WO2024093877A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024093877A1
WO2024093877A1 PCT/CN2023/127587 CN2023127587W WO2024093877A1 WO 2024093877 A1 WO2024093877 A1 WO 2024093877A1 CN 2023127587 W CN2023127587 W CN 2023127587W WO 2024093877 A1 WO2024093877 A1 WO 2024093877A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
resource set
time
frequency resource
group
Prior art date
Application number
PCT/CN2023/127587
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024093877A1 publication Critical patent/WO2024093877A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device for wireless signals in a wireless communication system supporting a cellular network.
  • the inventors discovered through research that determining RS (Reference Signal) resources for wireless link quality assessment is a key issue.
  • the present application discloses a solution.
  • the flexible duplex mode is only used as a typical application scenario or example; the present application can also be applied to the application scenario under the half-duplex mode.
  • the use of a unified design scheme for different scenarios can also help reduce hardware complexity and cost.
  • the embodiments and features in the embodiments of any node of the present application can be applied to any other node.
  • the embodiments of the present application and features in the embodiments can be arbitrarily combined with each other.
  • the present application discloses a method in a first node used for wireless communication, characterized by comprising:
  • the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool includes at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the problem to be solved by the present application includes: how to determine reference signal resources for wireless link quality assessment.
  • the first signaling indicates scheduling information of the first signal
  • the first time-frequency resource group belongs to the first time-frequency resource set
  • at least one symbol in the first time-frequency resource group is configured as a DL symbol by a higher-layer parameter.
  • the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in any CORESET in the first CORESET group and the first time-frequency resource set are orthogonal in the time domain.
  • the first CORESET group is determined by sorting the CORESETs in the first CORESET pool according to a first rule; the first rule depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESETs in the first CORESET pool and the first time-frequency resource set.
  • the first BWP is a BWP of the first service cell; when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the first node sends a beam failure event indication for the first service cell to a higher layer; and the target counter is used to count the beam failure event indication for the first service cell.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the reference information block is used to configure the second CORESET pool on the first BWP, the second RS resource set depends on the TCI state of the second CORESET group, and the second CORESET group includes at least one CORESET in the second CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the second RS resource set depends on the TCI state of the second CORESET group, and the second CORESET group includes at least one CORESET in the first CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the present application is characterized in that when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the first node sends a beam failure event indication for the first RS resource set to a higher layer; when the wireless link quality evaluated according to the second RS resource set is worse than the reference threshold, the physical layer of the first node sends a beam failure event indication for the second RS resource set to a higher layer; a first counter is used to count the beam failure event indications for the first RS resource set, and a second counter is used to count the beam failure event indications for the second RS resource set; when the value of the first counter is equal to or greater than the first threshold, beam failure recovery for the first RS resource set is triggered; when the value of the second counter is equal to or greater than the second threshold, beam failure recovery for the second RS resource set is triggered.
  • the present application discloses a method used in a second node of wireless communication, characterized by comprising:
  • the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool includes at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the first signaling indicates scheduling information of the first signal
  • the first time-frequency resource group belongs to the first time-frequency resource set
  • at least one symbol in the first time-frequency resource group is configured as a DL symbol by a higher-layer parameter.
  • the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in any CORESET in the first CORESET group and the first time-frequency resource set are orthogonal in the time domain.
  • the first CORESET group is determined by sorting the CORESETs in the first CORESET pool according to a first rule; the first rule depends on the monitored PDCCH candidate occupancy in the CORESETs in the first CORESET pool. The relationship between the air interface resources and the first time-frequency resource set.
  • the receiver of the first information block triggers beam failure recovery for the first service cell when the value of the target counter is equal to or greater than the target threshold; wherein the first BWP is a BWP of the first service cell; when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the receiver of the first information block sends a beam failure event indication for the first service cell to a higher layer; the target counter is used to count the beam failure event indication for the first service cell.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the reference information block is used to configure the second CORESET pool on the first BWP, the second RS resource set depends on the TCI state of the second CORESET group, and the second CORESET group includes at least one CORESET in the second CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the second RS resource set depends on the TCI state of the second CORESET group, and the second CORESET group includes at least one CORESET in the first CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the present application is characterized in that when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the receiver of the first information block sends a beam failure event indication for the first RS resource set to a higher layer; when the wireless link quality evaluated according to the second RS resource set is worse than the reference threshold, the physical layer of the receiver of the first information block sends a beam failure event indication for the second RS resource set to a higher layer; a first counter is used to count the beam failure event indications for the first RS resource set, and a second counter is used to count the beam failure event indications for the second RS resource set; when the value of the first counter is equal to or greater than the first threshold, beam failure recovery for the first RS resource set is triggered; when the value of the second counter is equal to or greater than the second threshold, beam failure recovery for the second RS resource set is triggered.
  • the present application discloses a first node device used for wireless communication, characterized in that it includes:
  • a first receiver receives a reference information block and a first information block
  • the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool includes at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the present application discloses a second node device used for wireless communication, characterized in that it includes:
  • a second transmitter transmits a reference information block and a first information block
  • the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool includes at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • this application has the following advantages:
  • -Different air interface resources can be applied to different scenarios, such as different duplex modes, different interference environments, different antennas, different spatial characteristics, etc.
  • FIG1 shows a flow chart of a reference information block and a first information block according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a flow chart of transmission according to an embodiment of the present application
  • 6A-6C are schematic diagrams of a first time-frequency resource set according to an embodiment of the present application.
  • FIGS. 7A-7C are schematic diagrams of a first CORESET group according to an embodiment of the present application.
  • FIG8 shows a schematic diagram of a first CORESET group according to another embodiment of the present application.
  • FIG9 shows a schematic diagram of a second RS resource set according to an embodiment of the present application.
  • FIG10 shows a schematic diagram of a second RS resource set according to another embodiment of the present application.
  • FIG11 is a schematic diagram showing triggering of beam failure recovery according to an embodiment of the present application.
  • FIG12 is a schematic diagram showing triggering of beam failure recovery according to another embodiment of the present application.
  • FIG13 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • FIG14 shows a structural block diagram of a processing device for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a reference information block and a first information block according to an embodiment of the present application, as shown in FIG1.
  • each box represents a step.
  • the first node in the present application receives a reference information block and a first information block in step 101; wherein the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool including at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the reference information block and the first information block are carried by the same signaling.
  • the reference information block and the first information block are carried by different signaling.
  • the reference information block is received earlier than the first information block.
  • the reference information block is received no earlier than the first information block is received.
  • the reference information block and the first information block are received simultaneously.
  • the reference information block includes an RRC message.
  • the reference information block includes at least an RRC message in an RRC message or a MAC CE message.
  • the reference information block includes an RRC message and a MAC CE message.
  • the reference information block includes part or all of the fields in one or more RRC IE (Information Element).
  • the reference information block includes part or all of the fields in an RRC IE.
  • the reference information block includes part or all of the fields in at least one RRC IE.
  • the reference information block includes the controlResourceSetToAddModList field in the RRC IE.
  • the reference information block includes a field in the RRC IE whose name includes controlResourceSetToAddModList.
  • the reference information block includes a domain in the RRC IE whose name includes controlResourceSet.
  • the reference information block indicates the first CORESET on the first BWP (BandWidth Part, bandwidth interval) (COntrol REsource SET) Index of the CORESET in the pool.
  • the reference information block indicates configuration information of the CORESETs in the first CORESET pool on the first BWP.
  • a CORESET in the first CORESET pool refers to: any CORESET in the first CORESET pool.
  • CORESET in the first CORESET pool refers to: each CORESET in the first CORESET pool.
  • a CORESET in the first CORESET pool refers to: at least one CORESET in the first CORESET pool.
  • CORESET in the first CORESET pool refers to: part of the CORESET in the first CORESET pool.
  • CORESET in the first CORESET pool refers to: all CORESETs in the first CORESET pool.
  • the configuration information of a CORESET includes the corresponding index, occupied RB (Resource Block), occupied consecutive symbols, TCI (Transmission Configuration Indication) state, CCE (Control channel element) to REG (Resource Element Group) mapping parameters, precoding granularity, and DM-RS scrambling sequence initialization value.
  • the configuration information of a CORESET includes a corresponding index, occupied RBs, occupied continuous symbols, and TCI status.
  • the TCI state in the configuration information of a CORESET indicates that the antenna ports of the CORESET are quasi-co-located (QCL).
  • the first CORESET pool includes one or more CORESETs.
  • the first CORESET pool includes multiple CORESETs.
  • the first CORESET pool includes a maximum of 3 CORESETs.
  • the first CORESET pool includes a maximum of 5 CORESETs.
  • radio link quality assessment is used for beam failure monitoring.
  • the wireless link quality assessment includes determining whether the wireless link quality is worse than a reference threshold.
  • the wireless link quality is RSRP.
  • the wireless link quality is L1-RSRP.
  • the wireless link quality is SINR.
  • the wireless link quality is L1-SINR.
  • the wireless link quality is BLER.
  • the radio link quality is a hypothetical BLER.
  • only the first RS resource set is used for radio link quality assessment of the first BWP.
  • the first RS resource set and RS resources outside the first RS resource set are used for wireless link quality evaluation of the first BWP.
  • the first RS resource set and the second RS resource set are used for wireless link quality assessment of the first BWP.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively.
  • the wireless link quality evaluation of the first BWP refers to: evaluating the wireless link quality according to the first RS resource set.
  • the wireless link quality evaluation of the first BWP refers to: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively.
  • evaluating the quality of the wireless link according to a given RS resource set means: evaluating the quality of the wireless link according to all RS resources in the given RS resource set.
  • the wireless link quality is one of RSRP (Reference Signal Received Power), L1-RSRP (Layer 1-RSRP), SINR (Signal to Interference plus Noise Ratio) or L1-SINR (Layer 1-SINR), and the meaning of "evaluating the wireless link quality based on a given RS resource set" includes: the wireless link quality is the maximum value of RSRP, L1-RSRP, SINR or L1-SINR obtained based on the measurement of all RS resources in the given RS resource set.
  • RSRP Reference Signal Received Power
  • L1-RSRP Layer 1-RSRP
  • SINR Signal to Interference plus Noise Ratio
  • L1-SINR Layer 1-SINR
  • the wireless link quality is BLER (BLock Error Rate, block error rate), and “evaluating the wireless link quality based on a given RS resource set” means that the wireless link quality is measured based on all RS resources in the given RS resource set. The minimum BLER value obtained.
  • BLER Block Error Rate, block error rate
  • the wireless link quality is a hypothetical BLER
  • “evaluating the wireless link quality based on a given RS resource set” means that the wireless link quality is the minimum value of the hypothetical BLER measured based on all RS resources in the given RS resource set.
  • the wireless link quality is one of RSRP, L1-RSRP, SINR or L1-SINR, and the meaning of "evaluating the wireless link quality based on a given RS resource set" includes: the wireless link quality is an average value of RSRP, L1-RSRP, SINR or L1-SINR obtained based on measurements of all RS resources in the given RS resource set.
  • the wireless link quality is BLER
  • “evaluating the wireless link quality based on a given RS resource set” means that the wireless link quality is an average value of BLERs measured based on all RS resources in the given RS resource set.
  • the wireless link quality is an assumed BLER
  • “evaluating the wireless link quality based on a given RS resource set” means that the wireless link quality is an average value of the assumed BLER measured based on all RS resources in the given RS resource set.
  • the given RS resource set is the second RS resource set.
  • the given RS resource set is the first RS resource set.
  • the sentence “the first RS resource set depends on the TCI (Transmission Configuration Indication) state of the first CORESET group” means that any RS resource in the first RS resource set depends on the TCI state of a CORESET in the first CORESET group.
  • the sentence "the first RS resource set depends on the TCI state of the first CORESET group” means that at least one RS resource in the first RS resource set depends on the TCI state of a CORESET in the first CORESET group.
  • the sentence "the first RS resource set depends on the TCI state of the first CORESET group” means that at least one RS resource in the first RS resource set depends on the TCI state of a CORESET in the first CORESET group.
  • the sentence "the first RS resource set depends on the TCI state of the first CORESET group” means that the TCI state of at least one CORESET in the first CORESET group is dependent on an RS resource set in the first RS resource set.
  • the sentence "the first RS resource set depends on the TCI state of the first CORESET group” means that the TCI state of any CORESET in the first CORESET group is dependent on an RS resource set in the first RS resource set.
  • the sentence “a given RS resource depends on the TCI state of a given CORESET” means that: the given RS resource is determined according to the TCI state of the given CORESET.
  • the sentence “a given RS resource depends on a TCI state of a given CORESET” means that the given RS resource is determined according to the TCI state of the given CORESET used by the first node to monitor the PDCCH.
  • the sentence "a given RS resource depends on the TCI state of a given CORESET" means that the index of the given RS resource is the same as the index of an RS resource indicated by the TCI state of the given CORESET.
  • the sentence "a given RS resource depends on the TCI state of a given CORESET" means that the index of the given RS resource is the same as the index of an RS resource indicated by the TCI state of the given CORESET.
  • the sentence "a given RS resource depends on the TCI state of a given CORESET" means that the index of the given RS resource is the same as an RS resource index in the RS resource set indicated by the TCI state of the given CORESET.
  • the sentence "a given RS resource depends on the TCI state of a given CORESET" means that the given RS resource is a periodic CSI-RS resource, and the index of the given RS resource is the same as an RS resource index in the RS resource set indicated by the TCI state of the given CORESET.
  • the given RS resource is an RS resource in the first RS resource set
  • the given CORESET is a CORESET in the first CORESET group.
  • the given RS resource is an RS resource in the second RS resource set
  • the given CORESET is a CORESET in the second CORESET group.
  • a TCI state indicates at least one RS resource and the type of quasi-co-location parameter corresponding to each RS resource.
  • the types of the quasi-co-location parameters include TypeA, TypeB, TypeC and TypeD.
  • the quasi-co-site parameters of Type A include Doppler shift, Doppler spread, average delay, and delay spread.
  • the quasi-co-site parameters of Type B include Doppler shift and Doppler spread.
  • the quasi-co-site parameters of Type C include Doppler shift and average delay.
  • the quasi-co-location parameters of TypeD include spatial reception parameters (Spatial Rx parameter).
  • TypeA As an embodiment, the specific definitions of TypeA, TypeB, TypeC and TypeD refer to Chapter 5.1.5 of 3GPP TS38.214.
  • the quasi-co-site parameters include one or more of delay spread, Doppler spread, Doppler shift, average delay, or spatial Rx parameter.
  • the quasi-co-site parameters include Doppler shift and Doppler spread.
  • the quasi-co-site parameters include Doppler shift and average delay.
  • the quasi-co-site parameters include spatial reception parameters (Spatial Rx parameter).
  • the quasi-co-location parameter includes at least one of a spatial transmission parameter or a spatial reception parameter.
  • the quasi-co-site parameters include a spatial domain receive filter (Spatial Domain Receive Filter).
  • the quasi-co-site parameters include a spatial domain filter (Spatial Domain Filter).
  • the quasi-co-site parameters include at least one of a spatial domain transmit filter (spatial domain transmit filter) or a spatial domain receive filter (spatial domain receive filter).
  • the first time-frequency resource set is configured for the first BWP.
  • the first time-frequency resource set is configured to the serving cell where the first BWP is located.
  • the first time-frequency resource set is configured for an uplink BWP.
  • the first time-frequency resource set is configured for a downlink BWP.
  • the first BWP is a downlink BWP.
  • the first BWP is a downlink BWP
  • the first time-frequency resource set is configured to the uplink BWP corresponding to the first BWP.
  • the first information block is carried by higher layer signaling.
  • the first information block is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information block includes all or part of the fields in an RRC IE (Information Element).
  • the first information block includes all or part of the fields in each RRC IE of multiple RRC IEs.
  • the first information block includes all or part of the fields in the TDD-UL-DL-ConfigCommon IE.
  • the first information block includes all or part of the fields in the TDD-UL-DL-ConfigDedicated IE.
  • the first information block includes all or part of the domains in the ServingCellConfig IE.
  • the first information block includes all or part of the fields in ServingCellConfigCommonSIB IE.
  • the first information block includes information in all or part of the fields in the ServingCellConfigCommon IE.
  • the first information block is carried by at least one RRC IE.
  • a name of an IE carrying the first information block includes TDD-UL-DL-Config.
  • the name of an IE carrying the first information block includes ServingCellConfig.
  • the first information block is carried by MAC CE (Medium Access Control layer Control Element).
  • MAC CE Medium Access Control layer Control Element
  • the first information block includes MAC CE.
  • the first information block is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the first information block is transmitted on PDSCH.
  • the first information block is carried by DCI (Downlink control information).
  • DCI Downlink control information
  • the first information block includes DCI.
  • the first information block includes one or more fields in a DCI.
  • the first information block is carried by DCI format 2_0.
  • the first information block includes DCI format 2_0.
  • the first information block is carried jointly by RRC signaling and MAC CE.
  • the first information block is carried jointly by higher layer signaling and DCI.
  • the first information block is carried jointly by RRC signaling and DCI signaling.
  • the first information block is used to indicate a first time-frequency resource set.
  • the first information block explicitly indicates a first time-frequency resource set.
  • the first information block implicitly indicates a first time-frequency resource set.
  • the first information block indicates the time domain resources occupied by the first time-frequency resource set and the frequency domain resources occupied by the first time-frequency resource set.
  • the first information block indicates the period and time offset of the first time-frequency resource set in the time domain.
  • the first information block indicates the time domain resources included in the first time-frequency resource set within a period.
  • the first information block indicates the symbols included in the first time-frequency resource set within a period.
  • the first information block indicates the time slots included in the first time-frequency resource set within a cycle.
  • the first information block indicates the RB (Resource Block) included in the first time-frequency resource set in the frequency domain.
