成する半導体層の厚さに対する工夫を施した本実施の形態1における技術的思想について説明することにする。
 <デバイス構造>
 図7は、本実施の形態1における半導体装置のデバイス構造を示す模式的な断面図である。図7では、nチャネル型電界効果トランジスタ形成領域R1と、pチャネル型電界効果トランジスタ形成領域R2とが図示されており、nチャネル型電界効果トランジスタ形成領域R1にnチャネル型電界効果トランジスタQnが形成されている一方、pチャネル型電界効果トランジスタ形成領域R2にpチャネル型電界効果トランジスタQpが形成されている。
 まず、nチャネル型電界効果トランジスタQnのデバイス構造について説明する。図7において、支持基板SUBと埋め込み絶縁層BOXと半導体層SLとからなるSOI基板には、素子分離領域STIが形成されており、この素子分離領域STIで区画されたnチャネル型電界効果トランジスタ形成領域R1にnチャネル型電界効果トランジスタQnが形成されている。このnチャネル型電界効果トランジスタQnは、SOI基板の半導体層SLに形成されたソース領域SR1と、SOI基板の半導体層SL内に形成され、かつ、ソース領域SR1とは離間して形成されたドレイン領域DR1とを有する。このとき、図7に示すように、ソース領域SR1は、n型半導体領域NRと、n型半導体領域NRよりも不純物濃度の小さいn型半導体領域であるエクステンション領域EX1から構成されている。同様に、ドレイン領域DR1は、n型半導体領域NRと、n型半導体領域NRよりも不純物濃度の小さいn型半導体領域であるエクステンション領域EX1から構成されている。そして、nチャネル型電界効果トランジスタQnは、ソース領域SR1とドレイン領域DR1とに挟まれたチャネル形成領域CH1と、チャネル形成領域CH1上に形成されたゲート絶縁膜GOX1と、ゲート絶縁膜GOX1上に形成されたゲート電極GE1とを有する。さらに、ゲート電極GE1の両側の側壁には、サイドウォールスペーサSWが形成されている。また、ゲート電極GE1の表面と、ソース領域SR1の表面と、ドレイン領域DR1の表面とには、シリサイド膜が形成されている。このように構成されているnチャネル型電界効果トランジスタQnを覆うように、層間絶縁膜ILが形成されており、この層間絶縁膜ILを貫通する複数のプラグPLGが形成されている。複数のプラグPLGのうちの1つは、ソース領域SRと電気的に接続されているとともに、複数のプラグPLGのうちの他の1つは、ドレイン領域DRと電気的に接続されている。さらに、nチャネル型電界効果トランジスタQnを形成したSOI基板の半導体層SLの下層に位置する支持基板SUB内には、p型半導体領域からなるp型ウェルPWLが形成されており、このp型ウェルPWLを内包するように、SOI基板の支持基板SUBには、n型半導体領域からなるn型ウェルNWLが形成されている。p型ウェルPWLの一部分上に形成されている埋め込み絶縁層BOXと半導体層SLとが除去されている。このとき、p型ウェルPWLの一部分は、支持基板SUB上に形成された層間絶縁膜ILを貫通するプラグPLGと電気的に接続されており、p型ウェルPWLの一部分の表面には、シリサイド膜が形成されている。
 次に、pチャネル型電界効果トランジスタQpのデバイス構造について説明する。図7において、支持基板SUBと埋め込み絶縁層BOXと半導体層SLとからなるSOI基板には、素子分離領域STIが形成されており、この素子分離領域STIで区画されたpチャネル型電界効果トランジスタ形成領域R2にpチャネル型電界効果トランジスタQpが形成されている。このpチャネル型電界効果トランジスタQpは、SOI基板の半導体層SLに形成されたソース領域SR2と、SOI基板の半導体層SL内に形成され、かつ、ソース領域SR2とは離間して形成されたドレイン領域DR2とを有する。このとき、図7に示すように、ソース領域SR2は、p型半導体領域PRと、p型半導体領域PRよりも不純物濃度の小さいp型半導体領域であるエクステンション領域EX2から構成されている。同様に、ドレイン領域DR2は、p型半導体領域PRと、p型半導体領域PRよりも不純物濃度の小さいp型半導体領域であるエクステンション領域EX2から構成されている。そして、pチャネル型電界効果トランジスタQpは、ソース領域SR2とドレイン領域DR2とに挟まれたチャネル形成領域CH2と、チャネル形成領域CH2上に形成されたゲート絶縁膜GOX2と、ゲート絶縁膜GOX2上に形成されたゲート電極GE2とを有する。さらに、ゲート電極GE2の両側の側壁には、サイドウォールスペーサSWが形成されている。また、ゲート電極GE2の表面と、ソース領域SR2の表面と、ドレイン領域DR2の表面とには、シリサイド膜が形成されている。このように構成されているpチャネル型電界効果トランジスタQpを覆うように、層間絶縁膜ILが形成されており、この層間絶縁膜ILを貫通する複数のプラグPLGが形成されている。複数のプラグPLGのうちの1つは、ソース領域SR2と電気的に接続されているとともに、複数のプラグPLGのうちの他の1つは、ドレイン領域DR2と電気的に接続されている。さらに、pチャネル型電界効果トランジスタQpを形成したSOI基板の半導体層SLの下層に位置する支持基板SUB内には、n型半導体領域からなるn型ウェルNWLが形成されている。n型ウェルNWLの一部分上に形成されている埋め込み絶縁層BOXと半導体層SLとが除去されている。このとき、n型ウェルNWLの一部分は、支持基板SUB上に形成された層間絶縁膜ILを貫通するプラグPLGと電気的に接続されており、n型ウェルNWLの一部分の表面には、シリサイド膜が形成されている。
 以上のようにして、SOI基板のnチャネル型電界効果トランジスタ形成領域R1に、本実施の形態1におけるnチャネル型電界効果トランジスタQnが形成され、かつ、SOI基板のpチャネル型電界効果トランジスタ形成領域R2に、本実施の形態1におけるpチャネル型電界効果トランジスタQpが形成されている。
 ここで、ゲート絶縁膜GOX1と、ゲート電極GE1と、チャネル形成領域CH1と、ソース領域SR1と、ドレイン領域DR1とを含むnチャネル型電界効果トランジスタQnは、アナログ回路の構成要素である。このアナログ回路は、少なくとも1つ以上のnチャネル型電界効果トランジスタQnを含み、SOI基板の半導体層SLの厚さは、2nm以上、かつ、24nm以下である。このとき、例えば、ゲート電極GE1のゲート長は、100nm以下である。この場合、nチャネル型電界効果トランジスタQnのソース領域SR1に印加される電位とドレイン領域DR1に印加される電位との差の絶対値は、0.4V以上、かつ、1.2V以下である。このとき、0.4V以上である下限値の条件は、電界効果トランジスタを飽和領域で使用する条件から決定されている一方、1.2V以下である上限値の条件は、電界効果トランジスタがパンチスルーを引き起こさない条件から決定されている。また、nチャネル型電界効果トランジスタQnのチャネル形成領域CH1内における導電型不純物の不純物濃度は、1×1017/cmよりも大きく、かつ、1×1018/cm以下である。
 飽和特性を良好にする観点から、さらに望ましくは、SOI基板の半導体層SLの厚さは、例えば、8nm以上、かつ、12nm以下である。例えば、ゲート電極GE1のゲート長は、150nm以下である。この場合、nチャネル型電界効果トランジスタQnのソース領域SR1に印加される電位とドレイン領域DR1に印加される電位との差の絶対値は、0.4V以上、かつ、1.6V以下である。このとき、0.4V以上である下限値の条件は、電界効果トランジスタを飽和領域で使用する条件から決定されている一方、1.6V以下である上限値の条件は、電界効果トランジスタがパンチスルーを引き起こさない条件から決定されている。また、nチャネル型電界効果トランジスタQnのチャネル形成領域CH1内における導電型不純物の不純物濃度は、1×1017/cm以下である。
 同様に、ゲート絶縁膜GOX2と、ゲート電極GE2と、チャネル形成領域CH2と、ソース領域SR2と、ドレイン領域DR2とを含むpチャネル型電界効果トランジスタQpも、アナログ回路の構成要素である。このアナログ回路は、少なくとも1つ以上のpチャネル型電界効果トランジスタQpを含み、SOI基板の半導体層SLの厚さは、2nm以上、かつ、24nm以下である。このとき、例えば、ゲート電極GE2のゲート長は、100nm以下である。この場合、pチャネル型電界効果トランジスタQpのソース領域SR2に印加される電位とドレイン領域DR2に印加される電位との差の絶対値は、0.4V以上、かつ、1.2V以下である。このとき、0.4V以上である下限値の条件は、電界効果トランジスタを飽和領域で使用する条件から決定されている一方、1.2V以下である上限値の条件は、電界効果トランジスタがパンチスルーを引き起こさない条件から決定されている。また、pチャネル型電界効果トランジスタQpのチャネル形成領域CH2内における導電型不純物の不純物濃度は、1×1017/cmよりも大きく、かつ、1×1018/cm以下である。
 飽和特性を良好にする観点から、さらに望ましくは、SOI基板の半導体層SLの厚さは、例えば、8nm以上、かつ、12nm以下である。例えば、ゲート電極GE2のゲート長は、150nm以下である。この場合、pチャネル型電界効果トランジスタQpのソース領域SR2に印加される電位とドレイン領域DR2に印加される電位との差の絶対値は、0.4V以上、かつ、1.6V以下である。このとき、0.4V以上である下限値の条件は、電界効果トランジスタを飽和領域で使用する条件から決定されている一方、1.6V以下である上限値の条件は、電界効果トランジスタがパンチスルーを引き起こさない条件から決定されている。また、pチャネル型電界効果トランジスタQpのチャネル形成領域CH2内における導電型不純物の不純物濃度は、1×1017/cm以下である。
 また、SOI基板の埋め込み絶縁層BOXの厚さは、10nm以上、かつ、20nm以下であり、SOI基板の支持基板SUBには、nチャネル型電界効果トランジスタQnのチャネル形成領域CH1の下方に位置し、かつ、埋め込み絶縁層BOXと接するp型ウェルPWLが形成されている。一方、SOI基板の支持基板SUBには、pチャネル型電界効果トランジスタQpのチャネル形成領域CH2の下方に位置し、かつ、埋め込み絶縁層BOXと接するn型ウェルNWLも形成されている。
