WO2019006578A1 - 一种被用于多天线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于多天线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019006578A1
WO2019006578A1 PCT/CN2017/091408 CN2017091408W WO2019006578A1 WO 2019006578 A1 WO2019006578 A1 WO 2019006578A1 CN 2017091408 W CN2017091408 W CN 2017091408W WO 2019006578 A1 WO2019006578 A1 WO 2019006578A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
signaling
resource set
type
Prior art date
Application number
PCT/CN2017/091408
Other languages
English (en)
French (fr)
Inventor
蒋琦
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN202211471251.9A priority Critical patent/CN115842613A/zh
Priority to PCT/CN2017/091408 priority patent/WO2019006578A1/zh
Priority to CN201780092209.7A priority patent/CN110892766B/zh
Publication of WO2019006578A1 publication Critical patent/WO2019006578A1/zh
Priority to US16/733,218 priority patent/US11349597B2/en
Priority to US17/728,930 priority patent/US11757566B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present application relates to methods and apparatus for multi-antenna communication, and more particularly to methods and apparatus for physical layer control signaling reception.
  • E User Equipment
  • DCI Downlink Control Information
  • the downlink grant (Grant) often schedules the DL-SCH (Downlink Shared Channel) of the current subframe
  • the uplink grant often schedules the UL-SCH (Uplink Shared Channel) of the subsequent subframe.
  • the system allocates two different DCI formats (Format) to the UE through high-level signaling.
  • the two different DCI formats respectively correspond to two different payload sizes (Payload Size), and the UE blinds each other based on different load sizes when receiving DCI.
  • blind Decoding and the maximum number of blind detections that the UE has on a given carrier is limited.
  • beamforming will be applied in a large number, and the DCI blind detection method based on the beamforming application scenario needs to be reconsidered.
  • the UE detects the current multiple beams to obtain dynamic scheduling. When the UE detects multiple beam channels. When the quality is deteriorated, the UE sends a BRR (Beam Recovery Request) to the base station to request a new beam resource to monitor the physical layer control signaling.
  • BRR Beam Recovery Request
  • the above concept is introduced to ensure that when the UE finds that the channel quality corresponding to one beam is deteriorated, the UE can quickly switch to another beam to be served.
  • the process of the foregoing BR and BLF does not trigger the process of the RRC (Radio Resource Control) layer.
  • the advantage of this mode is to ensure fast switching between beams.
  • the BRR carries the beam information recommended by the UE, and then the UE Feedback corresponding to the BRR is monitored on the recommended beam.
  • a simple implementation manner is that the user equipment adds positive integer sub-blind detection to the BRR feedback without affecting the reception of the normal DCI.
  • the method obviously increases the blind detection complexity of the UE.
  • the present application provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the user equipment of the present application may be applied to a base station, and vice versa.
  • the present application discloses a method for use in a user equipment for multi-antenna communication, characterized in that it comprises:
  • the first signaling set, the second signaling set, and the third signaling set respectively include physical layer signaling in M1 formats, physical layer signaling in M2 formats, and physicality in M3 formats.
  • Layer signaling, the M1, the M2, and the M3 are positive integers, respectively;
  • the first wireless signal is used to trigger monitoring for the second signaling set;
  • the first wireless signal is used to determine
  • the number of maximum blind detections for the third signaling set in the third time-frequency resource set is changed from X1 to X3, the X1 and the X3 are respectively positive integers, and the X1 is greater than the X3.
  • the foregoing method has the following advantages: blind detection for the second signaling set does not increase the number of blind detections of the UE as a whole, thereby reducing UE implementation complexity.
  • another advantage of the foregoing method is that when the UE is in the BR state, that is, when the UE completes the transmission of the BRR, the number of blind detections of the UE for the third signaling set becomes X3 times, effectively reducing the UE.
  • the number of blind detections reduces the power consumption of the UE.
  • the design principle of the foregoing method is: when the UE is in the BR state, the quality of the beam used by the UE for dynamic layer dynamic signaling monitoring is obviously not good. In this scenario, the user equipment scheduling opportunity is also less, and more robust physical layer control signaling transmission is needed, and thus there is no need to reserve control signaling candidates corresponding to normal channel conditions (Candidate). Number of.
  • the above method is characterized in that, in the first time-frequency resource set, a maximum of X1 blind detections are performed for the first signaling set, and in the second time-frequency resource set, Performing a maximum of X2 times of blind detection of the second signaling set is performed, and a maximum of X3 times of blind detection is performed for the third signaling set in the third time-frequency resource set;
  • the first signaling set includes The number of REs is the same as the number of REs included in the third signaling set;
  • the X2 is a positive integer smaller than the X1.
  • the foregoing method has the following advantages: the time-frequency resources occupied by the control signaling candidates for the third signaling set are all from the time-frequency occupied by the control signaling candidates for the first signaling set.
  • the resource avoids allocating additional time-frequency resources for monitoring the third signaling because receiving the second signaling set.
  • another advantage of the above method is that the X2 is smaller than the X1, and the number of blind detections for the second signaling set is limited to reduce the implementation complexity of the UE.
  • the method is characterized in that the pattern of the RE included in the first time-frequency resource set in the first time-frequency resource block and the RE included in the third time-frequency resource set are in the The pattern in the second time-frequency resource block is the same, and the first time-frequency resource set and the third time-frequency resource set belong to the first time-frequency resource block and the second time-frequency resource block, respectively.
  • the first time-frequency resource block and the second time-frequency resource block occupy the same frequency domain resource, and the first time-frequency resource block and the second time-frequency resource block occupy the same time length in the time domain.
  • the foregoing method has the following advantages: the first time-frequency resource set corresponds to a first search space, and the third time-frequency resource set corresponds to a third search space, where the first search space and The third search space occupies the same RE in the respective time-frequency resource blocks, and the new RRC (Radio Resource Control) signaling re-configuration is introduced in the BR process.
  • RRC Radio Resource Control
  • the foregoing method has the following advantages: the first time-frequency resource block corresponds to a first CORESET, the second time-frequency resource block corresponds to a second CORESET, and the first CORESET and the second CORESET occupy the same Frequency domain resources to avoid the allocation of new resources for blind detection of physical layer dynamic signaling, reducing the overhead of control signaling.
  • the above method is characterized in that said X1 blind detection score For X1 first-level RE sets, the X3 secondary blind detections are respectively for X3 second-type RE sets, and the X3 second-type RE sets are respectively in the second time-frequency resource block and the patterns are respectively X1
  • the patterns of the X3 first-class RE sets in the first set of REs are the same in the first time-frequency resource block, and each of the X1 first-class RE sets is represented by a positive integer number of REs.
  • each of the X3 second type RE sets is composed of a positive integer number of REs.
  • the foregoing method has the following advantages: the first type of RE set and the second type of RE set are both for DCI of the same type of format, and maintaining the same pattern helps to simplify blind detection of control signaling. .
  • the method is characterized in that the number of REs included in any one of the X1 first type RE sets and the X3 first type RE sets is included in the first type RE set The number of REs included in the second type of RE set of any one of the X3 second type RE sets is less than or equal to.
  • the foregoing method has the following advantages: when the user equipment is in the state of the BR, the second type of REs in the BR state occupies more REs, thereby ensuring the third signaling. The robustness of the set.
  • the method is characterized in that the first wireless signal is used to determine a first antenna port group, the first antenna port group includes a positive integer number of antenna ports, and the user equipment assumes The second signaling set is sent by the first antenna port group.
  • the above method is characterized by comprising:
  • the K target radio signals are used to determine K channel qualities, and at least one of the K target antenna port groups is used to send the first signaling set, the first antenna port group Is an antenna port group other than the K target antenna port groups, and the K is a positive integer.
  • the foregoing method is characterized in that the K target antenna port groups correspond to the K transmit antenna port groups corresponding to the user equipment monitoring physical layer dynamic signaling, when the K target antenna port groups correspond to When the quality of the K channels is deteriorated, the user equipment initiates a process of the BR.
  • the above method is characterized by comprising:
  • the second wireless signal is used to determine ⁇ fourth time-frequency resource set, fifth time frequency resource a source set, the second time-frequency resource set belongs to the fourth time-frequency resource set, and the first time-frequency resource set and the third time-frequency resource set all belong to the fifth time-frequency resource set.
  • the present application discloses a method for use in a base station for multi-antenna communication, characterized in that it comprises:
  • the first signaling set, the second signaling set, and the third signaling set respectively include physical layer signaling in M1 formats, physical layer signaling in M2 formats, and physicality in M3 formats.
  • Layer signaling, the M1, the M2, and the M3 are positive integers, respectively;
  • the first wireless signal is used to trigger transmission for the second signaling set;
  • the first wireless signal is used to determine
  • the number of maximum blind detections for the third signaling set in the third time-frequency resource set is changed from X1 to X3, the X1 and the X3 are respectively positive integers, and the X1 is greater than the X3.
  • the above method is characterized in that, in the first time-frequency resource set, a maximum of X1 blind detections are performed for the first signaling set, and in the second time-frequency resource set, Performing a maximum of X2 times of blind detection of the second signaling set is performed, and a maximum of X3 times of blind detection is performed for the third signaling set in the third time-frequency resource set;
  • the first signaling set includes The number of REs is the same as the number of REs included in the third signaling set;
  • the X2 is a positive integer smaller than the X1.
  • the method is characterized in that the pattern of the RE included in the first time-frequency resource set in the first time-frequency resource block and the RE included in the third time-frequency resource set are in the The pattern in the second time-frequency resource block is the same, and the first time-frequency resource set and the third time-frequency resource set belong to the first time-frequency resource block and the second time-frequency resource block, respectively.
  • the first time-frequency resource block and the second time-frequency resource block occupy the same frequency domain resource, and the first time-frequency resource block and the second time-frequency resource block occupy the same time length in the time domain.
  • the method is characterized in that the X1 secondary blind detection is respectively for X1 first type RE sets, and the X3 secondary blind detection is respectively for X3 second type RE sets, the X3 first The pattern of the second type RE set in the second time-frequency resource block and the X1 first class respectively
  • the X3 first type RE sets in the RE set have the same pattern in the first time-frequency resource block, and each of the X1 first-type RE sets is composed of a positive integer number of REs.
  • Each of the X3 second type RE sets is composed of a positive integer number of REs.
  • the method is characterized in that the number of REs included in any one of the X1 first type RE sets and the X3 first type RE sets is included in the first type RE set The number of REs included in the second type of RE set of any one of the X3 second type RE sets is less than or equal to.
  • the method is characterized in that the first wireless signal is used to determine a first antenna port group, the first antenna port group includes a positive integer number of antenna ports, and the second signaling The set is transmitted by the first set of antenna ports.
  • the above method is characterized by comprising:
  • the K target wireless signals are used by the sender of the first wireless signal to determine K channel qualities, and at least one of the K target antenna port groups is used to send the first message.
  • the first antenna port group is an antenna port group other than the K target antenna port groups, and the K is a positive integer.
  • the present application discloses a user equipment used for multi-antenna communication, which includes:
  • a first receiving module monitoring the first signaling set in the first time-frequency resource set
  • a first transmitting module transmitting the first wireless signal
  • a second receiving module wherein the second signaling set and the third signaling set are respectively monitored in the second time-frequency resource set and the third time-frequency resource set;
  • the first signaling set, the second signaling set, and the third signaling set respectively include physical layer signaling in M1 formats, physical layer signaling in M2 formats, and physicality in M3 formats.
  • Layer signaling, the M1, the M2, and the M3 are positive integers, respectively;
  • the first wireless signal is used to trigger monitoring for the second signaling set;
  • the first wireless signal is used to determine
  • the number of maximum blind detections for the third signaling set in the third time-frequency resource set is changed from X1 to X3, the X1 and the X3 are respectively positive integers, and the X1 is greater than the X3.
  • the foregoing user equipment used for multi-antenna communication is characterized in that: in the first time-frequency resource set, a maximum of X1 blind detections are performed for the first signaling set, in the second Up to X2 blind detections for the second signaling set in the time-frequency resource set And performing, in the third time-frequency resource set, a maximum of X3 times of blind detection for the third signaling set; the number of REs included in the first signaling set and the third signaling set The number of REs included is the same; the X2 is a positive integer smaller than the X1.