  • the first information block indicates the subcarriers included in the first time-frequency resource set in the frequency domain.
  • the sender of the first information block supports simultaneous reception and transmission of wireless signals in the time domain resources occupied by the first time-frequency resource set.
  • the sender of the first information block simultaneously receives and sends wireless signals in the time domain resources occupied by the first time-frequency resource set.
  • the first time-frequency resource set includes a positive integer number of symbols in the time domain.
  • the first time-frequency resource set includes one or more symbols in the time domain.
  • the first time-frequency resource set includes at least one time slot in the time domain.
  • the first time-frequency resource set includes at least one subframe in the time domain.
  • the first time-frequency resource set includes at least one RB in the first BWP in the frequency domain.
  • the symbol is a single carrier symbol.
  • the symbol is a multi-carrier symbol.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the symbol is obtained after the output of the transform precoder (transform precoding) is subjected to OFDM symbol generation (Generation).
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the multi-carrier symbol is a FBMC (Filter Bank Multi Carrier) symbol.
  • the multi-carrier symbol includes a CP (Cyclic Prefix).
  • the sentence "the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means that the first CORESET group only depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the sentence "the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set, and the first CORESET group also includes CORESETs outside the first CORESET pool.
  • the sentence “the first CORESET group depends on at least a CORESET in the first CORESET pool
  • the relationship between the air interface resources occupied by the monitored PDCCH candidates in the first CORESET group and the first time-frequency resource set “means that: the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in at least one CORESET in the first CORESET group and the first time-frequency resource set are orthogonal in the time domain.
  • the sentence "the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the air interface resources include frequency domain resources; any monitored PDCCH candidate in at least one CORESET in the first CORESET group and the first time-frequency resource set are orthogonal in the frequency domain.
  • the sentence "the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the air interface resources include time-frequency resources; any monitored PDCCH candidate in at least one CORESET in the first CORESET group is orthogonal to the first time-frequency resource set.
  • the sentence “air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool” means: air interface resources occupied by the monitored PDCCH candidates in each CORESET in the first CORESET pool.
  • the sentence “air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool” means: air interface resources occupied by the monitored PDCCH candidates in at least one CORESET in the first CORESET pool.
  • the air interface resources include time domain resources.
  • the air interface resources include frequency domain resources.
  • the air interface resources include time-frequency resources.
  • the air interface resources include time domain resources
  • the phrase "the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set" means: the relationship between the time domain resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the time domain resources occupied by the first time-frequency resource set.
  • the air interface resources include frequency domain resources
  • the phrase "the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set" means: the relationship between the frequency domain resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the frequency domain resources occupied by the first time-frequency resource set.
  • the air interface resources include time-frequency resources
  • the phrase "the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set" means: the relationship between the time-frequency resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the relationship refers to whether they are orthogonal.
  • the relationship refers to whether there is overlap.
  • the air interface resources occupied by a monitored PDCCH candidate are determined by at least one of the CORESET or the search space set.
  • the time domain resources occupied by a monitored PDCCH candidate are jointly determined by the CORESET and the search space set.
  • the time-frequency resources occupied by a monitored PDCCH candidate are jointly determined by the CORESET and the search space set.
  • the frequency domain resources occupied by a monitored PDCCH candidate are determined by the CORESET in which it is located.
  • the time-frequency resources occupied by a monitored PDCCH candidate belong to the search space set associated with the CORESET.
  • a monitored PDCCH candidate belongs to the CORESET in the frequency domain.
  • a monitored PDCCH candidate is a PDCCH candidate in a search space set associated with the CORESET.
  • a monitored PDCCH candidate consists of at least one CCE in the CORESET where it is located.
  • any monitored PDCCH candidate in a search space set associated with a CORESET consists of at least one CCE of the CORESET.
  • a search space set associated with a CORESET means: a CORESET is used to determine the time-frequency resources occupied by the search space set associated with the CORESET in a monitoring occasion (Monitoring Occasion).
  • a set of search spaces associated with a CORESET includes: a CORESET includes all The time-frequency resources occupied by a search space set associated with a CORESET in a monitoring occasion (Monitoring Occasion).
  • a search space set associated with a CORESET means: REs occupied by a CORESET include REs occupied by the search space set associated with the CORESET in a monitoring occasion (Monitoring Occasion).
  • a search space set associated with a CORESET means: RB(s) occupied by a CORESET in the frequency domain includes RB(s) occupied by a search space set associated with a CORESET in the frequency domain.
  • a search space set associated with a CORESET means: frequency domain resources occupied by a CORESET include frequency domain resources occupied by the search space set associated with the CORESET.
  • a search space set associated with a CORESET means that symbols (symbol(s)) occupied by a CORESET are used to determine symbols (symbol(s)) occupied by the search space set associated with the CORESET in a detection opportunity.
  • a search space set associated with a CORESET means: symbols (symbol(s)) occupied by a CORESET include symbols (symbol(s)) occupied by the search space set associated with the CORESET in a detection opportunity.
  • a search space set associated with a CORESET means that the configuration information of the search space set associated with a CORESET includes the index of the CORESET.
  • a monitoring occasion (Monitoring Occasion) includes a time period.
  • a monitoring occasion (Monitoring Occasion) includes at least one symbol.
  • a monitoring occasion includes a time slot (slot).
  • a monitoring occasion includes a sub-slot (sub-slot).
  • a monitoring occasion includes a subframe (subframe).
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2 .
  • FIG2 illustrates a network architecture 200 for LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced) and future 5G systems.
  • the network architecture 200 for LTE, LTE-A and future 5G systems is referred to as EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable terminology.
  • 5GS/EPS200 may include one or more UEs (User Equipment) 201, a UE 241 communicating with UE 201 via a sidelink, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, and Internet services 230.
  • 5GS/EPS200 may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2 , 5GS/EPS200 provides packet switching services, but those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit switching services.
  • NG-RAN202 includes NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB203 provides user and control plane protocol terminations toward UE 201.
  • gNB203 may be connected to other gNB204 via an Xn interface (e.g., backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit receive point), or some other suitable term.
  • gNB203 provides an access point to 5GC/EPC210 for UE201.
  • Examples of UE201 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop computer, a personal digital assistant (PDA), a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, an automobile, a wearable device, or any other similar functional device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • UE201 may also refer to UE201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 via an S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF214, S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles the signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocal) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol services, which may specifically include Internet, Intranet, IMS (IP Multimedia Subsystem) and packet switching services.
  • the first node in the present application includes the UE201.
  • the first node in the present application includes the UE241.
  • the second node in the present application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture of the control plane 300 between a first communication node device (UE, gNB or RSU in V2X) and a second communication node device (gNB, UE or RSU in V2X), or between two UEs, using three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides inter-zone mobility support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., an IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • a network layer e.g., an IP layer
  • an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the first signaling is generated in the RRC sublayer 306.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signal is generated by the PHY301 or the PHY351.
  • the reference information block is generated in the RRC sublayer 306.
  • the reference information block is generated in at least one of the RRC sublayer 306 or the MAC sublayer 302.
  • the reference information block is generated in the RRC sublayer 306 or the MAC sublayer 302
  • the reference information block is generated in the MAC sublayer 302 and the MAC sublayer 352.
  • the first information block is generated in the RRC sublayer 306.
  • the first information block is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first information block is generated in at least one of the RRC sublayer 306 or the MAC sublayer 302.
  • the first information block is generated in the RRC sublayer 306 and the MAC sublayer 302.
  • the first information block is generated in the RRC sublayer 306 and the PHY 301 .
  • the target counter is generated in the MAC sublayer 302.
  • the first counter and the second counter are generated in the MAC sublayer 302.
  • the target counter is generated in the MAC sublayer 352.
  • the first counter and the second counter are generated in the MAC sublayer 352.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as constellation mapping based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any parallel stream destined for the second communication device 450.
  • the symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 storing program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • DL DownLink, downlink
  • the controller/processor 459 provides multiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transmission and logical channels to recover the upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using confirmation (ACK) and/or negative confirmation (NACK) protocols to support HARQ operations.
  • ACK confirmation
  • NACK negative confirmation
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the first communication device 410, and implements L2 layer functions for the user plane and the control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the second communication device 450.
  • the upper layer data packets from the controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor.
  • the second communication device 450 device at least: receives a reference information block and a first information block; wherein the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool including at least one CORESET; a first RS resource set is used for radio link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: receiving a reference information block and a first information block; wherein the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool including at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor.
  • the first communication device 410 device at least: sends a reference information block and a first information block; wherein the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool including at least one CORESET; a first RS resource set is used for radio link quality assessment of the first BWP, the first RS resource set depends on the TCI state of the first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer The readable instruction program generates actions when executed by at least one processor, and the actions include: sending a reference information block and a first information block; wherein the reference information block is used to configure a first CORESET pool on a first BWP, and the first CORESET pool includes at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, and the first RS resource set depends on the TCI state of a first CORESET group, and the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, and the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set
  • the first node in the present application includes the second communication device 450.
  • the second node in the present application includes the first communication device 410.
  • the second node in the present application includes the first communication device 450.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the reference information block and the first information block in the present application; and at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the reference information block and the first information block in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first signaling in the present application; and at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first signaling in the present application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, and the memory 460 ⁇ is used to send the first signal in the first time-frequency resource group in the present application; at least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the first signal in the first time-frequency resource group in the present application.
  • Embodiment 5 illustrates a flowchart of wireless transmission according to an embodiment of the present application, as shown in FIG5.
  • the first node U01 and the second node N02 are two communication nodes transmitted via an air interface, wherein the steps in block F1 are optional.
  • step S5101 For the first node U01 , in step S5101, a reference information block and a first information block are received; in step S5102, a first signal is received; in step S5103, a first signal is sent in a first time-frequency resource group;
  • step S5201 For the second node N02 , in step S5201, a reference information block and a first information block are sent; in step S5202, a first signaling is sent; in step S5203, a first signal is received in a first time-frequency resource group;
  • the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool includes at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the first signaling indicates scheduling information of the first signal
  • the first time-frequency resource group belongs to the first time-frequency resource set
  • at least one symbol in the first time-frequency resource group is configured as a DL symbol by a higher layer parameter.
  • the first RS resource set is used by a target receiver of the first information block for radio link quality assessment of the first BWP.
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal is transmitted on an uplink physical channel.
  • the first signal is transmitted on PUSCH (Physical Uplink Shared CHannel).
  • PUSCH Physical Uplink Shared CHannel
  • the first signal is transmitted on PUCCH (Physical Uplink Control CHannel), and the first signal carries UCI (Uplink Control Information).
  • PUCCH Physical Uplink Control CHannel
  • UCI Uplink Control Information
  • the first signal carries at least one transport block (TB).
  • TB transport block
  • the first signal carries an indication of a CBG (Code Block Group).
  • CBG Code Block Group
  • the scheduling information of the first signal includes one or more of time domain resources, frequency domain resources, MCS, DMRS (DeModulation Reference Signals) port, HARQ (Hybrid Automatic Repeat request) process number, RV (Redundancy Version), NDI (New Data Indicator), TCI (Transmission Configuration Indicator) state or SRI (Sounding reference signal Resource Indicator).
  • DMRS DeModulation Reference Signals
  • HARQ Hybrid Automatic Repeat request
  • RV Redundancy Version
  • NDI New Data Indicator
  • TCI Transmission Configuration Indicator
  • SRI Sounding reference signal Resource Indicator
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first signaling is uplink DCI signaling.
  • the first signal includes PUSCH, and the first signaling is DCI signaling for scheduling PUSCH.
  • the first signal includes PUSCH, and the first signaling is used to configure or schedule PUSCH.
  • the first signaling is used to schedule PUSCH.
  • the first signaling is used to configure or schedule a configured grant PUSCH.
  • the first signaling is used to configure or schedule a configured grant PUSCH, and the first signal is a configured grant PUSCH transmission.
  • the first signal is a PUSCH of type A, and the first signaling is used to configure or schedule a PUSCH of type A.
  • the first signal is a PUSCH of type B, and the first signaling is used to configure or schedule a PUSCH of type B.
  • the first signal is a PUSCH based on TB processing over multiple slots, and the first signaling is used to configure or schedule the PUSCH based on TB processing over multiple slots.
  • the first signal includes PUSCH repetition type B (type B) transmission
  • the first signaling is DCI signaling for scheduling PUSCH repetition type B (type B) transmission.
  • a Type A PUSCH occupies the same symbol position in each of a plurality of slots.
  • a PUSCH of type B is allocated a group of consecutive symbols.
  • Type B PUSCH is allocated one or more nominal repetitions.
  • the TBS (TB size, transport block size) is determined based on the size of time-frequency resources in multiple time slots.
  • the specific definitions of the PUSCH type A, the PUSCH type B, and the TB processing over multiple slots refer to Chapter 6 of 3GPP TS38.214.
  • the first time-frequency resource set also includes time-frequency resources outside the first time-frequency resource group.
  • the first time-frequency resource set only includes the first time-frequency resource group.
  • At least one symbol in the first time-frequency resource group is configured as a DL symbol by RRC parameters.
  • At least one symbol in the first time-frequency resource group is configured as a DL symbol by MAC CE.
  • each symbol in the first time-frequency resource group is configured as a DL (DownLink) symbol by a higher layer parameter.
  • some symbols in the first time-frequency resource group are configured as DL symbols by higher-layer parameters.
  • the symbols in the first time-frequency resource group are configured as DL symbols or Flexible symbols by higher-layer parameters.
  • At least one symbol in the first time-frequency resource group is configured as a DL symbol by a higher layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • each symbol in the first time-frequency resource group is configured as a DL symbol by a higher layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • some symbols in the first time-frequency resource group are configured as DL symbols by a higher-layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • the symbols in the first time-frequency resource group are configured as DL symbols or Flexible symbols by a higher-layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • At least one symbol in the first time-frequency resource group is configured as a DL symbol by a higher layer parameter tdd-UL-DL-ConfigurationCommon.
  • each symbol in the first time-frequency resource group is configured as a DL symbol by a higher layer parameter tdd-UL-DL-ConfigurationCommon.
  • some symbols in the first time-frequency resource group are configured as DL symbols by a higher-layer parameter tdd-UL-DL-ConfigurationCommon.
  • the symbols in the first time-frequency resource group are configured as DL symbols or flexible symbols by a higher-layer parameter tdd-UL-DL-ConfigurationCommon.
  • Embodiments 6A-6C respectively illustrate schematic diagrams of a first time-frequency resource set according to an embodiment of the present application; as shown in Figures 6A-6C.
  • At least one symbol in the first set of time-frequency resources is configured as a DL symbol by a higher layer parameter.
  • each symbol in the first time-frequency resource set is configured as a DL symbol by a higher layer parameter.
  • some symbols in the first time-frequency resource set are configured as DL symbols by higher-layer parameters.
  • the symbols in the first time-frequency resource set are configured as DL symbols or Flexible symbols by higher-layer parameters.
  • At least one symbol in the first time-frequency resource set is configured as a DL symbol by a higher layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • each symbol in the first time-frequency resource set is configured as a DL symbol by a higher layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • some symbols in the first time-frequency resource set are configured as DL symbols by a higher-layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • the symbols in the first time-frequency resource set are configured as DL symbols or Flexible symbols by a higher-layer parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • At least one symbol in the first time-frequency resource set is configured as a DL symbol by a higher layer parameter tdd-UL-DL-ConfigurationCommon.
  • each symbol in the first time-frequency resource set is configured as a DL symbol by a higher layer parameter tdd-UL-DL-ConfigurationCommon.
  • some symbols in the first time-frequency resource set are configured as DL symbols by a higher-layer parameter tdd-UL-DL-ConfigurationCommon.
  • the symbols in the first time-frequency resource set are configured as DL symbols or Flexible symbols by a higher-layer parameter tdd-UL-DL-ConfigurationCommon.
  • the symbols in the first time-frequency resource set are used for both uplink transmission and downlink transmission.
  • the symbols in the first time-frequency resource set are used for both uplink transmission and downlink transmission in the first BWP.
  • the symbols in the first time-frequency resource set are used simultaneously for uplink transmission and downlink transmission in the serving cell where the first BWP is located.
  • the sentence "the symbols in the first time-frequency resource set are used for uplink transmission and downlink transmission at the same time” means that the sender of the first information block simultaneously receives and sends wireless signals in the symbols in the first time-frequency resource set.
  • the sentence "the symbols in the first time-frequency resource set are used for uplink transmission and downlink transmission at the same time” means that the sender of the first information block simultaneously receives and sends wireless signals in the symbols in the first time-frequency resource set in the first BWP.
  • the sentence "the symbols in the first time-frequency resource set are used for uplink transmission and downlink transmission at the same time” means that the sender of the first information block is in the symbol in the first time-frequency resource set in the serving cell where the first BWP is located. Receive and transmit wireless signals simultaneously.
  • the sentence "the symbols in the first time-frequency resource set are used for uplink transmission and downlink transmission at the same time” means that the sender of the first information block simultaneously receives and sends wireless signals in the symbols in the first time-frequency resource set in the service cell group (cell group) where the first BWP is located.
  • the sentence "the symbols in the first time-frequency resource set are used for both uplink transmission and downlink transmission” means that the sender of the first information block supports simultaneous reception and transmission of wireless signals in the symbols in the first time-frequency resource set.
  • the sentence "the symbols in the first time-frequency resource set are used for both uplink transmission and downlink transmission” means that the sender of the first information block supports simultaneous reception and transmission of wireless signals in the symbols in the first time-frequency resource set in the first BWP.
  • the sentence "the symbols in the first time-frequency resource set are used for both uplink transmission and downlink transmission” means that the sender of the first information block supports simultaneous reception and transmission of wireless signals in the symbols in the first time-frequency resource set in the service cell where the first BWP is located.