 <実施の形態1における特徴>
 <<第1特徴点>>
 続いて、本実施の形態1における特徴点について説明する。本実施の形態1における第1特徴点は、アナログ回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さが2nm以上、かつ、24nm以下である点にある。これにより、アナログ回路を構成する電界効果トランジスタの飽和特性を向上することができる。この結果、アナログ回路のゲインに代表される回路特性を向上することができる。
 例えば、図8(a)は、ゲート電極のゲート長が60nmの電界効果トランジスタをバルク基板に形成した場合において、ゲート電極に0.5V~1.2Vの範囲のゲート電圧を印加した際のドレイン電圧(Vds)とドレイン電流(Ids)との関係を示すグラフである。また、図8(b)は、半導体層(シリコン層)の厚さが24nmのSOI基板に、ゲート電極のゲート長が60nmの電界効果トランジスタを形成した場合において、ゲート電極に0.5V~1.2Vの範囲のゲート電圧を印加した際のドレイン電圧(Vds)とドレイン電流(Ids)との関係を示すグラフである。さらに、図8(c)は、半導体層(シリコン層)の厚さが12nmのSOI基板に、ゲート電極のゲート長が60nmの電界効果トランジスタを形成した場合において、ゲート電極に0.5V~1.2Vの範囲のゲート電圧を印加した際のドレイン電圧(Vds)とドレイン電流(Ids)との関係を示すグラフである。
 まず、図8(a)~図8(c)を見ると、図8(c)に示すドレイン電圧とドレイン電流との関係を示すグラフにおける電界効果トランジスタの飽和特性が最も優れていることがわかる。また、図8(b)に示すドレイン電圧とドレイン電流との関係を示すグラフにおける電界効果トランジスタの飽和特性は、図8(c)に示すドレイン電圧とドレイン電流との関係を示すグラフにおける電界効果トランジスタの飽和特性よりも劣っている。一方、ドレイン電圧が1.2V以下の領域では、図8(b)に示すドレイン電圧とドレイン電流との関係を示すグラフにおける電界効果トランジスタの飽和特性は、図8(a)に示すドレイン電圧とドレイン電流との関係を示すグラフにおける電界効果トランジスタの飽和特性よりも優れている。このことから、半導体層の厚さが12nmのSOI基板に電界効果トランジスタを形成した場合、半導体層の厚さが24nmのSOI基板に電界効果トランジスタを形成した場合や、バルク基板に電界効果トランジスタを形成した場合よりも、電界効果トランジスタの飽和特性が優れているということができる。つまり、ゲート電極のゲート長が60nm程度に微細化された電界効果トランジスタの飽和特性を向上するためには、半導体層の厚さが12nmのSOI基板に電界効果トランジスタを形成することが望ましいことがわかる。
 以上の結果から把握される基本思想は、短チャネル効果が顕在化する微細化された電界効果トランジスタを、バルク基板上に形成するよりもSOI基板上に形成する方が電界効果トランジスタの飽和特性を向上しやすく、かつ、SOI基板の半導体層(シリコン層)の厚さが薄いSOI基板に形成するほど電界効果トランジスタの飽和特性を向上しやすくなるという思想である。特に、回路特性を向上する観点から電界効果トランジスタの飽和特性が重要となるアナログ回路では、半導体層(シリコン層)の厚さの薄いSOI基板に、アナログ回路を構成する電界効果トランジスタを形成することが有用である。
 このような本実施の形態1における基本思想は、例えば、アナログ回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さを2nm以上、かつ、24nm以下にするという本実施の形態1における第1特徴点を採用することによって具現化することができる。特に、本実施の形態1における第1特徴点は、ゲート電極のゲート長が150nm以下に微細化されて、短チャネル効果が顕在化しやすい電界効果トランジスタに適用することによって、電界効果トランジスタの飽和特性の劣化を効果的に抑制することができる。これにより、本実施の形態1における第1特徴点によれば、アナログ回路を構成する電界効果トランジスタの微細化を図りながらも、アナログ回路の回路特性に大きな影響を及ぼす飽和特性を向上できる。
 特に、SOI基板は、バルク基板に比べて、電界効果トランジスタの低電圧駆動(ドレイン電圧とゲート電圧)を実現するために適した基板構造であることから、SOI基板に電界効果トランジスタを形成する場合、電界効果トランジスタを微細化することができる。つまり、アナログ回路を構成する電界効果トランジスタをSOI基板に形成すると、電界効果トランジスタの低電圧駆動を実現できることから、電界効果トランジスタの微細化を図ることができる。このとき、電界効果トランジスタを微細化すると、短チャネル効果が顕在化しやすくなって、アナログ回路の回路特性に大きな影響を及ぼす飽和特性が劣化しやすくなると考えられる。この点に関しては、本実施の形態1における第1特徴点を採用することにより、短チャネル効果が顕在化しやすい微細化された電界効果トランジスタであっても、電界効果トランジスタの飽和特性を向上することができる。このように、本実施の形態1における第1特徴点によれば、アナログ回路を構成する電界効果トランジスタの微細化を図りながらも、アナログ回路の回路特性に大きな影響を及ぼす飽和特性を向上することができる。
 図9(a)は、図1で説明したアナログ増幅回路を低電圧駆動させる場合において、アナログ増幅回路に印加する具体的な電圧を記入した回路図である。図9(a)において、電源端子VDDには、1.6Vが印加され、かつ、グランド端子VSSには、0Vが印加される。また、図9(a)において、電界効果トランジスタQのゲート電極G(入力端子IT)には、0.6Vが印加され、かつ、電界効果トランジスタQのドレインD(出力端子OT)には、0.8Vが印加される。特に、本実施の形態1では、SOI基板上に電界効果トランジスタを形成しており、電界効果トランジスタの低電圧駆動が可能となることから、図9(a)に示すような低電圧でも、アナログ増幅回路を動作させることができる。
 ここで、図9(a)において、電界効果トランジスタQのゲート電極に0.6V(バイアス基準点)を印加した状態で、かつ、入力電圧(入力信号電圧)を印加すると、電界効果トランジスタQのドレインDに接続されている出力端子OTからは、0.8Vをバイアス基準点として、例えば、0.8V±0.5Vの出力電圧(出力信号電圧)が出力される。このとき、電界効果トランジスタQとして、図8(c)に示す電流電圧特性を有する電界効果トランジスタを採用すると、図8(c)に示す電界効果トランジスタは、1.6Vまでのドレイン電圧が印加される場合にはパンチスルーを引き起こさないことから、図9(a)に示す条件の範囲内では、パンチスルーを起こさず、かつ、良好な飽和特性を有することになることから、図9(a)に示すような低電圧において、アナログ増幅回路を動作させる際に適している電界効果トランジスタとなることがわかる。
 一方、電界効果トランジスタQとして、図8(b)に示す電流電圧特性を有する電界効果トランジスタを採用すると、図8(b)に示す電界効果トランジスタは、1.2Vまでのドレイン電圧が印加される場合にはパンチスルーを引き起こさないことから、図9(a)に示す条件の範囲のうち、0.8V±0.4Vの出力電圧(出力信号電圧)を出力するようにして使用する場合には、パンチスルーを起こさず、かつ、良好な飽和特性を有することになることから、図9(a)に示すような低電圧において、限定的ではあるが、アナログ増幅回路を動作させる際に使用できる電界効果トランジスタとなることがわかる。
 図9(b)は、電界効果トランジスタのゲート電極のゲート長と、図9(a)に示すアナログ増幅回路におけるゲインとの関係を示すグラフである。ここで、図9(b)に示される折れ線グラフ(1)は、バルク基板に形成された電界効果トランジスタを使用して、図9(a)に示すアナログ増幅回路を構成した場合におけるゲート長とゲインとの関係を示すグラフである。一方、図9(b)に示される折れ線グラフ(2)は、半導体層(シリコン層)の厚さが24nmであるSOI基板に形成された電界効果トランジスタを使用して、図9(a)に示すアナログ増幅回路を構成した場合におけるゲート長とゲインとの関係を示すグラフである。また、図9(b)に示される折れ線グラフ(3)は、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタを使用して、図9(a)に示すアナログ増幅回路を構成した場合におけるゲート長とゲインとの関係を示すグラフである。図9(b)において、バルク基板に形成された電界効果トランジスタを使用した場合のゲート長とゲインとの関係を示す折れ線グラフ(1)に対して、半導体層(シリコン層)の厚さが24nmであるSOI基板に形成された電界効果トランジスタを使用した場合のゲート長とゲインとの関係を示す折れ線グラフ(2)は、ゲート長を変化させたときのゲインの変化が著しく大きくなっている。さらに、バルク基板に形成された電界効果トランジスタを使用した場合のゲート長とゲインとの関係を示す折れ線グラフ(1)に対して、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタを使用した場合のゲート長とゲインとの関係を示す折れ線グラフ(3)は、ゲート長を変化させたときのゲインの変化がさらに著しく大きくなっている。これは、バルク基板に形成された電界効果トランジスタの飽和特性よりも、半導体層(シリコン層)の厚さが24nmであるSOI基板に形成された電界効果トランジスタの飽和特性や、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタの飽和特性が良好であることによる。したがって、図9(b)に示す結果から、ゲート電極のゲート長を同じにした場合、バルク基板に形成された電界効果トランジスタを使用するよりも、半導体層の厚さが24nmであるSOI基板に形成された電界効果トランジスタや、半導体層の厚さが12nmであるSOI基板に形成された電界効果トランジスタを使用する方が、アナログ増幅回路のゲインを大きくできる。つまり、バルク基板に形成された電界効果トランジスタを使用するよりも、半導体層(シリコン層)の厚さが24nmであるSOI基板に形成された電界効果トランジスタや、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタを使用する方が、アナログ増幅回路の回路特性を向上することができるのである。このことから、アナログ増幅回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さが24nm以下である場合には、アナログ増幅回路の回路特性を向上できることがわかる。ただし、アナログ増幅回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さが2nm未満となる場合には、SOI基板自体の製造が困難となる。このことから、アナログ増幅回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さが2nm以上、かつ、24nm以下である場合には、SOI基板自体の製造容易性を確保しながら、アナログ増幅回路の回路特性を向上できるという顕著な効果を得ることができる。
