WO2019017277A1 - 振動型角速度センサ - Google Patents

振動型角速度センサ Download PDF

Info

Publication number
WO2019017277A1
WO2019017277A1 PCT/JP2018/026366 JP2018026366W WO2019017277A1 WO 2019017277 A1 WO2019017277 A1 WO 2019017277A1 JP 2018026366 W JP2018026366 W JP 2018026366W WO 2019017277 A1 WO2019017277 A1 WO 2019017277A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
drive
weights
weight
angular velocity
Prior art date
Application number
PCT/JP2018/026366
Other languages
English (en)
French (fr)
Inventor
知也 城森
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019017277A1 publication Critical patent/WO2019017277A1/ja
Priority to US16/690,281 priority Critical patent/US11365970B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • G01C19/5762Structural details or topology the devices having a single sensing mass the sensing mass being connected to a driving mass, e.g. driving frames
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type

Definitions

  • the present disclosure relates to a vibration-type angular velocity sensor that detects an applied angular velocity by displacing a detection weight configured to be supported by a spring and configured to be displaceable based on the application of the angular velocity.
  • a tuning fork type and piezoelectric thin film type vibration type angular velocity sensor for example, a gyro sensor described in Patent Document 1 is known.
  • the gyro sensor is composed of two arms and a base connecting them, and is formed on one surface of the tuning fork made of non-piezoelectric material, aligned with the longitudinal direction of the arms, and separating the piezoelectric film and the piezoelectric film. It has a drive part and a detection part which were comprised by two electrodes which oppose.
  • the driving unit causes the arm to perform predetermined driving vibration in a planar direction on one surface of the arm, and when the angular velocity is applied, the detecting unit is vibrated in a direction intersecting the direction of the driving vibration to detect the angular velocity.
  • the tuning fork type gyro sensor as described above is ideal when the detection unit is provided along the center line in the direction perpendicular to the longitudinal direction of the arm and is symmetrically arranged with respect to the center line.
  • tension and compression occur in equal areas. That is, ideally, when the drive unit is driven and vibrated, tension and compression in the drive vibration direction of the detection unit respectively occur in equal areas.
  • the charge generated due to the tension generated by the drive vibration and the charge generated due to the compression cancel each other out the signal unrelated to the application of the angular velocity, and the influence on the detection of the angular velocity is suppressed.
  • An object of the present disclosure is to provide a vibration-type angular velocity sensor which is configured to be capable of suppressing the occurrence of leakage vibration as compared with a conventional vibration-type angular velocity sensor, and in which the detection accuracy of the angular velocity is improved.
  • the vibration-type angular velocity sensor in the first aspect is a vibration-type angular velocity sensor that detects an angular velocity, and is supported by a substrate and a fixing portion formed on the substrate through a support member.
  • a drive beam, a drive weight supported by the drive beam, a detection weight supported by the drive weight via the beam portion including the detection beam, and the detection beam are provided based on the application of the angular velocity
  • a detection unit that generates an electrical output according to the displacement of the detection beam accompanying the movement of the detection weight when the sensor moves in one direction.
  • the detection weight is connected to the drive weight via the detection beam, and is connected to the fixed portion via the drive weight, and when the drive beam is driven, the drive weight and the detection weight vibrate.
  • the angular velocity is applied while the drive weight and the detection weight are driven and vibrated by the drive beam, with the direction as the vibration direction, the detection beam is displaced in the direction intersecting with the vibration direction and the displacement of the detection beam. The angular velocity is detected based on the change of the output voltage of the detection piezoelectric film.
  • the detection beam is displaced in the direction intersecting the vibration direction of the detection beam when the drive beam is driven and vibrated. Therefore, in the case of drive vibration, the detection beam includes the drive weight and the detection weight and their vibrations. The direction is the same. That is, the detection beam is prevented from being unintentionally deformed by the drive vibration, and the occurrence of the leak vibration is suppressed. As a result, compared to the conventional vibration-type angular velocity sensor, leakage vibration is suppressed, and the vibration-type angular velocity sensor is improved in the detection accuracy of the angular velocity.
  • FIG. 7 is an enlarged view showing displacement of the detection beam and the detection piezoelectric film when the detection weight is subjected to unintended rotational vibration due to a processing error or the like. It is a plane schematic diagram which shows the vibration type angular velocity sensor of 2nd Embodiment.
  • the vibration type angular velocity sensor is a sensor for detecting an angular velocity, and is used, for example, for detecting a rotational angular velocity around a center line parallel to the vertical direction of the vehicle. It can also be applied to other uses.
  • FIG. 1 is a schematic plan view of a vibrating angular velocity sensor according to the present embodiment.
  • the vibration type angular velocity sensor is mounted on the vehicle such that the normal direction of the sheet of FIG. 1 coincides with the vertical direction of the vehicle.
  • the vibration type angular velocity sensor is formed on one surface side of the plate-like substrate 10.
  • the substrate 10 is formed of an SOI (Silicon on insulator) substrate having a structure in which a buried oxide film serving as a sacrificial layer (not shown) is sandwiched between the support substrate 11 and the semiconductor layer 12.
  • SOI Silicon on insulator
  • Such a sensor structure is configured by etching the semiconductor layer 12 side to a pattern of the sensor structure and then partially removing the embedded oxide film to release a part of the sensor structure.
  • the horizontal direction in the drawing is one direction on a plane parallel to the surface of the semiconductor layer 12, and the vertical direction in the drawing is vertical to the y-axis direction, and the vertical direction is perpendicular to one surface of the semiconductor layer 12.
  • the following description is given with the z axis direction.
  • the semiconductor layer 12 is patterned into the fixed portion 20, the movable portion 30 and the beam portion 40.
  • the fixed portion 20 has a buried oxide film left on at least a part of the back surface, and is fixed to the support substrate 11 via the buried oxide film without being released from the support substrate 11.
  • the movable portion 30 and the beam portion 40 constitute a vibrator in a vibrating angular velocity sensor.
  • the embedded oxide film on the back surface side of the movable portion 30 is removed, and the movable portion 30 is released from the support substrate 11.
  • the beam portion 40 displaces the movable portion 30 in the x-axis direction and the y-axis direction to support the movable portion 30 and to perform angular velocity detection.
  • the fixed portion 20 is configured to have a support fixed portion 21 for supporting the movable portion 30.
  • the support fixing portion 21 is disposed so as to surround the periphery of the sensor structure such as the movable portion 30 and the beam portion 40, and supports the movable portion 30 through the beam portion 40 on the inner wall thereof.
  • the structure in which the support fixing portion 21 surrounds the entire area around the sensor structure is exemplified, but the structure may be formed only in a part of the structure.
  • the fixing portion 20 may be configured to include another fixing portion different from the supporting fixing portion 21, for example, a pad fixing portion on which a pad or the like (not shown) is formed.
  • the movable portion 30 is a portion that is displaced in response to the application of the angular velocity, and is configured to have the outer drive weights 31 and 32, the inner drive weights 33 and 34, and the detection weights 35 and 36.
  • the movable portion 30 has a layout in which the outer drive weight 31, the inner drive weight 33 including the detection weight 35, the inner drive weight 34 including the detection weight 36, and the outer drive weight 32 are arranged in this order along the x-axis direction. There is.
  • the movable portion 30 has the two inner drive weights 33 and 34 internally provided with the detection weights 35 and 36 arranged inside, and further outside on both outer sides so as to sandwich the two inner drive weights 33 and 34
  • the drive weights 31 and 32 are arranged one by one.
  • the outer drive weights 31 and 32 extend in the y-axis direction.
  • the outer drive weight 31 is disposed to face the inner drive weight 33.
  • the outer drive weight 32 is disposed to face the inner drive weight 34.
  • the outer drive weights 31 and 32 function as mass portions, are thicker than various beams included in the beam portion 40, and are y-axis that is a vibration direction when drive vibration is performed by the drive beam 42 and the drive unit 50 described later. It is possible to move in the direction.
  • the inner drive weights 33, 34 have a rectangular frame shape.
  • the inner drive weights 33 and 34 function as mass portions, are thicker than the various beams included in the beam portion 40, and are movable in the y-axis direction.
  • Two opposing sides of the rectangular inner drive weights 33 and 34 are parallel to the x-axis direction and the y-axis direction, respectively.
  • one of two sides of the inner drive weights 33 and 34 made parallel to the y-axis direction is disposed opposite to the outer drive weights 31 and 32, and the other side is the other of the inner drive weights 33 and 34. It is arranged opposite to.
  • the detection weights 35 and 36 have a rectangular shape, and are supported by the inner wall surfaces of the inner drive weights 33 and 34 via the detection beam 41 of the beam portion 40 described later.
  • the detection weights 35, 36 also function as mass parts, and are moved in the y-axis direction together with the inner drive weights 33, 34 by drive vibration, but are moved in the x-axis direction when an angular velocity is applied.
  • the beam portion 40 is configured to have a detection beam 41, a drive beam 42 and a support member 43.
  • the detection beam 41 connects the side parallel to the y-axis direction among the inner wall surfaces of the inner drive weights 33 and 34 and the side parallel to the y-axis direction among the outer wall surfaces of the detection weights 35 and 36.
  • the detection beams 41 are linearly extended along the y-axis direction which is the vibration direction of the drive weights 31 to 34, and the positions are shifted in the x-axis direction to detect weight 35 at both ends in the vibration direction.