  • the sentence "the symbols in the first time-frequency resource set are used for uplink transmission and downlink transmission at the same time” means that the sender of the first information block supports simultaneous reception and transmission of wireless signals in the symbols in the first time-frequency resource set in the service cell group (cell group) where the first BWP is located.
  • a symbol in the first time-frequency resource set refers to: any symbol in the first time-frequency resource set.
  • a symbol in the first time-frequency resource set refers to: a symbol in the first time-frequency resource set.
  • a symbol in the first time-frequency resource set refers to: at least one symbol in the first time-frequency resource set.
  • the first time-frequency resource set does not include symbols used for transmission of a first type of downlink signal
  • the first type of downlink signal includes one or more of SS (Synchroni sation Signal)/PBCH (physical broadcast channel) Block, CORESET (COntrol REsource SET) with index 0 or SIB (System Information Block).
  • SS Synchronization Signal
  • PBCH physical broadcast channel
  • CORESET COntrol REsource SET
  • SIB System Information Block
  • the first time-frequency resource set does not include symbols used for transmission of a first type of downlink signal
  • the first type of downlink signal includes one or more of the SS/PBCH block of the serving cell where the first signal is located, and the CORESET or SIB with an index of 0.
  • the first information block configures symbols in the first time-frequency resource set as a first type.
  • the first type is different from UL (UpLink) and DL.
  • the first type is different from UL, DL and Flexible.
  • the first type includes Flexible.
  • the first information block configures the symbols in the first time-frequency resource set as the first type in the first BWP.
  • the first information block configures the symbols in the first time-frequency resource set as the first type in the serving cell where the first BWP is located.
  • the first information block configures the symbols in the first time-frequency resource set as the first type in a serving cell group (cell group) where the first signal is located.
  • the sentence configuring the symbols in the first time-frequency resource set as the first type means: configuring each symbol in the first time-frequency resource set as the first type.
  • the sentence configuring the symbols in the first time-frequency resource set as the first type means: configuring at least one symbol in the first time-frequency resource set as the first type.
  • the sentence configuring the symbols in the first time-frequency resource set as the first type means: configuring the type of symbols in the first time-frequency resource set as the first type.
  • the sentence configuring the symbols in the first time-frequency resource set as the first type means: configuring the type of each symbol in the first time-frequency resource set as the first type.
  • the sentence configuring the symbols in the first time-frequency resource set as the first type includes: configuring the first The type of at least one symbol in a time-frequency resource set is configured as the first type.
  • the sentence that the first information block is used to determine the first time-frequency resource set means that the first information block configures the symbols in the first time-frequency resource set as the first type.
  • the sentence that the first information block is used to determine the first time-frequency resource set means that the first information block configures each symbol in the first time-frequency resource set as the first type.
  • the sentence that the first information block is used to determine the first time-frequency resource set means that the first information block configures at least one symbol in the first time-frequency resource set as the first type.
  • the sentence that the first information block is used to determine the meaning of the first time-frequency resource set includes: the first information block indicates the type of each symbol in the first time-frequency resource set.
  • the sentence that the first information block is used to determine the meaning of the first time-frequency resource set includes: the first information block indicates that the type of each symbol in the first time-frequency resource set is the first type.
  • the sentence that the first information block is used to determine the meaning of the first time-frequency resource set includes: the first information block indicates that the type of at least one symbol in the first time-frequency resource set is the first type.
  • a sender of the first information block simultaneously receives and sends wireless signals on the one symbol.
  • the sender of the first information block supports simultaneous reception and transmission of wireless signals on the one symbol.
  • the sender of the first information block when a symbol is configured as a type other than the first type, the sender of the first information block only receives wireless signals or only sends wireless signals on the symbol.
  • the sender of the first information block does not support simultaneous reception and transmission of wireless signals on the one symbol.
  • the sender of the first information block only receives wireless signals or only sends wireless signals in symbols outside the first time-frequency resource set.
  • any symbol outside the first time-frequency resource set is used only for uplink transmission or only for downlink transmission.
  • the sender of the first information block only receives wireless signals or only sends wireless signals in any symbol outside the first time-frequency resource set.
  • the sender of the first information block only receives wireless signals or only sends wireless signals in symbols outside the first time-frequency resource set in the first BWP.
  • the sender of the first information block only receives wireless signals or only sends wireless signals in symbols outside the first time-frequency resource set in the service cell where the first BWP is located.
  • the sender of the first information block only receives wireless signals or only sends wireless signals in symbols outside the first time-frequency resource set in the service cell group where the first BWP is located.
  • Examples 7A-7C respectively illustrate schematic diagrams of a first CORESET group according to an embodiment of the present application; as shown in Figures 7A-7C.
  • the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in any CORESET in the first CORESET group and the first time-frequency resource set are orthogonal in the time domain.
  • the phrase "orthogonal in the time domain” means: no overlap in the time domain.
  • the phrase "orthogonal in the time domain" means that the same symbols are not included in the time domain.
  • the phrase “orthogonal in the time domain” means that the time domain does not include the same moment.
  • the air interface resources include frequency domain resources; any monitored PDCCH candidate in any CORESET in the first CORESET group and the first time-frequency resource set are orthogonal in the frequency domain.
  • the phrase “orthogonal in the frequency domain” means: no overlap in the frequency domain.
  • the phrase "orthogonal in the frequency domain" means that the same subcarriers are not included in the frequency domain.
  • the phrase “orthogonal in the frequency domain” means that the same RB is not included in the frequency domain.
  • the air interface resources include time-frequency resources; and any monitored PDCCH candidate in any CORESET in the first CORESET group is orthogonal to the first time-frequency resource set.
  • the phrase "orthogonal to the first set of time-frequency resources" means: not overlapping with the first set of time-frequency resources.
  • the phrase "orthogonal to the first time-frequency resource set” means: being orthogonal to the first time-frequency resource set does not include the same REs.
  • Embodiment 8 illustrates a schematic diagram of a first CORESET group according to another embodiment of the present application; as shown in FIG8 .
  • the first CORESET group is determined by sorting the CORESETs in the first CORESET pool according to a first rule; the first rule depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESETs in the first CORESET pool and the first time-frequency resource set.
  • the sentence "the first CORESET group is determined by sorting the CORESETs in the first CORESET pool according to a first rule” means: sorting the CORESETs in the first CORESET pool according to the first rule, the first CORESET group includes the first K CORESETs in the first CORESET pool, and K is a positive integer.
  • the sentence "the first CORESET group is determined by sorting the CORESETs in the first CORESET pool according to a first rule” means: the reference CORESET set includes all CORESETs in the first CORESET pool where the monitored PDCCH candidates are located; the reference CORESET set is sorted according to the first rule, and the first CORESET group includes the first K CORESETs in the reference CORESET set, where K is a positive integer.
  • the sentence "the first rule depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means that the air interface resources include time domain resources, and in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidates and the first time-frequency resource set are orthogonal in the time domain” is arranged before the CORESET that satisfies "the monitored PDCCH candidates and the first time-frequency resource set are overlapping in the time domain".
  • the sentence "the first rule depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means that the air interface resources include frequency domain resources, and in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidates and the first time-frequency resource set are orthogonal in the frequency domain” is arranged before the CORESET that satisfies "the monitored PDCCH candidates and the first time-frequency resource set are overlapping in the frequency domain”.
  • the sentence "the first rule depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means that the air interface resources include time-frequency resources, and in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidates are orthogonal to the first time-frequency resource set” is arranged before the CORESET that satisfies "the monitored PDCCH candidates are overlapping with the first time-frequency resource set”.
  • the first rule is also related to the PDCCH monitoring period of the search space associated with the CORESET.
  • the first rule is also related to the index of CORESET.
  • the first rule further includes: arranging in ascending order of the PDCCH monitoring period of the search space associated with the CORESET; and arranging in descending order of the CORESET index under the same PDCCH monitoring period.
  • the air interface resources include time domain resources;
  • the first rule includes: first, in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidates and the first time-frequency resource set are orthogonal in the time domain" is arranged before the CORESET that satisfies "the monitored PDCCH candidates and the first time-frequency resource set are overlapping in the time domain”; secondly, the CORESETs are arranged in ascending order of the PDCCH monitoring period of the search space associated with the CORESETs, and under the same PDCCH monitoring period, the CORESET indexes are arranged in descending order.
  • the air interface resources include frequency domain resources;
  • the first rule includes: first, in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidates and the first time-frequency resource set are orthogonal in the frequency domain” is arranged before the CORESET that satisfies "the monitored PDCCH candidates and the first time-frequency resource set are overlapping in the frequency domain”; secondly, they are arranged in ascending order of the PDCCH monitoring period of the search space associated with the CORESET, and under the same PDCCH monitoring period, they are arranged in descending order of the CORESET index.
  • the air interface resources include time-frequency resources;
  • the first rule includes: first, in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidates are orthogonal to the first time-frequency resource set” is arranged before the CORESET that satisfies "the monitored PDCCH candidates are overlapping with the first time-frequency resource set”; secondly, the CORESETs are arranged in ascending order of the PDCCH monitoring period of the search space associated with the CORESET, and under the same PDCCH monitoring period, the CORESET indexes are arranged in descending order.
  • the air interface resources include time domain resources;
  • the first rule includes: first, arranging in ascending order of the PDCCH monitoring period of the search space associated with the CORESET; under the same PDCCH monitoring period, in the first CORESET pool, The CORESET that satisfies "the monitored PDCCH candidate and the first time-frequency resource set are orthogonal in the time domain" is arranged before the CORESET that satisfies "the monitored PDCCH candidate and the first time-frequency resource set are overlapping in the time domain".
  • the air interface resources include frequency domain resources;
  • the first rule includes: first, arranging in ascending order according to the PDCCH monitoring period of the search space associated with the CORESET; under the same PDCCH monitoring period, in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidate and the first time-frequency resource set are orthogonal in the frequency domain" is arranged before the CORESET that satisfies "the monitored PDCCH candidate and the first time-frequency resource set are overlapping in the frequency domain".
  • the air interface resources include time-frequency resources;
  • the first rule includes: first, arranging in ascending order according to the PDCCH monitoring period of the search space associated with the CORESET; under the same PDCCH monitoring period, in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidate is orthogonal to the first time-frequency resource set” is arranged before the CORESET that satisfies "the monitored PDCCH candidate is overlapping with the first time-frequency resource set".
  • the air interface resources include time domain resources;
  • the first rule includes: first, arranging in ascending order of the PDCCH monitoring period of the search space corresponding to the CORESET; under the same PDCCH monitoring period, arranging in descending order of the CORESET index; under the same CORESET index, in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidate and the first time-frequency resource set are orthogonal in the time domain" is arranged before the CORESET that satisfies "the monitored PDCCH candidate and the first time-frequency resource set are overlapping in the time domain".
  • the air interface resources include frequency domain resources;
  • the first rule includes: first, arranging in ascending order according to the PDCCH monitoring period of the search space corresponding to the CORESET; under the same PDCCH monitoring period, arranging in descending order according to the CORESET index; under the same CORESET index, in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidate and the first time-frequency resource set are orthogonal in the frequency domain” is arranged before the CORESET that satisfies "the monitored PDCCH candidate and the first time-frequency resource set are overlapping in the frequency domain".
  • the air interface resources include time-frequency resources;
  • the first rule includes: first, arranging in ascending order of the PDCCH monitoring period of the search space corresponding to the CORESET; under the same PDCCH monitoring period, arranging in descending order of the CORESET index; under the same CORESET index, in the first CORESET pool, the CORESET that satisfies "the monitored PDCCH candidate is orthogonal to the first time-frequency resource set” is arranged before the CORESET that satisfies "the monitored PDCCH candidate is overlapping with the first time-frequency resource set".
  • the sentence "the monitored PDCCH candidate is orthogonal to the first time-frequency resource set in the time domain" means that the monitored PDCCH candidate does not belong to the first time-frequency resource set in the time domain.
  • the sentence "the monitored PDCCH candidate overlaps with the first time-frequency resource set in the time domain” means that the monitored PDCCH candidate belongs to the first time-frequency resource set in the time domain.
  • the sentence "the monitored PDCCH candidate overlaps with the first time-frequency resource set in the time domain” means that at least one symbol in the monitored PDCCH candidate belongs to the first time-frequency resource set in the time domain.
  • the sentence "the monitored PDCCH candidate is orthogonal to the first time-frequency resource set in the frequency domain” means that the monitored PDCCH candidate does not belong to the first time-frequency resource set in the frequency domain.
  • the sentence "the monitored PDCCH candidate overlaps with the first time-frequency resource set in the frequency domain” means that the monitored PDCCH candidate belongs to the first time-frequency resource set in the frequency domain.
  • the sentence "the monitored PDCCH candidate overlaps with the first time-frequency resource set in the frequency domain” means that at least one subcarrier in the monitored PDCCH candidate belongs to the first time-frequency resource set in the frequency domain.
  • the sentence "the monitored PDCCH candidate is orthogonal to the first time-frequency resource set" means that the monitored PDCCH candidate does not belong to the first time-frequency resource set.
  • the sentence "the monitored PDCCH candidate overlaps with the first time-frequency resource set” means that the monitored PDCCH candidate belongs to the first time-frequency resource set.
  • the sentence "the monitored PDCCH candidates overlap with the first time-frequency resource set" means that at least one RE in the monitored PDCCH candidates belongs to the first time-frequency resource set.
  • the air interface resources include time domain resources; the first rule also includes: for all CORESETs in the first CORESET pool that satisfy "the monitored PDCCH candidates and the first time-frequency resource set are orthogonal in the time domain", they are arranged in descending order of the CORESET index; for all CORESETs that satisfy "the monitored PDCCH candidates and the first time-frequency resource set are overlapping in the time domain", they are arranged in descending order of the CORESET index.
  • the air interface resources include frequency domain resources; the first rule also includes: for all CORESETs in the first CORESET pool that satisfy "the monitored PDCCH candidates and the first time-frequency resource set are orthogonal in the frequency domain", they are arranged in descending order of the CORESET index; for all CORESETs that satisfy "the monitored PDCCH candidates and the first time-frequency resource set are overlapping in the frequency domain", they are arranged in descending order of the CORESET index.
  • the air interface resources include time-frequency resources; the first rule further includes: for all CORESETs in the first CORESET pool that satisfy "the monitored PDCCH candidate is orthogonal to the first time-frequency resource set", according to CORESET The indices are arranged in descending order; for all CORESETs satisfying the condition that "the monitored PDCCH candidates overlap with the first time-frequency resource set", they are arranged in descending order of the CORESET indices.
  • Embodiment 9 illustrates a schematic diagram of a second RS resource set according to an embodiment of the present application; as shown in FIG9 .
  • the wireless link quality assessment of the first BWP includes: assessing the wireless link quality respectively according to the first RS resource set and the second RS resource set; the reference information block is used to configure a second CORESET pool on the first BWP, the second RS resource set depends on the TCI state of a second CORESET group, the second CORESET group includes at least one CORESET in the second CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set.
  • the receiver of the first information block evaluates the radio link quality based on the first RS resource set and the second RS resource set, respectively.
  • the index of the first CORESET pool is 0, and the index of the second CORESET pool is 1.
  • the index of the first CORESET pool is 1, and the index of the second CORESET pool is 0.
  • the first CORESET pool includes at least one CORESET corresponding to CORESETPoolIndex of 0, and the second CORESET pool includes at least one CORESET corresponding to CORESETPoolIndex of 1.
  • the first CORESET pool includes at least one CORESET corresponding to CORESETPoolIndex of 1, and the second CORESET pool includes at least one CORESET corresponding to CORESETPoolIndex of 0.
  • the reference information block indicates the index of the CORESET in the second CORESET pool on the first BWP.
  • the reference information block indicates configuration information of the CORESETs in the second CORESET pool on the first BWP.
  • a CORESET in the second CORESET pool refers to: any CORESET in the second CORESET pool.
  • CORESET in the second CORESET pool refers to: each CORESET in the second CORESET pool.
  • a CORESET in the second CORESET pool refers to: at least one CORESET in the second CORESET pool.
  • CORESET in the second CORESET pool refers to: part of the CORESET in the second CORESET pool.
  • CORESET in the second CORESET pool refers to: all CORESETs in the second CORESET pool.
  • the second CORESET pool includes one or more CORESETs.
  • the second CORESET pool includes multiple CORESETs.
  • the first CORESET pool and the second CORESET pool include a total of up to 5 CORESETs.
  • the sentence "the second RS resource set depends on the TCI state of the second CORESET group” means that any RS resource in the second RS resource set depends on the TCI state of a CORESET in the second CORESET group.
  • the sentence "the second RS resource set depends on the TCI state of the second CORESET group” means that at least one RS resource in the second RS resource set depends on the TCI state of a CORESET in the second CORESET group.
  • the sentence "the second RS resource set depends on the TCI state of the second CORESET group” means that at least one RS resource in the second RS resource set depends on the TCI state of a CORESET in the second CORESET group.
  • the sentence "the second RS resource set depends on the TCI state of the second CORESET group” means that the TCI state of at least one CORESET in the second CORESET group is dependent on one RS resource set in the second RS resource set.
  • the sentence "the second RS resource set depends on the TCI state of the second CORESET group” means that the TCI state of any CORESET in the second CORESET group is dependent on an RS resource set in the second RS resource set.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first set of time-frequency resources” means that the second CORESET group only depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first set of time-frequency resources.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first set of time-frequency resources” means: the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first set of time-frequency resources, and the second CORESET group also includes CORESETs outside the second CORESET pool.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set” means: the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in any CORESET in the second CORESET group and the first time-frequency resource set are orthogonal in the time domain.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set” means: the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in at least one CORESET in the second CORESET group and the first time-frequency resource set are orthogonal in the time domain.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set” means: the air interface resources include frequency domain resources; any monitored PDCCH candidate in any CORESET in the second CORESET group and the first time-frequency resource set are orthogonal in the frequency domain.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set” means: the air interface resources include frequency domain resources; any monitored PDCCH candidate in at least one CORESET in the second CORESET group and the first time-frequency resource set are orthogonal in the frequency domain.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set” means: the air interface resources include time-frequency resources; any monitored PDCCH candidate in any CORESET in the second CORESET group is orthogonal to the first time-frequency resource set.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set” means: the air interface resources include time-frequency resources; any monitored PDCCH candidate in at least one CORESET in the second CORESET group is orthogonal to the first time-frequency resource set.
