WO2019049662A1 - センサチップおよび電子機器 - Google Patents

センサチップおよび電子機器 Download PDF

Info

Publication number
WO2019049662A1
WO2019049662A1 PCT/JP2018/030905 JP2018030905W WO2019049662A1 WO 2019049662 A1 WO2019049662 A1 WO 2019049662A1 JP 2018030905 W JP2018030905 W JP 2018030905W WO 2019049662 A1 WO2019049662 A1 WO 2019049662A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor chip
sensor
pixel array
global control
control circuit
Prior art date
Application number
PCT/JP2018/030905
Other languages
English (en)
French (fr)
Inventor
陽太郎 安
克彦 半澤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to EP22168750.2A priority Critical patent/EP4057354B1/en
Priority to JP2019540871A priority patent/JP7167036B2/ja
Priority to US16/469,818 priority patent/US10872920B2/en
Priority to EP18853942.3A priority patent/EP3605610B1/en
Priority to CN201880005066.6A priority patent/CN110088908A/zh
Publication of WO2019049662A1 publication Critical patent/WO2019049662A1/ja
Priority to US17/084,170 priority patent/US11889213B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/532Control of the integration time by controlling global shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/74Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/779Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates

Definitions

  • the present disclosure relates to a sensor chip and an electronic device, and more particularly to a sensor chip and an electronic device capable of performing faster control.
  • CMOS complementary metal oxide semiconductor
  • ToF time-of-flight
  • fluorescence detection sensors For example, high-speed driving to exceed a frame rate of 1 Mfps is required, and in a sensor chip, it is necessary to control pulses of a control signal in the order of sub ⁇ seconds or 10 n seconds.
  • Patent Document 1 discloses a ToF sensor that can immediately execute signal processing for tracking an object measured in a three-dimensional image by outputting measurement information at random.
  • the present disclosure has been made in view of such a situation, and is intended to enable faster control.
  • a pixel array portion in a rectangular area in which a plurality of sensor elements are arranged in an array, and a drive element that simultaneously drives the sensor elements are arranged in one direction.
  • a global control circuit the longitudinal direction of which is disposed along the long side of the pixel array portion, and the drive element is connected to a control line provided for each row of the sensor elements.
  • a pixel array portion in a rectangular area in which a plurality of sensor elements are arranged in an array, and a drive element that simultaneously drives the sensor elements are arranged in one direction.
  • the pixel array unit is a rectangular area in which a plurality of sensor elements are arranged in an array, and in the global control circuit, drive elements that simultaneously drive the sensor elements are unidirectional.
  • the drive elements are respectively connected to control lines provided for each row of sensor elements.
  • faster control can be performed.
  • FIG. 1 is a block diagram showing a configuration example of a first embodiment of a sensor chip to which the present technology is applied.
  • the sensor chip 11 includes a pixel array unit 12, a global control circuit 13, a rolling control circuit 14, a column ADC (Analog-to-Digital Converter) 15, and an input / output unit 16 on a semiconductor substrate. Arranged and configured.
  • the pixel array unit 12 is a rectangular area in which various sensor elements corresponding to the function of the sensor chip 11 are, for example, photoelectric conversion elements for photoelectrically converting light arranged in an array.
  • the pixel array unit 12 is a horizontally long rectangular area in which a long side is provided in the horizontal direction and a short side is provided in the vertical direction.
  • the global control circuit 13 is a control circuit that outputs a global control signal that controls a plurality of sensor elements arranged in the pixel array unit 12 to be simultaneously (simultaneously) driven at substantially the same timing.
  • the global control circuit 13 is disposed on the upper side of the pixel array unit 12 so that the longitudinal direction thereof is along the long side of the pixel array unit 12. Therefore, in the sensor chip 11, the control lines 21 for supplying the global control signal output from the global control circuit 13 to the sensor elements of the pixel array unit 12 are arrayed for each column of sensor elements arranged in a matrix in the pixel array unit 12. In the vertical direction of the pixel array unit 12.
  • the rolling control circuit 14 is a control circuit that outputs a rolling control signal that controls a plurality of sensor elements arranged in the pixel array unit 12 to be driven sequentially (sequentially) sequentially for each row.
  • the rolling control circuit 14 is disposed on the right side of the pixel array unit 12 so that the longitudinal direction thereof is along the short side of the pixel array unit 12.
  • the column ADC 15 performs analog-to-digital (AD) conversion of analog sensor signals output from the sensor elements of the pixel array unit 12 into digital values in parallel for each column. At this time, the column ADC 15 can remove reset noise included in the sensor signal, for example, by performing CDS (Correlated Double Sampling) processing on the sensor signal.
  • AD analog-to-digital
  • CDS Correlated Double Sampling
  • the input / output unit 16 is provided with a terminal for performing input / output between the sensor chip 11 and the external circuit.
  • the power necessary for driving the global control circuit 13 via the input / output unit 16 Is input to the sensor chip 11.
  • the input / output unit 16 is disposed along the global control circuit 13 so as to be adjacent to the global control circuit 13.
  • the input / output unit 16 is preferably disposed in the vicinity of the global control circuit 13 in order to reduce the influence of IR drop (voltage drop).
  • the sensor chip 11 is configured, and a layout in which the global control circuit 13 is arranged along the long side of the pixel array unit 12 is adopted.
  • the sensor chip 11 can measure the distance from the global control circuit 13 to the sensor element disposed at the far end (the lower end in the example of FIG. 1) of the control line 21. It can be shorter than the layout arranged along the short side.
  • the sensor chip 11 can improve the delay amount and the slew rate generated in the global control signal output from the global control circuit 13, and can control the sensor element at higher speed.
  • the sensor chip 11 is an image sensor that performs global shutter driving, high-speed control of transfer signals, reset signals, overflow gate signals and the like supplied to pixels becomes possible.
  • the sensor chip 11 is a ToF sensor, high-speed control of the MIX signal is possible.
  • the detection error It becomes.
  • the sensor chip 11 can improve the delay amount and the slew rate generated in the global control signal as described above, such a detection error can be suppressed.
  • the input / output unit 16 can be disposed in the vicinity of the global control circuit 13 so that the power supply can be an independent wiring.
  • the rolling control circuit 14 is stopped.
  • the global control circuit 13 In the sensor chip 11, while the global control circuit 13 often operates in the exposure period, the rolling control circuit 14 is stopped.
  • the global control circuit 13 In the sensor chip 11, while the rolling control circuit 14 operates in the reading period, the global control circuit 13 often stops. Therefore, the sensor chip 11 is required to control the global control circuit 13 and the rolling control circuit 14 independently. Furthermore, in the sensor chip 11, in order to secure in-plane synchronization, it is common for the global control circuit 13 to adopt a clock tree structure as shown in C of FIG. It is preferable to arrange independently of 14.
  • the upper side of the drawing is described as the upper side of the pixel array unit 12 and the lower side of the drawing is described as the lower side of the pixel array unit 12 according to the illustrated configuration example. If the pixel array unit 12 is disposed along the long side, the same effect can be obtained regardless of which of the upper side and the lower side is disposed. The same applies to the pixel array unit 12 and the column ADC 15.
  • a of FIG. 2 shows a first configuration example of the global control circuit 13
  • B of FIG. 2 shows a second configuration example of the global control circuit 13.
  • the third configuration example of the global control circuit 13 is shown in FIG.
  • the global control circuit 13 is configured to simultaneously output global control signals according to the number of rows of sensor elements arranged in the pixel array unit 12, but in FIG. An arrangement for simultaneously outputting eight global control signals is schematically illustrated.
  • the global control circuit 13 shown in A of FIG. 2 is configured to include one internal buffer 31 and eight drive elements 32a to 32h.
  • the internal buffer 31 is connected to one end of the internal wiring provided along the longitudinal direction, and the driving element 32a is driven in one direction according to the position of the control line 21 in FIG. To 32 h are connected to the internal wiring. Therefore, the global control signal input to global control circuit 13 is supplied to drive elements 32a to 32h from one end side (left side in the example of FIG. 2) of the internal wiring through internal buffer 31 and connected to each of them It is simultaneously output to the line 21.
  • the global control circuit 13A shown in B of FIG. 2 is configured to include two internal buffers 31a and 31b and eight drive elements 32a to 32h.
  • internal buffers 31a and 31b are connected to both ends of the internal wiring provided along the longitudinal direction of the global control circuit 13A, and one direction is selected according to the position of the control line 21 in FIG.
  • the drive elements 32a to 32h are connected to the internal wiring. Therefore, global control signals input to global control circuit 13A are supplied to drive elements 32a to 32h from both ends of the internal wiring via internal buffers 31a and 31b, and are simultaneously output to control lines 21 connected thereto. Be done.
  • the global control circuit 13B shown in C of FIG. 2 is configured to include seven internal buffers 31a to 31g and eight driving elements 32a to 32h.
  • the internal buffers 31a to 31g form a clock tree structure, and in the final stage, drive elements 32a to 32h arranged in one direction according to the position of the control line 21. It has a connection configuration to be connected.
  • the output of one internal buffer 31 is input to two internal buffers 31 in the first stage, and the inputs of those two internal buffers 31 are input to the four internal buffers 31 in the second stage.
  • the structure of being input is a structure repeated in a plurality of stages. Therefore, the global control signal input to the global control circuit 13B is supplied to the drive elements 32a to 32h via the clock tree structure including the internal buffers 31a to 31g, and is simultaneously output to the control lines 21 connected thereto. Be done.
  • the global control circuit 13B having such a configuration can avoid the occurrence of a delay between the drive elements 32a to 32h, and ensures in-plane uniformity as compared with, for example, the global control circuits 13 and 13A. be able to. That is, it is preferable to adopt the global control circuit 13B in an application where the simultaneousness is strongly required in the direction in which the drive elements 32 are arranged.
  • a of FIG. 3 shows a first configuration example of the rolling control circuit 14, and B of FIG. 3 shows a second configuration example of the rolling control circuit 14.
  • the rolling control circuit 14 is configured to sequentially output rolling control signals according to the number of rows of sensor elements arranged in the pixel array unit 12, but in FIG. An arrangement for sequentially outputting eight rolling control signals is schematically illustrated.
  • the rolling control circuit 14 shown in A of FIG. 3 adopts a shift register system, and includes two internal buffers 41 and 42, eight registers 43a to 43h, and eight driving elements 44a to 44h. Configured Although the configuration example in which the two internal buffers 41 and 42 are arranged is shown for simplification, a configuration in which a plurality of internal buffers are arranged according to the wiring length of the internal buffer is adopted. May be
  • the rolling control circuit 14 has an internal buffer 41 connected to one end of the internal wiring provided along the longitudinal direction, and the internal of the rolling control circuit 14 according to the position of the row of sensor elements arranged in the pixel array unit 12.
  • the connection configuration is such that the resistors 43a to 43h are connected to the wiring.
  • the internal buffer 42 is connected to the register 43a, the registers 43a to 43h are sequentially connected, and the driving elements 44a to 44h are connected to the registers 43a to 43h, respectively. .
  • the start pulse supplied to the register 43a via the internal buffer 42 is sequentially shifted to the registers 43a to 43h according to the clock supplied via the internal buffer 41, and the registers 43a to 43h are respectively Are sequentially output as rolling control signals from the drive elements 44a to 44h connected to the.
  • the rolling control circuit 14A shown in B of FIG. 3 adopts a decoder system, and includes two internal buffers 41 and 42, a decoder 45, eight AND gates 46a to 46h, and eight driving elements 44a to 44h. It is configured with.
  • the decoder 45 may use either a method including a latch or a method not including a latch. For example, in a method in which the decoder 45 latches a signal, a method in which an address is sent at one time or a method in which an address is divided and sent can be adopted.
  • the internal buffer 41 is connected to the decoder 45, the internal buffer 42 is connected to the input ends of the AND gates 46a to 46h, and the decoder 45 is AND gate 46a for each row. Through 46 h are connected.
  • the rolling control circuit 14A has a connection configuration in which the output ends of the AND gates 46a to 46h are connected to the drive elements 44a to 44h, respectively.
  • the driving elements 44a to 44h of the row designated by the address are supplied to the decoder 45 through the internal buffer 41 for the pulses supplied to the AND gates 46a to 46h through the internal buffer 42. Are sequentially output as a rolling control signal.
  • the global control circuit 13 and the rolling control circuit 14 have different circuit configurations.
  • FIG. 4 is a block diagram showing a first modification of the sensor chip 11 shown in FIG. Note that among the blocks constituting the sensor chip 11-a shown in FIG. 4, the same reference numerals are assigned to components common to those of the sensor chip 11 in FIG. 1, and the detailed description thereof is omitted.
  • the arrangement of the pixel array unit 12, the rolling control circuit 14, the column ADC 15, and the input / output unit 16 is the same as that of the sensor chip 11 of FIG. It has become.
  • the sensor chip 11-a two global control circuits 13-1 and 13-2 are disposed along the upper side and the lower side of the pixel array unit 12, respectively.
  • the configuration is different from the sensor chip 11 of FIG. 1 in that the points -1 and 32-2 are connected. That is, in the sensor chip 11-a, the drive element 32-1 of the global control circuit 13-1 supplies a global control signal from the upper end of the control line 21, and the drive element 32-2 of the global control circuit 13-2 is A global control signal is supplied from the lower end of the control line 21.
  • the sensor chip 11-a configured in this way can suppress the skew between the two drive elements 32-1 and 32-2, and can be used as a global control signal propagated through the control line 21. It is possible to eliminate the variation in the delay time that occurs. Thus, in the sensor chip 11-a, control of the sensor element can be performed at higher speed. In the sensor chip 11-a, it is necessary to perform control so as to avoid an increase in the delay difference of the output of the global control signal so that a through current does not occur.
  • FIG. 5 is a block diagram showing a second modification of the sensor chip 11 shown in FIG. Note that among the blocks constituting the sensor chip 11-b shown in FIG. 5, the same reference numerals are assigned to configurations common to the sensor chip 11 in FIG. 1, and the detailed description thereof is omitted.
  • the arrangement of the pixel array unit 12, the rolling control circuit 14, the column ADC 15, and the input / output unit 16 is the same as that of the sensor chip 11 of FIG. It has become.
  • sensor chip 11-b has two global control circuits 13-1 and 13-2 arranged along the upper side and the lower side of pixel array 12 and arranged in a matrix in pixel array 12.
  • the configuration is different from that of the sensor chip 11 of FIG. 1 in that two control lines 21-1 and 21-2 are disposed so as to be separated at the center of the row of sensor elements.
  • the drive element 32-1 is connected to the upper end of the control line 21-1
  • the drive element 32-2 is connected to the lower end of the control line 21-2.
  • the drive element 32-1 included in the global control circuit 13-1 performs global control from the upper end of the control line 21-1. It is configured to provide a signal.
  • the drive element 32-2 included in the global control circuit 13-2 is global from the lower end of the control line 21-2. It is configured to provide a control signal.
  • the sensor chip 11-b configured in this way has a distance from the drive element 32-1 to the sensor element disposed at the far end (the lower end in the example of FIG. 5) of the control line 21-1 and the drive element 32.
  • the distance from the point -2 to the sensor element disposed at the far end (the upper end in the example of FIG. 5) of the control line 21-2 can be shorter than, for example, the sensor chip 11 of FIG.
  • the sensor chip 11-b can further reduce the delay amount and the slew rate generated in the global control signals output from the global control circuits 13-1 and 13-2, so that the sensor element can be further speeded up to the sensor element. Control can be performed.
  • the sensor chip 11A is configured by arranging a pixel array unit 12A, a global control circuit 13A, a rolling control circuit 14A, a column ADC 15A, and an input / output unit 16A on a semiconductor substrate.
  • the pixel array unit 12A is a vertically long rectangular area provided with long sides in the vertical direction and short sides in the horizontal direction. It has a different configuration. Therefore, in the sensor chip 11A, the global control circuit 13A and the input / output unit 16A are disposed on the left side of the pixel array unit 12A along the long side of the pixel array unit 12A. Along with this, the control lines 21A are arranged in the left-right direction of the pixel array unit 12A for each row of sensor elements arranged in a matrix in the pixel array unit 12A.
  • the rolling control circuit 14A is disposed on the right side (the side facing the global control circuit 13A) of the pixel array unit 12A along the long side of the pixel array unit 12A.
  • the global control circuit 13A and the pixel array unit 12A may be disposed on the same side with respect to the pixel array unit 12A, but in this case, it is assumed that one of the wiring lengths will be long, so It is preferable to set it as such.
  • the column ADC 15A is disposed on the lower side of the pixel array unit 12A along the short side of the pixel array unit 12A.
  • the column ADCs 15A are arranged in the direction orthogonal to the rolling control circuit 14A because the column ADCs 15A need to turn on the sensor elements connected to one AD converter one by one. Yes, it avoids the layout where each wiring overlaps.
  • the wiring length of the control line 21A is set by the layout in which the global control circuit 13A is disposed along the long side of the pixel array section 12A. It can be shortened. Therefore, the sensor chip 11A can control the sensor elements at higher speed as in the sensor chip 11 of FIG.