  • 36 is the beam of the structure to support.
  • the detection beams 41 are disposed on both sides of the detection weights 35 and 36 in the x-axis direction, one of which is the first detection beam 41a and the other of which is the second detection beam 41b.
  • the structure is supported on both sides in the axial direction.
  • the first detection beam 41a and the second detection beam 41b are both connected to the inner walls of the inner drive weights 33 and 34 at the connecting portion 41c, with the central portion in the y-axis direction as the connecting portion 41c.
  • the detection beam 41 supports both ends in the y-axis direction of the detection weights 35 and 36 on both sides of the connection portion 41c.
  • the detection beam 41 is arranged so that the y-axis direction, which is the vibration direction at the time of driving vibration, is the longitudinal direction, and when angular velocity is applied, the detection beam 41 intersects the vibration direction. Can be displaced in the x-axis direction. The displacement of the detection beam 41 in the x-axis direction enables the detection weights 35 and 36 to move in the x-axis direction.
  • leakage vibration is caused by arranging the detection beam 41 to have the y-axis direction, which is the vibration direction of the drive weights 31 to 34 and the detection weights 35, 36, as the longitudinal direction. It becomes a structure to be suppressed. The details will be described later.
  • the spring constants of the first detection beam 41a and the second detection beam 41b are set to different values.
  • the first detection beam 41a and the second detection beam 41b are formed by patterning the semiconductor layer 12, they are formed of the same material. Therefore, the dimensions in the x-axis direction of the first detection beam 41a and the second detection beam 41b are made different. With such a configuration, the spring constants of the first detection beam 41a and the second detection beam 41b have different values.
  • each detection weight 35, 36 that is, the detection weight 36 side of the detection weight 35 or the detection weight 35 side of the detection weight 36 is the first detection beam 41a, and the other side is the second The detection beam 41 b is used. Then, the dimension of the first detection beam 41a in the x-axis direction is larger than that of the second detection beam 41b, so that the spring constant is a large value.
  • the drive beam 42 connects the outer drive weights 31 and 32 and the inner drive weights 33 and 34 and allows the outer drive weights 31 and 32 and the inner drive weights 33 and 34 to move in the y-axis direction. is there.
  • One outer drive weight 31, one inner drive weight 33, the other inner drive weight 34, and the other outer drive weight 32 are connected by the drive beam 42 in the state of being arranged in this order.
  • the drive beam 42 is a linear beam whose width in the y-axis direction is a predetermined dimension.
  • One drive beam 42 is disposed on each side of the outer drive weights 31, 32 and the inner drive weights 33, 34 in the y-axis direction, and the outer drive weights 31, 32 and the inner drive weights 33, Connected to 34.
  • the drive beam 42 may be directly connected to the outer drive weights 31 and 32 and the inner drive weights 33 and 34, but in the present embodiment, for example, the drive beam 42 and the inner drive weights 33 and 34 are connected It is connected via 42a.
  • the support member 43 supports the outer drive weights 31 and 32, the inner drive weights 33 and 34, and the detection weights 35 and 36. Specifically, the support member 43 is provided between the inner wall surface of the support fixing portion 21 and the drive beam 42, and the weights 31 to 36 are attached to the support fixing portion 21 via the drive beam 42. To support.
  • the support member 43 is configured to have a rotation beam 43a, a support beam 43b, and a connecting portion 43c.
  • the rotating beam 43a is a linear beam whose width in the y-axis direction is a predetermined dimension, and the supporting beam 43b is connected to both ends thereof, and the connecting portion 43c is connected to the central position in the x-axis direction .
  • the rotating beam 43a waves and bends in an S-shape centering on the connecting portion 43c.
  • the support beam 43 b connects both ends of the rotary beam 43 a to the support fixing portion 21, and is a linear member in the present embodiment.
  • the support beam 43b also plays a role of permitting each weight 31 to to move in the x-axis direction when an impact or the like is applied.
  • the connecting portion 43 c plays a role of connecting the support member 43 to the drive beam 42.
  • the vibration type angular velocity sensor includes the drive unit 50 and the detection unit 60.
  • the driving unit 50 drives and vibrates the sensor structure such as the movable unit 30 and the beam unit 40.
  • the drive unit 50 is configured of a drive piezoelectric film 51, a drive wiring 52, and the like provided at each end of each drive beam 42.
  • the drive piezoelectric film 51 is formed of a PZT (substantially lead zirconate titanate) thin film or the like, and generates a force for driving and vibrating the sensor structure by applying a drive voltage through the drive wiring 52.
  • Two driving piezoelectric films 51 are provided at each end of each driving beam 42, and the one located on the outer edge side of the sensor structure is the outer piezoelectric film 51a, and the inside is more than the outer piezoelectric film 51a. What is positioned is the inner piezoelectric film 51b.
  • the outer piezoelectric film 51a and the inner piezoelectric film 51b extend in the x-axis direction, and are formed in parallel at each arrangement location.
  • the drive wire 52 is a wire for applying a drive voltage to the outer piezoelectric film 51a and the inner piezoelectric film 51b. Although only a part of the drive wiring 52 is described in the drawing, it is actually extended from the drive beam 42 to the fixed portion 20 through the support member 43.
  • the drive wiring 52 is electrically connected to the outside through wire bonding or the like via a pad (not shown) formed on the fixed portion 20. As a result, the drive voltage can be applied to the outer piezoelectric film 51 a and the inner piezoelectric film 51 b through the drive wiring 52.
  • the detection unit 60 is a part that outputs the displacement of the detection beam 41 accompanying the application of the angular velocity as an electrical signal.
  • the detection unit 60 is formed on the first detection beam 41a of the detection beams 41 with a large spring constant, and the detection piezoelectric films 61a to 61d, the dummy piezoelectric films 62a to 62d, and the detection wiring 63. And is configured.
  • the detection piezoelectric films 61a to 61d are formed of a PZT thin film or the like, and are formed at positions of the first detection beam 41a to which tensile stress is applied when the first detection beam 41a is displaced by angular velocity application. Specifically, the detection piezoelectric films 61a to 61d are disposed on the detection weights 35 and 36 in the x-axis direction on both ends of the first detection beam 41a, and on the connection portion 41c in the x-axis direction. , Is located on the side away from 36.
  • the dummy piezoelectric films 62a to 62d are formed of a PZT thin film or the like, and are arranged symmetrically with the detection piezoelectric films 61a to 61d in order to maintain the symmetry of the detection beam 41. That is, the dummy piezoelectric films 62a to 62d are formed at positions of the first detection beam 41a to which a compressive stress is applied when the first detection beam 41a is displaced by the application of the angular velocity.
  • the dummy piezoelectric films 62a to 62d are disposed on the both sides of the first detection beam 41a in the x-axis direction away from the detection weights 35 and 36, and on the connecting portion 41c side in the x-axis direction It is arrange
  • the detection piezoelectric films 61a to 61d and the dummy piezoelectric films 62a to 62d are both extended in the y-axis direction, which is the direction of drive vibration of the detection weights 35 and 36, and are formed in parallel at each arrangement location. .
  • the detection piezoelectric films 61a to 61d may be formed at a portion where compressive stress is generated. You may form in both the site
  • the detection piezoelectric films 61a to 61d are formed at locations where a compressive stress is generated in the first detection beam 41a on the left side in the x-axis direction of FIG. In this case, it may be formed at the site where tensile stress occurs, or vice versa.
  • the dummy piezoelectric films 62a to 62d are not essential, and at least the detection piezoelectric films 61a to 61d may be formed.
  • the detection piezoelectric films 61a to 61d are arranged in a direction perpendicular to the longitudinal direction of the detection beam 41 and symmetrical with respect to a straight line passing through the central position in the longitudinal direction (hereinafter simply referred to as "line symmetrical arrangement") It is assumed. Further, in the first detection beam 41a on the left side in the x-axis direction and the first detection beam 41a on the right side in FIG. 1, the arrangement of the detection piezoelectric films 61a to 61d may be the same or different. Also in the detection beam 41a, the detection piezoelectric films 61a to 61d are arranged in line symmetry.
  • the detection wiring 63 is connected to the detection piezoelectric films 61a to 61d, and takes out the electric output of the detection piezoelectric films 61a to 61d according to the displacement of the detection beam 41.
  • the detection wiring 63 is omitted in the drawing and only a part is described, in practice, it is extended from the inner drive weights 33 and 34 and the drive beam 42 through the support member 43 to the fixing portion 20.
  • the detection wiring 63 is electrically connected to the outside by wire bonding or the like through a pad (not shown) formed in the fixed portion 20.
  • the detection unit 60 is configured to transmit the change in the electrical output of the detection piezoelectric films 61a to 61d to the outside through the detection wiring 63.
  • a vibration type angular velocity sensor provided with a pair of angular velocity detection structures provided with the outer drive weights 31, 32 and the inner drive weights 33, 34 and the detection weights 35, 36 respectively is formed. ing. Then, in the vibration type angular velocity sensor configured as described above, a desired sensitivity can be obtained as described later.
  • a desired drive voltage is applied to the drive units 50 disposed at both ends of each drive beam 42, and the drive weights 31 to 34 are vibrated in the y-axis direction based on the drive voltages.
  • a tensile stress is generated in the outer piezoelectric film 51a and a compressive stress is generated in the inner piezoelectric film 51b.
  • a compressive stress is generated in the outer piezoelectric film 51a and a tensile stress is generated in the inner piezoelectric film 51b.
  • each outer piezoelectric film 51a is switched so that the stress generated in the outer piezoelectric film 51a and the inner piezoelectric film 51b of each drive unit is switched to the compressive stress for tensile stress and the tensile stress for compressive stress.