  • Embodiment 10 illustrates a schematic diagram of a second RS resource set according to another embodiment of the present application; as shown in FIG10 .
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the second RS resource set depends on the TCI state of the second CORESET group, and the second CORESET group includes at least one CORESET in the first CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means that the second CORESET group only depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first set of time-frequency resources” means: the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first set of time-frequency resources, and the second CORESET group also includes CORESETs outside the first CORESET pool.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in any CORESET in the second CORESET group overlaps with the first time-frequency resource set in the time domain.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in at least one CORESET in the second CORESET group overlaps with the first time-frequency resource set in the time domain.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the air interface resources include frequency domain resources; any monitored PDCCH candidate in any CORESET in the second CORESET group overlaps with the first time-frequency resource set in the frequency domain.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the air interface resources include frequency domain resources; any monitored PDCCH candidate in at least one CORESET in the second CORESET group overlaps with the first time-frequency resource set in the frequency domain.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the air interface resources include time-frequency resources; any monitored PDCCH candidate in any CORESET in the second CORESET group overlaps with the first time-frequency resource set.
  • the sentence "the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set” means: the air interface resources include time-frequency resources; any monitored PDCCH candidate in at least one CORESET in the second CORESET group overlaps with the first time-frequency resource set.
  • Embodiment 11 illustrates a schematic diagram of triggering beam failure recovery according to an embodiment of the present application; as shown in FIG11 .
  • Example 11 when the value of the target counter is equal to or greater than the target threshold, the first node in the present application triggers beam failure recovery for the first service cell; wherein the first BWP is a BWP of the first service cell; when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the first node sends a beam failure event indication for the first service cell to a higher layer; the target counter is used to count the beam failure event indication for the first service cell.
  • the beam failure event indication for the first serving cell is sent from a physical layer to a higher layer within the first node.
  • the beam failure recovery for the first serving cell is triggered by the first node in the present application.
  • the first serving cell is the serving cell where the first BWP is located.
  • the wireless link quality is one of RSRP, L1-RSRP, SINR or L1-SINR; the phrase "the wireless link quality is worse than a reference threshold" means that the wireless link quality is less than the reference threshold.
  • the unit of the reference threshold is dBm or dB.
  • the wireless link quality is BLER; the phrase "the wireless link quality is worse than a reference threshold" means that: the wireless link quality is greater than the reference threshold.
  • the reference threshold is a BLER threshold.
  • the wireless link quality is a hypothetical BLER; the phrase "the wireless link quality is worse than a reference threshold" means that the wireless link quality is greater than the reference threshold.
  • the reference threshold is a real number.
  • the reference threshold is a non-negative real number.
  • the reference threshold is a non-negative real number not greater than 1.
  • the reference threshold is Qout_L.
  • the reference threshold is one of Qout_L, Qout_LR_SSB or Qout_LR_CSI-RS.
  • Qout_LR Qout_LR_SSB
  • Qout_LR_CSI-RS the definitions of Qout_LR, Qout_LR_SSB and Qout_LR_CSI-RS refer to 3GPP TS38.133.
  • the reference threshold is configured by the RRC parameter rlmInSyncOutOfSyncThreshold.
  • the reference threshold is the default value of rlmInSyncOutOfSyncThreshold.
  • rlmInSyncOutOfSyncThreshold refers to Chapter 6 of 3GPP TS38.213.
  • rlmInSyncOutOfSyncThreshold refers to 3GPP TS38.133.
  • the sentence “when the value of the target counter is equal to or greater than the target threshold” means: when and only when the value of the target counter is equal to or greater than the target threshold.
  • the sentence "when the value of the target counter is equal to or greater than the target threshold value” means: in response to the value of the target counter being equal to or greater than the target threshold value.
  • the first node maintains the target counter at the MAC layer.
  • a MAC entity of the first node maintains the target counter.
  • the target timer is started or restarted, and the value of the target counter is increased by 1.
  • the target counter is BFI_COUNTER.
  • the target counter is set to zero.
  • the target timer is beamFailureDetectionTimer.
  • the target counter is BFI_COUNTER.
  • the initial value of the target counter is 0.
  • the target threshold is a positive integer.
  • the target threshold is beamFailureInstanceMaxCount.
  • the target threshold is configured by RRC parameters.
  • the RRC parameters for configuring the target threshold include all or part of the information in the beamFailureInstanceMaxCount field of the RadioLinkMonitoringConfig IE.
  • the target timer is beamFailureDetectionTimer.
  • the initial value of the target timer is a positive integer.
  • the initial value of the target timer is a positive real number.
  • the unit of the initial value of the target timer is the Qout,LR reporting period of the beam failure detection RS.
  • the initial value of the target timer is configured by a higher layer parameter beamFailureDetectionTimer.
  • the initial value of the target timer is configured by an IE.
  • the name of the IE configuring the initial value of the target timer includes RadioLinkMonitoring.
  • the beam failure recovery process for the first serving cell includes sending the first signal.
  • the first signal includes at least one of contention-based Random Access Preamble, BFR MAC CE, Truncated BFR MAC CE, Enhanced BFR MAC CE, or Truncated Enhanced BFR MAC CE.
  • the beam failure recovery (BFR) for the first service cell includes a random access process.
  • the beam failure recovery (Beam Failure Recovery, BFR) for the first service cell includes sending a random access preamble, sending a BFR MAC CE, sending a Truncated BFR MAC CE, sending an Enhanced BFR MAC CE, or at least one of sending a Truncated Enhanced BFR MAC CE.
  • the random access preamble is a contention-based Random Access Preamble.
  • the random access preamble is a contention-free Random Access Preamble.
  • the beam failure recovery (Beam Failure Recovery, BFR) for the first service cell includes sending one of BFR MAC CE, Truncated BFR MAC CE, Enhanced BFR MAC CE or Truncated Enhanced BFR MAC CE.
  • the beam failure recovery (Beam Failure Recovery, BFR) for the first serving cell includes sending a MAC CE whose name includes BFR.
  • the wave speed failure recovery process refers to Section 5.17 of 3GPP TS38.321.
  • the wave speed failure recovery process refers to Chapter 6 of 3GPP TS38.213.
  • Embodiment 12 illustrates a schematic diagram of triggering beam failure recovery according to another embodiment of the present application; as shown in FIG12 .
  • the physical layer of the first node when the radio link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the first node sends a beam failure event indication for the first RS resource set to a higher layer; when the radio link quality evaluated according to the second RS resource set is worse than the reference threshold, the physical layer of the first node sends a beam failure event indication for the second RS resource set to a higher layer; a first counter is used to count the beam failure event indications for the first RS resource set, The second counter is used to count the beam failure event indications for the second RS resource set; when the value of the first counter is equal to or greater than the first threshold, beam failure recovery for the first RS resource set is triggered; when the value of the second counter is equal to or greater than the second threshold, beam failure recovery for the second RS resource set is triggered.
  • the beam failure event indication for the first set of RS resources is sent from a physical layer to a higher layer within the first node.
  • the beam failure event indication for the second set of RS resources is sent from a physical layer to a higher layer within the first node.
  • statistics of beam failure event indications for the first RS resource set and statistics of beam failure event indications for the second RS resource set are performed separately.
  • beam failure detection for the first RS resource set and beam failure detection for the second RS resource set are performed separately.
  • the beam failure recovery of the first RS resource set and the beam failure recovery of the second RS resource set are triggered separately.
  • the first RS resource set and the second RS resource set are two beam failure detection RS sets, and beam failure detection is performed per beam failure detection RS set.
  • the first RS resource set and the second RS resource set are two beam failure detection RS sets, and beam failure recovery is performed per beam failure detection RS set.
  • the first RS resource set and the second RS resource set correspond to two BFI_COUNTERs respectively.
  • the first RS resource set corresponds to a first counter
  • the second RS resource set corresponds to a second counter
  • the sentence “when the value of the first counter is equal to or greater than the first threshold” means: when and only when the value of the first counter is equal to or greater than the first threshold.
  • the sentence "when the value of the first counter is equal to or greater than the first threshold” means: in response to the value of the first counter being equal to or greater than the first threshold.
  • the sentence "when the value of the second counter is equal to or greater than the second threshold” means: when and only when the value of the second counter is equal to or greater than the second threshold.
  • the sentence "when the value of the second counter is equal to or greater than the second threshold” means: in response to the value of the second counter being equal to or greater than the second threshold.
  • the first node maintains the first counter at the MAC layer, and the first node maintains the second counter at the MAC layer.
  • the MAC entity of the first node maintains the first counter
  • the MAC entity of the first node maintains the second counter
  • the first timer is started or restarted, and the value of the first counter is increased by 1; each time the MAC entity of the first node receives a beam failure event indication for the second RS resource set from the physical layer, the second timer is started or restarted, and the value of the second counter is increased by 1.
  • the first counter and the second counter are 2 BFI_COUNTERs.
  • the first counter is set to 0; when the second timer expires (expires), the second counter is set to 0.
  • the first timer and the second timer are 2 beamFailureDetectionTimers.
  • the initial value of the first counter is 0, and the initial value of the second counter is 0.
  • the first threshold is a positive integer
  • the second threshold is a positive integer
  • the first threshold and the second threshold are respectively configured beamFailureInstanceMaxCount-r17.
  • the name of the first threshold includes beamFailureInstanceMaxCount
  • the name of the second threshold includes beamFailureInstanceMaxCount
  • the first threshold and the second threshold are respectively configured by RRC parameters.
  • the first threshold and the second threshold are the same.
  • the first threshold and the second threshold are different.
  • the first threshold and the second threshold are configured by part or all of the fields in an RRC IE.
  • the RRC message configuring the first threshold and the second threshold includes two beamFailureInstanceMaxCount-r17 fields of the RadioLinkMonitoringConfig IE.
  • the RRC message for configuring the first threshold and the second threshold respectively includes part or all of the information in the two failureDetectionSet1-r17 fields of the RadioLinkMonitoringConfig IE.
  • the RRC message for configuring the first threshold and the second threshold respectively includes part or all of the information in the field whose name includes failureDetectionSet1 in the RadioLinkMonitoringConfig IE
  • the RRC message for configuring the first threshold and the second threshold respectively includes part or all of the information in the field whose name includes failureDetectionSet2 in the RadioLinkMonitoringConfig IE.
  • the initial value of the first timer is the same as the initial value of the second timer.
  • the initial value of the first timer is different from the initial value of the second timer.
  • the initial value of the first timer and the initial value of the second timer are respectively configured by RRC parameters.
  • the first timer and the second timer are 2 beamFailureDetectionTimer-r17 respectively.
  • the names of the first timer and the second timer both include beamFailureDetectionTimer-r17.
  • the initial value of the first timer is a positive integer
  • the initial value of the second timer is a positive integer
  • the initial value of the first timer is a positive real number
  • the initial value of the second timer is a positive real number
  • the unit of the initial value of the first timer and the unit of the initial value of the second timer are both the Qout,LR reporting period of the beam failure detection RS.
  • the initial value of the first timer and the initial value of the second timer are respectively configured by 2 higher layer parameters beamFailureDetectionTimer-r17.
  • the initial value of the first timer and the initial value of the second timer are respectively configured by two higher layer parameters whose names include beamFailureDetectionTimer-r17.
  • the initial value of the first timer and the initial value of the second timer are configured by an IE.
  • the name of the IE for configuring the initial value of the first timer and the initial value of the second timer includes RadioLinkMonitoring.
  • the beam failure recovery (Beam Failure Recovery, BFR) for the first RS resource set includes sending one of BFR MAC CE, Truncated BFR MAC CE, Enhanced BFR MAC CE or Truncated Enhanced BFR MAC CE;
  • the beam failure recovery (Beam Failure Recovery, BFR) for the second RS resource set includes sending one of BFR MAC CE, Truncated BFR MAC CE, Enhanced BFR MAC CE or Truncated Enhanced BFR MAC CE.
  • the beam failure recovery (Beam Failure Recovery, BFR) for the first RS resource set includes sending a MAC CE whose name includes BFR
  • the beam failure recovery (Beam Failure Recovery, BFR) for the second RS resource set includes sending a MAC CE whose name includes BFR.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a first node device according to an embodiment of the present application, as shown in FIG13.
  • the processing device 1200 in the first node device includes at least the first receiver 1201 in the first receiver 1201 or the first transmitter 1202.
  • the first node device is a user equipment.
  • the first node device is a relay node device.
  • the first receiver 1201 includes at least one of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • the first transmitter 1202 includes at least one of ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • a first receiver 1201 receives a reference information block and a first information block
  • the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool includes at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • it includes:
  • the first receiver 1201 receives a first signaling
  • a first transmitter 1202 sends a first signal in a first time-frequency resource group
  • the first signaling indicates scheduling information of the first signal
  • the first time-frequency resource group belongs to the first time-frequency resource set
  • at least one symbol in the first time-frequency resource group is configured as a DL symbol by a higher-layer parameter.
  • the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in any CORESET in the first CORESET group and the first time-frequency resource set are orthogonal in the time domain.
  • the first CORESET group is determined by sorting the CORESETs in the first CORESET pool according to a first rule; the first rule depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESETs in the first CORESET pool and the first time-frequency resource set.
  • the method includes: when the value of the target counter is equal to or greater than the target threshold, triggering beam failure recovery for the first serving cell;
  • the first BWP is a BWP of the first service cell; when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the first node sends a beam failure event indication for the first service cell to a higher layer; and the target counter is used to count the beam failure event indication for the first service cell.
  • the beam failure recovery is performed in the first receiver 1201 and the first transmitter 1202.
  • the beam failure recovery is performed in at least the first transmitter 1202 of the first receiver 1201 or the first transmitter 1202.
  • the beam failure recovery is performed in at least one of the first receiver 1201 or the first transmitter 1202.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the reference information block is used to configure the second CORESET pool on the first BWP, the second RS resource set depends on the TCI state of the second CORESET group, and the second CORESET group includes at least one CORESET in the second CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the second RS resource set depends on the TCI state of the second CORESET group, and the second CORESET group includes at least one CORESET in the first CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the physical layer of the first node when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the first node sends a beam failure event indication for the first RS resource set to a higher layer; when the wireless link quality evaluated according to the second RS resource set is worse than the reference threshold, the physical layer of the first node sends a beam failure event indication for the second RS resource set to a higher layer; a first counter is used to count the beam failure event indications for the first RS resource set, and a second counter is used to count the beam failure event indications for the second RS resource set; when the value of the first counter is equal to or greater than the first threshold, beam failure recovery for the first RS resource set is triggered; when the value of the second counter is equal to or greater than the second threshold, beam failure recovery for the second RS resource set is triggered.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a second node device according to an embodiment of the present application, as shown in FIG14.
  • the processing device 1300 in the second node device includes at least the second transmitter 1301 in a second transmitter 1301 or a second receiver 1302.
  • the second node device is a base station.
  • the second node device is a user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1301 includes at least one of ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second receiver 1302 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second transmitter 1301 sends a reference information block and a first information block
  • the reference information block is used to configure a first CORESET pool on a first BWP, the first CORESET pool includes at least one CORESET; a first RS resource set is used for wireless link quality assessment of the first BWP, the first RS resource set depends on the TCI state of a first CORESET group, the first CORESET group includes at least one CORESET in the first CORESET pool; the first information block is used to determine a first time-frequency resource set, the first time-frequency resource set includes at least one subcarrier in the first BWP in the frequency domain; the first CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • it includes:
  • the second transmitter 1301 sends a first signaling
  • a second receiver 1302 receives a first signal in a first time-frequency resource group
  • the first signaling indicates scheduling information of the first signal
  • the first time-frequency resource group belongs to the first time-frequency resource set
  • at least one symbol in the first time-frequency resource group is configured as a DL symbol by a higher-layer parameter.
  • the air interface resources include time domain resources, and the first time-frequency resource set includes at least one symbol in the time domain; any monitored PDCCH candidate in any CORESET in the first CORESET group and the first time-frequency resource set are orthogonal in the time domain.
  • the first CORESET group is determined by sorting the CORESETs in the first CORESET pool according to a first rule; the first rule depends on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESETs in the first CORESET pool and the first time-frequency resource set.
  • the receiver of the first information block triggers beam failure recovery for the first service cell when the value of the target counter is equal to or greater than the target threshold; wherein the first BWP is a BWP of the first service cell; when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the receiver of the first information block sends a beam failure event indication for the first service cell to a higher layer; the target counter is used to count the beam failure event indication for the first service cell.
  • the second transmitter 1301 and the second receiver 1302 are used to perform the beam failure recovery.
  • the beam failure recovery is performed in at least the second receiver 1302 of the second transmitter 1301 or the second receiver 1302.
  • the beam failure recovery is performed in at least one of the second transmitter 1301 or the second receiver 1302.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the reference information block is used to configure the second CORESET pool on the first BWP, the second RS resource set depends on the TCI state of the second CORESET group, and the second CORESET group includes at least one CORESET in the second CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the second CORESET pool and the first time-frequency resource set.
  • the wireless link quality evaluation of the first BWP includes: evaluating the wireless link quality according to the first RS resource set and the second RS resource set respectively; the second RS resource set depends on the TCI state of the second CORESET group, and the second The CORESET group includes at least one CORESET in the first CORESET pool; the second CORESET group depends at least on the relationship between the air interface resources occupied by the monitored PDCCH candidates in the CORESET in the first CORESET pool and the first time-frequency resource set.
