WO2024001935A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024001935A1
WO2024001935A1 PCT/CN2023/102046 CN2023102046W WO2024001935A1 WO 2024001935 A1 WO2024001935 A1 WO 2024001935A1 CN 2023102046 W CN2023102046 W CN 2023102046W WO 2024001935 A1 WO2024001935 A1 WO 2024001935A1
Authority
WO
WIPO (PCT)
Prior art keywords
information block
pdsch
symbol
symbols
resource
Prior art date
Application number
PCT/CN2023/102046
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024001935A1 publication Critical patent/WO2024001935A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, in particular to wireless signal transmission methods and devices in wireless communication systems supporting cellular networks.
  • Network energy conservation is important for environmental sustainability, reducing environmental impact, and saving operating costs.
  • the use of more antennas, the utilization of larger bandwidth and more frequency bands, and the continuous improvement of transmission data rates, enhancing network energy saving has become an important aspect of 5G development; in appropriate scenarios Shutting down some transmission resources is an effective solution to achieve network energy saving.
  • the enhancement of PDSCH transmission is an important aspect of 5G NR evolution. How to match the enhanced PDSCH transmission with the related configuration of network energy saving is a key issue that needs to be solved.
  • network energy saving related scenarios eMBB (Enhance Mobile Broadband, enhanced mobile broadband), URLLC (Ultra Reliable and Low Latency Communication, ultra-high reliability and ultra-low latency communication), MBS (Multicast and Broadcast Services, multicast and broadcast services), IoT (Internet of Things, Internet of Things), Internet of Vehicles, NTN (non-terrestrial networks, non-terrestrial network), shared spectrum, etc., and achieve similar technical effects.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first PDSCH group including a plurality of PDSCHs
  • the HARQ process number indicated by the first signaling is applied to the first PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set; for each PDSCH in the first PDSCH group For subsequent PDSCHs that do not overlap with symbols in the first symbol set, the corresponding HARQ process numbers are sequentially increased by 1 in accordance with the scheduling order and the modulo operation on the first value is used.
  • the first value is configurable. A numerical value or a constant value; the first set of symbols includes symbols indicated as uplink by the second information block and at least one symbol in the first resource, the at least one symbol in the first resource Indicated as downlink by the second information block.
  • the problems to be solved by this application include: how to determine the HARQ process corresponding to the PDSCH.
  • the problems to be solved by this application include: how to effectively determine the HARQ process numbers corresponding to the multiple PDSCHs scheduled by the first signaling for different configurations.
  • the problems to be solved by this application include: how to improve the utilization efficiency of the HARQ process.
  • the problems to be solved by this application include: how to determine the HARQ process numbers corresponding to multiple PDSCHs scheduled by one DCI signaling in scenarios related to network energy saving.
  • the problems to be solved by this application include: how to determine the HARQ process numbers corresponding to multiple PDSCHs scheduled by one DCI signaling in the MBS scenario.
  • the problems to be solved by this application include: how to support XR (Extended Reality, extended reality) services
  • XR Extended Reality, extended reality
  • the HARQ process numbers corresponding to multiple PDSCHs scheduled by one DCI signaling are determined.
  • the problems to be solved by this application include: how to determine the HARQ process numbers corresponding to multiple PDSCHs scheduled by one DCI signaling in the Internet of Vehicles/V2X scenario.
  • the problems to be solved by this application include: how to improve the flexibility of base station scheduling or configuration.
  • the problem to be solved by this application includes: how to deal with the impact of symbols that are indicated as downlink and are not used to receive at least PDSCH on the HARQ process number corresponding to PDSCH.
  • the benefits of the above method include: ensuring consistent understanding of the HARQ process by both communicating parties.
  • the benefits of the above method include: conducive to network energy saving.
  • the benefits of the above method include: improving resource utilization.
  • the benefits of the above method include: helping to improve spectral efficiency.
  • the advantages of the above method include: good compatibility.
  • the benefits of the above method include: small changes to existing 3GPP standards.
  • the above method is characterized by,
  • the first value is equal to the first parameter value; otherwise, the first value is equal to 8; the first parameter value is configured by the RRC layer.
