WO2020192350A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2020192350A1
WO2020192350A1 PCT/CN2020/076989 CN2020076989W WO2020192350A1 WO 2020192350 A1 WO2020192350 A1 WO 2020192350A1 CN 2020076989 W CN2020076989 W CN 2020076989W WO 2020192350 A1 WO2020192350 A1 WO 2020192350A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
pieces
time
frequency resource
signaling
Prior art date
Application number
PCT/CN2020/076989
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020192350A1 publication Critical patent/WO2020192350A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • This application relates to a transmission method and device in a wireless communication system, in particular to a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • the 5G system supports more diverse application scenarios, such as eMBB (enhanced Mobile BroadBand) to enhance mobile broadband ), URLLC (Ultra-Reliable and Low Latency Communications, ultra-high reliability and low latency communications) and mMTC (massive Machine-Type Communications, large-scale machine-type communications).
  • URLLC has higher requirements for transmission reliability and delay.
  • 3GPP R (Release, version) 15 supports uplink transmission based on configured grant.
  • UE User Equipment, user equipment
  • UE User Equipment, user equipment
  • R15 defines two types of uplink transmission based on configuration grants, Type 1 and Type 2.
  • Type 1 is activated after higher-layer signaling is configured, and its configuration parameters are all higher-layer parameters.
  • Type 2 requires dynamic signaling activation after higher-layer signaling is configured. Part of its configuration parameters are higher-layer parameters, and the other part is configured by activated dynamic signaling.
  • R15 supports only one configuration based on configuration grant on each BWP (Bandwidth Part).
  • the 3GPP discussion proposed the configuration of multiple configuration grants for a UE at the same time.
  • the inventor found through research that when a UE is configured with multiple Type 2 configuration grant configurations, the signaling overhead required to activate/release these configurations will increase exponentially.
  • this application discloses a solution. It should be noted that, in the case of no conflict, the embodiments in the first node of the present application and the features in the embodiments can be applied to the second node, and vice versa. In the case of no conflict, the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information;
  • the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active;
  • K is greater than 1.
  • a positive integer, K1 is a positive integer greater than 1 and less than the K, and K2 is a positive integer less than the K1.
  • the problem to be solved in this application is: how to reduce the signaling overhead required for activating/releasing multiple Type 2 configuration grant configurations.
  • the above method solves this problem by grouping multiple configurations and using the same signaling to activate and release multiple configurations in the same group.
  • the characteristic of the above method is that the K pieces of configuration information are K pieces of Type 2 configuration grant configuration information.
  • the K pieces of configuration information are divided into multiple groups, and the first set of configuration information is one of the groups. Multiple configuration information in the same group can be activated and released using the same signaling, and configuration information in different groups requires different signaling for activation and release.
  • the advantage of the above method is that for multiple Type 2 configuration grant configurations that are related to each other, the same signaling is used to activate and release, which reduces signaling overhead; for mutually independent Type 2 configuration grant configurations, use Different signaling is used to activate and release, retaining the freedom of independent activation/release of Type 2 configuration granting configuration.
  • the K configuration information includes K first-type indexes, and the value of the first-type index included in any configuration information in the first configuration information set is equal to the first type index.
  • One index is characterized in that the K configuration information includes K first-type indexes, and the value of the first-type index included in any configuration information in the first configuration information set is equal to the first type index.
  • the first configuration information and the first signaling are used to determine the M time-frequency resource blocks, the first configuration information is one configuration information among the K2 configuration information; M is greater than 1. Positive integer.
  • the K3 pieces of configuration information include all active configuration information in the K pieces of configuration information, and the K3 pieces of configuration information include a piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information.
  • Information; K3 is a positive integer greater than the K2.
  • the K1 configuration information includes K1 second-type indexes
  • the first signaling indicates K2 second-type indexes of the K1 second-type indexes
  • the K2 second-type indexes correspond to the K2 configuration information respectively.
  • the second configuration information is used to determine the second time-frequency resource block, and the second configuration information is one piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information.
  • the second signaling is used to activate the second configuration information.
  • the advantage of the above method is that for mutually independent Type 2 configuration grant configurations, different signaling is used to activate and release, and the freedom of independent activation/release of mutually independent Type 2 configuration grant configurations is retained.
  • the first node is a user equipment.
  • the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information;
  • the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active;
  • K is greater than 1.
  • a positive integer, K1 is a positive integer greater than 1 and less than the K, and K2 is a positive integer less than the K1.
  • the K configuration information includes K first-type indexes, and the value of the first-type index included in any configuration information in the first configuration information set is equal to the first type index.
  • One index is characterized in that the K configuration information includes K first-type indexes, and the value of the first-type index included in any configuration information in the first configuration information set is equal to the first type index.
  • the first time-frequency resource block is one of the M time-frequency resource blocks; the first configuration information and the first signaling are used to determine the M time-frequency resource blocks
  • the first configuration information is one of the K2 configuration information; M is a positive integer greater than 1.
  • any time-frequency resource set in the K3 time-frequency resource sets includes a positive integer number of time-frequency resource blocks, and the M time-frequency resource blocks belong to the first time-frequency resource set in the K3 time-frequency resource sets.
  • Frequency resource set; K3 pieces of configuration information are used to determine the K3 pieces of time-frequency resource sets, the K3 pieces of configuration information include all active configuration information in the K pieces of configuration information, the K3 pieces of configuration information It includes one piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information; K3 is a positive integer greater than the K2.
  • the K1 configuration information includes K1 second-type indexes
  • the first signaling indicates K2 second-type indexes of the K1 second-type indexes
  • the K2 second-type indexes correspond to the K2 configuration information respectively.
  • the second configuration information is used to determine the second time-frequency resource block, and the second configuration information is one piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information.
  • the second signaling is used to activate the second configuration information.
  • the second node is a base station.
  • the second node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first processor receives the first information
  • the first receiver receives the first signaling
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information;
  • the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active;
  • K is greater than 1.
  • a positive integer, K1 is a positive integer greater than 1 and less than the K, and K2 is a positive integer less than the K1.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second processor sends the first information
  • the first transmitter sends the first signaling
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information;
  • the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active;
  • K is greater than 1.
  • a positive integer, K1 is a positive integer greater than 1 and less than the K, and K2 is a positive integer less than the K1.
  • this application has the following advantages:
  • the same signaling is used to activate and release the related configurations in multiple configurations, which reduces signaling overhead; for independent configurations in multiple configurations , Use different signaling to activate and release, retaining the freedom of independent activation/release configuration.
  • Fig. 1 shows a flowchart of first information and first signaling according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of K configuration information and K first-type indexes according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of M time-frequency resource blocks, a first time-frequency resource block and a first wireless signal according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of K3 configuration information and first configuration information according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of K1 configuration information and K1 second-type indexes according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a second time-frequency resource block and a second wireless signal according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of second signaling according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of K3 configuration information and K3 time-frequency resource sets according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 14 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first information and the first signaling according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent the time sequence relationship between the characteristics of each step.
  • the first node in this application receives first information in step 101; and receives first signaling in step 102.
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information;
  • the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active; K is greater than 1.
  • K1 is a positive integer greater than 1 and less than the K
  • K2 is a positive integer less than the K1.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first information is carried by MAC CE (Medium Access Control Layer Control Element, Medium Access Control Layer Control Element) signaling.
  • MAC CE Medium Access Control Layer Control Element, Medium Access Control Layer Control Element
  • the first information is carried by one RRC signaling.
  • the first information is carried by multiple RRC signaling.
  • the first information includes all or part of information in an IE (Information Element).
  • the first information includes all or part of the information in multiple IEs.
  • the first information includes all or part of the information in the ConfiguredGrantConfig IE.
  • the first information includes all or part of information in multiple ConfiguredGrantConfig IEs.
  • the first information includes all or part of information in a higher layer parameter (parameter) Configured GrantConfig.
  • any configuration information in the K pieces of configuration information includes all or part of the information in the ConfiguredGrantConfig IE.
  • any configuration information in the K pieces of configuration information includes all or part of the information in the higher-level parameter ConfiguredGrantConfig.
  • the first information is UE-specific.
  • the first information is configured semi-statically.
  • the first information indicates the K pieces of configuration information.
  • the first information indicates that the first configuration information set includes the K1 configuration information.
  • the display of the first information indicates that the first configuration information set includes the K1 configuration information.
  • the first information implicitly indicates that the first configuration information set includes the K1 configuration information.
  • the first information indicates that the first configuration information set includes only the K1 configuration information among the K configuration information.
  • all configuration information in the first configuration information set is configured by the same IE.
  • any configuration information in the K configuration information that does not belong to the first configuration information set and any configuration information in the first configuration information set are configured by different IEs .
  • the first configuration information set includes only the K1 configuration information among the K configuration information.
  • the first configuration information set is composed of the K1 configuration information.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes Configured UL grant (configured uplink grant) DCI.
  • the first signaling includes Configured UL grant activation (activation) DCI.
  • the first signaling includes Configured UL grant Type 2 (Type 2) to activate DCI.
  • the first signaling is UE-specific.
  • the first signaling includes CRC (Cyclic Redundancy Check) scrambled by CS (Configured Scheduling)-RNTI (Radio Network Temporary Identifier, radio network tentative identifier) (Scrambled) DCI.
  • CRC Cyclic Redundancy Check
  • CS Configured Scheduling
  • RTI Radio Network Temporary Identifier, radio network tentative identifier
  • the first signaling is transmitted on Configured UL grant Type 2 scheduling activation (Configured UL grant Type 2 scheduling activation) PDCCH (Physical Downlink Control Channel).
  • Configured UL grant Type 2 scheduling activation Configured UL grant Type 2 scheduling activation
  • PDCCH Physical Downlink Control Channel
  • the K pieces of configuration information respectively include configuration information transmitted for K pieces of Configured UL grant Type 2.
  • the K configuration information includes configuration information for K PUSCH (Physical Uplink Shared Channel) sets, and any PUSCH set in the K PUSCH sets includes one or more PUSCH sets. PUSCH.
  • K PUSCH Physical Uplink Shared Channel
  • one piece of configuration information in the K pieces of configuration information includes DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information of the PUSCH in the corresponding PUSCH set.
  • DMRS Demodulation Reference Signals, demodulation reference signal
  • MCS Modulation and Coding Scheme
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • one piece of configuration information in the K pieces of configuration information includes the number of repeated transmissions of a TB (Transport Block) transmitted on a PUSCH in a corresponding PUSCH set.
  • TB Transport Block
  • one piece of configuration information in the K pieces of configuration information includes an RV (Redundancy Version) corresponding to a TB that is repeatedly transmitted on a PUSCH in a corresponding PUSCH set.
  • RV Redundancy Version
  • the DMRS configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, RS sequence, mapping mode, DMRS type, cyclic shift amount ( One or more of cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask), spreading sequence in the frequency domain, and spreading sequence in the time domain ⁇ .
  • the first serving cell is a primary serving cell (Primary Cell) of the first node.
  • the first serving cell is a secondary serving cell (Secondary Cell) of the first node.
  • the first serving cell is added by the first node.
  • the first node performs SCell addition (SCell addition) for the first serving cell.
  • SCell addition SCell addition
  • the sCellToAddModList newly received by the first node includes the first serving cell.
  • the sCellToAddModListSCG newly received by the first node includes the first serving cell.
  • the index of the first serving cell is CellIdentity.
  • the index of the first serving cell is PhysCellId.
  • the index of the first serving cell is SCellIndex.
  • the index of the first serving cell is ServCellIndex.
  • the index of the first serving cell is a non-negative integer not greater than 31.
  • the first serving cell is deployed in a licensed spectrum.
  • the first serving cell is deployed in an unlicensed spectrum.
  • that the K pieces of configuration information are all for the first serving cell includes: all the K pieces of configuration information are applied to the first serving cell.