  • the physical layer of the receiver of the first information block when the wireless link quality evaluated according to the first RS resource set is worse than a reference threshold, the physical layer of the receiver of the first information block sends a beam failure event indication for the first RS resource set to a higher layer; when the wireless link quality evaluated according to the second RS resource set is worse than the reference threshold, the physical layer of the receiver of the first information block sends a beam failure event indication for the second RS resource set to a higher layer; a first counter is used to count the beam failure event indications for the first RS resource set, and a second counter is used to count the beam failure event indications for the second RS resource set; when the value of the first counter is equal to or greater than the first threshold, beam failure recovery for the first RS resource set is triggered; when the value of the second counter is equal to or greater than the second threshold, beam failure recovery for the second RS resource set is triggered.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
  • the user equipment, terminal and UE in the present application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • drones communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • the base stations or system equipment in this application include but are not limited to macrocell base stations, microcell base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收参考信息块和第一信息块.其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其是支持蜂窝网的无线通信***中的无线信号的传输方法和装置。
背景技术
在现有的NR(New Radio,新无线)***中,频谱资源被静态地划分为FDD(Frequency Division Duplexing,频分双工)频谱和TDD(Time Division Duplexing,时分双工)频谱。而对于TDD频谱,基站和用户设备都工作在半双工模式。这种半双工模式避免了自干扰并能够缓解跨链路(Cross Link)干扰的影响,但是也带来了资源利用率的下降和延时的增大。针对这些问题,在TDD频谱或FDD频谱上支持灵活的双工模式成为一种可能的解决方案。在3GPP RAN(Radio Access Network,无线接入网)1#103e次会议同意了针对双工技术的研究工作,其中子带非交叠全双工(subband non-overlapping full duplex)被提出,即支持基站设备在两个子带上同时进行发送和接收。在这个模式下的通信会受到严重的干扰,包括自干扰和跨链路干扰。
发明内容
发明人通过研究发现,如果确定用于无线链路质量评估的RS(Reference S ignal,参考信号)资源是一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将灵活的双工模式作为一个典型应用场景或者例子;本申请也能应用于半双工模式下的应用场景,进一步的,对不同场景(包括但不限于SBFD,其他灵活的双工模式或全双工模式,可变的链路方向模式、传统的双工模式、半双工模式等)采用统一的设计方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收参考信息块和第一信息块;
其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,本申请要解决的问题包括:如何确定用于无线链路质量评估的参考信号资源。
根据本申请的一个方面,其特征在于,包括:
接收第一信令;
在第一时频资源组中发送第一信号;
其中,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
根据本申请的一个方面,其特征在于,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
根据本申请的一个方面,其特征在于,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
根据本申请的一个方面,其特征在于,包括:
当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;
其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
根据本申请的一个方面,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
根据本申请的一个方面,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
根据本申请的一个方面,其特征在于,当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一节点的物理层向更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数;当第一计数器的值等于或大于第一阈值时,针对所述第一RS资源集合的波束失败恢复被触发;当所述第二计数器的值等于或大于第二阈值时,针对所述第二RS资源集合的波束失败恢复被触发。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送参考信息块和第一信息块;
其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
根据本申请的一个方面,其特征在于,包括:
发送第一信令;
在第一时频资源组中接收第一信号;
其中,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
根据本申请的一个方面,其特征在于,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
根据本申请的一个方面,其特征在于,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用 的空口资源和所述第一时频资源集合之间的关系。
根据本申请的一个方面,其特征在于,所述第一信息块的接收者在当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一信息块的接收者的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
根据本申请的一个方面,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
根据本申请的一个方面,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
根据本申请的一个方面,其特征在于,当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一信息块的接收者的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一信息块的所述接收者的物理层向更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数;当第一计数器的值等于或大于第一阈值时,针对所述第一RS资源集合的波束失败恢复被触发;当所述第二计数器的值等于或大于第二阈值时,针对所述第二RS资源集合的波束失败恢复被触发。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收参考信息块和第一信息块;
其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送参考信息块和第一信息块;
其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-在确定用于无线链路质量评估的参考信号资源中,考虑了空口资源的影响。
-不同的空口资源可以应用于不同的场景,比如不同的双工模式、不同的干扰环境、不同的天线、不同空间特性等等。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的参考信息块和第一信息块的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6A-6C分别示出了根据本申请的一个实施例的第一时频资源集合的示意图;
图7A-7C分别示出了根据本申请的一个实施例的第一CORESET组的示意图;
图8示出了根据本申请的另一个实施例的第一CORESET组的示意图;
图9示出了根据本申请的一个实施例的第二RS资源集合的示意图;
图10示出了根据本申请的另一个实施例的第二RS资源集合的示意图;
图11示出了根据本申请的一个实施例的波束失败恢复的触发的示意图;
图12示出了根据本申请的另一个实施例的波束失败恢复的触发的示意图;
图13示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的参考信息块和第一信息块的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。
在实施例1中,本申请中的所述第一节点在步骤101中接收参考信息块和第一信息块;其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述参考信息块和所述第一信息块由同一个信令承载。
作为一个实施例,所述参考信息块和所述第一信息块由不同的信令承载。
作为一个实施例,所述参考信息块的接收早于所述第一信息块的接收。
作为一个实施例,所述参考信息块的接收不早于所述第一信息块的接收。
作为一个实施例,所述参考信息块和所述第一信息块同时被接收。
作为一个实施例,所述参考信息块包括RRC消息。
作为一个实施例,所述参考信息块包括RRC消息或者MAC CE消息中的至少RRC消息。
作为一个实施例,所述参考信息块包括RRC消息和MAC CE消息。
作为一个实施例,所述参考信息块包括一个或多个RRC IE(Information Element,信息元素)中的部分或全部域。
作为一个实施例,所述参考信息块包括一个RRC IE中的部分或全部域。
作为一个实施例,所述参考信息块包括至少一个RRC IE中的部分或全部域。
作为一个实施例,所述参考信息块包括RRC IE中的controlResourceSetToAddModList域。
作为一个实施例,所述参考信息块包括RRC IE中的名称包括controlResourceSetToAddModList的域。
作为一个实施例,所述参考信息块包括RRC IE中的名称包括controlResourceSet的域。
作为一个实施例,所述参考信息块指示第一BWP(BandWidth Part,带宽区间)上的第一CORESET (COntrol REsource SET,控制资源集合)池中的CORESET的索引。
作为一个实施例,所述参考信息块指示第一BWP上的第一CORESET池中的CORESET的配置信息。
作为一个实施例,“第一CORESET池中的CORESET”是指:第一CORESET池中的任一CORESET。
作为一个实施例,“第一CORESET池中的CORESET”是指:第一CORESET池中的每个CORESET。
作为一个实施例,“第一CORESET池中的CORESET”是指:第一CORESET池中的至少一个CORESET。
作为一个实施例,“第一CORESET池中的CORESET”是指:第一CORESET池中的部分CORESET。
作为一个实施例,“第一CORESET池中的CORESET”是指:第一CORESET池中的全部CORESET。
作为一个实施例,一个CORESET的配置信息包括对应的索引,占用的RB(Resource Block,资源块),占用的连续的(consecutive)符号,TCI(Transmission Configuration Indication,传输配置指示)状态(state),CCE(Control channel element,控制信道元素)到(to)REG(Resource Element Group,资源要素组)映射(mapping)参数,预编码(precoder)颗粒度(granularity),DM-RS扰码(scrambling)序列(sequence)初始化(initialization)值(value)。
作为一个实施例,一个CORESET的配置信息包括对应的索引,占用的RB,占用的连续的符号,TCI状态。
典型的,一个CORESET的配置信息中的TCI状态指示所述一个CORESET的天线端口准共址(quasico-location,QCL)。
作为一个实施例,所述第一CORESET池包括一个或多个CORESET。
作为一个实施例,所述第一CORESET池包括多个CORESET。
作为一个实施例,所述第一CORESET池包括最多3个CORESET。
作为一个实施例,所述第一CORESET池包括最多5个CORESET。
作为一个实施例,无线链路质量评估被用于波束失败监测。
作为一个实施例,无线链路质量评估包括无线链路质量是否差于参考阈值的判定。
作为一个实施例,所述无线链路质量是RSRP。
作为一个实施例,所述无线链路质量是L1-RSRP。
作为一个实施例,所述无线链路质量是SINR。
作为一个实施例,所述无线链路质量是L1-SINR。
作为一个实施例,所述无线链路质量是BLER。
作为一个实施例,所述无线链路质量是假设的(hypothetical)BLER。
作为一个实施例,仅第一RS资源集合被用于所述第一BWP的无线链路质量评估。
作为一个实施例,第一RS资源集合和所述第一RS资源集合之外的RS资源被用于所述第一BWP的无线链路质量评估。
作为一个实施例,第一RS资源集合和第二RS资源集合被用于所述第一BWP的无线链路质量评估。
作为一个实施例,所述第一BWP的无线链路质量评估包括:根据第一RS资源集合评估无线链路质量。
作为一个实施例,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量。
作为一个实施例,所述第一BWP的无线链路质量评估是指:根据第一RS资源集合评估无线链路质量。
作为一个实施例,所述第一BWP的无线链路质量评估是指:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量。
作为一个实施例,“根据给定RS资源集合评估无线链路质量”的意思包括:根据给定RS资源集合中的所有RS资源评估无线链路质量。
作为一个实施例,所述无线链路质量是RSRP(Reference Signal Received Power,参考信号接收功率),L1-RSRP(Layer1-RSRP,层1-RSRP),SINR(Signal to Interference plus Noise Ratio,信干噪比)或L1-SINR(Layer1-SINR,层1-SINR)中之一,“根据给定RS资源集合评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源集合中的所有RS资源的测量得到的RSRP,L1-RSRP,SINR或L1-SINR中的最大值。
作为一个实施例,所述无线链路质量是BLER(BLock Error Rate,误块率),“根据给定RS资源集合评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源集合中的所有RS资源测量 得到的BLER的最小值。
作为一个实施例,所述无线链路质量是假设的BLER,“根据给定RS资源集合评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源集合中的所有RS资源测量得到的假设的(hypothetical)BLER的最小值。
作为一个实施例,所述无线链路质量是RSRP,L1-RSRP,SINR或L1-SINR中之一,“根据给定RS资源集合评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源集合中的所有RS资源的测量得到的RSRP,L1-RSRP,SINR或L1-SINR中的平均值。
作为一个实施例,所述无线链路质量是BLER,“根据给定RS资源集合评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源集合中的所有RS资源测量得到的BLER的平均值。
作为一个实施例,所述无线链路质量是假设的BLER,“根据给定RS资源集合评估无线链路质量”的意思包括:所述无线链路质量是基于所述给定RS资源集合中的所有RS资源测量得到的假设的BLER的平均值。
作为一个实施例,所述给定RS资源集合是所述第二RS资源集合。
作为一个实施例,所述给定RS资源集合是所述第一RS资源集合。
作为一个实施例,句子“所述第一RS资源集合依赖第一CORESET组的TCI(Transmission Configuration Indication,传输配置指示)状态(state)”的意思包括:所述第一RS资源集合中的任一RS资源依赖所述第一CORESET组中的一个CORESET的TCI状态。
作为一个实施例,句子“所述第一RS资源集合依赖第一CORESET组的TCI状态”的意思包括:所述第一RS资源集合中的至少一个RS资源依赖所述第一CORESET组中的一个CORESET的TCI状态。
作为一个实施例,句子“所述第一RS资源集合依赖第一CORESET组的TCI状态”的意思包括:所述第一RS资源集合中的至少一个RS资源依赖所述第一CORESET组中的一个CORESET的TCI状态。
作为一个实施例,句子“所述第一RS资源集合依赖第一CORESET组的TCI状态”的意思包括:所述第一CORESET组中的至少一个CORESET的TCI状态被所述第一RS资源集合中的一个RS资源集合所依赖。
作为一个实施例,句子“所述第一RS资源集合依赖第一CORESET组的TCI状态”的意思包括:所述第一CORESET组中的任一CORESET的TCI状态被所述第一RS资源集合中的一个RS资源集合所依赖。
作为一个实施例,句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源是根据所述给定CORESET的TCI状态确定的。
作为一个实施例,句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源是根据所述第一节点监测PDCCH使用的所述给定CORESET的TCI状态确定的。
作为一个实施例,句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源的索引与所述给定CORESET的TCI状态所指示的一个RS资源的索引相同。
作为一个实施例,句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源的索引与所述给定CORESET的TCI状态所指示的一个RS资源的索引相同。
作为一个实施例,句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源的索引与所述给定CORESET的TCI状态所指示的RS资源集合中的一个RS资源索引相同。
作为一个实施例,句子“给定RS资源依赖给定CORESET的TCI状态”的意思包括:所述给定RS资源是周期性CSI-RS资源,所述给定RS资源的索引与所述给定CORESET的TCI状态所指示的RS资源集合中的一个RS资源索引相同。
作为一个实施例,所述给定RS资源是所述第一RS资源集合中的一个RS资源,所述给定CORESET是所述第一CORESET组中的一个CORESET。
作为一个实施例,所述给定RS资源是所述第二RS资源集合中的一个RS资源,所述给定CORESET是所述第二CORESET组中的一个CORESET。
作为一个实施例,一个TCI状态指示至少一个RS资源及其中每个RS资源所对应的准共址参数的类型。
作为一个实施例,所述准共址参数的类型包括TypeA,TypeB,TypeC和TypeD。
作为一个实施例,类型为TypeA的准共址参数包括多普勒位移(Doppler shift),多普勒扩展(Doppler spread),平均延时(average delay),延时扩展(delay spread)。
作为一个实施例,类型为TypeB的准共址参数包括多普勒位移(Doppler shift),多普勒扩展(Doppler spread)。
作为一个实施例,类型为TypeC的准共址参数包括多普勒位移(Doppler shift),平均延时(average delay)。
作为一个实施例,类型为TypeD的准共址参数包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述TypeA,所述TypeB,所述TypeC和所述TypeD的具体定义参见3GPP TS38.214的第5.1.5章节。
作为一个实施例,所述准共址参数包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay),或空间接收参数(Spatial Rx parameter)中的一种或者多种。
作为一个实施例,所述准共址参数包括多普勒位移(Doppler shift),多普勒扩展(Doppler spread)。
作为一个实施例,所述准共址参数包括多普勒位移(Doppler shift),平均延时(average delay)。
作为一个实施例,所述准共址参数包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述准共址参数包括空间发送参数或空间接收参数中的至少之一。
作为一个实施例,所述准共址参数包括空域接收滤波器(Spatial Domain Receive Filter)。
作为一个实施例,所述准共址参数包括空域滤波器(Spatial Domain Filter)。
作为一个实施例,所述准共址参数包括空域发送滤波器(spatial domain transmit filter)或空域接收滤波器中(spatial domain receive filter)的至少之一。
作为一个实施例,所述第一时频资源集合被配置给所述第一BWP。
作为一个实施例,所述第一时频资源集合被配置给所述第一BWP所在的服务小区。
作为一个实施例,所述第一时频资源集合被配置给上行BWP。
作为一个实施例,所述第一时频资源集合被配置给下行BWP。
作为一个实施例,所述第一BWP是一个下行BWP。
作为一个实施例,所述第一BWP是一个下行BWP,所述第一时频资源集合被配置给所述第一BWP对应的上行BWP。
作为一个实施例,所述第一信息块由更高层(higher layer)信令携带。
作为一个实施例,所述第一信息块由RRC(Radio Resource Control,无线电资源控制)信令携带。
作为一个实施例,所述第一信息块包括一个RRC IE(Information Element,信息单元)中全部或部分域(filed)。
作为一个实施例,所述第一信息块包括多个RRC IE中的每个RRC IE中的全部或部分域。
作为一个实施例,所述第一信息块包括TDD-UL-DL-ConfigCommon IE中全部或部分域。
作为一个实施例,所述第一信息块包括TDD-UL-DL-ConfigDedicated IE中全部或部分域。
作为一个实施例,所述第一信息块包括ServingCellConfig IE中全部或部分域。
作为一个实施例,所述第一信息块包括ServingCellConfigCommonSIB IE中全部或部分域。
作为一个实施例,所述第一信息块包括ServingCellConfigCommon IE中全部或部分域中的信息。
作为一个实施例,所述第一信息块由至少一个RRC IE携带。
作为一个实施例,携带所述第一信息块的一个IE的名称里包括TDD-UL-DL-Config。
作为一个实施例,携带所述第一信息块的一个IE的名称里包括ServingCellConfig。
作为一个实施例,所述第一信息块由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)携带。
作为一个实施例,所述第一信息块包括MAC CE。
作为一个实施例,所述第一信息块在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述第一信息块在PDSCH上传输。
作为一个实施例,所述第一信息块由DCI(Downlink control information,下行控制信息)携带。
作为一个实施例,所述第一信息块包括DCI。
作为一个实施例,所述第一信息块包括一个DCI中的一个或多个域。
作为一个实施例,所述第一信息块由DCI format 2_0携带。
作为一个实施例,所述第一信息块包括DCI format 2_0。
作为一个实施例,所述第一信息块由RRC信令和MAC CE共同携带。