  • the foregoing user equipment used for multi-antenna communication is characterized in that: a pattern of the RE included in the first time-frequency resource set in the first time-frequency resource block and the third time-frequency resource set
  • the included REs have the same pattern in the second time-frequency resource block, and the first time-frequency resource set and the third time-frequency resource set belong to the first time-frequency resource block and the second time-frequency respectively a resource block, the first time-frequency resource block and the second time-frequency resource block occupy the same frequency domain resource, and the first time-frequency resource block and the second time-frequency resource block are occupied in a time domain
  • the length of time is the same.
  • the foregoing user equipment used for multi-antenna communication is characterized in that the X1 times of blind detection are respectively for X1 first type RE sets, and the X3 times of blind detection are respectively for X3 second type RE sets And the patterns of the X3 second-type RE sets in the second time-frequency resource block are the same as the patterns of the X3 first-class RE sets in the X1 first-type RE sets in the first time-frequency resource block,
  • Each of the X1 first type RE sets is composed of a positive integer number of REs, and each of the X3 second type RE sets is a positive integer RE composition.
  • the foregoing user equipment used for multi-antenna communication is characterized in that any one of the X1 first type RE sets and the X3 first type RE sets are in the first type RE set.
  • the number of REs included is less than or equal to the number of REs included in any of the X3 second-class RE sets.
  • the foregoing user equipment used for multi-antenna communication is characterized in that the first wireless signal is used to determine a first antenna port group, and the first antenna port group includes a positive integer number of antenna ports, The user equipment assumes that the second set of signaling is transmitted by the first set of antenna ports.
  • the foregoing user equipment used for multi-antenna communication is characterized in that the first receiving module further monitors K target wireless signals on K target antenna port groups respectively; the K target wireless signals are For determining K channel qualities, at least one of the K target antenna port groups is used to send the first signaling set, and the first antenna port group is the K target antenna port groups Outside the antenna port group, the K is a positive integer.
  • the above user equipment used for multi-antenna communication is characterized by
  • the first receiving module further receives a second wireless signal; the second wireless signal is used to determine a ⁇ fourth time-frequency resource set, a fifth time-frequency resource set ⁇ , and the second time-frequency resource set belongs to the first
  • the fourth time-frequency resource set, the first time-frequency resource set and the third time-frequency resource set all belong to the fifth time-frequency resource set.
  • the present application discloses a base station device used for multi-antenna communication, which includes:
  • a second sending module transmitting a first signaling set in the first time-frequency resource set
  • a third receiving module receiving the first wireless signal
  • a third sending module where the second signaling set and the third signaling set are respectively sent in the second time-frequency resource set and the third time-frequency resource set;
  • the first signaling set, the second signaling set, and the third signaling set respectively include physical layer signaling in M1 formats, physical layer signaling in M2 formats, and physicality in M3 formats.
  • Layer signaling, the M1, the M2, and the M3 are positive integers, respectively;
  • the first wireless signal is used to trigger transmission for the second signaling set;
  • the first wireless signal is used to determine
  • the number of maximum blind detections for the third signaling set in the third time-frequency resource set is changed from X1 to X3, the X1 and the X3 are respectively positive integers, and the X1 is greater than the X3.
  • the foregoing base station device used for multi-antenna communication is characterized in that: in the first time-frequency resource set, a maximum of X1 blind detections are performed for the first signaling set, in the second Performing a maximum of X2 blind detections for the second signaling set in the set of time-frequency resources, wherein a maximum of X3 blind detections are performed for the third signaling set in the third time-frequency resource set;
  • the number of REs included in a signaling set is the same as the number of REs included in the third signaling set;
  • the X2 is a positive integer less than the X1.
  • the foregoing base station device used for multi-antenna communication is characterized in that: a pattern of the RE included in the first time-frequency resource set in the first time-frequency resource block and the third time-frequency resource set
  • the included REs have the same pattern in the second time-frequency resource block, and the first time-frequency resource set and the third time-frequency resource set belong to the first time-frequency resource block and the second time-frequency respectively a resource block, the first time-frequency resource block and the second time-frequency resource block occupy the same frequency domain resource, and the first time-frequency resource block and the second time-frequency resource block are occupied in a time domain
  • the length of time is the same.
  • the above-described base station apparatus used for multi-antenna communication is characterized in that
  • the X1 secondary blind detection is respectively for X1 first type RE sets
  • the X3 secondary blind detection is respectively for X3 second type RE sets
  • the X3 second type RE sets are in the second time frequency resource block.
  • the pattern is the same as the pattern of the X3 first type RE sets in the X1 first type RE sets in the first time frequency resource block
  • each of the X1 first type RE sets is the first type RE
  • the set consists of a positive integer number of REs, each of the X3 second type RE sets being composed of a positive integer number of REs.
  • the base station device used for multi-antenna communication is characterized in that any one of the X1 first-class RE sets and the X3 first-class RE sets is in the first-class RE set.
  • the number of REs included is less than or equal to the number of REs included in any of the X3 second-class RE sets.
  • the foregoing base station device used for multi-antenna communication is characterized in that the first wireless signal is used to determine a first antenna port group, and the first antenna port group includes a positive integer number of antenna ports, The second signaling set is sent by the first antenna port group.
  • the base station device used for multi-antenna communication is characterized in that the second transmitting module further transmits K target wireless signals on the K target antenna port groups; the K target wireless signals are The sender of the first wireless signal is respectively used to determine K channel qualities, and at least one of the K target antenna port groups is used to send the first signaling set, the first antenna port group Is an antenna port group other than the K target antenna port groups, and the K is a positive integer.
  • the base station device used for multi-antenna communication is characterized in that the second transmitting module further transmits a second wireless signal; the second wireless signal is used to determine a ⁇ fourth time-frequency resource set, a fifth time-frequency resource set, wherein the second time-frequency resource set belongs to the fourth time-frequency resource set, and the first time-frequency resource set and the third time-frequency resource set belong to the fifth time Frequency resource collection.
  • the present application has the following technical advantages over the prior art:
  • the blind detection for the second signaling set does not increase the overall blind detection number of the UE, thereby reducing the UE implementation complexity.
  • the number of blind detections of the UE for the third signaling set becomes X3 times, effectively reducing the number of blind detections of the UE. To reduce the power consumption of the UE.
  • time-frequency resources occupied by the candidates for the third signaling set are all from the time-frequency resources occupied by the candidates for the first signaling set, avoiding the allocation due to receiving the second signaling set Additional time-frequency resources are used for monitoring of the third signaling.
  • the first type of RE set and the second type of RE set are both for DCI of the same type of format, and maintaining the same pattern of the first type of RE set and the second type of RE set helps simplify control Blind detection of signaling, and occupying more REs for the second type of RE set in the BR state, thereby ensuring robustness of the third signaling set.
  • FIG. 1 shows a flow chart of a first wireless signal in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an evolved node and a given user equipment in accordance with one embodiment of the present application
  • Figure 5 illustrates a flow diagram of a first signaling set transmission in accordance with one embodiment of the present application
  • FIG. 6 is a schematic diagram of a first time-frequency resource set, a second time-frequency resource set, and a third time-frequency resource set according to an embodiment of the present application;
  • FIG. 7 shows a schematic diagram of a first type of RE set and a second type of RE set according to an embodiment of the present application
  • FIG. 8 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present application.
  • FIG. 9 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of a first information according to the present application, as shown in FIG.
  • the user equipment in the application first monitors the first signaling set in the first time-frequency resource set; secondly transmits the first wireless signal; and then monitors the second time-frequency resource set and the third time-frequency resource set separately Two signaling sets and a third signaling set.
  • the first signaling set, the second signaling set, and the third signaling set respectively include physical layer signaling in M1 formats, physical layer signaling in M2 formats, and physical layer signaling in M3 formats Let M1, M2, and M3 be positive integers, respectively; the first wireless signal is used to trigger monitoring for the second signaling set; the first wireless signal is used to determine The number of maximum blind detections for the third signaling set in the third time-frequency resource set is changed from X1 to X3, and the X1 and the X3 are respectively positive integers, and the X1 is greater than the X3.
  • the use of the first wireless signal to trigger monitoring for the second signaling set means that the user equipment performs a target window within a given time window after transmitting the first wireless signal Blind detection of the second set of signaling.
  • the first wireless signal is used to trigger monitoring for the second signaling set to mean that the user equipment performs blindness for the second signaling set within a given time window Detecting that the location of the given time window is related to a time domain resource occupied by the first wireless signal.
  • the given time window is located after the first wireless signal in the time domain.
  • the given time window occupies a positive integer number of consecutive sub-frames.
  • the given time window occupies a positive integer number of consecutive time slots (Slots).
  • the given time window occupies a positive integer number of consecutive mini-slots (Mini-Slots).
  • the first wireless signal is used to determine that the number of maximum blind detections for the third signaling set in the third time-frequency resource set is changed from X1 to X3. If the user equipment does not send the first wireless signal, the maximum number of blind detections for the third signaling set in the third time-frequency resource set is the X1.
  • the first wireless signal is used to determine that the number of maximum blind detections for the third signaling set in the third time-frequency resource set is changed from X1 X3 means that if the serving cell of the user equipment correctly receives the first wireless signal, the serving cell of the user equipment assumes that the user equipment is in the third time-frequency resource set for the third signaling
  • the maximum number of blind detections of the set is the X3; otherwise, the serving cell of the user equipment assumes that the maximum number of blind detections of the user equipment in the third time-frequency resource set for the third signaling set is X1.
  • the monitoring means that the user equipment performs blind detection for a given signaling set according to a given format, the given format belongs to the M1 format and the given signaling set Is the first signaling set, or the given format belongs to the M2 format and the given signaling set is the second signaling set, or the given format belongs to the M3 format And the given signaling set is the third signaling set.
  • the blind detection is demodulation decoding for DCI.
  • the blind detection includes a check for a CRC (Cyclic Redundancy Check).
  • CRC Cyclic Redundancy Check
  • the monitoring refers to: determining, by the user equipment, whether a target signaling set is sent according to a CRC check, where the target signaling set is ⁇ the first signaling set, the second signaling Let one of the set, the third signaling set ⁇ .
  • the blind detection comprises: performing channel coding on a received signal in a target RE set, performing a CRC check on the decoded bit to determine whether the target physical layer signaling is included in the received signal .
  • the channel decoding is based on a polarization code.
  • the target physical layer signaling belongs to one of ⁇ the first signaling set, the second signaling set, and the third signaling set ⁇ .
  • the blind detection is Blind Decoding.
  • the format of the physical layer signaling corresponds to a DCI format.
  • the first signaling set includes a positive integer number of first signaling
  • the physical layer channel corresponding to the first signaling is a ⁇ PDCCH (Physical Downlink Control Channel), NR- One of PDCCH (New RAT PDCCH, new radio access physical downlink control channel), SPDCCH (Short Latency PDCCH).
  • ⁇ PDCCH Physical Downlink Control Channel
  • NR- One of PDCCH New RAT PDCCH, new radio access physical downlink control channel
  • SPDCCH Short Latency PDCCH
  • the second signaling set includes a positive integer number of second signaling
  • the physical layer channel corresponding to the second signaling is one of ⁇ PDCCH, NR-PDCCH, SPDCCH ⁇ .
  • the third signaling set includes a positive integer number of third signaling, and the physical layer channel corresponding to the third signaling is one of ⁇ PDCCH, NR-PDCCH, SPDCCH ⁇ .
  • the first wireless signal is used to transmit a Beam Recovery Request.
  • the first wireless signal is transmitted in a RACH (Random Access Channel).
  • RACH Random Access Channel
  • the first wireless signal is transmitted in the UL-SCH.
  • the first wireless signal is transmitted in UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first wireless signal is used to trigger monitoring of the second signaling set in a first time window.
  • the first time window includes T time sub-windows in the time domain, and the T is a positive integer.
  • the T is equal to one.
  • the T time sub-windows are continuous in the time domain.
  • the temporal sub-window is one of ⁇ subframe, time slot, minislot ⁇ .