  • the K pieces of configuration information for the first serving cell include: the K pieces of configuration information are respectively applied to K PUSCH sets, and any one of the K PUSCH sets includes 1 One or more PUSCHs; any PUSCH in the K PUSCH sets is the PUSCH in the first serving cell.
  • any PUSCH in the K PUSCH sets is a PUSCH in the same BWP (Bandwidth Part, bandwidth interval) in the first serving cell.
  • BWP Bandwidth Part, bandwidth interval
  • the K pieces of configuration information are all for the same BWP in the first serving cell.
  • the K pieces of configuration information are all applied to the same BWP in the first serving cell.
  • the activation refers to activate.
  • the first signaling used to activate K2 configuration information in the first configuration information set includes: the first signaling is used to activate the first configuration information set Only the K2 configuration information.
  • the first signaling used to activate K2 pieces of configuration information in the first configuration information set includes: the K2 pieces of configuration information respectively include data for K2 Configured UL grant Type 2 transmissions Configuration information, the first signaling is used to activate the K2 Configured UL grant Type 2 transmission.
  • the first configuration information set before the first signaling is received, there is one configuration information in the first configuration information set that does not belong to the K2 configuration information in an active state.
  • whether any configuration information that does not belong to the first configuration information set among the K configuration information is in an active state has nothing to do with the first signaling.
  • the first signaling indicates the K2 configuration information.
  • the first signaling indicates the K2 pieces of configuration information from the first configuration information set.
  • the first signaling indicates that only the K2 configuration information in the first configuration information set.
  • the first signaling indicates that only the K2 pieces of configuration information in the K pieces of configuration information.
  • the first signaling indicates the first configuration information set.
  • the first signaling display indicates the first configuration information set.
  • the first signaling implicitly indicates the first configuration information set.
  • any configuration information in the K2 pieces of configuration information is one piece of configuration information in the K1 pieces of configuration information.
  • the first signaling indicates that none of the other K1-K2 configuration information that does not belong to the K2 configuration information in the first configuration information set is in an active state.
  • the first signaling implicitly indicates that other K1-K2 configuration information that does not belong to the K2 configuration information in the first configuration information set are not in an active state.
  • the first signaling releases other K1-K2 configuration information that does not belong to the K2 configuration information in the first configuration information set.
  • the first signaling implicitly releases other K1-K2 configuration information in the first configuration information set that does not belong to the K2 configuration information.
  • the first signaling releases any configuration information in the first configuration information set that does not belong to the K2 configuration information and was in an active state before the first signaling is received .
  • the first signaling implicitly releases any one of the first configuration information set that does not belong to the K2 configuration information and is in an active state before receiving the first signaling Configuration information.
  • the fact that the given configuration information is in the active state includes: the first node may send a wireless signal generated according to the given configuration information; the given configuration information is any configuration of the K configuration information information.
  • the fact that the given configuration information is in the active state includes: the first node may send a wireless signal on the PUSCH generated according to the given configuration information; the given configuration information is among the K pieces of configuration information Any configuration information.
  • the fact that the given configuration information is in the active state includes: the first node may send a wireless signal in a given timing frequency resource set, and the given configuration information is used to determine the given timing frequency resource set;
  • the given configuration information is any configuration information in the K pieces of configuration information.
  • the fact that the given configuration information is in the active state includes: the first node may send a wireless signal on any PUSCH in the given PUSCH set, and the given configuration information includes the information in the given PUSCH set.
  • Configuration information of any PUSCH; the given configuration information is any configuration information in the K pieces of configuration information.
  • the given configuration information being in the active state includes: the sender of the first signaling performs the monitoring in this application on a set of timing frequency resources to determine whether the first node is in the given A wireless signal is sent on a set of timing frequency resources; the given configuration information is used to determine the set of timing frequency resources; the given configuration information is any configuration information in the K pieces of configuration information.
  • the K2 is equal to 1.
  • the K2 is greater than 1.
  • the K pieces of configuration information there is one piece of configuration information that does not belong to the first configuration information set and the K2 pieces of configuration information are simultaneously in an active state.
  • each configuration information is in an active state; the reference time period is a continuous time period.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) and the future 5G system.
  • the network architecture 200 of LTE, LTE-A and the future 5G system is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5G-CN (5G-Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5G-CN 5G-Core Network, 5G Core Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • HSS Home Subscriber Server, home subscriber
  • UMTS corresponds to the Universal Mobile Telecommunications System (Universal Mobile Telecommunications System).
  • EPS200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS200 provides packet switching services. However, those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services.
  • NG-RAN202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an X2 interface (for example, backhaul).
  • gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5G-CN/EPC210.
  • UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, MP3 players
  • cameras game consoles, drones, aircrafts, narrowband physical
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5G-CN/EPC210 through the S1 interface.
  • 5G-CN/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane) Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Serving Gateway) 212, and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that handles signaling between UE201 and 5G-CN/EPC210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes Internet protocol services corresponding to operators, and specifically may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the second node in this application includes the gNB203.
  • the first node in this application includes the UE201.
  • the user equipment in this application includes the UE201.
  • the base station equipment in this application includes the gNB203.
  • the sender of the first information in this application includes the gNB203.
  • the recipient of the first information in this application includes the UE201.
  • the sender of the first signaling in this application includes the gNB203.
  • the recipient of the first signaling in this application includes the UE201.
  • the sender of the first wireless signal in this application includes the UE201.
  • the receiver of the first wireless signal in this application includes the gNB203.
  • the sender of the second wireless signal in this application includes the UE201.
  • the receiver of the second wireless signal in this application includes the gNB203.
  • the sender of the second signaling in this application includes the gNB203.
  • the recipient of the second signaling in this application includes the UE201.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3.
  • Fig. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane and the control plane.
  • Fig. 3 shows the radio protocol architecture for UE and gNB with three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayers 304, these sublayers terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at the P-GW 213 on the network side and a network layer terminating at the other end of the connection (e.g., Remote UE, server, etc.) at the application layer.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper-layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request).
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • the first signaling in this application is generated in the PHY301.
  • the first wireless signal in this application is generated in the PHY301.
  • the second wireless signal in this application is generated in the PHY301.
  • the second signaling in this application is generated in the PHY301.
  • Embodiment 4 illustrates a schematic diagram of the first communication device and the second communication device according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multiple antenna receiving processor 472, a multiple antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transmission channels, and multiplexing of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilot) in the time and/or frequency domain, and then uses inverse fast Fourier transform (IFFT) ) To generate a physical channel carrying a multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • the communication device 450 is any parallel stream to the destination. The symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels to implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receiving the first information in this application; receiving the first signaling in this application.
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information; the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active; K is greater than 1.
  • K1 is a positive integer greater than 1 and less than the K
  • K2 is a positive integer less than the K1.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first information in the application; receiving the first signaling in the application.
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information;
  • the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active; K is greater than 1.
  • K1 is a positive integer greater than 1 and less than the K
  • K2 is a positive integer less than the K1.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: sending the first information in this application; sending the first signaling in this application.
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information; the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active; K is greater than 1.
  • K1 is a positive integer greater than 1 and less than the K
  • K2 is a positive integer less than the K1.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first information in the application; sending the first signaling in the application.
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information;
  • the first piece of information Let it be used to activate K2 pieces of configuration information in the first configuration information set, and the first signaling indicates that only the K2 pieces of configuration information in the first configuration information set are active; K is greater than 1.
  • K1 is a positive integer greater than 1 and less than the K
  • K2 is a positive integer less than the K1.
  • the second node in this application includes the first communication device 410.
  • the first node in this application includes the second communication device 450.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information in this application;
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471 At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first signaling in this application.
  • At least one of ⁇ the transmission processor 468, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to obtain data from the M in this application
  • the first time-frequency resource block in this application is determined by itself.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One of them is used to receive the first wireless signal in this application in the first time-frequency resource block in this application;
  • the antenna 452, the transmitter 454, the transmission processor 468, At least one of the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used for the first time-frequency resource block in this application The first wireless signal in this application.
  • At least one of ⁇ the transmission processor 468, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to obtain data from the K3 in this application
  • the configuration information determines the first configuration information in this application by itself.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One of them is used to receive the second wireless signal in this application in the second time-frequency resource block in this application;
  • the antenna 452, the transmitter 454, the transmission processor 468, At least one of the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used for the second time-frequency resource block in this application
  • the second wireless signal in this application is sent in.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472 ⁇ is used for the M in this application
  • the wireless signal is monitored in the time-frequency resource block.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472 ⁇ is used for the K3 in this application
  • the wireless signal is monitored in a time-frequency resource set that is different from the first time-frequency resource set in the present application in the time-frequency resource set.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5.
  • the second node N1 and the first node U2 are communication nodes that are transmitted over the air interface.
  • the steps in blocks F51 to F57 are optional.
  • the first information is sent in step S511; the second signaling is sent in step S5101; the first signaling is sent in step S512; and the wireless signal is monitored in M time-frequency resource blocks in step S5102 And detect the first wireless signal in the first time-frequency resource block; in step S5103, receive the first wireless signal in the first time-frequency resource block; in step S5104, in K3 time-frequency resource sets The wireless signal is monitored in a time-frequency resource set different from the first time-frequency resource set; in step S5105, the second wireless signal is received in the second time-frequency resource block.
  • the first information is received in step S521; the second signaling is received in step S5201; the first signaling is received in step S522; the first configuration is determined by itself from K3 configuration information in step S5202 Information; in step S5203, determine the first time-frequency resource block from the M time-frequency resource blocks; in step S5204, send the first wireless signal in the first time-frequency resource block; in step S5205, in the second The second wireless signal is sent in the time-frequency resource block.
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell; the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information; The first signaling is used to activate K2 configuration information in the first configuration information set, and the first signaling indicates that only the K2 configuration information in the first configuration information set is in an active state; K Is a positive integer greater than 1, K1 is a positive integer greater than 1 and less than the K, and K2 is a positive integer less than the K1.
  • the first configuration information and the first signaling are used by the first node U2 to determine the M time-frequency resource blocks, and the first configuration information is one piece of configuration information among the K2 pieces of configuration information; M Is a positive integer greater than 1.
  • the K3 pieces of configuration information include all active configuration information in the K pieces of configuration information, and the K3 pieces of configuration information include one piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information; K3 is a positive integer greater than the K2. Any time-frequency resource set in the K3 time-frequency resource sets includes a positive integer number of time-frequency resource blocks, and the M time-frequency resource blocks belong to the first time-frequency resource in the K3 time-frequency resource sets Set; the K3 configuration information is respectively used by the first node U2 to determine the K3 time-frequency resource sets.
  • the second configuration information is used by the first node U2 to determine the second time-frequency resource block, and the second configuration information is a piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information ,
  • the second signaling is used to activate the second configuration information.
  • the first node U2 is the first node in this application.
  • the second node N1 is the second node in this application.
  • the second node in this application is a maintenance base station of the first serving cell.
  • the monitoring includes: before performing the monitoring, the second node in this application is not sure whether there is a wireless signal.
  • the monitoring includes energy detection, that is, the energy of the wireless signal is sensed and averaged over time to obtain the received energy. If the received energy is greater than the first given threshold, it is determined that the wireless signal is detected; otherwise, it is determined that the wireless signal is not detected.
  • the monitoring includes coherent detection, that is, performing coherent reception and measuring the energy of the signal obtained after the coherent reception. If the energy of the signal obtained after the coherent reception is greater than the second given threshold, it is determined that the wireless signal is detected; otherwise, it is determined that the wireless signal is not detected.
  • the monitoring includes blind decoding, that is, receiving wireless signals and performing decoding operations. If it is determined that the decoding is correct according to the check bit, it is determined that the wireless signal is detected; otherwise, it is determined that the wireless signal is not detected.
  • the second node in this application performs the monitoring in each of the M time-frequency resource blocks.
  • the first configuration information is used by the second node in this application to perform the monitoring in the M time-frequency resource blocks.
  • the second node in the present application performs the monitoring in the M time-frequency resource blocks according to the first configuration information.