作为一个实施例,所述第一信息块由更高层(higher layer)信令和DCI共同携带。
作为一个实施例,所述第一信息块由RRC信令和DCI信令共同携带。
作为一个实施例,所述第一信息块被用于指示第一时频资源集合。
作为一个实施例,所述第一信息块显式的指示第一时频资源集合。
作为一个实施例,所述第一信息块隐式的指示第一时频资源集合。
作为一个实施例,所述第一信息块指示第一时频资源集合占用的时域资源和所述第一时频资源集合占用的频域资源。
作为一个实施例,所述第一信息块指示第一时频资源集合在时域的周期和时间偏移。
作为一个实施例,所述第一信息块指示第一时频资源集合在一个周期内包括的时域资源。
作为一个实施例,所述第一信息块指示第一时频资源集合在一个周期内包括的符号。
作为一个实施例,所述第一信息块指示第一时频资源集合在一个周期内包括的时隙。
作为一个实施例,所述第一信息块指示第一时频资源集合在频域包括的RB(Resource Block,资源块)。
作为一个实施例,所述第一信息块指示第一时频资源集合在频域包括的子载波。
作为一个实施例,所述第一信息块的发送者支持在所述第一时频资源集合占用的时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信息块的发送者在所述第一时频资源集合占用的时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一时频资源集合在时域包括正整数个符号。
作为一个实施例,所述第一时频资源集合在时域包括一个或多个符号。
作为一个实施例,所述第一时频资源集合在时域包括至少一个时隙(slot)。
作为一个实施例,所述第一时频资源集合在时域包括至少一个子帧(subframe)。
作为一个实施例,所述第一时频资源集合在频域包括所述第一BWP中的至少一个RB。
作为一个实施例,所述符号是单载波符号。
作为一个实施例,所述符号是多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述符号是转换预编码器(transform precoding)的输出经过OFDM符号发生(Generation)后得到的。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述句子“所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述第一CORESET组仅依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述句子“所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系,所述第一CORESET组还包括所述第一CORESET池之外的CORESET。
作为一个实施例,所述句子“所述第一CORESET组至少依赖所述第一CORESET池中的CORESET 中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
作为一个实施例,所述句子“所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括频域资源;所述第一CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在频域正交。
作为一个实施例,所述句子“所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时频资源;所述第一CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合正交。
作为一个实施例,所述句子“所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源”的意思包括:所述第一CORESET池中的每个CORESET中被监测的PDCCH候选占用的空口资源。
作为一个实施例,所述句子“所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源”的意思包括:所述第一CORESET池中的至少一个CORESET中被监测的PDCCH候选占用的空口资源。
作为一个实施例,所述空口资源包括时域资源。
作为一个实施例,所述空口资源包括频域资源。
作为一个实施例,所述空口资源包括时频资源。
作为一个实施例,所述空口资源包括时域资源,短语“所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思是指:所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的时域资源和所述第一时频资源集合占用的时域资源之间的关系。
作为一个实施例,所述空口资源包括频域资源,短语“所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思是指:所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的频域资源和所述第一时频资源集合占用的频域资源之间的关系。
作为一个实施例,所述空口资源包括时频资源,短语“所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思是指:所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的时频资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述关系是指是否正交。
作为一个实施例,所述关系是指是否交叠。
作为一个实施例,一个被监测的PDCCH候选占用的空口资源由所在的CORESET或搜索空间集合中的至少之一确定。
作为一个实施例,一个被监测的PDCCH候选占用的时域资源由所在的CORESET和搜索空间集合共同确定。
作为一个实施例,一个被监测的PDCCH候选占用的时频资源由所在的CORESET和搜索空间集合共同确定。
作为一个实施例,一个被监测的PDCCH候选占用的频域资源由所在的CORESET确定。
作为一个实施例,一个被监测的PDCCH候选占用的时频资源属于所在的CORESET所关联的搜索空间集合。
作为一个实施例,一个被监测的PDCCH备选在频域属于所在的CORESET。
作为一个实施例,一个被监测的PDCCH备选是所在的CORESET所关联的搜索空间集合中的一个PDCCH备选。
作为一个实施例,一个被监测的PDCCH备选由所在的CORESET中的至少一个CCE组成。
作为一个实施例,一个CORESET所关联的搜索空间集合中的任一被监测的PDCCH备选由所述一个CORESET的至少一个CCE组成。
作为一个实施例,短语“一个CORESET所关联的搜索空间集合”的含义包括:一个CORESET被用于确定所述一个CORESET所关联的搜索空间集合在一个监测时机(Monitoring Occasion)中所占用的时频资源。
作为一个实施例,短语“一个CORESET所关联的搜索空间集合”的含义包括:一个CORESET包括所 述一个CORESET所关联的搜索空间集合在一个监测时机(Monitoring Occasion)中所占用的时频资源。
作为一个实施例,短语“一个CORESET所关联的搜索空间集合”的含义包括:一个CORESET占用的RE包括所述一个CORESET所关联的搜索空间集合在一个监测时机(Monitoring Occasion)中所占用的RE。
作为一个实施例,短语“一个CORESET所关联的搜索空间集合”的含义包括:一个CORESET在频域占用的RB(s)包括一个CORESET所关联的搜索空间集合在频域占用的RB(s)。
作为一个实施例,短语“一个CORESET所关联的搜索空间集合”的含义包括:一个CORESET占用的频域资源包括所述一个CORESET所关联的搜索空间集合占用的频域资源。
作为一个实施例,短语“一个CORESET所关联的搜索空间集合”的含义包括:一个CORESET占用的符号(symbol(s))被用于确定所述一个CORESET所关联的搜索空间集合在一个检测时机中占用的符号(symbol(s))。
作为一个实施例,短语“一个CORESET所关联的搜索空间集合”的含义包括:一个CORESET占用的符号(symbol(s))包括所述一个CORESET所关联的搜索空间集合在一个检测时机中占用的符号(symbol(s))。
作为一个实施例,短语“一个CORESET所关联的搜索空间集合”的含义包括:一个CORESET所关联的搜索空间集合的配置信息包括所述一个CORESET的索引。
作为一个实施例,一个所述监测时机(Monitoring Occasion)包括一个时间段。
作为一个实施例,一个所述监测时机(Monitoring Occasion)包括至少一个符号。
作为一个实施例,一个所述监测时机(Monitoring Occasion)包括一个时隙(slot)。
作为一个实施例,一个所述监测时机(Monitoring Occasion)包括一个子时隙(sub-slot)。
作为一个实施例,一个所述监测时机(Monitoring Occasion)包括一个子帧(subframe)。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G***的网络架构200。LTE,LTE-A及未来5G***的网络架构200称为EPS(Evolved Packet System,演进分组***)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组***)200或某种其它合适术语。5GS/EPS200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF (User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述RRC子层306。
作为一个实施例,所述第一信令生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述参考信息块生成于所述RRC子层306。
作为一个实施例,所述参考信息块生成于所述RRC子层306或所述MAC子层302中的至少之一。
作为一个实施例,所述参考信息块生成于所述RRC子层306或所述MAC子层302
作为一个实施例,所述参考信息块生成于所述MAC子层302和所述MAC子层352。
作为一个实施例,所述第一信息块生成于所述RRC子层306。
作为一个实施例,所述第一信息块生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一信息块生成于所述RRC子层306或所述MAC子层302中的至少之一。
作为一个实施例,所述第一信息块生成于所述RRC子层306和所述MAC子层302。
作为一个实施例,所述第一信息块生成于所述RRC子层306和所述PHY301。
作为一个实施例,所述目标计数器生成于所述MAC子层302。
作为一个实施例,所述第一计数器和所述第二计数器生成于所述MAC子层302。
作为一个实施例,所述目标计数器生成于所述MAC子层352。
作为一个实施例,所述第一计数器和所述第二计数器生成于所述MAC子层352。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL(DownLink,下行)中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收参考信息块和第一信息块;其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收参考信息块和第一信息块;其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送参考信息块和第一信息块;其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机 可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送参考信息块和第一信息块;其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备450。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述参考信息块和所述第一信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述参考信息块和所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述第一时频资源组中发送所述第一信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时频资源组中接收所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第一节点U01和第二节点N02分别是通过空中接口传输的两个通信节点,其中方框F1中的步骤是可选的。
对于第一节点U01,在步骤S5101中接收参考信息块和第一信息块;在步骤S5102中接收第一信令;在步骤S5103中在第一时频资源组中发送第一信号;
对于第二节点N02,在步骤S5201中发送参考信息块和第一信息块;在步骤S5202中发送第一信令;在步骤S5203中在第一时频资源组中接收第一信号;
在实施例5中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
典型的,所述第一RS资源集合被所述第一信息块的目标接收者用于所述第一BWP的无线链路质量评估。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号在上行物理信道上传输。
作为一个实施例,所述第一信号在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上传输。
作为一个实施例,所述第一信号在PUCCH(Physical Uplink Control CHannel,物理上行控制信道)上传输,所述第一信号携带UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第一信号携带至少一个传输块(TB,Transport Block)。
作为一个实施例,所述第一信号携带指示一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第一信号的所述调度信息包括时域资源,频域资源,MCS,DMRS(DeModulation Reference Signals,解调参考信号)端口(port),HARQ(Hybrid Automatic Repeat request)进程号(process number),RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),TCI(Transmission Configuration Indicator)状态(state)或SRI(Sounding reference signal Resource Indicator)中的一种或多种。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令是上行DCI信令。
作为一个实施例,所述第一信号包括PUSCH,所述第一信令是调度PUSCH的DCI信令。
作为一个实施例,所述第一信号包括PUSCH,所述第一信令被用于配置或者调度PUSCH。
作为一个实施例,所述第一信令被用于调度PUSCH。
作为一个实施例,所述第一信令被用于配置或调度配置的授予(configured grant)PUSCH。
作为一个实施例,所述第一信令被用于配置或调度配置的授予(configured grant)PUSCH,所述第一信号是一次授予(configured grant)PUSCH传输。
作为一个实施例,所述第一信号是类型A(type A)的PUSCH,所述第一信令被用于配置或者调度类型A(type A)的PUSCH。
作为一个实施例,所述第一信号是类型B(type B)的PUSCH,所述第一信令被用于配置或者调度类型B(type B)的PUSCH。
作为一个实施例,所述第一信号是基于多时隙TB处理(TB processing over multiple slots)的PUSCH,所述第一信令被用于配置或者调度基于多时隙TB处理的PUSCH。
作为一个实施例,所述第一信号包括PUSCH重复(repetition)类型B(type B)传输,所述第一信令是调度PUSCH重复(repetition)类型B(type B)传输的DCI信令。
典型的,类型A的PUSCH在多个时隙中的每个时隙上占用的符号位置相同。
典型的,类型B的PUSCH被分配一组连续的符号。
典型的,类型B的PUSCH被分配一个或多个名义重复。
典型的,在所述基于多时隙TB处理的PUSCH中,TBS(TB size,传输块大小)的确定是基于多个时隙中的时频资源的大小。
作为一个实施例,所述PUSCH类型A,所述PUSCH类型B,所述基于多时隙TB处理(TB processing over multiple slots)的具体定义参见3GPP TS38.214的第6章节。
作为一个实施例,所述第一时频资源集合还包括所述第一时频资源组之外的时频资源。
作为一个实施例,所述第一时频资源集合仅包括所述第一时频资源组。
作为一个实施例,所述第一时频资源组中的至少一个符号被RRC参数配置为DL符号。
作为一个实施例,所述第一时频资源组中的至少一个符号被MAC CE配置为DL符号。
作为一个实施例,所述第一时频资源组中的每个符号被更高层参数配置为DL(DownLink,下行)符号。
作为一个实施例,所述第一时频资源组中的部分符号被更高层参数配置为DL符号。
作为一个实施例,所述第一时频资源组中的符号被更高层参数配置为DL符号或者Flexible(灵活)符号。
作为一个实施例,所述第一时频资源组中的至少一个符号被更高层参数tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated配置为DL符号
作为一个实施例,所述第一时频资源组中的每个符号被更高层参数tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated配置为DL符号。
作为一个实施例,所述第一时频资源组中的部分符号被更高层参数tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated配置为DL符号。
作为一个实施例,所述第一时频资源组中的符号被更高层参数tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated配置为DL符号或者Flexible符号。
作为一个实施例,所述第一时频资源组中的至少一个符号被更高层参数tdd-UL-DL-ConfigurationCommon配置为DL符号。
作为一个实施例,所述第一时频资源组中的每个符号被更高层参数tdd-UL-DL-ConfigurationCommon配置为DL符号。
作为一个实施例,所述第一时频资源组中的部分符号被更高层参数tdd-UL-DL-ConfigurationCommon配置为DL符号。
作为一个实施例,所述第一时频资源组中的符号被更高层参数tdd-UL-DL-ConfigurationCommon配置为DL符号或者灵活(Flexible)符号。
实施例6
实施例6A-6C分别示例了根据本申请的一个实施例的第一时频资源集合的示意图;如附图6A-6C所示。
在实施例6A中,所述第一时频资源集合中的至少一个符号被更高层参数配置为DL符号。
作为一个实施例,所述第一时频资源集合中的每个符号被更高层参数配置为DL符号。
作为一个实施例,所述第一时频资源集合中的部分符号被更高层参数配置为DL符号。
作为一个实施例,所述第一时频资源集合中的符号被更高层参数配置为DL符号或者Flexible符号。
作为一个实施例,所述第一时频资源集合中的至少一个符号被更高层参数tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated配置为DL符号
作为一个实施例,所述第一时频资源集合中的每个符号被更高层参数tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated配置为DL符号。
作为一个实施例,所述第一时频资源集合中的部分符号被更高层参数tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated配置为DL符号。
作为一个实施例,所述第一时频资源集合中的符号被更高层参数tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated配置为DL符号或者Flexible符号。
作为一个实施例,所述第一时频资源集合中的至少一个符号被更高层参数tdd-UL-DL-ConfigurationCommon配置为DL符号。
作为一个实施例,所述第一时频资源集合中的每个符号被更高层参数tdd-UL-DL-ConfigurationCommon配置为DL符号。
作为一个实施例,所述第一时频资源集合中的部分符号被更高层参数tdd-UL-DL-ConfigurationCommon配置为DL符号。
作为一个实施例,所述第一时频资源集合中的符号被更高层参数tdd-UL-DL-ConfigurationCommon配置为DL符号或者Flexible符号。
在实施例6B中,所述第一时频资源集合中的符号同时被用于上行传输和下行传输。
作为一个实施例,所述第一时频资源集合中的符号同时被用于所述第一BWP中的上行传输和下行传输。
作为一个实施例,所述第一时频资源集合中的符号同时被用于所述第一BWP所在的服务小区中的上行传输和下行传输。
作为一个实施例,所述句子“所述第一时频资源集合中的符号同时被用于上行传输和下行传输”的意思包括:所述第一信息块的发送者在所述第一时频资源集合中的符号中同时接收和发送无线信号。
作为一个实施例,所述句子“所述第一时频资源集合中的符号同时被用于上行传输和下行传输”的意思包括:所述第一信息块的发送者在所述第一BWP中在所述第一时频资源集合中的符号中同时接收和发送无线信号。
作为一个实施例,所述句子“所述第一时频资源集合中的符号同时被用于上行传输和下行传输”的意思包括:所述第一信息块的发送者在所述第一BWP所在的服务小区中在所述第一时频资源集合中的符号中 同时接收和发送无线信号。
作为一个实施例,所述句子“所述第一时频资源集合中的符号同时被用于上行传输和下行传输”的意思包括:所述第一信息块的发送者在所述第一BWP所在的服务小区组(cell group)中在所述第一时频资源集合中的符号中同时接收和发送无线信号。
作为一个实施例,所述句子“所述第一时频资源集合中的符号同时被用于上行传输和下行传输”的意思包括:所述第一信息块的发送者支持在所述第一时频资源集合中的符号中同时接收和发送无线信号。
作为一个实施例,所述句子“所述第一时频资源集合中的符号同时被用于上行传输和下行传输”的意思包括:所述第一信息块的发送者支持在所述第一BWP中在所述第一时频资源集合中的符号中同时接收和发送无线信号。
作为一个实施例,所述句子“所述第一时频资源集合中的符号同时被用于上行传输和下行传输”的意思包括:所述第一信息块的发送者支持在所述第一BWP所在的服务小区中在所述第一时频资源集合中的符号中同时接收和发送无线信号。
作为一个实施例,所述句子“所述第一时频资源集合中的符号同时被用于上行传输和下行传输”的意思包括:所述第一信息块的发送者支持在所述第一BWP所在的服务小区组(cell group)中在所述第一时频资源集合中的符号中同时接收和发送无线信号。
作为一个实施例,所述短语“所述第一时频资源集合中的符号”是指:所述第一时频资源集合中的任一符号。
作为一个实施例,所述短语“所述第一时频资源集合中的符号”是指:所述第一时频资源集合中的一个符号。
作为一个实施例,所述短语“所述第一时频资源集合中的符号”是指:所述第一时频资源集合中的至少一个符号。
作为一个实施例,所述第一时频资源集合不包括用于第一类下行信号传输的符号,所述第一类下行信号包括SS(Synchroni sation Signal,同步信号)/PBCH(physical broadcast channel,物理广播信道)Block(块),索引为0的CORESET(COntrol REsource SET,控制资源集合)或SIB(System Information Block,***信息块)中的一种或多种。
作为一个实施例,所述第一时频资源集合不包括用于第一类下行信号传输的符号,所述第一类下行信号包括所述第一信号所在的服务小区的SS/PBCH块,索引为0的CORESET或SIB中的一种或多种。
在实施例6C中,所述第一信息块将所述第一时频资源集合中的符号配置为第一类型。
作为一个实施例,所述第一类型不同于UL(UpLink,上行)和DL。
作为一个实施例,所述第一类型不同于UL,DL和Flexible。
作为一个实施例,所述第一类型包括Flexible。
作为一个实施例,所述第一信息块在所述第一BWP中将所述第一时频资源集合中的符号配置为所述第一类型。
作为一个实施例,所述第一信息块在所述第一BWP所在的服务小区中将所述第一时频资源集合中的符号配置为所述第一类型。
作为一个实施例,所述第一信息块在所述第一信号所在的服务小区组(cell group)中将所述第一时频资源集合中的符号配置为所述第一类型。
作为一个实施例,所述句子将所述第一时频资源集合中的符号配置为第一类型的意思包括:将所述第一时频资源集合中的每个符号都配置为所述第一类型。
作为一个实施例,所述句子将所述第一时频资源集合中的符号配置为第一类型的意思包括:将所述第一时频资源集合中的至少一个符号配置为所述第一类型。
作为一个实施例,所述句子将所述第一时频资源集合中的符号配置为第一类型的意思包括:将所述第一时频资源集合中的符号的类型配置为所述第一类型。
作为一个实施例,所述句子将所述第一时频资源集合中的符号配置为第一类型的意思包括:将所述第一时频资源集合中的每个符号的类型都配置为所述第一类型。
作为一个实施例,所述句子将所述第一时频资源集合中的符号配置为第一类型的意思包括:将所述第 一时频资源集合中的至少一个符号的类型配置为所述第一类型。
作为一个实施例,所述句子所述第一信息块被用于确定第一时频资源集合的意思包括:所述第一信息块将所述第一时频资源集合中的符号配置为所述第一类型。
作为一个实施例,所述句子所述第一信息块被用于确定第一时频资源集合的意思包括:所述第一信息块将所述第一时频资源集合中的每个符号都配置为所述第一类型。
作为一个实施例,所述句子所述第一信息块被用于确定第一时频资源集合的意思包括:所述第一信息块将所述第一时频资源集合中的至少一个符号配置为所述第一类型。