  • the target time-frequency resource set is composed of a positive integer number of REs (Resource Element), and the target time-frequency resource set includes at least two REs corresponding to different sub-carrier intervals, and the target time-frequency The resource set is one of ⁇ the first time-frequency resource set, the second time-frequency resource set, and the third time-frequency resource set ⁇ .
  • the first time-frequency resource set, the second time-frequency resource set, and the third time-frequency resource set are respectively composed of multiple REs.
  • the M1 is greater than one.
  • the M2 is equal to one.
  • the M3 is greater than one.
  • the M1 is equal to the M3, and the M1 formats are the same as the M3 formats.
  • any of the M2 formats does not belong to the M1 format.
  • At least one of the M2 formats does not belong to the M1 formats are described.
  • any of the M2 formats does not belong to the M3 formats.
  • At least one of the M2 formats does not belong to the M3 formats.
  • the second signaling set includes only target signaling.
  • the target signaling includes a given CRC, and the given CRC is scrambled by an RNTI other than a UE-specific RNTI (Radio Network Temporary Identity).
  • RNTI Radio Network Temporary Identity
  • the target signaling is used to schedule Beam Recovery Request Response.
  • the target signaling includes scheduling beam recovery request feedback.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced), and a future 5G system network architecture 200.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core) 210, and HSS (Home Subscriber Server, Home subscriber network server 220 and Internet service 230.
  • UEs User Equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • HSS Home Subscriber Server, Home subscriber network server 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN includes an evolved Node B (eNB) 203 and other eNBs 204.
  • the eNB 203 provides user and control plane protocol termination towards the UE 201.
  • the eNB 203 can connect to other eNBs 204 via an X2 interface (e.g., backhaul).
  • X2 interface e.g., backhaul
  • the eNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmission and reception point), or some other suitable terminology.
  • the eNB 203 provides the UE 201 with an access point to the EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the eNB 203 is connected to the EPC 210 through an S1 interface.
  • the EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the EPC 210.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the eNB 203 corresponds to a base station in this application.
  • the UE 201 supports multi-antenna communication.
  • the UE 201 supports beamforming based communication.
  • the eNB 203 supports beamforming based communication.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows the radio protocol architecture for UE and eNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the eNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control, media) Access control) sub-layer 302, RLC (Radio Link Control) sub-layer 303 and PDCP (Packet Data Convergence Protocol) sub-layer 304, these sub-layers terminate on the network side At the eNB.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW 213 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between eNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and the eNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layers using RRC signaling between the eNB and the UE.
  • the radio protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the first signaling set in this application is generated by the PHY 301.
  • the second signaling set in the present application is generated by the PHY 301.
  • the third signaling set in this application is generated by the PHY 301.
  • the first wireless signal in the present application is generated in the MAC sublayer 302.
  • the first wireless signal in the present application terminates at the MAC sublayer 302.
  • the second wireless signal in the application is generated in the RRC Sublayer 306.
  • Embodiment 4 shows a schematic diagram of an evolved node and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of an eNB 410 in communication with a UE 450 in an access network.
  • DL Downlink
  • the upper layer packet from the core network is provided to controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 416 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • Signal processing functions include decoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), M Phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM) mapping to signal clusters.
  • FEC forward error correction
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • M-PSK M Phase shift keying
  • M-QAM M quadrature amplitude modulation
  • Each stream is then mapped to a multi-carrier subcarrier, multiplexed with reference signals (eg, pilots) in the time and/or frequency domain, and then combined using an Inverse Fast Fourier Transform (IFFT) to generate the carrier.
  • IFFT Inverse Fast Fourier Transform
  • Multi-carrier streams are spatially pre-coded to produce multiple spatial streams.
  • Each spatial stream is then provided to a different antenna 420 via a transmitter 418.
  • Each transmitter 418 modulates the RF carrier with a respective spatial stream for transmission.
  • each receiver 454 receives a signal through its respective antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and provides the information to the receive processor 456.
  • Receive processor 456 implements various signal processing functions of the L1 layer. Receive processor 456 performs spatial processing on the information to recover any spatial streams destined for UE 450. If multiple spatial streams are destined for the UE 450, they may be combined by the receive processor 456 into a single multi-carrier symbol stream. Receive processor 456 then converts the multicarrier symbol stream from the time domain to the frequency domain using a Fast Fourier Transform (FFT). The frequency domain signal includes a separate multicarrier symbol stream for each subcarrier of the multicarrier signal. The symbols on each subcarrier and the reference signal are recovered and demodulated by determining the most likely signal cluster point transmitted by eNB 410.
  • FFT Fast Fourier Transform
  • the soft decision is then decoded and deinterleaved to recover the data and control signals originally transmitted by the eNB 410 on the physical channel.
  • the data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the L2 layer.
  • the controller/processor can be associated with a memory 460 that stores program codes and data. Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides between the transport and the logical channel. Demultiplexing, packet reassembly, decryption, header decompression, and control signal processing to recover upper layer packets from the core network.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 467 is used to provide the upper layer packet to controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • controller/processor 459 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels by radio resource allocation based on eNB 410. Use to implement the L2 layer for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 410.
  • the channel estimate derived from the reference signal by channel estimator 458 or the feedback transmitted by eNB 410 may be used by transmit processor 468 to select an appropriate coding and modulation scheme and to facilitate spatial processing.
  • the spatial streams generated by transmit processor 468 are provided to different antennas 452 via separate transmitters 454.
  • Each transmitter 454 modulates the RF carrier with a respective spatial stream for transmission.
  • the UL transmissions are processed at the eNB 410 in a manner similar to that described in connection with the receiver function description at the UE 450.
  • Each receiver 418 receives a signal through its respective antenna 420.
  • Each receiver 418 recovers the information modulated onto the RF carrier and provides the information to the receive processor 470.
  • Receive processor 470 can implement the L1 layer.
  • the controller/processor 475 implements the L2 layer. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 can be referred to as a computer readable medium. In the UL, the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover the upper layer packets from the UE 450. An upper layer packet from controller/processor 475 can be provided to the core network. The controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together.
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: at a first time frequency Monitoring the first signaling set in the resource set; transmitting the first wireless signal; and monitoring the second signaling set and the third signaling set in the second time-frequency resource set and the third time-frequency resource set, respectively.
  • the eNB 410 includes: at least one processor and at least A memory, the at least one memory comprising computer program code; the at least one memory and the computer program code being configured for use with the at least one processor.
  • the eNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: at a first time frequency Sending a first signaling set in the resource set; receiving the first wireless signal; and transmitting the second signaling set and the third signaling set in the second time-frequency resource set and the third time-frequency resource set, respectively.
  • the UE 450 corresponds to the user equipment in this application.
  • the eNB 410 corresponds to the base station in this application.
  • At least one of the receive processor 456 and the controller/processor 459 monitors the first set of signaling in the first set of time-frequency resources.
  • At least one of the receiving processor 456 and the controller/processor 459 monitors the second signaling set and the second in the second time-frequency resource set and the third time-frequency resource set, respectively.
  • At least one of the receive processor 456 and the controller/processor 459 monitors K channel qualities on the K target antenna port groups, respectively.
  • At least one of the receiving processor 456 and the controller/processor 459 receives a second wireless signal.
  • At least one of the transmit processor 468 and the controller/processor 459 transmits a first wireless signal.
  • At least one of the transmit processor 416 and the controller/processor 475 transmits a first set of signaling in a first set of time-frequency resources.
  • At least one of the transmit processor 416 and the controller/processor 475 respectively send a second signaling set and a second in a second time-frequency resource set and a third time-frequency resource set.
  • At least one of the transmit processor 416 and the controller/processor 475 transmits the first signaling set in at least one of the K target antenna port groups.
  • At least one of the transmit processor 416 and the controller/processor 475 transmits a second wireless signal.
  • the receiving processor 470 and the controller/processor 475 At least one of the first wireless signals is received.
  • Embodiment 5 illustrates a flow chart of a first signaling set transmission in accordance with the present application, as shown in FIG.
  • base station N1 is the maintenance base station of the serving cell of UE U2, and the steps identified in block F0 are optional.
  • the second wireless signal is transmitted in step S10, K target wireless signals are respectively transmitted on the K target antenna port groups in step S11, and the first signal is transmitted in the first time-frequency resource set in step S12.
  • the set, the first wireless signal is received in step S13, and the second signaling set and the third signaling set are respectively sent in the second time-frequency resource set and the third time-frequency resource set in step S14.
  • the second wireless signal is received in step S20, K target wireless signals are respectively monitored on the K target antenna port groups in step S21, and the first message is received in the first time-frequency resource set in step S22.
  • the set, the first wireless signal is transmitted in step S23, and the second signaling set and the third signaling set are respectively received in the second time-frequency resource set and the third time-frequency resource set in step S24.
  • the first signaling set, the second signaling set, and the third signaling set respectively include physical layer signaling in M1 formats, physical layer signaling in M2 formats, and M3 Physical layer signaling of the format, the M1, the M2, and the M3 are positive integers, respectively;
  • the first wireless signal is used to trigger monitoring for the second signaling set;
  • the first wireless signal is And determining, by the third time-frequency resource set, that the maximum number of blind detections for the third signaling set is changed from X1 to X3, where X1 and X3 are positive integers, respectively, and the X1 is greater than Describe X3; a maximum of X1 blind detections for the first signaling set in the first time-frequency resource set is performed, and a maximum of X2 times for the second signaling set in the second time-frequency resource set Blind detection is performed, in which a maximum of X3 blind detections are performed for the third signaling set in the third time-frequency resource set; the number of REs included in the first signaling set
  • the pattern in the same is the same as the pattern in the first time-frequency resource block of the X3 first-class RE sets in the X1 first-type RE sets, and each of the X1 first-class RE sets is the first
  • the class RE set is composed of a positive integer number of REs
  • each of the X3 second type RE sets is composed of a positive integer number of REs
  • the X1 first class RE sets are in the The number of REs included in any one of the first type of RE sets other than the X3 first type RE sets is less than or equal to that included in any of the X3 second type RE sets.
  • the number of REs; the first wireless signal is used to determine a first antenna port group, the first antenna port group includes a positive integer number of antenna ports, and the UE U2 assumes that the second signaling set is Transmitting a first antenna port group; the K target radio signals are used to determine K channel qualities, the K target antennas At least one of the port group is configured to send the first signaling set, the first antenna port group is an antenna port group other than the K target antenna port groups, and the K is a positive integer;
  • the second radio signal is used to determine a ⁇ fourth time-frequency resource set, a fifth time-frequency resource set ⁇ , the second time-frequency resource set belongs to the fourth time-frequency resource set, and the first time-frequency resource set And the third time-frequency resource set belongs to the fifth time-frequency resource set.
  • the RE in the present application occupies one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • the subcarrier spacing corresponding to the subcarrier is one of ⁇ 15 kHz (kilohertz), 30 kHz, 60 kHz, 120 kHz, 240 kHz ⁇ .
  • the X1 is less than or equal to X, and the sum of the X2 and the X3 is less than or equal to the X, and the X is a positive integer.
  • the X is greater than 43.
  • the X is the maximum number of blind detections supported by the UE U2 on a given carrier, ⁇ the first signaling set, the second signaling set, the At least one of the third set of signalings ⁇ is transmitted on the given carrier.
  • the X is a fixed constant.
  • the X is the maximum number of blind detections supported by the UE U2, and the X is related to the number of carriers currently configured by the UE U2.
  • the X1 is equal to the sum of the X2 and the X3.
  • the number of REs included in the first signaling set and the number of REs included in the third signaling set are the same: the first signaling set includes N1 a signaling, the third signaling set includes N3 third signalings, where the number of REs occupied by the N1 first signaling is equal to the number of REs occupied by the N3 third signaling, the N1 And N3 are positive integers, respectively.
  • the second time-frequency resource block is obtained by sliding a positive integer OFDM (Orthogonal Frequency Division Multiplexing) symbol in the time domain by using the first time-frequency resource block.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the set of subcarriers occupied by the first time-frequency resource block in the frequency domain and the set of subcarriers occupied by the second time-frequency resource block in the frequency domain are the same.