  • the PDSCHs in the first PDSCH group are all PDSCHs scheduled by the first signaling.
  • the above method is characterized by,
  • the above method is characterized by,
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH.
  • the above method is characterized by,
  • the first resource includes a first symbol that is indicated by the second information block as uplink and is not used to transmit at least PUSCH.
  • the above method is characterized by,
  • the name of the first information block includes at least one of cell, BWP, symbol, slot, subframe, duration, time, energy, and network, and the name of the first information block includes on, off, and active. , at least one of deactiv, silent, dormant, enabl, disabl, mut, sleep, punctur, suspend, sav.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first PDSCH group including a plurality of PDSCHs
  • the HARQ process number indicated by the first signaling is applied to the first PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set; for each PDSCH in the first PDSCH group For subsequent PDSCHs that do not overlap with symbols in the first symbol set, the corresponding HARQ process numbers are sequentially increased by 1 in accordance with the scheduling order and the modulo operation on the first value is used.
  • the first value is configurable. A numerical value or a constant value; the first set of symbols includes symbols indicated as uplink by the second information block and at least one symbol in the first resource, the at least one symbol in the first resource Indicated as downlink by the second information block.
  • the above method is characterized by,
  • the first value is equal to the first parameter value; otherwise, the first value is equal to 8; the first parameter value is configured by the RRC layer.
  • the above method is characterized by,
  • the above method is characterized by,
  • the above method is characterized by,
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH.
  • the above method is characterized by,
  • the first resource includes a first symbol indicated by the second information block as uplink and not used for transmitting at least PUSCH.
  • the above method is characterized by,
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • a first receiver receives a first information block, a second information block and first signaling, where the first information block is used to determine the first resource;
  • the first receiver receives at least part of a first PDSCH group, where the first PDSCH group includes a plurality of PDSCHs;
  • the HARQ process number indicated by the first signaling is applied to the first PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set; for each PDSCH in the first PDSCH group For subsequent PDSCHs that do not overlap with symbols in the first symbol set, the corresponding HARQ process numbers are sequentially increased by 1 in accordance with the scheduling order and the modulo operation on the first value is used.
  • the first value is configurable. A numerical value or a constant value; the first set of symbols includes symbols indicated as uplink by the second information block and at least one symbol in the first resource, the at least one symbol in the first resource Indicated as downlink by the second information block.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second transmitter transmitting a first information block, a second information block and first signaling, where the first information block is used to determine the first resource
  • the second transmitter transmits at least part of the first PDSCH group, where the first PDSCH group includes a plurality of PDSCHs;
  • the HARQ process number indicated by the first signaling is applied to the first PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set; for each PDSCH in the first PDSCH group For subsequent PDSCHs that do not overlap with symbols in the first symbol set, the corresponding HARQ process numbers are sequentially increased by 1 in accordance with the scheduling order and the modulo operation on the first value is used.
  • the first value is configurable. A numerical value or a constant value; the first set of symbols includes symbols indicated as uplink by the second information block and at least one symbol in the first resource, the at least one symbol in the first resource Indicated as downlink by the second information block.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a schematic diagram illustrating PDSCHs in the first PDSCH group and corresponding HARQ process numbers according to an embodiment of the present application
  • Figure 7 shows a schematic diagram illustrating the PDSCH in the first PDSCH group and the corresponding HARQ process number according to an embodiment of the present application
  • Figure 8 shows a schematic diagram illustrating the PDSCH in the first PDSCH group and the corresponding HARQ process number according to an embodiment of the present application
  • Figure 10 shows a schematic diagram of the relationship between the first information block and the first resource according to an embodiment of the present application
  • Figure 11 shows a schematic diagram of the relationship between a first resource, a first symbol and a second information block according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Figure 14 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • the first information block is used to determine the first resource; the first PDSCH group includes multiple PDSCHs; wherein the HARQ process number indicated by the first signaling is applied to the The first PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set; for each subsequent PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set, The corresponding HARQ process number is sequentially increased by 1 according to the scheduling order and uses the modulo operation on the first value, which is a configurable value or a constant value; the first symbol set includes the second information block A symbol indicated as an uplink and at least one symbol in the first resource indicated by the second information block as a downlink.
