CN101189816A - 用于减少通信***中的往返延时和开销的方法和装置 - Google Patents

用于减少通信***中的往返延时和开销的方法和装置 Download PDF

Info

Publication number
CN101189816A
CN101189816A CNA2006800108715A CN200680010871A CN101189816A CN 101189816 A CN101189816 A CN 101189816A CN A2006800108715 A CNA2006800108715 A CN A2006800108715A CN 200680010871 A CN200680010871 A CN 200680010871A CN 101189816 A CN101189816 A CN 101189816A
Authority
CN
China
Prior art keywords
frame
subframe
radio frame
data
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800108715A
Other languages
English (en)
Inventor
布赖恩·K·克拉松
凯文·L·鲍姆
阿米塔瓦·高希
罗伯特·T·洛夫
维贾伊·南贾
肯尼斯·A·斯图尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN101189816A publication Critical patent/CN101189816A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

在操作过程中,无线电帧分为多个子帧。数据在多个子帧中在无线电帧上传送,并且具有选自两个或多个可行帧时长的帧时长。

Description

用于减少通信***中的往返延时和开销的方法和装置
相关申请
本申请要求2005年3月30日提交的美国临时申请序列号No.60/666494的优先权。
技术领域
本发明主要涉及通信***,并且特别地,涉及一种用于减少通信***中的往返延时和开销的方法和装置。
背景技术
无线宽带***发展的一个关键要求,诸如第三代合作伙伴项目(3GPP)长期演进(LTE)中的,是减少延时,以便于改善用户体验。出于链路层的角度,对延时的关键贡献因素是分组传输和分组接收应答之间的往返延迟。该往返延迟典型地被定义为许多个帧,其中帧是执行调度的时长。往返延迟自身确定了整体的自动重传请求(ARQ)设计,包括诸如第一和后继分组传输之间的延迟、或者混合ARQ信道(实例)的数目的设计参数。因此,集中于定义最优的帧时长的延时减少,对于在未来的通信***中发展改善的用户体验,是关键的。此类***包括3GPP中的增强型演进通用地面无线电接入(UTRA)和演进通用地面无线电接入网络(UTRAN)(还被称为EUTRA和EUTRAN),以及其他产生技术规范的组织中的通信***的演进(3GPP2中的“阶段2”、和IEEE 802.11、802.16、802.20和802.22的演进)。
不幸地,对于需要不同的服务质量(QoS)特性或者提供不同的分组尺寸的不同的业务类型,不存在最佳的单个帧时长。在考虑控制信道和帧中的导频开销时,这是特别真实的。例如,如果每个资源分配的每个用户的绝对控制信道开销是恒定的,并且每个帧分配了单个用户,则0.5ms的帧时长将在有效性上粗略地比2ms的帧时长小四倍。此外,不同的制造商或运营商可能会优选不同的帧时长,使得难以开发工业标准或者兼容设备。因此,需要一种用于在通信***中减少往返延时和开销的改进的方法。
附图说明
图1是通信***的框图。
图2是用于执行上行链路和下行链路传输的电路框图。
图3是无线电帧的框图。
图4示出了连续短帧序列。
图5示出了连续长帧序列。
图6示出了10ms无线电帧和大约0.5ms、0.55556ms、0.625ms和0.67ms的子帧的表格。
图7示出了对于表1的第三数据列的示例,其具有0.5ms的子帧,并且每个长帧(3ms)具有6个子帧。
图8示出了基于2ms长帧和0.5ms短帧的组合的无线电帧的两个示例。
图9示出了包括j=10个OFDM符号的子帧,每个符号均具有5.56μs的循环前缀901,其可用于单播传输。
图10示出了包括j=9个符号的“广播”子帧,每个符号均具有11.11μs的循环前缀1001,其可用于广播传输。
图11示出了具有三个子帧类型的示例的表格。
图12示出了全部由广播子帧组成或者全部由常规(单播)子帧组成的长帧。
图13示出了由常规子帧或者广播子帧以及一个或多个广播类型短帧组成的短帧。
图14示出了无线电帧开销的示例。
图15示出了任意尺寸的交替无线电帧结构,其中同步和控制(S+C)区域不是无线电帧的一部分,而是由无线电帧组成的较大的分级帧结构的一部分,该较大的分级帧结构由每j个无线电帧发送(S+C)区域的无线电帧组成。
图16和图17说明了分级帧结构,其中超帧被定义为由n+1个无线电帧组成。
图18示出了具有与下行链路子帧相同的配置的上行链路子帧。
图19至图21示出了由0.5ms子帧组成的2ms长帧,其具有长RACH、数据(Data)或复合(Composite)的帧类型。
具体实施方式
为了应对上文提及的需要,此处提供了一种用于减少往返延时的方法和装置。在操作过程中,无线电帧被分为多个子帧。数据在多个子帧中在所述无线电帧上传送,并且具有选自两个或多个可行帧时长的帧时长。
本发明包括一种用于减少通信***中的往返延时的方法。该方法包括接收要在无线电帧上传送的数据的步骤,其中无线电帧包括多个子帧。帧时长选自两个或多个可行帧时长,其中帧基本上等于多个子帧。数据被安置在所述多个子帧中,以产生多个数据子帧,并且在所述无线电帧上传送具有多个数据子帧的所述帧。
此外,本发明包括一种方法,该方法包括接收要在无线电帧上传送到第一用户的数据的步骤,其中无线电帧包括多个子帧。从两个或多个可行的帧时长中为第一用户选择帧时长,其中帧基本上等于多个子帧。第一用户的数据被安置在所述多个子帧中,以产生多个数据子帧,并且随后在所述无线电帧上将具有所述多个数据子帧的该帧传送到第一用户。接收要在所述无线电帧上传送到第二用户的第二数据。从所述两个或多个可行的帧时长中为第二用户选择第二帧时长,其中第二帧基本上等于多个子帧。第二用户的第二数据被安置在所述多个子帧中,以产生第二多个数据子帧,并且在所述无线电帧上将具有所述第二多个数据子帧的第二帧传送到第二用户。
本发明包括一种用于在通信***中传送数据的方法。该方法包括接收要在无线电帧上传送的数据的步骤,其中无线电帧包括多个子帧。帧长度被选择为包括多个子帧,并且为所述多个子帧从两个或多个子帧类型中选择一个子帧类型。所述数据被安置在所述多个子帧中,以产生多个数据子帧,并且在所述无线电帧上传送具有所述多个数据子帧和所述子帧类型的所述帧。
本发明包括一种用于在通信***中传送数据的方法。该方法包括接收要在无线电帧上传送的数据的步骤,其中无线电帧包括多个子帧。选择帧,其中该帧基本上等于多个子帧。所述数据被安置在所述多个子帧中,以产生多个数据子帧,并且将公共导频安置在所述多个子帧中的每个子帧中。在所述无线电帧上传送具有所述多个数据子帧的所述帧。
本发明包括一种用于在通信***中传送数据的方法。该方法包括从两个或多个***带宽中确定***带宽以及在无线电帧和所述***带宽上接收待传送数据的步骤。所述无线电帧包括多个子帧,并且无线电帧时长和子帧时长基于所述***带宽。选择帧,其中该帧基本上等于多个子帧。所述数据被安置在所述多个子帧中,以产生多个数据子帧,并且在所述无线电帧上传送具有所述多个数据子帧和所述子帧类型的所述帧。
一种用于在通信***中传送数据的方法。该方法包括确定载波带宽以及接收要在无线电帧上传送的数据的步骤,其中无线电帧包括多个子帧。选择帧,其中该帧基本上等于多个子帧,并且每个子帧包括资源元素,其中资源元素包括多个子载波,使得载波带宽被分为许多个资源元素。所述数据被安置在所述多个子帧中,以产生多个数据子帧,并且在所述无线电帧上传送具有所述多个数据子帧和所述子帧类型的所述帧。