  • the first time-frequency resource block occupies a first OFDM symbol set in a time domain
  • the second time-frequency resource block occupies a second OFDM symbol set in a time domain, where the first OFDM symbol set
  • the number of occupied OFDM symbols and the number of OFDM symbols occupied by the second OFDM symbol set are the same.
  • the OFDM symbols occupied by the first OFDM symbol set are continuous.
  • the OFDM symbols occupied by the second OFDM symbol set are continuous.
  • the first OFDM symbol occupied by the first OFDM symbol set in the time domain is different from the first OFDM symbol occupied by the second OFDM symbol set in the time domain.
  • the first type of RE set is a candidate for the first signaling set (Candidate).
  • the first type of RE set is a candidate for physical layer signaling of the M1 formats.
  • the second type of RE set is a candidate for the third signaling set.
  • the second type of RE set is a candidate for physical layer signaling for the M3 formats.
  • the pattern refers to: a time domain location and a frequency domain location of a RE occupied by a given RE set in a given frequency resource block; the given RE set is the first type RE And the given timing resource block is the first time-frequency resource block; or the given RE set is the second-type RE set, and the given timing resource block is the second time Frequency resource block.
  • the AL (Aggregation Level) corresponding to any one of the X1 first-type RE sets and the X1 first-type RE sets is less than or equal to An AL corresponding to any one of the X3 second-class RE sets.
  • the first antenna port group includes a positive integer number of antenna ports.
  • the antenna port is formed by superposing a plurality of physical antennas through antenna virtualization.
  • a mapping coefficient of the antenna port to the plurality of physical antennas constitutes a beamforming vector for the antenna virtualization to form a beam.
  • the first antenna port group corresponds to P transmit beams.
  • the P is equal to one.
  • the first antenna port group corresponds to a candidate transmit beam recommended by the UE U2 to the base station N1.
  • the first antenna port group corresponds to a first receiving antenna port group
  • the UE U2 is a receiving antenna port group outside the first receiving antenna port group before transmitting the first wireless signal.
  • the UE-specific (specific) physical layer control signaling is detected.
  • the UE U2 monitors physical layer control signaling on a group of receiving antenna ports corresponding to the K candidate antenna port groups.
  • the physical layer control signaling is at least one of ⁇ PDCCH, NR-PDCCH, SPDCCH ⁇ .
  • the given target radio signal includes at least one of ⁇ target control channel, target data channel, target reference signal ⁇ , and the UE U2 is based on ⁇ the target control channel, the target data channel, Determining a given channel quality by at least one of the target reference signals ⁇ ; the given target wireless signal is any one of the K target wireless signals, the given channel quality being wireless according to the given target The channel quality determined by the signal.
  • the target control channel is a physical layer control channel.
  • the target data channel is a physical layer data channel.
  • the target reference signal is a ⁇ SS (Synchronization Sequence), a DMRS (Demodulation Reference Signal), and a CSI-RS (Channel State Information Reference Signal). At least one of the status information reference signals) ⁇ .
  • ⁇ SS Synchronization Sequence
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • the channel quality is ⁇ RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), and RSSI (Received Signal Strength Indicator).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Receiveived Signal Strength Indicator
  • SNR Signal to Noise Rate
  • the channel quality is a BLER (Block Error Rate) of physical layer control signaling on the candidate antenna port group corresponding to the channel quality.
  • the channel quality is an average result monitored in a fixed time window.
  • the K channel qualities are all less than a given threshold, and the UE U2 transmits the first wireless signal.
  • the given threshold is a BLER.
  • the unit of the given threshold is dB (decibel).
  • the unit of the given threshold is dBm (millimeters).
  • the fourth time-frequency resource set corresponds to a time-frequency resource occupied by one or more CORESETs (Control Resource Sets).
  • the second time-frequency resource set is a part of the fourth time-frequency resource set in one time slot, and the one time slot includes a positive integer number of OFDM symbols.
  • the fifth time-frequency resource set corresponds to a time-frequency resource occupied by one or more CORESETs.
  • the first time-frequency resource set and the third time-frequency resource set are respectively a part of the fifth time-frequency resource set in one time slot, and the one time-slot includes a positive integer OFDM symbol.
  • the first wireless signal is used to determine that the number of maximum blind detections for the third signaling set in the third time-frequency resource set is changed from X1 to X3.
  • the UE U2 performs blind detection for the second signaling set in a given time window
  • the third time-frequency resource set is a portion of the fifth time-frequency resource set in any time slot belonging to the given time window, the location of the given time window and the occupied by the first wireless signal Time domain resources are related.
  • the second wireless signal is an RRC signaling.
  • the second wireless signal is UE-specific.
  • Embodiment 6 illustrates a schematic diagram of a first time-frequency resource set, a second time-frequency resource set, and a third time-frequency resource set according to the present application, as shown in FIG. 6.
  • the first time-frequency resource set belongs to a first time-frequency resource block
  • the second time-frequency resource set and the third time-frequency resource set belong to a second time-frequency resource block.
  • the frequency-frequency resource set in the frequency domain occupies a frequency domain resource corresponding to a positive integer number of PRBs (Physical Resource Blocks), and occupies a positive integer number of OFDM symbols in the time domain;
  • the set is one of ⁇ the first time-frequency resource set, the second time-frequency resource set, and the third time-frequency resource set ⁇ .
  • the set of timing frequency resources corresponds to a search space
  • the set of the given timing resources is ⁇ the first time-frequency resource set, the second time-frequency resource set, the first One of the three time-frequency resource collections ⁇ .
  • the timing frequency resource block corresponds to one CORSET, and the given timing frequency resource block is one of ⁇ the first time-frequency resource block, the second time-frequency resource block ⁇ .
  • the first time-frequency resource block and the second time-frequency resource block belong to different subframes, respectively.
  • the first time-frequency resource block and the second time-frequency resource block belong to different time slots respectively.
  • Embodiment 7 shows a schematic diagram of a first type of RE set and a second type of RE set according to the present application, as shown in FIG.
  • a small rectangular grid filled with diagonal lines corresponds to a pattern of X1 first-level RE sets in a first time-frequency resource block
  • a small rectangular lattice filled with oblique squares corresponds to X3 second-class REs.
  • a pattern set in the second time-frequency resource block; the pattern of the X3 second-class RE sets in the second time-frequency resource block and the X3 first-class RE sets in the X1 first-class RE sets are respectively
  • the patterns in the first time-frequency resource block are the same.
  • the first type of RE set corresponds to one candidate.
  • the second type of RE set corresponds to one candidate.
  • the number of REs occupied by the X3 second-type RE sets is greater than a first threshold; and X1 first-class RE sets are present in the X1 first-type RE sets, and the X4
  • the number of REs occupied by the first type of RE sets is not greater than a first threshold; the first threshold is a positive integer.
  • the first threshold is one of ⁇ 144, 288, 576 ⁇ .
  • Embodiment 8 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 800 is mainly composed of a first receiving module 801, a first transmitting module 802, and a second receiving module 803.
  • a first transmitting module 802 transmitting a first wireless signal
  • a second receiving module 803 respectively monitoring the second signaling set and the third signaling set in the second time-frequency resource set and the third time-frequency resource set;
  • the first signaling set, the second signaling set, and the third signaling set respectively include physical layer signaling of M1 formats, physical layer signaling of M2 formats, and M3 Physical layer signaling of the format, the M1, the M2, and the M3 are positive integers, respectively;
  • the first wireless signal is used to trigger monitoring for the second signaling set;
  • the first wireless signal is And determining, by the third time-frequency resource set, that the maximum number of blind detections for the third signaling set is changed from X1 to X3, where X1 and X3 are positive integers, respectively, and the X1 is greater than Said X3.
  • a maximum of X1 blind detections for the first signaling set are performed in the first time-frequency resource set, and the second signaling set is set in the second time-frequency resource set.
  • a maximum of X2 blind detections are performed, wherein a maximum of X3 blind detections are performed for the third signaling set in the third time-frequency resource set; the number of REs included in the first signaling set and the The third signaling set includes the same number of REs; the X2 is a positive integer smaller than the X1.
  • the pattern of the RE included in the first time-frequency resource set in the first time-frequency resource block and the RE included in the third time-frequency resource set are in the second time-frequency resource block.
  • the first time-frequency resource set and the third time-frequency resource set belong to the first time-frequency resource block and the second time-frequency resource block, respectively, and the first time-frequency resource block and the Narrative
  • the second time-frequency resource block occupies the same frequency domain resource, and the first time-frequency resource block and the second time-frequency resource block occupy the same time length in the time domain.
  • the X1 secondary blind detection is respectively for X1 first type RE sets
  • the X3 secondary blind detection is respectively for X3 second type RE sets
  • the X3 second type RE sets are second.
  • the pattern in the time-frequency resource block is the same as the pattern in the first time-frequency resource block of the X3 first-class RE sets in the X1 first-class RE sets, and each of the X1 first-class RE sets
  • the first type of RE set is composed of a positive integer number of REs
  • each of the X3 second type RE sets is composed of a positive integer number of REs.
  • the number of REs included in any one of the X1 first-type RE sets and the X3 first-type RE sets is less than or equal to the X3 The number of REs included in any of the second type of RE sets in the second type of RE set.
  • the first wireless signal is used to determine a first antenna port group, the first antenna port group includes a positive integer number of antenna ports, and the UE U2 assumes that the second signaling set is The first antenna port group is transmitted.
  • the first receiving module 801 also separately monitors K target wireless signals on the K target antenna port groups; the K target wireless signals are used to determine K channel qualities, the K At least one of the target antenna port groups is used to transmit the first signaling set, the first antenna port group being an antenna port group other than the K target antenna port groups, the K being a positive integer.
  • the first receiving module 801 further receives a second wireless signal; the second wireless signal is used to determine a ⁇ fourth time-frequency resource set, a fifth time-frequency resource set ⁇ , the second The time-frequency resource set belongs to the fourth time-frequency resource set, and the first time-frequency resource set and the third time-frequency resource set all belong to the fifth time-frequency resource set.
  • the first receiving module 801 includes at least one of a receiving processor 456 and a controller/processor 459 in Embodiment 4.
  • the first transmitting module 802 includes at least one of a transmitting processor 468 and a controller/processor 459 in Embodiment 4.
  • the second receiving module 803 includes at least one of the receiving processor 456 and the controller/processor 459 in Embodiment 4.
  • Embodiment 9 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG. Show.
  • the base station device processing apparatus 900 is mainly composed of a second sending module 901, a third receiving module 902, and a third transmitting module 903.
  • a second sending module 901 sending a first signaling set in the first time-frequency resource set
  • a third sending module 903, configured to send the second signaling set and the third signaling set respectively in the second time-frequency resource set and the third time-frequency resource set;
  • the first signaling set, the second signaling set, and the third signaling set respectively include physical layer signaling in M1 formats, physical layer signaling in M2 formats, and M3 Format physical layer signaling, the M1, the M2, and the M3 are positive integers, respectively;
  • the first wireless signal is used to trigger transmission for the second signaling set;
  • the first wireless signal is And determining, by the third time-frequency resource set, that the maximum number of blind detections for the third signaling set is changed from X1 to X3, where X1 and X3 are positive integers, respectively, and the X1 is greater than Said X3.
  • a maximum of X1 blind detections for the first signaling set are performed in the first time-frequency resource set, and the second signaling set is set in the second time-frequency resource set.
  • a maximum of X2 blind detections are performed, wherein a maximum of X3 blind detections are performed for the third signaling set in the third time-frequency resource set; the number of REs included in the first signaling set and the The third signaling set includes the same number of REs; the X2 is a positive integer smaller than the X1.
  • the pattern of the RE included in the first time-frequency resource set in the first time-frequency resource block and the RE included in the third time-frequency resource set are in the second time-frequency resource block.
  • the first time-frequency resource set and the third time-frequency resource set belong to the first time-frequency resource block and the second time-frequency resource block, respectively, and the first time-frequency resource block and the The second time-frequency resource block occupies the same frequency domain resource, and the first time-frequency resource block and the second time-frequency resource block occupy the same time length in the time domain.