  • the first information block is received before the second information block.
  • the first information block and the second information block are received simultaneously.
  • the second information block includes physical layer signaling.
  • the second information block includes DCI (Downlink control information, downlink control information).
  • the second information block includes higher layer signaling.
  • the second information block includes MAC CE (Medium Access Control layer Control Element, media access control layer control element).
  • MAC CE Medium Access Control layer Control Element, media access control layer control element
  • the second information block includes RRC (Radio Resource Control, Radio Resource Control) signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the second information block includes at least one field in at least one IE (Information Element).
  • the second information block includes at least one field in a DCI format.
  • the second information block is a MAC CE.
  • the second information block includes at least one field in a MAC CE.
  • the second information block is an IE.
  • the second information block is a field in an IE.
  • the second information block is a higher layer parameter.
  • the second information block includes time domain configuration information.
  • the second information block includes TDD UL/DL configuration information.
  • the second information block includes tdd-UL-DL-ConfigurationCommon.
  • the second information block includes tdd-UL-DL-ConfigurationDedicated.
  • the second information block includes tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated.
  • the second information block includes at least one of tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated.
  • the first information block includes physical layer signaling.
  • the first information block includes DCI (Downlink control information, downlink control information).
  • the first information block includes higher layer signaling.
  • the first information block includes MAC CE (Medium Access Control layer Control Element, media access control layer control element).
  • MAC CE Medium Access Control layer Control Element, media access control layer control element
  • the first information block includes RRC (Radio Resource Control, Radio Resource Control) signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the first information block includes at least one field in at least one IE (Information Element).
  • the first information block is a field in a DCI format.
  • the first information block is a MAC CE.
  • the first information block is a field in a MAC CE.
  • the first information block is an IE.
  • the first information block is a field in an IE.
  • the first information block is a higher layer parameter.
  • the name of the first information block includes off.
  • the name of the first information block includes on.
  • the name of the first information block includes cell and off.
  • the name of the first information block includes cell and on.
  • the name of the first information block includes cell, on and off.
  • the name of the first information block includes BWP and off.
  • the name of the first information block includes BWP and on.
  • the name of the first information block includes BWP, on and off.
  • the name of the first information block includes symbol, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes slot, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes subframe, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes duration, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes time, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes energy, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes sav, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes power, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes network, and the name of the first information block includes at least one of on or off.
  • the name of the first information block includes activ.
  • the name of the first information block includes deactiv.
  • the name of the first information block includes cell, and the name of the first information block includes at least one of activ or deactiv.
  • the name of the first information block includes BWP, and the name of the first information block includes at least one of activ or deactiv.
  • the name of the first information block includes symbol, and the name of the first information block includes at least one of activ or deactiv.
  • the name of the first information block includes slot, and the name of the first information block includes at least one of activ or deactiv.
  • the name of the first information block includes subframe, and the name of the first information block includes at least one of activ or deactiv.
  • the name of the first information block includes duration, and the name of the first information block includes at least one of activ or deactiv.
  • the name of the first information block includes time, and the name of the first information block includes at least one of activ or deactiv.
  • the name of the first information block includes activated or active or activating or activation.
  • the name of the first information block includes deactivated or inactive or deactivating or deactivation.
  • the name of the first information block includes cell, and the name of the first information block includes at least one of activated or active or activating or activation or deactivated or inactive or deactivating or deactivation.
  • the name of the first information block includes BWP, and the name of the first information block includes at least one of activated or active or activating or activation or deactivated or inactive or deactivating or deactivation.
  • the name of the first information block includes symbol, and the name of the first information block includes at least one of activated or active or activating or activation or deactivated or inactive or deactivating or deactivation.
  • the name of the first information block includes slot, and the name of the first information block includes at least one of activated or active or activating or activation or deactivated or inactive or deactivating or deactivation.
  • the name of the first information block includes subframe, and the name of the first information block includes at least one of activated or active or activating or activation or deactivated or inactive or deactivating or deactivation.