现在转到附图,其中同样的附图标记表示相同的元件,图1是通信***100的框图。通信***100包括多个小区105(仅示出了一个),每个小区具有基站收发信机(BTS,或者基站)104,其与多个远程或移动单元101~103通信。在本发明的优选实施例中,通信***100利用下一代正交频分复用(OFDM)或者基于多载波的架构,诸如具有或者不具有循环前缀或保护间隔的OFDM(例如,具有循环前缀或保护间隔的传统的OFDM、具有脉冲整形但不具有循环前缀或保护间隔的OFDM(具有IOTA(各向同性正交变换算法)原型滤波器的OFDM/OQAM))、或者具有或不具有循环前缀或保护间隔的单个载波(例如,IFDMA、DFT-Spread-OFDM)等等。数据传输可以是下行链路传输或者上行链路传输。传输方案可以包括自适应调制和编码(AMC)。该架构还可以包括,使用扩频技术,诸如多载波CDMA(MC-CDMA)、多载波直接序列CDMA(MC-DS-CDMA)、具有一维或二维扩频的正交频分和码分复用(OFCDM),或者可以基于更简单的时分和/或频分复用/多址技术,或者该多种技术的组合。然而,在可替换的实施例中,通信***100可以利用其他的宽带蜂窝通信***协议,诸如,但不限于,TDMA或直接序列CDMA。
除了OFDM以外,通信***100利用自适应调制和编码(AMC)。通过AMC,对于正在传送的特定帧,到特定接收机的传送数据流的调制和编码格式变为主要与当前接收信号质量匹配(在接收机处)。调制和编码方案可以逐帧变化,以便于跟踪移动通信***中出现的信道质量变化。因此,高质量的流典型地被指配较高等级的调制速率和/或较高的信道编码速率,而调制等级和/或编码速率随着质量下降而下降。对于那些经历高质量的接收机,利用诸如16 QAM、64 QAM或256QAM的调制方案,而对于那些经历低质量的接收机,利用诸如BPSK或QPSK的调制方案。
对于每个调制方案,可以利用多个编码速率,以提供更细微的AMC粒度,用于实现质量和传送信号特性之间的更紧密的匹配(例如,对于QPSK,R=1/4、1/2和3/4;并且对于16 QAM,R=2/3等等)。应当注意,可以在时间维度(例如,每Nt个OFDM符号周期更新调制/编码)或在频率维度(例如,每Nsc个子载波更新调制/编码)或者通过两者的组合,执行AMC。
出于诸如信道质量测量延迟或误差或者信道质量报告延迟的原因,选定的调制和编码可以主要仅与当前的接收信号质量匹配。该延时典型地由分组传输和分组接收应答之间的往返延迟引起。
为了减少延时,无线电帧(RAF)和子帧被定义为,RAF被分为许多个(在优选实施例中是整数)子帧。在无线电帧中,帧由整数个用于数据传输的子帧构造,两个或或多个帧时长可用(例如,一个子帧的第一帧时长,以及三个子帧的第二帧时长)。
例如,可以定义来自UTRA的10ms的核心无线电帧结构,每个无线电帧具有Nrf个子帧(例如,Nrf=20个Tsf=0.5ms的子帧,其中Tsf=一个子帧的时长)。对于OFDM传输,子帧包括整数P个OFDM符号间隔(例如,对于Tsn=50μs的符号,P=10,其中Tsn=一个OFDM符号的时长),并且可以基于保护间隔或者循环前缀定义一个或多个子帧类型(例如,常规或广播)。
如本领域的普通技术人员所应认识的,帧与调度数据传输相关联。帧可被定义为‘可调度的’资源或者可调度的单元,其中该帧具有相关联的控制结构(可能是唯一关联的),该控制结构控制资源的使用(即分配给用户等)。例如,当将在帧上调度用户时,对应于帧的资源分配消息将提供帧中的资源(例如,对于OFDM***,一个OFDM符号上的每一个子载波的许多个调制符号)用于传输。帧上的数据传输的应答将被返回,并且新的数据或者数据重新传输可以在未来的帧上调度。由于未在资源分配中分配帧中的所有资源(诸如在OFDM***中),因此资源分配可能未跨越帧中的全部可用带宽和/或时间资源。
基于所服务的业务类型,不同的帧时长可用于减少延时和开销。例如,如果需要第一传输和重新传输,以可靠地接收互联网协议语音(VoIP)数据分组,并且重新传输仅能在一个帧延迟之后发生,则在0.5ms的帧中而非0.2ms的帧中分配资源将可靠接收的延迟从6ms(传输、空闲帧、重新传输)减少到1.5ms。在另一示例中,提供无分段地配合用户分组的资源分配,诸如1ms帧而非0.5ms帧,可以减少开销,诸如用于分组的多个片段的控制和应答信令。
可以使用反映资源集合的其他名称,诸如连续OFDM符号,而非子帧、帧和无线电帧。例如,术语“时隙”可用于“子帧”,或者“传输时间间隔(TTI)”可用于“帧”或“帧时长”。此外,帧可被视为用户传输特有的量(诸如与用户和数据流相关联的TTI),并且因此帧不需要在用户之间或者甚至来自相同用户的传输之间同步或对准(例如,一个子帧可以包含来自用户的两个数据传输的部分,第一个传输在具有一个子帧的帧中传输,而第二个传输在具有四个子帧的帧中传输)。当然,有利的是,将同用户的传输或者同多个用户的传输限制为具有同步或对准的帧,诸如在将时间分为0.5ms或2ms的帧序列,并且所有资源分配必须在这些帧中的时候。如上文指出的,无线电帧可以表示不同尺寸的子帧或帧的集合,或者资源的集合,诸如连续的OFDM或DFT-SOFDM符号,其超过子帧中的该符号的数目,其中在子帧中,每个符号依赖于载波带宽由一定数目的子载波组成。
此外,无线电帧结构可用于以如下方式定义用于下行链路(DL)传输的公共控制信道(诸如广播信道、寻呼信道、同步信道和/或指示信道),即其被时分复用为子帧序列,其可以简化处理或者增加用户设备(远程单元)处的电池的寿命。类似地,对于上行链路(UL)传输,无线电帧结构可以额外地用于定义争用信道(例如,随机接入信道(RACH))、同共享数据信道复用操作的包括导频时间的控制信道。
图2是用于基站104或移动站101~103执行上行链路和下行链路传输的电路框图200。如所示出的,电路200包括逻辑电路201、传送电路202和接收电路203。逻辑电路200优选地包括微处理器控制器,诸如,但不限于,Freescale PowerPC微处理器。传送和接收电路202~203是本领域中已知的常见电路,用于利用公知的网络协议通信,并且用作用于传送和接收消息的装置。例如,发射机202和接收机203优选地是利用3GPP网络协议的公知的发射机和接收机。其他可行的发射机和接收机包括,但不限于,利用Bluetooth、IEEE 802.16或者HyperLAN协议的收发信机。
在操作过程中,发射机203和接收机204传送和接收如上文讨论的数据帧以及控制信息。更具体地,数据传输是通过接收要在无线电帧上传送的数据而发生。无线电帧(图3中示出)包括多个子帧300(仅标出了一个),其中子帧301的时长基本上是恒定的,并且无线电帧300的时长是恒定的。例如,无线电帧包括m=20个时长0.5ms的子帧300,其由j=10个符号构成。在传输过程中,逻辑电路201从两个或多个帧时长中选择帧时长,其中帧时长基本上是子帧时长乘以一个数目。基于该帧时长,该数目的子帧被组织在帧中,并且数据被安置在子帧中。传输是通过发射机202在无线电帧上传送具有该数目的子帧的帧300而发生的。
如前面提及的,数据传输可以是下行链路传输或者上行链路传输。传输方案可以是具有或不具有循环前缀或保护间隔的OFDM(例如,具有循环前缀或保护间隔的传统的OFDM、具有脉冲整形但不具有循环前缀或保护间隔的OFDM(具有IOTA(各向同性正交变换算法)原型滤波器的OFDM/OQAM))、或者具有或不具有循环前缀或保护间隔的单个载波(例如,IFDMA、DFT-Spread-OFDM)、CDM等等。
帧时长
存在两个或多个帧时长。如果定义了两个帧时长,则可以将其指定为短的或长的,其中短帧时长包括比长帧时长少的子帧。图4示出了连续的短帧序列401(短帧复用),而图5示出了连续的长帧序列501(长帧复用)。可以将时间分为子帧序列,子帧被组织在两个或多个时长的帧中,并且在连续的帧之间,帧时长可以不同。帧的子帧具有子帧类型,典型地具有两个或多个子帧类型。每个短帧和长帧是可调度的单元,其由ns(n)个子帧组成。在图4和图5的示例中,子帧具有0.5ms的时长和10个符号,对于短帧401,ns=1,而对于长帧501,n=6(3ms),尽管也可以使用其他的值。不需要定义无线电帧,或者如果定义了无线电帧,则帧(例如,短帧或长帧)可以跨越不止一个无线电帧。作为示例,公共导频或者公共参考符号或者公共参考信号被时分复用(TDM)在每个子帧的第一符号上,并且控制符号被TDM在每个帧的第一符号上(也可以使用其他的形式的复用操作,诸如FDM、CDM及组合)。导频符号和资源分配控制配置将在后面的章节中讨论,此处的目的在于示出,长帧的控制开销可小于短帧的控制开销。