  • the X1 secondary blind detection is respectively for X1 first type RE sets
  • the X3 secondary blind detection is respectively for X3 second type RE sets
  • the X3 second type RE sets are second.
  • the pattern in the time-frequency resource block is the same as the pattern in the first time-frequency resource block of the X3 first-class RE sets in the X1 first-class RE sets, and each of the X1 first-class RE sets
  • the first type of RE set is composed of a positive integer number of REs
  • each of the X3 second type RE sets is composed of a positive integer number of REs.
  • the number of REs included in any one of the X1 first-type RE sets and the X3 first-type RE sets is less than or equal to the X3 The number of REs included in any of the second type of RE sets in the second type of RE set.
  • the first wireless signal is used to determine a first antenna port group, the first antenna port group includes a positive integer number of antenna ports, and the second signaling set is used by the first antenna The port group is sent.
  • the second sending module 901 further transmits K target wireless signals on the K target antenna port groups; the K target wireless signals are respectively used by the sender of the first wireless signal. Determining K channel qualities, at least one of the K target antenna port groups being used to transmit the first signaling set, the first antenna port group being other than the K target antenna port groups Antenna port group, the K is a positive integer.
  • the second sending module 901 further sends a second wireless signal, where the second wireless signal is used to determine a ⁇ fourth time-frequency resource set, a fifth time-frequency resource set ⁇ , the second The time-frequency resource set belongs to the fourth time-frequency resource set, and the first time-frequency resource set and the third time-frequency resource set all belong to the fifth time-frequency resource set.
  • the second transmitting module 901 includes at least one of a transmitting processor 416 and a controller/processor 475 in Embodiment 4.
  • the third receiving module 902 includes at least one of the receiving processor 470 and the controller/processor 475 in Embodiment 4.
  • the third transmitting module 903 includes at least one of a transmitting processor 416 and a controller/processor 475 in Embodiment 4.
  • the UE and the terminal in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, and a wireless transmission.
  • Sensor network card, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC) terminal, data card, network card, vehicle communication device , low-cost mobile phones, low-cost tablets and other equipment.
  • the base station in the present application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于多天线通信的用户设备、基站中的方法和装置。用户设备首先在第一时频资源集合中监测第一信令集合,其次发送第一无线信号,随后在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合;所述第一无线信号被用于触发针对所述第二信令集合的监测;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。本申请通过根据第一无线信号的发送设计新的盲检测机制,进而重新分配用户设备的盲检测,降低用户设备接收复杂度及功耗,进而提高***整体性能。

Description

一种被用于多天线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及被用于多天线通信的方法和装置,尤其涉及物理层控制信令接收的方法和装置。
背景技术
现有的LTE(Long Term Evolution,长期演进)***中,对于一个下行子帧而言,E(User Equipment,用户设备)会在所述下行子帧中搜索对应的DCI(Downlink Control Information,下行控制信息)。下行授权(Grant)往往调度当前子帧的DL-SCH(Downlink Shared Channel,下行共享信道),而上行授权往往调度后续子帧的UL-SCH(Uplink SharedChannel,上行共享信道)。***通过高层信令为UE分配两种不同的DCI格式(Format),两种不同的DCI格式分别对应两种不同的负载尺寸(Payload Size),UE在接收DCI时分别基于不同的负载尺寸进行盲检测(Blind Decoding),且UE在给定载波上对应的最大盲检测次数是受限的。5G通信***中,波束赋形(Beamforming)将会被大量应用,而基于波束赋形应用场景下的DCI盲检测方法需要被重新考虑。
发明内容
5G***中,BR(Beam Recovery,波束恢复)以及BLF(Beam LinkFailure,波束链路失败)的概念正在被讨论中,UE检测当前的多个波束以获得动态调度,当UE检测的多个波束信道质量变差时,UE向基站发送BRR(Beam Recovery Request,波束恢复请求)以请求新的波束资源以监测物理层控制信令。
上述概念的引入是为了保证当UE发现一个波束对应的信道质量变坏时,所述UE能够快速切换到另外一个波束下被服务。上述BR及BLF的过程不会触发RRC(Radio1 Resource Control,无线资源控制)层的过程,此种方式的好处在于保证波束间切换的迅速。目前3GPP中已经定义,当UE发送BRR后,所述BRR中会携带UE推荐的波束信息,随后UE 会在推荐的波束上监测对应所述BRR的反馈。针对上述问题,考虑到其他针对非所述BRR的反馈的DCI的接收,一个简单的实现方式就是用户设备在不影响正常DCI的接收下针对BRR的反馈再增加正整数次盲检测,然而此种方法显然会增加UE的盲检测复杂度。
针对上述问题,本申请提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本申请公开了一种被用于多天线通信的用户设备中的方法,其特征在于包括:
-在第一时频资源集合中监测第一信令集合;
-发送第一无线信号;
-在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合;
其中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的监测;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
作为一个实施例,上述方法的好处在于:针对所述第二信令集合的盲检测不会增加UE整体的盲检测数,进而降低UE实现复杂度。
作为一个实施例,上述方法的另一个好处在于:当UE处于BR状态下时,即UE完成BRR的发送时,UE针对所述第三信令集合的盲检测次数变为X3次,有效降低UE的盲检测次数以降低UE的功耗。
作为一个实施例,上述方法的设计原理在于:当UE处于BR状态下时,UE用于物理层动态信令监测的波束的质量显然不好。在此场景下,所述用户设备调度机会也会较少,且需要更为鲁棒的物理层控制信令的传输,进而也不需要保留正常信道条件对应的控制信令候选(Candidate) 的数目。
根据本申请的一个方面,上述方法的特征在于,在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数。
作为一个实施例,上述方法的好处在于:针对所述第三信令集合的控制信令候选所占用的时频资源均来自针对所述第一信令集合的控制信令候选所占用的时频资源,避免因为接收所述第二信令集合而导致分配额外的时频资源用于所述第三信令的监测。
作为一个实施例,上述方法的另一个好处在于:所述X2小于所述X1,针对所述第二信令集合的盲检测次数被限制,以降低UE的实现复杂度。
根据本申请的一个方面,上述方法的特征在于,所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度相同。
作为一个实施例,上述方法的好处在于:所述第一时频资源集合对应第一搜索空间(Search Space),所述第三时频资源集合对应第三搜索空间,所述第一搜索空间和所述第三搜索空间在各自对应的时频资源块中占用相同的RE,避免BR过程中引入新的RRC(Radio Resource Control,无线资源控制)信令的重新配置。
作为一个实施例,上述方法的好处在于:所述第一时频资源块对应第一CORESET,所述第二时频资源块对应第二CORESET,所述第一CORESET和所述第二CORESET占用相同的频域资源,以避免分配新的资源用于物理层动态信令的盲检测,降低控制信令的开销。
根据本申请的一个方面,上述方法的特征在于,所述X1次盲检测分 别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集合由正整数个RE组成。
作为一个实施例,上述方法的好处在于:所述第一类RE集合和所述第二类RE集合均针对同一类格式的DCI,保持所述图样的相同有助于简化控制信令的盲检测。
根据本申请的一个方面,上述方法的特征在于,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量。
作为一个实施例,上述方法的好处在于:当所述用户设备处于BR的状态时,针对所述BR状态下的所述第二类RE集合占用更多的RE,进而保证所述第三信令集合的鲁棒性。
根据本申请的一个方面,上述方法的特征在于,所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述用户设备假定所述第二信令集合被所述第一天线端口组发送。
根据本申请的一个方面,上述方法的特征在于包括:
-在K个目标天线端口组上分别监测K个目标无线信号;
其中,所述K个目标无线信号被用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数。
作为一个实施例,上述方法的特征在于,所述K个目标天线端口组对应所述用户设备监测物理层动态信令对应的K个发送天线端口组,当所述K个目标天线端口组对应的所述K个信道质量变差时,所述用户设备发起BR的过程。
根据本申请的一个方面,上述方法的特征在于包括:
-接收第二无线信号;
其中,所述第二无线信号被用于确定{第四时频资源集合,第五时频资 源集合},所述第二时频资源集合属于所述第四时频资源集合,所述第一时频资源集合和所述第三时频资源集合都属于所述第五时频资源集合。
本申请公开了一种被用于多天线通信的基站中的方法,其特征在于包括:
-在第一时频资源集合中发送第一信令集合;
-接收第一无线信号;
-在第二时频资源集合和第三时频资源集合中分别发送第二信令集合和第三信令集合;
其中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的发送;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
根据本申请的一个方面,上述方法的特征在于,在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度相同。
根据本申请的一个方面,上述方法的特征在于,所述X1次盲检测分别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类 RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集合由正整数个RE组成。
根据本申请的一个方面,上述方法的特征在于,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量。
根据本申请的一个方面,上述方法的特征在于,所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述第二信令集合被所述第一天线端口组发送。
根据本申请的一个方面,上述方法的特征在于包括:
-在K个目标天线端口组上分别发送K个目标无线信号;
其中,所述K个目标无线信号被所述第一无线信号的发送者分别用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数。
本申请公开了一种被用于多天线通信的用户设备,其特征在于包括:
-第一接收模块,在第一时频资源集合中监测第一信令集合;
-第一发送模块,发送第一无线信号;
-第二接收模块,在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合;
其中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的监测;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
作为一个实施例,上述被用于多天线通信的用户设备的特征在于,在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执 行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数。
作为一个实施例,上述被用于多天线通信的用户设备的特征在于,所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度相同。
作为一个实施例,上述被用于多天线通信的用户设备的特征在于,所述X1次盲检测分别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集合由正整数个RE组成。
作为一个实施例,上述被用于多天线通信的用户设备的特征在于,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量。
作为一个实施例,上述被用于多天线通信的用户设备的特征在于,所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述用户设备假定所述第二信令集合被所述第一天线端口组发送。
作为一个实施例,上述被用于多天线通信的用户设备的特征在于,所述第一接收模块还在K个目标天线端口组上分别监测K个目标无线信号;所述K个目标无线信号被用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数。
作为一个实施例,上述被用于多天线通信的用户设备的特征在于,所 述第一接收模块还接收第二无线信号;所述第二无线信号被用于确定{第四时频资源集合,第五时频资源集合},所述第二时频资源集合属于所述第四时频资源集合,所述第一时频资源集合和所述第三时频资源集合都属于所述第五时频资源集合。
本申请公开了一种被用于多天线通信的基站设备,其特征在于包括:
-第二发送模块,在第一时频资源集合中发送第一信令集合;
-第三接收模块,接收第一无线信号;
-第三发送模块,在第二时频资源集合和第三时频资源集合中分别发送第二信令集合和第三信令集合;
其中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的发送;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