  • FIGS. 7 to 10 a third embodiment of a sensor chip to which the present technology is applied will be described. Note that among the blocks constituting the sensor chip 11B shown in FIGS. 7 to 10, the same reference numerals are assigned to configurations common to the sensor chip 11 in FIG. 1 and detailed descriptions thereof will be omitted.
  • FIG. 7 shows a perspective view of the sensor chip 11B
  • FIG. 8 shows a block diagram of the sensor chip 11B.
  • the sensor chip 11B has a stacked structure in which a sensor substrate 51 on which the pixel array unit 12 is formed and a logic substrate 52 on which the global control circuit 13 is formed are stacked.
  • the sensor chip 11B is connected to the control line 21 of the sensor substrate 51 and the global control circuit 13 of the logic substrate 52 in the peripheral region of the sensor chip 11B which does not overlap with the pixel array unit 12 when viewed in plan. Connection configuration. That is, in the example shown in FIG. 7, in the sensor chip 11B, the plurality of control lines 21 arranged along the column direction of the sensor elements arranged in a matrix in the pixel array unit 12 is on the upper side of the sensor substrate 51 It is connected to the global control circuit 13 side.
  • the global control signal output from the global control circuit 13 is supplied to the sensor element of the pixel array unit 12 from the upper side of the sensor substrate 51, as shown by the white arrow in FIG. .
  • the longitudinal direction of the global control circuit 13 is disposed along the long side of the pixel array unit 12, and the sensor chip 11 B has the shortest distance from the global control circuit 13 to the sensor elements of the pixel array unit 12. It has a similar structure.
  • the pixel array unit 12 and TSV (Through Silicon Via) regions 53-1 to 53-3 are arranged on the sensor substrate 51.
  • a global control circuit 13 On the logic board 52, a global control circuit 13, a rolling control circuit 14, a column ADC 15, a logic circuit 17, and TSV regions 54-1 to 54-3 are arranged.
  • the sensor signal output from the sensor element of the pixel array unit 12 is AD converted by the column ADC 15, subjected to various signal processing in the logic circuit 17, and then output to the outside.
  • the TSV regions 53-1 to 53-3 and the TSV regions 54-1 to 54-3 are regions in which through electrodes for electrically connecting the sensor substrate 51 and the logic substrate 52 are formed, for example, control lines
  • the through electrodes are arranged every 21. Therefore, the TSV regions 53-1 to 53-3 and the TSV regions 54-1 to 54-3 are arranged to overlap when the sensor substrate 51 and the logic substrate 52 are stacked.
  • a micro bump or a copper (Cu-Cu) connection can be used.
  • the wiring length of the control line 21 is set by the layout in which the global control circuit 13 is disposed along the long side of the pixel array unit 12 as in the sensor chip 11 of FIG. It can be shortened. Therefore, the sensor chip 11B can control the sensor element at higher speed as in the sensor chip 11 of FIG.
  • FIG. 9 is a block diagram showing a first modification of the sensor chip 11B shown in FIG. Note that among the blocks constituting the sensor chip 11B-a shown in FIG. 9, the same reference numerals are assigned to configurations common to the sensor chip 11B in FIG. 8, and the detailed description thereof is omitted.
  • the sensor chip 11B-a has a laminated structure in which the sensor substrate 51 on which the pixel array unit 12 is formed and the logic substrate 52 on which the global control circuit 13 is formed are laminated. In this point, the configuration is common to the sensor chip 11B of FIG.
  • the sensor chip 11B-a is arranged on the logic substrate 52 so that the two global control circuits 13-1 and 13-2 are along the upper side and the lower side of the pixel array unit 12, respectively. Different from the sensor chip 11B of FIG. 8 in that two control lines 21-1 and 21-2 are disposed so as to be separated at the centers of the rows of sensor elements disposed in a matrix. There is.
  • the drive element 32-1 is connected to the upper end of the control line 21-1, and the drive element is connected to the lower end of the control line 21-2. 32-2 is connected. Therefore, in the sensor chip 11B-a, in the sensor element disposed above the center of the pixel array unit 12, the drive element 32-1 included in the global control circuit 13-1 performs global control from the upper end of the control line 21-1. It is configured to provide a signal. In the sensor chip 11B-a, the sensor element disposed below the center of the pixel array unit 12 has the drive element 32-2 included in the global control circuit 13-2 global from the lower end of the control line 21-2. It is configured to provide a control signal.
  • the sensor chip 11B-a configured in this way has a distance from the drive element 32-1 to the sensor element disposed at the far end (the lower end in the example of FIG. 9) of the control line 21-1 and the drive element 32.
  • the distance from the point -2 to the sensor element disposed at the far end (the upper end in the example of FIG. 9) of the control line 21-2 can be shorter than, for example, the sensor chip 11B of FIG.
  • the sensor chip 11B-a can further reduce the delay amount and the slew rate generated in the global control signals output from the global control circuits 13-1 and 13-2, so that the sensor element can be further speeded up. Control can be performed.
  • FIG. 10 is a block diagram showing a second modification of the sensor chip 11B shown in FIG. Note that among the blocks constituting the sensor chip 11B-b shown in FIG. 10, the same reference numerals are assigned to configurations common to the sensor chip 11B in FIG. 8 and detailed descriptions thereof will be omitted.
  • the sensor chip 11B-b has a stacked structure in which the sensor substrate 51 on which the pixel array unit 12 is formed and the logic substrate 52 on which the global control circuit 13 is formed are stacked. In this point, the configuration is common to the sensor chip 11B of FIG.
  • the sensor chip 11B-b is arranged on the logic substrate 52 so that the two global control circuits 13-1 and 13-2 are along the upper side and the lower side of the pixel array unit 12, respectively. And the drive elements 32-1 and 32-2 are connected to the sensor chip 11B in FIG.
  • the drive element 32-1 of the global control circuit 13-1 supplies the global control signal from the upper end of the control line 21;
  • the drive element 32-2 of the global control circuit 13-2 is configured to supply a global control signal from the lower end of the control line 21.
  • the sensor chip 11B-b configured in this way can suppress the skew between the two drive elements 32-1 and 32-2, and can be used as a global control signal propagated through the control line 21. It is possible to eliminate the variation in the delay time that occurs. As a result, in the sensor chip 11B-b, control of the sensor element can be performed at higher speed. In the sensor chip 11B-b, it is necessary to perform control so as to avoid an increase in the delay difference of the output of the global control signal so that a through current does not occur.
  • the sensor chip 11B configured as described above, in the stack structure in which the logic substrate 51 and the sensor substrate 52 are stacked, it is possible to control the sensor elements at higher speed as in the sensor chip 11 of FIG.
  • the column ADC 15 reads the sensor signal from the lower end side of the pixel array unit 12 through the TSV area 53-3 and the TSV area 54-3 arranged on the lower side.
  • the column ADC 15 may be arranged near the upper side and the lower side, and sensor signals may be read out from the upper end side and the lower end side of the pixel array unit 12, respectively.
  • the sensor chip 11C has a laminated structure in which a sensor substrate 51 on which the pixel array unit 12 is formed and a logic substrate 52 on which the global control circuit 13 is formed are laminated. Therefore, the configuration is common to the sensor chip 11B of FIG.
  • the sensor chip 11C is different from the sensor chip 11B of FIG. 8 in that the pixel array portion 12C is a vertically long rectangular area, similarly to the pixel array portion 12A of the sensor chip 11A shown in FIG. It is a structure. Accordingly, in the sensor chip 11C, the global control circuit 13C is disposed on the left side of the logic substrate 52 along the long side of the pixel array unit 12C. Along with this, the control lines 21C are arranged in the left-right direction of the pixel array unit 12C for each row of sensor elements arranged in a matrix in the pixel array unit 12C.
  • the rolling control circuit 14C is disposed on the right side of the logic substrate 52 (the side facing the global control circuit 13C) along the long side of the pixel array unit 12C.
  • the global control circuit 13C and the pixel array unit 12C may be disposed on the same side of the logic substrate 52, but in this case, it is assumed that one of the wiring lengths will be long, as shown in FIG. It is preferable to set it as arrangement.
  • the column ADC 15C is disposed on the lower side of the logic substrate 52 along the short side of the pixel array unit 12C.
  • the column ADCs 15C are arranged in the direction orthogonal to the rolling control circuit 14C because the column ADCs 15C need to turn on the sensor elements connected to one AD converter one by one. Yes, it avoids the layout where each wiring overlaps.
  • the wiring length of the control line 21C is set by the layout in which the global control circuit 13C is disposed along the long side of the pixel array unit 12C. It can be shortened. Therefore, the sensor chip 11C can control the sensor element at higher speed, as with the sensor chip 11B of FIG.
  • the sensor chip 11D has a laminated structure in which a sensor substrate 51 on which the pixel array unit 12 is formed and a logic substrate 52 on which the global control circuit 13 is formed are laminated. Therefore, the configuration is common to the sensor chip 11B of FIG.
  • the plurality of ADCs 15 correspond to the area where the pixel array portion 12 of the sensor substrate 51 is formed in the logic substrate 52, and in the example of FIG.
  • the sensor chip 11 is different from the sensor chip 11B of FIG. 8 in that 12 is disposed.
  • the sensor chip 11D is configured by arranging the ADC 15 in each predetermined area of the pixel array unit 12. As illustrated, when using twelve ADCs 15-1 to 15-12, the ADCs 15 are arranged for each of the areas obtained by equally dividing the pixel array unit 12 into 12 and output from the sensor elements provided in each of the areas. A / D conversion of the sensor signal is performed in parallel. In addition to the configuration in which the ADCs 15 are disposed in each predetermined region of the pixel array unit 12, for example, one ADC 15 may be disposed in each sensor element of the pixel array unit 12.
  • the wiring length of the control line 21 is set by the layout in which the global control circuit 13 is disposed along the long side of the pixel array 12 as in the sensor chip 11B of FIG. It can be shortened. Therefore, the sensor chip 11D can control the sensor element at a higher speed as in the case of the sensor chip 11B of FIG.
  • the positional relationship between the rolling control circuit 14 and the ADC 15 is not limited to the restrictions as in the column ADC 15 shown in FIG.
  • the rolling control circuit 14 is disposed on the right side of the logic substrate 52, but the rolling control circuit 14 may be disposed on either the upper side or the lower side. That is, the rolling control circuit 14 may be disposed anywhere as long as there is no restriction on the disposition position of the pixel array unit 12 with respect to the sensor chip 11D (for example, the center position of the sensor chip 11D with respect to the optical center).
  • the rolling control circuit 14 may be located at the opposite side of the area where the ADC 15 is disposed with respect to the global control circuit 13.
  • the layout can be well balanced. Thereby, the characteristics of the sensor chip 11D can be improved.
  • FIGS. 13 to 22 A sixth embodiment of a sensor chip to which the present technology is applied will be described with reference to FIGS. 13 to 22. Note that among the blocks constituting the sensor chip 11E shown in FIGS. 13 to 22, the same reference numerals are assigned to configurations common to the sensor chip 11B in FIGS. 7 and 8, and the detailed description thereof will be omitted.
  • the sensor chip 11E has the global control circuit 13 disposed so as to overlap the center of the pixel array unit 12 when viewed in plan, and the global control circuit 13 controls the control line 21 at the center of the pixel array unit 12. It has a connection configuration to be connected to
  • the sensor chip 11E can be connected in the pixel array unit 12 by connection of copper (Cu) constituting a wiring, connection using a micro bump or a TSV, or the like,
  • Cu copper
  • the pixel array unit 12 is a horizontally long rectangular area in which a long side is provided in the horizontal direction and a short side is provided in the vertical direction. Therefore, in the logic board 52, the global control circuit 13 is arranged such that the longitudinal direction thereof is along the long side of the pixel array unit 12. Then, the global control circuit 13 has a logic substrate 52 so that the wiring output from the driving element 32 of the global control circuit 13 is connected to the center of the control line 21 disposed in the vertical direction of the pixel array unit 12. Placed in the approximate center of the Note that, in plan view, the wiring output from the drive element 32 may penetrate the substrate directly from the global control circuit 13 toward the pixel array unit 12.
  • the distance from the drive element 32 to the sensor elements disposed at both ends of the control line 21 can be shortened. Therefore, the sensor chip 11E can improve the delay amount and the slew rate of the global control signal, and can control the sensor element at higher speed.
  • the configuration as shown in the sensor chip 11E is suitable for application to, for example, a ToF sensor.
  • FIG. 15 is a block diagram showing a first modification of the sensor chip 11E shown in FIG. Note that among the blocks constituting the sensor chip 11E-a shown in FIG. 15, the same reference numerals are assigned to configurations common to the sensor chip 11E in FIG. 14, and the detailed description thereof is omitted.
  • the sensor chip 11E-a has a stacked structure in which a sensor substrate 51 on which the pixel array unit 12 is formed and a logic substrate 52 on which the global control circuit 13 is formed are stacked.
  • the configuration is common to the sensor chip 11E of FIG.
  • sensor chip 11E-a has two control lines 21-1 and 21-2 divided at the center with respect to one row of sensor elements arranged in a matrix in sensor array 51 on sensor substrate 51.
  • the sensor chip 11E of FIG. 14 in the logic substrate 52, the sensor chip of FIG. 14 is that the global control circuit 13 includes two drive elements 32-1 and 32-2 for one row of sensor elements. It is different from 11E.
  • the drive element 32-1 is connected to the end on the center side of the control line 21-1, and the drive element 32-2 is connected to the end on the center side of the control line 21-2. It has a connection configuration to be connected. That is, in the sensor chip 11E-a, among the plurality of sensor elements arranged in one row of the pixel array section 12, the sensor elements arranged above the center are driven by the driving element 32-1 via the control line 21-1. The sensor element which is driven by the driving circuit and is disposed below the center is configured to be driven by the driving element 32-2 via the control line 21-2.
  • the sensor chip 11E-a configured in this manner is driven by the distance from the drive element 32-1 to the sensor element disposed at the far end of the control line 21-1, and The distance from the element 32-2 to the sensor element disposed at the far end of the control line 21-2 can be shortened. Therefore, the sensor chip 11E-a can improve the delay amount and the slew rate of the global control signal, similarly to the sensor chip 11E of FIG.
  • the size of the drive element 32 can be smaller than that of the sensor chip 11E of FIG. Furthermore, in the sensor chip 11E-a, by arranging two drive elements 32 for one row of sensor elements, the layout of the drive elements 32 is integrated in one place, and the whole of the sensor chip 11E-a is completed. The layout structure can be simplified.
  • FIG. 16 is a block diagram showing a second modification of the sensor chip 11E shown in FIG. Note that among the blocks constituting the sensor chip 11E-b shown in FIG. 16, the same reference numerals are assigned to configurations common to the sensor chip 11E in FIG. 14, and detailed descriptions thereof will be omitted.
  • the sensor chip 11E-b shown in FIG. 16 has a laminated structure in which the sensor substrate 51 on which the pixel array unit 12 is formed and the logic substrate 52 on which the global control circuit 13 is formed are laminated.
  • the configuration is common to the sensor chip 11E of FIG.
  • the sensor chip 11E-b two control lines 21-1 and 21-2 divided at the center with respect to one row of sensor elements arranged in a matrix in the pixel array unit 12 on the sensor substrate 51. are arranged differently from the sensor chip 11E of FIG. Further, the sensor chip 11E-b is different from the sensor chip 11E of FIG. 14 in that two global control circuits 13-1 and 13-2 are disposed on the logic board 52.
  • the drive element 32-1 is connected to the center of the control line 21-1, and the drive element 32-2 is connected to the center of the control line 21-2. There is. That is, in the sensor chip 11E-b, among the plurality of sensor elements arranged in one row of the pixel array section 12, the sensor elements arranged above the center are driven by the driving element 32-1 via the control line 21-1. The sensor element which is driven by the driving circuit and is disposed below the center is configured to be driven by the driving element 32-2 via the control line 21-2.
  • the sensor chip 11E-b configured in this way has a distance from the drive element 32-1 to the sensor element disposed at the far end of the control line 21-1 as compared with the sensor chip 11E of FIG.
  • the distance from the drive element 32-2 to the sensor element disposed at the far end of the control line 21-2 can be shortened.
  • the sensor chip 11E-b can be driven at higher speed than the sensor chip 11E of FIG. 14, and the delay amount and the slew rate of the global control signal can be further improved.
  • the logic circuit 17 is arranged at the central position between them. can do.
  • the column ADC 15 may be disposed at a central position between the global control circuits 13-1 and 13-2.
  • the configuration as shown in the sensor chip 11E-b is suitable for application to, for example, a ToF sensor.
  • FIG. 17 is a block diagram showing a third modification of the sensor chip 11E shown in FIG. Note that among the blocks constituting the sensor chip 11E-c shown in FIG. 17, the same reference numerals are assigned to configurations common to the sensor chip 11E in FIG. 14, and detailed description thereof will be omitted.
  • the sensor chip 11E-c shown in FIG. 17 has a laminated structure in which the sensor substrate 51 on which the pixel array unit 12 is formed and the logic substrate 52 on which the global control circuit 13 is formed are laminated.
  • the configuration is common to the sensor chip 11E of FIG.
  • sensor chip 11 E-c has two control lines 21-1 and 21-2 divided at the center with respect to one row of sensor elements arranged in a matrix in sensor array 51 on sensor substrate 51. Are arranged differently from the sensor chip 11E of FIG. Further, the sensor chip 11E-c is different from the sensor chip 11E of FIG. 14 in that two global control circuits 13-1 and 13-2 are disposed on the logic substrate 52.
  • the sensor chip 11E-c similarly to the sensor chip 11E-b in FIG.
  • the connection configuration is such that 32-2 is connected. Therefore, the sensor chip 11E-c can be driven at a higher speed than the sensor chip 11E of FIG. 14 like the sensor chip 11E-b of FIG. 16, further improving the delay amount and the slew rate of the global control signal.