无线电帧(无线电帧)可以包括短帧401、长帧501或者短帧和长帧的某种组合。单个用户可以在无线电帧中具有短帧和长帧,或者可以限制到一个帧时长。多个用户的帧可以是同步的或对准的,或者可以是不同步的或者非对准的。通常,帧(例如,短帧或长帧)可以跨越不止一个无线电帧。图6的表1中示出了关于10ms的无线电帧和大约0.5ms、0.55556ms、0.625ms和0.67ms的子帧的数个不同的长帧配置。在该示例中,短帧时长是一个子帧,而长帧时长是变化的。对于每个配置,示出了每个无线电帧的长帧的最大数目,以及每个无线电帧的短帧的最小数目。假设了(例如,针对前面提及的公共控制信道)可选的无线电帧开销(在子帧中),这将在“无线电帧开销复用”章节中讨论。然而,无线电帧和其他的开销在帧(数据子帧)中也可以复用。出于简化和灵活性的目的,优选的但不是必需的是,无线电帧开销是整数个子帧。
图7示出了表1的第三数据列的示例,每个长帧(3ms)具有6个0.5ms的子帧。在图7的示例中,无线电帧开始于两个同步和控制子帧(无线电帧开销)701,其后面是18个短帧702(仅标出了一个)或者3个长帧703(仅标出了一个),其中每个长帧由6个子帧组成。该示例中的额外的(可选的)参数是每个无线电帧的短帧的最小数目(表格的最后一行)。该参数确定了无线电帧是否必须包含某些短帧。通过将每个无线电帧的短帧的最小数目设定为零,允许通过长帧而非短帧完全填充无线电帧。由于每个无线电帧的短帧的最小数目是零,因此可以在无线电帧中禁止短帧和长帧的混合(通常允许)。
可替换地,表1还示出了每个长帧(2ms)具有4个0.5ms的子帧的表格条目。图8示出了基于2ms长帧和0.5ms短帧的组合的无线电帧的两个示例。长帧的可行的开始位置可被限制到无线电帧中的已知位置。
选择特定的帧时长的原因
作为示例,可以部分基于如下因素选择帧时长:
·对帧时长有偏爱的特定的硬件,包括用户设备的权能。
·运营商或制造商的偏好,其可以包括(在其它因素之外)部署偏好或者可用的频谱以及与其他部署的无线***邻接
·信道带宽(诸如1.25MHz或10MHz),
·来自一个或多个用户的用户条件,其中用户条件可以是速度(Doppler)、无线电信道条件、用户在小区中的位置(例如,小区边缘)或者其他的用户条件。
·一个或多个用户的用户业务特性,诸如延时需求、分组尺寸、错误率、可允许的重新传输次数等。
·可以部分地基于使一个或多个用户的开销最小化,选择帧时长。开销可以是控制开销、分段开销(例如,CRC)或者其他开销。
·帧中待调度的用户数目
·无线电网络状态,包括***“负载”和每个小区中的用户数目。
·同遗留***的向后兼容性
·载波的频率和调制划分以及指配的业务类型:整个载波可以分为两个或多个不同尺寸的带,每个带中使用不同的调制类型(例如,载波带宽分为CDMA或单个载波或扩频OFDM带和多载波OFDM带),由此对于每个带中的所指配或调度的业务类型(例如,CDMA带中的VoIP和其他OFDM带中的网络浏览),不同的帧尺寸是更好的或者(近似)最优的
作为示例,考虑在短帧(例如,小于最大数目的子帧的帧时长)和长帧(例如,大于最小数目的子帧的帧时长)之间为单个用户选择帧时长。出于最低的延时、最小的分组、中等的Doppler、大的带宽或者其它原因,可以选择短帧。出于较低的开销、低的延时、较大的分组、低的或高的Doppler、小区边缘、小的带宽、多用户调度、频率选择性调度或者其它原因,可以选择长帧。然而,通常不需要应用硬性的规则,因此可以在任何帧时长(短或长)中使用任何延时、分组尺寸、带宽、Doppler、位置、调度方法等。例如,子帧时长可以对应于最小下行链路帧或者TTI。多个子帧串接成为较长的帧或者TTI,可以例如提供对较低的数据速率和QoS最优化的支持。
可以基于许多粒度中的任何粒度选择帧时长。帧时长或TTI可以是半静态或动态输送信道属性。这样,可以逐帧地(并且因此动态地)或者半静态地确定帧时长或者TTI。在动态的情况下,网络(节点B)将显性地(例如,利用L1比特)或者隐性地(例如,通过指出调制和编码速率以及输送块尺寸)信令通知帧时长。在半静态的帧时长或TTI的情况下,可以通过较高层(例如L3)的信令设定帧时长或TTI。粒度包括,但不限于,逐帧进行、在无线电帧中、在无线电帧之间、每无线电帧的倍数(10、20、100等)、每若干ms或s(例如,115ms、1s等)、切换时、***注册时、***部署时、接收到L3消息时等等。粒度可被命名为“静态”、“半静态”、“半动态”、“动态”或者其他术语。还可以在任何上文的“选择”特性改变时,或者出于任何其他原因,触发帧时长或者TTI。
子帧类型
在下行链路和上行链路中,存在至少一种类型的子帧,并且典型地,对于下行链路(并且有时对于上行链路),通常存在两种或多种类型的子帧(每种子帧具有基本上相同的时长)。例如,类型可以是“常规”和“广播”(对于下行链路传输),或者类型A、B和C等等。在该情况中,数据传输程序被扩展为包括:
·接收要在无线电帧上传送的数据,其中无线电帧包括多个子帧,其中子帧的时长基本上是恒定的,并且无线电帧的时长是恒定的;
·从两个或多个帧时长中选择帧时长,其中帧时长基本上是子帧时长乘以数目;
·基于该帧时长,将该数目的子帧组织到该帧中
·选择子帧类型,其中所选择的子帧类型规定可以容纳于子帧中的数据量
·将数据安置在具有该子帧类型的子帧中
·在无线电帧上传送具有该数目的子帧的帧。
如所指出的,帧中的所有子帧具有相同的类型,尽管通常地,子帧类型可以在帧中混合。
通过传输参数可以区分子帧类型。对于OFDM传输,这可以包括保护间隔时长、子载波间距、子载波数目或者FFT尺寸。在优选实施例中,通过传输的保护间隔(或者循环前缀)可以区分子帧类型。在示例中,这种传输被称为OFDM传输,尽管如本领域中已知的,保护间隔也可以应用到单个载波(例如,IFDMA)或者扩频(例如,CDMA)信号。较长的保护间隔可用于部署较大的小区、广播或多播传输、释放同步要求、或者上行链路传输。
作为示例,考虑具有22.5kHz子载波间距和44.44μs(非扩展)的符号时长的OFDM***。图9示出了子载波900,其包括j=10个OFDM符号,每个符号具有5.56μs的循环前缀,其可用于单播传输。图10示出了“广播”子帧1000,其包括j=9个符号,每个符号具有11.11μs的循环前缀1001,其可用于广播传输。在图中,子帧中的符号的使用未被示出(例如,数据、导频、控制或其他功能)。显而易见的是,用于广播子帧的循环前缀1001大于(在时间上)用于单播(非多播或广播)子帧的循环前缀901。因此通过帧的循环前缀长度可以将帧确认为短帧或长帧。当然,具有较长CP的子帧可用于单播,而具有较短CP的子帧可用于广播,因此诸如子帧类型A或B的名称是适当的。
图11中示出的表2中提供了关于22.5kHz子载波间距和大约0.5、0.5556、0.625和0.6667ms的子帧的三个子帧类型的示例。针对每个子帧时长示出了三个循环前缀时长(用于子帧类型A、B和C)。也可以定义其他的子载波间距,诸如,但不限于,7~8kHz、12~13kHz、15kHz、17~18kHz。而且,在子帧中,由于不同的保护时长(循环前缀)或者不同的子载波间距或FFT尺寸,所有符号可以不具有相同的符号时长。
所使用的OFDM数字命名方案仅是示例性的,并且许多其他方案也是可行的。例如,图11中示出的表3使用25kHz子载波间距。如该示例中示出的(例如,0.5ms子帧,5.45μs保护间隔),子帧中可以存在非均匀的保护间隔时长,诸如在所需的符号数目没有除尽每个子帧的样本数目时。在该情况中,表格条目表示子帧符号的平均循环前缀。在“可比例缩放带宽”章节中示出了如何修改每个子帧符号的循环前缀的示例。