  • the name of the first information block includes duration, and the name of the first information block includes at least one of activated or active or activating or activation or deactivated or inactive or deactivating or deactivation.
  • the name of the first information block includes time, and the name of the first information block includes at least one of activated or active or activating or activation or deactivated or inactive or deactivating or deactivation.
  • the name of the first information block includes silent.
  • the name of the first information block includes silence.
  • the name of the first information block includes cell, and the name of the first information block includes silence or silence.
  • the name of the first information block includes BWP, and the name of the first information block includes silence or silence.
  • the name of the first information block includes symbol, and the name of the first information block includes silence or silence.
  • the name of the first information block includes slot, and the name of the first information block includes silence or silence.
  • the name of the first information block includes subframe, and the name of the first information block includes silence or silence.
  • the name of the first information block includes duration, and the name of the first information block includes silence or silence.
  • the name of the first information block includes time, and the name of the first information block includes silence or silence.
  • the name of the first information block includes dormant.
  • the name of the first information block includes dormancy.
  • the name of the first information block includes cell, and the name of the first information block includes dormant or dormancy.
  • the name of the first information block includes BWP, and the name of the first information block includes dormant or dormancy.
  • the name of the first information block includes symbol, and the name of the first information block includes dormant or dormancy.
  • the name of the first information block includes slot, and the name of the first information block includes dormant or dormancy.
  • the name of the first information block includes subframe, and the name of the first information block includes dormant or dormancy.
  • the name of the first information block includes duration, and the name of the first information block includes dormant or dormancy.
  • the name of the first information block includes time, and the name of the first information block includes dormant or dormancy.
  • the name of the first information block includes enabl.
  • the name of the first information block includes disabl.
  • the name of the first information block includes cell, and the name of the first information block includes at least one of enabl or disabl.
  • the name of the first information block includes BWP, and the name of the first information block includes at least one of enabl or disabl.
  • the name of the first information block includes symbol, and the name of the first information block includes at least one of enabl or disabl.
  • the name of the first information block includes slot, and the name of the first information block includes at least one of enabl or disabl.
  • the name of the first information block includes subframe, and the name of the first information block includes at least one of enabl or disabl.
  • the name of the first information block includes duration, and the name of the first information block includes at least one of enabl or disabl.
  • the name of the first information block includes time, and the name of the first information block includes at least one of enabl or disabl.
  • the name of the first information block includes enabling or enabled.
  • the name of the first information block includes disabling or disabled.
  • the name of the first information block includes cell, and the name of the first information block includes at least one of enabling, enabled, disabling, or disabled.
  • the name of the first information block includes BWP, and the name of the first information block includes at least one of enabling or enabled or disabling or disabled.
  • the name of the first information block includes symbol, and the name of the first information block includes at least one of enabling, enabled, disabling, or disabled.
  • the name of the first information block includes slot, and the name of the first information block includes at least one of enabling, enabled, disabling, or disabled.
  • the name of the first information block includes subframe, and the name of the first information block includes at least one of enabling, enabled, disabling, or disabled.
  • the name of the first information block includes duration, and the name of the first information block includes at least one of enabling, enabled, disabling, or disabled.
  • the name of the first information block includes time, and the name of the first information block includes at least one of enabling, enabled, disabling, or disabled.
  • the name of the first information block includes mute.
  • the name of the first information block includes muting.
  • the name of the first information block includes muted.
  • the name of the first information block includes cell, and the name of the first information block includes mute or muting or muted.
  • the name of the first information block includes BWP, and the name of the first information block includes mute or muting or muted.
  • the name of the first information block includes symbol, and the name of the first information block includes mute or muting or muted.
  • the name of the first information block includes slot, and the name of the first information block includes mute or muting or muted.
  • the name of the first information block includes subframe, and the name of the first information block includes mute or muting or muted.
  • the name of the first information block includes duration, and the name of the first information block includes mute or muting or muted.
  • the name of the first information block includes time, and the name of the first information block includes mute or muting or muted.
  • the name of the first information block includes energy.
  • the name of the first information block includes saving.