 見方を変えると、例えば、図9(b)において、バルク基板に形成された電界効果トランジスタを使用してアナログ増幅回路のゲインを「46」に設計する場合、折れ線グラフ(1)から、ゲート電極のゲート長を400nm(0.4μm)にする必要がある。これに対し、図9(b)において、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタを使用してアナログ増幅回路のゲインを「46」に設計する場合、折れ線グラフ(3)から、ゲート電極のゲート長を90nm(0.09μm)にすればよいことになる。したがって、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタを使用して、アナログ増幅回路を構成する場合における電界効果トランジスタの平面サイズは、バルク基板に形成された電界効果トランジスタを使用して、アナログ増幅回路を構成する場合における電界効果トランジスタの平面サイズの5%程度に縮小できることを意味している。このように、本実施の形態1における電界効果トランジスタを使用して、図9(a)に示すアナログ増幅回路を構成すると、電界効果トランジスタの占有面積を大幅に低減することができ、これによって、アナログ増幅回路を含む半導体装置の小型化を図ることができる。つまり、本実施の形態1における第1特徴点を採用すると、本実施の形態1における電界効果トランジスタの平面サイズをバルク基板に形成された電界効果トランジスタの平面サイズと同等にする場合においては、アナログ増幅回路の回路特性の向上を図ることができる。一方、本実施の形態1における第1特徴点を採用すると、本実施の形態1における電界効果トランジスタから構成されるアナログ増幅回路のゲインをバルク基板に形成された電界効果トランジスタから構成されるアナログ増幅回路のゲインと同等にする場合においては、アナログ増幅回路を含む半導体装置の小型化を図ることができるのである。なお、半導体装置の小型化を実現できれば、回路を駆動するための電流を低減できるため、半導体装置の低消費電化も図ることができる。
 続いて、図10(a)は、図1で説明したアナログ増幅回路を、図9(a)の動作条件よりも高電圧駆動させる場合において、アナログ増幅回路に印加する具体的な電圧を記入した回路図である。図10(a)において、電源端子VDDには、3.0Vが印加され、かつ、グランド端子VSSには、0Vが印加される。また、図10(a)において、電界効果トランジスタQのゲート電極G(入力端子IT)には、1.1Vが印加され、かつ、電界効果トランジスタQのドレインD(出力端子OT)には、1.5Vが印加される。
 ここで、図10(a)において、電界効果トランジスタQのゲート電極に1.1V(バイアス基準点)を印加した状態で、かつ、入力電圧(入力信号電圧)を印加すると、電界効果トランジスタQのドレインDに接続されている出力端子OTからは、1.5Vをバイアス基準点として、例えば、1.5V±1.0Vの出力電圧(出力信号電圧)が出力される。このとき、電界効果トランジスタQとして、図8(c)に示す電流電圧特性を有する電界効果トランジスタを採用すると、図8(c)に示す電界効果トランジスタは、1.6Vまでのドレイン電圧が印加される場合にはパンチスルーを引き起こさないが、それ以上のドレイン電圧では、パンチスルーを引き起こすことから、図10(a)に示す条件の範囲のうち、1.5V±0.1Vの出力電圧(出力信号電圧)を出力するようにして使用する場合には、パンチスルーを起こさず、かつ、良好な飽和特性を有することになる。このことから、図10(a)に示すような高電圧駆動させる場合においても、限定的ではあるが、図8(c)に示す電流電圧特性を有する電界効果トランジスタは、アナログ増幅回路を動作させる際に使用できる電界効果トランジスタとなる。
 一方、電界効果トランジスタQとして、図8(b)に示す電流電圧特性を有する電界効果トランジスタを採用すると、図8(b)に示す電界効果トランジスタは、1.2Vを超えるドレイン電圧が印加される場合にはパンチスルーを引き起す。このことから、図8(b)に示す電流電圧特性を有する電界効果トランジスタは、図10(a)に示すような高電圧駆動させる場合においては、アナログ増幅回路を動作させる際に使用できなくなる。
 図10(b)は、電界効果トランジスタのゲート電極のゲート長と、図10(a)に示すアナログ増幅回路におけるゲインとの関係を示すグラフである。ここで、図10(b)に示される折れ線グラフ(1)は、バルク基板に形成された電界効果トランジスタを使用して、図10(a)に示すアナログ増幅回路を構成した場合におけるゲート長とゲインとの関係を示すグラフである。一方、図10(b)に示される折れ線グラフ(2)は、半導体層(シリコン層)の厚さが24nmであるSOI基板に形成された電界効果トランジスタを使用して、図10(a)に示すアナログ増幅回路を構成した場合におけるゲート長とゲインとの関係を示すグラフである。また、図10(b)に示される折れ線グラフ(3)は、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタを使用して、図10(a)に示すアナログ増幅回路を構成した場合におけるゲート長とゲインとの関係を示すグラフである。
 図10(b)において、バルク基板に形成された電界効果トランジスタを使用した場合のゲート長とゲインとの関係を示す折れ線グラフ(1)に対して、半導体層(シリコン層)の厚さが24nmであるSOI基板に形成された電界効果トランジスタを使用した場合のゲート長とゲインとの関係を示す折れ線グラフ(2)は、図9(b)とは異なり、同等となっている。これは、図8(b)の破線で囲まれた領域に示すように、半導体層(シリコン層)の厚さが24nmであるSOI基板に形成された電界効果トランジスタでは、ドレイン電圧が1.0Vを超えると、パンチスルーが発生してしまい、ソース領域とドレイン領域との間の抵抗(rds)が低下するためである。すなわち、ソース領域とドレイン領域との間の抵抗を「rds」とし、伝達コンダクタンスを「gm」とすると、アナログ増幅回路のゲインは、「rds」×「gm」で表されることから、パンチスルーが発生して、ソース領域とドレイン領域との間の抵抗(rds)が低下すると、アナログ増幅回路のゲインが低下することになるからである。
 一方、バルク基板に形成された電界効果トランジスタを使用した場合のゲート長とゲインとの関係を示す折れ線グラフ(1)に対して、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタを使用した場合のゲート長とゲインとの関係を示す折れ線グラフ(3)は、ゲート長を変化させたときのゲインの変化が著しく大きくなっている。これは、図8(c)に示すように、ドレイン電圧の広い範囲にわたって、バルク基板に形成された電界効果トランジスタの飽和特性よりも、半導体層(シリコン層)の厚さが12nmであるSOI基板に形成された電界効果トランジスタの飽和特性が良好であることによる。
 したがって、幅広いドレイン電圧の範囲にわたって、アナログ増幅回路のゲインを向上する観点からは、アナログ増幅回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さが12nm以下であることが望ましい。一方、SOI基板の半導体層の厚さが8nm未満になると、ソース領域とドレイン領域との間の抵抗(rds)が高くなり過ぎることから、アナログ増幅回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さが8nm以上であることが望ましい。以上のことから、特に、幅広いドレイン電圧の範囲にわたって、アナログ増幅回路の回路特性を向上する観点からは、アナログ増幅回路を構成する電界効果トランジスタが形成されたSOI基板の半導体層の厚さが8nm以上、かつ、12nm以下であることが望ましい。
 <<第2特徴点>>
 次に、本実施の形態1における第2特徴点は、SOI基板上に形成された電界効果トランジスタのチャネル形成領域内における導電型不純物の不純物濃度が、1×1018/cm以下であり、望ましくは、3×1017/cm、より望ましくは、1×1017/cm以下である点にある。具体的に、本実施の形態1における第2特徴点は、例えば、図7において、nチャネル型電界効果トランジスタQnのチャネル形成領域CH1に含まれているp型不純物(ボロンなど)の不純物濃度が、1×1018/cm以下であり、望ましくは、1×1017/cm以下である点にある。同様に、本実施の形態1における第2特徴点は、例えば、図7において、pチャネル型電界効果トランジスタQpのチャネル形成領域CH2に含まれているn型不純物(リンや砒素)の不純物濃度が、1×1018/cm以下であり、望ましくは、1×1017/cm以下である点にある。これにより、例えば、アナログ回路が複数のnチャネル型電界効果トランジスタQnを含む場合、複数のnチャネル型電界効果トランジスタQn同士において、チャネル形成領域CH1に含まれているp型不純物の不純物濃度のばらつきを低減することができる。例えば、アナログ回路の構成要素として、差動アンプが含まれる場合があり、この差動アンプは、互いに同一特性を有する複数のnチャネル型電界効果トランジスタQnを含むように構成されている。