  • the voltage applied to the inner piezoelectric film 51b is controlled. And, after this, these operations are repeated at a predetermined drive frequency.
  • the outer drive weight 31 and the inner drive weight 33 are vibrated in opposite phases to each other in the y-axis direction.
  • the outer drive weight 32 and the inner drive weight 34 are vibrated in opposite phases to each other in the y-axis direction.
  • the two inner drive weights 33, 34 are vibrated in the opposite phase in the y-axis direction, and the two outer drive weights 31, 32 are also vibrated in the reverse phase in the y-axis direction.
  • the vibration type angular velocity sensor is driven in the drive mode shape.
  • the Coriolis force causes the detection weights 35 and 36 to be y-axis and as shown in FIG. It is displaced in the crossing direction, here the x-axis direction. Specifically, since the detection weights 35 and 36 and the inner drive weights 33 and 34 are connected via the detection beam 41, the detection weights 35 and 36 are displaced based on the elastic deformation of the detection beam 41.
  • the detection piezoelectric films 61 a to 61 d are disposed in the vicinity of the connection portion of the detection beam 41 with the detection weights 35 and 36 and the connection portion with the inner drive weights 33 and 34.
  • the largest tensile stress is applied to the detection piezoelectric films 61a to 61d. Therefore, it is possible to further increase the output voltage of the detection piezoelectric films 61a to 61d.
  • the detection beam 41 is configured by the first detection beam 41a and the second detection beam 41b having different spring constants, the following effects can be obtained.
  • the first detection beam 41a and the second detection beam 41b are configured with different spring constants, and the dimension of the first detection beam 41a in the x-axis direction is increased.
  • the formation area of the detection piezoelectric films 61a to 61d is increased. Therefore, the output of the detection piezoelectric films 61a to 61d with respect to the displacement of the first detection beam 41. It is possible to increase the change in voltage. Thus, the sensitivity of the vibration type angular velocity sensor can be improved.
  • the first detection beam 41a and the second detection beam 41b are configured with different spring constants, and while the dimension of the first detection beam 41a in the x-axis direction is increased, the dimension of the second detection beam 41b is suppressed in the x-axis direction It is like that.
  • the detected resonant frequency affects the sensitivity.
  • the sensitivity is one square of the detection resonance frequency or one detection resonance frequency, and the sensitivity decreases as the detection resonance frequency increases. Therefore, as described above, by suppressing the detection resonance frequency from becoming too large and setting the target frequency band, even if the x-axis dimension of the first detection beam 41a is increased, the sensitivity decrease is suppressed. It is possible to
  • the detection resonance frequency is suppressed from becoming too large, a structure in which the detection beam 41 is disposed only on one side with respect to the detection weights 35 and 36, that is, only the first detection beam 41a is provided, and the second detection beam 41b is provided.
  • the structure which does not have is also considered.
  • the detection resonance frequency is expressed by the following equation, and can be in a desired frequency band, but the detection weights 35, 36 generate an unnecessary vibration mode such as a swinging vibration, that is, a pendulum motion. Therefore, it becomes impossible to realize the design concept of suppressing the unnecessary vibration mode.
  • k represents a spring constant
  • m represents the mass of the detection weights 35 and 36
  • Fc represents the added physical quantity.
  • the first detection beam 41a is enlarged.
  • FIG. 5B it can be made equivalent to the structure which carried both detection weights 35 and 36.
  • FIG. As a result, it is possible to suppress the generation of the unnecessary vibration mode in which the detection weights 35 and 36 perform oscillation.
  • the spring constant of the 2nd detection beam 41b is made smaller than the spring constant of the 1st detection beam 41a.
  • the detection resonance frequency is determined substantially depending on the spring constant of the first detection beam 41a, the influence of the spring constant of the second detection beam 41b can be reduced, and the detection resonance frequency of the above equation 1 can be approximately obtained. Therefore, as described above, it is possible to suppress the detection resonance frequency from becoming too large to be a target frequency band.
  • the detection beam 41 is disposed with the y-axis direction, which is the direction of drive vibration of the detection weights 35 and 36, as the longitudinal direction, the following effects can also be obtained. .
  • the vibration type angular velocity sensor of this embodiment has a spring structure shown in FIG. 6, and when the inner drive weights 33 and 34 are vibrated by drive vibration, the detection weights 35 and 36 vibrate integrally with the inner drive weights 33 and 34. It is supposed to be The detection beam 41 connecting the inner drive weights 33 and 34 and the detection weights 35 and 36 also vibrates integrally with the detection weights 35 and 36 along the vibration direction.
  • the detection beam 41 supports the detection weight 35 or the detection weight 36 at both ends in the direction of the driving vibration, in other words, both ends are fixed by the detection weight 35 or the detection weight 36. Further, since the detection beam 41 is extended along the vibration direction, and the longitudinal direction is aligned with the y-axis direction same as the direction of the drive vibration of the detection weights 35 and 36, the detection beam 41 itself is Act as a stick. Therefore, although the detection beam 41 vibrates integrally with the detection weights 35 and 36 in the vibration direction, the detection beam 41 itself is arranged to prevent deformation in the vibration direction.
  • the vibration type angular velocity sensor according to the present embodiment has a structure in which output of unintended noise accompanying driving vibration is suppressed even when processing errors or the like occur in the detection piezoelectric films 61a to 61d. .
  • detection beam 41 itself is arranged so as not to cause unintended deformation due to the drive vibration as described above, the detection weight unintended at the time of the drive vibration is caused due to processing errors of the detection weights 35 and 36, etc. There may be 35, 36 rotational vibrations.
  • detection beam 41 is connected to inner drive weight 33 or inner drive weight 34 at the center position in the longitudinal direction, and detection piezoelectric film 61a. ... 61d are arranged symmetrically about the center position.
  • the signal due to the deformation of the detection piezoelectric films 61a and 61b due to the rotational vibration and the signal due to the deformation of the detection piezoelectric films 61c and 61d are offset.
  • FIG. 7 the case where an unintended rotational vibration occurs at the time of driving vibration due to the occurrence of processing error in the detection weight or the like will be described.
  • unintended rotational vibration occurs in the detection weight
  • compressive stress occurs in the detection piezoelectric films 61a and 61b
  • tensile stress occurs in the detection piezoelectric films 61c and 61d. That is, when the rotational vibration shown in FIG. 7 is generated, the detection piezoelectric films 61a and 61b and the detection piezoelectric films 61c and 61d are deformed in opposite directions.
  • the detection piezoelectric films 61a to 61d are electrically connected by the detection wiring 63 as shown in FIG. 1, a signal due to an unintended rotational vibration is obtained by offsetting the positive current and the negative current. Is reduced. Therefore, the detection beam 41 and the detection piezoelectric films 61a to 61d are arranged as described above, thereby providing a vibration type angular velocity sensor having a structure in which the occurrence of leakage vibration is suppressed.
  • the detection beam 41 is disposed such that the vibration direction of the detection weights 35 and 36 and the drive weights 31 to 34 is the longitudinal direction, and a structure in which unintended deformation due to drive vibration is suppressed. It becomes.
  • the detection piezoelectric films 61a to 61d are arranged in line symmetry about the center position in the longitudinal direction of the detection beam 41, even when the detection weights 35 and 36 perform unintended rotational vibration, Charges generated from the detection piezoelectric films 61a to 61d are offset by the rotational vibration.
  • the vibration type angular velocity sensor of this embodiment has a structure in which the dimension of the second detection beam 41b in the x axis is aligned with that of the first detection beam 41a, that is, a structure in which these spring constants are matched.
  • the second embodiment differs from the first embodiment in the above points.
  • the detection beam 41 is not intended by the drive vibration if the detection beam 41 is arranged in the longitudinal direction of the drive vibration. There is no change in being able to suppress deformation. Therefore, in addition to the suppression of the leakage vibration, when it is desired to increase the detection sensitivity of the angular velocity, it is preferable to use the structure of the first embodiment. There is no particular problem even if the spring constants of the detection beam 41a and the second detection beam 41b match.
  • the vibration type angular velocity sensor in which the leakage vibration is suppressed as compared to the conventional vibration type angular velocity sensor is obtained.
  • each said embodiment demonstrated the example made into the shape by which the detection beam 41 was linearly extended along the vibration direction of the detection weight 35,36.
  • the detection beam 41 only needs to be displaced in a direction intersecting the vibration direction to detect an angular velocity, and is not limited to a linear shape, and may be a curved shape or another shape.
  • the detection weights 35 and 36 are supported by the first detection beam 41a at one end side in the x-axis direction and by the second detection beam 41b at the other end side, from the viewpoint of improving detection sensitivity of angular velocity.
  • An example has been described in which the structure is double-ended.
  • the detection beam 41 has a shape extending along the vibration direction, and is configured to support the detection weights 35 and 36 at both ends in the vibration direction. Just do it. Therefore, a structure in which the detection beam 41 includes only one of the first detection beam 41a and the second detection beam 41b, that is, each of the detection weights 35 and 36 has one end in the direction perpendicular to the vibration direction. It may be a supported structure.
  • the detection beam 41 may be disposed so that the longitudinal direction thereof is aligned with the vibration direction of the drive weights 31 to 34 and the detection weights 35 and 36. The design may be changed as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