  • the second node in this application performs the monitoring in each time-frequency resource block included in the K3 time-frequency resource sets.
  • the second node in this application performs the monitoring in part of the time-frequency resource blocks included in the K3 time-frequency resource sets.
  • the second node in this application performs the monitoring in each of the K3 time-frequency resource sets that is different from the first time-frequency resource set.
  • the K3 pieces of configuration information are respectively used by the second node in this application to perform the monitoring in the K3 time-frequency resource sets.
  • the second node in the present application performs the monitoring in the K3 time-frequency resource sets respectively according to the K3 configuration information.
  • the second node in this application only detects wireless signals in the time-frequency resource set corresponding to the first configuration information.
  • the second node in this application detects a wireless signal in a time-frequency resource set corresponding to at least one piece of configuration information that is different from the first piece of configuration information in the K3 pieces of configuration information.
  • the K configuration information includes K first-type indexes, and the value of the first-type index included in any configuration information in the first configuration information set is equal to the first index.
  • the K1 configuration information includes K1 second-type indexes
  • the first signaling indicates K2 second-type indexes among the K1 second-type indexes; the K2 second-type indexes;
  • the class index corresponds to the K2 configuration information respectively.
  • the first information is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data.
  • the first information is respectively transmitted on multiple downlink physical layer data channels (that is, downlink channels that can be used to carry physical layer data).
  • downlink physical layer data channels that is, downlink channels that can be used to carry physical layer data.
  • the first information is transmitted on PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information is respectively transmitted on multiple PDSCHs.
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the first signaling is transmitted on the PDCCH.
  • the first wireless signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the first wireless signal is transmitted on PUSCH.
  • the second wireless signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the second wireless signal is transmitted on PUSCH.
  • the second signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the second signaling is transmitted on the PDCCH.
  • Embodiment 6 illustrates a schematic diagram of K configuration information and K first-type indexes according to an embodiment of the present application; as shown in FIG. 6.
  • the K configuration information includes the K first-type indexes, and the value of the first-type index included in any configuration information in the first configuration information set in this application is equal to The first index in this application.
  • the first index is a non-negative integer.
  • the first index is used to identify the first configuration information set.
  • the value of the first type index included in any configuration information that does not belong to the first configuration information set in the K pieces of configuration information is not equal to the first index.
  • the first signaling in this application indicates the first index.
  • any one of the K first type indexes is used to identify corresponding configuration information.
  • Embodiment 7 illustrates a schematic diagram of M time-frequency resource blocks, a first time-frequency resource block, and a first wireless signal according to an embodiment of the present application; as shown in FIG. 7.
  • the first node in this application determines the first time-frequency resource block from the M time-frequency resource blocks by itself, and sends the first time-frequency resource block in the first time-frequency resource block.
  • the first wireless signal is a schematic diagram of M time-frequency resource blocks, a first time-frequency resource block, and a first wireless signal according to an embodiment of the present application; as shown in FIG. 7.
  • the first node in this application determines the first time-frequency resource block from the M time-frequency resource blocks by itself, and sends the first time-frequency resource block in the first time-frequency resource block.
  • the first wireless signal is a schematic diagram of M time-frequency resource blocks, a first time-frequency resource block, and a first wireless signal according to an embodiment of the present application; as shown in FIG. 7.
  • the first time-frequency resource block is one time-frequency resource block among the M time-frequency resource blocks.
  • the first bit block is used to generate the first wireless signal, and the first bit block includes one TB.
  • the arrival time of the first bit block is used by the first node to determine the first time-frequency resource block from the M time-frequency resource blocks.
  • the moment when the first bit block reaches the physical layer of the first node is used to determine the first time-frequency resource block from the M time-frequency resource blocks.
  • the start time of the first time-frequency resource block is later than the arrival time of the first bit block.
  • the first wireless signal is that the bits in the first bit block sequentially undergo channel coding (Channel Coding), rate matching (Rate Matching), and modulation mapper (Modulation Mapper), The output after Layer Mapper, Precoding, Resource Element Mapper, Multi-Carrier Symbol Generation, Modulation and Upconversion.
  • Channel Coding Channel Coding
  • Rate Matching Rate Matching
  • Modulation Mapper Modulation Mapper
  • any time-frequency resource block in the M time-frequency resource blocks includes a positive integer number of REs (Resource Elements).
  • one RE occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • any one of the M time-frequency resource blocks includes a positive integer number of multi-carrier symbols in the time domain.
  • any one of the M time-frequency resource blocks includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol includes CP (cyclic perfix, cyclic prefix).
  • any one of the M time-frequency resource blocks includes a positive integer number of subcarriers in the frequency domain.
  • the M time-frequency resource blocks are orthogonal to each other in the time domain.
  • any two adjacent time-frequency resource blocks in the M time-frequency resource blocks are not continuous in the time domain.
  • the M time-frequency resource blocks appear at equal intervals in the time domain.
  • the M time-frequency resource blocks appear at unequal intervals in the time domain.
  • the time interval between the time domain resources occupied by any two adjacent time-frequency resource blocks in the M time-frequency resource blocks is equal.
  • any two time-frequency resource blocks in the M time-frequency resource blocks occupy the same frequency domain resources.
  • time-frequency resource blocks in the M time-frequency resource blocks occupying different frequency domain resources.
  • the first configuration information and the first signaling jointly indicate the M time-frequency resource blocks.
  • the first configuration information and the first signaling together indicate frequency domain resources occupied by the M time-frequency resource blocks.
  • the first configuration information and the first signaling together indicate the time-frequency resources occupied by the M time-frequency resource blocks.
  • the first configuration information and the first signaling together indicate the time domain resources occupied by the M time-frequency resource blocks.
  • the first configuration information indicates a time interval between time domain resources occupied by any two adjacent time-frequency resource blocks in the M time-frequency resource blocks.
  • the M time-frequency resource blocks appear periodically in the time domain
  • the first configuration information indicates the period during which the M time-frequency resource blocks appear in the time domain .
  • the first signaling indicates the time domain resource occupied by the earliest time-frequency resource block among the M time-frequency resource blocks.
  • the first signaling indicates frequency domain resources occupied by the M time-frequency resource blocks.
  • the first signaling indicates the MCS of the first wireless signal.
  • the first configuration information includes configuration information of the PUSCH carried by any time-frequency resource block in the M time-frequency resource blocks.
  • the first configuration information is used by the first node to generate a wireless signal to be transmitted in any time-frequency resource block of the M time-frequency resource blocks.
  • the first configuration information is used to generate the first wireless signal.
  • the first configuration information includes configuration information of the PUSCH that carries the first wireless signal.
  • the first configuration information includes the frequency hopping type of the first wireless signal.
  • the first configuration information includes DMRS configuration information of the first wireless signal.
  • the first configuration information includes an MCS table of the first wireless signal.
  • the first wireless signal includes multiple repetitions of the first TB, and the first configuration information includes the number of repetitions of the first TB.
  • the first configuration information includes an RV corresponding to each repeated transmission of the first TB.
  • the first signaling is the signaling used to activate one piece of configuration information in the first configuration information set in this application, which is received last time by the first time-frequency resource block.
  • the first signaling is the most recently received signaling used to activate one piece of configuration information in the first configuration information set in this application before the first time; the first time The first time interval is earlier than the start time of the time domain resource occupied by the first time-frequency resource block.
  • the first time interval is configured by higher layer signaling.
  • the K2 configuration information in this application is in an active state.
  • the time domain resources occupied by the first time-frequency resource block there is one configuration information that does not belong to the first configuration information set in this application among the K pieces of configuration information.
  • the K2 pieces of configuration information in are simultaneously active.
  • Embodiment 8 illustrates a schematic diagram of K3 configuration information and the first configuration information according to an embodiment of the present application; as shown in FIG. 8.
  • the first node in this application determines the first configuration information by itself from the K3 pieces of configuration information.
  • the K3 configuration information includes all the configuration information in the active state in the K configuration information in this application, and the K3 configuration information includes the K configuration information that does not belong to the first in the application.
  • the indexes of the K3 configuration information are #0,..., #K3-1, respectively.
  • the K3 is smaller than the K.
  • the K3 pieces of configuration information include the K2 pieces of configuration information in this application.
  • the K3 pieces of configuration information are composed of all the pieces of configuration information in the active state among the K pieces of configuration information.
  • any one of the K3 pieces of configuration information is in an active state.
  • the first bit block is used to generate the first wireless signal, and the first bit block includes the first TB; the TBS (Transport Block Size) of the first TB is determined by the The first node is used to determine the first configuration information from the K3 pieces of configuration information.
  • TBS Transport Block Size
  • a first bit block is used to generate the first wireless signal, the first bit block includes a first bit sub-block, and the first bit sub-block is used by the first node to follow
  • the K3 pieces of configuration information determine the first configuration information.
  • the first bit sub-block indicates the first configuration information.
  • the first bit block is used to generate the first wireless signal
  • the arrival time of the first bit block is used by the first node to determine the first wireless signal from the K3 pieces of configuration information. Configuration information.
  • the first bit block is used to generate the first wireless signal, and the time when the first bit block arrives at the first node is used to determine the first bit block from the K3 pieces of configuration information. Configuration information.
  • the MCS of the first wireless signal in this application is used by the first node to determine the first configuration information from the K3 pieces of configuration information.
  • the K3 pieces of configuration information are respectively used to determine K3 time-frequency resource sets, and any time-frequency resource set in the K3 time-frequency resource sets includes a positive integer number of time-frequency resource blocks.
  • the M time-frequency resource blocks belong to the first time-frequency resource set in the K3 time-frequency resource sets; the self-determining the first configuration information from the K3 configuration information includes: The first time-frequency resource set is determined by itself in the time-frequency resource set.
  • the first configuration information is used by the first node to determine the first time-frequency resource set from the K3 time-frequency resource sets.
  • Embodiment 9 illustrates a schematic diagram of K1 configuration information and K1 second-type indexes according to an embodiment of the present application; as shown in FIG. 9.
  • the K1 configuration information includes the K1 second type indexes
  • the first signaling in this application indicates K2 second type indexes of the K1 second type indexes ;
  • the K2 second-type indexes respectively correspond to the K2 configuration information in this application.
  • the indexes of the K1 configuration information and the K1 second-type index are #0,..., #K1-1, respectively.
  • the first signaling indicates the K2 second-type indexes.
  • the display of the first signaling indicates that only the K2 second-type indexes among the K1 second-type indexes.
  • the first signaling indicates the first index and the K2 second-type indexes in this application.
  • the display of the first signaling indicates that only the K2 second-type indexes of the first index and the K1 second-type indexes in this application.
  • the K1 second-type indexes are respectively used to identify the K1 configuration information.
  • the K configuration information in this application respectively correspond to K second-type indexes
  • the K1 second-type indexes are the K1 second-type indexes and the K1 configuration information respectively.
  • Corresponding second-type indexes; the K second-type indexes are respectively used to identify the K pieces of configuration information.
  • the values of any two second-type indexes in the K second-type indexes are not equal.
  • the given configuration information is jointly identified by the corresponding first-type index and the second-type index.
  • the K1 second-type indexes are used to determine that the K1 configuration information belongs to the first configuration information set.
  • the K second-type indexes are used to determine that only the K1 configuration information among the K configuration information belong to the first configuration information set.
  • the second configuration information in this application is one piece of configuration information in the K pieces of configuration information
  • the second signaling in this application indicates the second configuration information The corresponding second type index.
  • the second signaling in this application indicates the first type index and the second type index corresponding to the second configuration information in this application.
  • Embodiment 10 illustrates a schematic diagram of a second time-frequency resource block and a second wireless signal according to an embodiment of the present application; as shown in FIG. 10.
  • the first node in this application sends the second wireless signal in the second time-frequency resource block.
  • the second configuration information in this application is used to determine the second time-frequency resource block, and the second configuration information is the K configuration information in this application that does not belong to the first in this application.