  • the name of the first information block includes network.
  • the name of the first information block includes power.
  • the name of the first information block includes puncture.
  • the name of the first information block includes punctured.
  • the name of the first information block includes puncturing.
  • the name of the first information block includes cell, and the name of the first information block includes puncture or punctured or puncturing.
  • the name of the first information block includes BWP, and the name of the first information block includes puncture or punctured or puncturing.
  • the name of the first information block includes symbol, and the name of the first information block includes puncture or punctured or puncturing.
  • the name of the first information block includes slot, and the name of the first information block includes puncture or punctured or puncturing.
  • the name of the first information block includes subframe, and the name of the first information block includes puncture or punctured or puncturing.
  • the name of the first information block includes duration, and the name of the first information block includes puncture or punctured or puncturing.
  • the name of the first information block includes time, and the name of the first information block includes puncture or punctured or puncturing.
  • the name of the first information block includes sleep.
  • the name of the first information block includes cell, and the name of the first information block includes sleep.
  • the name of the first information block includes BWP, and the name of the first information block includes sleep.
  • the name of the first information block includes symbol, and the name of the first information block includes sleep.
  • the name of the first information block includes slot, and the name of the first information block includes sleep.
  • the name of the first information block includes subframe, and the name of the first information block includes sleep.
  • the name of the first information block includes duration, and the name of the first information block includes sleep.
  • the name of the first information block includes time, and the name of the first information block includes sleep.
  • the name of the first information block includes suspend.
  • the name of the first information block includes cell, and the name of the first information block includes suspend.
  • the name of the first information block includes BWP, and the name of the first information block includes suspend.
  • the name of the first information block includes symbol, and the name of the first information block includes suspend.
  • the name of the first information block includes slot, and the name of the first information block includes suspend.
  • the name of the first information block includes subframe, and the name of the first information block includes suspend.
  • the name of the first information block includes duration, and the name of the first information block includes suspend.
  • the name of the first information block includes time, and the name of the first information block includes suspend.
  • the name of the symbol type to which the symbol in the first resource belongs includes at least part of the consecutive letters included in the name of the first information block.
  • the first information block indicates that the symbols in the first resource are first-type symbols, and the names of the first-type symbols include cell, BWP, on, off, activ, deactiv, silent, At least one of dorman, enabl, disabl, mut, energy, sav, network, sleep, punctur, suspension, duration.
  • the first signaling includes physical layer signaling.
  • the first signaling includes DCI (Downlink control information, downlink control information).
  • the first signaling includes higher layer signaling.
  • the first signaling includes MAC CE (Medium Access Control layer Control Element, media access control layer control element).
  • MAC CE Medium Access Control layer Control Element, media access control layer control element
  • the first signaling includes RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first signaling includes at least one field in at least one IE (Information Element).
  • the first signaling is a DCI format.
  • the first signaling includes at least one field in a DCI format.
  • the first signaling adopts one of DCI format 1_1, DCI format 4_1, DCI format 4_2 or DCI format 1_2.
  • the first signaling adopts DCI format 1_0.
  • the first signaling adopts DCI format 1_1.
  • the first signaling adopts DCI format 4_0.
  • the first signaling adopts DCI format 4_1.
  • the first signaling adopts DCI format 4_2.
  • the first signaling adopts DCI format 1_2.
  • the first signaling is a MAC CE.
  • the first signaling includes at least one domain in a MAC CE.
  • the first signaling is an IE.
  • the first information block is used to indicate the first resource.
  • the first information block explicitly indicates the first resource.
  • the first information block implicitly indicates the first resource.
  • the first information block is used to configure the first resource.
  • the first information block is used to indicate symbols included in the first resource.
  • the first information block is used to indicate a time slot included in the first resource.
  • the first information block is used to indicate a subframe included in the first resource.
  • the first information block is used to indicate a duration included in the first resource.
  • the first resource includes multiple symbols.
  • a symbol in the first resource or a symbol in the first symbol set is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (Symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • a symbol in the first resource or a symbol in the first symbol set is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, Single Carrier Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, Single Carrier Frequency Division Multiple Access
  • a symbol in the first resource or a symbol in the first symbol set is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol .
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • one symbol in the first resource or one symbol in the first symbol set is a FBMC (Filter Bank Multi Carrier) symbol.
  • FBMC Breast Bank Multi Carrier
  • one symbol in the first resource or one symbol in the first symbol set includes continuous time domain resources.
  • one symbol in the first resource or one symbol in the first symbol set includes a cyclic prefix.
  • the first symbol set includes all symbols in the first resource.
  • the first resource intersects with the symbol indicated as an uplink by the second information block.
  • the first resource has no intersection with the symbol indicated as uplink by the second information block.
  • the first resource includes time domain resources.
  • the first resource includes at least one time slot.
  • the first resource includes at least one subframe.
  • the first resource includes at least one duration.
  • the at least one symbol in the first resource includes all symbols in at least one time slot.
  • the at least one symbol in the first resource is not used to receive at least PDSCH.
  • the at least one symbol in the first resource is not used to receive any PDSCH.
  • the at least one symbol in the first resource is not used to receive at least PDSCH and PDCCH.
  • the at least one symbol in the first resource is not used to receive at least PDSCH and CSI-RS.
  • the at least one symbol in the first resource is not used to receive at least PDSCH, PDCCH and CSI-RS.
  • the at least one symbol in the first resource is not used to receive at least two of PDSCH, PDCCH or CSI-RS.
  • the at least one symbol in the first resource is not used to receive any downlink signal.
  • each symbol in the first resource is not used to receive at least PDSCH.
  • each symbol in the first resource is not used to receive at least PDSCH and PDCCH.
  • each symbol in the first resource is not used to receive at least PDSCH and CSI-RS.
  • each symbol in the first resource is not used to receive at least PDSCH, PDCCH and CSI-RS.
  • each symbol in the first resource is not used to receive at least two of PDSCH, PDCCH or CSI-RS.
  • each symbol in the first resource is not used to receive any downlink signal.
  • the at least one symbol in the first resource is not used. for receiving PDSCH.
  • the first information block is used to determine that the at least one symbol in the first resource is not used to receive at least PDSCH.
  • the first information block is used to determine that the at least one symbol in the first resource is not used to receive at least PDSCH (Physical downlink shared channel, physical downlink shared channel) and PDCCH ( Physical downlink control channel, physical downlink control channel).
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • PDCCH Physical downlink control channel, physical downlink control channel
  • the first information block is used to determine that the at least one symbol in the first resource is not used to receive at least PDSCH and CSI-RS (Channel state information Reference signal, channel state information reference signal) ).
  • CSI-RS Channel state information Reference signal, channel state information reference signal
  • the first information block is used to determine that the at least one symbol in the first resource is not used to receive at least PDSCH, PDCCH and CSI-RS.
  • the first information block is used to determine that the at least one symbol in the first resource is not used to receive at least two of PDSCH, PDCCH or CSI-RS.
  • the first information block is used to determine that the at least one symbol in the first resource is not used to receive any downlink signal.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH.
  • the expression being indicated as an uplink by the second information block includes: being configured as an uplink by the second information block.
  • the expression indicated by the second information block as uplink includes: indicated by the second information block as reserved for uplink.
  • the expression indicated by the second information block as uplink includes: being reserved for uplink transmission based on the indication/configuration of the second information block.
  • the expression being indicated as downlink by the second information block includes: being configured as downlink by the second information block.
  • the expression indicated by the second information block as downlink includes: indicated by the second information block as reserved for downlink.
  • the representation being indicated as downlink by the second information block includes: being reserved for downlink transmission based on the indication/configuration of the second information block.
  • the at least one symbol in the first resource is indicated by the second information block as downlink and is not used to receive at least PDSCH.
  • At least one symbol in the first resource is indicated by the second information block as downlink.
  • the first signaling includes a HARQ process number field.
  • the first signaling includes a HARQ process ID field.
  • the first signaling includes a field used to indicate a HARQ (Hybrid automatic repeat request) process ID (HARQ (Hybrid automatic repeat request) process ID).