  • the column ADC 15-1 is disposed on the upper side of the logic substrate 52, and the column ADC 15-2 is disposed on the lower side of the logic substrate 52.
  • the sensor chip 11E-c configured in this way has a structure that targets the layout up and down, and as a result, the symmetry is improved. As a result, the characteristics of the sensor chip 11E-c can be improved.
  • FIG. 18 is a block diagram showing a fourth modification of the sensor chip 11E shown in FIG. Note that among the blocks constituting the sensor chip 11E-d shown in FIG. 18, the same reference numerals are assigned to configurations common to the sensor chip 11E in FIG. 14, and the detailed description thereof is omitted.
  • the sensor chip 11E-d shown in FIG. 18 has a laminated structure in which the sensor substrate 51 on which the pixel array unit 12 is formed and the logic substrate 52 on which the global control circuit 13 is formed are laminated.
  • the configuration is common to the sensor chip 11E of FIG.
  • the global control circuit 13-1 is located approximately at the center of the upper half of the control line 21. It is different from the sensor chip 11E of FIG. 14 in that it is connected so that the global control circuit 13-2 is connected to substantially the center of the lower half of the control line 21. . That is, in the sensor chip 11E-d, one control line 21 to which the control lines 21-1 and 21-2 in FIG. 17 are connected is used.
  • the sensor chip 11E-d configured in this way can suppress skew between the two drive elements 32-1 and 32-2, and can be used as a global control signal propagated through the control line 21. It is possible to eliminate the variation in the delay time that occurs. Thus, the sensor chip 11E-d can control the sensor element at higher speed. In the sensor chip 11E-d, it is necessary to control so as to avoid an increase in the delay difference of the output of the global control signal so that a through current is not generated.
  • FIG. 19 is a block diagram showing a fifth modification of the sensor chip 11E shown in FIG. Note that among the blocks constituting the sensor chip 11E-e shown in FIG. 19, the same reference numerals are assigned to configurations common to the sensor chip 11E in FIG. 14, and detailed description thereof will be omitted. Further, in the sensor chip 11E-e shown in FIG. 19, in order to avoid the illustration being complicated, illustration of a part of blocks constituting the sensor chip 11E-e is omitted.
  • the sensor chip 11E-e shown in FIG. 19 has a stacked structure in which the sensor substrate 51 on which the pixel array unit 12 is formed and the logic substrate 52 on which the global control circuit 13 is formed are stacked.
  • the configuration is common to the sensor chip 11E of FIG.
  • control lines 21-1 to 21-4 divided into four for one row of sensor elements arranged in a matrix on the pixel array unit 12 on the sensor substrate 51 are arranged.
  • 14 is different from the sensor chip 11E of FIG.
  • the sensor chip 11E-e is different from the sensor chip 11E of FIG. 14 in that four global control circuits 13-1 to 13-4 are disposed on the logic substrate 52.
  • the drive elements 32-1 to 32-4 of the global control circuits 13-1 to 13-4 are connected at the centers of the control lines 21-1 to 21-4, respectively. ing. Therefore, the sensor chip 11E-e can further shorten the distance from each of the drive elements 32-1 to 32-4 to the sensor element disposed at the far end of the control lines 21-1 to 21-4. Thus, the sensor chip 11E-e can further speed up the control of the sensor element.
  • the sensor chip 11E-e it is assumed that the column ADC 15A, the logic circuit 17 and the like are separately arranged, but it is necessary to adopt a layout that does not affect the characteristics even in such a case. It becomes.
  • control line 21 is divided into three or five or more. It may be divided.
  • a corresponding global control circuit 13 can be connected to substantially the center of the divided control line 21.
  • FIG. 20 is a block diagram showing a sixth modification of the sensor chip 11E shown in FIG. Among the blocks constituting the sensor chip 11E-f shown in FIG. 20, the same reference numerals are designated to components common to the sensor chip 11E of FIG. 14, and the detailed description thereof will be omitted.
  • the sensor chip 11E-f shown in FIG. 20 has a laminated structure in which the sensor substrate 51 on which the pixel array unit 12 is formed and the logic substrate 52 on which the global control circuit 13 is formed are laminated.
  • the configuration is common to the sensor chip 11E of FIG.
  • the sensor chip 11E-f four global control circuits 13-1 to 13-4 are arranged on the logic substrate 52, and the global control circuits 13-1 to 13-4 are arranged to the control line 21.
  • the sensor chip 11E is different from the sensor chip 11E of FIG. 14 in that the connection configuration is such that connections are made at even intervals. That is, in the sensor chip 11E-d, one control line 21 to which the control lines 21-1 to 21-4 in FIG. 19 are connected is used.
  • the sensor chip 11E-f configured in this manner can suppress the skew between the four drive elements 32-1 to 32-4, and is generated in the global control signal propagated through the control line 21. Variations in delay time can be eliminated. Thus, the sensor chip 11E-f can control the sensor element at a higher speed. In the sensor chip 11E-f, it is necessary to control so as to avoid an increase in the delay difference of the output of the global control signal so that a through current is not generated.
  • FIG. 21 is a block diagram showing a seventh modification of the sensor chip 11E shown in FIG.
  • the same reference numerals are designated to components common to the sensor chip 11E-e of FIG. 19, and the detailed description thereof will be omitted.
  • the sensor chip 11E-g is configured to include one global control circuit 13, and in place of the global control circuits 13-2 to 13-4 of the sensor chip 11E-e in FIG. To 55-3.
  • the buffer circuits 55-1 to 55-3 respectively have buffers 56-1 to 56-3, and the output of the drive element 32 of the global control circuit 13 is branched by each of the buffers 56-1 to 56-3.
  • FIG. 22 is a block diagram showing an eighth modification of the sensor chip 11E shown in FIG. Among the blocks constituting the sensor chip 11E-h shown in FIG. 22, the same reference numerals are assigned to components common to the sensor chip 11E-f in FIG. 20, and the detailed description thereof is omitted.
  • the sensor chip 11E-g is configured to include one global control circuit 13, and in place of the global control circuits 13-2 to 13-4 of the sensor chip 11E-f in FIG. To 55-3.
  • the buffer circuits 55-1 to 55-3 respectively have buffers 56-1 to 56-3, and the output of the drive element 32 of the global control circuit 13 is branched by each of the buffers 56-1 to 56-3. , Control line 21 is connected.
  • the sensor chip 11F shown in FIG. 23 has a stacked structure in which the sensor substrate 51 and the two logic substrates 52-1 and 52-2 are stacked. That is, the present technology can be applied to a structure in which three semiconductor substrates are stacked.
  • the pixel array unit 12 is formed on the sensor substrate 51 of the first layer, and the global control circuit 13, the memory 61-1, and the logic substrate 52-1 of the second layer. 61-2 is formed, and for example, the column ADC 15 and the logic circuit 17 (not shown) are formed on the third logic board 52-2.
  • the global control circuit 13 is disposed on the logic substrate 52-1 along the longitudinal direction of the pixel array portion 12 of the sensor substrate 51, thereby obtaining the sensor chip 11E of FIG. Similarly, control of the sensor element can be performed at higher speed.
  • the global control circuit 13 is stacked between the sensor substrate 51 and the logic substrate 52-2. It is preferable to arrange at the center of the logic board 52-1. Thereby, the distance from the global control circuit 13 to the sensor element disposed at the far end of the control line 21 can be shortened. Of course, if the distance from the global control circuit 13 to the sensor element disposed at the far end of the control line 21 can be shortened, the layout is not limited to that shown in FIG.
  • FIG. 24 is a perspective view showing a first modified example of the sensor chip 11F shown in FIG.
  • the pixel array section 12 is formed on the sensor substrate 51 of the first layer, and the memories 61-1 and 61-2 are formed on the logic substrate 52-1 of the second layer.
  • the global control circuit 13 and the column ADC 15 and the logic circuit 17 are formed on the third logic board 52-2.
  • the global control circuit 13 is disposed on the logic substrate 52-2 along the longitudinal direction of the pixel array portion 12 of the sensor substrate 51, whereby the sensor chip of FIG. Similar to 11E, control of the sensor element can be performed at higher speed.
  • FIG. 25 is a perspective view showing a second modification of the sensor chip 11F shown in FIG.
  • the pixel array unit 12 is formed on the sensor substrate 51 of the first layer, and the memory 61 is formed on the logic substrate 52-1 of the second layer.
  • the global control circuit 13 and the column ADC 15 and the logic circuit 17 are formed on the logic substrate 52-2.
  • the control line 21 is connected to the global control circuit 13 using the TSV region formed in the peripheral region of the sensor chip 11F-b. Connection configuration.
  • the sensor chip 11F-b configured in this way, the sensor chip of FIG. 13 is arranged by arranging the global control circuit 13 on the logic substrate 52-2 along the longitudinal direction of the pixel array unit 12 of the sensor substrate 51. Similar to 11E, control of the sensor element can be performed at higher speed.
  • the global control circuit 13 may be disposed at two locations, or may be disposed at a plurality of two or more locations. It may be arranged.
  • the semiconductor substrate on which the memory 61 is arranged, and the arrangement position or division number of the memory 61 can be appropriately laid out according to the arrangement of the global control circuit 13.
  • the pixel array unit 12 is disposed on the first semiconductor substrate, the column ADC 15 and the logic circuit 17 are disposed on the second semiconductor substrate, and the memory 61 is disposed on the third semiconductor substrate. You may Even in such a configuration, the wiring length can be shortened by arranging the global control circuit 13 on the second semiconductor substrate, but the global control circuit 13 is arranged on the semiconductor substrate on which the memory 61 is arranged. May be
  • the arrangement of the global control circuit 13 in the sensor chip 11 is not limited to those described in the above embodiments, and various layouts as shown in FIG. 26 can be adopted.
  • the global control circuit 13 is disposed along the long side of the pixel array unit 12, a layout not shown may be employed.
  • the pixel array unit 12 and the global control circuit 13 are disposed on the sensor substrate 51, and the rolling control circuit 14, the column ADC 15, and the logic circuit 17 are disposed on the logic substrate 52.
  • the global control circuit 13 is disposed on the lower side of the pixel array unit 12 along the long side of the pixel array unit 12.
  • the pixel array unit 12 and the global control circuit 13 are disposed on the sensor substrate 51, and the rolling control circuit 14, the column ADC 15, and the logic circuit 17 are provided on the logic substrate 52. It is a laid out layout.
  • the global control circuit 13 is disposed on the upper side of the pixel array unit 12 along the long side of the pixel array unit 12.
  • the pixel array unit 12 and the global control circuits 13-1 and 13-2 are disposed on the sensor substrate 51, and the rolling control circuit 14 on the logic substrate 52,
  • the layout is such that the column ADC 15 and the logic circuit 17 are arranged.
  • the global control circuits 13-1 and 13-2 are disposed on the upper side and the lower side of the pixel array unit 12 along the long side of the pixel array unit 12, respectively.
  • the pixel array unit 12 and the global control circuits 13-1 and 13-2 are disposed on the sensor substrate 51, and the rolling control circuit 14 on the logic substrate 52,
  • the layout is such that the column ADC 15 and the logic circuit 17 are arranged.
  • the global control circuits 13-1 and 13-2 are disposed on the upper side and the lower side of the pixel array unit 12 along the long side of the pixel array unit 12, respectively.
  • Two control lines 21-1 and 21-2 are arranged so as to be separated at the centers of the rows of sensor elements arranged in a matrix in the pixel array unit 12.
  • the pixel array unit 12 and the global control circuits 13-1 and 13-2 are disposed on the sensor substrate 51, and the rolling control circuit 14 on the logic substrate 52,
  • the layout is such that the column ADC 15 and the logic circuit 17 are arranged.
  • the input / output unit 16 is disposed on the logic substrate 52 along the long side of the pixel array unit 12.
  • the sensor chip 11G-d is configured to supply power from the input / output unit 16 to the global control circuit 13 via the TSV area 54-1 and the TSV area 53-1.
  • power may be supplied to the global control circuit 13 by using copper (Cu) connections constituting the wiring, micro bumps, or the like.
  • the wiring for supplying power to the global control circuit 13 may use the same connection method as the control line 21 or may use another combination of connection methods.
  • the column ADC 15 is disposed on one side of the logic board 52.
  • the layout in which the column ADCs 15 are disposed on both sides of the logic board 52 is employed. It is also good.
  • the positions of the column ADC 15 and the logic circuit 17 are not limited to the arrangement as shown in FIG.
  • the global control circuit 13 can be arranged in various layouts, and the degree of freedom of the layout is increased, and the global control circuit 13 and the rolling control circuit The effect of individually controlling 14 and 15 increases.
  • FIG. 27 is a block diagram showing a configuration example of a distance image sensor which is an electronic device using the sensor chip 11.
  • the distance image sensor 201 is configured to include an optical system 202, a sensor chip 203, an image processing circuit 204, a monitor 205, and a memory 206. Then, the distance image sensor 201 emits light toward the subject from the light source device 211, and receives light (modulated light or pulsed light) reflected on the surface of the subject to obtain a distance image according to the distance to the subject. You can get
  • the optical system 202 includes one or a plurality of lenses, guides image light (incident light) from a subject to the sensor chip 203, and forms an image on the light receiving surface (sensor unit) of the sensor chip 203.
  • the sensor chip 11 according to each of the above-described embodiments is applied as the sensor chip 203, and a distance signal indicating the distance obtained from the light reception signal (APD OUT) output from the sensor chip 203 is supplied to the image processing circuit 204. .
  • the image processing circuit 204 performs image processing for constructing a distance image based on the distance signal supplied from the sensor chip 203, and the distance image (image data) obtained by the image processing is supplied to the monitor 205 and displayed. Or supplied to the memory 206 for storage (recording).
  • the distance image sensor 201 configured in this way, by applying the above-described sensor chip 11, for example, a more accurate distance image can be obtained by performing higher-speed control.
  • FIG. 28 is a view showing an application example using the above-described image sensor (imaging element).
  • the image sensor described above can be used, for example, in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as described below.
  • a device that captures images for viewing such as a digital camera or a portable device with a camera function-For safe driving such as automatic stop, recognition of driver's condition, etc.
  • a device provided for traffic such as an on-vehicle sensor for capturing images of the rear, surroundings, inside of a car, a monitoring camera for monitoring a traveling vehicle or a road, a distance measuring sensor for measuring distance between vehicles, etc.
  • Devices used for home appliances such as TVs, refrigerators, air conditioners, etc. to perform imaging and device operation according to the gesture ⁇ Endoscopes, devices for performing blood vessel imaging by receiving infrared light, etc.
  • Equipment provided for medical and healthcare use-Equipment provided for security such as surveillance cameras for crime prevention, cameras for personal identification, etc.
  • -Skin measuring equipment for photographing skin, photographing for scalp Beauty such as a microscope Equipment provided for use-Equipment provided for sports use, such as action cameras and wearable cameras for sports applications, etc.-Used for agriculture, such as cameras for monitoring the condition of fields and crops apparatus
  • the technology according to the present disclosure (the present technology) can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 29 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology (the present technology) according to the present disclosure can be applied.
  • the endoscopic operation system 11000 includes an endoscope 11100, such as pneumoperitoneum tube 11111 and the energy treatment instrument 11112, and other surgical instrument 11110, a support arm device 11120 which supports the endoscope 11100 , the cart 11200 which various devices for endoscopic surgery is mounted, and a.
  • an endoscope 11100 such as pneumoperitoneum tube 11111 and the energy treatment instrument 11112
  • other surgical instrument 11110 such as pneumoperitoneum tube 11111 and the energy treatment instrument 11112
  • a support arm device 11120 which supports the endoscope 11100
  • the cart 11200 which various devices for endoscopic surgery is mounted
  • the endoscope 11100 includes a lens barrel 11101 whose region of a predetermined length from the tip is inserted into a body cavity of a patient 11132, and a camera head 11102 connected to a proximal end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid endoscope having a barrel 11101 of the rigid endoscope 11100, be configured as a so-called flexible scope with a barrel of flexible Good.
  • the endoscope 11100 may be a straight endoscope, or may be a oblique endoscope or a side endoscope.
  • An optical system and an imaging device are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is condensed on the imaging device by the optical system.
  • the observation light is photoelectrically converted by the imaging element to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal as the RAW data camera control unit: sent to (CCU Camera Control Unit) 11201.
  • CCU11201 is constituted by a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) or the like, and performs overall control of the operation of the endoscope 11100 and a display device 11202. Furthermore, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing for displaying an image based on the image signal, such as development processing (demosaicing processing), on the image signal.
  • image processing for displaying an image based on the image signal, such as development processing (demosaicing processing), on the image signal.
  • Display device 11202 under the control of the CCU11201, displays an image based on the image signal subjected to image processing by the CCU11201.
  • the light source device 11203 includes, for example, a light source such as a light emitting diode (LED), and supplies the endoscope 11100 with irradiation light at the time of imaging a surgical site or the like.
  • a light source such as a light emitting diode (LED)
  • LED light emitting diode
  • the input device 11204 is an input interface to the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user type of illumination light, magnification and focal length
  • endoscopes 11100 by the imaging condition inputting the setting of the instruction or the like to change.