  • the display of the second configuration information indicates the second time-frequency resource block.
  • the second configuration information implicitly indicates the second time-frequency resource block.
  • the second configuration information is used to determine the time domain resources occupied by the second time-frequency resource block.
  • the second configuration information is used to determine the time-frequency resource occupied by the second time-frequency resource block.
  • the second configuration information is one piece of configuration information among the K3 pieces of configuration information in this application.
  • the second configuration information and the K2 configuration information in this application are simultaneously in an active state.
  • the second time-frequency resource block includes a positive integer number of REs.
  • the second time-frequency resource block includes a positive integer number of multi-carrier symbols in the time domain.
  • the second time-frequency resource block includes a positive integer number of subcarriers in the frequency domain.
  • the second configuration information includes configuration information of a PUSCH that carries the second wireless signal.
  • the second configuration information is used to generate the second wireless signal.
  • the second configuration information includes the frequency hopping type of the second wireless signal.
  • the second configuration information includes DMRS configuration information of the second wireless signal.
  • the second configuration information includes an MCS table of the second wireless signal.
  • the second wireless signal includes multiple repetitions of the second TB, and the second configuration information includes the number of repetitions of the second TB.
  • the second configuration information includes an RV corresponding to each repeated transmission of the second TB.
  • Embodiment 11 illustrates a schematic diagram of second signaling according to an embodiment of the present application; as shown in FIG. 11.
  • the second signaling is used to activate the second configuration information in this application.
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the second signaling includes DCI.
  • the second signaling includes Configured UL grant (configured uplink grant) DCI.
  • the second signaling includes Configured UL grant activation (activation) DCI.
  • the second signaling includes Configured UL grant Type 2 (Type 2) to activate DCI.
  • the second signaling is UE-specific.
  • the second signaling includes DCI whose CRC is scrambled by CS-RNTI (Scrambled).
  • the second signaling is transmitted on the Configured UL grant Type 2 scheduling activation PDCCH.
  • the second configuration information and the second signaling jointly indicate the time-frequency resource occupied by the second time-frequency resource block in this application.
  • the second time-frequency resource block is one of M1 time-frequency resource blocks, M1 is a positive integer greater than 1, and the M1 time-frequency resource blocks are The time domain is orthogonal to each other; the second configuration information indicates the time interval between the time domain resources occupied by any two adjacent time-frequency resource blocks in the M1 time-frequency resource blocks, and the second information Let indicate the time domain resource occupied by the earliest time-frequency resource block among the M1 time-frequency resource blocks.
  • the second signaling indicates the frequency-frequency resource occupied by the second time-frequency resource block.
  • the second signaling indicates the MCS of the second wireless signal in this application.
  • the second configuration information is one of the K configuration information in this application, and the K first-type indexes in this application correspond to the second configuration information
  • the value of the first index is not equal to the first index in this application.
  • the second signaling indicates the value of the first type index corresponding to the second configuration information.
  • the end time of the time domain resource occupied by the second signaling is no earlier than the end time of the time domain resource occupied by the first signaling.
  • the end time of the time domain resource occupied by the second signaling is no later than the end time of the time domain resource occupied by the first signaling.
  • Embodiment 12 illustrates a schematic diagram of K3 configuration information and K3 time-frequency resource sets according to an embodiment of the present application; as shown in FIG. 12.
  • the K3 pieces of configuration information are respectively used to determine the K3 time-frequency resource sets; any time-frequency resource set in the K3 time-frequency resource sets includes a positive integer number of time-frequency resource blocks,
  • the M time-frequency resource blocks in this application belong to the first time-frequency resource set in the K3 time-frequency resource sets.
  • the indexes of the K3 configuration information and the K3 time-frequency resource sets are #0, ..., #K3-1, respectively.
  • the K3 pieces of configuration information respectively display and indicate the K3 time-frequency resource sets.
  • the K3 pieces of configuration information respectively implicitly indicate the K3 time-frequency resource sets.
  • the K3 pieces of configuration information respectively indicate the time domain resources occupied by the K3 time-frequency resource sets.
  • the K3 pieces of configuration information respectively indicate the time-frequency resources occupied by the K3 time-frequency resource sets.
  • the K3 pieces of configuration information respectively indicate a time interval between time domain resources occupied by any two adjacent time-frequency resource blocks included in the K3 time-frequency resource set.
  • the third configuration information is any configuration information in the K3 configuration information, and the third configuration information indicates that any two adjacent time-frequency resource blocks included in the corresponding time-frequency resource set are occupied The time interval between time domain resources.
  • the K3 pieces of configuration information respectively include the PUSCH configuration information carried by the K3 time-frequency resource sets.
  • the K3 pieces of configuration information are respectively used to generate wireless signals to be transmitted in the K3 time-frequency resource sets.
  • the third configuration information is any configuration information of the K3 configuration information, and the third configuration information includes the configuration information of the PUSCH carried by any time-frequency resource block in the corresponding time-frequency resource set .
  • the third configuration information is any configuration information in the K3 configuration information, and the third configuration information is used to generate and be sent in any time-frequency resource block in the corresponding time-frequency resource set Wireless signal.
  • any time-frequency resource block included in the K3 time-frequency resource sets includes a positive integer number of REs.
  • any time-frequency resource block included in the K3 time-frequency resource sets includes a positive integer number of multi-carrier symbols in the time domain.
  • any time-frequency resource block included in the K3 time-frequency resource sets includes a positive integer number of subcarriers in the frequency domain.
  • a positive integer number of time-frequency resource blocks included in any one of the K3 time-frequency resource sets are orthogonal to each other in the time domain.
  • Embodiment 13 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application; as shown in FIG. 13.
  • the processing device 1300 in the first node device includes a first processor 1301 and a first receiver 1302.
  • the first processor 1301 receives the first information; the first receiver 1302 receives the first signaling.
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell;
  • the first configuration information set includes K1 pieces of configuration information among the K pieces of configuration information;
  • the first signaling is used to activate K2 configuration information in the first configuration information set, and the first signaling indicates that only the K2 configuration information in the first configuration information set is in an active state;
  • K1 is a positive integer greater than 1 and less than the K
  • K2 is a positive integer less than the K1.
  • the K configuration information includes K first-type indexes, and the value of the first-type index included in any configuration information in the first configuration information set is equal to the first index.
  • the first processor 1301 determines the first time-frequency resource block by itself from M time-frequency resource blocks, and sends the first wireless signal in the first time-frequency resource block;
  • the configuration information and the first signaling are used to determine the M time-frequency resource blocks, the first configuration information is one of the K2 configuration information; M is a positive integer greater than 1.
  • the first processor 1301 determines the first configuration information by itself from K3 pieces of configuration information; wherein, the K3 pieces of configuration information include all active configuration information in the K pieces of configuration information
  • the K3 pieces of configuration information include one piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information; K3 is a positive integer greater than the K2.
  • the K1 configuration information includes K1 second-type indexes
  • the first signaling indicates K2 second-type indexes among the K1 second-type indexes; the K2 second-type indexes;
  • the class index corresponds to the K2 configuration information respectively.
  • the first processor 1301 sends a second wireless signal in a second time-frequency resource block; wherein, the second configuration information is used to determine the second time-frequency resource block, and the second configuration
  • the information is one piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information.
  • the first receiver 1302 receives second signaling; wherein, the second signaling is used to activate the second configuration information.
  • the first node device 1300 is user equipment.
  • the first node device 1300 is a relay node device.
  • the first processor 1301 includes ⁇ antenna 452, receiver 454, transmitter 454, receiving processor 456, transmitting processor 468, multi-antenna receiving processor 458, multi-antenna transmitting in embodiment 4 At least one of the processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ .
  • the first receiver 1302 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, and data source in the fourth embodiment. At least one of 467 ⁇ .
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 14.
  • the processing device 1400 in the second node device includes a second processor 1401 and a first transmitter 1402.
  • the second processor 1401 sends the first information; the first transmitter 1402 sends the first signaling.
  • the first information includes K pieces of configuration information, and the K pieces of configuration information are all for the first serving cell; the first set of configuration information includes K1 pieces of configuration information among the K pieces of configuration information; The first signaling is used to activate K2 configuration information in the first configuration information set, and the first signaling indicates that only the K2 configuration information in the first configuration information set is in an active state; K Is a positive integer greater than 1, K1 is a positive integer greater than 1 and less than the K, and K2 is a positive integer less than the K1.
  • the K configuration information includes K first-type indexes, and the value of the first-type index included in any configuration information in the first configuration information set is equal to the first index.
  • the second processor 1401 monitors wireless signals in M time-frequency resource blocks, detects the first wireless signal in the first time-frequency resource block, and records it in the first time-frequency resource block Receiving the first wireless signal; wherein the first time-frequency resource block is one of the M time-frequency resource blocks; the first configuration information and the first signaling are used to determine For the M time-frequency resource blocks, the first configuration information is one configuration information of the K2 configuration information; M is a positive integer greater than 1.
  • the second processor 1401 monitors wireless signals in a time-frequency resource set different from the first time-frequency resource set in K3 time-frequency resource sets; wherein, in the K3 time-frequency resource sets Any time-frequency resource set includes a positive integer number of time-frequency resource blocks, and the M time-frequency resource blocks belong to the first time-frequency resource set in the K3 time-frequency resource sets; K3 pieces of configuration information are used respectively When determining the K3 time-frequency resource sets, the K3 configuration information includes all active configuration information in the K configuration information, and the K3 configuration information includes the K configuration information that does not belong to all One piece of configuration information of the first configuration information set; K3 is a positive integer greater than the K2.
  • the K1 configuration information includes K1 second-type indexes
  • the first signaling indicates K2 second-type indexes among the K1 second-type indexes; the K2 second-type indexes;
  • the class index corresponds to the K2 configuration information respectively.
  • the second processor 1401 receives a second wireless signal in a second time-frequency resource block; wherein the second configuration information is used to determine the second time-frequency resource block, and the second configuration
  • the information is one piece of configuration information that does not belong to the first configuration information set among the K pieces of configuration information.
  • the first transmitter 1402 sends second signaling; wherein, the second signaling is used to activate the second configuration information.
  • the second node device 1400 is a base station device.
  • the second node device 1400 is a relay node device.
  • the second processor 1401 includes ⁇ antenna 420, transmitter 418, receiver 418, transmitting processor 416, receiving processor 470, multi-antenna transmitting processor 471, multi-antenna receiving At least one of the processor 472, the controller/processor 475, and the memory 476 ⁇ .
  • the first transmitter 1402 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the user equipment, terminal and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication equipment such as tablets.