作为一个实施例,上述被用于多天线通信的基站设备的特征在于,在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数。
作为一个实施例,上述被用于多天线通信的基站设备的特征在于,所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度相同。
作为一个实施例,上述被用于多天线通信的基站设备的特征在于, 所述X1次盲检测分别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集合由正整数个RE组成。
作为一个实施例,上述被用于多天线通信的基站设备的特征在于,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量。
作为一个实施例,上述被用于多天线通信的基站设备的特征在于,所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述第二信令集合被所述第一天线端口组发送。
作为一个实施例,上述被用于多天线通信的基站设备的特征在于,所述第二发送模块还在K个目标天线端口组上分别发送K个目标无线信号;所述K个目标无线信号被所述第一无线信号的发送者分别用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数。
作为一个实施例,上述被用于多天线通信的基站设备的特征在于,所述第二发送模块还发送第二无线信号;所述第二无线信号被用于确定{第四时频资源集合,第五时频资源集合},所述第二时频资源集合属于所述第四时频资源集合,所述第一时频资源集合和所述第三时频资源集合都属于所述第五时频资源集合。
作为一个实施例,相比现有公开技术,本申请具有如下技术优势:
-.通过设计用户设备新的盲检测方式,当用户设备处于BR状态下,针对所述第二信令集合的盲检测不会增加UE整体的盲检测数,进而降低UE实现复杂度。
-.通过设计新的盲检测方式,当用户设备处于BR状态下,UE针对所述第三信令集合的盲检测次数变为X3次,有效降低UE的盲检测次数 以降低UE的功耗。
-.针对所述第三信令集合的候选所占用的时频资源均来自针对所述第一信令集合的候选所占用的时频资源,避免因为接收所述第二信令集合而导致分配额外的时频资源用于所述第三信令的监测。
-.所述第一类RE集合和所述第二类RE集合均针对同一类格式的DCI,保持所述第一类RE集合和所述第二类RE集合采用相同的图样有助于简化控制信令的盲检测,且针对所述BR状态下的所述第二类RE集合占用更多的RE,进而保证所述第三信令集合的鲁棒性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的演进节点和给定用户设备的示意图;
图5示出了根据本申请的一个实施例的第一信令集合传输的流程图;
图6示出了根据本申请的一个实施例的第一时频资源集合、第二时频资源集合和第三时频资源集合的示意图;
图7示出了根据本申请的一个实施例的第一类RE集合和第二类RE集合的示意图;
图8示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图9示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个第一信息的流程图,如附图1所示。本申请中的所述用户设备首先在第一时频资源集合中监测第一信令集合;其次发送第一无线信号;随后在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合。所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的监测;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
作为一个子实施例,所述第一无线信号被用于触发针对所述第二信令集合的监测是指:所述用户设备在发送所述第一无线信号之后的给定时间窗内执行针对所述第二信令集合的盲检测。
作为一个子实施例,所述第一无线信号被用于触发针对所述第二信令集合的监测是指:所述用户设备在给定时间窗内执行针对所述第二信令集合的盲检测,所述给定时间窗的位置和所述第一无线信号所占用的时域资源有关。
作为该子实施例的一个附属实施例,所述给定时间窗在时域位于所述第一无线信号之后。
作为该子实施例的一个附属实施例,所述给定时间窗占用正整数个连续的子帧(Subframe)。
作为该子实施例的一个附属实施例,所述给定时间窗占用正整数个连续的时隙(Slot)。
作为该子实施例的一个附属实施例,所述给定时间窗占用正整数个连续的微时隙(Mini-Slot)。
作为一个子实施例,所述所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3是指:如果所述用户设备未发送所述第一无线信号,在所述第三时频资源集合中针对所述第三信令集合的最大盲检测次数是所述X1。
作为一个子实施例,所述所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为 X3是指:如果所述用户设备的服务小区正确接收所述第一无线信号,所述用户设备的服务小区假定所述用户设备在所述第三时频资源集合中针对所述第三信令集合的最大盲检测次数是所述X3;否则所述用户设备的服务小区假定所述用户设备在所述第三时频资源集合中针对所述第三信令集合的最大盲检测次数是所述X1。
作为一个子实施例,所述监测是指:所述用户设备按照给定格式执行针对给定信令集合的盲检测,所述给定格式属于所述M1个格式且所述给定信令集合是所述第一信令集合,或者所述给定格式属于所述M2个格式且所述给定信令集合是所述第二信令集合,或者所述给定格式属于所述M3个格式且所述给定信令集合是所述第三信令集合。
作为一个子实施例,所述盲检测是针对DCI的解调译码。
作为一个子实施例,所述盲检测包括针对CRC(Cyclic Redundancy Check,循环冗余校验)的校验。
作为一个子实施例,所述监测是指:所述用户设备根据CRC校验确定目标信令集合是否被发送,所述目标信令集合是{所述第一信令集合,所述第二信令集合,所述第三信令集合}中的之一。
作为一个子实施例,所述盲检测包括:针对在目标RE集合中的接收信号执行信道译码,针对译码后的比特进行CRC校验以确定所述接收信号中是否包括目标物理层信令。
作为该子实施例的一个附属实施例,所述信道译码是基于极化码。
作为该子实施例的一个附属实施例,所述目标物理层信令属于{所述第一信令集合,所述第二信令集合,所述第三信令集合}中的之一。
作为一个子实施例,所述盲检测是盲译码(Blind Decoding)。
作为一个子实施例,所述物理层信令的格式对应DCI格式。
作为一个子实施例,所述第一信令集合包括正整数个第一信令,所述第一信令对应的物理层信道是{PDCCH(Physical Downlink Control Channel,物理下行控制信道),NR-PDCCH(New RAT PDCCH,新无线接入物理下行控制信道),SPDCCH(Short Latency PDCCH,短延迟物理下行控制信道)}中的之一。
作为一个子实施例,所述第二信令集合包括正整数个第二信令,所述第二信令对应的物理层信道是{PDCCH,NR-PDCCH,SPDCCH}中的之一。
作为一个子实施例,所述第三信令集合包括正整数个第三信令,所述第三信令对应的物理层信道是{PDCCH,NR-PDCCH,SPDCCH}中的之一。
作为一个子实施例,所述第一无线信号被用于传输波束恢复请求(Beam Recovery Request)。
作为一个子实施例,所述第一无线信号在RACH(Random Access Channel,随机接入信道)中传输。
作为一个子实施例,所述第一无线信号在UL-SCH中传输。
作为一个子实施例,所述第一无线信号在UCI(Uplink Control Information,上行控制信息)中传输。
作为一个子实施例,所述第一无线信号被用于触发在第一时间窗中监测所述第二信令集合。
作为该子实施例的一个附属实施例,所述第一时间窗在时域包括T个时间子窗,所述T是正整数。
作为该附属实施例的一个范例,所述T等于1。
作为该附属实施例的一个范例,所述T个时间子窗在时域是连续的。
作为该附属实施例的一个范例,所述时间子窗是{子帧、时隙、微时隙}中的之一。
作为一个子实施例,目标时频资源集合由正整数个RE(Resource Element,资源单元)组成,所述目标时频资源集合中至少包括两个对应不同子载波间隔的RE,所述目标时频资源集合是{所述第一时频资源集合、所述第二时频资源集合、所述第三时频资源集合}中的一个。
作为一个子实施例,所述第一时频资源集合、所述第二时频资源集合和所述第三时频资源集合分别由多个RE组成。
作为一个子实施例,所述M1大于1。
作为一个子实施例,所述M2等于1。
作为一个子实施例,所述M3大于1。
作为一个子实施例,所述M1等于所述M3,所述M1个格式和所述M3个格式相同。
作为一个子实施例,所述M2个格式中的任意格式不属于所述M1个格式。
作为一个子实施例,所述M2个格式中至少存在一个格式不属于所 述M1个格式。
作为一个子实施例,所述M2个格式中的任意格式不属于所述M3个格式。
作为一个子实施例,所述M2个格式中至少存在一个格式不属于所述M3个格式。
作为一个子实施例,所述第二信令集合只包括目标信令。
作为该子实施例的一个附属实施例,所述目标信令包括给定CRC,所述给定CRC通过UE专属的RNTI(Radio Network Temporary Identity,无线网络临时标识)之外的RNTI加扰。
作为该子实施例的一个附属实施例,所述目标信令被用于调度波束恢复请求反馈(Beam Recovery Request Response)。
作为该子实施例的一个附属实施例,所述目标信令包括调度波束恢复请求反馈。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G***网络架构200的图。LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN(演进UMTS陆地无线电接入网络)202,EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN包括演进节点B(eNB)203和其它eNB204。eNB203提供朝向UE201的用户和控制平面协议终止。eNB203可经由X2接口(例如,回程)连接到其它eNB204。eNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。eNB203为UE201提供对EPC210的接入点。 UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。eNB203通过S1接口连接到EPC210。EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和PS串流服务(PSS)。
作为一个子实施例,所述UE201对应本申请中的用户设备。
作为一个子实施例,所述eNB203对应本申请中的基站。
作为一个子实施例,所述UE201支持多天线通信。
作为一个子实施例,所述UE201支持基于波束赋形的通信。
作为一个子实施例,所述eNB203支持基于波束赋形的通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于UE和eNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与eNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体 接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的eNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供eNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和eNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用eNB与UE之间的RRC信令来配置下部层。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个子实施例,本申请中的所述第一信令集合生成于所述PHY301。
作为一个子实施例,本申请中的所述第二信令集合生成于所述PHY301。
作为一个子实施例,本申请中的所述第三信令集合生成于所述PHY301。
作为一个子实施例,本申请中的所述第一无线信号生成于所述MAC子层302。
作为一个子实施例,本申请中的所述第一无线信号终止于所述MAC子层302。
作为一个子实施例,本申请中的所述第二无线信号生成于所述RRC 子层306。
实施例4
实施例4示出了根据本申请的一个演进节点和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的eNB410的框图。在DL(Downlink,下行)中,来自核心网络的上部层包提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416实施用于L1层(即,物理层)的各种信号处理功能。信号处理功能包括译码和交错以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))向信号群集的映射。随后将经译码和经调制符号***为并行流。随后将每一流映射到多载波副载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)组合在一起以产生载运时域多载波符号流的物理信道。多载波流经空间预译码以产生多个空间流。每一空间流随后经由发射器418提供到不同天线420。每一发射器418以用于发射的相应空间流调制RF载波。在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到RF载波上的信息,且将信息提供到接收处理器456。接收处理器456实施L1层的各种信号处理功能。接收处理器456对信息执行空间处理以恢复以UE450为目的地的任何空间流。如果多个空间流以UE450为目的地,那么其可由接收处理器456组合到单一多载波符号流中。接收处理器456随后使用快速傅立叶变换(FFT)将多载波符号流从时域转换到频域。频域信号包括用于多载波信号的每一副载波的单独多载波符号流。每一副载波上的符号以及参考信号是通过确定由eNB410发射的最可能信号群集点来恢复和解调。随后解码和解交错所述软决策以恢复在物理信道上由eNB410原始发射的数据和控制信号。随后将数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层。控制器/处理器可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在UL中,控制器/处理器459提供输送与逻辑信道之间的 多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上部层包。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。在UL(Uplink,上行)中,使用数据源467来将上部层包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于结合eNB410的DL发射所描述的功能性,控制器/处理器459通过基于eNB410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,来实施用于用户平面和控制平面的L2层。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到eNB410的信令。由信道估计器458从参考信号导出的信道估计或由eNB410发射的反馈可由发射处理器468使用以选择适当的译码和调制方案,且促进空间处理。由发射处理器468产生的空间流经由单独发射器454提供到不同天线452。每一发射器454以用于发射的相应空间流调制RF载波。以类似于结合UE450处的接收器功能描述的方式类似的方式在eNB410处处理UL发射。每一接收器418通过其相应天线420接收信号。每一接收器418恢复调制到RF载波上的信息,且将信息提供到接收处理器470。接收处理器470可实施L1层。控制器/处理器475实施L2层。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上部层包。来自控制器/处理器475的上部层包可提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个子实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源集合中监测第一信令集合;发送第一无线信号;在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合。
作为一个子实施例,所述eNB410包括:至少一个处理器以及至少 一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个子实施例,所述eNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源集合中发送第一信令集合;接收第一无线信号;在第二时频资源集合和第三时频资源集合中分别发送第二信令集合和第三信令集合。
作为一个子实施例,所述UE450对应本申请中的所述用户设备。
作为一个子实施例,所述eNB410对应本申请中的所述基站。
作为一个子实施例,所述接收处理器456和所述控制器/处理器459中的至少之一在第一时频资源集合中监测第一信令集合。
作为一个子实施例,所述接收处理器456和所述控制器/处理器459中的至少之一在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合。
作为一个子实施例,所述接收处理器456和所述控制器/处理器459中的至少之一分别监测K个目标天线端口组上的K个信道质量。
作为一个子实施例,所述接收处理器456和所述控制器/处理器459中的至少之一接收第二无线信号。