  • Surgical instrument control unit 11205 is, tissue ablation, to control the driving of the energy treatment instrument 11112 for such sealing of the incision or blood vessel.
  • the insufflation apparatus 11206 is a gas within the body cavity via the insufflation tube 11111 in order to expand the body cavity of the patient 11132 for the purpose of securing a visual field by the endoscope 11100 and securing a working space of the operator.
  • Send The recorder 11207 is a device capable of recording various types of information regarding surgery.
  • the printer 11208 is an apparatus capable of printing various types of information regarding surgery in various types such as text, images, and graphs.
  • the light source device 11203 that supplies the irradiation light when imaging the surgical site to the endoscope 11100 can be configured of, for example, an LED, a laser light source, or a white light source configured by a combination of these. If a white light source by a combination of RGB laser light source is constructed, since it is possible to control the output intensity and output timing of each color (each wavelength) with high accuracy, the adjustment of the white balance of the captured image in the light source apparatus 11203 It can be carried out.
  • a color image can be obtained without providing a color filter in the imaging device.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the light to be output every predetermined time. Acquiring an image at the time of controlling the driving of the image pickup device of the camera head 11102 divided in synchronization with the timing of the change of the intensity of the light, by synthesizing the image, a high dynamic no so-called underexposure and overexposure An image of the range can be generated.
  • the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • the special light observation for example, by utilizing the wavelength dependency of the absorption of light in body tissue, the irradiation light in normal observation (i.e., white light) by irradiation with light of a narrow band as compared to the mucosal surface
  • the so-called narrow band imaging is performed to image a predetermined tissue such as a blood vessel with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiation with excitation light.
  • body tissue is irradiated with excitation light and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into body tissue and the body tissue is Excitation light corresponding to the fluorescence wavelength of the reagent can be irradiated to obtain a fluorescence image or the like.
  • Light source device 11203 such may be configured to provide a narrow-band light and / or the excitation light corresponding to the special light observation.
  • FIG. 30 is a block diagram showing an example of functional configurations of the camera head 11102 and the CCU 11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. Camera head 11102 and CCU11201 are communicatively connected to each other by a transmission cable 11400.
  • Lens unit 11401 is an optical system provided in the connecting portion of the barrel 11101. Observation light taken from the tip of the barrel 11101 is guided to the camera head 11102, incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 includes an imaging element.
  • the imaging device constituting the imaging unit 11402 may be one (a so-called single-plate type) or a plurality (a so-called multi-plate type).
  • an image signal corresponding to each of RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 is, 3D (Dimensional) may be configured to have a pair of image pickup elements for obtaining respective image signals for the right eye and the left eye corresponding to the display. By 3D display is performed, the operator 11131 is enabled to grasp the depth of the living tissue in the operative site more accurately.
  • the imaging unit 11402 is to be composed by multi-plate, corresponding to the imaging elements, the lens unit 11401 may be provided a plurality of systems.
  • the imaging unit 11402 may not necessarily provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the driving unit 11403 is configured by an actuator, and moves the zoom lens and the focusing lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the captured image by the imaging unit 11402 can be appropriately adjusted.
  • the communication unit 11404 is configured of a communication device for transmitting and receiving various types of information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 to CCU11201 via a transmission cable 11400 as RAW data.
  • the communication unit 11404 also receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the the control signal for example, information that specifies the frame rate of the captured image, information that specifies the exposure value at the time of imaging, and / or magnification and information, etc. indicating that specifies the focal point of the captured image, captured Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus described above may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are incorporated in the endoscope 11100.
  • AE Auto Exposure
  • AF Auto Focus
  • AWB Automatic White Balance
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102.
  • the communication unit 11411 is, from the camera head 11102 receives image signals transmitted via a transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by telecommunication or optical communication.
  • An image processing unit 11412 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 11102.
  • Control unit 11413 the imaging of the operated portion due endoscope 11100, and various types of control related to the display of the captured image obtained by the imaging of the surgical section are performed.
  • the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a captured image in which a surgical site or the like is captured, based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413, by detecting the edge of the shape and color of an object or the like included in the captured image, the surgical instrument such as forceps, a specific body part, bleeding, during use of the energy treatment instrument 11112 mist etc. It can be recognized.
  • the control unit 11413 may superimpose various surgical support information on the image of the surgery section using the recognition result. The operation support information is superimposed and presented to the operator 11131, whereby the burden on the operator 11131 can be reduced and the operator 11131 can reliably proceed with the operation.
  • a transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to communication of an electric signal, an optical fiber corresponding to optical communication, or a composite cable of these.
  • the technology according to the present disclosure may be applied to, for example, the endoscope 11100, (the imaging unit 11402 of the camera head 11102), (the image processing unit 11412) of the CCU 11201 and the like.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on any type of mobile object such as a car, an electric car, a hybrid electric car, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, a robot May be
  • FIG. 31 is a block diagram showing a schematic configuration example of a vehicle control system which is an example of a moving object control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 12000 includes a plurality of electronic control units connected via communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an external information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated as a functional configuration of the integrated control unit 12050.
  • the driveline control unit 12010 controls the operation of devices related to the driveline of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, and a steering angle of the vehicle. adjusting steering mechanism, and functions as a control device of the braking device or the like to generate a braking force of the vehicle.
  • Body system control unit 12020 controls the operation of the camera settings device to the vehicle body in accordance with various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device of various lamps such as a headlamp, a back lamp, a brake lamp, a blinker or a fog lamp.
  • the body system control unit 12020 the signal of the radio wave or various switches is transmitted from wireless controller to replace the key can be entered.
  • Body system control unit 12020 receives an input of these radio or signal, the door lock device for a vehicle, the power window device, controls the lamp.
  • Outside vehicle information detection unit 12030 detects information outside the vehicle equipped with vehicle control system 12000.
  • an imaging unit 12031 is connected to the external information detection unit 12030.
  • the out-of-vehicle information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle, and receives the captured image.
  • the external information detection unit 12030 may perform object detection processing or distance detection processing of a person, a vehicle, an obstacle, a sign, characters on a road surface, or the like based on the received image.
  • Imaging unit 12031 receives light, an optical sensor for outputting an electric signal corresponding to the received light amount of the light.
  • the imaging unit 12031 can output an electric signal as an image or can output it as distance measurement information.
  • the light image pickup unit 12031 is received may be a visible light, it may be invisible light such as infrared rays.
  • Vehicle information detection unit 12040 detects the vehicle information.
  • a driver state detection unit 12041 that detects a state of a driver is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera for imaging the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver does not go to sleep.
  • the microcomputer 12051 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the information inside and outside the vehicle acquired by the outside information detecting unit 12030 or the in-vehicle information detecting unit 12040, and a drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 is collision avoidance or cushioning of the vehicle, follow-up running based on inter-vehicle distance, vehicle speed maintained running, functions realized in the vehicle collision warning, or ADAS including lane departure warning of the vehicle (Advanced Driver Assistance System) It is possible to perform coordinated control aiming at
  • the microcomputer 12051 the driving force generating device on the basis of the information around the vehicle acquired by the outside information detection unit 12030 or vehicle information detection unit 12040, by controlling the steering mechanism or braking device, the driver automatic operation such that autonomously traveling without depending on the operation can be carried out cooperative control for the purpose of.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the external information detection unit 12030.
  • the microcomputer 12051 controls the headlamps in response to the preceding vehicle or the position where the oncoming vehicle is detected outside the vehicle information detection unit 12030, the cooperative control for the purpose of achieving the anti-glare such as switching the high beam to the low beam It can be carried out.
  • Audio and image output unit 12052 transmits, to the passenger or outside of the vehicle, at least one of the output signal of the voice and image to be output device to inform a visually or aurally information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • Display unit 12062 may include at least one of the on-board display and head-up display.
  • FIG. 32 is a diagram illustrating an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as the front nose of the vehicle 12100, a side mirror, a rear bumper, a back door, and an upper portion of a windshield of a vehicle interior.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle cabin mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 included in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. Images in the front acquired by the imaging units 12101 and 12105 are mainly used to detect a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 32 shows an example of the imaging range of the imaging units 12101 to 12104.
  • Imaging range 12111 indicates an imaging range of the imaging unit 12101 provided in the front nose
  • imaging range 12112,12113 are each an imaging range of the imaging unit 12102,12103 provided on the side mirror
  • an imaging range 12114 is The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown.
  • a bird's eye view of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging unit 12101 through 12104 may have a function of obtaining distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging devices, or an imaging device having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from to no imaging unit 12101 12104, and the distance to the three-dimensional object in to no imaging range 12111 in 12114, the temporal change of the distance (relative speed with respect to the vehicle 12100) In particular, it is possible to extract a three-dimensional object traveling at a predetermined speed (for example, 0 km / h or more) in substantially the same direction as the vehicle 12100 as a leading vehicle, in particular by finding the it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. Automatic operation or the like for autonomously traveling without depending on the way of the driver operation can perform cooperative control for the purpose.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data relating to three-dimensional objects into two-dimensional vehicles such as two-wheeled vehicles, ordinary vehicles, large vehicles, classification and extracted, can be used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles visible to the driver of the vehicle 12100 and obstacles difficult to see.
  • the microcomputer 12051 determines a collision risk which indicates the risk of collision with the obstacle, when a situation that might collide with the collision risk set value or more, through an audio speaker 12061, a display portion 12062 By outputting a warning to the driver or performing forcible deceleration or avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging unit 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the images captured by the imaging units 12101 to 12104.
  • Such pedestrian recognition is, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as an infrared camera, and pattern matching processing on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not
  • the procedure is to determine Microcomputer 12051 is, determines that the pedestrian in the captured image of the imaging unit 12101 to 12104 is present, recognizing the pedestrian, the sound image output unit 12052 is rectangular outline for enhancement to the recognized pedestrian to superimpose, controls the display unit 12062.
  • the audio image output unit 12052 is, an icon or the like indicating a pedestrian may control the display unit 12062 to display the desired position.
  • the example of the vehicle control system to which the technology according to the present disclosure can be applied has been described above.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 12031 and the like among the configurations described above.
  • the present technology can also have the following configurations.
  • a control line provided so as to drive the sensor elements simultaneously is arranged in one direction, its longitudinal direction is along the long side of the pixel array portion, and provided for each row of the sensor elements
  • a global control circuit to which the drive elements are respectively connected is disposed on both sides of the pixel array along the longitudinal direction of the pixel array.
  • the signal lines arranged for each column of the sensor elements are divided substantially at the center of the pixel array unit, Among the drive elements of the two global control circuits arranged on both sides of the pixel array unit, one of the drive elements is connected to one of the divided signal lines and the other
  • the drive element disposed in the global control circuit of the logic substrate is connected to one end of the signal line via a connection portion provided around the region where the pixel array portion is disposed in the sensor substrate.
  • the sensor chip according to any one of (1) to (4) above.
  • Two of the global control circuits are disposed on the logic substrate so as to correspond to sides on both sides of the pixel array unit along the longitudinal direction of the pixel array unit.
  • the drive disposed in each of the two global control circuits disposed on the logic substrate via connection portions provided on opposite sides of the periphery of the region where the pixel array portion is disposed on the sensor substrate
  • the sensor chip according to any one of the above (1) to (5), wherein an element is connected to both ends of the signal line.
  • the signal lines arranged for each column of the sensor elements are divided substantially at the center of the pixel array unit, One of the drive elements of the drive elements of the two global control circuits arranged on the logic substrate respectively corresponding to the sides on both sides of the pixel array unit is one of the divided signals.
  • the sensor chip according to any one of the above (1) to (6), which is connected to a line and the other drive element is connected to the other divided signal line.
  • the global control circuit is disposed substantially at the center of the logic substrate, and is disposed in the global control circuit of the logic substrate via a connection portion provided to overlap the pixel array portion in plan view.
  • the signal lines arranged for each column of the sensor elements are divided substantially at the center of the pixel array unit,
  • two of the drive elements are disposed for each column of the sensor elements, and one of the drive elements is an end portion on the central side of one of the pixel arrays of the signal line.
  • the other driving element is connected to the other end of the signal array on the central side of the pixel array unit.
  • Two of the global control circuits are disposed on the logic substrate, and the drive element of one of the global control circuits is connected to the center of one half of the signal line and the other of the global control circuits
  • the sensor element according to any one of (1) to (9), wherein the driving element is connected to the center of the other half of the signal line.
  • the signal lines arranged for each column of the sensor elements are divided substantially at the center of the pixel array unit,
  • the two global control circuits are disposed on the logic substrate, and the drive element of one of the global control circuits is connected to the center of one of the signal lines, and the drive of the other global control circuit is performed.
  • the element is connected to the other center of the signal line,
  • the sensor chip according to any one of (1) to (10).
  • the signal line is divided into three or more lines, and the drive elements of the corresponding three or more global control circuits are connected substantially at the centers of the signal lines, respectively.
  • (1) to (11) The sensor chip described in any one of the above.
  • the signal line is divided into a plurality of parts, and at least one global control circuit is disposed on the logic substrate, and a plurality of buffer circuits according to the number of divisions of the signal lines are disposed.
  • the sensor chip according to any one of (1) to (12) which is configured by laminating three or more semiconductor substrates.
  • a pixel array portion of a rectangular shaped area in which a plurality of sensor elements are arranged in an array A control line provided so as to drive the sensor elements simultaneously is arranged in one direction, its longitudinal direction is along the long side of the pixel array portion, and provided for each row of the sensor elements
  • a global control circuit to which the drive elements are respectively connected A control line provided so as to drive the sensor elements simultaneously is arranged in one direction, its longitudinal direction is along the long side of the pixel array portion, and provided for each row of the sensor elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本開示は、より高速な制御を行うことができるようにするセンサチップおよび電子機器に関する。 複数のセンサ素子がアレイ状に配置された矩形形状の領域のピクセルアレイ部と、センサ素子を同時的に駆動する駆動素子が一方向に向かって配置され、その長手方向がピクセルアレイ部の長辺に沿うように配置され、センサ素子の1列ごとに設けられる制御線に駆動素子がそれぞれ接続されるグローバル制御回路とを備える。本技術は、例えば、ToFセンサに適用できる。