  • MTC
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR node B), NR node B, TRP (Transmitter Receiver Point), etc. wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信息;接收第一信令。所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。当一个UE被配置了多个配置授予配置时,上述方法降低了激活/释放这些配置所需的信令开销。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其是支持蜂窝网的无线通信***中的无线信号的传输方法和装置。
背景技术
和传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)***相比,5G***支持更加多样的应用场景,比如eMBB(enhanced Mobile BroadBand,增强移动宽带),URLLC(Ultra-Reliable and Low Latency Communications,超高可靠性和低延迟通信)和mMTC(massive Machine-Type Communications,大规模机器类型通信)。和其他应用场景相比,URLLC对传输可靠性和延时都有更高的要求。为了减小调度请求和调度信令带来的传输延时,3GPP R(Release,版本)15支持基于配置授予(configured grant)的上行传输,UE(User Equipment,用户设备)可以在预先配置的资源上自主进行上行传输。目前R15定义了Type 1和Type 2两种类型的基于配置授予的上行传输。Type 1在更高层信令配置后处于激活状态,其配置参数全部是更高层参数。Type 2在更高层信令配置后还需要动态信令激活,其配置参数一部分是更高层参数,另一部分由激活的动态信令配置。目前R15在每个BWP(Bandwidth Part,带宽区间)上只支持一个基于配置授予的配置。
发明内容
为了满足不同业务类型的QoS(Quality of Service,服务质量)要求并且在不增加延时的前提下满足URLLC的传输可靠性,在3GPP的讨论中提出了为一个UE同时配置多个配置授予的配置。发明人通过研究发现,当一个UE被配置了多个Type 2配置授予配置时,激活/释放这些配置需要的信令开销将成倍增加。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信息;
接收第一信令;
其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,本申请要解决的问题是:如何降低激活/释放多个Type 2配置授予配置所需要的信令开销。上述方法通过将多个配置分组,用同一个信令来激活并释放同一个组内的多个配置,从而解决了这一问题。
作为一个实施例,上述方法的特质在于:所述K个配置信息是K个Type 2配置授予配置信息。所述K个配置信息被分成多个组,所述第一配置信息集合是其中的一个组。同一个组内的多个配置信息可以用同一个信令进行激活和释放,不同组内的配置信息需要不同的信令进行激活和释放。
作为一个实施例,上述方法的好处在于:对于相互关联的多个Type 2配置授予配置,用同一个信令来激活和释放,降低了信令开销;对于相互独立的Type 2配置授予配置,用不同信令来激活和释放,保留了独立激活/释放相互独立的Type 2配置授予配置的自由度。
根据本申请的一个方面,其特征在于,所述K个配置信息分别包括K个第一类索引,所 述第一配置信息集合中的任一配置信息所包括的第一类索引的值等于第一索引。
根据本申请的一个方面,其特征在于,包括:
从M个时频资源块中自行确定第一时频资源块;
在所述第一时频资源块中发送第一无线信号;
其中,第一配置信息和所述第一信令被用于确定所述M个时频资源块,所述第一配置信息是所述K2个配置信息中的一个配置信息;M是大于1的正整数。
根据本申请的一个方面,其特征在于,包括:
从K3个配置信息中自行确定所述第一配置信息;
其中,所述K3个配置信息包括所述K个配置信息中所有处于激活状态的配置信息,所述K3个配置信息包括所述K个配置信息中不属于所述第一配置信息集合的一个配置信息;K3是大于所述K2的正整数。
根据本申请的一个方面,其特征在于,所述K1个配置信息分别包括K1个第二类索引,所述第一信令指示所述K1个第二类索引中的K2个第二类索引;所述K2个第二类索引分别和所述K2个配置信息对应。
根据本申请的一个方面,其特征在于,包括:
在第二时频资源块中发送第二无线信号;
其中,第二配置信息被用于确定所述第二时频资源块,所述第二配置信息是所述K个配置信息中不属于所述第一配置信息集合的一个配置信息。
根据本申请的一个方面,其特征在于,包括:
接收第二信令;
其中,所述第二信令被用于激活所述第二配置信息。
作为一个实施例,上述方法的好处在于:对于相互独立的Type 2配置授予配置,用不同信令来激活和释放,保留了独立激活/释放相互独立的Type 2配置授予配置的自由度。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信息;
发送第一信令;
其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
根据本申请的一个方面,其特征在于,所述K个配置信息分别包括K个第一类索引,所述第一配置信息集合中的任一配置信息所包括的第一类索引的值等于第一索引。
根据本申请的一个方面,其特征在于,包括:
在M个时频资源块中监测无线信号,并在第一时频资源块中检测到第一无线信号;
在所述第一时频资源块中接收所述第一无线信号;
其中,所述第一时频资源块是所述M个时频资源块中的一个时频资源块;第一配置信息和所述第一信令被用于确定所述M个时频资源块,所述第一配置信息是所述K2个配置信息中的一个配置信息;M是大于1的正整数。
根据本申请的一个方面,其特征在于,包括:
在K3个时频资源集合中不同于第一时频资源集合的一个时频资源集合中监测无线信号;
其中,所述K3个时频资源集合中的任一时频资源集合包括正整数个时频资源块,所述M个时频资源块属于所述K3个时频资源集合中的所述第一时频资源集合;K3个配置信息分别被用于确定所述K3个时频资源集合,所述K3个配置信息包括所述K个配置信息中所有 处于激活状态的配置信息,所述K3个配置信息包括所述K个配置信息中不属于所述第一配置信息集合的一个配置信息;K3是大于所述K2的正整数。
根据本申请的一个方面,其特征在于,所述K1个配置信息分别包括K1个第二类索引,所述第一信令指示所述K1个第二类索引中的K2个第二类索引;所述K2个第二类索引分别和所述K2个配置信息对应。
根据本申请的一个方面,其特征在于,包括:
在第二时频资源块中接收第二无线信号;
其中,第二配置信息被用于确定所述第二时频资源块,所述第二配置信息是所述K个配置信息中不属于所述第一配置信息集合的一个配置信息。
根据本申请的一个方面,其特征在于,包括:
发送第二信令;
其中,所述第二信令被用于激活所述第二配置信息。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一处理器,接收第一信息;
第一接收机,接收第一信令;
其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二处理器,发送第一信息;
第一发送机,发送第一信令;
其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
当一个UE被配置了多个Type 2配置授予配置时,对于多个配置中相互关联的配置,用同一个信令来激活和释放,降低了信令开销;对于多个配置中相互独立的配置,用不同信令来激活和释放,保留了独立激活/释放相互独立的配置的自由度。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息和第一信令的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的K个配置信息和K个第一类索引的示意图;
图7示出了根据本申请的一个实施例的M个时频资源块,第一时频资源块和第一无线信号的示意图;
图8示出了根据本申请的一个实施例的K3个配置信息和第一配置信息的示意图;
图9示出了根据本申请的一个实施例的K1个配置信息和K1个第二类索引的示意图;
图10示出了根据本申请的一个实施例的第二时频资源块和第二无线信号的示意图;
图11示出了根据本申请的一个实施例的第二信令的示意图;
图12示出了根据本申请的一个实施例的K3个配置信息和K3个时频资源集合的示意图;
图13示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息和第一信令的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特点的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信息;在步骤102中接收第一信令。其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,所述第一信息由更高层(higher layer)信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第一信息由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令承载。
作为一个实施例,所述第一信息由一个RRC信令承载。
作为一个实施例,所述第一信息由多个RRC信令承载。
作为一个实施例,所述第一信息包括一个IE(Information Element,信息单元)中的全部或部分信息。
作为一个实施例,所述第一信息包括多个IE中的全部或部分信息。
作为一个实施例,所述第一信息包括ConfiguredGrantConfig IE中的全部或部分信息。
作为一个实施例,所述第一信息包括多个ConfiguredGrantConfig IE中的全部或部分信息。
作为一个实施例,所述第一信息包括更高层(higher layer)参数(parameter)ConfiguredGrantConfig中的全部或部分信息。
作为一个实施例,所述K个配置信息中的任一配置信息包括ConfiguredGrantConfig IE中的全部或部分信息。
作为一个实施例,所述K个配置信息中的任一配置信息包括更高层参数ConfiguredGrantConfig中的全部或部分信息。
作为一个实施例,所述第一信息是用户特定(UE-specific)的。
作为一个实施例,所述第一信息是半静态(semi-statically)配置的。
作为一个实施例,所述第一信息指示所述K个配置信息。
作为一个实施例,所述第一信息指示所述第一配置信息集合包括所述K1个配置信息。
作为一个实施例,所述第一信息显示的指示所述第一配置信息集合包括所述K1个配置 信息。
作为一个实施例,所述第一信息隐式的指示所述第一配置信息集合包括所述K1个配置信息。
作为一个实施例,所述第一信息指示所述第一配置信息集合包括所述K个配置信息中的仅所述K1个配置信息。
作为一个实施例,所述第一配置信息集合中的所有配置信息由同一个IE配置。
作为上述实施例的一个子实施例,所述K个配置信息中不属于所述第一配置信息集合的任一配置信息和所述第一配置信息集合中的任一配置信息由不同的IE配置。
作为一个实施例,所述第一配置信息集合包括所述K个配置信息中的仅所述K1个配置信息。
作为一个实施例,所述第一配置信息集合由所述K1个配置信息组成。
作为一个实施例,所述K个配置信息中存在一个配置信息不属于所述第一配置信息集合。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令包括Configured UL grant(配置上行授予)DCI。
作为一个实施例,所述第一信令包括Configured UL grant激活(activation)DCI。
作为一个实施例,所述第一信令包括Configured UL grant Type 2(类型2)激活DCI。
作为一个实施例,所述第一信令是用户特定(UE-specific)的。
作为一个实施例,所述第一信令包括CRC(Cyclic Redundancy Check,循环冗余校验)被CS(Configured Scheduling,配置调度)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所加扰(Scrambled)的DCI。
作为一个实施例,所述第一信令在Configured UL grant Type 2 scheduling activation(配置上行授予类型2调度激活)PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输。
作为一个实施例,所述K个配置信息分别包括针对K个Configured UL grant Type 2传输的配置信息。
作为一个实施例,所述K个配置信息分别包括针对K个PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)集合的配置信息,所述K个PUSCH集合中的任一PUSCH集合包括1个或多个PUSCH。
作为上述实施例的一个子实施例,所述K个配置信息中存在一个配置信息包括对应的PUSCH集合中的PUSCH的跳频(frequency hopping)类型。
作为上述实施例的一个子实施例,所述K个配置信息中存在一个配置信息包括对应的PUSCH集合中的PUSCH的DMRS(DeModulation Reference Signals,解调参考信号)配置信息。
作为上述实施例的一个子实施例,所述K个配置信息中存在一个配置信息指示对应的PUSCH集合中的PUSCH的MCS(Modulation and Coding Scheme,调制编码方式)表格(table)。
作为上述实施例的一个子实施例,所述K个配置信息中存在一个配置信息包括被分配给对应的PUSCH集合中的PUSCH的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number)的数量。
作为上述实施例的一个子实施例,所述K个配置信息中存在一个配置信息包括在对应的PUSCH集合中的PUSCH上传输的TB(Transport Block,传输块)的重复传输次数。
作为上述实施例的一个子实施例,所述K个配置信息中存在一个配置信息包括在对应的PUSCH集合中的PUSCH上重复传输的TB所对应的RV(Redundancy Version,冗余版本)。
作为一个实施例,所述DMRS配置信息包括所述DMRS的{所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,映射方式,DMRS类型,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),频域上的扩频序列,时域上的扩频序列}中的一种或 多种。
作为一个实施例,所述第一服务小区是所述第一节点的主服务小区(Primary Cell)。
作为一个实施例,所述第一服务小区是所述第一节点的辅服务小区(Secondary Cell)。
作为一个实施例,所述第一服务小区被所述第一节点所添加。
作为一个实施例,所述第一节点针对所述第一服务小区执行了辅服务小区添加(SCell addition)。
作为一个实施例,所述第一节点最新接收到的sCellToAddModList包括所述第一服务小区。