长帧可以完全由广播子帧组成,或者完全由常规(单播)子帧组成(参看图12),或者由常规和广播子帧的组合组成。一个或多个广播类型的长帧可以出现在无线电帧中。短帧也可以由常规或广播子帧组成,并且一个或多个广播类型的短帧可以出现在无线电帧中(参看图13)。广播帧可以同其他的广播帧组织在一起,以改善单播和非单播数据的信道估计(参看“导频符号”章节;可以使用来自相邻子帧的公共导频),并且/或者可以在广播帧中间隔***非广播帧以进行时间交织。尽管没有示出,但是至少一个额外的子帧类型可以是类型“空白”。空白子帧可以是空的,或者包含固定的或伪的随机生成的负荷。空白子帧可用于避免干扰、测量干扰,或者在无线电帧中的帧中不存在数据时使用。还可以定义其他的子帧类型。
无线电帧辅助功能复用
无线电帧的一个部分可被预留用于辅助功能。辅助功能可以包括无线电帧控制(包括公共控制结构)、同步字段或序列、指示符信令通知对互补无线电信道(诸如FDD载波对伴随频率)上的活动的响应、或者其他的开销类型。
在图14中,图解说明了被称为“同步和控制区域”的无线电帧开销的一个示例。在该示例中,开销是在20个子帧的无线电帧中时间复用的2个子帧。子帧中的其他形式的复用同步和控制也是可行的。同步和控制区域可以包括多种类型的同步符号(包括小区专用的小区同步符号(CSS)、在两个或多个网络边缘节点之间共享的全局同步符号(GSS))、公共导频符号(CPS)、寻呼指示符信道符号(PI)、应答指示符信道符号(AI)、其他指示符信道(OI)、广播指示符信道(BI)、广播控制信道信息(BCCH)、和寻呼信道信息(PCH)。这些信道一般出现在蜂窝通信***中,并且可以具有不同的名称或者不存在于某些***中。此外,可以存在其他的控制和同步信道,并且其在该区域中传送。
图15示出了具有任意尺寸的可替换的无线电帧结构,其中同步和控制(S+C)区域不是无线电帧的一部分,而是由无线电帧组成的较大的分级帧结构的一部分,其中每j个无线电帧发送(S+C)区域。在该示例中,S+C区域之后的无线电帧是18个子帧。
图16和图17图解说明了分级帧结构,其中定义了超帧,其由n+1个无线电帧组成。在图16中,无线电帧和超帧均分别具有控制区域以及同步和控制区域,而在图17中,仅超帧包括控制区域。对于超帧中的不同的无线电帧位置,无线电帧控制和同步区域可以具有相同的类型,或者可以是不同的。
无线电帧的同步和控制部分可以是一个或多个子帧的全部或部分,并且可以是固定时长。其还可以依赖于其中嵌入了无线电帧序列的分级结构在无线电帧之间变化。例如,如图16中示出的,其可以包括每个无线电帧的最初的两个子帧。通常,当在多个子帧的全部或部分中存在同步和/或控制时,所述多个子帧不需要直接相互相邻。在另一示例中,其可以包括一个无线电帧中的两个子帧以及另一无线电帧中的三个子帧。具有额外的子帧开销的无线电帧不会频繁地出现,并且额外的开销可以出现在与常规(频繁的)无线电帧开销相邻或不相邻的子帧中。在可替换的实施例中,开销可以位于无线电帧中,但是可以不是整数个子帧,如果无线电帧没有等分为子帧而是分为开销区域加上整数个子帧,则这可能发生。例如,10ms的无线电帧可由10个子帧,其中每个子帧具有0.9ms的长度,加上用于无线电帧开销的1ms的部分(例如,无线电帧寻呼或广播信道)构成。
如下文所将讨论的,所有或某些无线电帧的同步和控制部分可以(但不是必需的)被配置为传递关于无线电帧的布局的信息,诸如短/长子帧配置的映射(示例-如果无线电帧具有两个长帧和随后的短帧,则该配置可以表示为L-L-S)。此外,同步和控制部分可以指明将哪些子帧用于广播等。以该方式传递无线电帧布局将减少或潜在地消除以下需要:逐个子帧地对帧的布局和使用进行盲检测、或者经由较高层的信令递送无线电帧的“调度”、或者事先定义有限数目的无线电帧序列(然后在初始***接入时选择其中一个并且将其信令通知给用户设备)。应当注意,常规数据帧还可用于承载层3(L3)消息。
成帧控制
存在用户站(SS)101~103确定无线电帧中的成帧结构(和子帧类型)的数种方式。例如:
·盲(例如,BS动态控制但未信令通知,因此SS必须确定无线电帧中的帧起点。帧起点可以基于帧中的导频或控制符号的存在。)
·超帧(例如,BS每隔1sec传送指明帧配置的信息,直至下一超帧)
·***部署(基站)和注册(移动站)
·在无线电帧同步和控制部分中被信令通知
·在无线电帧中的第一帧中被信令通知(可以声明其他帧的映射)
·在分配资源的控制指配中
通常,两个或多个帧时长和子帧类型可以存在于无线电帧中。如果通信***100被配置为,无线电帧中的短帧和长帧的混合可以变化,则长帧的可能开始位置可被固定,以减少信令通知/搜索。如果无线电帧仅具有单个帧时长或者单个子帧类型,则可以进一步减少信令通知/搜索。在许多情况下,无线电帧的成帧结构的确定还提供了关于无线电帧中的控制和导频信息的位置的信息,诸如在资源分配控制(下一章节)位于每个帧的第二符号的起点处的时候。
某些控制方法可能更加适合于逐帧变化的业务条件。例如,在指定子帧中具有每个无线电帧的控制映射(无线电帧中的第一个,前一无线电帧中的最后一个),可以允许在一个无线电帧中有效率地处理大的分组(例如,TCP/IP),并且允许在另一无线电帧中处理许多VoIP用户。可替换地,如果用户业务类型变化相对较慢,则超帧信令通知足可改变无线电帧中的控制信道分配。
资源分配(RA)控制
帧具有相关联的控制结构(可能是唯一相关联的),其控制用户的资源的使用(分配)。典型地针对每个帧及其各自的帧时长提供资源分配(RA)控制,以便于在调度重新传输时减少延迟。在许多情况下,无线电帧的成帧结构的确定还提供了关于无线电帧中的(每个帧的)资源分配控制的位置的信息,诸如在资源分配控制位于每个帧(长帧或短帧)的第二符号的起点处的时候。控制信道优选地是TDM(例如,一个或多个TDM符号),并且位于帧起点处或其附近,但是还可以可替换地在时间(符号)、频率(子载波)或此两者上遍布于帧中。还可以使用控制信息的一维或二维扩频和码分复用(CDM),并且依赖于***配置,还可以组合诸如TDM、FDM、CDM的多种复用方法。
通常,诸如对于TDM/FDM/CDM复用,在帧中存在两个或多个用户分配资源,尽管对每个帧限制为单个用户也是可行的,诸如TDM。因此,当控制信道存在于帧中时,其可以为一个或多个用户分配资源。如果使用分立的控制信道用于帧中的两个用户的资源分配,则帧中还可以存在不止一个控制信道。
该控制域还可以包含比关于该帧的资源分配更多的信息。例如,在下行链路上,RA控制可以包含关于上行链路的上行链路资源分配和应答信息。对于快速调度和最低延时,对应于独立帧的快速应答可能是优选的。另一示例是,该控制域可以进行永久资源分配,其对于不止一个帧都保持适用(例如,用于指明数目的帧或者无线电帧的不变的资源分配,或者直至通过不同帧中的另一控制消息被关闭)
无线电帧的第一帧(或者前一无线电帧中的最后一个帧)中的控制信息还可以提供用于下一个(或者更一般地,未来的)帧或者无线电帧的剩余部分的成帧(并且因此提供控制位置)。两个另外的变化:
·重叠控制区:第一帧的控制信道可以指配给其自身的帧,并且某些可以指配给第二帧,并且第二帧中的控制信道可以额外地指配给第二帧。该能力对于在单个无线电帧中混合不同的业务类型(例如,VoIP和大分组)可以是有用的。
·无线电帧中的额外的调度灵活性(部分不明确):第一帧中的控制信道(或者无线电帧中的成帧控制映射)可以给出关于无线电帧的控制映射的稍微不明确的说明,以实现更多的逐帧的灵活性。例如,控制映射可以指出帧/控制位置,其是明确的或者可能的。半盲接收机将了解明确位置,将须盲式确定可能的帧/控制位置是否有效。
导频符号
通过TDM、FDM、CDM或者它们的多种组合,导频或参考符号可以在帧中或子帧中复用。导频符号可以是公共的(由任何用户接收和使用)或者专用的(用于特定的用户或者特定的用户组),并且在帧中可能存在公共和专用导频的混合。例如,公共导频符号(CPS)参考符号可以是子帧中的第一个符号(TDM导频),由此在整个无线电帧中提供了间距基本上均匀的公共导频符号。下行链路和上行链路可以具有不同的导频符号格式。导频符号分配可以是恒定的,或者可以信令通知。例如,可以在一个或多个RAF的无线电帧控制中信令通知公共导频符号位置。在另一示例中,在帧的RA控制中,指出了帧中的专用导频(除了任何公共导频以外)。