Description

センサチップおよび電子機器
 本開示は、センサチップおよび電子機器に関し、特に、より高速な制御を行うことができるようにしたセンサチップおよび電子機器に関する。
 近年、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサや、ToF(Time of Flight)センサ、蛍光発光検出センサなどのセンサチップでは、高速に制御を行うことが求められている。例えば、1Mfpsのフレームレートを超えるような高速駆動が求められセンサチップでは、サブμ秒または10n秒のオーダで制御信号のパルスを制御することが必要となる。
 例えば、特許文献1には、測定情報をランダムに出力することにより、三次元画像で測定されているオブジェクトを追跡する信号処理などを、すぐに遂行することができるToFセンサが開示されている。
特開2012-049547号公報
 ところで、上述したようなセンサチップが有するセンサ素子を駆動する駆動素子が、センサ素子から離れて配置されている場合、センサ素子を駆動するための制御信号の遅延やスルーレートなどの影響によって、高速な制御を行うことは困難であった。
 本開示は、このような状況に鑑みてなされたものであり、より高速な制御を行うことができるようにするものである。
 本開示の一側面のセンサチップは、複数のセンサ素子がアレイ状に配置された矩形形状の領域のピクセルアレイ部と、前記センサ素子を同時的に駆動する駆動素子が一方向に向かって配置され、その長手方向が前記ピクセルアレイ部の長辺に沿うように配置され、前記センサ素子の1列ごとに設けられる制御線に前記駆動素子がそれぞれ接続されるグローバル制御回路とを備える。
 本開示の一側面の電子機器は、複数のセンサ素子がアレイ状に配置された矩形形状の領域のピクセルアレイ部と、前記センサ素子を同時的に駆動する駆動素子が一方向に向かって配置され、その長手方向が前記ピクセルアレイ部の長辺に沿うように配置され、前記センサ素子の1列ごとに設けられる制御線に前記駆動素子がそれぞれ接続されるグローバル制御回路とを有するセンサチップを備える。
 本開示の一側面においては、ピクセルアレイ部は、複数のセンサ素子がアレイ状に配置された矩形形状の領域とされ、グローバル制御回路には、センサ素子を同時的に駆動する駆動素子が一方向に向かって配置され、その長手方向がピクセルアレイ部の長辺に沿うように配置され、センサ素子の1列ごとに設けられる制御線に駆動素子がそれぞれ接続される。
 本開示の一側面によれば、より高速な制御を行うことができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用したセンサチップの第1の実施の形態の構成例を示すブロック図である。 グローバル制御回路の構成例を示す図である。 ローリング制御回路の構成例を示す図である。 図1のセンサチップの第1の変形例を示すブロック図である。 図1のセンサチップの第2の変形例を示すブロック図である。 センサチップの第2の実施の形態の構成例を示すブロック図である。 センサチップの第3の実施の形態の構成例を示す斜視図である。 センサチップの第3の実施の形態の構成例を示すブロック図である。 図8のセンサチップの第1の変形例を示すブロック図である。 図8のセンサチップの第2の変形例を示すブロック図である。 センサチップの第4の実施の形態の構成例を示すブロック図である。 センサチップの第5の実施の形態の構成例を示すブロック図である。 センサチップの第6の実施の形態の構成例を示す斜視図である。 センサチップの第6の実施の形態の構成例を示すブロック図である。 図14のセンサチップの第1の変形例を示すブロック図である。 図14のセンサチップの第2の変形例を示すブロック図である。 図14のセンサチップの第3の変形例を示すブロック図である。 図14のセンサチップの第4の変形例を示すブロック図である。 図14のセンサチップの第5の変形例を示すブロック図である。 図14のセンサチップの第6の変形例を示すブロック図である。 図14のセンサチップの第7の変形例を示すブロック図である。 図14のセンサチップの第8の変形例を示すブロック図である。 センサチップの第7の実施の形態の構成例を示す斜視図である。 図23のセンサチップの第1の変形例を示す斜視図である。 図23のセンサチップの第2の変形例を示す斜視図である。 センサチップの第8の実施の形態の構成例、および、その変形例を示すブロック図である。 撮像装置の構成例を示すブロック図である。 イメージセンサを使用する使用例を示す図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 <センサチップの第1の構成例>
 図1は、本技術を適用したセンサチップの第1の実施の形態の構成例を示すブロック図である。
 図1に示すように、センサチップ11は、ピクセルアレイ部12、グローバル制御回路13、ローリング制御回路14、カラムADC(Analog-to-Digital Converter)15、および、入出力部16が、半導体基板に配置されて構成される。
 ピクセルアレイ部12は、センサチップ11の機能に応じた様々なセンサ素子が、例えば、光を光電変換する光電変換素子が、アレイ状に配置された矩形形状の領域である。図1に示す例では、ピクセルアレイ部12は、横方向に長辺が設けられ、縦方向に短辺が設けられた横長の長方形の領域となっている。
 グローバル制御回路13は、ピクセルアレイ部12に配置される複数のセンサ素子が略同一のタイミングで一斉に(同時的に)駆動するように制御するグローバル制御信号を出力する制御回路である。図1に示す構成例では、グローバル制御回路13は、その長手方向がピクセルアレイ部12の長辺に沿うように、ピクセルアレイ部12の上辺側に配置される。従って、センサチップ11では、グローバル制御回路13から出力されるグローバル制御信号をピクセルアレイ部12のセンサ素子に供給する制御線21は、ピクセルアレイ部12に行列状に配置されるセンサ素子の列ごとに、ピクセルアレイ部12の上下方向に向かって配置される。
 ローリング制御回路14は、ピクセルアレイ部12に配置される複数のセンサ素子が行ごとに次々と順番に(逐次的に)駆動するように制御するローリング制御信号を出力する制御回路である。図1に示す構成例では、ローリング制御回路14は、その長手方向がピクセルアレイ部12の短辺に沿うように、ピクセルアレイ部12の右辺側に配置される。
 カラムADC15は、ピクセルアレイ部12のセンサ素子から出力されるアナログのセンサ信号を列ごとに並列的にデジタル値にAD(Analog-to-Digital)変換する。このとき、カラムADC15は、例えば、センサ信号に対してCDS(Correlated Double Sampling:相関2重サンプリング)処理を施すことによって、センサ信号に含まれるリセットノイズを除去することができる。
 入出力部16には、センサチップ11と外部回路との間で入出力を行うための端子が設けられており、例えば、入出力部16を介して、グローバル制御回路13の駆動に必要な電力がセンサチップ11に入力される。図1に示す構成例では、入出力部16は、グローバル制御回路13に隣接するように、グローバル制御回路13に沿って配置される。例えば、グローバル制御回路13は消費電力が大きいことより、IRドロップ(電圧降下)の影響を低減するために、入出力部16はグローバル制御回路13の近傍に配置することが好ましい。
 このようにセンサチップ11は構成されており、グローバル制御回路13がピクセルアレイ部12の長辺に沿うように配置されるレイアウトが採用される。これにより、センサチップ11は、グローバル制御回路13から制御線21の遠端(図1の例では下端)に配置されるセンサ素子までの距離を、例えば、グローバル制御回路13がピクセルアレイ部12の短辺に沿うように配置されるレイアウトよりも短くすることができる。
 従って、センサチップ11は、グローバル制御回路13から出力されるグローバル制御信号に発生する遅延量およびスルーレートを改善することができるため、より高速にセンサ素子に対する制御を行うことができる。特に、センサチップ11がグローバルシャッタ駆動を行うイメージセンサである場合、画素に供給する転送信号やリセット信号、オーバーフローゲート信号などの高速制御が可能となる。また、センサチップ11がToFセンサである場合には、MIX信号の高速制御が可能となる。
 例えば、ToFセンサや蛍光発光検出センサなどでは、グローバル制御信号のスルーレートや、駆動素子からの距離に応じて発生するグローバル制御信号の遅延量などが、センサ素子ごとに違うものになると、検出誤差となってしまう。これに対し、センサチップ11は、上述したように、グローバル制御信号に発生する遅延量およびスルーレートを改善することができるので、そのような検出誤差を抑制することができる。
 また、センサチップ11がToFセンサや蛍光発光検出センサなどである場合、露光期間に100回を超えるような複数回のオン/オフ制御が必要になるだけでなく、トグル周波数が高いため消費電流が大きくなってしまう。これに対し、センサチップ11は、上述したように入出力部16をグローバル制御回路13の近傍に配置して、電源を独立した配線とすることができる。
 また、センサチップ11では、露光期間において、グローバル制御回路13が動作することが多いのに対し、ローリング制御回路14は停止している。一方、センサチップ11では、読み出し期間において、ローリング制御回路14が動作しているのに対し、グローバル制御回路13が停止していることが多い。そのため、センサチップ11では、グローバル制御回路13とローリング制御回路14とを独立して制御することが求められる。さらに、センサチップ11では、面内同時性を担保するために、グローバル制御回路13において、後述の図2のCに示すようなクロックツリー構造を採用することが一般的であるため、ローリング制御回路14とは独立して配置することが好ましい。
 従って、センサチップ11のように、より高速な制御を行うことが求められる場合、グローバル制御回路13とローリング制御回路14とを独立して個別に配置するレイアウトとすることで、より良好な制御を行うことができる。なお、グローバル制御回路13とローリング制御回路14とが独立して個別に配置されていれば、同一方向に沿うようなレイアウト、および、互いに直交するようなレイアウトのどちらを採用してもよい。
 なお、本実施の形態では、図示する構成例に従って、図の上側をピクセルアレイ部12の上辺とし、図の下側をピクセルアレイ部12の下辺として説明するが、例えば、グローバル制御回路13は、ピクセルアレイ部12の長辺に沿うように配置されていれば、その上辺側および下辺側のどちらに配置されていても同様の作用効果を得ることができる。また、ピクセルアレイ部12およびカラムADC15についても同様である。
 図2を参照して、グローバル制御回路13の構成について説明する。
 図2のAには、グローバル制御回路13の第1の構成例が示されており、図2のBには、グローバル制御回路13の第2の構成例が示されており、図2のCには、グローバル制御回路13の第3の構成例が示されている。なお、グローバル制御回路13は、ピクセルアレイ部12に配置されるセンサ素子の列数に応じたグローバル制御信号を同時的に出力するように構成されているが、図2においては、その一部として、8つのグローバル制御信号を同時的に出力する構成が概略的に図示されている。
 図2のAに示すグローバル制御回路13は、1個の内部バッファ31と、8個の駆動素子32a乃至32hとを備えて構成される。
 図示するように、グローバル制御回路13は、長手方向に沿って設けられる内部配線の一端に内部バッファ31が接続され、図1の制御線21の位置に応じて一方向に向かって、駆動素子32a乃至32hが内部配線に接続される接続構成となっている。従って、グローバル制御回路13に入力されるグローバル制御信号は、内部バッファ31を介して内部配線の一端側(図2の例では左側)から駆動素子32a乃至32hに供給され、それぞれに接続される制御線21に同時的に出力される。
 図2のBに示すグローバル制御回路13Aは、2個の内部バッファ31aおよび31bと、8個の駆動素子32a乃至32hとを備えて構成される。
 図示するように、グローバル制御回路13Aは、グローバル制御回路13Aの長手方向に沿って設けられる内部配線の両端に内部バッファ31aおよび31bが接続され、図1の制御線21の位置に応じて一方向に向かって、駆動素子32a乃至32hが内部配線に接続される接続構成となっている。従って、グローバル制御回路13Aに入力されるグローバル制御信号は、内部バッファ31aおよび31bを介して内部配線の両端から駆動素子32a乃至32hに供給され、それぞれに接続される制御線21に同時的に出力される。
 図2のCに示すグローバル制御回路13Bは、7個の内部バッファ31a乃至31gと、8個の駆動素子32a乃至32hとを備えて構成される。
 図示するように、グローバル制御回路13Bは、内部バッファ31a乃至31gによりクロックツリー構造が構成され、最終段において、制御線21の位置に応じて一方向に向かって配置される駆動素子32a乃至32hに接続される接続構成となっている。例えば、クロックツリー構造は、1段目において、1つの内部バッファ31の出力が2つの内部バッファ31に入力され、2段目において、それらの2つの内部バッファ31の入力が4つの内部バッファ31に入力されるという構成が、複数段において繰り返される構造である。従って、グローバル制御回路13Bに入力されるグローバル制御信号は、内部バッファ31a乃至31gからなるクロックツリー構造を介して駆動素子32a乃至32hに供給され、それぞれに接続される制御線21に同時的に出力される。
 このような構成のグローバル制御回路13Bは、駆動素子32a乃至32hどうしの間における遅延の発生を回避することができ、例えば、グローバル制御回路13および13Aと比較して、面内均一性を担保することができる。即ち、グローバル制御回路13Bは、駆動素子32が並ぶ方向に亘って、同時性が強く求められる用途に採用することが好適である。
 図3を参照して、ローリング制御回路14の構成について説明する。
 図3のAには、ローリング制御回路14の第1の構成例が示されており、図3のBには、ローリング制御回路14の第2の構成例が示されている。なお、ローリング制御回路14は、ピクセルアレイ部12に配置されるセンサ素子の行数に応じたローリング制御信号を逐次的に出力するように構成されているが、図3においては、その一部として、8つのローリング制御信号を逐次的に出力する構成が概略的に図示されている。
 図3のAに示すローリング制御回路14は、シフトレジスタ方式を採用しており、2個の内部バッファ41および42、8個のレジスタ43a乃至43h、並びに8個の駆動素子44a乃至44hを備えて構成される。なお、簡易化のため、2個の内部バッファ41および42が配置されている構成例を示しているが、内部バッファの配線長などに応じて、複数個の内部バッファを配置する構成を採用してもよい。
 図示するように、ローリング制御回路14は、長手方向に沿って設けられる内部配線の一端に内部バッファ41が接続され、ピクセルアレイ部12に配置されるセンサ素子の行の位置に応じて、その内部配線にレジスタ43a乃至43hが接続される接続構成となっている。また、ローリング制御回路14は、内部バッファ42がレジスタ43aに接続され、レジスタ43a乃至43hが順次接続されるとともに、レジスタ43a乃至43hに駆動素子44a乃至44hがそれぞれ接続される接続構成となっている。
 従って、ローリング制御回路14では、内部バッファ42を介してレジスタ43aに供給されるスタートパルスが、内部バッファ41を介して供給されるクロックに従って、レジスタ43a乃至43hに順次シフトされ、レジスタ43a乃至43hそれぞれに接続される駆動素子44a乃至44hからローリング制御信号として逐次的に出力される。
 図3のBに示すローリング制御回路14Aは、デコーダ方式を採用しており、2個の内部バッファ41および42、デコーダ45、8個のANDゲート46a乃至46h、並びに8個の駆動素子44a乃至44hを備えて構成される。なお、デコーダ45には、ラッチを含む方式、および、ラッチを含まない方式のどちらを用いてもよい。例えば、デコーダ45が、信号をラッチする方式では、アドレスを1度で送る方式や、アドレスを分割して送る方式などを採用することができる。
 図示するように、ローリング制御回路14Aは、内部バッファ41がデコーダ45に接続されており、内部バッファ42がANDゲート46a乃至46hの入力端に接続されるとともに、デコーダ45が行ごとにANDゲート46a乃至46hの入力端に接続される。そして、ローリング制御回路14Aは、ANDゲート46a乃至46hの出力端が、それぞれ駆動素子44a乃至44hに接続される接続構成となっている。
 従って、ローリング制御回路14Aでは、内部バッファ42を介してANDゲート46a乃至46hに供給されるパルスが、内部バッファ41を介してデコーダ45に供給されるアドレスで指定された行の駆動素子44a乃至44hからローリング制御信号として逐次的に出力される。
 図2および図3を参照して説明したように、グローバル制御回路13およびローリング制御回路14は、それぞれ異なる回路構成となっている。
 図4は、図1に示したセンサチップ11の第1の変形例を示すブロック図である。なお、図4に示すセンサチップ11-aを構成するブロックのうち、図1のセンサチップ11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図4に示すように、センサチップ11-aは、ピクセルアレイ部12、ローリング制御回路14、カラムADC15、および、入出力部16の配置は、図1のセンサチップ11と共通する構成となっている。
 一方、センサチップ11-aは、2個のグローバル制御回路13-1および13-2がピクセルアレイ部12の上辺および下辺にそれぞれ沿うように配置されており、制御線21の両端に駆動素子32-1および32-2が接続される点で、図1のセンサチップ11と異なる構成となっている。即ち、センサチップ11-aは、グローバル制御回路13-1が有する駆動素子32-1が制御線21の上端からグローバル制御信号を供給し、グローバル制御回路13-2が有する駆動素子32-2が制御線21の下端からグローバル制御信号を供給するように構成される。
 このように構成されるセンサチップ11-aは、2個の駆動素子32-1および駆動素子32-2間のスキューを抑制することができ、制御線21を介して伝播されるグローバル制御信号に発生する遅延時間のバラツキを解消することができる。これにより、センサチップ11-aでは、より高速にセンサ素子に対する制御を行うことができる。なお、センサチップ11-aでは、貫通電流が発生することがないようにグローバル制御信号の出力の遅延差が大きくなることを回避するように制御を行う必要がある。
 図5は、図1に示したセンサチップ11の第2の変形例を示すブロック図である。なお、図5に示すセンサチップ11-bを構成するブロックのうち、図1のセンサチップ11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図5に示すように、センサチップ11-bは、ピクセルアレイ部12、ローリング制御回路14、カラムADC15、および、入出力部16の配置は、図1のセンサチップ11と共通する構成となっている。
 一方、センサチップ11-bは、2個のグローバル制御回路13-1および13-2がピクセルアレイ部12の上辺および下辺にそれぞれ沿うように配置されるとともに、ピクセルアレイ部12に行列状に配置されるセンサ素子の列の中央で分離されるように、2本の制御線21-1および21-2が配置される点で、図1のセンサチップ11と異なる構成となっている。そして、センサチップ11-bでは、制御線21-1の上端に駆動素子32-1が接続され、制御線21-2の下端に駆動素子32-2が接続されている。
 従って、センサチップ11-bは、ピクセルアレイ部12の中央より上側に配置されるセンサ素子には、グローバル制御回路13-1が有する駆動素子32-1が制御線21-1の上端からグローバル制御信号を供給するように構成される。また、センサチップ11-bは、ピクセルアレイ部12の中央より下側に配置されるセンサ素子には、グローバル制御回路13-2が有する駆動素子32-2が制御線21-2の下端からグローバル制御信号を供給するように構成される。
 このように構成されるセンサチップ11-bは、駆動素子32-1から制御線21-1の遠端(図5の例では下端)に配置されるセンサ素子までの距離、および、駆動素子32-2から制御線21-2の遠端(図5の例では上端)に配置されるセンサ素子までの距離を、例えば、図1のセンサチップ11よりも短くすることができる。これにより、センサチップ11-bは、グローバル制御回路13-1および13-2から出力されるグローバル制御信号に発生する遅延量およびスルーレートをさらに低減することができるため、さらに高速にセンサ素子に対する制御を行うことができる。
 <センサチップの第2の構成例>
 図6を参照して、本技術を適用したセンサチップの第2の実施の形態について説明する。なお、図6に示すセンサチップ11Aを構成するブロックのうち、図1のセンサチップ11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図6に示すように、センサチップ11Aは、ピクセルアレイ部12A、グローバル制御回路13A、ローリング制御回路14A、カラムADC15A、および、入出力部16Aが、半導体基板に配置されて構成される。
 そして、センサチップ11Aでは、ピクセルアレイ部12Aが、縦方向に長辺が設けられ、横方向に短辺が設けられた縦長の長方形の領域となっている点で、図1のセンサチップ11と異なる構成となっている。従って、センサチップ11Aでは、グローバル制御回路13Aおよび入出力部16Aが、ピクセルアレイ部12Aの長辺に沿うように、ピクセルアレイ部12Aの左辺側に配置される。これに伴い、制御線21Aは、ピクセルアレイ部12Aに行列状に配置されるセンサ素子の行ごとに、ピクセルアレイ部12Aの左右方向に向かって配置される。
 また、センサチップ11Aでは、ローリング制御回路14Aが、ピクセルアレイ部12Aの長辺に沿うように、ピクセルアレイ部12Aの右辺側(グローバル制御回路13Aと対向する側)に配置されている。なお、グローバル制御回路13Aおよびピクセルアレイ部12Aを、ピクセルアレイ部12Aに対して同一側に配置してもよいが、この場合、いずれか一方の配線長が長くなることが想定されるため、図示するような配置とすることが好ましい。
 また、センサチップ11Aでは、カラムADC15Aが、ピクセルアレイ部12Aの短辺に沿うように、ピクセルアレイ部12Aの下辺側に配置される。このように、ローリング制御回路14Aに対して直交する方向にカラムADC15Aが配置されているのは、カラムADC15Aは、1つのADコンバータに接続されるセンサ素子を1つずつオンする必要があるためであり、それぞれの配線が重なるようなレイアウトとなるのを回避している。
 このように構成されるセンサチップ11Aは、図1のセンサチップ11と同様に、グローバル制御回路13Aがピクセルアレイ部12Aの長辺に沿うように配置されるレイアウトにより、制御線21Aの配線長を短くすることができる。従って、センサチップ11Aは、図1のセンサチップ11と同様に、より高速にセンサ素子に対する制御を行うことができる。
 <センサチップの第3の構成例>
 図7乃至10を参照して、本技術を適用したセンサチップの第3の実施の形態について説明する。なお、図7乃至10に示すセンサチップ11Bを構成するブロックのうち、図1のセンサチップ11と共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図7には、センサチップ11Bの斜視図が示されており、図8には、センサチップ11Bのブロック図が示されている。