作为一个实施例,所述第一节点最新接收到的sCellToAddModListSCG包括所述第一服务小区。
作为一个实施例,所述第一服务小区的索引是CellIdentity。
作为一个实施例,所述第一服务小区的索引是PhysCellId。
作为一个实施例,所述第一服务小区的索引是SCellIndex。
作为一个实施例,所述第一服务小区的索引是ServCellIndex。
作为一个实施例,所述第一服务小区的索引是不大于31的非负整数。
作为一个实施例,所述第一服务小区被部署于授权频谱。
作为一个实施例,所述第一服务小区被部署于非授权频谱。
作为一个实施例,所述所述K个配置信息都针对第一服务小区包括:所述K个配置信息都被应用于所述第一服务小区。
作为一个实施例,所述所述K个配置信息都针对第一服务小区包括:所述K个配置信息分别被应用于K个PUSCH集合,所述K个PUSCH集合中的任一PUSCH集合包括1个或多个PUSCH;所述K个PUSCH集合中的任一PUSCH是所述第一服务小区中的PUSCH。
作为上述实施例的一个子实施例,所述K个PUSCH集合中的任一PUSCH是所述第一服务小区中的同一个BWP(Bandwidth Part,带宽区间)中的PUSCH。
作为一个实施例,所述K个配置信息都针对所述第一服务小区中的同一个BWP。
作为一个实施例,所述K个配置信息都被应用于所述第一服务小区中的同一个BWP。
作为一个实施例,所述激活是指activate。
作为一个实施例,所述所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息包括:所述第一信令被用于激活所述第一配置信息集合中的仅所述K2个配置信息。
作为一个实施例,所述所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息包括:所述K2个配置信息分别包括针对K2个Configured UL grant Type 2传输的配置信息,所述第一信令被用于激活所述K2个Configured UL grant Type 2传输。
作为一个实施例,在接收到所述第一信令之前,所述第一配置信息集合中存在一个不属于所述K2个配置信息的配置信息处于激活状态。
作为一个实施例,所述K个配置信息中不属于所述第一配置信息集合的任一配置信息是否处于激活状态和所述第一信令无关。
作为一个实施例,所述第一信令显示的指示所述K2个配置信息。
作为一个实施例,所述第一信令显示的从所述第一配置信息集合中指示所述K2个配置信息。
作为一个实施例,所述第一信令显示的指示所述第一配置信息集合中的仅所述K2个配置信息。
作为一个实施例,所述第一信令显示的指示所述K个配置信息中的仅所述K2个配置信息。
作为一个实施例,所述第一信令指示所述第一配置信息集合。
作为一个实施例,所述第一信令显示的指示所述第一配置信息集合。
作为一个实施例,所述第一信令隐式的指示所述第一配置信息集合。
作为一个实施例,所述K2个配置信息中的任一配置信息是所述K1个配置信息中的一个 配置信息。
作为一个实施例,所述第一信令指示所述第一配置信息集合中不属于所述K2个配置信息的其他K1-K2个配置信息都不处于激活状态。
作为一个实施例,所述第一信令隐式的指示所述第一配置信息集合中不属于所述K2个配置信息的其他K1-K2个配置信息都不处于激活状态。
作为一个实施例,所述第一信令释放(release)所述第一配置信息集合中不属于所述K2个配置信息的其他K1-K2个配置信息。
作为一个实施例,所述第一信令隐式的释放(release)所述第一配置信息集合中不属于所述K2个配置信息的其他K1-K2个配置信息。
作为一个实施例,所述第一信令释放(release)所述第一配置信息集合中任一不属于所述K2个配置信息并且在接收到所述第一信令之前处于激活状态的配置信息。
作为一个实施例,所述第一信令隐式的释放(release)所述第一配置信息集合中任一不属于所述K2个配置信息并且在接收到所述第一信令之前处于激活状态的配置信息。
作为一个实施例,给定配置信息处于激活状态包括:所述第一节点可以发送根据所述给定配置信息生成的无线信号;所述给定配置信息是所述K个配置信息中任一配置信息。
作为一个实施例,给定配置信息处于激活状态包括:所述第一节点可以在根据所述给定配置信息生成的PUSCH上发送无线信号;所述给定配置信息是所述K个配置信息中任一配置信息。
作为一个实施例,给定配置信息处于激活状态包括:所述第一节点可以在给定时频资源集合中发送无线信号,所述给定配置信息被用于确定所述给定时频资源集合;所述给定配置信息是所述K个配置信息中任一配置信息。
作为一个实施例,给定配置信息处于激活状态包括:所述第一节点可以在给定PUSCH集合中的任一PUSCH上发送无线信号,所述给定配置信息包括所述给定PUSCH集合中的任一PUSCH的配置信息;所述给定配置信息是所述K个配置信息中任一配置信息。
作为一个实施例,给定配置信息处于激活状态包括:所述第一信令的发送者在给定时频资源集合上执行本申请中的所述监测以确定所述第一节点是否在所述给定时频资源集合上发送了无线信号;所述给定配置信息被用于确定所述给定时频资源集合;所述给定配置信息是所述K个配置信息中任一配置信息。
作为一个实施例,所述K2等于1。
作为一个实施例,所述K2大于1。
作为一个实施例,所述K个配置信息中存在一个不属于所述第一配置信息集合的配置信息和所述K2个配置信息同时处于激活状态。
作为一个实施例,所述K个配置信息中存在一个不属于所述第一配置信息集合的参考配置信息;存在一个参考时间段,在所述参考时间段内所述参考配置信息和所述K2个配置信息均处于激活状态;所述参考时间段是一个连续的时间段。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G***的网络架构200。LTE,LTE-A及未来5G***的网络架构200称为EPS(Evolved Packet System,演进分组***)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解, 贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述用户设备包括所述UE201。
作为一个实施例,本申请中的所述基站设备包括所述gNB203。
作为一个实施例,本申请中的所述第一信息的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第一信息的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一信令的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一无线信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一无线信号的接收者包括所述gNB203。
作为一个实施例,本申请中的所述第二无线信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第二无线信号的接收者包括所述gNB203。
作为一个实施例,本申请中的所述第二信令的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第二信令的接收者包括所述UE201。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协 议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450 处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的所述第一信息;接收本申请中的所述第一信令。其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器, 所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信息;接收本申请中的所述第一信令。其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的所述第一信息;发送本申请中的所述第一信令。其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信息;发送本申请中的所述第一信令。其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于从本申请中的所述M个时频资源块中自行确定本申请中的所述第一时频资源块。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时频资源块中接收本申请中的所述第一无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一时频资源块中发送本申请中的所述第一无线信号。
作为一个实施例,{所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于从本申请中的所述K3个配置信息中自行确定本申请中的所述第一配置信息。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线 接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二时频资源块中接收本申请中的所述第二无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第二时频资源块中发送本申请中的所述第二无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472}中的至少之一被用于在本申请中的所述M个时频资源块中监测无线信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472}中的至少之一被用于在本申请中的所述K3个时频资源集合中不同于本申请中的所述第一时频资源集合的一个时频资源集合中监测无线信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点N1和第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51至F57中的步骤分别是可选的。
对于第二节点N1,在步骤S511中发送第一信息;在步骤S5101中发送第二信令;在步骤S512中发送第一信令;在步骤S5102中在M个时频资源块中监测无线信号并在第一时频资源块中检测到第一无线信号;在步骤S5103中在所述第一时频资源块中接收所述第一无线信号;在步骤S5104中在K3个时频资源集合中不同于第一时频资源集合的一个时频资源集合中监测无线信号;在步骤S5105中在第二时频资源块中接收第二无线信号。
对于第一节点U2,在步骤S521中接收第一信息;在步骤S5201中接收第二信令;在步骤S522中接收第一信令;在步骤S5202中从K3个配置信息中自行确定第一配置信息;在步骤S5203中从M个时频资源块中自行确定第一时频资源块;在步骤S5204中在所述第一时频资源块中发送第一无线信号;在步骤S5205中在第二时频资源块中发送第二无线信号。
在实施例5中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。第一配置信息和所述第一信令被所述第一节点U2用于确定所述M个时频资源块,所述第一配置信息是所述K2个配置信息中的一个配置信息;M是大于1的正整数。所述K3个配置信息包括所述K个配置信息中所有处于激活状态的配置信息,所述K3个配置信息包括所述K个配置信息中不属于所述第一配置信息集合的一个配置信息;K3是大于所述K2的正整数。所述K3个时频资源集合中的任一时频资源集合包括正整数个时频资源块,所述M个时频资源块属于所述K3个时频资源集合中的所述第一时频资源集合;所述K3个配置信息分别被所述第一节点U2用于确定所述K3个时频资源集合。第二配置信息被所述第一节点U2用于确定所述第二时频资源块,所述第二配置信息是所述K个配置信息中不属于所述第一配置信息集合的一个配置信息,所述第二信令被用于激活所述第二配置信息。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点N1是本申请中的所述第二节点。
作为一个实施例,本申请中的所述第二节点是所述第一服务小区的维持基站。
作为一个实施例,所述监测包括:在执行所述监测之前,本申请中的所述第二节点不确定是否存在无线信号。
作为一个实施例,所述监测包括能量检测,即在感知(Sense)无线信号的能量并在时间上平均以获得接收能量。如果所述接收能量大于第一给定阈值,则判断检测到无线信号;否则判断未检测到无线信号。
作为一个实施例,所述监测包括相干检测,即进行相干接收并测量所述相干接收后得到的信号的能量。如果所述所述相干接收后得到的信号的能量大于第二给定阈值,则判断检测到无线信号;否则判断未检测到无线信号。
作为一个实施例,所述监测包括盲译码,即接收无线信号并执行译码操作。如果根据校验比特确定译码正确,则判断检测到无线信号;否则判断未检测到无线信号。
作为一个实施例,本申请中的所述第二节点在所述M个时频资源块中的每一个时频资源块中执行所述监测。
作为一个实施例,所述第一配置信息被本申请中的所述第二节点用于在所述M个时频资源块中执行所述监测。
作为一个实施例,本申请中的所述第二节点根据所述第一配置信息在所述M个时频资源块中执行所述监测。
作为一个实施例,本申请中的所述第二节点在所述K3个时频资源集合包括的每一个时频资源块中执行所述监测。
作为一个实施例,本申请中的所述第二节点在所述K3个时频资源集合包括的部分时频资源块中执行所述监测。
作为一个实施例,本申请中的所述第二节点在所述K3个时频资源集合中不同于所述第一时频资源集合的每一个时频资源集合中执行所述监测。
作为一个实施例,所述K3个配置信息分别被本申请中的所述第二节点用于在所述K3个时频资源集合中执行所述监测。
作为一个实施例,本申请中的所述第二节点根据所述K3个配置信息分别在所述K3个时频资源集合中执行所述监测。
作为一个实施例,本申请中的所述第二节点仅在所述第一配置信息对应时频资源集合中检测到无线信号。
作为一个实施例,本申请中的所述第二节点在所述K3个配置信息中不同于所述第一配置信息的至少一个配置信息对应时频资源集合中检测到无线信号。
作为一个实施例,所述K个配置信息分别包括K个第一类索引,所述第一配置信息集合中的任一配置信息所包括的第一类索引的值等于第一索引。
作为一个实施例,所述K1个配置信息分别包括K1个第二类索引,所述第一信令指示所述K1个第二类索引中的K2个第二类索引;所述K2个第二类索引分别和所述K2个配置信息对应。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述第一信息分别在多个下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述第一信息在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上传输。
作为一个实施例,所述第一信息分别在多个PDSCH上传输。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述第一信令在PDCCH上传输。
作为一个实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据 的上行信道)上传输。
作为一个实施例,所述第一无线信号在PUSCH上传输。