角速度を検出する振動型角速度センサであって、基板(10)と、基板上に形成された固定部(20)に支持部材(43)を介して支持された駆動梁(42)と、駆動梁に支持された駆動錘(33、34)と、駆動錘に対して、検出梁(41)を含む梁部(40)を介して支持された検出錘(35、36)と、検出梁に備えられ、角速度の印加に基づいて検出錘が一方向に移動すると、該検出錘の移動に伴う検出梁の変位に応じた電気出力を発生させる検出部(60)と、を備え、検出錘は、検出梁を介して駆動錘に接続され、駆動錘を介して固定部に接続されており、駆動梁を駆動させた際に駆動錘および検出錘が振動する方向を振動方向として、駆動梁により駆動錘および検出錘が駆動振動をしている際に角速度が印加されると、検出梁が振動方向と交差する方向に変位し、該検出梁の変位に伴って検出圧電膜の出力電圧が変化することに基づいて角速度を検出する。

Description

振動型角速度センサ 関連出願への相互参照
 本出願は、2017年7月20日に出願された日本特許出願番号2017-141145号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、バネに支持されて変位できるように構成された検出錘が角速度の印加に基づいて変位することで、印加された角速度を検出する振動型角速度センサに関する。
 従来、音叉型であって圧電薄膜式の振動型角速度センサとして、例えば特許文献1に記載のジャイロセンサが知られている。このジャイロセンサは、2つのアームとこれらを連結する基部とによりなり、非圧電材料からなる音叉と、アームの一面上にアームの長手方向と揃えて形成され、圧電膜と当該圧電膜を隔てて対向する2つの電極により構成された、駆動部および検出部とを有してなる。そして、駆動部によりアームをアームの一面における平面方向に所定の駆動振動をさせ、角速度印加時に駆動振動の方向と交差する方向に検出部が振動させられることで角速度の検出を行う。
特開2003-227719号公報
 上記のような音叉型のジャイロセンサは、検出部が、アームの長手方向に対する垂直方向における中心線上に沿って設けられ、かつ当該中心線に対して対称配置された構造とされると、理想的には検出部における引張りと圧縮が等面積で起きる。すなわち、理想的には、駆動部を駆動振動させた際、検出部の駆動振動方向における引張りと圧縮とがそれぞれ等面積で起きる。この場合、検出部において、駆動振動により生じる引張りにより起きる生じる電荷と圧縮により生じる電荷とが相殺されることで角速度の印加と無関係の信号がキャンセルされ、角速度の検出への影響が抑えられる。
 しかしながら、実際には、音叉、駆動部および検出部の加工における寸法誤差やアライメントの誤差などが生じるため、検出部の駆動振動方向における引張りと圧縮とが等面積でなくなり、これらの変形により生じる電荷が相殺されない。この場合、駆動振動により意図しない信号、すなわちノイズが発生する現象(以下「漏れ振動」という)が起きてしまい、角速度の検出精度が低下してしまう。
 本開示は、従来の振動型角速度センサに比べて、漏れ振動の発生を抑制できる構造とされ、角速度の検出精度が向上した振動型角速度センサを提供することを目的とする。
 上記目的を達成するため、第1の観点における振動型角速度センサは、角速度を検出する振動型角速度センサであって、基板と、基板上に形成された固定部に支持部材を介して支持された駆動梁と、駆動梁に支持された駆動錘と、駆動錘に対して、検出梁を含む梁部を介して支持された検出錘と、検出梁に備えられ、角速度の印加に基づいて検出錘が一方向に移動すると、該検出錘の移動に伴う検出梁の変位に応じた電気出力を発生させる検出部と、を備える。このような構成において、検出錘は、検出梁を介して駆動錘に接続され、駆動錘を介して固定部に接続されており、駆動梁を駆動させた際に駆動錘および検出錘が振動する方向を振動方向として、駆動梁により駆動錘および検出錘が駆動振動をしている際に角速度が印加されると、検出梁が振動方向と交差する方向に変位し、該検出梁の変位に伴って検出圧電膜の出力電圧が変化することに基づいて角速度を検出する。
 これにより、検出梁が駆動梁を駆動振動させた際の検出梁の振動方向と交差する方向に変位する構造とされるため、駆動振動の際、検出梁は、駆動錘および検出錘とその振動方向が同じとなる。つまり、検出梁が駆動振動によって意図しない変形をすることが抑制され、漏れ振動の発生が抑制される構造となる。その結果、従来の振動型角速度センサに比べて、漏れ振動が抑制され、角速度の検出精度が向上した振動型角速度センサとなる。
第1実施形態の振動型角速度センサを示す平面模式図である。 振動型角速度センサの基本動作時の様子を示した模式図である。 振動型角速度センサに角速度が印加された時の様子を示した模式図である。 図3における第1検出梁の変位の様子を示した拡大図である。 第1検出梁のみを備え、第2検出梁を備えていない場合のバネ構造を示した模式図である。 第1検出梁および第2検出梁を備えた場合のバネ構造を示した模式図である。 第1実施形態の振動型角速度センサにおけるバネ構造を示した模式図である。 加工誤差などに起因して検出錘が意図しない回転振動をした際における検出梁および検出圧電膜の変位の様子を示した拡大図である。 第2実施形態の振動型角速度センサを示す平面模式図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 第1実施形態の振動型角速度センサ、いわゆるジャイロセンサについて説明する。
 本実施形態の振動型角速度センサは、角速度を検出するためのセンサであり、例えば車両の上下方向に平行な中心線周りの回転角速度の検出に用いられるが、勿論、振動型角速度センサを車両用以外の用途に適用されることもできる。
 図1は、本実施形態にかかる振動型角速度センサの平面模式図である。振動型角速度センサは、図1の紙面法線方向が車両の上下方向と一致するようにして車両に搭載される。
 振動型角速度センサは、板状の基板10の一面側に形成されている。基板10は、支持基板11と半導体層12とで図示しない犠牲層となる埋込酸化膜を挟み込んだ構造とされたSOI(Silicon on insulator)基板にて構成されている。このようなセンサ構造は、半導体層12側をセンサ構造体のパターンにエッチングしたのち埋込酸化膜を部分的に除去し、センサ構造体の一部がリリースされた状態にすることで構成される。
 なお、半導体層12の表面に平行な面上の一方向であって紙面左右方向をx軸方向、このx軸方向に垂直な紙面上下方向をy軸方向、半導体層12の一面に垂直な方向をz軸方向として、以下の説明を行う。
 半導体層12は、固定部20と可動部30および梁部40とにパターニングされている。固定部20は、少なくともその裏面の一部に埋込酸化膜が残されており、支持基板11からリリースされることなく、埋込酸化膜を介して支持基板11に固定された状態とされている。可動部30および梁部40は、振動型角速度センサにおける振動子を構成するものである。可動部30は、その裏面側の埋込酸化膜が除去されており、支持基板11からリリースされた状態とされている。梁部40は、可動部30を支持すると共に角速度検出を行うために可動部30をx軸方向およびy軸方向において変位させるものである。これら固定部20と可動部30および梁部40の具体的な構造を説明する。
 固定部20は、可動部30を支持するための支持用固定部21を有した構成とされている。
 支持用固定部21は、例えば、可動部30や梁部40などのセンサ構造体の周囲を囲むように配置され、その内壁において梁部40を介して可動部30を支持している。ここでは、支持用固定部21がセンサ構造体の周囲全域を囲む構造を例に挙げているが、その一部のみに形成された構造であっても構わない。なお、固定部20は、支持用固定部21と異なる他の固定部、例えば図示しないパッドなどが形成されるパッド用固定部などを備える構造であっても良い。
 可動部30は、角速度の印加に応じて変位する部分であり、外側駆動錘31、32と内側駆動錘33、34および検出錘35、36とを有した構成とされている。可動部30は、外側駆動錘31、検出錘35を備える内側駆動錘33、検出錘36を備える内側駆動錘34および外側駆動錘32がこの順にx軸方向に沿って並べられたレイアウトとされている。つまり、可動部30は、検出錘35、36を内部に備えた2つの内側駆動錘33、34が内側に並べられると共に、それら2つの内側駆動錘33、34を挟み込むように両外側にさらに外側駆動錘31、32が1つずつ配置された構造とされている。