作为一个子实施例,所述发射处理器468和所述控制器/处理器459中的至少之一发送第一无线信号。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一在第一时频资源集合中发送第一信令集合。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一在第二时频资源集合和第三时频资源集合中分别发送第二信令集合和第三信令集合。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一在K个目标天线端口组中的至少之一发送所述第一信令集合。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一发送第二无线信号。
作为一个子实施例,所述接收处理器470和所述控制器/处理器475 中的至少之一接收第一无线信号。
实施例5
实施例5示例了根据本申请的一个第一信令集合传输的流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区的维持基站,方框F0中标识的步骤是可选的。
对于基站N1,在步骤S10中发送第二无线信号,在步骤S11中在K个目标天线端口组上分别发送K个目标无线信号,在步骤S12中在第一时频资源集合中发送第一信令集合,在步骤S13中接收第一无线信号,在步骤S14中在第二时频资源集合和第三时频资源集合中分别发送第二信令集合和第三信令集合。
对于UE U2,在步骤S20中接收第二无线信号,在步骤S21中在K个目标天线端口组上分别监测K个目标无线信号,在步骤S22中在第一时频资源集合中接收第一信令集合,在步骤S23中发送第一无线信号,在步骤S24中在第二时频资源集合和第三时频资源集合中分别接收第二信令集合和第三信令集合。
实施例5中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的监测;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3;在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数;所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度 相同;所述X1次盲检测分别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集合由正整数个RE组成;所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量;所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述UE U2假定所述第二信令集合被所述第一天线端口组发送;所述K个目标无线信号被用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数;所述第二无线信号被用于确定{第四时频资源集合,第五时频资源集合},所述第二时频资源集合属于所述第四时频资源集合,所述第一时频资源集合和所述第三时频资源集合都属于所述第五时频资源集合。
作为一个子实施例,本申请中的所述RE在时域占用一个OFDM符号,在频域占用一个子载波(Subcarrier)。
作为该子实施例的一个附属实施例,所述子载波对应的子载波间隔(Subcarrier Spacing)是{15kHz(千赫兹),30kHz,60kHz,120kHz,240kHz}中的之一。
作为一个子实施例,所述X1小于或者等于X,所述X2与所述X3的和小于或者等于所述X,所述X是正整数。
作为该子实施例的一个附属实施例,所述X大于43。
作为该子实施例的一个附属实施例,所述X是所述UE U2在给定载波上支持的最大盲检测次数,{所述第一信令集合、所述第二信令集合、所述第三信令集合}中的至少之一在所述给定载波上传输。
作为该子实施例的一个附属实施例,所述X是固定的常数。
作为该子实施例的一个附属实施例,所述X是所述UE U2支持的最大盲检测次数,所述X和所述UE U2当前配置的载波的数量有关。
作为一个子实施例,所述X1等于所述X2与所述X3的和。
作为一个子实施例,所述所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同是指:所述第一信令集合包括N1个第一信令,所述第三信令集合包括N3个第三信令,所述N1个第一信令占用的RE的数量等于所述N3个第三信令占用的RE的数量,所述N1和所述N3分别是正整数。
作为一个子实施例,所述第二时频资源块通过所述第一时频资源块在时域上滑动正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号之后得到。
作为一个子实施例,所述第一时频资源块在频域所占用的子载波集合和所述第二时频资源块在频域所占用的子载波集合是相同的。
作为一个子实施例,所述第一时频资源块在时域占用第一OFDM符号集合,所述第二时频资源块在时域占用第二OFDM符号集合,所述第一OFDM符号集合所占用的OFDM符号数和所述第二OFDM符号集合所占用的OFDM符号数是相同的。
作为该子实施例的一个附属实施例,所述第一OFDM符号集合所占用的OFDM符号是连续的。
作为该子实施例的一个附属实施例,所述第二OFDM符号集合所占用的OFDM符号是连续的。
作为该子实施例的一个附属实施例,所述第一OFDM符号集合在时域所占用的第一个OFDM符号与所述第二OFDM符号集合在时域所占用的第一个OFDM符号相差正整数个OFDM符号。
作为一个子实施例,所述第一类RE集合是针对所述第一信令集合的候选(Candidate)。
作为一个子实施例,所述第一类RE集合是针对所述M1个格式的物理层信令的候选。
作为一个子实施例,所述第二类RE集合是针对所述第三信令集合的候选。
作为一个子实施例,所述第二类RE集合是针对所述M3个格式的物理层信令的候选。
作为一个子实施例,所述图样是指:给定RE集合在给定时频资源块中所占据的RE的时域位置和频域位置;所述给定RE集合是所述第一类RE 集合,且所述给定时频资源块是所述第一时频资源块;或者所述给定RE集合是所述第二类RE集合,且所述给定时频资源块是所述第二时频资源块。
作为一个子实施例,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合所对应的AL(Aggregation Level,聚合等级)小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合所对应的AL。
作为一个子实施例,所述第一天线端口组中包括正整数个天线端口(Antenna Port)。
作为该子实施例的一个附属实施例,所述天线端口由多根物理天线通过天线虚拟化(Virtualization)叠加而成。所述天线端口到所述多根物理天线的映射系数组成波束赋型向量用于所述天线虚拟化,形成波束。
作为一个子实施例,所述第一天线端口组对应P个发送波束。
作为该子实施例的一个附属实施例,所述P等于1。
作为该子实施例的一个附属实施例,第一天线端口组对应所述UE U2向所述基站N1推荐的候选发送波束。
作为一个子实施例,所述第一天线端口组对应第一接收天线端口组,所述UE U2在发送所述第一无线信号前在所述第一接收天线端口组之外的接收天线端口组上检测UE专属的(Specific)的物理层控制信令。
作为一个子实施例,所述UE U2在所述K个候选天线端口组对应的接收天线端口组上监测物理层控制信令。
作为该子实施例的一个附属实施例,所述物理层控制信令是{PDCCH,NR-PDCCH,SPDCCH}中的至少之一。
作为一个子实施例,给定目标无线信号包括{目标控制信道,目标数据信道,目标参考信号}中的至少之一,所述UE U2根据{所述目标控制信道,所述目标数据信道,所述目标参考信号}中的至少之一确定给定信道质量;所述给定目标无线信号是所述K个目标无线信号中的任意一个,所述给定信道质量是根据所述给定目标无线信号确定的所述信道质量。
作为该子实施例的一个附属实施例,所述目标控制信道是物理层控制信道。
作为该子实施例的一个附属实施例,所述目标数据信道是物理层数据信道。
作为该子实施例的一个附属实施例,所述目标参考信号是{SS(Synchronization Sequence,同步序列),DMRS(Demodulation Reference Signal,解调参考信号),CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)}中的至少之一。
作为一个子实施例,所述信道质量是{RSRP(Reference Signal Received Power,参考信号接收质量),RSRQ(Reference Signal Received Quality,参考信号接收质量),RSSI(Received Signal Strength Indicator,接收信号强度指示),SNR(Signal to Noise Rate,信噪比)}中的至少之一。
作为一个子实施例,所述信道质量是与所述信道质量对应的所述候选天线端口组上物理层控制信令的BLER(Block Error Rate,块误码率)。
作为一个子实施例,所述信道质量是一个固定时间窗中监测的平均结果。
作为一个子实施例,在固定长度的时间窗中,所述K个信道质量均小于给定阈值,所述UE U2发送所述第一无线信号。
作为该子实施例的一个附属实施例,所述给定阈值是一个BLER。
作为该子实施例的一个附属实施例,所述给定阈值的单位是dB(分贝)。
作为该子实施例的一个附属实施例,所述给定阈值的单位是dBm(毫分贝)。
作为一个子实施例,所述第四时频资源集合对应一个或者多个CORESET(Control Resource Set,控制资源组)所占用的时频资源。
作为一个子实施例,所述第二时频资源集合是所述第四时频资源集合在一个时隙中的部分,所述一个时隙包括正整数个OFDM符号。
作为一个子实施例,所述第五时频资源集合对应一个或者多个CORESET所占用的时频资源。
作为一个子实施例,所述第一时频资源集合和所述第三时频资源集合分别是所述第五时频资源集合在一个时隙中的部分,所述一个时隙包括正整数个OFDM符号。
作为一个子实施例,所述所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3是指:所述UE U2在给定时间窗中执行针对所述第二信令集合的盲检测,所 述第三时频资源集合是所述第五时频资源集合在任一属于所述给定时间窗的时隙中的部分,所述给定时间窗的位置和所述第一无线信号所占用的时域资源有关。
作为一个子实施例,所述第二无线信号是一个RRC信令。
作为该子实施例的一个附属实施例,所述第二无线信号是UE专属的。
实施例6
实施例6示例了根据本申请的一个第一时频资源集合、第二时频资源集合和第三时频资源集合的示意图,如附图6所示。附图6中,所述第一时频资源集合属于第一时频资源块,所述第二时频资源集合和所述第三时频资源集合属于第二时频资源块。
作为一个子实施例,给定时频资源集合在频域占用正整数个PRB(Physical Resource Block,物理资源块)对应的频域资源,在时域占用正整数个OFDM符号;所述给定时频资源集合是{所述第一时频资源集合、所述第二时频资源集合、所述第三时频资源集合}中的之一。
作为一个子实施例,给定时频资源集合对应一个搜索空间(Search Space),所述给定时频资源集合是{所述第一时频资源集合、所述第二时频资源集合、所述第三时频资源集合}中的之一。
作为一个子实施例,给定时频资源块对应一个CORSET,所述给定时频资源块是{所述第一时频资源块,所述第二时频资源块}中的之一。
作为一个子实施例,所述第一时频资源块和所述第二时频资源块分别属于不同的子帧。
作为一个子实施例,所述第一时频资源块和所述第二时频资源块分别属于不同的时隙。
实施例7
实施例7示出了根据本申请的一个第一类RE集合和第二类RE集合的示意图,如附图7所示。附图7中,填充斜线的小矩形格对应X1个所述第一类RE集合在第一时频资源块中的图样,填充斜方格的小矩形格对应X3个所述第二类RE集合在第二时频资源块中的图样;所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同。
作为一个子实施例,所述第一类RE集合对应一个候选。
作为一个子实施例,所述第二类RE集合对应一个候选。
作为一个子实施例,所述X3个第二类RE集合所占用的RE数均大于第一阈值;所述X1个第一类RE集合中存在X4个所述第一类RE集合,所述X4个所述第一类RE集合所占用的RE数均不大于第一阈值;所述第一阈值是正整数。
作为该子实施例的一个附属实施例,所述第一阈值是{144,288,576}中的之一。
实施例8
实施例8示例了一个UE中的处理装置的结构框图,如附图8所示。附图8中,UE处理装置800主要由第一接收模块801,第一发送模块802和第二接收模块803组成。
-第一接收模块801,在第一时频资源集合中监测第一信令集合;
-第一发送模块802,发送第一无线信号;
-第二接收模块803,在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合;
实施例8中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的监测;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
作为一个子实施例,在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数。
作为一个子实施例,所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第 二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度相同。
作为一个子实施例,所述X1次盲检测分别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集合由正整数个RE组成。
作为一个子实施例,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量。
作为一个子实施例,所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述UE U2假定所述第二信令集合被所述第一天线端口组发送。
作为一个子实施例,所述第一接收模块801还在K个目标天线端口组上分别监测K个目标无线信号;所述K个目标无线信号被用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数。
作为一个子实施例,所述第一接收模块801还接收第二无线信号;所述第二无线信号被用于确定{第四时频资源集合,第五时频资源集合},所述第二时频资源集合属于所述第四时频资源集合,所述第一时频资源集合和所述第三时频资源集合都属于所述第五时频资源集合。
作为一个子实施例,所述第一接收模块801包括实施例4中的接收处理器456和控制器/处理器459中的至少之一。
作为一个子实施例,所述第一发送模块802包括实施例4中的发射处理器468和控制器/处理器459中的至少之一。
作为一个子实施例,所述第二接收模块803包括实施例4中的接收处理器456和控制器/处理器459中的至少之一。
实施例9
实施例9示例了一个基站设备中的处理装置的结构框图,如附图9所 示。附图9中,基站设备处理装置900主要由第二发送模块901,第三接收模块902和第三发送模块903组成。
-第二发送模块901,在第一时频资源集合中发送第一信令集合;
-第三接收模块902,接收第一无线信号;
-第三发送模块903,在第二时频资源集合和第三时频资源集合中分别发送第二信令集合和第三信令集合;
实施例9中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的发送;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
作为一个子实施例,在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数。
作为一个子实施例,所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度相同。
作为一个子实施例,所述X1次盲检测分别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集合由正整数个RE组成。
作为一个子实施例,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量。
作为一个子实施例,所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述第二信令集合被所述第一天线端口组发送。
作为一个子实施例,所述第二发送模块901还在K个目标天线端口组上分别发送K个目标无线信号;所述K个目标无线信号被所述第一无线信号的发送者分别用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数。
作为一个子实施例,所述第二发送模块901还发送第二无线信号;所述第二无线信号被用于确定{第四时频资源集合,第五时频资源集合},所述第二时频资源集合属于所述第四时频资源集合,所述第一时频资源集合和所述第三时频资源集合都属于所述第五时频资源集合。
作为一个子实施例,所述第二发送模块901包括实施例4中的发射处理器416和控制器/处理器475中的至少之一。
作为一个子实施例,所述第三接收模块902包括实施例4中的接收处理器470和控制器/处理器475中的至少之一。
作为一个子实施例,所述第三发送模块903包括实施例4中的发射处理器416和控制器/处理器475中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE和终端包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传 感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种被用于多天线通信的用户设备中的方法,其特征在于包括:
    -在第一时频资源集合中监测第一信令集合;
    -发送第一无线信号;
    -在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合;
    其中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的监测;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度相同。