 具体的に、図11は、差動アンプの機能および回路構成を模式的に示す図である。例えば、差動アンプは、入力端子「A」と入力端子「B」とを備え、入力端子「A」に入力された入力信号が、入力端子「B」に入力された入力信号よりも大きい場合に出力端子「OUT」から「1」を出力し、その他の場合には、出力端子「OUT」から「0」を出力する機能を有している。このような機能を有する差動アンプは、図11に示すように、バイアス部と差動増幅部と増幅部と出力部とから構成されている。そして、差動増幅部に着目すると、nチャネル型電界効果トランジスタQ1のゲート電極が入力端子「A」と接続され、かつ、nチャネル型電界効果トランジスタQ2のゲート電極が入力端子「B」と接続されている。このとき、nチャネル型電界効果トランジスタQ1とnチャネル型電界効果トランジスタQ2とは同一特性であることが要求される。すなわち、nチャネル型電界効果トランジスタQ1のしきい値電圧と、nチャネル型電界効果トランジスタQ2のしきい値電圧とは、同一であることが望まれる。なぜなら、入力端子「A」に入力される入力信号と、入力端子「B」に入力される入力信号とが等しい場合、出力端子「OUT」からは、「0」を出力する必要があるからである。すなわち、nチャネル型電界効果トランジスタQ1のしきい値電圧と、nチャネル型電界効果トランジスタQ2のしきい値電圧とが相違すると、入力端子「A」に入力される入力信号と、入力端子「B」に入力される入力信号とが等しいにも関わらず、しきい値電圧のばらつきに起因して、誤動作することが起こりうるからである。そして、例えば、nチャネル型電界効果トランジスタQ1のしきい値電圧と、nチャネル型電界効果トランジスタQ2のしきい値電圧とを等しくするためには、nチャネル型電界効果トランジスタQ1のチャネル形成領域に含まれるp型不純物の不純物濃度と、nチャネル型電界効果トランジスタQ2のチャネル形成領域に含まれるp型不純物の不純物濃度とを等しくする必要がある。この点に関し、チャネル形成領域に含まれるp型不純物の不純物濃度を高くすると、不純物濃度のばらつきが大きくなることから、nチャネル型電界効果トランジスタQ1のしきい値電圧と、nチャネル型電界効果トランジスタQ2のしきい値電圧とのばらつきが大きくなる。そこで、本実施の形態1では、nチャネル型電界効果トランジスタQ1のチャネル形成領域に含まれているp型不純物の不純物濃度を1×1018/cm以下にしており、望ましくは、1×1017/cm以下にしている。同様に、本実施の形態1では、nチャネル型電界効果トランジスタQ1のチャネル形成領域に含まれているp型不純物の不純物濃度を1×1018/cm以下にしており、望ましくは、1×1017/cm以下にしている。これにより、本実施の形態1における第2特徴点によれば、例えば、差動アンプに含まれるnチャネル型電界効果トランジスタQ1とnチャネル型電界効果トランジスタQ2とのそれぞれのチャネル形成領域に含まれているp型不純物の不純物濃度のばらつきを低減することができる。このことかは、本実施の形態1における第2特徴点によれば、nチャネル型電界効果トランジスタQ1のしきい値電圧と、nチャネル型電界効果トランジスタQ2のしきい値電圧とのばらつきを小さくすることができ、これによって、差動アンプの動作信頼性を向上できる。
 <<第2特徴点による副作用>>
 ただし、SOI基板上に形成された電界効果トランジスタのチャネル形成領域内における導電型不純物の不純物濃度を、1×1018/cm以下であり、望ましくは、1×1017/cm以下にするという本実施の形態1における第2特徴点を採用すると、電界効果トランジスタのしきい値電圧が低下してしまうという副作用が生じる。このような電界効果トランジスタのしきい値電圧の低下は、サブスレッドショルドリーク電流の増加を招くことになり、これによって、半導体装置の消費電力が増加してしまうことになる。したがって、サブスレッショルドリーク電流の増加を抑制するためには、電界効果トランジスタのしきい値電圧の低下を抑制する必要があり、SOI基板上に形成された電界効果トランジスタのしきい値電圧を維持するためには、電界効果トランジスタのチャネル形成領域内に含まれる導電型不純物の不純物濃度を高くする必要がある。そこで、本実施の形態1では、第2特徴点を採用することにより誘発されるしきい値電圧の低下という副作用を抑制する工夫を施している。すなわち、本実施の形態1では、サブスレッショルドリーク電流の増加を抑制する手段として、電界効果トランジスタのチャネル形成領域内に含まれる導電型不純物の不純物濃度を高くする手段に頼ることなく、代替え手段を採用する工夫を施している。
 <<副作用を抑制する対策1>>
 副作用を抑制する対策1の基本思想は、SOI基板の支持基板の部分のうち、SOI基板上に形成された電界効果トランジスタのチャネル形成領域の下方に位置し、かつ、埋め込み絶縁層と接する部分にウェル領域を形成し、このウェル領域に、バックゲート電圧を印加するという思想である。これにより、電界効果トランジスタのチャネル形成領域に含まれる導電型不純物の不純物濃度を、1×1018/cm以下であり、望ましくは、1×1017/cm以下にするという本実施の形態1における第2特徴点を採用したとしても、ウェル領域に印加するバックゲート電圧によって、電界効果トランジスタのサブスレッショルドリーク電流の増加を抑制することができる。具体的には、例えば、図7において、SOI基板上に形成されたnチャネル型電界効果トランジスタQ1のチャネル形成領域CH1の下方に位置し、かつ、埋め込み絶縁層BOXと接する部分にp型ウェルPWLを形成し、このp型ウェルPWLに負バイアスからなるバックゲート電圧を印加する。これにより、バックゲート電圧によって、nチャネル型電界効果トランジスタQ1のチャネル形成領域CH1のポテンシャルが引き上げられる結果、nチャネル型電界効果トランジスタQ1のサブスレッショルドリーク電流の増加を抑制することができる。特に、本実施の形態1では、nチャネル型電界効果トランジスタQ1の非動作時から動作時にわたって、バックゲート電圧を印加できる。
 なお、非動作時から動作時にわたってバックゲート電圧を印加し続ける以外の例として、非動作時にのみバックゲート電圧を印加して、動作時には、バックゲート電圧を印加しないように構成することもできる。これにより、未使用時のリーク電流を抑えることができるとともに、動作時において、低いしきい値状態で駆動電流を高めることができる。
 また、非動作時にバックゲート電圧を印加し、かつ、動作時には、時分割でバックゲート電圧を印加したり、バックゲート電圧を印加しなかったりすることもできる。さらには、動作時にバックゲート電圧を印加し、かつ、非動作時には、ある領域にだけバックゲート電圧を印加する一方、別の領域には、バックゲート電圧を印加しないように構成することもできる。
 同様に、例えば、図7において、SOI基板上に形成されたpチャネル型電界効果トランジスタQ2のチャネル形成領域CH2の下方に位置し、かつ、埋め込み絶縁層BOXと接する部分にn型ウェルNWLを形成し、このn型ウェルNWLに正バイアスからなるバックゲート電圧を印加する。これにより、バックゲート電圧によって、pチャネル型電界効果トランジスタQ2のサブスレッショルドリーク電流の増加を抑制することができる。特に、本実施の形態1では、pチャネル型電界効果トランジスタQ2の非動作時から動作時にわたって、バックゲート電圧を印加できる。
 なお、非動作時から動作時にわたってバックゲート電圧を印加し続ける以外の例として、非動作時にのみバックゲート電圧を印加して、動作時には、バックゲート電圧を印加しないように構成することもできる。これにより、未使用時のリーク電流を抑えることができるとともに、動作時において、低いしきい値状態で駆動電流を高めることができる。
 また、非動作時にバックゲート電圧を印加し、かつ、動作時には、時分割でバックゲート電圧を印加したり、バックゲート電圧を印加しなかったりすることもできる。さらには、動作時にバックゲート電圧を印加し、かつ、非動作時には、ある領域にだけバックゲート電圧を印加する一方、別の領域には、バックゲート電圧を印加しないように構成することもできる。
 ここで、本実施の形態では、埋め込み絶縁層BOXの厚さは、10nm以上、かつ、20nm以下となっているSOTB技術が採用されている。これにより、本実施の形態1における対策1では、ウェル領域に印加されるバックゲート電圧による電界効果トランジスタのチャネルのポテンシャル制御により、不必要なリーク電流を抑制することができる。
 <<副作用を抑制する対策2>>
 次に、副作用を抑制する対策2の基本思想は、いわゆる「フェルミレベルピニング」を利用して、電界効果トランジスタのしきい値電圧の低下を抑制する思想である。「フェルミレベルピニング」とは、以下に示す現象である。例えば、nチャネル型電界効果トランジスタに着目した場合、ゲート電極には、n型ポリシリコン膜が使用される。このとき、ゲート絶縁膜に、例えば、ハフニウムやアルミニウムなどの酸化シリコン膜よりも誘電率の高い元素を添加すると、n型ポリシリコン膜のフェルミ準位がシフトする現象である。具体的に、通常、n型ポリシリコン膜のフェルミ準位は、伝導帯の近傍に位置するが、ゲート絶縁膜にハフニウムやアルミニウムを添加すると、n型ポリシリコン膜のフェルミ準位が価電子帯側にシフトする。このことは、nチャネル型電界効果トランジスタのしきい値電圧が上昇することを意味する。通常は、ゲート電極を構成するn型ポリシリコン膜のフェルミ準位が伝導帯近傍に位置する場合に、設計値通りのしきい値電圧を確保できるが、上述した「フェルミレベルピニング」が生じると、nチャネル型電界効果トランジスタのしきい値電圧が設計値から高くなる方向にずれることになる。したがって、通常は、「フェルミレベルピニング」を抑制しようというインセンティブが働くことになる。