 外側駆動錘31、32は、y軸方向に延設されている。外側駆動錘31は、内側駆動錘33と対向配置されている。外側駆動錘32は、内側駆動錘34と対向配置されている。これら外側駆動錘31、32は、質量部として機能し、梁部40に含まれる各種梁よりも太くされ、後述する駆動梁42および駆動部50による駆動振動を行う際の振動方向であるy軸方向に移動可能とされている。
 内側駆動錘33、34は、四角形状の枠体形状とされている。これら内側駆動錘33、34は、質量部として機能し、梁部40に含まれる各種梁よりも太くされ、y軸方向に移動可能とされている。四角形状で構成された内側駆動錘33、34の相対する二辺がそれぞれx軸方向とy軸方向に平行とされている。そして、内側駆動錘33、34のうち、y軸方向に平行とされた二辺のうちの一辺が外側駆動錘31、32と対向配置されており、もう一辺が内側駆動錘33、34の他方と対向配置されている。
 検出錘35、36は、四角形状とされており、後述する梁部40のうちの検出梁41を介して内側駆動錘33、34の内壁面に支持されている。検出錘35、36も質量部として機能し、駆動振動によって内側駆動錘33、34と共にy軸方向に移動させられるが、角速度印加時にはx軸方向に移動させられる。
 梁部40は、検出梁41と、駆動梁42および支持部材43を有した構成とされている。
 検出梁41は、内側駆動錘33、34の内壁面のうちy軸方向に平行な辺と検出錘35、36の外壁面のうちy軸方向に平行な辺とを接続している。本実施形態の場合、検出梁41は、駆動錘31~34の振動方向であるy軸方向に沿って直線的に延設され、x軸方向において位置をずらして振動方向の両端において検出錘35、36を支持する構造の梁とされている。そして、検出梁41は、検出錘35、36それぞれにおけるx軸方向の両側に配置されており、一方を第1検出梁41a、もう一方を第2検出梁41bとして、検出錘35、36をx軸方向両側で支持した構造とされている。また、第1検出梁41aおよび第2検出梁41bは、共に、y軸方向の中央部を連結部41cとして、連結部41cにおいて内側駆動錘33、34の内壁と連結されている。そして、検出梁41は、連結部41cを中心とした両側において、検出錘35、36のy軸方向両端を支持している。
 このような構成においては、検出梁41は、駆動振動時における振動方向であるy軸方向を長手方向とする配置とされており、角速度が印加された場合などにおいては、振動方向に対して交差する方向であるx軸方向へ変位できる。この検出梁41のx軸方向への変位により、検出錘35、36は、x軸方向への移動が可能とされている。
 なお、検出梁41が駆動錘31~34および検出錘35、36の振動方向であるy軸方向を長手方向とする配置とされることで、本実施形態の振動型角速度センサは、漏れ振動が抑制される構造となる。この詳細については、後ほど説明する。
 さらに、本実施形態では、第1検出梁41aと第2検出梁41bとのバネ定数が異なった値とされている。本実施形態の場合、第1検出梁41aと第2検出梁41bとを半導体層12をパターニングすることで形成していることから、これらを同じ材質で構成している。このため、第1検出梁41aと第2検出梁41bとのx軸方向の寸法を異ならせている。このような構成とされることで、第1検出梁41aと第2検出梁41bとのバネ定数が異なった値となっている。
 より詳しくは、各検出錘35、36のうちの内側、つまり検出錘35のうちの検出錘36側や検出錘36のうちの検出錘35側が第1検出梁41aとされ、その反対側が第2検出梁41bとされている。そして、第1検出梁41aの方が第2検出梁41bよりもx軸方向の寸法が大きくされることで、バネ定数が大きな値とされている。
 駆動梁42は、外側駆動錘31、32および内側駆動錘33、34を連結すると共に、これら外側駆動錘31、32および内側駆動錘33、34のy軸方向への移動を可能とするものである。一方の外側駆動錘31、一方の内側駆動錘33、他方の内側駆動錘34および他方の外側駆動錘32は、この順番に並べられた状態で駆動梁42によって連結されている。
 具体的には、駆動梁42は、y軸方向の幅が所定寸法とされた直線状梁である。駆動梁42は、y軸方向において、外側駆動錘31、32および内側駆動錘33、34を挟んだ両側に一本ずつ配置されており、それぞれ、外側駆動錘31、32および内側駆動錘33、34に接続されている。駆動梁42と外側駆動錘31、32および内側駆動錘33、34とが直接接続されていても良いが、例えば、本実施形態では、駆動梁42と内側駆動錘33、34とは、連結部42aを介して接続されている。
 支持部材43は、外側駆動錘31、32や内側駆動錘33、34および検出錘35、36を支持するものである。具体的には、支持部材43は、支持用固定部21の内壁面と駆動梁42との間に備えられており、駆動梁42を介して上記各錘31~36を支持用固定部21に支持する。
 支持部材43は、回転梁43aと支持梁43bおよび連結部43cとを有した構成とされている。回転梁43aは、y軸方向の幅が所定寸法とされた直線状梁であり、その両端に支持梁43bが接続されていると共に、x軸方向における中央位置に連結部43cが接続されている。この回転梁43aは、センサ駆動時に連結部43cを中心としてS字状に波打って撓む。支持梁43bは、回転梁43aの両端を支持用固定部21に接続するものであり、本実施形態では直線状部材とされている。この支持梁43bは、衝撃などが加わった時に各錘31~36がx軸方向に移動することを許容する役割も果たしている。連結部43cは、支持部材43を駆動梁42に接続する役割を果たしている。
 さらに、本実施形態の振動型角速度センサには、駆動部50と検出部60とが備えられている。
 駆動部50は、可動部30や梁部40などのセンサ構造体を駆動振動させるためのものである。具体的には、駆動部50は、各駆動梁42の両端それぞれに設けられた駆動圧電膜51や駆動配線52などによって構成されている。
 駆動圧電膜51は、PZT(チタン酸ジルコン酸鉛の略)薄膜などによって構成され、駆動配線52を通じて駆動電圧が印加されることでセンサ構造体を駆動振動させる力を発生させる。駆動圧電膜51は、各駆動梁42の両端それぞれに2つずつ備えられており、センサ構造体の外縁側に位置しているものが外側圧電膜51aとされ、外側圧電膜51aよりも内側に位置しているものが内側圧電膜51bとされている。これら外側圧電膜51aと内側圧電膜51bは、x軸方向に延設されており、各配置場所で平行に並んで形成されている。
 駆動配線52は、外側圧電膜51aや内側圧電膜51bに対して駆動電圧を印加する配線である。駆動配線52については、図中では一部のみしか記載していないが、実際には駆動梁42から支持部材43を通じて固定部20まで延設されている。そして、固定部20に形成された図示しないパッドを介してワイヤボンディングなどにより、駆動配線52が外部と電気的に接続されている。これにより、駆動配線52を通じて、外側圧電膜51aや内側圧電膜51bに対して駆動電圧を印加できるようになっている。
 検出部60は、角速度印加に伴う検出梁41の変位を電気信号として出力する部分である。本実施形態の場合、検出部60は、検出梁41のうちバネ定数が大きくされた第1検出梁41aに形成されており、検出圧電膜61a~61d、ダミー圧電膜62a~62dおよび検出配線63を備えた構成とされている。
 検出圧電膜61a~61dは、PZT薄膜などによって構成され、第1検出梁41aのうち、角速度印加によって第1検出梁41aが変位したときに引張応力が加わる位置に形成されている。具体的には、検出圧電膜61a~61dは、第1検出梁41aのうちの両端側ではx軸方向において検出錘35、36側に配置され、連結部41c側ではx軸方向において検出錘35、36から離れる側に配置されている。
 ダミー圧電膜62a~62dは、PZT薄膜などによって構成され、検出梁41の対称性を保つために、検出圧電膜61a~61dと対称的に配置されている。すなわち、ダミー圧電膜62a~62dは、第1検出梁41aのうち、角速度印加によって第1検出梁41aが変位したときに圧縮応力が加わる位置に形成されている。具体的には、ダミー圧電膜62a~62dは、第1検出梁41aのうちの両端側ではx軸方向において検出錘35、36から離れる側に配置され、連結部41c側ではx軸方向において検出錘35、36側に配置されている。