在一个实施例中,子帧定义可以与公共导频间距相关。例如,如果子帧被定义为包括单个公共导频符号,则子帧长度优选地与正在部署的***的信道的最小预期相干时间相关。通过该方法,可以通过公共导频间距简单地确定子帧时长(当然,也允许定义子帧长度的其他方式)。公共导频间距主要通过信道估计性能确定,信道估计性能由***中的相干时间、速度分布、和用户调制确定。例如,可以每5波特一个导频,以能够在50μs波特(40μs有用时长+10μs循环前缀或保护时长)中处理120kph的用户。应当注意,这里使用的波特指OFDM或DFT-SOFDM符号周期。
当Doppler速率非常低时,公共导频的全部或部分可以从特定帧或子帧中省略,这是因为,在该情况中,来自前一个或者后一个子帧/帧,或者来自无线电帧的控制区域的导频足够用于信道跟踪。而且,如果使用差分/非相干调制,则不需要导频。然而,出于简化说明的目的,示出了具有导频符号的每个子帧。
上行链路和下行链路
所示出的无线电帧配置可以用于FDD***的上行链路或下行链路。图18中示出了用于上行链路和下行链路的一个示例。图18示出了上行链路子帧,其具有与下行链路子帧相同的配置,但是通常它们在每个子帧中可以具有不同数目的符号,或者甚至具有不同的子帧时长并且在每个帧中具有不同数目的子帧。用于上行链路的调制可以不同于下行链路,例如DS-CDMA、IFDMA或DFT-SOFDM(DFT-扩频-OFDM)而非OFDM。上行链路无线电帧被示出为相对下行链路无线电帧结构偏移,以通过允许更快的应答,有助于HARQ时序要求,尽管零偏移也是允许的。该偏移可以是任何值,包括一个子帧、多个子帧、或者子帧的片段(例如,一定数目的OFDM或DFT-SOFDM符号周期)。上行链路无线电帧中的第一子帧可被指配为公共控制/争用信道,诸如随机接入信道(RACH)子帧,并且可以对应于下行链路同步和控制子帧。承载上行链路控制信息的控制帧(或者更一般地,消息)、CQI、下行链路Ack/Nack消息、导频符号等,可以与数据帧时间或频率复用。
可替换的上行链路
示出了两个交替的FDD上行链路结构,其仅具有上行链路上的一个帧时长。然而,定义了两个或多个长帧类型。在图19和图20中,由0.5ms的子帧组成的2ms的长帧具有长RACH、数据(Data)、或复合(Composite)的帧类型。长RACH可能不频繁出现,诸如每隔100ms出现。复合帧具有数据、控制和短RACH。短RACH在时长上可以小于一个子帧。数据帧(未示出)类似于复合帧,但是将短RACH替换为数据子帧。控制、RACH和导频均被示出为TDM,但是也可以是FDM或者TDM/FDM组合。如前文,定义了子帧类型,并且其可以基于保护间隔时长,或者用于RACH帧或者用于IFDM/DFT-SOFDM&OFDM切换。图21与图19和图20相似,但是帧具有6个子帧以及类型数据或复合。如果仅使用复合数据帧,则每个帧将包含控制和短RACH。对于整数(优选)或非整数个子帧,长RACH不频繁地出现(每个子帧示出一次)。
TDD
对于时分双工(TDD),***带宽以时间复用的方式分配给上行链路或下行链路。在一个实施例中,上行链路和下行链路之间的切换每数个帧出现一次,诸如每个无线电帧出现一次。上行链路和下行链路子帧可以是相同或不同的时长,通过子帧粒度确定“TDD分割”。在另一实施例中,下行链路和上行链路在具有两个或多个子帧的长帧中出现,长帧具有可能固定的时长。具有单个子帧的短帧也是可行的,但是在开销方面,帧中的回程是困难的或者成本高的。上行链路和下行链路可以是相同或不同的时长,通过子帧粒度确定“TDD分割”。在两个实施例的任一个中,诸如斜升和斜降的TDD开销可以包括在子帧内部或外部。
可比例缩放的带宽
传输可以出现在两个或多个带宽中的一个上,其中无线电帧时长对于每个带宽是相同的。带宽可以是1.25、2.5、5、10、15或20MHz或者某个近似值。子帧时长(并且因此最小的可能帧时长)优选地对于每个带宽是相同的,可用帧时长的集合也是这样。可替换地,可以针对每个带宽配置子帧时长和多个帧时长。
表4示出了具有22.5kHz的子载波间距的6个载波带宽的示例,并且表5示出了具有25kHz的子载波间距的6个载波带宽的示例。应当注意,在表5中,子帧中的每个符号的保护间隔(例如,循环前缀长度)不是恒定的,如“子帧类型”章节中描述的。在子帧中,由于不同的保护时长(循环前缀),所有符号可以具有不同的符号时长。对于该示例,针对单个符号给出所有超额样本;在其他的示例中,针对子帧可以定义两个或三个额外的保护间隔值。作为另一示例,对于15kHz的子载波间距和0.5ms的子帧时长,7个符号的短帧可以具有~4.7μs(微秒)的平均CP,6个符号的短帧可以具有~4.69μs(1.25MHz处的9个样本,针对更高的带宽比例缩放)和~5.21μs(1.25MHz处的10个样本,针对更高的带宽比例缩放)的平均CP。
    参数                                  载波带宽(MHz)
    20     15     10     5     2.5   1.25
帧时长(ms)     0.5     0.5     0.5     0.5     0.5   0.5
FFT尺寸     1024     768     512     256     128   64
子载波(占用)     768     576     384     192     96   48
符号时长(μs)     50     50     50     50     50   50
有用(μs)     44.44     44.44     44.44     44.44     44.44   44.44
保护(μs)     5.56     5.56     5.56     5.56     5.56   5.56
保护(样本)     128     96     64     32     16   8
子载波间距(kHz)     22.5     22.5     22.5     22.5     22.5   22.5
占用的BW(MHz)     17.28     12.96     8.64     4.32     2.16   1.08
每个帧的符号     10     10     10     10     10   10
16QAM数据速率(Mbps)     49.15     36.86     24.58     12.29     6.14   3.07
表4-常规(数据)子帧的不同载波带宽的OFDM数字命名方案
    参数                                载波带宽(MHz)
    20     15     10     5     2.5     1.25
帧时长(ms)     0.5     0.5     0.5     0.5     0.5     0.5
FFT尺寸     1024     768     512     256     128     64
子载波(占用的)     736     552     368     184     96     48
符号时长(μs)     45.45     45.45     45.45     45.45     45.45     45.45
有用(μs)     40.00     40.00     40.00     40.00     40.00     40.00
保护(μs)     5.45     5.45     5.45     5.45     5.45     5.45
保护(样本)     139.64     104.73     69.82     34.91     17.45     8.73
规则保护(μs)     5.43     5.42     5.39     5.31     5.31     5.00
不规则保护(μs)     5.70     5.83     6.09     6.87     6.87     10.00