 図7に示すように、センサチップ11Bは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている。そして、センサチップ11Bは、平面的に見たときにピクセルアレイ部12と重ならないセンサチップ11Bの周辺領域において、センサ基板51の制御線21と、ロジック基板52のグローバル制御回路13とが接続される接続構成となっている。即ち、図7に示す例では、センサチップ11Bは、ピクセルアレイ部12に行列状に配置されるセンサ素子の列方向に沿って配置される複数の制御線21が、センサ基板51の上辺側においてグローバル制御回路13側に接続されている。
 従って、センサチップ11Bでは、グローバル制御回路13から出力されるグローバル制御信号は、図7において白抜きの矢印で示すように、センサ基板51の上辺側からピクセルアレイ部12のセンサ素子に供給される。このとき、グローバル制御回路13の長手方向が、ピクセルアレイ部12の長辺に沿うように配置されており、センサチップ11Bは、グローバル制御回路13からピクセルアレイ部12のセンサ素子まで最短距離となるような構成となっている。
 図8を参照して、センサチップ11Bの構成について、さらに説明する。
 センサ基板51には、ピクセルアレイ部12、および、TSV(Through Silicon Via)領域53-1乃至53-3が配置されている。ロジック基板52には、グローバル制御回路13、ローリング制御回路14、カラムADC15、ロジック回路17、およびTSV領域54-1乃至54-3が配置されている。例えば、センサチップ11Bでは、ピクセルアレイ部12のセンサ素子から出力されるセンサ信号はカラムADC15でAD変換され、ロジック回路17において各種の信号処理が施された後、外部に出力される。
 TSV領域53-1乃至53-3およびTSV領域54-1乃至54-3は、センサ基板51およびロジック基板52を電気的に接続するための貫通電極が形成される領域であり、例えば、制御線21ごとに貫通電極が配置されている。従って、TSV領域53-1乃至53-3およびTSV領域54-1乃至54-3は、センサ基板51およびロジック基板52を積層したときに重なり合うように配置される。なお、TSV領域54において貫通電極を利用して接続を行う他、例えば、マイクロバンプや銅(Cu-Cu)接続などを利用することができる。
 このように構成されるセンサチップ11Bは、図1のセンサチップ11と同様に、グローバル制御回路13がピクセルアレイ部12の長辺に沿うように配置されるレイアウトにより、制御線21の配線長を短くすることができる。従って、センサチップ11Bは、図1のセンサチップ11と同様に、より高速にセンサ素子に対する制御を行うことができる。
 図9は、図8に示したセンサチップ11Bの第1の変形例を示すブロック図である。なお、図9に示すセンサチップ11B-aを構成するブロックのうち、図8のセンサチップ11Bと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図9に示すように、センサチップ11B-aは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図8のセンサチップ11Bと共通する構成となっている。
 一方、センサチップ11B-aは、2個のグローバル制御回路13-1および13-2がピクセルアレイ部12の上辺および下辺にそれぞれ沿うようにロジック基板52に配置されるとともに、ピクセルアレイ部12に行列状に配置されるセンサ素子の列の中央で分離されるように、2本の制御線21-1および21-2が配置される点で、図8のセンサチップ11Bと異なる構成となっている。
 即ち、センサチップ11B-aは、図5に示したセンサチップ11-bと同様に、制御線21-1の上端に駆動素子32-1が接続され、制御線21-2の下端に駆動素子32-2が接続されている。従って、センサチップ11B-aは、ピクセルアレイ部12の中央より上側に配置されるセンサ素子には、グローバル制御回路13-1が有する駆動素子32-1が制御線21-1の上端からグローバル制御信号を供給するように構成される。また、センサチップ11B-aは、ピクセルアレイ部12の中央より下側に配置されるセンサ素子には、グローバル制御回路13-2が有する駆動素子32-2が制御線21-2の下端からグローバル制御信号を供給するように構成される。
 このように構成されるセンサチップ11B-aは、駆動素子32-1から制御線21-1の遠端(図9の例では下端)に配置されるセンサ素子までの距離、および、駆動素子32-2から制御線21-2の遠端(図9の例では上端)に配置されるセンサ素子までの距離を、例えば、図8のセンサチップ11Bよりも短くすることができる。これにより、センサチップ11B-aは、グローバル制御回路13-1および13-2から出力されるグローバル制御信号に発生する遅延量およびスルーレートをさらに低減することができるため、さらに高速にセンサ素子に対する制御を行うことができる。
 図10は、図8に示したセンサチップ11Bの第2の変形例を示すブロック図である。なお、図10に示すセンサチップ11B-bを構成するブロックのうち、図8のセンサチップ11Bと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図10に示すように、センサチップ11B-bは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図8のセンサチップ11Bと共通する構成となっている。
 一方、センサチップ11B-bは、2個のグローバル制御回路13-1および13-2がピクセルアレイ部12の上辺および下辺にそれぞれ沿うようにロジック基板52に配置されるとともに、制御線21の両端に駆動素子32-1および32-2が接続される点で、図8のセンサチップ11Bと異なる構成となっている。
 即ち、センサチップ11B-bは、図4に示したセンサチップ11-aと同様に、グローバル制御回路13-1が有する駆動素子32-1が制御線21の上端からグローバル制御信号を供給し、グローバル制御回路13-2が有する駆動素子32-2が制御線21の下端からグローバル制御信号を供給するように構成される。
 このように構成されるセンサチップ11B-bは、2個の駆動素子32-1および駆動素子32-2間のスキューを抑制することができ、制御線21を介して伝播されるグローバル制御信号に発生する遅延時間のバラツキを解消することができる。これにより、センサチップ11B-bでは、より高速にセンサ素子に対する制御を行うことができる。なお、センサチップ11B-bでは、貫通電流が発生することがないようにグローバル制御信号の出力の遅延差が大きくなることを回避するように制御を行う必要がある。
 以上のように構成されるセンサチップ11Bでは、ロジック基板51およびセンサ基板52が積層されたスタック構造において、図1のセンサチップ11と同様に、より高速にセンサ素子に対する制御を行うことができる。
 なお、図8乃至図10に示した構成例では、カラムADC15は、下辺に配置されているTSV領域53-3およびTSV領域54-3を介してピクセルアレイ部12の下端側からセンサ信号を読み出すように構成されている。このような構成の他、例えば、2個のカラムADC15を上辺近傍および下辺近傍に配置して、それぞれピクセルアレイ部12の上端側および下端側からセンサ信号を読み出すように構成してもよい。
 <センサチップの第4の構成例>
 図11を参照して、本技術を適用したセンサチップの第4の実施の形態について説明する。なお、図11に示すセンサチップ11Cを構成するブロックのうち、図8のセンサチップ11Bと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図11に示すように、センサチップ11Cは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図8のセンサチップ11Bと共通する構成となっている。
 一方、センサチップ11Cは、図6に示したセンサチップ11Aのピクセルアレイ部12Aと同様に、ピクセルアレイ部12Cが、縦長の長方形の領域となっている点で、図8のセンサチップ11Bと異なる構成となっている。従って、センサチップ11Cでは、グローバル制御回路13Cが、ピクセルアレイ部12Cの長辺に沿うように、ロジック基板52の左辺側に配置される。これに伴い、制御線21Cは、ピクセルアレイ部12Cに行列状に配置されるセンサ素子の行ごとに、ピクセルアレイ部12Cの左右方向に向かって配置される。
 また、センサチップ11Cでは、ローリング制御回路14Cが、ピクセルアレイ部12Cの長辺に沿うように、ロジック基板52の右辺側(グローバル制御回路13Cと対向する側)に配置されている。なお、グローバル制御回路13Cおよびピクセルアレイ部12Cを、ロジック基板52の同一側に配置してもよいが、この場合、いずれか一方の配線長が長くなることが想定されるため、図示するような配置とすることが好ましい。
 また、センサチップ11Cでは、カラムADC15Cが、ピクセルアレイ部12Cの短辺に沿うように、ロジック基板52の下辺側に配置される。このように、ローリング制御回路14Cに対して直交する方向にカラムADC15Cが配置されているのは、カラムADC15Cは、1つのADコンバータに接続されるセンサ素子を1つずつオンする必要があるためであり、それぞれの配線が重なるようなレイアウトとなるのを回避している。
 このように構成されるセンサチップ11Cは、図8のセンサチップ11Bと同様に、グローバル制御回路13Cがピクセルアレイ部12Cの長辺に沿うように配置されるレイアウトにより、制御線21Cの配線長を短くすることができる。従って、センサチップ11Cは、図8のセンサチップ11Bと同様に、より高速にセンサ素子に対する制御を行うことができる。
 <センサチップの第5の構成例>
 図12を参照して、本技術を適用したセンサチップの第5の実施の形態について説明する。なお、図12に示すセンサチップ11Dを構成するブロックのうち、図8のセンサチップ11Bと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図12に示すように、センサチップ11Dは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図8のセンサチップ11Bと共通する構成となっている。
 一方、センサチップ11Dは、ロジック基板52において、センサ基板51のピクセルアレイ部12が形成される領域に対応して、複数のADC15が、図12の例では、12個のADC15-1乃至15-12が配置されている点で、図8のセンサチップ11Bと異なる構成となっている。
 例えば、センサチップ11Dは、ピクセルアレイ部12の所定領域ごとに、ADC15が配置されて構成される。図示するように12個のADC15-1乃至15-12を使用する場合には、ピクセルアレイ部12を12等分した領域ごとに、ADC15が配置され、それぞれの領域に設けられるセンサ素子から出力されるセンサ信号のAD変換が並列的に行われる。なお、ピクセルアレイ部12の所定領域ごとにADC15を配置する構成の他、例えば、ピクセルアレイ部12が有する1つのセンサ素子ごとに1個のADC15を配置する構成としてもよい。
 このように構成されるセンサチップ11Dは、図8のセンサチップ11Bと同様に、グローバル制御回路13がピクセルアレイ部12の長辺に沿うように配置されるレイアウトにより、制御線21の配線長を短くすることができる。従って、センサチップ11Dは、図8のセンサチップ11Bと同様に、より高速にセンサ素子に対する制御を行うことができる。
 さらに、センサチップ11Dは、ローリング制御回路14とADC15との位置関係は、図8に示したカラムADC15のような制約に限定されることがなくなる。例えば、図12に示すセンサチップ11Dでは、ロジック基板52の右辺側にローリング制御回路14が配置されているが、ローリング制御回路14は、上辺側または下辺側のどちらに配置してもよい。つまり、センサチップ11Dに対するピクセルアレイ部12の配置位置(例えば、光学的な中心に対するセンサチップ11Dの中心位置)などの制限がなければ、ローリング制御回路14をどこに配置してもよい。
 または、例えば、光学的な中心とセンサチップ11Dの中心位置とに強い制限がある場合には、グローバル制御回路13に対してADC15が配置されている領域の反対側となる位置にローリング制御回路14を配置することで、レイアウトをバランス良くすることができる。これにより、センサチップ11Dの特性を向上させることができる。
 <センサチップの第6の構成例>
 図13乃至22を参照して、本技術を適用したセンサチップの第6の実施の形態について説明する。なお、図13乃至22に示すセンサチップ11Eを構成するブロックのうち、図7および図8のセンサチップ11Bと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 図13に示すように、センサチップ11Eは、図7に示したセンサチップ11Bと同様に、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている。そして、センサチップ11Eは、平面的に見たときにピクセルアレイ部12の中央に重なるようにグローバル制御回路13が配置されており、ピクセルアレイ部12の中央部においてグローバル制御回路13が制御線21に接続される接続構成となっている。
 例えば、センサチップ11Eは、配線を構成する銅(Cu)どうしの接続や、マイクロバンプまたはTSVを利用した接続などにより、ピクセルアレイ部12において接続可能である場合、駆動素子32から制御線21の遠端に配置されるセンサ素子までの距離を短くすることができる。
 図14を参照して、センサチップ11Eの構成について、さらに説明する。
 図14に示すように、センサ基板51において、ピクセルアレイ部12は、横方向に長辺が設けられ、縦方向に短辺が設けられた横長の長方形の領域となっている。従って、ロジック基板52において、グローバル制御回路13は、その長手方向がピクセルアレイ部12の長辺に沿うように配置される。そして、グローバル制御回路13の駆動素子32から出力される配線が、ピクセルアレイ部12の上下方向に向かって配置される制御線21の中央に接続されるように、グローバル制御回路13がロジック基板52の略中央に配置される。なお、平面的に見て、グローバル制御回路13から直接的にピクセルアレイ部12に向かって、駆動素子32から出力される配線が基板を貫通するような構成としてもよい。
 このように構成されるセンサチップ11Eでは、駆動素子32から制御線21の両端に配置されるセンサ素子までの距離を短くすることができる。従って、センサチップ11Eは、グローバル制御信号の遅延量およびスルーレートを改善することができるため、より高速にセンサ素子に対する制御を行うことができる。
 また、センサチップ11Eに示すような構成は、例えば、ToFセンサに適用するのに好適である。
 図15は、図14に示したセンサチップ11Eの第1の変形例を示すブロック図である。なお、図15に示すセンサチップ11E-aを構成するブロックのうち、図14のセンサチップ11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図15に示すように、センサチップ11E-aは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図14のセンサチップ11Eと共通する構成となっている。
 一方、センサチップ11E-aは、センサ基板51において、ピクセルアレイ部12に行列状に配置されるセンサ素子の1行に対し、中央で分割された2本の制御線21-1および21-2が配置される点で、図14のセンサチップ11Eと異なる構成となっている。また、センサチップ11E-aは、ロジック基板52において、グローバル制御回路13が、センサ素子の1行に対して2個の駆動素子32-1および32-2を備える点で、図14のセンサチップ11Eと異なる構成となっている。
 そして、センサチップ11E-aでは、制御線21-1の中央側の端部に駆動素子32-1が接続されるとともに、制御線21-2の中央側の端部に駆動素子32-2が接続される接続構成となっている。即ち、センサチップ11E-aは、ピクセルアレイ部12の1行に配置される複数のセンサ素子のうち、中央より上側に配置されるセンサ素子は制御線21-1を介して駆動素子32-1により駆動され、中央より下側に配置されるセンサ素子は制御線21-2を介して駆動素子32-2により駆動されるように構成される。
 このように構成されるセンサチップ11E-aは、図14のセンサチップ11Eと同様に、駆動素子32-1から制御線21-1の遠端に配置されるセンサ素子までの距離、および、駆動素子32-2から制御線21-2の遠端に配置されるセンサ素子までの距離を短くすることができる。従って、センサチップ11E-aは、図14のセンサチップ11Eと同様に、グローバル制御信号の遅延量およびスルーレートを改善することができる。
 さらに、センサチップ11E-aは、1個の駆動素子32あたりの負荷を削減することができるので、図14のセンサチップ11Eよりも、駆動素子32のサイズを小型化することができる。さらに、センサチップ11E-aは、センサ素子の1列に対して2個の駆動素子32を配置する構成とすることで、駆動素子32のレイアウトが一カ所に集積されることになり、全体のレイアウト構造を簡易化することができる。
 図16は、図14に示したセンサチップ11Eの第2の変形例を示すブロック図である。なお、図16に示すセンサチップ11E-bを構成するブロックのうち、図14のセンサチップ11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図16に示すセンサチップ11E-bは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図14のセンサチップ11Eと共通する構成となっている。
 一方、センサチップ11E-bは、センサ基板51において、ピクセルアレイ部12に行列状に配置されるセンサ素子の1行に対し、中央で分割された2本の制御線21-1および21-2が配置されている点で、図14のセンサチップ11Eと異なる構成となっている。また、センサチップ11E-bは、ロジック基板52において、2個のグローバル制御回路13-1および13-2が配置される点で、図14のセンサチップ11Eと異なる構成となっている。
 そして、センサチップ11E-bでは、制御線21-1の中央に駆動素子32-1が接続されるとともに、制御線21-2の中央に駆動素子32-2が接続される接続構成となっている。即ち、センサチップ11E-bは、ピクセルアレイ部12の1行に配置される複数のセンサ素子のうち、中央より上側に配置されるセンサ素子は制御線21-1を介して駆動素子32-1により駆動され、中央より下側に配置されるセンサ素子は制御線21-2を介して駆動素子32-2により駆動されるように構成される。
 このように構成されるセンサチップ11E-bは、図14のセンサチップ11Eと比較して、駆動素子32-1から制御線21-1の遠端に配置されるセンサ素子までの距離、および、駆動素子32-2から制御線21-2の遠端に配置されるセンサ素子までの距離を短くすることができる。これにより、センサチップ11E-bは、図14のセンサチップ11Eよりも、より高速な駆動が可能となり、グローバル制御信号の遅延量およびスルーレートのさらなる改善を図ることができる。
 また、図16に示すように、センサチップ11E-bでは、グローバル制御回路13-1および13-2を分割して配置することができるので、それらの間となる中央箇所にロジック回路17を配置することができる。なお、図示しないが、グローバル制御回路13-1および13-2の間となる中央箇所にカラムADC15を配置してもよい。
 また、センサチップ11E-bに示すような構成は、例えば、ToFセンサに適用するのに好適である。
 図17は、図14に示したセンサチップ11Eの第3の変形例を示すブロック図である。なお、図17に示すセンサチップ11E-cを構成するブロックのうち、図14のセンサチップ11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図17に示すセンサチップ11E-cは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図14のセンサチップ11Eと共通する構成となっている。
 一方、センサチップ11E-cは、センサ基板51において、ピクセルアレイ部12に行列状に配置されるセンサ素子の1行に対し、中央で分割された2本の制御線21-1および21-2が配置されている点で、図14のセンサチップ11Eと異なる構成となっている。また、センサチップ11E-cは、ロジック基板52において、2個のグローバル制御回路13-1および13-2が配置される点で、図14のセンサチップ11Eと異なる構成となっている。
 そして、センサチップ11E-cでは、図16のセンサチップ11E-bと同様に、制御線21-1の中央に駆動素子32-1が接続されるとともに、制御線21-2の中央に駆動素子32-2が接続される接続構成となっている。従って、センサチップ11E-cは、図16のセンサチップ11E-bと同様に、図14のセンサチップ11Eよりも、より高速な駆動が可能となり、グローバル制御信号の遅延量およびスルーレートのさらなる改善を図ることができる。
 さらに、センサチップ11E-cは、ロジック基板52の上辺側にカラムADC15-1が配置されるとともに、ロジック基板52の下辺側にカラムADC15-2が配置されている。このように構成されるセンサチップ11E-cは、レイアウトを上下に対象となる構造となり対称性が向上する結果、センサチップ11E-cの特性を向上させることができる。
 図18は、図14に示したセンサチップ11Eの第4の変形例を示すブロック図である。なお、図18に示すセンサチップ11E-dを構成するブロックのうち、図14のセンサチップ11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図18に示すセンサチップ11E-dは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図14のセンサチップ11Eと共通する構成となっている。
 一方、センサチップ11E-dは、ロジック基板52において、2個のグローバル制御回路13-1および13-2が配置されており、グローバル制御回路13-1が制御線21の上側半分の略中央に接続されるとともに、グローバル制御回路13-2が制御線21の下側半分の略中央に接続されるような接続構成となっている点で、図14のセンサチップ11Eと異なる構成となっている。つまり、センサチップ11E-dは、図17の制御線21-1および21-2が接続された1本の制御線21が用いられる構成となっている。
 このように構成されるセンサチップ11E-dは、2個の駆動素子32-1および駆動素子32-2間のスキューを抑制することができ、制御線21を介して伝播されるグローバル制御信号に発生する遅延時間のバラツキを解消することができる。これにより、センサチップ11E-dでは、より高速にセンサ素子に対する制御を行うことができる。なお、センサチップ11E-dでは、貫通電流が発生することがないようにグローバル制御信号の出力の遅延差が大きくなることを回避するように制御する必要がある。
 図19は、図14に示したセンサチップ11Eの第5の変形例を示すブロック図である。なお、図19に示すセンサチップ11E-eを構成するブロックのうち、図14のセンサチップ11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。また、図19に示すセンサチップ11E-eでは、図が煩雑になることを回避するために、センサチップ11E-eを構成する一部のブロックの図示が省略されている。