 検出圧電膜61a~61dおよびダミー圧電膜62a~62dは、共に検出錘35、36の駆動振動の方向であるy軸方向に延設されており、各配置場所で平行に並んで形成されている。なお、ここでは、検出圧電膜61a~61dを一番変位が大きくなる引張応力が発生する部位に形成する例について説明したが、圧縮応力が発生する部位に形成しても良いし、引張応力が発生する部位と圧縮応力が発生する部位の両方に形成しても良い。
 例えば、検出圧電膜61a~61dは、角速度印加時に、図1のx軸方向左側の第1検出梁41aでは圧縮応力が生じる部位に形成され、図1のx軸方向右側の第1検出梁41aでは引張応力が生じる部位に形成されてもよいし、その逆であってもよい。
 また、ダミー圧電膜62a~62dについては必須ではなく、少なくとも検出圧電膜61a~61dが形成されていれば良い。
 検出圧電膜61a~61dは、検出梁41の長手方向に対して垂直な方向、かつ該長手方向における中心位置を通る直線に対して対称とされた配置(以下、単に「線対称配置」という)とされている。また、図1のx軸方向左側の第1検出梁41aと右側の第1検出梁41aとにおいて、それぞれの検出圧電膜61a~61dの配置が同じでもよいし、異なっていてもよいが、いずれの検出梁41aにおいても検出圧電膜61a~61dは線対称配置とされる。
 検出配線63は、検出圧電膜61a~61dに接続され、検出梁41の変位に伴う検出圧電膜61a~61dの電気出力を取り出すものである。検出配線63については、図中では省略して一部のみを記載してあるが、実際には内側駆動錘33、34や駆動梁42から支持部材43を通じて固定部20まで延設されている。そして、検出配線63は、固定部20に形成された図示しないパッドを介してワイヤボンディングなどにより、外部と電気的に接続されている。これにより、検出部60は、検出配線63を通じて、検出圧電膜61a~61dの電気出力の変化を外部に伝えられる構成とされている。
 以上のような構造により、外側駆動錘31、32や内側駆動錘33、34および検出錘35、36がそれぞれ2つずつ備えられた一対の角速度検出構造が備えられた振動型角速度センサが構成されている。そして、このように構成された振動型角速度センサにおいて、後述するように所望の感度が得られるようにしている。
 続いて、このように構成された振動型角速度センサの作動について、図2~図4を参照して説明する。
 まず、振動型角速度センサの基本動作時の様子について図2を参照して説明する。各駆動梁42の両端に配置された駆動部50に対して所望の駆動電圧を印加し、その駆動電圧に基づいて各駆動錘31~34をy軸方向に振動させる。
 具体的には、紙面上方側の駆動梁42のうち左端部に備えられた駆動部50については、外側圧電膜51aにて引張応力が発生させられ、内側圧電膜51bにて圧縮応力が発生させられるようにする。逆に、紙面上方側の駆動梁42のうち右端部に備えられた駆動部50については、外側圧電膜51aにて圧縮応力が発生させられ、内側圧電膜51bにて引張応力が発生させられるようにする。これについては、紙面上方側の駆動梁42の左右両側に配置された駆動部50の外側圧電膜51a同士もしくは内側圧電膜51b同士それぞれに逆位相の電圧を印加することによって実現できる。
 一方、紙面下方側の駆動梁42のうち左端部に備えられた駆動部50については、外側圧電膜51aにて圧縮応力が発生させられ、内側圧電膜51bにて引張応力が発生させられるようにする。逆に、紙面下方側の駆動梁42のうち右端部に備えられた駆動部50については、外側圧電膜51aにて引張応力が発生させられ、内側圧電膜51bにて圧縮応力が発生させられるようにする。これについても、紙面下方側の駆動梁42の左右両側に配置された駆動部50の外側圧電膜51a同士もしくは内側圧電膜51b同士それぞれに逆位相の電圧を印加することによって実現できる。
 次に、各駆動部の外側圧電膜51aや内側圧電膜51bで発生させられる応力が、引張応力については圧縮応力に切替えられ、圧縮応力については引張応力に切替えられるように、各外側圧電膜51aや内側圧電膜51bへの印加電圧を制御する。そして、この後も、これらの動作を所定の駆動周波数で繰り返す。
 これにより、図2に示すように、外側駆動錘31と内側駆動錘33とがy軸方向において互いに逆位相で振動させられる。また、外側駆動錘32と内側駆動錘34とがy軸方向において互いに逆位相で振動させられる。さらに、2つの内側駆動錘33、34がy軸方向において逆位相で振動させられ、2つの外側駆動錘31、32もy軸方向において逆位相で振動させられる。これにより、振動型角速度センサは、駆動モード形状にて駆動されることになる。
 なお、このときには、駆動梁42がS字状に波打つことで各錘31~34のy軸方向への移動が許容されるが、回転梁43aと駆動梁42とを接続している連結部43cの部分については振幅の節、つまり不動点となり、殆ど変位しない。そして、衝撃などが加わった時には、支持梁43bが変位することで、各錘31~36がx軸方向に移動することが許容され、衝撃による出力変化が緩和され、耐衝撃性が得られるようになっている。
 次に、振動型角速度センサに角速度が印加された時の様子について図3を参照して説明する。上記した図2のような基本動作を行っている際に振動型角速度センサにz軸回りの角速度が印加されると、コリオリ力により、図3に示すように検出錘35、36がy軸と交差する方向、ここではx軸方向へ変位する。具体的には、検出錘35、36と内側駆動錘33、34とが検出梁41を介して接続されているため、検出梁41の弾性変形に基づいて検出錘35、36が変位する。そして、検出梁41の弾性変形に伴って、第1検出梁41aに備えた検出圧電膜61a~61dに引張応力が加えられる。このため、加えられた引張応力に応じて検出圧電膜61a~61dの出力電圧が変化し、これが検出配線63を通じて外部に出力される。この出力電圧を読み取ることで、印加された角速度を検出することができる。
 特に、検出圧電膜61a~61dを検出梁41のうちの検出錘35、36との連結箇所や内側駆動錘33、34との連結箇所の近傍に配置していることから、図4に示すように検出圧電膜61a~61dに最も大きな引張応力が加えられる。このため、より検出圧電膜61a~61dの出力電圧を大きくすることが可能となる。
 このとき、本実施形態では検出梁41について、バネ定数を異ならせた第1検出梁41aと第2検出梁41bとによって構成していることから、次のような効果を得ることができる。
 まず、第1検出梁41aと第2検出梁41bとを異なるバネ定数で構成し、第1検出梁41aのx軸方向の寸法を大きくしている。このように、第1検出梁41のx軸方向の寸法を大きくすると、検出圧電膜61a~61dの形成面積が広くなることから、第1検出梁41の変位に対する検出圧電膜61a~61dの出力電圧の変化を大きくすることが可能となる。このため、振動型角速度センサの感度を向上させることが可能となる。
 しかしながら、第1検出梁41aのバネ定数を大きくすると、角速度印加時における検出錘35、36の変位の周波数(以下、検出振動周波数と言う)が高くなりすぎることが懸念される。このため、第1検出梁41aと第2検出梁41bとを異なるバネ定数で構成し、第1検出梁41aのx軸方向寸法を大きくしつつ、第2検出梁41bのx軸方向寸法を抑えるようにしている。
 これにより、第1検出梁41aのバネ定数が大きくなったとしても、第1検出梁41aと第2検出梁41bの双方のバネ定数を大きくしていないため、検出錘35、36の変位し易さを担保できる。そして、検出振動周波数が狙いの周波数帯となるようにでき、検出振動周波数が大きくなり過ぎることを抑制できる。
 検出共振周波数は、感度に影響する。例えば、感度は、検出共振周波数の2乗分の1、もしくは、検出共振周波数分の1となり、検出共振周波数が大きくなるほど感度が低下する。したがって、上記のように、検出共振周波数が大きくなりすぎることを抑制して狙いの周波数帯となるようにすることで、第1検出梁41aのx軸寸法を大きくしても、感度低下を抑制することが可能となる。
 また、検出共振周波数が大きくなり過ぎることを抑制するのであれば、検出梁41が検出錘35、36に対する片側にのみ配置された構造、つまり第1検出梁41aのみを備え、第2検出梁41bを有しない構造も考えられる。