子载波间距(kHz)     25     25     25     25     25     25
占用的BW(MHz)     18.4     13.8     9.2     4.6     2.4     1.2
子信道     92     69     46     23     12     6
每个帧的符号     11     11     11     11     11     11
16QAM数据速率(Mbps)     52.99     39.74     26.50     13.25     6.91     3.46
表5-常规(数据)子帧的不同载波带宽的OFDM数字命名方案
ARQ
ARQ和HARQ可用于提供数据可靠性。在多个子帧类型(例如,常规和广播)中,(H)ARQ过程可以是不同的或共享的,并且在多个帧时长中,其可以是不同的或共享的。特别地,可以允许或禁止利用不同帧时长的重新传输。对于快速调度和最低延时,对应于个体帧的快速应答可以是优选的。
HARQ
对于ARQ,为了可靠性可以使用多帧概念,或者对于HARQ,为了额外的可靠性使用多帧概念。ARQ或HARQ方案可以是停止和等待(SAW)协议、选择性重传协议、或者本领域中已知的其他方案。下文描述的优选实施例将使用针对多帧操作修改的多信道停止和等待HARQ。
基于往返传输(DTT)的延时,设定N信道SAW HARQ中的信道数目。定义了足够的信道,使得信道可以由来自一个用户的数据连续地充分占用。因此,信道的最小数目是2。
如果回程时间与帧长度成比例,则短帧和长帧均可以使用相同的N个(例如,3)信道。如果回程时间是相对固定的,则所需用于短帧时长的信道数目将比所需用于长帧时长的信道数目多或者与之相同。例如,对于0.5ms的子帧和短帧,以及3ms的长帧,并且还假设传输之间的1ms的回程时间(即有效的接收机处理时间,以对传输解码,并且随后通过所需反馈(诸如Ack/Nack)作出响应),则3个信道用于短帧,并且2个信道用于长帧。
如果存在从一个帧尺寸到另一帧尺寸的不频繁的切换,并且在无线电帧中不存在帧时长的混合,则可以通过帧尺寸切换来终止现有过程,并且每个帧尺寸的信道数目以及HARQ信令可以是独立的。在动态的帧时长或TTI的情况下,串接的子帧的数目,至少对于初始传输并且可能对于重新传输,可以动态变化。如果允许分组的重新传输出现在不同的帧类型上,则可以在帧时长之间共享HARQ过程(例如,HARQ过程标识符可以以显性或隐性的方式指短帧或长帧)。可以基于所有短帧或所有长帧的序列的复用,考虑分组是否具有相对固定的或成比例的回程(例如,解码和ACK/NACK传输),定义所需要的信道数目。对于固定的回程,可以主要基于短帧复用要求确定N。对于成比例的回程,短帧和长帧复用所需要的N可以大致相同。设计N以处理短帧和长帧之间的任意切换,可能需要额外的HARQ信道(较大的N)。例如,考虑每个短帧或长帧复用的N=3的要求(成比例回程),长帧在时长上等于四个短帧。显然,HARQ信道使用的序列可以全是短的(1、2、3、1、2、3...)或者全是长的(1、2、3、1、2、3...),不存在限制。然而,在信道1可用于重新传送短帧或长帧之前,长帧(具有信道ID 1)之后必须跟随有两个长帧的等效跨距。在这两个长帧的跨距中,信道2和3可用于短帧,但是在该点处,由于信道2还不能重新使用,而信道1是不可用的,因此必须使用额外的信道4。对于N<=(长帧中的短帧的数目),所需要的信道总数可以是N+(N-1)。继续上文的示例,可以看到,如果两个长帧(信道ID 1和2)之后跟随短帧,则在重新使用信道3之前需要信道ID 3和4和5。在该示例中,五个信道多于两者中任一个独立复用所需的三个信道。
多维(时间、频率和空间)HARQ
与完全基于回程时间定义N相比,更加有效率的是(例如,在编码和资源分配粒度方面),允许通过用于给定帧或者调度实体的不止一个分组来调度远程单元101~103。不同于对远程单元假设每个帧有一个HARQ信道,考虑最高达N2个的HARQ信道。因此,假设N信道的停止和等待HARQ,其中N完全基于回程时间,并且对于远程单元每个帧还将具有N2个HARQ信道,则每个远程单元支持最高达NxN2个HARQ信道。例如,每个连续的长帧将对应于N信道的停止和等待HARQ协议的N个信道中的一个。由于每个长帧由“n”个子帧组成,如果还允许每个子帧是HARQ信道,则我们将使每个远程单元具有最高达Nxn个HARQ信道。因此,在该情况中,可独立应答的单元将是子帧,而非长帧。可替换地,如果每个载波定义了“p”个频带,则每一个都可以是HARQ信道,其导致了每个移动单元最高达Nxp个HARQ信道。更一般地,对于“s”个空间信道,可能存在每个移动单元最高达“n”x“p”x“s”x“N”个HARQ信道。参数“n”甚至会是更大的,如果其是基于OFDM符号定义的,且每个子帧存在“j”个OFDM符号。在任何情况下,如同未经修改的HARQ,在与N相关联的时间限制已经过去之前,不能重新使用信道。
计量HARQ信道数目的另一种方法是确定可以在帧上分配的最大长度的分组的最大数目,诸如最大的调制和编码速率以及1500字节(+开销)的分组。较小的分组可以串接成对于信道的最大的聚合分组尺寸。例如,如果N=2(对于最小往返时间(RTT)),并且如果在64QAMR=3/4和实现了闭环波束形成的子帧中传送4个分组,则需要8=2×4个信道用于短帧,并且需要32个信道用于4个子帧的长帧。如果允许在不同的帧类型上出现分组的重新传输,则在该示例中可以进一步调节信道数目,如上文。
控制信令将需要修改,以支持针对短/长帧或者针对未完全基于回程时间而计量的的HARQ信道而修改的HARQ信令。在对应于EUTRA应用的一个实施例中,对当前使用的“新数据指示符(NDI)”、“冗余版本指示符(RVI)”、“HARQ信道指示符(HCI)”、和“输送块尺寸(TBS)”的修改以及ACK/NACK和CQI反馈。其他的技术规范可能针对HARQ使用类似的命名方案。在一个示例中,高达“n”或“p”个远程单元分组可以在一次长帧传输中发送。每个分组可被指配分立的频率选择性(FS)或频率分集(FD)资源元素以及相互区分的控制信令属性(NDI、RVI、HCI和TBS)。色彩编码,诸如利用远程单元的身份协助循环冗余检查(CRC)计算,可以应用到每个下行链路分组的CRC,以指出目标远程单元。将需要HCI字段的某些扩展(例如,比特数目=log2(′n′x′N′))用于正确地执行分组传输的软缓冲组合。相似地,ACK/NACK反馈将可能需要HCI字段或色彩编码,以指出短帧或长帧传输中的远程单元的哪个分组集合正被ACK或NACK。
频率选择性分配
图22和图23分别示出了数个用户的短帧频率选择性(FS)和频率分集(FD)资源分配。对于FS调度,资源元素(或者资源块或资源单元或大块)被定义为由多个子载波构成,由此载波带宽被分为许多个(优选地整数个)可指配的RE(例如,具有192个子载波的5MHz载波均具有8个子载波的24RE)。为了减少信令开销和更好地匹配典型信道的信道相关带宽(例如,对于步行者B,1MHz,而对于车辆A,2.5MHz),RE可被定义为px8个子载波,其中“p”可以是3,并且仍提供所需用于实现大部分FS调度益处的分辨率。用作多个子载波的基础的子载波的数目还可被设定为不同于8的数目(例如,由此如果子载波数目在5MHz是300,则总的RE尺寸是15或25,或者如果子载波数目是288,则是24个子载波)。
在图24中,类似地,FS和FD资源可以在相同的长帧中分配。然而,优选的是,不在相同的时间间隔上分配FS和FD资源,以避免资源分配冲突和信令复杂性。
尽管通过参考特定的实施例具体地示出和描述了本发明,但是本领域的技术人员应当理解,在不偏离本发明的精神和范围的前提下,其中可以进行形式和细节上的多种变化。其目的在于,这些变化处于权利要求的范围内。例如,在包括多个离散的载波频率的传输***的情况下,帧中的信令或导频信息可以出现在某些分量载波频率上,而非其他频率上。此外,在经由直接序列扩频或者码分复用的方法进行“带宽扩展”的过程之后,导频和/或控制符号可以映射到时间-频率资源。在另一示例中,帧结构可以同MIMO、智能天线和SDMA一起使用,具有对于同时的SDMA用户的相同的或不同的帧时长。