 ところが、本発明者は、発想の転換を図って、「フェルミレベルピニング」が生じると、nチャネル型電界効果トランジスタのしきい値電圧が上昇する点に着目して、上述した本実施の形態1における第2特徴点を採用することにより生じるしきい値電圧の低下という副作用を、意図的に「フェルミレベルピニング」を生じさせて抑制するのである。すなわち、副作用を抑制する対策2として、本実施の形態1においては、nチャネル型電界効果トランジスタのゲート絶縁膜に、例えば、ハフニウムやアルミニウムに代表される酸化シリコン膜よりも誘電率の高い元素を含むように構成している。これにより、本実施の形態1によれば、意図的に「フェルミレベルピニング」を生じさせることができる結果、nチャネル型電界効果トランジスタのしきい値電圧の低下を効果的に抑制できる。
 同様に、例えば、pチャネル型電界効果トランジスタに着目した場合、ゲート電極には、p型ポリシリコン膜が使用される。このとき、ゲート絶縁膜に、例えば、酸化シリコン膜よりも誘電率の高い元素を添加すると、p型ポリシリコン膜のフェルミ準位がシフトする(「フェルミレベルピニング」)。具体的に、通常、p型ポリシリコン膜のフェルミ準位は、価電子帯の近傍に位置するが、ゲート絶縁膜に酸化シリコン膜よりも誘電率の高い元素を添加すると、p型ポリシリコン膜のフェルミ準位が伝導帯側にシフトする。したがって、pチャネル型電界効果トランジスタにおいても、意図的に「フェルミレベルピニング」を生じさせることができる結果、pチャネル型電界効果トランジスタのしきい値電圧の低下を効果的に抑制できる。
 (実施の形態2)
 本実施の形態2では、アナログ回路を構成する電界効果トランジスタとデジタル回路を構成する電界効果トランジスタとを同一のSOI基板上に形成する例について説明する。
 <電界効果トランジスタに要求される特性の相違>
 アナログ回路を構成する電界効果トランジスタに要求される特性と、デジタル回路を構成する電界効果トランジスタに要求される特性とは相違する。具体的に、アナログ回路を構成する電界効果トランジスタには、飽和特性が良好なことや、ソースとドレインとの間の耐圧とゲート絶縁膜の耐圧とが高いことが要求される。一方、デジタル回路では、デジタル回路を構成する電界効果トランジスタのスイッチングを頻繁に実施することから、デジタル回路を構成する電界効果トランジスタには、高速なスイッチング特性が要求される。このように、アナログ回路を構成する電界効果トランジスタと、デジタル回路を構成する電界効果トランジスタとでは、要求される特性が異なる。このことから、アナログ回路を構成する電界効果トランジスタのデバイス構造と、デジタル回路を構成する電界効果トランジスタのデバイス構造とは、必然的に相違する。以下では、同一のSOI基板上に形成されたアナログ回路を構成する電界効果トランジスタとデジタル回路を構成する電界効果トランジスタとのデバイス構造について説明する。
 <デバイス構造>
 図12は、本実施の形態2における複数の電界効果トランジスタのデバイス構造を示す断面図である。具体的に、図12では、アナログ回路形成領域ACR1に、アナログ回路を構成するnチャネル型電界効果トランジスタQn1aが形成されている一方、デジタル回路形成領域DCR1に、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bが形成されている。なお、アナログ回路は、nチャネル型電界効果トランジスタQn1aだけでなく、pチャネル型電界効果トランジスタも構成要素として含み、かつ、デジタル回路も、nチャネル型電界効果トランジスタQn1bだけでなく、pチャネル型電界効果トランジスタも構成要素として含むが、図12では、省略している。ここで、SOI基板の半導体層(シリコン層)SLの厚さは、2nm以上、かつ、24nm以下である。
 <<nチャネル型電界効果トランジスタQn1aのデバイス構造>>
 図12において、SOI基板のアナログ回路形成領域ACR1には、nチャネル型電界効果トランジスタQn1aが形成されている。nチャネル型電界効果トランジスタQn1aは、SOI基板の半導体層(シリコン層)SLに形成されたソース領域SR1aと、SOI基板の半導体層(シリコン層)SLに形成され、ソース領域SR1aと離間して形成されたドレイン領域DR1aとを有している。このとき、ソース領域SR1aは、n型半導体領域NR1aと、このn型半導体領域NR1aよりも不純物濃度の低いエクステンション領域EX1aとから構成されている。同様に、ドレイン領域DR1aも、n型半導体領域NR1aと、このn型半導体領域NR1aよりも不純物濃度の低いエクステンション領域EX1aとから構成されている。そして、nチャネル型電界効果トランジスタQn1aは、ソース領域SR1aとドレイン領域DR1aとの間に挟まれたチャネル形成領域CH1aと、チャネル形成領域CH1a上に形成されたゲート絶縁膜GOX1aと、ゲート絶縁膜GOX1a上に形成されたゲート電極GE1aとを有している。ここで、ゲート電極GE1aの両側の側壁には、サイドウォールスペーサSWが形成されている。一方、SOI基板の支持基板SUBには、nチャネル型電界効果トランジスタQn1aのチャネル形成領域CH1aの下方に位置し、かつ、埋め込み絶縁層BOXと接するp型ウェルPWL1aが形成されている。このp型ウェルPWL1aには、例えば、負バイアスからなるバックゲート電圧が印加可能に構成されている。以上のようにして、SOI基板のアナログ回路形成領域ACR1に、本実施の形態2におけるnチャネル型電界効果トランジスタQn1aが形成されている。
 <<nチャネル型電界効果トランジスタQn1bのデバイス構造>>
 次に、図12において、SOI基板のデジタル回路形成領域DCR1には、nチャネル型電界効果トランジスタQn1bが形成されている。nチャネル型電界効果トランジスタQn1bは、SOI基板の半導体層(シリコン層)SLに形成されたソース領域SR1bと、SOI基板の半導体層(シリコン層)SLに形成され、ソース領域SR1bと離間して形成されたドレイン領域DR1bとを有している。このとき、ソース領域SR1bは、n型半導体領域NR1bと、このn型半導体領域NR1bよりも不純物濃度の低いエクステンション領域EX1bとから構成されている。同様に、ドレイン領域DR1bも、n型半導体領域NR1bと、このn型半導体領域NR1bよりも不純物濃度の低いエクステンション領域EX1bとから構成されている。そして、nチャネル型電界効果トランジスタQn1bは、ソース領域SR1bとドレイン領域DR1bとの間に挟まれたチャネル形成領域CH1bと、チャネル形成領域CH1b上に形成されたゲート絶縁膜GOX1bと、ゲート絶縁膜GOX1b上に形成されたゲート電極GE1bとを有している。ここで、ゲート電極GE1bの両側の側壁には、サイドウォールスペーサSWが形成されている。一方、SOI基板の支持基板SUBには、nチャネル型電界効果トランジスタQn1bのチャネル形成領域CH1bの下方に位置し、かつ、埋め込み絶縁層BOXと接するp型ウェルPWL1bが形成されている。このp型ウェルPWL1bには、例えば、負バイアスからなるバックゲート電圧が印加可能に構成されている。以上のようにして、SOI基板のデジタル回路形成領域DCR1に、本実施の形態2におけるnチャネル型電界効果トランジスタQn1bが形成されている。
 <<相違点>>
 上述したように構成されているnチャネル型電界効果トランジスタQn1aとnチャネル型電界効果トランジスタQn1bとは、アナログ回路とデジタル回路のそれぞれに要求される特性の相違に起因して、デバイス構造に相違点が存在する。以下では、nチャネル型電界効果トランジスタQn1aとnチャネル型電界効果トランジスタQn1bとの相違点について説明することにする。
 まず、第1相違点は、nチャネル型電界効果トランジスタQn1aにおけるソース領域SR1aとドレイン領域DR1aとの間の絶縁耐圧は、nチャネル型電界効果トランジスタQn1bにおけるソース領域SR1bとドレイン領域DR1bとの間の絶縁耐圧よりも大きくなっている。これは、アナログ回路では、デジタル回路よりも絶縁耐圧が高いことが要求されているからである。したがって、図12に示すように、本実施の形態2では、nチャネル型電界効果トランジスタQn1aのゲート電極GE1aのゲート長は、nチャネル型電界効果トランジスタQn1bのゲート電極GE1bのゲート長よりも長い。
 続いて、第2相違点は、nチャネル型電界効果トランジスタQn1aにおけるゲート絶縁膜GOX1aの絶縁耐圧は、nチャネル型電界効果トランジスタQn1bにおけるゲート絶縁膜GOX1bの絶縁耐圧よりも大きくなっている。これは、アナログ回路では、デジタル回路よりも絶縁耐圧が高いことが要求されているからである。したがって、図12に示すように、本実施の形態2では、nチャネル型電界効果トランジスタQn1aのゲート絶縁膜GOX1aの厚さは、nチャネル型電界効果トランジスタQn1bのゲート絶縁膜GOX1bの厚さよりも厚い。
 次に、第3相違点は、例えば、デジタル回路では、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bに対して、高速スイッチング特性が要求される。このため、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bには電流駆動力の大きいことが要求される。したがって、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bのしきい値電圧は、アナログ回路を構成するnチャネル型電界効果トランジスタQn1aのしきい値電圧よりも低くする必要がある。この第3相違点を実現する一例として、nチャネル型電界効果トランジスタQn1aのゲート電極GE1aを構成する導体膜の構成材料と、nチャネル型電界効果トランジスタQn1bのゲート電極GE1bを構成する導体膜の構成材料とを相違させることができる。これにより、nチャネル型電界効果トランジスタQn1aのゲート電極GE1aの仕事関数と、nチャネル型電界効果トランジスタQn1bのゲート電極GE1bの仕事関数とを相違させることができる。この結果、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bのしきい値電圧と、アナログ回路を構成するnチャネル型電界効果トランジスタQn1aのしきい値電圧とを相違させることができる。