 即ち、図19に示すセンサチップ11E-eは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図14のセンサチップ11Eと共通する構成となっている。
 一方、センサチップ11E-eは、センサ基板51において、ピクセルアレイ部12に行列状に配置されるセンサ素子の1行に対し、4分割された制御線21-1乃至21-4が配置されている点で、図14のセンサチップ11Eと異なる構成となっている。また、センサチップ11E-eは、ロジック基板52において、4個のグローバル制御回路13-1乃至13-4が配置される点で、図14のセンサチップ11Eと異なる構成となっている。
 そして、センサチップ11E-eでは、制御線21-1乃至21-4それぞれの中央にグローバル制御回路13-1乃至13-4の駆動素子32-1乃至32-4が接続される接続構成となっている。従って、センサチップ11E-eは、駆動素子32-1乃至32-4それぞれから制御線21-1乃至21-4の遠端に配置されるセンサ素子までの距離を、さらに短くすることができる。これにより、センサチップ11E-eは、センサ素子に対する制御のさらなる高速化を図ることができる。なお、センサチップ11E-eでは、カラムADC15Aやロジック回路17などが分離されて配置されることが想定されるが、そのような場合でも特性に影響を与えないようなレイアウトを採用することが必要となる。
 なお、図19に示す構成例では、4本に分割された制御線21-1乃至21-4を用いて説明を行っているが、制御線21を3本に分割したり、5本以上に分割したりしてもよい。そして、分割された制御線21の略中央に、それぞれ対応するグローバル制御回路13が接続されるような構成とすることができる。
 図20は、図14に示したセンサチップ11Eの第6の変形例を示すブロック図である。なお、図20に示すセンサチップ11E-fを構成するブロックのうち、図14のセンサチップ11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図20に示すセンサチップ11E-fは、ピクセルアレイ部12が形成されるセンサ基板51と、グローバル制御回路13が形成されるロジック基板52とが積層される積層構造となっている点で、図14のセンサチップ11Eと共通する構成となっている。
 一方、センサチップ11E-fは、ロジック基板52において、4個のグローバル制御回路13-1乃至13-4が配置されており、グローバル制御回路13-1乃至13-4が、制御線21に対して均等な間隔で接続されるような接続構成となっている点で、図14のセンサチップ11Eと異なる構成となっている。つまり、センサチップ11E-dは、図19の制御線21-1乃至21-4が接続された1本の制御線21が用いられる構成となっている。
 このように構成されるセンサチップ11E-fは、4個の駆動素子32-1乃至32-4間のスキューを抑制することができ、制御線21を介して伝播されるグローバル制御信号に発生する遅延時間のバラツキを解消することができる。これにより、センサチップ11E-fでは、より高速にセンサ素子に対する制御を行うことができる。なお、センサチップ11E-fでは、貫通電流が発生することがないようにグローバル制御信号の出力の遅延差が大きくなることを回避するように制御する必要がある。
 図21は、図14に示したセンサチップ11Eの第7の変形例を示すブロック図である。なお、図21に示すセンサチップ11E-gを構成するブロックのうち、図19のセンサチップ11E-eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、センサチップ11E-gは、1個のグローバル制御回路13を備えて構成され、図19のセンサチップ11E-eのグローバル制御回路13-2乃至13-4に替えて、バッファ回路55-1乃至55-3を備えて構成される。バッファ回路55-1乃至55-3は、それぞれバッファ56-1乃至56-3を有しており、グローバル制御回路13の駆動素子32の出力がバッファ56-1乃至56-3それぞれで分岐されて、4分割された制御線21-1乃至21-4に接続されている。
 このように構成されるセンサチップ11E-gにおいても、図19のセンサチップ11E-eと同様に、センサ素子に対する制御のさらなる高速化を図ることができる。
 図22は、図14に示したセンサチップ11Eの第8の変形例を示すブロック図である。なお、図22に示すセンサチップ11E-hを構成するブロックのうち、図20のセンサチップ11E―fと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、センサチップ11E-gは、1個のグローバル制御回路13を備えて構成され、図20のセンサチップ11E―fのグローバル制御回路13-2乃至13-4に替えて、バッファ回路55-1乃至55-3を備えて構成される。バッファ回路55-1乃至55-3は、それぞれバッファ56-1乃至56-3を有しており、グローバル制御回路13の駆動素子32の出力がバッファ56-1乃至56-3それぞれで分岐されて、制御線21に接続されている。
 このように構成されるセンサチップ11E-hにおいても、図20のセンサチップ11E―fと同様に、センサ素子に対する制御のさらなる高速化を図ることができる。
 <センサチップの第7の構成例>
 図23乃至25を参照して、本技術を適用したセンサチップの第7の実施の形態について説明する。なお、図23乃至25に示すセンサチップ11Fを構成するブロックのうち、図13のセンサチップ11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、図23に示すセンサチップ11Fは、センサ基板51と、2枚のロジック基板52-1および52-2とが積層される積層構造となっている。即ち、本技術は、3枚の半導体基板が積層される構造に適用することができる。
 図23に示すように、センサチップ11Fは、1層目のセンサ基板51にピクセルアレイ部12が形成され、2層目のロジック基板52-1に、グローバル制御回路13と、メモリ61-1および61-2とが形成され、3層目のロジック基板52-2に、例えば、図示しないカラムADC15やロジック回路17などが形成されて構成される。
 このように構成されるセンサチップ11Fにおいても、センサ基板51のピクセルアレイ部12の長手方向に沿って、ロジック基板52-1にグローバル制御回路13を配置することで、図13のセンサチップ11Eと同様に、より高速にセンサ素子に対する制御を行うことができる。
 また、センサ基板51、ロジック基板52-1、およびロジック基板52-2の順番で積層されるセンサチップ11Fは、グローバル制御回路13は、センサ基板51およびロジック基板52-2の間に積層されるロジック基板52-1の中央に配置することが好ましい。これにより、グローバル制御回路13から制御線21の遠端に配置されるセンサ素子までの距離を短くすることができる。もちろん、グローバル制御回路13から制御線21の遠端に配置されるセンサ素子までの距離を短くすることができれば、図23に示すようなレイアウトに限定されることはない。
 図24は、図23に示したセンサチップ11Fの第1の変形例を示す斜視図である。
 図24に示すように、センサチップ11F-aでは、1層目のセンサ基板51にピクセルアレイ部12が形成され、2層目のロジック基板52-1に、メモリ61-1および61-2が形成され、3層目のロジック基板52-2に、例えば、グローバル制御回路13や、図示しないカラムADC15およびロジック回路17などが形成されて構成される。
 このように構成されるセンサチップ11F-aにおいても、センサ基板51のピクセルアレイ部12の長手方向に沿って、ロジック基板52-2にグローバル制御回路13を配置することで、図13のセンサチップ11Eと同様に、より高速にセンサ素子に対する制御を行うことができる。
 図25は、図23に示したセンサチップ11Fの第2の変形例を示す斜視図である。
 図25に示すように、センサチップ11F-bでは、1層目のセンサ基板51にピクセルアレイ部12が形成され、2層目のロジック基板52-1に、メモリ61が形成され、3層目のロジック基板52-2に、例えば、グローバル制御回路13や、図示しないカラムADC15およびロジック回路17などが形成されて構成される。なお、センサチップ11F-bでは、例えば、図8のセンサチップ11Bと同様に、センサチップ11F-bの周辺領域に形成されるTSV領域を利用して、グローバル制御回路13に制御線21が接続される接続構成となっている。
 このように構成されるセンサチップ11F-bにおいても、センサ基板51のピクセルアレイ部12の長手方向に沿って、ロジック基板52-2にグローバル制御回路13を配置することで、図13のセンサチップ11Eと同様に、より高速にセンサ素子に対する制御を行うことができる。
 なお、例えば、3枚以上の半導体基板を積層してもよく、上述の図16に示したように2カ所にグローバル制御回路13を配置したり、2カ所以上の複数個所にグローバル制御回路13を配置したりしてもよい。この場合、メモリ61が配置される半導体基板や、メモリ61の配置位置または分割数を、グローバル制御回路13の配置に応じて適切にレイアウトすることができる。
 例えば、1層目の半導体基板にピクセルアレイ部12を配置し、2層目の半導体基板にカラムADC15やロジック回路17などを配置し、3層目の半導体基板にメモリ61を配置する構成を採用してもよい。このような構成においても、2層目の半導体基板にグローバル制御回路13を配置することで、配線長を短くすることができるが、メモリ61が配置される半導体基板にグローバル制御回路13を配置してもよい。
 <センサチップの第8の構成例>
 図26を参照して、本技術を適用したセンサチップの第8の実施の形態について説明する。なお、図26に示すセンサチップ11Gを構成するブロックのうち、図14のセンサチップ11Eと共通する構成については、同一の符号を付し、その詳細な説明は省略する。
 即ち、センサチップ11におけるグローバル制御回路13の配置は、上述した各実施の形態で説明したものに限定されることなく、図26に示すような様々なレイアウトを採用することができる。もちろん、いずれの配置においても、ピクセルアレイ部12の長辺に沿うようにグローバル制御回路13が配置されていれば、図示されていないようなレイアウトを採用してもよい。
 図26のAに示すように、センサチップ11Gは、センサ基板51にピクセルアレイ部12およびグローバル制御回路13が配置され、ロジック基板52にローリング制御回路14、カラムADC15、およびロジック回路17が配置されたレイアウトとなっている。そして、センサチップ11Gでは、グローバル制御回路13は、ピクセルアレイ部12の長辺に沿うように、ピクセルアレイ部12の下辺側に配置されている。
 図26のBに示すように、センサチップ11G-aは、センサ基板51にピクセルアレイ部12およびグローバル制御回路13が配置され、ロジック基板52にローリング制御回路14、カラムADC15、およびロジック回路17が配置されたレイアウトとなっている。そして、センサチップ11G-aでは、グローバル制御回路13は、ピクセルアレイ部12の長辺に沿うように、ピクセルアレイ部12の上辺側に配置されている。
 図26のCに示すように、センサチップ11G-bは、センサ基板51にピクセルアレイ部12、並びに、グローバル制御回路13-1および13-2が配置され、ロジック基板52にローリング制御回路14、カラムADC15、およびロジック回路17が配置されたレイアウトとなっている。そして、センサチップ11G-bでは、グローバル制御回路13-1および13-2は、ピクセルアレイ部12の長辺に沿うように、ピクセルアレイ部12の上辺側および下辺側にそれぞれ配置されている。
 図26のDに示すように、センサチップ11G-cは、センサ基板51にピクセルアレイ部12、並びに、グローバル制御回路13-1および13-2が配置され、ロジック基板52にローリング制御回路14、カラムADC15、およびロジック回路17が配置されたレイアウトとなっている。そして、センサチップ11G-cでは、グローバル制御回路13-1および13-2は、ピクセルアレイ部12の長辺に沿うように、ピクセルアレイ部12の上辺側および下辺側にそれぞれ配置されているとともに、ピクセルアレイ部12に行列状に配置されるセンサ素子の列の中央で分離されるように、2本の制御線21-1および21-2が配置されている。
 図26のEに示すように、センサチップ11G-dは、センサ基板51にピクセルアレイ部12、並びに、グローバル制御回路13-1および13-2が配置され、ロジック基板52にローリング制御回路14、カラムADC15、およびロジック回路17が配置されたレイアウトとなっている。さらに、センサチップ11G-dでは、ピクセルアレイ部12の長辺に沿うように、ロジック基板52に入出力部16が配置されている。
 例えば、センサチップ11G-dは、入出力部16からTSV領域54-1およびTSV領域53-1を介してグローバル制御回路13へ電源を供給するように構成される。なお、TSVを利用する他、配線を構成する銅(Cu)どうしの接続や、マイクロバンプなどを利用して、グローバル制御回路13へ電源を供給するようにしてもよい。また、グローバル制御回路13へ電力を供給する配線は、制御線21と同一の接続方法を用いてもよいし、他の組み合わせの接続方法を用いてもよい。また、2層の半導体基板が積層される構成の他、3層の半導体基板が積層される構成であっても同様に、入出力部16の近傍にグローバル制御回路13を配置することが好ましい。
 なお、図26に示した各種のレイアウトでは、カラムADC15はロジック基板52の片側に配置された例が示されているが、カラムADC15がロジック基板52の上下両側に配置されるレイアウトを採用してもよい。また、カラムADC15やロジック回路17の位置は、図26に示したような配置に限定されることはない。
 以上のように、センサチップ11に積層型の構造を適用することで、グローバル制御回路13を様々なレイアウトで配置することができ、レイアウトの自由度が増すとともに、グローバル制御回路13とローリング制御回路14とを個別に制御する効果が大きくなる。
 <距離画像センサの構成例>
 図27は、センサチップ11を利用した電子機器である距離画像センサの構成例を示すブロック図である。
 図27に示すように、距離画像センサ201は、光学系202、センサチップ203、画像処理回路204、モニタ205、およびメモリ206を備えて構成される。そして、距離画像センサ201は、光源装置211から被写体に向かって投光され、被写体の表面で反射された光(変調光やパルス光)を受光することにより、被写体までの距離に応じた距離画像を取得することができる。
 光学系202は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)をセンサチップ203に導き、センサチップ203の受光面(センサ部)に結像させる。
 センサチップ203としては、上述した各実施の形態のセンサチップ11が適用され、センサチップ203から出力される受光信号(APD OUT)から求められる距離を示す距離信号が画像処理回路204に供給される。
 画像処理回路204は、センサチップ203から供給された距離信号に基づいて距離画像を構築する画像処理を行い、その画像処理により得られた距離画像(画像データ)は、モニタ205に供給されて表示されたり、メモリ206に供給されて記憶(記録)されたりする。
 このように構成されている距離画像センサ201では、上述したセンサチップ11を適用することで、より高速な制御を行うことによって、例えば、より正確な距離画像を取得することができる。
 <イメージセンサの使用例>
 図28は、上述のイメージセンサ(撮像素子)を使用する使用例を示す図である。
 上述したイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
 <内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図29は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図29では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図30は、図29に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、内視鏡11100や、カメラヘッド11102(の撮像部11402)、CCU11201(の画像処理部11412)等に適用され得る。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
 <移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図31は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図31に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図31の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図32は、撮像部12031の設置位置の例を示す図である。
 図32では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図32には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031等に適用され得る。
 <構成の組み合わせ例>
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数のセンサ素子がアレイ状に配置された矩形形状の領域のピクセルアレイ部と、
 前記センサ素子を同時的に駆動する駆動素子が一方向に向かって配置され、その長手方向が前記ピクセルアレイ部の長辺に沿うように配置され、前記センサ素子の1列ごとに設けられる制御線に前記駆動素子がそれぞれ接続されるグローバル制御回路と
 を備えるセンサチップ。
(2)
 前記ピクセルアレイ部の長手方向に沿って前記ピクセルアレイ部の両側の辺に2個の前記グローバル制御回路が配置されており、
 それぞれの前記グローバル制御回路の駆動素子が、前記制御線の両端に接続されている
 上記(1)に記載のセンサチップ。
(3)
 前記センサ素子の1列ごとに配置される前記信号線が、前記ピクセルアレイ部の略中央で分割されており、
 前記ピクセルアレイ部の両側の辺にそれぞれ配置されている2個の前記グローバル制御回路の前記駆動素子のうち、一方の前記駆動素子が、分割された一方の前記信号線に接続されるとともに、他方の前記駆動素子が、分割された他方の前記信号線に接続される
 上記(1)または(2)に記載のセンサチップ。
(4)
 前記ピクセルアレイ部が配置されるセンサ基板と、前記グローバル制御回路が配置されるロジック基板とが積層される積層構造である
 上記(1)から(3)までのいずれかに記載のセンサチップ。
(5)
 前記センサ基板において前記ピクセルアレイ部が配置されている領域の周辺に設けられる接続部を介して、前記ロジック基板の前記グローバル制御回路に配置される前記駆動素子が、前記信号線の一方の端部に接続される
 上記(1)から(4)までのいずれかに記載のセンサチップ。
(6)
 前記ピクセルアレイ部の長手方向に沿って前記ピクセルアレイ部の両側の辺に対応するように、前記ロジック基板に2個の前記グローバル制御回路が配置されており、
 前記センサ基板において前記ピクセルアレイ部が配置されている領域の周辺の対向する両辺に設けられる接続部を介して、前記ロジック基板に配置される2個の前記グローバル制御回路それぞれに配置される前記駆動素子が、前記信号線の両方の端部に接続される
 上記(1)から(5)までのいずれかに記載のセンサチップ。
(7)
 前記センサ素子の1列ごとに配置される前記信号線が、前記ピクセルアレイ部の略中央で分割されており、
 前記ピクセルアレイ部の両側の辺にそれぞれ対応するように前記ロジック基板に配置されている2個の前記グローバル制御回路の前記駆動素子のうち、一方の前記駆動素子が、分割された一方の前記信号線に接続されるとともに、他方の前記駆動素子が、分割された他方の前記信号線に接続される
 上記(1)から(6)までのいずれかに記載のセンサチップ。
(8)
 前記グローバル制御回路は前記ロジック基板の略中央に配置されており、平面的に見て前記ピクセルアレイ部に重なるように設けられる接続部を介して、前記ロジック基板の前記グローバル制御回路に配置される前記駆動素子が、前記信号線の略中央に接続される
 上記(1)から(7)までのいずれかに記載のセンサチップ。
(9)
 前記センサ素子の1列ごとに配置される前記信号線が、前記ピクセルアレイ部の略中央で分割されており、
 前記グローバル制御回路には、前記センサ素子の1列ごとに2個の前記駆動素子が配置されており、一方の前記駆動素子は、前記信号線の一方の前記ピクセルアレイ部の中央側の端部に接続されるとともに、他方の前記駆動素子は、前記信号線の他方の前記ピクセルアレイ部の中央側の端部に接続される
 上記(1)から(8)までのいずれかに記載のセンサチップ。
(10)
 前記ロジック基板には、2個の前記グローバル制御回路が配置され、一方の前記グローバル制御回路の前記駆動素子は前記信号線の一方の片側半分の中央に接続されるとともに、他方の前記グローバル制御回路の前記駆動素子は前記信号線の他方の片側半分の中央に接続される
 上記(1)から(9)までのいずれかに記載のセンサチップ。
(11)
 前記センサ素子の1列ごとに配置される前記信号線が、前記ピクセルアレイ部の略中央で分割されており、
 前記ロジック基板には、2個の前記グローバル制御回路が配置され、一方の前記グローバル制御回路の前記駆動素子は前記信号線の一方の中央に接続されるとともに、他方の前記グローバル制御回路の前記駆動素子は前記信号線の他方の中央に接続される
 上記(1)から(10)までのいずれかに記載のセンサチップ。
(12)
 前記信号線が3本以上に分割されており、それぞれの前記信号線の略中央に、それぞれ対応する3個以上の前記グローバル制御回路の前記駆動素子が接続される
 上記(1)から(11)までのいずれかに記載のセンサチップ。
(13)
 前記信号線が複数に分割されており、前記ロジック基板には少なくとも1個の前記グローバル制御回路が配置されるとともに、前記信号線の分割数に応じた複数のバッファ回路が配置されている
 上記(1)から(12)までのいずれかに記載のセンサチップ。
(14)
 3枚以上の半導体基板が積層されて構成される
 上記(1)から(12)までのいずれかに記載のセンサチップ。
(15)
 複数のセンサ素子がアレイ状に配置された矩形形状の領域のピクセルアレイ部と、
 前記センサ素子を同時的に駆動する駆動素子が一方向に向かって配置され、その長手方向が前記ピクセルアレイ部の長辺に沿うように配置され、前記センサ素子の1列ごとに設けられる制御線に前記駆動素子がそれぞれ接続されるグローバル制御回路と
 を有するセンサチップを備える電子機器。
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 11 センサチップ, 12 ピクセルアレイ部, 13 グローバル制御回路, 14 ローリング制御回路, 15 カラムADC, 16 入出力部, 17 ロジック回路, 21 制御線, 31 内部バッファ, 32 駆動素子, 41および42 内部バッファ, 43 レジスタ, 44 駆動素子, 45 デコーダ, 46 ANDゲート, 51 センサ基板, 52 ロジック基板, 53および54 TSV領域, 55 バッファ回路, 61 メモリ