Claims (11)

1.一种用于减少通信***中的往返延时的方法,所述方法包括以下步骤:
接收要在无线电帧上传送的数据,其中所述无线电帧由多个子帧组成;
从两个或多个可行帧时长中选择帧时长,其中帧基本上等于多个子帧;
将所述数据安置在所述多个子帧中,以产生多个数据子帧;以及
在所述无线电帧上传送具有所述多个数据子帧的所述帧。
2.如权利要求1所述的方法,其中所述帧分为多个尺寸相等的子帧。
3.如权利要求1所述的方法,其中所述无线电帧是10毫秒的无线电帧。
4.如权利要求1所述的方法,其中所述无线电帧包括短帧和长帧,其中每个短帧包括第一多个子帧,而每个长帧包括第二多个子帧。
5.如权利要求4所述的方法,其中所述无线电帧进一步包括控制信令部分。
6.一种用于在通信***中传送数据的方法,所述方法包括以下步骤:
接收要在无线电帧上传送的数据,其中所述无线电帧包括多个子帧;
选择帧,其中所述帧基本上等于多个子帧;
将所述数据安置在所述多个子帧中,以产生多个数据子帧;
将公共导频安置在所述多个子帧的每个子帧中;以及
在所述无线电帧上传送具有所述多个数据子帧的所述帧。
7.如权利要求6所述的方法,其中所述公共导频包括参考符号。
8.如权利要求6所述的方法,其中所述公共导频的至少一部分被时分复用在所述帧的第一符号上。
9.如权利要求6所述的方法,其中所述公共导频被进一步安置在所述无线电帧中的所述多个子帧中。
10.如权利要求6所述的方法,其中所述公共导频在所述无线电帧中基本上均匀间隔。
11.如权利要求6所述的方法,其中每三个或四个OFDM符号在所述无线电帧中基本均匀间隔。
CNA2006800108715A 2005-03-30 2006-03-27 用于减少通信***中的往返延时和开销的方法和装置 Pending CN101189816A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US66649405P 2005-03-30 2005-03-30
US60/666,494 2005-03-30
US11/276,981 2006-03-20