 <回路例>
 本実施の形態2における半導体装置は、同一のSOI基板上にアナログ回路を構成するnチャネル型電界効果トランジスタQn1aと、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bとが形成されている。このようにアナログ回路とデジタル回路とが混載されている本実施の形態2における半導体装置は、例えば、アナログ回路とデジタル回路とからなるA/D変換器の構成に適用することができる。以下では、本実施の形態2における半導体装置を適用できるA/D変換器の構成について説明する。
 図13は、逐次比較型A/Dコンバータの回路構成を示す回路ブロック図である。図13において、逐次比較型A/Dコンバータは、サンプリングクロックに基づいて、アナログ入力電圧Vinを入力するサンプルホールド回路と、サンプルホールド回路でサンプルホールドされた入力電圧と基準電圧とを比較する比較器と、クロックに基づいて、逐次比較クロックを生成する逐次比較クロック生成部とを有する。さらに、逐次比較型A/Dコンバータは、逐次比較レジスタ(SAR)と、DA変換器と、出力レジスタとを有する。このように構成されている逐次比較型A/Dコンバータは、例えば、DA変換器で発生された第1電圧(例えば、FS/2とする)と、サンプルホールド回路でサンプルホールドされた入力電圧「Vin」とを比較器で比較する。そして、入力電圧>第1電圧(FS/2)の場合、最上位ビットを「1」にする一方、入力電圧<第1電圧(FS/2)の場合、最上位ビットを「0」にする。その後、DA変換器は、第2電圧(FS/2+FS/4)の電圧を発生して、この第2電圧と入力電圧とが比較で比較され、比較結果に基づいて、最上位の1桁下のビットを決定する。このような動作を繰り返すことにより、入力電圧に対応したデジタル出力を出力レジスタから出力する。このようにして、逐次比較型A/Dコンバータが動作することになる。
 このような逐次比較型A/Dコンバータには、例えば、サンプルホールド回路に代表されるアナログ回路と、逐次比較レジスタ(SAR)に代表されるデジタル回路とが含まれている。したがって、アナログ回路とデジタル回路とが混載されている本実施の形態2における半導体装置は、例えば、アナログ回路とデジタル回路とからなる逐次比較型A/D変換器の構成に適用することができる。
 <第2特徴点による副作用>
 本実施の形態2における半導体装置においても、SOI基板上に形成されたnチャネル型電界効果トランジスタQn1aのチャネル形成領域CH1a内における導電型不純物の不純物濃度を、1×1018/cm以下であり、望ましくは、1×1017/cm以下にするという前記実施の形態1における第2特徴点を採用する。同様に、本実施の形態2では、SOI基板上に形成されたnチャネル型電界効果トランジスタQn1bのチャネル形成領域CH1b内における導電型不純物の不純物濃度を、1×1018/cm以下であり、望ましくは、1×1017/cm以下にするという前記実施の形態1における第2特徴点を採用する。この場合、前記実施の形態1でも説明したように、電界効果トランジスタのしきい値電圧が低下してしまうという副作用が生じる。
 <副作用を抑制する対策1>
 副作用を抑制する対策1の基本思想は、SOI基板の支持基板の部分のうち、SOI基板上に形成された電界効果トランジスタ(nチャネル型電界効果トランジスタQn1a、nチャネル型電界効果トランジスタQn1b)のチャネル形成領域(CH1a、CH1b)の下方に位置し、かつ、埋め込み絶縁層BOXと接する部分にp型ウェル(PWL1a、PWL1b)を形成し、このp型ウェル(PWL1a、PWL1b)に、バックゲート電圧を印加するという思想である。これにより、電界効果トランジスタ(nチャネル型電界効果トランジスタQn1a、nチャネル型電界効果トランジスタQn1b)のチャネル形成領域(CH1a、CH1b)に含まれる導電型不純物の不純物濃度を、1×1018/cm以下であり、望ましくは、1×1017/cm以下にするという第2特徴点を採用したとしても、p型ウェルPWLに印加するバックゲート電圧によって、電界効果トランジスタ(nチャネル型電界効果トランジスタQn1a、nチャネル型電界効果トランジスタQn1b)のしきい値電圧の低下を抑制することができる。
 <副作用を抑制する対策2>
 次に、副作用を抑制する対策2の基本思想は、前記実施の形態1と同様に、いわゆる「フェルミレベルピニング」を利用して、電界効果トランジスタのしきい値電圧の低下を抑制する思想である。ここで、本実施の形態2においては、例えば、アナログ回路を構成するnチャネル型電界効果トランジスタQn1aのゲート絶縁膜GOX1aは、酸化シリコン膜よりも誘電率の高い材料(High―k)材料を含むように構成する一方、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bのゲート絶縁膜GOX1bは、酸化シリコン膜から構成することができる。この場合、アナログ回路を構成するnチャネル型電界効果トランジスタQn1aのしきい値電圧を、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bのしきい値電圧よりも高くすることができる。
 さらに、デジタル回路においても、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bでのサブスレッショルドリーク電流を低減するために、デジタル回路を構成するnチャネル型電界効果トランジスタQn1bのゲート絶縁膜GOX1bにも、酸化シリコン膜よりも誘電率の高い材料を含むように構成することができる。このとき、例えば、アナログ回路を構成するnチャネル型電界効果トランジスタQn1aのゲート絶縁膜GOX1aにおける「High-k材料」の含有量は、デジタル回路を構成するnチャネル型電界効果トランジスタQn1aのゲート絶縁膜GOX1bにおける「High-k材料」含有量よりも少なくすることが望ましい。以下に、この理由について説明する。
 例えば、「フェルミレベルピニング」は、酸化シリコン膜からなるゲート絶縁膜に、ハフニウムやアルミニウムに代表される「High-k材料」を添加すると、ゲート絶縁膜中に固定電荷(酸素空孔)が形成されることによって、ゲート絶縁膜とゲート電極との界面における電子の分布が変化して、フェルミレベルがシフトする現象として理解されている。すなわち、ゲート絶縁膜に「High-k材料」を添加すると、固定電荷が形成される。そして、この固定電荷に電子が捕獲されたり離脱したりすることによって、電子の移動が生じることに起因して、電気的なノイズが発生する。したがって、ゲート絶縁膜に添加される「High-k材料」が多くなればなるほど、ゲート絶縁膜中に形成される固定電荷の数が多くなる。このことは、ゲート絶縁膜に添加される「High-k材料」が多くなればなるほど、電気的なノイズ成分が多くなることを意味する。
 この点に関し、アナログ回路は、デジタル回路に比べてノイズの影響を受けやすい。特に、本実施の形態2では、アナログ回路を構成する電界効果トランジスタをSOI基板上に形成することにより、低電圧駆動を実現している。このことは、アナログ回路における信号成分が小さくなることを意味している。一方、低電圧駆動を実現しても、ノイズ成分は減少しないことから、S/N比(シグナル/ノイズ比)は小さくなる。そして、ゲート絶縁膜中に形成される固定電荷が多くなると、さらに、電気的なノイズ成分が多くなり、さらなるS/N比の低下を招くことになる。したがって、本実施の形態2では、アナログ回路を構成する電界効果トランジスタのしきい値電圧の低下を抑制するために、ゲート絶縁膜中に「High-k材料」を添加する対策を取りながら、ゲート絶縁膜中に添加する「High-k材料」を最小限としている。このことから、本実施の形態2では、アナログ回路を構成する電界効果トランジスタのゲート絶縁膜における「High-k材料」の含有量を、デジタル回路を構成する電界効果トランジスタのゲート絶縁膜における「High-k材料」含有量よりも少なくしているのである。これにより、アナログ回路を構成する電界効果トランジスタにおいては、S/N比の低下を抑制しながら、しきい値電圧の低下を抑制することができるという顕著な効果を得ることができる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 前記実施の形態は、以下の形態を含む。
 (付記1)
 支持基板と、
 前記支持基板上に形成された絶縁層と、
 前記絶縁層上に形成された半導体層と、
 前記半導体層内に形成された第1ソース領域と、
 前記半導体層内に形成され、かつ、前記第1ソース領域とは離間して形成された第1ドレイン領域と、
 前記第1ソース領域と前記第1ドレイン領域とに挟まれた第1チャネル形成領域と、
 前記第1チャネル形成領域上に形成された第1ゲート絶縁膜と、
 前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
 を有し、
 前記第1ゲート絶縁膜と、前記第1ゲート電極と、前記第1チャネル形成領域と、前記第1ソース領域と、前記第1ドレイン領域とを含む第1電界効果トランジスタは、第1アナログ回路の構成要素であり、
 前記第1アナログ回路は、少なくとも1つ以上の前記第1電界効果トランジスタを含み、
 前記半導体層の厚さは、2nm以上、かつ、24nm以下であり、
 前記半導体層内に形成され、かつ、前記第1ソース領域と前記第1ドレイン領域とは離間して形成された第2ソース領域と、
 前記半導体層内に形成され、かつ、前記第1ソース領域と前記第1ドレイン領域と前記第2ソース領域とは離間して形成された第2ドレイン領域と、