 しかしながら、このような構造とする場合には、図5Aに示すように、検出錘35、36を片持ちした構造と等価となる。この場合、検出共振周波数は、次式となり、所望の周波数帯となるようにできるが、検出錘35、36が首振り振動、つまり振り子運動を行うような不要振動モードを発生させてしまう。このため、不要振動モードを抑制すると言う設計思想を実現することができなくなる。なお、図5Aおよび後述する図5Bや下記の数式において、kはバネ定数、mは検出錘35、36の質量、Fcは加えられた物理量を示している。
Figure JPOXMLDOC01-appb-M000001
 これに対して、本実施形態のように、第1検出梁41aをx軸方向の寸法を大きくしたものとしつつ、x軸方向の寸法を抑制した第2検出梁41bを備えておくことで、図5Bに示すように、検出錘35、36を両持ちした構造と等価となるようにできる。これにより、検出錘35、36が首振り振動を行うような不要振動モードを発生させることを抑制できる。そして、第2検出梁41bのバネ定数が第1検出梁41aのバネ定数よりも小さくされている。このため、検出共振周波数はほぼ第1検出梁41aのバネ定数に依存して決まり、第2検出梁41bのバネ定数の影響は少なくできて、ほぼ上記数式1の検出共振周波数となる。したがって、上記したように、検出共振周波数が大きくなりすぎることを抑制して狙いの周波数帯となるようにできる。
 また、本実施形態では、検出梁41は、検出錘35、36の駆動振動の方向であるy軸方向を長手方向とする配置とされていることから、次のような効果も得ることができる。
 本実施形態の振動型角速度センサは、図6に示すバネ構造とされ、内側駆動錘33、34を駆動振動により振動させると、検出錘35、36が内側駆動錘33、34と一体的に振動する構造とされている。そして、内側駆動錘33、34と検出錘35、36とを連結する検出梁41についても、検出錘35、36と一体的に振動方向に沿って振動する。
 ここで、検出梁41は、駆動振動の方向の両端において検出錘35もしくは検出錘36を支持しており、言い換えると、検出錘35もしくは検出錘36によって両端を固定されている。また、検出梁41は、振動方向に沿って延設され、その長手方向を検出錘35、36の駆動振動の方向と同じy軸方向に揃えられているため、検出梁41自体がいわば「つっかえ棒」としての役目を果たす。そのため、検出梁41は、検出錘35、36と共に振動方向に一体的に振動するが、検出梁41自身が振動方向における変形を妨げる配置とされている。
 そのため、駆動振動の際において、角速度が印加されていない状態では、検出バネとしての機能を果たす検出梁41およびこの上に設けられた検出圧電膜61a~61dは、振動方向に沿った変形がしにくく、意図しないノイズが出力されにくい配置とされる。すなわち、本実施形態の振動型角速度センサは、検出圧電膜61a~61dに加工誤差などが生じた場合であっても、駆動振動に伴う意図しないノイズが出力されることが抑制される構造となる。
 また、検出梁41自体は、上記のように駆動振動によって意図しない変形をしにくい配置とされているが、検出錘35、36などの加工誤差などに起因して、駆動振動時に意図しない検出錘35、36の回転振動が生じることもあり得る。このような漏れ振動が生じた場合であってもその影響を低減するため、検出梁41は、その長手方向の中心位置において内側駆動錘33もしくは内側駆動錘34に接続され、かつ検出圧電膜61a~61dが該中心位置を中心として線対称配置されている。これにより、当該回転振動による検出圧電膜61a、61bの変形による信号と検出圧電膜61c、61dの変形による信号とが相殺される構造となる。
 具体的には、図7に示すように、検出錘などに加工誤差が生じたことにより駆動振動時に意図しない回転振動が生じた場合について説明する。検出錘に意図しない回転振動が生じた場合、例えば図7に示すように検出圧電膜61a、61bでは圧縮応力が生じ、検出圧電膜61c、61dでは引張応力が生じる。すなわち、図7に示す回転振動が生じると、検出圧電膜61a、61bと検出圧電膜61c、61dとは、それぞれ逆方向の変形が起きることとなる。このとき、引張応力により検出圧電膜で生じる電流の方向を正とすると、圧縮応力により検出圧電膜で生じる電流の方向は負となる。そして、検出圧電膜61a~61dは、図1に示すように検出配線63により電気的に接続されているため、正の電流と負の電流とが相殺されることで、意図しない回転振動による信号が抑えられる。そのため、検出梁41および検出圧電膜61a~61dが上記の配置とされることにより、漏れ振動が生じることが抑えられる構造の振動型角速度センサとなる。
 本実施形態によれば、検出梁41が検出錘35、36および駆動錘31~34の振動方向を長手方向とする配置とされており、駆動振動により意図しない変形をすることが抑制される構造となる。また、検出圧電膜61a~61dが、検出梁41の長手方向における中心位置を中心とした線対称配置とされているため、検出錘35、36が意図しない回転振動をした場合であっても、当該回転振動により検出圧電膜61a~61dから生じる電荷が相殺される。その結果、検出梁41が駆動振動による変形が抑制されると共に、仮に加工誤差等により意図しない回転振動が発生した場合でも、ノイズとなる信号が抑えられる構造、すなわち従来の振動型角速度センサに比べ、漏れ振動が抑制された振動型角速度センサとなる。
 また、第1検出梁41aのバネ定数と第2検出梁41bのバネ定数とが異なる構造とされているため、従来の振動型角速度センサに比べて、角速度の検出感度の高い振動型角速度センサとなる。
 (第2実施形態)
 第2実施形態の振動型角速度センサについて、図8を参照して説明する。
 本実施形態の振動型角速度センサは、図8に示すように、第2検出梁41bがそのx軸における寸法を第1検出梁41aと揃えた構造、すなわち、これらのバネ定数を合わせた構造とされた点で上記第1実施形態と相違する。
 第1検出梁41aおよび第2検出梁41bのバネ定数が一致していても、検出梁41が駆動振動の方向を長手方向とする配置とされていれば、駆動振動によって検出梁41が意図しない変形をすることが抑えられることに変わりはない。そのため、漏れ振動の抑制に加え、角速度の検出感度を上げたい場合には、上記第1実施形態の構造とされることが好ましいが、漏れ振動を抑制する構造とするだけであれば、第1検出梁41aおよび第2検出梁41bのバネ定数が一致していても特に問題はない。
 本実施形態によれば、上記第1実施形態と同様に、従来の振動型角速度センサに比べて漏れ振動が抑制された振動型角速度センサとなる。
 (他の実施形態)
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらの一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (1)例えば、上記各実施形態では、検出梁41が検出錘35、36の振動方向に沿って直線的に延設された形状とされた例について説明した。しかしながら、検出梁41は、振動方向と交差する方向に変位して角速度を検出できればよく、直線的な形状に限られず、湾曲形状や他の形状とされてもよい。
 (2)上記各実施形態では、角速度の検出感度向上の観点から検出錘35、36それぞれがx軸方向における一端側において第1検出梁41aに、他端側において第2検出梁41bに支持された両持ちの構造とされた例について説明した。しかしながら、駆動振動に伴う漏れ振動を抑制する観点からは、検出梁41は、振動方向に沿って延設された形状とされ、検出錘35、36を振動方向の両端で支持する構造とされていればよい。そのため、検出梁41が第1検出梁41aもしくは第2検出梁41bの一方だけで構成された構造、すなわち検出錘35、36それぞれが振動方向に対して垂直方向における一方の端部で検出梁41に支持された構造とされてもよい。
 (3)上記各実施形態では、平面駆動させ、当該平面に対する法線方向を軸とする回転の角速度を検出するいわゆるヨージャイロセンサとされた例について説明したが、これに限られず、ロールオーバージャイロセンサとされてもよい。このように、本開示の振動型角速度センサは、検出梁41がその長手方向を駆動錘31~34および検出錘35、36の振動方向に揃えた配置とされていればよく、他の構成要素については適宜設計変更されてもよい。