Publications (1)

Publication Number Publication Date
CN101189816A true CN101189816A (zh) 2008-05-28

Family

ID=39251326

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2006800108715A Pending CN101189816A (zh) 2005-03-30 2006-03-27 用于减少通信***中的往返延时和开销的方法和装置
CN2006800107479A Active CN101151818B (zh) 2005-03-30 2006-03-27 用于降低通信***内的往返延迟和开销的方法和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2006800107479A Active CN101151818B (zh) 2005-03-30 2006-03-27 用于降低通信***内的往返延迟和开销的方法和装置

Country Status (1)

Country Link
CN (2) CN101189816A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902269A (zh) * 2009-04-03 2010-12-01 Lg电子株式会社 在无线通信***中收发信号的方法
CN101959307A (zh) * 2009-07-13 2011-01-26 英飞凌科技股份有限公司 用于映射物理控制信道的装置和方法
CN101784076B (zh) * 2009-01-21 2012-11-21 电信科学技术研究院 降低多载波***中harq重传时间间隔的方法和基站
CN102870390A (zh) * 2010-04-30 2013-01-09 诺基亚西门子通信公司 减小语音业务上的开销
CN102934472A (zh) * 2010-04-05 2013-02-13 株式会社Ntt都科摩 基站装置、移动终端装置和通信控制方法
CN103748947A (zh) * 2011-09-02 2014-04-23 索尼公司 通信设备、通信方法、通信***以及基站
CN103987128A (zh) * 2014-04-21 2014-08-13 中国航天科工集团第四研究院指挥自动化技术研发与应用中心 一种基于单载波tdma的随机接入方法和基站
CN104301084A (zh) * 2009-03-17 2015-01-21 三星电子株式会社 用于在多流传输中映射导频信号的方法和***
CN104320215A (zh) * 2009-03-16 2015-01-28 交互数字专利控股公司 在基站中对上行链路传输进行信号处理的方法及基站
CN107071918A (zh) * 2010-04-13 2017-08-18 高通股份有限公司 用于增强型干扰协调的资源划分信息
CN107707339A (zh) * 2011-08-12 2018-02-16 瑞典爱立信有限公司 用于多小区通信网络中的控制定时配置指配的基站、用户设备及其方法
CN108029143A (zh) * 2015-09-11 2018-05-11 交互数字专利控股公司 用于无线无线局域网(wlan)的多用户并发随机接入的方法和设备
CN110213028A (zh) * 2013-12-23 2019-09-06 高通股份有限公司 Lte分层突发模式
CN111698070A (zh) * 2015-01-30 2020-09-22 摩托罗拉移动有限责任公司 用户设备中的方法和装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247551B (zh) 2007-02-12 2011-09-21 华为技术有限公司 一种传输业务的方法及装置
KR101598910B1 (ko) 2009-01-07 2016-03-02 엘지전자 주식회사 무선 통신 시스템에서 시분할 이중화 방식의 프레임 구조를 이용하여 신호를 송수신하는 방법 및 장치
US8675552B2 (en) * 2009-01-28 2014-03-18 Samsung Electronics Co., Ltd. Apparatus and method for transmitting information via uplink control channel in OFDMA communication system
CN101827341B (zh) * 2009-03-04 2013-06-05 电信科学技术研究院 一种单元格式的指示方法、***和装置
CN101925088B (zh) * 2009-06-12 2015-02-18 株式会社Ntt都科摩 一种基于用户体验质量测量的编码方法、终端和***
CN102724014B (zh) * 2011-12-31 2016-11-16 慕福奇 一种树状网络多跳无线通信***无线帧长自适应调整方法及装置
WO2014065563A1 (ko) 2012-10-22 2014-05-01 엘지전자 주식회사 사용자기기의 무선 프레임 설정 방법 및 사용자기기와, 기지국의 무선 프레임 설정 방법과 기지국
EP2728786A1 (en) 2012-11-05 2014-05-07 Alcatel Lucent Apparatuses, methods, and computer programs for a receiver and a transmitter of a wireless system
US9485678B2 (en) 2013-03-11 2016-11-01 Qualcomm Incorporated Effective utilization of cyclic prefix in OFDM systems under benign channel conditions
US10420054B2 (en) * 2014-03-28 2019-09-17 Qualcomm Incorporated Wireless communications in a system that supports a first subframe type having a first symbol duration and a second subframe type having a second symbol duration
US10098099B2 (en) * 2015-01-26 2018-10-09 Qualcomm Incorporated Low latency group acknowledgements
CN106888077B (zh) * 2015-12-15 2020-08-11 中兴通讯股份有限公司 信息的传输方法及装置
CN110892766B (zh) 2017-07-03 2022-12-27 上海朗帛通信技术有限公司 一种被用于多天线通信的用户设备、基站中的方法和装置
CN111310694B (zh) * 2020-02-26 2023-07-14 苏州猫头鹰智能科技有限公司 基于预测的低帧延迟行为识别方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732076A (en) * 1995-10-26 1998-03-24 Omnipoint Corporation Coexisting communication systems
US5991279A (en) * 1995-12-07 1999-11-23 Vistar Telecommunications Inc. Wireless packet data distributed communications system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784076B (zh) * 2009-01-21 2012-11-21 电信科学技术研究院 降低多载波***中harq重传时间间隔的方法和基站
CN104320215A (zh) * 2009-03-16 2015-01-28 交互数字专利控股公司 在基站中对上行链路传输进行信号处理的方法及基站
CN104320215B (zh) * 2009-03-16 2017-12-08 交互数字专利控股公司 在基站中对上行链路传输进行信号处理的方法及基站
US9871632B2 (en) 2009-03-17 2018-01-16 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
CN104301084A (zh) * 2009-03-17 2015-01-21 三星电子株式会社 用于在多流传输中映射导频信号的方法和***
CN104301084B (zh) * 2009-03-17 2018-04-27 三星电子株式会社 用于在多流传输中映射导频信号的方法和***
US9929838B2 (en) 2009-03-17 2018-03-27 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
US9647810B2 (en) 2009-03-17 2017-05-09 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
CN101902269A (zh) * 2009-04-03 2010-12-01 Lg电子株式会社 在无线通信***中收发信号的方法
CN101959307B (zh) * 2009-07-13 2014-08-27 英特尔移动通信有限责任公司 用于映射物理控制信道的装置和方法
US8583128B2 (en) 2009-07-13 2013-11-12 Intel Mobile Communications GmbH Apparatus and method for mapping physical control channels
CN101959307A (zh) * 2009-07-13 2011-01-26 英飞凌科技股份有限公司 用于映射物理控制信道的装置和方法
CN102934472B (zh) * 2010-04-05 2016-03-30 株式会社Ntt都科摩 基站装置、移动终端装置和通信控制方法
CN102934472A (zh) * 2010-04-05 2013-02-13 株式会社Ntt都科摩 基站装置、移动终端装置和通信控制方法
CN107071918A (zh) * 2010-04-13 2017-08-18 高通股份有限公司 用于增强型干扰协调的资源划分信息
CN107071918B (zh) * 2010-04-13 2021-01-01 高通股份有限公司 用于增强型干扰协调的资源划分信息
CN102870390A (zh) * 2010-04-30 2013-01-09 诺基亚西门子通信公司 减小语音业务上的开销
CN107707339A (zh) * 2011-08-12 2018-02-16 瑞典爱立信有限公司 用于多小区通信网络中的控制定时配置指配的基站、用户设备及其方法
US11070346B2 (en) 2011-08-12 2021-07-20 Telefonaktiebolaget L M Ericsson (Publ) Base station, user equipment and methods therein for control timing configuration assignment in a multiple cell communications network
CN103748947A (zh) * 2011-09-02 2014-04-23 索尼公司 通信设备、通信方法、通信***以及基站
US11510194B2 (en) 2013-12-23 2022-11-22 Qualcomm Incorporated Mixed numerology OFDM design
CN110213028A (zh) * 2013-12-23 2019-09-06 高通股份有限公司 Lte分层突发模式
CN110213028B (zh) * 2013-12-23 2022-06-21 高通股份有限公司 Lte分层突发模式
CN103987128A (zh) * 2014-04-21 2014-08-13 中国航天科工集团第四研究院指挥自动化技术研发与应用中心 一种基于单载波tdma的随机接入方法和基站
CN111698070A (zh) * 2015-01-30 2020-09-22 摩托罗拉移动有限责任公司 用户设备中的方法和装置
CN111698070B (zh) * 2015-01-30 2023-06-02 摩托罗拉移动有限责任公司 用户设备中的方法和装置
CN108029143B (zh) * 2015-09-11 2021-08-10 交互数字专利控股公司 用于无线局域网(wlan)的多用户并发随机接入的方法和设备
CN108029143A (zh) * 2015-09-11 2018-05-11 交互数字专利控股公司 用于无线无线局域网(wlan)的多用户并发随机接入的方法和设备

Also Published As

Publication number Publication date
CN101151818A (zh) 2008-03-26
CN101151818B (zh) 2011-08-10

Similar Documents

Publication Publication Date Title
CN101151818B (zh) 用于降低通信***内的往返延迟和开销的方法和装置
JP5067903B2 (ja) 通信システム内において往復待ち時間及びオーバーヘッドを低減するための方法及び装置
US9603166B2 (en) System access method and apparatus of a narrowband terminal in a wireless communication system supporting wideband and narrowband terminals
EP2721793B1 (en) Method and apparatus for transmitting and receiving time division duplex frame configuration information in wireless communication system
EP3100563B1 (en) Time domain multiplexing ul transmission on multiple serving cells for a mobile station with single transmitter
US20070058595A1 (en) Method and apparatus for reducing round trip latency and overhead within a communication system
CN101652954B (zh) 基站装置、移动台、无线通信***及通信控制方法
CN101883325B (zh) 用于无线通信***中的多播和广播重发的方法和设备
CN101523969B (zh) 无线通信***中用于无线电资源指配的控制信道分配
US8228850B2 (en) Method and apparatus for transmitting control information in a system with new and legacy mobile stations
DK2137864T3 (en) Method and apparatus in a telecommunication system
CN101529744A (zh) 具有可变尺寸循环前缀的无线通信***帧结构
WO2009033280A1 (en) Systems and methods for uplink signalling
CN101242239A (zh) 实现上行跳频传输的方法、***和终端
KR20070074431A (ko) 단반송파 주파수 분할 다중 접속 시스템에서 역방향 제어정보와 데이터의 시간적 다중화 방법 및 장치
WO2009089801A1 (en) Method and apparatus for transmitting data and error recovery
KR20090067011A (ko) 무선통신 시스템에서 데이터 전송 방법
KR102511205B1 (ko) 무선 셀룰라 통신 시스템에서 상향링크 제어 채널 설정 방법 및 장치
KR101108781B1 (ko) 무선통신 시스템에서 데이터 전송방법
WO2007107089A1 (en) System for minimizing signaling overhead in ofdma-based communication systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080528