 前記第2ソース領域と前記第2ドレイン領域とに挟まれた第2チャネル形成領域と、
 前記第2チャネル形成領域上に形成され、かつ、前記第1ゲート絶縁膜とは離間して形成された第2ゲート絶縁膜と、
 前記第2ゲート絶縁膜上に形成され、かつ、前記第1ゲート電極とは離間して形成された第2ゲート電極と、
 を有し、
 前記第2ゲート絶縁膜と、前記第2ゲート電極と、前記第2チャネル形成領域と、前記第2ソース領域と、前記第2ドレイン領域とを含む第2電界効果トランジスタは、第1デジタル回路の構成要素である、半導体装置。
 (付記2)
 付記1に記載の半導体装置において、
 前記第2チャネル形成領域内における導電型不純物の不純物濃度は、1×1017/cm以下であり、
 前記第1ゲート絶縁膜は、酸化シリコン膜よりも誘電率の高い材料を含み、
 前記第2ゲート絶縁膜は、酸化シリコン膜から構成される、半導体装置。
 (付記3)
 付記1に記載の半導体装置において、
 前記第2チャネル形成領域内における導電型不純物の不純物濃度は、1×1017/cm以下であり、
 前記第1ゲート絶縁膜は、酸化シリコン膜よりも誘電率の高い材料を含み、
 前記第2ゲート絶縁膜は、酸化シリコン膜よりも誘電率の高い材料を含み、
 前記第1ゲート絶縁膜における前記材料の含有量は、前記第2ゲート絶縁膜における前記材料の含有量よりも少ない、半導体装置。
 (付記4)
 支持基板と、
 前記支持基板上に形成された絶縁層と、
 前記絶縁層上に形成された半導体層と、
 前記半導体層内に形成された第1ソース領域と、
 前記半導体層内に形成され、かつ、前記第1ソース領域とは離間して形成された第1ドレイン領域と、
 前記第1ソース領域と前記第1ドレイン領域とに挟まれた第1チャネル形成領域と、
 前記第1チャネル形成領域上に形成された第1ゲート絶縁膜と、
 前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
 前記半導体層内に形成され、かつ、前記第1ソース領域と前記第1ドレイン領域とは離間して形成された第2ソース領域と、
 前記半導体層内に形成され、かつ、前記第1ソース領域と前記第1ドレイン領域と前記第2ソース領域とは離間して形成された第2ドレイン領域と、
 前記第2ソース領域と前記第2ドレイン領域とに挟まれた第2チャネル形成領域と、
 前記第2チャネル形成領域上に形成され、かつ、前記第1ゲート絶縁膜とは離間して形成されたた第2ゲート絶縁膜と、
 前記第2ゲート絶縁膜上に形成され、かつ、前記第1ゲート電極とは離間して形成された第2ゲート電極と、
 を有し、
 前記第1ゲート絶縁膜と、前記第1ゲート電極と、前記第1チャネル形成領域と、前記第1ソース領域と、前記第1ドレイン領域とを含む第1電界効果トランジスタは、A/Dコンバータのアナログ回路の構成要素であり、
 前記第2ゲート絶縁膜と、前記第2ゲート電極と、前記第2チャネル形成領域と、前記第2ソース領域と、前記第2ドレイン領域とを含む第2電界効果トランジスタは、A/Dコンバータのデジタル回路の構成要素であり、
 前記半導体層の厚さは、2nm以上、かつ、24nm以下である、半導体装置。
 (付記5)
 付記4に記載の半導体装置において、
 前記第1電界効果トランジスタにおける前記第1ソース領域と前記第1ドレイン領域との間の絶縁耐圧は、前記第2電界効果トランジスタにおける前記第2ソース領域と前記第2ドレイン領域との間の絶縁耐圧よりも大きい、半導体装置。
 (付記6)
 付記4に記載の半導体装置において、
 前記第1ゲート絶縁膜の膜厚は、前記第2ゲート絶縁膜の膜厚よりも厚い、半導体装置。
 (付記7)
 付記4に記載の半導体装置において、
 前記第1ゲート電極のゲート長は、前記第2ゲート電極のゲート長よりも長い、半導体装置。
 (付記8)
 付記4に記載の半導体装置において、
 前記第1ゲート電極を構成する第1導体膜は、前記第2ゲート電極を構成する第2導体膜と構成材料が異なる、半導体装置。
 BOX 埋め込み絶縁層
 CH1 チャネル形成領域
 CH2 チャネル形成領域
 DR1 ドレイン領域
 DR2 ドレイン領域
 GE1 ゲート電極
 GE2 ゲート電極
 GOX1 ゲート絶縁膜
 GOX2 ゲート絶縁膜
 NWL n型ウェル
 PWL p型ウェル
 SR1 ソース領域
 SR2 ソース領域
 SUB 支持基板

Claims (20)

  1.  支持基板と、
     前記支持基板上に形成された絶縁層と、
     前記絶縁層上に形成された半導体層と、
     前記半導体層内に形成された第1ソース領域と、
     前記半導体層内に形成され、かつ、前記第1ソース領域とは離間して形成された第1ドレイン領域と、
     前記第1ソース領域と前記第1ドレイン領域とに挟まれた第1チャネル形成領域と、
     前記第1チャネル形成領域上に形成された第1ゲート絶縁膜と、
     前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
     を有し、
     前記第1ゲート絶縁膜と、前記第1ゲート電極と、前記第1チャネル形成領域と、前記第1ソース領域と、前記第1ドレイン領域とを含む第1電界効果トランジスタは、第1アナログ回路の構成要素であり、
     前記第1アナログ回路は、少なくとも1つ以上の前記第1電界効果トランジスタを含み、
     前記半導体層の厚さは、2nm以上、かつ、24nm以下である、半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記第1ゲート電極のゲート長は、100nm以下である、半導体装置。
  3.  請求項2に記載の半導体装置において、
     前記第1ソース領域に印加される電位と前記第1ドレイン領域に印加される電位との差の絶対値は、0.4V以上、かつ、1.2V以下である、半導体装置。
  4.  請求項3に記載の半導体装置において、
     前記第1チャネル形成領域内における導電型不純物の不純物濃度は、1×1017/cmよりも大きく、かつ、1×1018/cm以下である、半導体装置。
  5.  請求項4に記載の半導体装置において、
     前記第1アナログ回路は、複数の前記第1電界効果トランジスタを含む、半導体装置。
  6.  請求項5に記載の半導体装置において、
     前記第1アナログ回路は、差動アンプを含み、
     前記差動アンプは、複数の前記第1電界効果トランジスタを含む、半導体装置。
  7.  請求項6に記載の半導体装置において、
     前記絶縁層の厚さは、10nm以上、かつ、20nm以下であり、
     前記支持基板には、前記第1チャネル形成領域の下方に位置し、かつ、前記絶縁層と接する第1ウェル領域が形成されている、半導体装置。
  8.  請求項7に記載の半導体装置において、
     前記第1ゲート絶縁膜は、酸化シリコン膜から構成され、
     前記第1ウェル領域には、前記第1電界効果トランジスタの非動作時から動作時にわたって、前記第1バックゲート電圧が印加される、半導体装置。
  9.  請求項6に記載の半導体装置において、
     前記第1ゲート絶縁膜は、酸化シリコン膜よりも誘電率の高い材料を含む、半導体装置。
  10.  請求項9に記載の半導体装置において、
     前記第1ゲート絶縁膜は、酸化シリコン膜に、少なくとも、ハフニウムとアルミニウムとのいずれかの元素を添加した膜からなる、半導体装置。
  11.  請求項1に記載の半導体装置において、
     前記半導体層の厚さは、8nm以上、かつ、12nm以下である、半導体装置。
  12.  請求項11に記載の半導体装置において、
     前記第1ゲート電極のゲート長は、150nm以下である、半導体装置。
  13.  請求項12に記載の半導体装置において、
     前記第1ソース領域に印加される電位と前記第1ドレイン領域に印加される電位との差の絶対値は、0.4V以上、かつ、1.6V以下である、半導体装置。
  14.  請求項13に記載の半導体装置において、
     前記第1チャネル形成領域内における導電型不純物の不純物濃度は、1×1017/cm以下である、半導体装置。
  15.  請求項14に記載の半導体装置において、
     前記第1アナログ回路は、複数の前記第1電界効果トランジスタを含む、半導体装置。
  16.  請求項15に記載の半導体装置において、
     前記第1アナログ回路は、差動アンプを含み、
     前記差動アンプは、複数の前記第1電界効果トランジスタを含む、半導体装置。
  17.  請求項16に記載の半導体装置において、
     前記絶縁層の厚さは、10nm以上、かつ、20nm以下であり、
     前記支持基板には、前記第1チャネル形成領域の下方に位置し、かつ、前記絶縁層と接する第1ウェル領域が形成されている、半導体装置。
  18.  請求項17に記載の半導体装置において、
     前記第1ゲート絶縁膜は、酸化シリコン膜から構成され、
     前記第1ウェル領域には、前記第1電界効果トランジスタの非動作時から動作時にわたって、前記第1バックゲート電圧が印加される、半導体装置。
  19.  請求項16に記載の半導体装置において、
     前記第1ゲート絶縁膜は、酸化シリコン膜よりも誘電率の高い材料を含む、半導体装置。
  20.  請求項19に記載の半導体装置において、
     前記第1ゲート絶縁膜は、酸化シリコン膜に、少なくとも、ハフニウムとアルミニウムとのいずれかの元素を添加した膜からなる、半導体装置。
PCT/JP2017/040912 2017-11-14 2017-11-14 半導体装置 WO2019097568A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2017/040912 WO2019097568A1 (ja) 2017-11-14 2017-11-14 半導体装置
JP2019554065A JP6983905B2 (ja) 2017-11-14 2017-11-14 半導体装置