Claims (5)

  1.  角速度を検出する振動型角速度センサであって、
     基板(10)と、
     前記基板上に形成された固定部(20)に支持部材(43)を介して支持された駆動梁(42)と、
     前記駆動梁に支持された駆動錘(33、34)と、
     前記駆動錘に対して、検出梁(41)を含む梁部(40)を介して支持された検出錘(35、36)と、
     前記検出梁に備えられ、角速度の印加に基づいて前記検出錘が一方向に移動すると、該検出錘の移動に伴う前記検出梁の変位に応じた電気出力を発生させる検出部(60)と、を備え
     前記検出錘は、前記検出梁を介して前記駆動錘に接続され、前記駆動錘を介して前記固定部に接続されており、
     前記駆動梁を駆動させた際に前記駆動錘および前記検出錘が振動する方向を振動方向として、前記駆動梁により前記駆動錘および前記検出錘が駆動振動をしている際に前記角速度が印加されると、前記検出梁が前記振動方向と交差する方向に変位し、該検出梁の変位に伴って検出圧電膜の出力電圧が変化することに基づいて前記角速度を検出する振動型角速度センサ。
  2.  前記検出梁は、前記振動方向に対して垂直な方向を垂直方向として、前記検出錘から前記垂直方向にずらして配置されると共に、該検出錘のうち前記垂直方向における一方もしくは双方の端部において、該検出錘を該検出梁の前記振動方向における両端で支持している請求項1に記載の振動型角速度センサ。
  3.  前記検出錘は、2つ備えられることで一対とされ、
     前記検出梁は、第1検出梁(41a)と第2検出梁(41b)とを備え、
     前記駆動錘は、前記検出錘のうちの1つの周囲を囲むと共に前記第1検出梁および前記第2検出梁を介して前記検出錘を連結する内側駆動錘(33、34)を一対備えると共に、一対の前記内側駆動錘を挟んだ両側それぞれに外側駆動錘(31、32)を備える構成とされ、
     前記駆動梁は、前記内側駆動錘と前記外側駆動錘とを連結すると共に、前記支持部材を介して、前記基板に支持されており、
     さらに、前記内側駆動錘と前記外側駆動錘とを、互いに逆方向に振動させる駆動部(50)を備え、
     前記駆動部にて前記駆動梁を撓ませて前記外側駆動錘と前記内側駆動錘とを駆動振動させる請求項1または2に記載の振動型角速度センサ。
  4.  前記検出梁は、前記振動方向に沿って直線的に延設された棒状形状の梁とされている請求項1ないし3のいずれか1つに記載の振動型角速度センサ。
  5.  前記検出梁は、該検出梁の振動方向における中心位置において前記駆動錘に接続され、
     前記検出部は、検出圧電膜(61a~61d)により構成され、前記中心位置を中心として前記振動方向において対称配置されている請求項1ないし4のいずれか1つに記載の振動型角速度センサ。
PCT/JP2018/026366 2017-07-20 2018-07-12 振動型角速度センサ WO2019017277A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/690,281 US11365970B2 (en) 2017-07-20 2019-11-21 Vibration type angular velocity sensor with piezoelectric film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-141145 2017-07-20
JP2017141145A JP6733621B2 (ja) 2017-07-20 2017-07-20 振動型角速度センサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/690,281 Continuation US11365970B2 (en) 2017-07-20 2019-11-21 Vibration type angular velocity sensor with piezoelectric film

Publications (1)

Publication Number Publication Date
WO2019017277A1 true WO2019017277A1 (ja) 2019-01-24

Family

ID=65016178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026366 WO2019017277A1 (ja) 2017-07-20 2018-07-12 振動型角速度センサ

Country Status (3)

Country Link
US (1) US11365970B2 (ja)
JP (1) JP6733621B2 (ja)
WO (1) WO2019017277A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066224A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 物理量センサー、慣性計測装置、移動体測位装置、携帯型電子機器、電子機器および移動体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277248A (ja) * 2001-03-22 2002-09-25 Matsushita Electric Ind Co Ltd 角速度センサ
JP2008514968A (ja) * 2004-09-27 2008-05-08 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング 回転速度センサ
JP2011158464A (ja) * 2010-01-05 2011-08-18 Seiko Epson Corp 振動素子、振動子、および電子機器
JP2013134064A (ja) * 2011-12-23 2013-07-08 Denso Corp 振動型角速度センサ
US20150096374A1 (en) * 2013-10-04 2015-04-09 Samsung Electro-Mechanics Co., Ltd. Angular velocity sensor and manufacturing method of the same
JP2018004451A (ja) * 2016-07-01 2018-01-11 株式会社デンソー 物理量センサ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329068B2 (ja) 1994-04-28 2002-09-30 株式会社村田製作所 角速度センサ
JP3589182B2 (ja) * 2000-07-07 2004-11-17 株式会社村田製作所 外力計測装置
JP3972790B2 (ja) 2001-11-27 2007-09-05 松下電器産業株式会社 薄膜微小機械式共振子および薄膜微小機械式共振子ジャイロ
JP3870895B2 (ja) * 2002-01-10 2007-01-24 株式会社村田製作所 角速度センサ
JP2005265795A (ja) * 2004-03-22 2005-09-29 Denso Corp 半導体力学量センサ
DE102007030119A1 (de) * 2007-06-29 2009-01-02 Litef Gmbh Corioliskreisel
JP5884603B2 (ja) * 2012-03-30 2016-03-15 株式会社デンソー ロールオーバージャイロセンサ
JP6191151B2 (ja) * 2012-05-29 2017-09-06 株式会社デンソー 物理量センサ
KR101531093B1 (ko) * 2013-07-31 2015-06-23 삼성전기주식회사 가속도 센서 및 각속도 센서
JP6575129B2 (ja) * 2014-06-12 2019-09-18 株式会社デンソー 振動型角速度センサ
JP2016090254A (ja) 2014-10-30 2016-05-23 セイコーエプソン株式会社 振動素子、電子デバイス、電子機器、および移動体
JP6740965B2 (ja) * 2017-06-22 2020-08-19 株式会社デンソー 振動型角速度センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277248A (ja) * 2001-03-22 2002-09-25 Matsushita Electric Ind Co Ltd 角速度センサ
JP2008514968A (ja) * 2004-09-27 2008-05-08 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング 回転速度センサ
JP2011158464A (ja) * 2010-01-05 2011-08-18 Seiko Epson Corp 振動素子、振動子、および電子機器
JP2013134064A (ja) * 2011-12-23 2013-07-08 Denso Corp 振動型角速度センサ
US20150096374A1 (en) * 2013-10-04 2015-04-09 Samsung Electro-Mechanics Co., Ltd. Angular velocity sensor and manufacturing method of the same
JP2018004451A (ja) * 2016-07-01 2018-01-11 株式会社デンソー 物理量センサ

Also Published As

Publication number Publication date
JP2019020339A (ja) 2019-02-07
JP6733621B2 (ja) 2020-08-05
US11365970B2 (en) 2022-06-21
US20200088519A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US8534127B2 (en) Extension-mode angular velocity sensor
JP5716827B2 (ja) 振動子および振動ジャイロ
JP6260706B2 (ja) 改良された直交位相補正を有するジャイロスコープ構造体およびジャイロスコープ
JP6575129B2 (ja) 振動型角速度センサ
US20180135985A1 (en) Mems gyroscope having 2-degree-of-freedom sensing mode
JP2010096538A (ja) 角速度センサ
WO2018003692A1 (ja) 物理量センサ
JP6330501B2 (ja) 振動型角速度センサ
WO2019017277A1 (ja) 振動型角速度センサ
JP6740965B2 (ja) 振動型角速度センサ
JP5397171B2 (ja) 振動型角速度センサ
JP6304402B2 (ja) 改良されたジャイロスコープ構造体及びジャイロスコープデバイス
JP2012112819A (ja) 振動ジャイロ
JP2010091364A (ja) 角速度センサ素子およびこれを用いた角速度センサ
JP2006162313A (ja) 複合センサ
JP6074629B2 (ja) 角速度センサ素子及び角速度センサ
WO2016067543A1 (ja) 振動型角速度センサ
JP5810685B2 (ja) 振動子および振動ジャイロ
JP2006226799A (ja) 力学量センサ
WO2014061247A1 (ja) 角速度センサ
WO2017204057A1 (ja) ジャイロセンサ及び電子機器
JP5849190B2 (ja) 角速度センサ素子
WO2018016191A1 (ja) ジャイロセンサ及び電子機器
JP5849243B2 (ja) 角速度センサ素子
JP5471217B2 (ja) 角速度センサユニットおよびその信号検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835506

Country of ref document: EP

Kind code of ref document: A1