Claims (15)

  1.  複数のセンサ素子がアレイ状に配置された矩形形状の領域のピクセルアレイ部と、
     前記センサ素子を同時的に駆動する駆動素子が一方向に向かって配置され、その長手方向が前記ピクセルアレイ部の長辺に沿うように配置され、前記センサ素子の1列ごとに設けられる制御線に前記駆動素子がそれぞれ接続されるグローバル制御回路と
     を備えるセンサチップ。
  2.  前記ピクセルアレイ部の長手方向に沿って前記ピクセルアレイ部の両側の辺に2個の前記グローバル制御回路が配置されており、
     それぞれの前記グローバル制御回路の駆動素子が、前記制御線の両端に接続されている
     請求項1に記載のセンサチップ。
  3.  前記センサ素子の1列ごとに配置される前記信号線が、前記ピクセルアレイ部の略中央で分割されており、
     前記ピクセルアレイ部の両側の辺にそれぞれ配置されている2個の前記グローバル制御回路の前記駆動素子のうち、一方の前記駆動素子が、分割された一方の前記信号線に接続されるとともに、他方の前記駆動素子が、分割された他方の前記信号線に接続される
     請求項2に記載のセンサチップ。
  4.  前記ピクセルアレイ部が配置されるセンサ基板と、前記グローバル制御回路が配置されるロジック基板とが積層される積層構造である
     請求項1に記載のセンサチップ。
  5.  前記センサ基板において前記ピクセルアレイ部が配置されている領域の周辺に設けられる接続部を介して、前記ロジック基板の前記グローバル制御回路に配置される前記駆動素子が、前記信号線の一方の端部に接続される
     請求項4に記載のセンサチップ。
  6.  前記ピクセルアレイ部の長手方向に沿って前記ピクセルアレイ部の両側の辺に対応するように、前記ロジック基板に2個の前記グローバル制御回路が配置されており、
     前記センサ基板において前記ピクセルアレイ部が配置されている領域の周辺の対向する両辺に設けられる接続部を介して、前記ロジック基板に配置される2個の前記グローバル制御回路それぞれに配置される前記駆動素子が、前記信号線の両方の端部に接続される
     請求項4に記載のセンサチップ。
  7.  前記センサ素子の1列ごとに配置される前記信号線が、前記ピクセルアレイ部の略中央で分割されており、
     前記ピクセルアレイ部の両側の辺にそれぞれ対応するように前記ロジック基板に配置されている2個の前記グローバル制御回路の前記駆動素子のうち、一方の前記駆動素子が、分割された一方の前記信号線に接続されるとともに、他方の前記駆動素子が、分割された他方の前記信号線に接続される
     請求項4に記載のセンサチップ。
  8.  前記グローバル制御回路は前記ロジック基板の略中央に配置されており、平面的に見て前記ピクセルアレイ部に重なるように設けられる接続部を介して、前記ロジック基板の前記グローバル制御回路に配置される前記駆動素子が、前記信号線の略中央に接続される
     請求項4に記載のセンサチップ。
  9.  前記センサ素子の1列ごとに配置される前記信号線が、前記ピクセルアレイ部の略中央で分割されており、
     前記グローバル制御回路には、前記センサ素子の1列ごとに2個の前記駆動素子が配置されており、一方の前記駆動素子は、前記信号線の一方の前記ピクセルアレイ部の中央側の端部に接続されるとともに、他方の前記駆動素子は、前記信号線の他方の前記ピクセルアレイ部の中央側の端部に接続される
     請求項4に記載のセンサチップ。
  10.  前記ロジック基板には、2個の前記グローバル制御回路が配置され、一方の前記グローバル制御回路の前記駆動素子は前記信号線の一方の片側半分の中央に接続されるとともに、他方の前記グローバル制御回路の前記駆動素子は前記信号線の他方の片側半分の中央に接続される
     請求項4に記載のセンサチップ。
  11.  前記センサ素子の1列ごとに配置される前記信号線が、前記ピクセルアレイ部の略中央で分割されており、
     前記ロジック基板には、2個の前記グローバル制御回路が配置され、一方の前記グローバル制御回路の前記駆動素子は前記信号線の一方の中央に接続されるとともに、他方の前記グローバル制御回路の前記駆動素子は前記信号線の他方の中央に接続される
     請求項4に記載のセンサチップ。
  12.  前記信号線が3本以上に分割されており、それぞれの前記信号線の略中央に、それぞれ対応する3個以上の前記グローバル制御回路の前記駆動素子が接続される
     請求項11に記載のセンサチップ。
  13.  前記信号線が複数に分割されており、前記ロジック基板には少なくとも1個の前記グローバル制御回路が配置されるとともに、前記信号線の分割数に応じた複数のバッファ回路が配置されている
     請求項12に記載のセンサチップ。
  14.  3枚以上の半導体基板が積層されて構成される
     請求項4に記載のセンサチップ。
  15.  複数のセンサ素子がアレイ状に配置された矩形形状の領域のピクセルアレイ部と、
     前記センサ素子を同時的に駆動する駆動素子が一方向に向かって配置され、その長手方向が前記ピクセルアレイ部の長辺に沿うように配置され、前記センサ素子の1列ごとに設けられる制御線に前記駆動素子がそれぞれ接続されるグローバル制御回路と
     を有するセンサチップを備える電子機器。
PCT/JP2018/030905 2017-09-05 2018-08-22 センサチップおよび電子機器 WO2019049662A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22168750.2A EP4057354B1 (en) 2017-09-05 2018-08-22 Sensor chip and electronic apparatus
JP2019540871A JP7167036B2 (ja) 2017-09-05 2018-08-22 センサチップおよび電子機器
US16/469,818 US10872920B2 (en) 2017-09-05 2018-08-22 Sensor chip and electronic apparatus
EP18853942.3A EP3605610B1 (en) 2017-09-05 2018-08-22 Sensor chip and electronic machine
CN201880005066.6A CN110088908A (zh) 2017-09-05 2018-08-22 传感器芯片和电子设备
US17/084,170 US11889213B2 (en) 2017-09-05 2020-10-29 Sensor chip and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/695,400 2017-09-05
US15/695,400 US10418405B2 (en) 2017-09-05 2017-09-05 Sensor chip and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/695,400 Continuation US10418405B2 (en) 2017-09-05 2017-09-05 Sensor chip and electronic apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/469,818 A-371-Of-International US10872920B2 (en) 2017-09-05 2018-08-22 Sensor chip and electronic apparatus
US17/084,170 Continuation US11889213B2 (en) 2017-09-05 2020-10-29 Sensor chip and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2019049662A1 true WO2019049662A1 (ja) 2019-03-14

Family

ID=65518671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030905 WO2019049662A1 (ja) 2017-09-05 2018-08-22 センサチップおよび電子機器

Country Status (5)

Country Link
US (4) US10418405B2 (ja)
EP (2) EP3605610B1 (ja)
JP (1) JP7167036B2 (ja)
CN (2) CN112004039B (ja)
WO (1) WO2019049662A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172364A1 (ja) * 2020-02-25 2021-09-02 ヌヴォトンテクノロジージャパン株式会社 固体撮像装置および撮像装置
WO2022044553A1 (ja) * 2020-08-31 2022-03-03 ソニーセミコンダクタソリューションズ株式会社 半導体装置、および、半導体装置の製造方法
TWI772820B (zh) * 2019-06-19 2022-08-01 日商索尼股份有限公司 密碼鍵產生裝置、密碼鍵產生方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418405B2 (en) * 2017-09-05 2019-09-17 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
JP7102159B2 (ja) * 2018-02-09 2022-07-19 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
JP7292135B2 (ja) * 2019-07-09 2023-06-16 キヤノン株式会社 撮像素子及び撮像装置
TWI831995B (zh) * 2019-10-04 2024-02-11 日商索尼半導體解決方案公司 固體攝像元件及電子機器
KR20220112362A (ko) 2021-02-04 2022-08-11 삼성전자주식회사 이미지 센서

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041174A1 (fr) * 2001-11-05 2003-05-15 Mitsumasa Koyanagi Capteur d'images a semi-conducteur et procede de fabrication associe
JP2005354567A (ja) * 2004-06-14 2005-12-22 Sony Corp 画素アレイ装置および画素アレイ装置の駆動方法
JP2009177207A (ja) * 2009-05-07 2009-08-06 Sony Corp 半導体モジュール
JP2012049547A (ja) 2003-06-17 2012-03-08 Microsoft Corp 三次元及び色彩検出における電荷管理のための方法及び装置
JP2014030170A (ja) * 2012-07-04 2014-02-13 Makoto Shizukuishi 撮像素子、半導体集積回路及び撮像装置
JP2015106924A (ja) * 2013-11-28 2015-06-08 三星電子株式会社Samsung Electronics Co.,Ltd. イメージセンサ及び該イメージセンサを駆動する方法
WO2015119243A1 (ja) * 2014-02-07 2015-08-13 国立大学法人静岡大学 イメージセンサ
JP2016171375A (ja) * 2015-03-11 2016-09-23 株式会社東芝 固体撮像装置
JP2017188879A (ja) * 2016-03-30 2017-10-12 パナソニックIpマネジメント株式会社 撮像装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721008B2 (en) * 1998-01-22 2004-04-13 Eastman Kodak Company Integrated CMOS active pixel digital camera
JP4337779B2 (ja) * 2004-07-01 2009-09-30 ソニー株式会社 物理情報取得方法および物理情報取得装置並びに物理量分布検知の半導体装置
US8174603B2 (en) * 2008-05-01 2012-05-08 Alexander Krymski Image sensors and methods with antiblooming channels and two side driving of control signals
US8411184B2 (en) * 2009-12-22 2013-04-02 Omnivision Technologies, Inc. Column output circuits for image sensors
JP5631050B2 (ja) * 2010-05-10 2014-11-26 キヤノン株式会社 固体撮像装置およびカメラ
US8569700B2 (en) * 2012-03-06 2013-10-29 Omnivision Technologies, Inc. Image sensor for two-dimensional and three-dimensional image capture
US9343497B2 (en) * 2012-09-20 2016-05-17 Semiconductor Components Industries, Llc Imagers with stacked integrated circuit dies
JP6192469B2 (ja) * 2013-10-01 2017-09-06 オリンパス株式会社 撮像装置
TWI648986B (zh) * 2014-04-15 2019-01-21 日商新力股份有限公司 攝像元件、電子機器
JP6702195B2 (ja) * 2014-11-12 2020-05-27 ソニー株式会社 固体撮像装置および電子機器
JP6437344B2 (ja) * 2015-02-25 2018-12-12 ルネサスエレクトロニクス株式会社 半導体装置
FR3034902B1 (fr) * 2015-04-10 2017-05-19 Commissariat Energie Atomique Procede d’affichage d’images sur un ecran matriciel
EP3288081B1 (en) * 2015-04-24 2022-07-27 Sony Group Corporation Solid state image sensor and electronic device comprising the same
US10418405B2 (en) * 2017-09-05 2019-09-17 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
CN110249237A (zh) * 2017-12-22 2019-09-17 索尼半导体解决方案公司 传感器芯片、电子设备和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041174A1 (fr) * 2001-11-05 2003-05-15 Mitsumasa Koyanagi Capteur d'images a semi-conducteur et procede de fabrication associe
JP2012049547A (ja) 2003-06-17 2012-03-08 Microsoft Corp 三次元及び色彩検出における電荷管理のための方法及び装置
JP2005354567A (ja) * 2004-06-14 2005-12-22 Sony Corp 画素アレイ装置および画素アレイ装置の駆動方法
JP2009177207A (ja) * 2009-05-07 2009-08-06 Sony Corp 半導体モジュール
JP2014030170A (ja) * 2012-07-04 2014-02-13 Makoto Shizukuishi 撮像素子、半導体集積回路及び撮像装置
JP2015106924A (ja) * 2013-11-28 2015-06-08 三星電子株式会社Samsung Electronics Co.,Ltd. イメージセンサ及び該イメージセンサを駆動する方法
WO2015119243A1 (ja) * 2014-02-07 2015-08-13 国立大学法人静岡大学 イメージセンサ
JP2016171375A (ja) * 2015-03-11 2016-09-23 株式会社東芝 固体撮像装置
JP2017188879A (ja) * 2016-03-30 2017-10-12 パナソニックIpマネジメント株式会社 撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772820B (zh) * 2019-06-19 2022-08-01 日商索尼股份有限公司 密碼鍵產生裝置、密碼鍵產生方法
WO2021172364A1 (ja) * 2020-02-25 2021-09-02 ヌヴォトンテクノロジージャパン株式会社 固体撮像装置および撮像装置
US11800255B2 (en) 2020-02-25 2023-10-24 Nuvoton Technology Corporation Japan Solid-state imaging device including driver circuits comprising multi-stage buffer elements
WO2022044553A1 (ja) * 2020-08-31 2022-03-03 ソニーセミコンダクタソリューションズ株式会社 半導体装置、および、半導体装置の製造方法

Also Published As

Publication number Publication date
EP3605610B1 (en) 2022-04-20
US10418405B2 (en) 2019-09-17
JP7167036B2 (ja) 2022-11-08
EP3605610A1 (en) 2020-02-05
JPWO2019049662A1 (ja) 2020-08-20
US10748952B2 (en) 2020-08-18
US11889213B2 (en) 2024-01-30
US20210050380A1 (en) 2021-02-18
CN112004039B (zh) 2021-12-14
US20190074315A1 (en) 2019-03-07
EP4057354B1 (en) 2024-07-03
CN110088908A (zh) 2019-08-02
EP4057354A1 (en) 2022-09-14
US20200092499A1 (en) 2020-03-19
EP3605610A4 (en) 2020-03-25
CN112004039A (zh) 2020-11-27
US10872920B2 (en) 2020-12-22
US20190312077A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7177066B2 (ja) センサチップ、電子機器、及び装置
JP7167036B2 (ja) センサチップおよび電子機器
TWI754696B (zh) 固體攝像元件及電子機器
WO2020008907A1 (ja) 受光素子、測距モジュール、および、電子機器
WO2019123831A1 (ja) パルス生成器および信号生成装置
JPWO2018180569A1 (ja) 固体撮像装置、および電子機器
WO2019123825A1 (ja) 信号生成装置
JP6869717B2 (ja) 撮像装置および撮像装置の製造方法、並びに、電子機器
US11031421B2 (en) Solid-state imaging element and imaging apparatus
US20230103730A1 (en) Solid-state imaging device
WO2018131510A1 (ja) 固体撮像素子および電子機器
WO2018173793A1 (ja) 固体撮像素子、および電子機器
WO2022009674A1 (ja) 半導体パッケージ及び半導体パッケージの製造方法
WO2019054177A1 (ja) 撮像素子および撮像素子の製造方法、撮像装置、並びに電子機器
WO2019017217A1 (ja) 固体撮像素子およびその制御方法、並びに電子機器
JP2019161520A (ja) 撮像装置駆動回路および撮像装置
WO2017150168A1 (ja) 撮像素子及び電子機器
WO2021075116A1 (ja) 固体撮像装置及び電子機器
US20230005993A1 (en) Solid-state imaging element
JP7034925B2 (ja) 固体撮像装置および撮像方法
WO2023080011A1 (ja) 撮像装置及び電子機器
WO2022230355A1 (ja) 撮像装置および電子機器
JP2019040892A (ja) 撮像装置、カメラモジュール、及び、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540871

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018853942

Country of ref document: EP

Effective date: 20191021

NENP Non-entry into the national phase

Ref country code: DE