CN202311238705.2A CN117096160A (zh) 2017-11-14 2017-11-14 半导体器件
CN201780094075.2A CN111033721B (zh) 2017-11-14 2017-11-14 半导体器件
US16/753,949 US20200313000A1 (en) 2017-11-14 2017-11-14 Semiconductor device
JP2021189817A JP7228020B2 (ja) 2017-11-14 2021-11-24 半導体装置
US17/897,844 US20220406936A1 (en) 2017-11-14 2022-08-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040912 WO2019097568A1 (ja) 2017-11-14 2017-11-14 半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/753,949 A-371-Of-International US20200313000A1 (en) 2017-11-14 2017-11-14 Semiconductor device
US17/897,844 Continuation US20220406936A1 (en) 2017-11-14 2022-08-29 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2019097568A1 true WO2019097568A1 (ja) 2019-05-23

Family

ID=66539470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040912 WO2019097568A1 (ja) 2017-11-14 2017-11-14 半導体装置

Country Status (4)

Country Link
US (2) US20200313000A1 (ja)
JP (1) JP6983905B2 (ja)
CN (2) CN111033721B (ja)
WO (1) WO2019097568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064639A (ja) * 2019-10-10 2021-04-22 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978125B1 (en) * 2020-04-21 2021-04-13 Namlab Ggmbh Transistor with adjustable rectifying transfer characteristic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124795A (ja) * 2001-10-12 2003-04-25 Hitachi Ltd 半導体集積回路およびその給電方法
JP2006303753A (ja) * 2005-04-19 2006-11-02 Renesas Technology Corp 半導体集積回路装置
JP2008182004A (ja) * 2007-01-24 2008-08-07 Renesas Technology Corp 半導体集積回路
JP2011519152A (ja) * 2008-04-11 2011-06-30 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) 相補型p、及びnMOSFETトランジスタの製造方法、このトランジスタを包含する電子デバイス、及び少なくとも1つのこのデバイスを包含するプロセッサ
JP2013191760A (ja) * 2012-03-14 2013-09-26 Renesas Electronics Corp 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007748A1 (fr) * 2006-07-13 2008-01-17 National University Corporation Tohoku University dispositif semi-conducteur
US8643117B2 (en) * 2009-01-19 2014-02-04 Hitachi, Ltd. Semiconductor device, method for manufacturing same, and semiconductor storage device
JP2010251344A (ja) * 2009-04-10 2010-11-04 Hitachi Ltd 半導体装置およびその製造方法
JP6573792B2 (ja) * 2015-07-10 2019-09-11 ルネサスエレクトロニクス株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124795A (ja) * 2001-10-12 2003-04-25 Hitachi Ltd 半導体集積回路およびその給電方法
JP2006303753A (ja) * 2005-04-19 2006-11-02 Renesas Technology Corp 半導体集積回路装置
JP2008182004A (ja) * 2007-01-24 2008-08-07 Renesas Technology Corp 半導体集積回路
JP2011519152A (ja) * 2008-04-11 2011-06-30 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) 相補型p、及びnMOSFETトランジスタの製造方法、このトランジスタを包含する電子デバイス、及び少なくとも1つのこのデバイスを包含するプロセッサ
JP2013191760A (ja) * 2012-03-14 2013-09-26 Renesas Electronics Corp 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064639A (ja) * 2019-10-10 2021-04-22 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP7292171B2 (ja) 2019-10-10 2023-06-16 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
CN111033721B (zh) 2023-10-20
JPWO2019097568A1 (ja) 2020-10-22
JP6983905B2 (ja) 2021-12-17
CN111033721A (zh) 2020-04-17
US20200313000A1 (en) 2020-10-01
US20220406936A1 (en) 2022-12-22
CN117096160A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
KR100271745B1 (ko) 반도체 장치
US7652520B2 (en) High voltage gain topology for analog circuits in short channel technologies
US20220406936A1 (en) Semiconductor device
US20090020811A1 (en) Guard ring structures for high voltage cmos/low voltage cmos technology using ldmos (lateral double-diffused metal oxide semiconductor) device fabrication
JP3456913B2 (ja) 半導体装置
JP2012523112A (ja) 明白に異なる閾値電圧を有するトランジスタを持つsoiから製造する集積回路
US8486754B1 (en) Method for manufacturing a gate-control diode semiconductor device
US20130178012A1 (en) Method for manufacturing a gate-control diode semiconductor device
KR100538192B1 (ko) 반도체 장치
JP2009534855A (ja) 駆動回路及び該駆動回路で使用されるドレイン拡張型トランジスタ
JP5269913B2 (ja) 高降伏電圧の二重ゲート半導体装置
US10790367B2 (en) High-voltage metal-oxide-semiconductor field effect transistor
JP7228020B2 (ja) 半導体装置
TW201719884A (zh) 高壓半導體裝置
TWI780477B (zh) 開關裝置
US11227926B2 (en) Semiconductor device and method for fabricating the same
KR20230043602A (ko) 산화물 반도체를 포함하는 cmos 로직 소자
JP2013041891A (ja) 半導体装置
KR102353462B1 (ko) 3진 인버터 소자
JP5016938B2 (ja) 半導体装置
CN112436005B (zh) 半导体装置
JP4763555B2 (ja) 半導体装置
CN102983169B (zh) 高击穿电压的双栅极半导体器件
JP2003303834A (ja) 半導体装置
JPS626670B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931852

Country of ref document: EP

Kind code of ref document: A1