  4. 根据权利要求2或3中任一权利要求所述的方法,其特征在于,所述X1次盲检测分别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集 合由正整数个RE组成。
  5. 根据权利要求4所述的方法,其特征在于,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述用户设备假定所述第二信令集合被所述第一天线端口组发送。
  7. 根据权利要求6所述的方法,其特征在于包括:
    -在K个目标天线端口组上分别监测K个目标无线信号;
    其中,所述K个目标无线信号被用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数。
  8. 根据权利要求1至7中任一权利要求所述的方法,其特征在于包括:
    -接收第二无线信号;
    其中,所述第二无线信号被用于确定{第四时频资源集合,第五时频资源集合},所述第二时频资源集合属于所述第四时频资源集合,所述第一时频资源集合和所述第三时频资源集合都属于所述第五时频资源集合。
  9. 一种被用于多天线通信的基站中的方法,其特征在于包括:
    -在第一时频资源集合中发送第一信令集合;
    -接收第一无线信号;
    -在第二时频资源集合和第三时频资源集合中分别发送第二信令集合和第三信令集合;
    其中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的发送;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
  10. 根据权利要求9所述的方法,其特征在于,在所述第一时频资源集合中针对所述第一信令集合最多X1次盲检测被执行,在所述第二时频资源集合中针对所述第二信令集合最多X2次盲检测被执行,在所述第三时频资源集合中针对所述第三信令集合最多X3次盲检测被执行;所述第一信令集合所包括的RE的数量和所述第三信令集合所包括的RE的数量相同;所述X2是小于所述X1的正整数。
  11. 根据权利要求9或10中任一权利要求所述的方法,其特征在于,所述第一时频资源集合所包括的RE在第一时频资源块中的图案和所述第三时频资源集合所包括的RE在第二时频资源块中的图案相同,所述第一时频资源集合和所述第三时频资源集合分别属于所述第一时频资源块和所述第二时频资源块,所述第一时频资源块和所述第二时频资源块占用相同的频域资源,所述第一时频资源块和所述第二时频资源块在时域上占用的时间长度相同。
  12. 根据权利要求10或11中任一权利要求所述的方法,其特征在于,所述X1次盲检测分别针对X1个第一类RE集合,所述X3次盲检测分别针对X3个第二类RE集合,所述X3个第二类RE集合在第二时频资源块中的图案分别和X1个第一类RE集合中的X3个第一类RE集合在第一时频资源块中的图案相同,所述X1个第一类RE集合中的每一个所述第一类RE集合由正整数个RE组成,所述X3个第二类RE集合中的每一个所述第二类RE集合由正整数个RE组成。
  13. 根据权利要求12所述的方法,其特征在于,所述X1个第一类RE集合中且所述X3个第一类RE集合之外的任意一个第一类RE集合中所包括的RE的数量小于或者等于所述X3个第二类RE集合中任一所述第二类RE集合中所包括的RE的数量。
  14. 根据权利要求9至13中任一权利要求所述的方法,其特征在于,所述第一无线信号被用于确定第一天线端口组,所述第一天线端口组中包括正整数个天线端口,所述第二信令集合被所述第一天线端口组发送。
  15. 根据权利要求14所述的方法,其特征在于包括:
    -在K个目标天线端口组上分别发送K个目标无线信号;
    其中,所述K个目标无线信号被所述第一无线信号的发送者分别用于确定K个信道质量,所述K个目标天线端口组中的至少之一被用于发送所 述第一信令集合,所述第一天线端口组是所述K个目标天线端口组之外的天线端口组,所述K是正整数。
  16. 根据权利要求9至15中任一权利要求所述的方法,其特征在于包括:
    -发送第二无线信号;
    其中,所述第二无线信号被用于确定{第四时频资源集合,第五时频资源集合},所述第二时频资源集合属于所述第四时频资源集合,所述第一时频资源集合和所述第三时频资源集合都属于所述第五时频资源集合。
  17. 一种被用于多天线通信的用户设备,其特征在于包括:
    -第一接收模块,在第一时频资源集合中监测第一信令集合;
    -第一发送模块,发送第一无线信号;
    -第二接收模块,在第二时频资源集合和第三时频资源集合中分别监测第二信令集合和第三信令集合;
    其中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的监测;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述X3。
  18. 一种被用于多天线通信的基站设备,其特征在于包括:
    -第二发送模块,在第一时频资源集合中发送第一信令集合;
    -第三接收模块,接收第一无线信号;
    -第三发送模块,在第二时频资源集合和第三时频资源集合中分别发送第二信令集合和第三信令集合;
    其中,所述第一信令集合、所述第二信令集合和所述第三信令集合分别包括M1个格式的物理层信令、M2个格式的物理层信令和M3个格式的物理层信令,所述M1、所述M2和所述M3分别是正整数;所述第一无线信号被用于触发针对所述第二信令集合的发送;所述第一无线信号被用于确定在所述第三时频资源集合中针对所述第三信令集合的最大盲检测的数量从X1变为X3,所述X1和所述X3分别为正整数,所述X1大于所述 X3。
PCT/CN2017/091408 2017-07-03 2017-07-03 一种被用于多天线通信的用户设备、基站中的方法和装置 WO2019006578A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202211471251.9A CN115842613A (zh) 2017-07-03 2017-07-03 一种被用于多天线通信的用户设备、基站中的方法和装置
PCT/CN2017/091408 WO2019006578A1 (zh) 2017-07-03 2017-07-03 一种被用于多天线通信的用户设备、基站中的方法和装置
CN201780092209.7A CN110892766B (zh) 2017-07-03 2017-07-03 一种被用于多天线通信的用户设备、基站中的方法和装置
US16/733,218 US11349597B2 (en) 2017-07-03 2020-01-02 Method and device in UE and base station for multi-antenna communication
US17/728,930 US11757566B2 (en) 2017-07-03 2022-04-25 Method and device in UE and base station for multi-antenna communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091408 WO2019006578A1 (zh) 2017-07-03 2017-07-03 一种被用于多天线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/733,218 Continuation US11349597B2 (en) 2017-07-03 2020-01-02 Method and device in UE and base station for multi-antenna communication

Publications (1)

Publication Number Publication Date
WO2019006578A1 true WO2019006578A1 (zh) 2019-01-10

Family

ID=64950525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091408 WO2019006578A1 (zh) 2017-07-03 2017-07-03 一种被用于多天线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (2) US11349597B2 (zh)
CN (2) CN110892766B (zh)
WO (1) WO2019006578A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11564277B2 (en) * 2018-08-16 2023-01-24 Lg Electronics Inc. Method and apparatus for supporting early data transmission in inactive state in wireless communication system
CN110972324B (zh) * 2018-09-28 2021-09-24 上海朗帛通信技术有限公司 一种被用于无线通信的基站中的方法和装置
CN115835398A (zh) * 2019-04-11 2023-03-21 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114374488A (zh) * 2020-10-15 2022-04-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188029A (zh) * 2011-12-27 2013-07-03 夏普株式会社 一种对控制信道的控制指示符进行译码的方法和用户设备
US20150296542A1 (en) * 2011-08-11 2015-10-15 Blackberry Limited Performing random access in carrier aggregation
CN106612165A (zh) * 2015-10-23 2017-05-03 上海朗帛通信技术有限公司 一种窄带通信中的调度方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101189816A (zh) * 2005-03-30 2008-05-28 摩托罗拉公司 用于减少通信***中的往返延时和开销的方法和装置
ES2666205T3 (es) * 2008-07-22 2018-05-03 Lg Electronics Inc. Método para asignar un PHICH en un sistema que usa SU-MIMO con múltiples palabras de código en enlace ascendente
KR101670536B1 (ko) * 2009-07-07 2016-10-28 엘지전자 주식회사 다중 반송파 시스템에서 반송파 스케줄링 방법 및 장치
CN104205685B (zh) * 2012-03-22 2017-08-08 Lg 电子株式会社 在无线通信***中接收控制信息的方法和设备
CN103580797B (zh) * 2012-08-03 2017-05-03 电信科学技术研究院 上行控制信息uci的传输方法和设备
WO2014027810A1 (ko) * 2012-08-11 2014-02-20 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2014042456A1 (ko) * 2012-09-17 2014-03-20 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
WO2014048472A1 (en) * 2012-09-27 2014-04-03 Huawei Technologies Co., Ltd. Methods and nodes in a wireless communication system
CN104685948A (zh) * 2012-09-27 2015-06-03 夏普株式会社 终端、通信方法以及集成电路
US10193656B2 (en) * 2015-10-30 2019-01-29 Huawei Technologies Co., Ltd. Systems and methods for adaptive downlink control information set for wireless transmissions
BR112018015859A2 (zh) * 2016-02-05 2018-12-26 Huawei Technologies Co., Ltd. Feedback information transmitting method and apparatus
EP4135236B1 (en) * 2017-03-08 2023-10-18 LG Electronics, Inc. Method and apparatus for transmitting and receiving radio signals in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150296542A1 (en) * 2011-08-11 2015-10-15 Blackberry Limited Performing random access in carrier aggregation
CN103188029A (zh) * 2011-12-27 2013-07-03 夏普株式会社 一种对控制信道的控制指示符进行译码的方法和用户设备
CN106612165A (zh) * 2015-10-23 2017-05-03 上海朗帛通信技术有限公司 一种窄带通信中的调度方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "DCI monitoring occasions and blind detections", 3GPP TSG - RAN WG 1 MEETING #88 R1-1701643, vol. RAN WG1, 12 February 2017 (2017-02-12), XP051208810 *
NTT DOCOMO, INC.: "Views on search space design for NR - PDCCH", 3GPP TSG RAN WG 1 NR AD-HOCTT2 R1-1711091, vol. RAN WG1, 27 June 2017 (2017-06-27) - 30 June 2017 (2017-06-30), XP051300291 *

Also Published As

Publication number Publication date
US11349597B2 (en) 2022-05-31
US11757566B2 (en) 2023-09-12
US20220255658A1 (en) 2022-08-11
CN115842613A (zh) 2023-03-24
CN110892766A (zh) 2020-03-17
CN110892766B (zh) 2022-12-27
US20200145132A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
US11757566B2 (en) Method and device in UE and base station for multi-antenna communication
CN110870262B (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2020078272A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018024158A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
US11800509B2 (en) Method and device in first node for wireless communication
US11616675B2 (en) Method and device in wireless communication system that supports broadcast signals
WO2019047090A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020020004A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
CN113225808A (zh) 一种被用于无线通信的节点中的方法和装置
WO2018095201A1 (zh) 一种用于多天线***的用户设备、基站中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11064481B2 (en) Method and device in UE and base station for wireless communication
CN109039557B (zh) 一种被用于多天线的用户设备、基站中的方法和装置
CN109152011B (zh) 一种用于无线通信的用户设备、基站中的方法和装置
CN113542174B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115395992B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024001935A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093877A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 28/04/2020 )

122 Ep: pct application non-entry in european phase

Ref document number: 17916956

Country of ref document: EP

Kind code of ref document: A1