作为一个实施例,所述句子所述第一信息块被用于确定第一时频资源集合的意思包括:所述第一信息块指示所述第一时频资源集合中的每个符号的类型。
作为一个实施例,所述句子所述第一信息块被用于确定第一时频资源集合的意思包括:所述第一信息块指示所述第一时频资源集合中的每个符号的类型都为所述第一类型。
作为一个实施例,所述句子所述第一信息块被用于确定第一时频资源集合的意思包括:所述第一信息块指示所述第一时频资源集合中的至少一个符号的类型为所述第一类型。
作为一个实施例,当一个符号被配置为所述第一类型时,所述第一信息块的发送者在所述一个符号上同时接收和发送无线信号。
作为一个实施例,当一个符号被配置为所述第一类型时,所述第一信息块的发送者在所述一个符号上支持同时接收和发送无线信号。
作为一个实施例,当一个符号被配置为所述第一类型之外的类型时,所述第一信息块的发送者在所述一个符号上仅接收无线信号或仅发送无线信号。
作为一个实施例,当一个符号被配置为所述第一类型之外的类型时,所述第一信息块的发送者不支持在所述一个符号上同时接收和发送无线信号。
作为一个实施例,所述第一信息块的发送者在所述第一时频资源集合之外的符号中仅接收无线信号或仅发送无线信号。
作为一个实施例,所述第一时频资源集合之外的任一符号仅被用于上行传输或仅被用于下行传输。
作为一个实施例,所述第一信息块的发送者在所述第一时频资源集合之外的任一符号中仅接收无线信号或仅发送无线信号。
作为一个实施例,所述第一信息块的发送者在所述第一BWP中在所述第一时频资源集合之外的符号中仅接收无线信号或仅发送无线信号。
作为一个实施例,所述第一信息块的发送者在所述第一BWP所在的服务小区中在所述第一时频资源集合之外的符号中仅接收无线信号或仅发送无线信号。
作为一个实施例,所述第一信息块的发送者在所述第一BWP所在的服务小区组中在所述第一时频资源集合之外的符号中仅接收无线信号或仅发送无线信号。
实施例7
实施例7A-7C分别示例了根据本申请的一个实施例的第一CORESET组的示意图;如附图7A-7C所示。
在实施例7A中,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
作为一个实施例,所述短语“在时域正交”是指:在时域不交叠。
作为一个实施例,所述短语“在时域正交”是指:在时域不包括相同的符号。
作为一个实施例,所述短语“在时域正交”是指:在时域不包括相同的时刻。
在实施例7B中,所述空口资源包括频域资源;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在频域正交。
作为一个实施例,所述短语“在频域正交”是指:在频域不交叠。
作为一个实施例,所述短语“在频域正交”是指:在频域不包括相同的子载波。
作为一个实施例,所述短语“在频域正交”是指:在频域不包括相同的RB。
在实施例7C中,所述空口资源包括时频资源;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合正交。
作为一个实施例,所述短语“和所述第一时频资源集合正交”是指:和所述第一时频资源集合不交叠。
作为一个实施例,所述短语“和所述第一时频资源集合正交”是指:和所述第一时频资源集合正交不包括相同的RE。
实施例8
实施例8示例了根据本申请的另一个实施例的第一CORESET组的示意图;如附图8所示。
在实施例8中,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述句子“所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的”的意思包括:按照第一规则对所述第一CORESET池中的CORESET排序,所述第一CORESET组包括所述第一CORESET池中的前K个CORESET,K是正整数。
作为一个实施例,所述句子“所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的”的意思包括:参考CORESET集合包括所述第一CORESET池中的被监测的PDCCH候选所在的所有CORESET;按照第一规则对所述参考CORESET集合排序,所述第一CORESET组包括所述参考CORESET集合中的前K个CORESET,K是正整数。
作为一个实施例,所述句子“所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时域资源,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在时域是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合在时域是交叠”的CORESET之前。
作为一个实施例,所述句子“所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括频域资源,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在频域是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合在频域是交叠”的CORESET之前。
作为一个实施例,所述句子“所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时频资源,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合是交叠”的CORESET之前。
作为一个实施例,所述第一规则还与CORESET所关联的搜索空间的PDCCH监测周期有关。
作为一个实施例,所述第一规则还与CORESET的索引有关。
作为一个实施例,所述第一规则还包括:按照CORESET所关联的搜索空间的PDCCH监测周期的升序排列;在相同的PDCCH监测周期下,按照CORESET索引的降序排列。
作为一个实施例,所述空口资源包括时域资源;所述第一规则包括:首先,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在时域是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合在时域是交叠”的CORESET之前;其次,按照CORESET所关联的搜索空间的PDCCH监测周期的升序排列,在相同的PDCCH监测周期下,按照CORESET索引的降序排列。
作为一个实施例,所述空口资源包括频域资源;所述第一规则包括:首先,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在频域是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合在频域是交叠”的CORESET之前;其次,按照CORESET所关联的搜索空间的PDCCH监测周期的升序排列,在相同的PDCCH监测周期下,按照CORESET索引的降序排列。
作为一个实施例,所述空口资源包括时频资源;所述第一规则包括:首先,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合是交叠”的CORESET之前;其次,按照CORESET所关联的搜索空间的PDCCH监测周期的升序排列,在相同的PDCCH监测周期下,按照CORESET索引的降序排列。
作为一个实施例,所述空口资源包括时域资源;所述第一规则包括:首先,按照CORESET所关联的搜索空间的PDCCH监测周期的升序排列;在相同的PDCCH监测周期下,在所述第一CORESET池中, 满足“被监测的PDCCH候选与所述第一时频资源集合在时域是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合在时域是交叠”的CORESET之前。
作为一个实施例,所述空口资源包括频域资源;所述第一规则包括:首先,按照CORESET所关联的搜索空间的PDCCH监测周期的升序排列;在相同的PDCCH监测周期下,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在频域是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合在频域是交叠”的CORESET之前。
作为一个实施例,所述空口资源包括时频资源;所述第一规则包括:首先,按照CORESET所关联的搜索空间的PDCCH监测周期的升序排列;在相同的PDCCH监测周期下,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合是交叠”的CORESET之前。
作为一个实施例,所述空口资源包括时域资源;所述第一规则包括:首先,按照CORESET所对应的搜索空间的PDCCH监测周期的升序排列;在相同的PDCCH监测周期下,按照CORESET索引的降序排列;在相同的CORESET索引下,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在时域是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合在时域是交叠”的CORESET之前。
作为一个实施例,所述空口资源包括频域资源;所述第一规则包括:首先,按照CORESET所对应的搜索空间的PDCCH监测周期的升序排列;在相同的PDCCH监测周期下,按照CORESET索引的降序排列;在相同的CORESET索引下,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在频域是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合在频域是交叠”的CORESET之前。
作为一个实施例,所述空口资源包括时频资源;所述第一规则包括:首先,按照CORESET所对应的搜索空间的PDCCH监测周期的升序排列;在相同的PDCCH监测周期下,按照CORESET索引的降序排列;在相同的CORESET索引下,在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合是正交”的CORESET,排在满足“被监测的PDCCH候选与所述第一时频资源集合是交叠”的CORESET之前。
典型的,所述句子“被监测的PDCCH候选与所述第一时频资源集合在时域是正交”的意思是指:被监测的PDCCH候选在时域不属于所述第一时频资源集合。
作为一个实施例,所述句子“被监测的PDCCH候选与所述第一时频资源集合在时域是交叠”的意思是指:被监测的PDCCH候选在时域属于所述第一时频资源集合。
作为一个实施例,所述句子“被监测的PDCCH候选与所述第一时频资源集合在时域是交叠”的意思是指:被监测的PDCCH候选中的至少一个符号在时域属于所述第一时频资源集合。
典型的,所述句子“被监测的PDCCH候选与所述第一时频资源集合在频域是正交”的意思是指:被监测的PDCCH候选在频域不属于所述第一时频资源集合。
作为一个实施例,所述句子“被监测的PDCCH候选与所述第一时频资源集合在频域是交叠”的意思是指:被监测的PDCCH候选在频域属于所述第一时频资源集合。
作为一个实施例,所述句子“被监测的PDCCH候选与所述第一时频资源集合在频域是交叠”的意思是指:被监测的PDCCH候选中的至少一个子载波在频域属于所述第一时频资源集合。
典型的,所述句子“被监测的PDCCH候选与所述第一时频资源集合是正交”的意思是指:被监测的PDCCH候选不属于所述第一时频资源集合。
作为一个实施例,所述句子“被监测的PDCCH候选与所述第一时频资源集合是交叠”的意思是指:被监测的PDCCH候选属于所述第一时频资源集合。
作为一个实施例,所述句子“被监测的PDCCH候选与所述第一时频资源集合是交叠”的意思是指:被监测的PDCCH候选中的至少一个RE属于所述第一时频资源集合。
作为一个实施例,所述空口资源包括时域资源;所述第一规则还包括:对于在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在时域是正交”的所有CORESET,按照CORESET索引的降序排列;对于满足“被监测的PDCCH候选与所述第一时频资源集合在时域是交叠”的所有CORESET,按照CORESET索引的降序排列。
作为一个实施例,所述空口资源包括频域资源;所述第一规则还包括:对于在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合在频域是正交”的所有CORESET,按照CORESET索引的降序排列;对于满足“被监测的PDCCH候选与所述第一时频资源集合在频域是交叠”的所有CORESET,按照CORESET索引的降序排列。
作为一个实施例,所述空口资源包括时频资源;所述第一规则还包括:对于在所述第一CORESET池中,满足“被监测的PDCCH候选与所述第一时频资源集合是正交”的所有CORESET,按照CORESET 索引的降序排列;对于满足“被监测的PDCCH候选与所述第一时频资源集合是交叠”的所有CORESET,按照CORESET索引的降序排列。
实施例9
实施例9示例了根据本申请的一个实施例的第二RS资源集合的示意图;如附图9所示。
在实施例9中,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
典型的,所述第一信息块的接收者根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量。
作为一个实施例,所述第一CORESET池的索引为0,所述第二CORESET池的索引为1。
作为一个实施例,所述第一CORESET池的索引为1,所述第二CORESET池的索引为0。
作为一个实施例,所述第一CORESET池包括对应CORESETPoolIndex为0的至少一个CORESET,所述第二CORESET池包括对应CORESETPoolIndex为1的至少一个CORESET。
作为一个实施例,所述第一CORESET池包括对应CORESETPoolIndex为1的至少一个CORESET,所述第二CORESET池包括对应CORESETPoolIndex为0的至少一个CORESET。
作为一个实施例,所述参考信息块指示第一BWP上的第二CORESET池中的CORESET的索引。
作为一个实施例,所述参考信息块指示第一BWP上的第二CORESET池中的CORESET的配置信息。
作为一个实施例,“第二CORESET池中的CORESET”是指:第二CORESET池中的任一CORESET。
作为一个实施例,“第二CORESET池中的CORESET”是指:第二CORESET池中的每个CORESET。
作为一个实施例,“第二CORESET池中的CORESET”是指:第二CORESET池中的至少一个CORESET。
作为一个实施例,“第二CORESET池中的CORESET”是指:第二CORESET池中的部分CORESET。
作为一个实施例,“第二CORESET池中的CORESET”是指:第二CORESET池中的全部CORESET。
作为一个实施例,所述第二CORESET池包括一个或多个CORESET。
作为一个实施例,所述第二CORESET池包括多个CORESET。
作为一个实施例,所述第一CORESET池和所述第二CORESET池一共包括最多5个CORESET。
作为一个实施例,句子“所述第二RS资源集合依赖第二CORESET组的TCI状态”的意思包括:所述第二RS资源集合中的任一RS资源依赖所述第二CORESET组中的一个CORESET的TCI状态。
作为一个实施例,句子“所述第二RS资源集合依赖第二CORESET组的TCI状态”的意思包括:所述第二RS资源集合中的至少一个RS资源依赖所述第二CORESET组中的一个CORESET的TCI状态。
作为一个实施例,句子“所述第二RS资源集合依赖第二CORESET组的TCI状态”的意思包括:所述第二RS资源集合中的至少一个RS资源依赖所述第二CORESET组中的一个CORESET的TCI状态。
作为一个实施例,句子“所述第二RS资源集合依赖第二CORESET组的TCI状态”的意思包括:所述第二CORESET组中的至少一个CORESET的TCI状态被所述第二RS资源集合中的一个RS资源集合所依赖。
作为一个实施例,句子“所述第二RS资源集合依赖第二CORESET组的TCI状态”的意思包括:所述第二CORESET组中的任一CORESET的TCI状态被所述第二RS资源集合中的一个RS资源集合所依赖。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述第二CORESET组仅依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系,所述第二CORESET组还包括所述第二CORESET池之外的CORESET。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第二CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第二CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括频域资源;所述第二CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在频域正交。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括频域资源;所述第二CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在频域正交。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时频资源;所述第二CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合正交。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时频资源;所述第二CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合正交。
实施例10
实施例10示例了根据本申请的另一个实施例的第二RS资源集合的示意图;如附图10所示。
在实施例10中,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述第二CORESET组仅依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系,所述第二CORESET组还包括所述第一CORESET池之外的CORESET。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第二CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域交叠。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第二CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域交叠。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括频域资源;所述第二CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在频域交叠。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括频域资源;所述第二CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在频域交叠。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时频资源;所述第二CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合交叠。
作为一个实施例,所述句子“所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系”的意思包括:所述空口资源包括时频资源;所述第二CORESET组中的至少一个CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合交叠。
实施例11
实施例11示例了根据本申请的一个实施例的波束失败恢复的触发的示意图;如附图11所示。
在实施例11中,当目标计数器的值等于或大于目标阈值时,本申请中的所述第一节点触发针对第一服务小区的波束失败恢复;其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
典型的,针对第一服务小区的所述波束失败事件指示是在所述第一节点内从物理层向更高层发送的。
典型的,针对所述第一服务小区的所述波束失败恢复是被本申请中的所述第一节点触发的。
典型的,所述第一服务小区是所述第一BWP所在的服务小区。
作为一个实施例,所述无线链路质量是RSRP,L1-RSRP,SINR或L1-SINR中之一;短语“所述无线链路质量差于参考阈值”的意思包括:所述无线链路质量小于所述参考阈值。
作为上述实施例的一个子实施例,所述参考阈值的单位是dBm或者dB。
作为一个实施例,所述无线链路质量是BLER;短语“所述无线链路质量差于参考阈值”的意思包括:所述无线链路质量大于所述参考阈值。
作为上述实施例的一个子实施例,所述参考阈值是BLER阈值。
作为一个实施例,所述无线链路质量是假设的(hypothetical)BLER;短语“所述无线链路质量差于参考阈值”的意思包括:所述无线链路质量大于所述参考阈值。
作为一个实施例,所述参考阈值是实数。
作为一个实施例,所述参考阈值是非负实数。
作为一个实施例,所述参考阈值是不大于1的非负实数。
作为一个实施例,所述参考阈值是Qout_L。
作为一个实施例,所述参考阈值是Qout_L,Qout_LR_SSB或Qout_LR_CSI-RS中之一。
作为一个实施例,Qout_LR,Qout_LR_SSB和Qout_LR_CSI-RS的定义参见3GPP TS38.133。
作为一个实施例,所述参考阈值由RRC参数rlmInSyncOutOfSyncThreshold配置。
作为一个实施例,所述参考阈值是rlmInSyncOutOfSyncThreshold的默认值(default value)。
作为一个实施例,rlmInSyncOutOfSyncThreshold的具体定义参见3GPP TS38.213的第6章节。
作为一个实施例,rlmInSyncOutOfSyncThreshold的定义参见3GPP TS38.133。
典型的,所述句子“当目标计数器的值等于或大于目标阈值时”的意思是指:当且仅当目标计数器的值等于或大于目标阈值时。
典型的,所述句子“当目标计数器的值等于或大于目标阈值时”的意思是指:作为目标计数器的值等于或大于目标阈值的响应。
典型的,所述第一节点在MAC层维护所述目标计数器。
典型的,所述第一节点的MAC实体维护所述目标计数器。
典型的,当所述第一节点的MAC实体(entity)接收到来自物理层的针对所述第一服务小区的波束失 败事件指示时,启动(start)或重启(restart)目标计时器,并且所述目标计数器的值加1。
典型化的,所述目标计数器是BFI_COUNTER。
典型的,当所述目标计时器过期(expire)时,设置所述目标计数器为0。
典型的,所述目标计时器是beamFailureDetectionTimer。
作为一个实施例,所述目标计数器是BFI_COUNTER。
作为一个实施例,所述目标计数器的初始值是0。
作为一个实施例,所述目标阈值是正整数。
作为一个实施例,所述目标阈值是beamFailureInstanceMaxCount。
作为一个实施例,所述目标阈值由RRC参数配置的。
作为一个实施例,配置所述目标阈值的RRC参数包括RadioLinkMonitoringConfig IE的beamFailureInstanceMaxCount域中的全部或部分信息。
作为一个实施例,所述目标计时器是beamFailureDetectionTimer。
作为一个实施例,所述目标计时器的初始值是正整数。
作为一个实施例,所述目标计时器的初始值是正实数。
作为一个实施例,所述目标计时器的初始值的单位是波束失败检测RS的Qout,LR汇报周期。
作为一个实施例,所述目标计时器的初始值由更高层参数beamFailureDetectionTimer配置。
作为一个实施例,所述目标计时器的初始值由一个IE配置的。
作为一个实施例,配置所述目标计时器的初始值的IE的名称里包括RadioLinkMonitoring。
作为一个实施例,当针对所述第一服务小区的波束失败恢复被触发时,针对所述第一服务小区的波束失败恢复过程包括发送所述第一信号。
作为一个实施例,所述第一信号包括随机接入前导(contention-based Random Access Preamble),BFR MAC CE,Truncated BFR MAC CE,Enhanced BFR MAC CE,或者Truncated Enhanced BFR MAC CE中的至少之一。
作为一个实施例,针对所述第一服务小区的所述波束失败恢复(Beam Failure Recovery,BFR)包括随机接入过程。
作为一个实施例,针对所述第一服务小区的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送随机接入前导,发送BFR MAC CE,发送Truncated BFR MAC CE,发送Enhanced BFR MAC CE,或者发送Truncated Enhanced BFR MAC CE中的至少之一。
作为一个实施例,所述随机接入前导是基于竞争的随机接入前导(contention-based Random Access Preamble)。
作为一个实施例,所述随机接入前导是免竞争的随机接入前导(contention-free Random Access Preamble)。
作为一个实施例,针对所述第一服务小区的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送BFR MAC CE,Truncated BFR MAC CE,Enhanced BFR MAC CE或者Truncated Enhanced BFR MAC CE中之一。
作为一个实施例,针对所述第一服务小区的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送名称包括BFR的MAC CE。
作为一个实施例,所述波速失败恢复过程参见3GPP TS38.321的第5.17章节。
作为一个实施例,所述波速失败恢复过程参见3GPP TS38.213的第6章节。
实施例12
实施例12示例了根据本申请的另一个实施例的波束失败恢复的触发的示意图;如附图12所示。