作为一个实施例,所述第二无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为一个实施例,所述第二无线信号在PUSCH上传输。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述第二信令在PDCCH上传输。
实施例6
实施例6示例了根据本申请的一个实施例的K个配置信息和K个第一类索引的示意图;如附图6所示。在实施例6中,所述K个配置信息分别包括所述K个第一类索引,本申请中的所述第一配置信息集合中的任一配置信息所包括的第一类索引的值等于本申请中的所述第一索引。
作为一个实施例,所述第一索引是非负整数。
作为一个实施例,所述第一索引被用于标识所述第一配置信息集合。
作为一个实施例,所述K个配置信息中不属于所述第一配置信息集合的任一配置信息所包括的第一类索引的值不等于所述第一索引。
作为一个实施例,本申请中的所述第一信令指示所述第一索引。
作为一个实施例,所述K个第一类索引中的任一第一类索引被用于标识对应的配置信息。
实施例7
实施例7示例了根据本申请的一个实施例的M个时频资源块,第一时频资源块和第一无线信号的示意图;如附图7所示。在实施例7中,本申请中的所述第一节点从所述M个时频资源块中自行确定所述第一时频资源块,并在所述第一时频资源块中发送所述第一无线信号。
作为一个实施例,所述第一时频资源块是所述M个时频资源块中的一个时频资源块。
作为一个实施例,第一比特块被用于生成所述第一无线信号,所述第一比特块包括一个TB。
作为上述实施例的一个子实施例,所述第一比特块的到达时刻被所述第一节点用于从所述M个时频资源块中自行确定所述第一时频资源块。
作为上述实施例的一个子实施例,所述第一比特块到达所述第一节点的物理层的时刻被用于从所述M个时频资源块中自行确定所述第一时频资源块。
作为上述实施例的一个子实施例,所述第一时频资源块的起始时刻晚于所述第一比特块的到达时刻。
作为上述实施例的一个子实施例,所述第一无线信号是所述第一比特块中的比特依次经过信道编码(Channel Coding),速率匹配(Rate Matching),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation),调制和上变频(Modulation and Upconversion)之后的输出。
作为一个实施例,所述M个时频资源块中的任一时频资源块包括正整数个RE(Resource Element,资源粒子)。
作为一个实施例,一个所述RE在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,所述M个时频资源块中的任一时频资源块在时域包括正整数个多载波符号。
作为一个实施例,所述M个时频资源块中的任一时频资源块在时域包括正整数个连续的多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing, 正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号包括CP(cyclic perfix,循环前缀)。
作为一个实施例,所述M个时频资源块中的任一时频资源块在频域包括正整数个子载波。
作为一个实施例,所述M个时频资源块在时域两两相互正交。
作为一个实施例,所述M个时频资源块中任意两个相邻的时频资源块在时域不连续。
作为一个实施例,所述M个时频资源块在时域上是等间隔出现的。
作为一个实施例,所述M个时频资源块在时域上是不等间隔出现的。
作为一个实施例,所述M个时频资源块中任意两个相邻的时频资源块所占用的时域资源之间的时间间隔相等。
作为一个实施例,所述M个时频资源块中的任意两个时频资源块占用相同的频域资源。
作为一个实施例,所述M个时频资源块中存在两个时频资源块占用不同的频域资源。
作为一个实施例,所述第一配置信息和所述第一信令共同指示所述M个时频资源块。
作为一个实施例,所述第一配置信息和所述第一信令共同指示所述M个时频资源块所占用的频域资源。
作为一个实施例,所述第一配置信息和所述第一信令共同指示所述M个时频资源块所占用的时频资源。
作为一个实施例,所述第一配置信息和所述第一信令共同指示所述M个时频资源块所占用的时域资源。
作为上述实施例的一个子实施例,所述第一配置信息指示所述M个时频资源块中任意两个相邻的时频资源块所占用的时域资源之间的时间间隔。
作为上述实施例的一个子实施例,所述M个时频资源块在时域上是周期性出现的,所述第一配置信息指示所述M个时频资源块在时域上出现的周期。
作为上述实施例的一个子实施例,所述第一信令指示所述M个时频资源块中最早的一个时频资源块所占用的时域资源。
作为一个实施例,所述第一信令指示所述M个时频资源块所占用的频域资源。
作为一个实施例,所述第一信令指示所述第一无线信号的MCS。
作为一个实施例,所述第一配置信息包括所述M个时频资源块中任一时频资源块所承载的PUSCH的配置信息。
作为一个实施例,所述第一配置信息被所述第一节点用于生成在所述M个时频资源块中任一时频资源块中被发送的无线信号。
作为一个实施例,所述第一配置信息被用于生成所述第一无线信号。
作为一个实施例,所述第一配置信息包括承载所述第一无线信号的PUSCH的配置信息。
作为一个实施例,所述第一配置信息包括所述第一无线信号的跳频类型。
作为一个实施例,所述第一配置信息包括所述第一无线信号的DMRS配置信息。
作为一个实施例,所述第一配置信息包括所述第一无线信号的MCS表格(table)。
作为一个实施例,所述第一无线信号包括第一TB的多次重复传输(repetition),所述第一配置信息包括所述第一TB的重复传输次数。
作为上述实施例的一个子实施例,所述第一配置信息包括所述第一TB的每一次重复传输所对应的RV。
作为一个实施例,所述第一信令是所述第一时频资源块之前最近一次接收到的被用于激活本申请中的所述第一配置信息集合中的一个配置信息的信令。
作为一个实施例,所述第一信令是第一时刻之前最近一次接收到的被用于激活本申请中 的所述第一配置信息集合中的一个配置信息的信令;所述第一时刻比所述第一时频资源块所占用的时域资源的起始时刻早第一时间间隔。
作为上述实施例的一个子实施例,所述第一时间间隔由更高层信令配置。
作为一个实施例,在所述第一时频资源块所占用的时域资源内,本申请中的所述K2个配置信息处于激活状态。
作为一个实施例,在所述第一时频资源块所占用的时域资源内,所述K个配置信息中存在一个不属于本申请中的所述第一配置信息集合的配置信息和本申请中的所述K2个配置信息同时处于激活状态。
实施例8
实施例8示例了根据本申请的一个实施例的K3个配置信息和第一配置信息的示意图;如附图8所示。在实施例8中,本申请中的所述第一节点从所述K3个配置信息中自行确定所述第一配置信息。所述K3个配置信息包括本申请中的所述K个配置信息中所有处于激活状态的配置信息,所述K3个配置信息包括所述K个配置信息中不属于本申请中的所述第一配置信息集合的一个配置信息。在附图8中,所述K3个配置信息的索引分别是#0,...,#K3-1。
作为一个实施例,所述K3小于所述K。
作为一个实施例,所述K3个配置信息包括本申请中的所述K2个配置信息。
作为一个实施例,所述K3个配置信息由所述K个配置信息中所有处于激活状态的配置信息组成。
作为一个实施例,在本申请中的所述第一时频资源块所占用的时域资源内,所述K3个配置信息中的任一配置信息处于激活状态。
作为一个实施例,第一比特块被用于生成所述第一无线信号,所述第一比特块包括第一TB;所述第一TB的TBS(Transport Block Size,传输块大小)被所述第一节点用于从所述K3个配置信息中确定所述第一配置信息。
作为一个实施例,第一比特块被用于生成所述第一无线信号,所述第一比特块包括第一比特子块,所述第一比特子块被所述第一节点用于从所述K3个配置信息中确定所述第一配置信息。
作为上述实施例的一个子实施例,所述第一比特子块指示所述第一配置信息。
作为一个实施例,第一比特块被用于生成所述第一无线信号,所述第一比特块的到达时刻被所述第一节点用于从所述K3个配置信息中确定所述第一配置信息。
作为一个实施例,第一比特块被用于生成所述第一无线信号,所述第一比特块到达所述第一节点的时刻被用于从所述K3个配置信息中确定所述第一配置信息。
作为一个实施例,本申请中的所述第一无线信号的MCS被所述第一节点用于从所述K3个配置信息中确定所述第一配置信息。
作为一个实施例,所述K3个配置信息分别被用于确定K3个时频资源集合,所述K3个时频资源集合中的任一时频资源集合包括正整数个时频资源块,本申请中的所述M个时频资源块属于所述K3个时频资源集合中的第一时频资源集合;所述从K3个配置信息中自行确定所述第一配置信息包括:从所述K3个时频资源集合中自行确定所述第一时频资源集合。
作为上述实施例的一个子实施例,所述第一配置信息被所述第一节点用于从所述K3个时频资源集合中确定所述第一时频资源集合。
实施例9
实施例9示例了根据本申请的一个实施例的K1个配置信息和K1个第二类索引的示意图;如附图9所示。在实施例9中,所述K1个配置信息分别包括所述K1个第二类索引,本申请中的所述第一信令指示所述K1个第二类索引中的K2个第二类索引;所述K2个第二类索引分别和本申请中的所述K2个配置信息对应。在附图9中,所述K1个配置信息和所述K1个 第二类索引的索引分别是#0,...,#K1-1。
作为一个实施例,所述第一信令显示的指示所述K2个第二类索引。
作为一个实施例,所述第一信令显示的指示所述K1个第二类索引中的仅所述K2个第二类索引。
作为一个实施例,所述第一信令显示的指示本申请中的所述第一索引和所述K2个第二类索引。
作为一个实施例,所述第一信令显示的指示本申请中的所述第一索引以及所述K1个第二类索引中的仅所述K2个第二类索引。
作为一个实施例,所述K1个第二类索引分别被用于标识所述K1个配置信息。
作为一个实施例,本申请中的所述K个配置信息分别对应K个第二类索引,所述K1个第二类索引是所述K个第二类索引中分别和所述K1个配置信息对应的第二类索引;所述K个第二类索引分别被用于标识所述K个配置信息。
作为上述实施例的一个子实施例,所述K个第二类索引中的任意两个第二类索引的值不相等。
作为上述实施例的一个子实施例,所述K个第二类索引中存在两个第二类索引的值相等。
作为上述实施例的一个子实施例,对于所述K个配置信息中的任一给定配置信息,所述给定配置信息被对应的第一类索引和第二类索引共同标识。
作为上述实施例的一个子实施例,所述K1个第二类索引被用于确定所述K1个配置信息属于所述第一配置信息集合。
作为上述实施例的一个子实施例,所述K个第二类索引被用于确定所述K个配置信息中的仅所述K1个配置信息属于所述第一配置信息集合。
作为上述实施例的一个子实施例,本申请中的所述第二配置信息是所述K个配置信息中的一个配置信息,本申请中的所述第二信令指示所述第二配置信息对应的第二类索引。
作为上述实施例的一个子实施例,本申请中的所述第二信令指示本申请中的所述第二配置信息对应的第一类索引和第二类索引。
实施例10
实施例10示例了根据本申请的一个实施例的第二时频资源块和第二无线信号的示意图;如附图10所示。在实施例10中,本申请中的所述第一节点在所述第二时频资源块中发送所述第二无线信号。本申请中的所述第二配置信息被用于确定所述第二时频资源块,所述第二配置信息是本申请中的所述K个配置信息中不属于本申请中的所述第一配置信息集合的一个配置信息。
作为一个实施例,所述第二配置信息显示的指示所述第二时频资源块。
作为一个实施例,所述第二配置信息隐式的指示所述第二时频资源块。
作为一个实施例,所述第二配置信息被用于确定所述第二时频资源块所占用的时域资源。
作为一个实施例,所述第二配置信息被用于确定所述第二时频资源块所占用的时频资源。
作为一个实施例,所述第二配置信息是本申请中的所述K3个配置信息中的一个配置信息。
作为一个实施例,在所述第二时频资源块所占用的时域资源内,所述第二配置信息和本申请中的所述K2个配置信息同时处于激活状态。
作为一个实施例,所述第二时频资源块包括正整数个RE。
作为一个实施例,所述第二时频资源块在时域包括正整数个多载波符号。
作为一个实施例,所述第二时频资源块在频域包括正整数个子载波。
作为一个实施例,所述第二配置信息包括承载所述第二无线信号的PUSCH的配置信息。
作为一个实施例,所述第二配置信息被用于生成所述第二无线信号。
作为一个实施例,所述第二配置信息包括所述第二无线信号的跳频类型。
作为一个实施例,所述第二配置信息包括所述第二无线信号的DMRS配置信息。
作为一个实施例,所述第二配置信息包括所述第二无线信号的MCS表格(table)。
作为一个实施例,所述第二无线信号包括第二TB的多次重复传输(repetition),所述第二配置信息包括所述第二TB的重复传输次数。
作为上述实施例的一个子实施例,所述第二配置信息包括所述第二TB的每一次重复传输所对应的RV。
实施例11
实施例11示例了根据本申请的一个实施例的第二信令的示意图;如附图11所示。在实施例11中,所述第二信令被用于激活本申请中的所述第二配置信息。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令包括Configured UL grant(配置上行授予)DCI。
作为一个实施例,所述第二信令包括Configured UL grant激活(activation)DCI。
作为一个实施例,所述第二信令包括Configured UL grant Type 2(类型2)激活DCI。
作为一个实施例,所述第二信令是用户特定(UE-specific)的。
作为一个实施例,所述第二信令包括CRC被CS-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第二信令在Configured UL grant Type 2 scheduling activation PDCCH上传输。
作为一个实施例,所述第二配置信息和所述第二信令共同指示本申请中的所述第二时频资源块所占用的时频资源。
作为上述实施例的一个子实施例,所述第二时频资源块是M1个时频资源块中的一个时频资源块,M1是大于1的正整数,所述M1个时频资源块在时域两两相互正交;所述第二配置信息指示所述M1个时频资源块中任意两个相邻的时频资源块所占用的时域资源间的时间间隔,所述第二信令指示所述M1个时频资源块中最早的一个时频资源块所占用的时域资源。
作为一个实施例,所述第二信令指示所述第二时频资源块所占用的频频资源。
作为一个实施例,所述第二信令指示本申请中的所述第二无线信号的MCS。
作为一个实施例,所述第二配置信息是本申请中的所述K个配置信息中的一个配置信息,本申请中的所述K个第一类索引中和所述第二配置信息对应的第一类索引的值不等于本申请中的所述第一索引。
作为上述实施例的一个子实施例,所述第二信令指示所述第二配置信息对应的第一类索引的值。
作为一个实施例,所述第二信令所占用的时域资源的结束时刻不早于所述第一信令所占用的时域资源的结束时刻。
作为一个实施例,所述第二信令所占用的时域资源的结束时刻不晚于所述第一信令所占用的时域资源的结束时刻。
实施例12
实施例12示例了根据本申请的一个实施例的K3个配置信息和K3个时频资源集合的示意图;如附图12所示。在实施例12中,所述K3个配置信息分别被用于确定所述K3个时频资源集合;所述K3个时频资源集合中的任一时频资源集合包括正整数个时频资源块,本申请中的所述M个时频资源块属于所述K3个时频资源集合中的所述第一时频资源集合。在附图12中,所述K3个配置信息和所述K3个时频资源集合的索引分别是#0,...,#K3-1。
作为一个实施例,所述K3个配置信息分别显示的指示所述K3个时频资源集合。
作为一个实施例,所述K3个配置信息分别隐式的指示所述K3个时频资源集合。
作为一个实施例,所述K3个配置信息分别指示所述K3个时频资源集合占用的时域资源。
作为一个实施例,所述K3个配置信息分别指示所述K3个时频资源集合占用的时频资源。