在实施例12中,当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一节点的物理层向更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数, 第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数;当第一计数器的值等于或大于第一阈值时,针对所述第一RS资源集合的波束失败恢复被触发;当所述第二计数器的值等于或大于第二阈值时,针对所述第二RS资源集合的波束失败恢复被触发。
典型的,针对所述第一RS资源集合的所述波束失败事件指示是在所述第一节点内从物理层向更高层发送的。
典型的,针对所述第二RS资源集合的所述波束失败事件指示是在所述第一节点内从物理层向更高层发送的。
典型的,针对所述第一RS资源集合的波束失败事件指示(beam failure instance indication)的统计和针对所述第二RS资源集合的波束失败事件指示的统计是分别进行的。
典型的,针对所述第一RS资源集合的波束失败检测(beam failure detection)和针对所述第二RS资源集合的波束失败检测是分别进行的。
典型的,所述第一RS资源集合的波束失败恢复和所述第二RS资源集合的波束失败恢复是分别被触发的。
典型的,所述第一RS资源集合和所述第二RS资源集合是2个波束失败检测RS集合,波束失败检测是每(per)波束失败检测RS集合进行的。
典型的,所述第一RS资源集合和所述第二RS资源集合是2个波束失败检测RS集合,波束失败恢复是每(per)波束失败检测RS集合进行的。
典型化的,所述第一RS资源集合和所述第二RS资源集合分别对应两个BFI_COUNTER。
典型的,所述第一RS资源集合对应第一计数器,所述第二RS资源集合对应第二计数器。
典型的,所述句子“当第一计数器的值等于或大于第一阈值时”的意思是指:当且仅当第一计数器的值等于或大于第一阈值时。
典型的,所述句子“当第一计数器的值等于或大于第一阈值时”的意思是指:作为第一计数器的值等于或大于第一阈值的响应。
典型的,所述句子“当第二计数器的值等于或大于第二阈值时”的意思是指:当且仅当第二计数器的值等于或大于第二阈值时。
典型的,所述句子“当第二计数器的值等于或大于第二阈值时”的意思是指:作为第二计数器的值等于或大于第二阈值的响应。
典型的,所述第一节点在MAC层维护所述第一计数器,所述第一节点在MAC层维护所述第二计数器。
典型的,所述第一节点的MAC实体维护所述第一计数器,所述第一节点的MAC实体维护所述第二计数器。
典型的,当所述第一节点的MAC实体(entity)接收到来自物理层的针对所述第一RS资源集合的波束失败事件指示时,启动(start)或重启(restart)第一计时器,并且所述第一计数器的值加1;每当所述第一节点的MAC实体(entity)接收到来自物理层的针对所述第二RS资源集合的波束失败事件指示时,启动(start)或重启(restart)第二计时器,并且所述第二计数器的值加1。
典型的,所述第一计数器和所述第二计数器是2个BFI_COUNTER。
典型的,当所述第一计时器过期(expire)时,设置所述第一计数器为0;当所述第二计时器过期(expire)时,设置所述第二计数器为0。
作为一个实施例,所述第一计时器和所述第二计时器是2个beamFailureDetectionTimer。
典型的,所述第一计数器的初始值是0,所述第二计数器的初始值是0。
作为一个实施例,所述第一阈值是正整数,所述第二阈值是正整数。
作为一个实施例,所述第一阈值和所述第一阈值是分别被配置的beamFailureInstanceMaxCount-r17。
作为一个实施例,所述第一阈值的名称包括beamFailureInstanceMaxCount,所述第二阈值的名称包括beamFailureInstanceMaxCount。
作为一个实施例,所述第一阈值和所述第二阈值是分别被RRC参数配置的。
作为一个实施例,所述第一阈值和所述第二阈值相同。
作为一个实施例,所述第一阈值和所述第二阈值不同。
作为一个实施例,所述第一阈值和所述第二阈值是由一个RRC IE中的部分或全部域配置的。
作为一个实施例,配置所述第一阈值和所述第二阈值的RRC消息包括RadioLinkMonitoringConfig IE的两个beamFailureInstanceMaxCount-r17域。
作为一个实施例,配置所述第一阈值和所述第二阈值的RRC消息分别包括RadioLinkMonitoringConfig IE的两个failureDetectionSet1-r17域中的部分或全部信息。
作为一个实施例,配置所述第一阈值和所述第二阈值的RRC消息分别包括RadioLinkMonitoringConfig IE中的名称包括failureDetectionSet1的域中的部分或全部信息,配置所述第一阈值和所述第二阈值的RRC消息分别包括RadioLinkMonitoringConfig IE中的名称包括failureDetectionSet2的域中的部分或全部信息。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值相同。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值不同。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值是分别由RRC参数配置的。
作为一个实施例,所述第一计时器的和所述第二计时器分别是2个beamFailureDetectionTimer-r17。
作为一个实施例,所述第一计时器和所述第二计时器的名称都包括beamFailureDetectionTimer-r17。
作为一个实施例,所述第一计时器的初始值是正整数,所述第二计时器的初始值是正整数。
作为一个实施例,所述第一计时器的初始值是正实数,所述第二计时器的初始值是正实数。
作为一个实施例,所述第一计时器的初始值的单位和所述第二计时器的初始值的单位都是波束失败检测RS的Qout,LR汇报周期。
作为一个实施例,所述第一计时器的初始值和所述第一计时器的初始值分别由2个更高层参数beamFailureDetectionTimer-r17配置。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值分别由2个名称包括beamFailureDetectionTimer-r17的更高层参数配置。
作为一个实施例,所述第一计时器的初始值和所述第二计时器的初始值由一个IE配置的。
作为一个实施例,配置所述第一计时器的初始值和和所述第二计时器的初始值的IE的名称包括RadioLinkMonitoring。
典型的,当针对所述第一RS资源集合的波束失败恢复和针对所述第二RS资源集合的波束失败恢复都被触发,并且所述第一RS资源集合或所述第二RS资源集合的波束失败恢复过程都没有成功完成时,发起(initiate)随机接入过程。
作为一个实施例,针对所述第一RS资源集合的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送BFR MAC CE,Truncated BFR MAC CE,Enhanced BFR MAC CE或者Truncated Enhanced BFR MAC CE中之一;针对所述第二RS资源集合的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送BFR MAC CE,Truncated BFR MAC CE,Enhanced BFR MAC CE或者Truncated Enhanced BFR MAC CE中之一。
作为一个实施例,针对所述第一RS资源集合的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送名称包括BFR的MAC CE,针对所述第二RS资源集合的所述波束失败恢复(Beam Failure Recovery,BFR)包括发送名称包括BFR的MAC CE。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图13所示。在附图13中,第一节点设备中的处理装置1200包括第一接收机1201或者第一发射机1202中的至少所述第一接收机1201。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发射机1202包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
第一接收机1201,接收参考信息块和第一信息块;
在实施例13中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,包括:
所述第一接收机1201,接收第一信令;
第一发射机1202,在第一时频资源组中发送第一信号;
其中,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
作为一个实施例,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
作为一个实施例,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,包括:当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;
其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
作为一个实施例,所述波束失败恢复在所述第一接收机1201和所述第一发射机1202中执行。
作为一个实施例,所述波束失败恢复在所述第一接收机1201或所述第一发射机1202中的至少所述第一发射机1202中执行。
作为一个实施例,所述波束失败恢复在所述第一接收机1201或所述第一发射机1202中的至少之一中执行。
作为一个实施例,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一节点的物理层向更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数;当第一计数器的值等于或大于第一阈值时,针对所述第一RS资源集合的波束失败恢复被触发;当所述第二计数器的值等于或大于第二阈值时,针对所述第二RS资源集合的波束失败恢复被触发。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图14所示。在附图14中,第二节点设备中的处理装置1300包括第二发射机1301或第二接收机1302中的至少所述第二发射机1301。
作为一个实施例,所述第二节点设备是基站备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1302包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
第二发射机1301,发送参考信息块和第一信息块;
在实施例14中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,包括:
所述第二发射机1301,发送第一信令;
第二接收机1302,在第一时频资源组中接收第一信号;
其中,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
作为一个实施例,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
作为一个实施例,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述第一信息块的接收者在当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一信息块的接收者的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
作为一个实施例,所述第二发射机1301和所述第二接收机1302被用于执行所述波束失败恢复。
作为一个实施例,所述波束失败恢复在所述第二发射机1301或所述第二接收机1302中的至少所述第二接收机1302中执行。
作为一个实施例,所述波束失败恢复在所述第二发射机1301或所述第二接收机1302中的至少之一中执行。
作为一个实施例,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二 CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
作为一个实施例,当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一信息块的接收者的物理层向更高层发送针对所述第一RS资源集合的波束失败事件指示;当根据所述第二RS资源集合评估的所述无线链路质量差于所述参考阈值时,所述第一信息块的所述接收者的物理层向更高层发送针对所述第二RS资源集合的波束失败事件指示;第一计数器被用于针对所述第一RS资源集合的波束失败事件指示的计数,第二计数器被用于针对所述第二RS资源集合的波束失败事件指示的计数;当第一计数器的值等于或大于第一阈值时,针对所述第一RS资源集合的波束失败恢复被触发;当所述第二计数器的值等于或大于第二阈值时,针对所述第二RS资源集合的波束失败恢复被触发。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者***设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。基于说明书中所描述的实施例所做出的任何变化和修改,如果能获得类似的部分或者全部技术效果,应当被视为显而易见并属于本发明的保护范围。

Claims (28)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收参考信息块和第一信息块;
    其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  2. 根据权利要求1所述的第一节点设备,其特征在于,包括:
    所述第一接收机,接收第一信令;
    第一发射机,在第一时频资源组中发送第一信号;
    其中,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
  4. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,包括:
    当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;
    其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
  6. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  7. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送参考信息块和第一信息块;
    其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  9. 根据权利要求8所述的第二节点设备,其特征在于,包括:
    所述第二发射机,发送第一信令;
    第二接收机,在第一时频资源组中接收第一信号;
    其中,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
  10. 根据权利要求8或9所述的第二节点设备,其特征在于,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
  11. 根据权利要求8或9所述的第二节点设备,其特征在于,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  12. 根据权利要求8至11中任一权利要求所述的第二节点设备,其特征在于,所述第一信息块的接收者在当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一信息块的接收者的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
  13. 根据权利要求8至11中任一权利要求所述的第二节点设备,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  14. 根据权利要求8至11中任一权利要求所述的第二节点设备,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收参考信息块和第一信息块;
    其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  16. 根据权利要求15所述的方法,其特征在于,包括:
    接收第一信令;
    在第一时频资源组中发送第一信号;
    其中,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
  17. 根据权利要求15或16所述的方法,其特征在于,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
  18. 根据权利要求15或16所述的方法,其特征在于,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  19. 根据权利要求15至18中任一权利要求所述的方法,其特征在于,包括:
    当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;
    其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一节点的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
  20. 根据权利要求15至18中任一权利要求所述的方法,其特征在于,所述第一BWP的无线链路质 量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  21. 根据权利要求15至18中任一权利要求所述的方法,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送参考信息块和第一信息块;
    其中,所述参考信息块被用于配置第一BWP上的第一CORESET池,所述第一CORESET池包括至少一个CORESET;第一RS资源集合被用于所述第一BWP的无线链路质量评估,所述第一RS资源集合依赖第一CORESET组的TCI状态,所述第一CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第一信息块被用于确定第一时频资源集合,所述第一时频资源集合在频域包括所述第一BWP中的至少一个子载波;所述第一CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  23. 根据权利要求22所述的第二节点中的方法,其特征在于,包括:
    发送第一信令;
    在第一时频资源组中接收第一信号;
    其中,所述第一信令指示所述第一信号的调度信息,所述第一时频资源组属于所述第一时频资源集合,所述第一时频资源组中的至少一个符号被更高层参数配置为DL符号。
  24. 根据权利要求22或23所述的方法,其特征在于,所述空口资源包括时域资源,所述第一时频资源集合在时域包括至少一个符号;所述第一CORESET组中的任一CORESET中的任一被监测的PDCCH候选和所述第一时频资源集合在时域正交。
  25. 根据权利要求22或23所述的方法,其特征在于,所述第一CORESET组是按照第一规则对所述第一CORESET池中的CORESET排序确定的;所述第一规则依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  26. 根据权利要求22至25中任一权利要求所述的方法,其特征在于,所述第一信息块的接收者在当目标计数器的值等于或大于目标阈值时,触发针对第一服务小区的波束失败恢复;其中,所述第一BWP是所述第一服务小区的一个BWP;当根据所述第一RS资源集合评估的所述无线链路质量差于参考阈值时,所述第一信息块的接收者的物理层向更高层发送针对所述第一服务小区的波束失败事件指示;所述目标计数器被用于针对所述第一服务小区的所述波束失败事件指示的计数。
  27. 根据权利要求22至25中任一权利要求所述的方法,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述参考信息块被用于配置所述第一BWP上的第二CORESET池,所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第二CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第二CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
  28. 根据权利要求22至25中任一权利要求所述的方法,其特征在于,所述第一BWP的无线链路质量评估包括:根据所述第一RS资源集合和第二RS资源集合分别评估无线链路质量;所述第二RS资源集合依赖第二CORESET组的TCI状态,所述第二CORESET组包括所述第一CORESET池中的至少一个CORESET;所述第二CORESET组至少依赖所述第一CORESET池中的CORESET中被监测的PDCCH候选占用的空口资源和所述第一时频资源集合之间的关系。
PCT/CN2023/127587 2022-11-02 2023-10-30 一种被用于无线通信的节点中的方法和装置 WO2024093877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211359899.7 2022-11-02
CN202211359899.7A CN117998432A (zh) 2022-11-02 2022-11-02 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024093877A1 true WO2024093877A1 (zh) 2024-05-10

Family

ID=90889487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127587 WO2024093877A1 (zh) 2022-11-02 2023-10-30 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117998432A (zh)
WO (1) WO2024093877A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190253308A1 (en) * 2018-02-14 2019-08-15 Asustek Computer Inc. Method and apparatus for control resource monitoring considering beam failure recovery in a wireless communication system
WO2020036334A1 (ko) * 2018-08-16 2020-02-20 삼성전자 주식회사 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN111742516A (zh) * 2018-02-16 2020-10-02 联想(新加坡)私人有限公司 与带宽部分相对应的资源
CN115225225A (zh) * 2021-04-21 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190253308A1 (en) * 2018-02-14 2019-08-15 Asustek Computer Inc. Method and apparatus for control resource monitoring considering beam failure recovery in a wireless communication system
CN111742516A (zh) * 2018-02-16 2020-10-02 联想(新加坡)私人有限公司 与带宽部分相对应的资源
WO2020036334A1 (ko) * 2018-08-16 2020-02-20 삼성전자 주식회사 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN115225225A (zh) * 2021-04-21 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117998432A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112333776B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2022161233A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112702153B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093877A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114095132A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022342A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046153A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093880A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022257866A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113839754B (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884808

Country of ref document: EP

Kind code of ref document: A1