作为一个实施例,所述K3个配置信息分别指示所述K3个时频资源集合包括的任意两个相邻的时频资源块所占用的时域资源之间的时间间隔。
作为一个实施例,第三配置信息是所述K3个配置信息中的任一配置信息,所述第三配置信息指示对应的时频资源集合包括的任意两个相邻的时频资源块所占用的时域资源之间的时间间隔。
作为一个实施例,所述K3个配置信息分别包括所述K3个时频资源集合所承载的PUSCH的配置信息。
作为一个实施例,所述K3个配置信息分别被用于生成在所述K3个时频资源集合中被发送的无线信号。
作为一个实施例,第三配置信息是所述K3个配置信息中的任一配置信息,所述第三配置信息包括对应的时频资源集合中的任一时频资源块所承载的PUSCH的配置信息。
作为一个实施例,第三配置信息是所述K3个配置信息中的任一配置信息,所述第三配置信息被用于生成在对应的时频资源集合中的任一时频资源块中被发送的无线信号。
作为一个实施例,所述K3个时频资源集合中包括的任一时频资源块包括正整数个RE。
作为一个实施例,所述K3个时频资源集合中包括的任一时频资源块在时域包括正整数个多载波符号。
作为一个实施例,所述K3个时频资源集合中包括的任一时频资源块在频域包括正整数个子载波。
作为一个实施例,所述K3个时频资源集合中的任一时频资源集合包括的正整数个时频资源块在时域两两相互正交。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图13所示。在附图13中,第一节点设备中的处理装置1300包括第一处理器1301和第一接收机1302。
在实施例13中第一处理器1301接收第一信息;第一接收机1302接收第一信令。
在实施例13中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,所述K个配置信息分别包括K个第一类索引,所述第一配置信息集合中的任一配置信息所包括的第一类索引的值等于第一索引。
作为一个实施例,所述第一处理器1301从M个时频资源块中自行确定第一时频资源块,并在所述第一时频资源块中发送第一无线信号;其中,第一配置信息和所述第一信令被用于确定所述M个时频资源块,所述第一配置信息是所述K2个配置信息中的一个配置信息;M是大于1的正整数。
作为一个实施例,所述第一处理器1301从K3个配置信息中自行确定所述第一配置信息;其中,所述K3个配置信息包括所述K个配置信息中所有处于激活状态的配置信息,所述K3个配置信息包括所述K个配置信息中不属于所述第一配置信息集合的一个配置信息;K3是大于所述K2的正整数。
作为一个实施例,所述K1个配置信息分别包括K1个第二类索引,所述第一信令指示所述K1个第二类索引中的K2个第二类索引;所述K2个第二类索引分别和所述K2个配置信息对应。
作为一个实施例,所述第一处理器1301在第二时频资源块中发送第二无线信号;其中, 第二配置信息被用于确定所述第二时频资源块,所述第二配置信息是所述K个配置信息中不属于所述第一配置信息集合的一个配置信息。
作为一个实施例,所述第一接收机1302接收第二信令;其中,所述第二信令被用于激活所述第二配置信息。
作为一个实施例,所述第一节点设备1300是用户设备。
作为一个实施例,所述第一节点设备1300是中继节点设备。
作为一个实施例,所述第一处理器1301包括实施例4中的{天线452,接收器454,发射器454,接收处理器456,发射处理器468,多天线接收处理器458,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一接收机1302包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图14所示。在附图14中,第二节点设备中的处理装置1400包括第二处理器1401和第一发送机1402。
在实施例14中,第二处理器1401发送第一信息;第一发送机1402发送第一信令。
在实施例14中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
作为一个实施例,所述K个配置信息分别包括K个第一类索引,所述第一配置信息集合中的任一配置信息所包括的第一类索引的值等于第一索引。
作为一个实施例,所述第二处理器1401在M个时频资源块中监测无线信号,在第一时频资源块中检测到第一无线信号,并在所述第一时频资源块中接收所述第一无线信号;其中,所述第一时频资源块是所述M个时频资源块中的一个时频资源块;第一配置信息和所述第一信令被用于确定所述M个时频资源块,所述第一配置信息是所述K2个配置信息中的一个配置信息;M是大于1的正整数。
作为一个实施例,所述第二处理器1401在K3个时频资源集合中不同于第一时频资源集合的一个时频资源集合中监测无线信号;其中,所述K3个时频资源集合中的任一时频资源集合包括正整数个时频资源块,所述M个时频资源块属于所述K3个时频资源集合中的所述第一时频资源集合;K3个配置信息分别被用于确定所述K3个时频资源集合,所述K3个配置信息包括所述K个配置信息中所有处于激活状态的配置信息,所述K3个配置信息包括所述K个配置信息中不属于所述第一配置信息集合的一个配置信息;K3是大于所述K2的正整数。
作为一个实施例,所述K1个配置信息分别包括K1个第二类索引,所述第一信令指示所述K1个第二类索引中的K2个第二类索引;所述K2个第二类索引分别和所述K2个配置信息对应。
作为一个实施例,所述第二处理器1401在第二时频资源块中接收第二无线信号;其中,第二配置信息被用于确定所述第二时频资源块,所述第二配置信息是所述K个配置信息中不属于所述第一配置信息集合的一个配置信息。
作为一个实施例,第一发送机1402发送第二信令;其中,所述第二信令被用于激活所述第二配置信息。
作为一个实施例,所述第二节点设备1400是基站设备。
作为一个实施例,所述第二节点设备1400是中继节点设备。
作为一个实施例,所述第二处理器1401包括实施例4中的{天线420,发射器418,接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第一发送机1402包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者***设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一处理器,接收第一信息;
    第一接收机,接收第一信令;
    其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述K个配置信息分别包括K个第一类索引,所述第一配置信息集合中的任一配置信息所包括的第一类索引的值等于第一索引。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一处理器从M个时频资源块中自行确定第一时频资源块,并在所述第一时频资源块中发送第一无线信号;其中,第一配置信息和所述第一信令被用于确定所述M个时频资源块,所述第一配置信息是所述K2个配置信息中的一个配置信息;M是大于1的正整数。
  4. 根据权利要求3所述的第一节点设备,其特征在于,所述第一处理器从K3个配置信息中自行确定所述第一配置信息;其中,所述K3个配置信息包括所述K个配置信息中所有处于激活状态的配置信息,所述K3个配置信息包括所述K个配置信息中不属于所述第一配置信息集合的一个配置信息;K3是大于所述K2的正整数。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述K1个配置信息分别包括K1个第二类索引,所述第一信令指示所述K1个第二类索引中的K2个第二类索引;所述K2个第二类索引分别和所述K2个配置信息对应。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一处理器在第二时频资源块中发送第二无线信号;其中,第二配置信息被用于确定所述第二时频资源块,所述第二配置信息是所述K个配置信息中不属于所述第一配置信息集合的一个配置信息。
  7. 根据权利要求6所述的第一节点设备,其特征在于,所述第一接收机接收第二信令;其中,所述第二信令被用于激活所述第二配置信息。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二处理器,发送第一信息;
    第一发送机,发送第一信令;
    其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息;
    接收第一信令;
    其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息;
    发送第一信令;
    其中,所述第一信息包括K个配置信息,所述K个配置信息都针对第一服务小区;第一配置信息集合包括所述K个配置信息中的K1个配置信息;所述第一信令被用于激活所述第一配置信息集合中的K2个配置信息,所述第一信令指示所述第一配置信息集合中仅所述K2个配置信息处于激活状态;K是大于1的正整数,K1是大于1且小于所述K的正整数,K2是小于所述K1的正整数。
PCT/CN2020/076989 2019-03-25 2020-02-27 一种被用于无线通信的节点中的方法和装置 WO2020192350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910227756.2 2019-03-25
CN201910227756.2A CN111741528B (zh) 2019-03-25 2019-03-25 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2020192350A1 true WO2020192350A1 (zh) 2020-10-01

Family

ID=72610157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076989 WO2020192350A1 (zh) 2019-03-25 2020-02-27 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN111741528B (zh)
WO (1) WO2020192350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109784A1 (zh) * 2022-11-24 2024-05-30 维沃移动通信有限公司 信号传输方法、装置及通信设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102826A1 (en) * 2021-12-09 2023-06-15 Zte Corporation Systems and methods for managing frequency resource group based service transmissions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024364A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种上行测量参考信号传输方法、装置和***
WO2018203680A1 (ko) * 2017-05-04 2018-11-08 엘지전자(주) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098358A1 (ko) * 2012-12-18 2014-06-26 엘지전자 주식회사 데이터 수신 방법 및 장치
CN107645777B (zh) * 2016-07-22 2020-05-26 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN112491507B (zh) * 2017-06-12 2022-03-29 上海朗帛通信技术有限公司 一种被用于多天线的用户设备、基站中的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024364A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种上行测量参考信号传输方法、装置和***
WO2018203680A1 (ko) * 2017-05-04 2018-11-08 엘지전자(주) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO ET AL.: "Configured grant type 2 on both SUL and UL", 3GPP TSG-RAN2 #101 R2-1801765, 2 March 2018 (2018-03-02), XP051398957, DOI: 20200424142300A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109784A1 (zh) * 2022-11-24 2024-05-30 维沃移动通信有限公司 信号传输方法、装置及通信设备

Also Published As

Publication number Publication date
CN111741528A (zh) 2020-10-02
CN111741528B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020020005A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11743927B2 (en) Method and device in nodes used for wireless communication
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244384A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020233405A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022161233A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022063145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022052971A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112637810B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046153A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023078080A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024055916A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778758

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20778758

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20778758

Country of ref document: EP

Kind code of ref document: A1