  • HARQ Hybrid automatic repeat request
  • the first signaling is received after the first information block and the second information block.
  • the at least one symbol in the first resource is not used to transmit at least PDSCH.
  • each PDSCH in the first PDSCH group that overlaps with symbols in the first symbol set is not received.
  • At least one PDSCH in the first PDSCH group that overlaps with symbols in the first symbol set is not received.
  • the PDSCHs in the first PDSCH group are arranged sequentially in the time domain.
  • the plurality of PDSCHs in the first PDSCH group respectively belong to different time slots in the time domain.
  • the plurality of PDSCHs in the first PDSCH group occupy different time slots in the time domain.
  • the subsequent expression is for the first PDSCH in the first PDSCH group that does not overlap with symbols in the first symbol set.
  • the expression according to scheduled order includes the following meaning: according to the order of PDSCHs in the first PDSCH group from early to late in the time domain.
  • the expression includes the following meaning according to the scheduling order: according to the order in which the SLIVs corresponding to the PDSCHs in the first PDSCH group belong to the indexed rows in the time domain resource allocation table.
  • the scheduling sequence is determined based on the indication of the first signaling.
  • the scheduling order is determined based on the configuration of RRC layer signaling.
  • the scheduling sequence is predefined.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: at least one symbol allocated for this PDSCH overlaps with a symbol in the first symbol set. At least one symbol overlaps.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: at least one symbol allocated for this PDSCH belongs to the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: at least one symbol among the consecutive symbols allocated for this PDSCH overlaps with the first symbol. At least one symbol in the symbol set overlaps.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: at least one symbol among the consecutive symbols allocated for this PDSCH belongs to the first symbol set. Symbols collection.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with symbols in the first symbol set includes: all symbols allocated for this PDSCH overlap with any symbols in the first symbol set. None of the symbols overlap.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with symbols in the first symbol set includes: all symbols allocated for this PDSCH do not belong to the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with the symbols in the first symbol set includes: all symbols in the consecutive symbols allocated for this PDSCH have no overlap with the first symbol. No symbols in the set overlap.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with symbols in the first symbol set includes: all symbols in the consecutive symbols allocated for this PDSCH do not belong to the first symbol set. A collection of symbols.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: being indicated by a corresponding indexed row in the adopted resource allocation table. At least one symbol allocated to this PDSCH overlaps with at least one symbol in the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: being indicated by a corresponding indexed row in the adopted resource allocation table. At least one symbol allocated to this PDSCH belongs to the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with a symbol in the first symbol set includes: being indicated by a corresponding indexed row in the adopted resource allocation table. All symbols allocated to this PDSCH do not belong to the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: being indicated by a corresponding indexed row in the adopted resource allocation table. At least one symbol among the consecutive symbols allocated to this PDSCH overlaps with at least one symbol in the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with a symbol in the first symbol set includes: being indicated by a corresponding indexed row in the adopted resource allocation table. All symbols in the consecutive symbols allocated to this PDSCH do not overlap with any symbols in the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: being indicated by a corresponding indexed row in the adopted resource allocation table. At least one symbol among the consecutive symbols allocated to this PDSCH belongs to the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with a symbol in the first symbol set includes: being indicated by a corresponding indexed row in the adopted resource allocation table. All symbols in the consecutive symbols allocated to this PDSCH do not belong to the first symbol set.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: for this PDSCH, all elements of the resource allocation table used in the corresponding time slot At least one symbol indicated by the corresponding indexed row overlaps with at least one symbol in the first set of symbols.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with symbols in the first symbol set includes: for this PDSCH, all the elements of the resource allocation table used in the corresponding time slot All consecutive symbols indicated by the corresponding indexed row do not overlap with any symbol in the first set of symbols.
  • the meaning that a PDSCH in the first PDSCH group overlaps with symbols in the first symbol set includes: for this PDSCH, all elements of the resource allocation table used in the corresponding time slot At least one symbol indicated by the corresponding indexed row belongs to the first set of symbols.
  • the meaning that a PDSCH in the first PDSCH group does not overlap with symbols in the first symbol set includes: for this PDSCH, all the elements of the resource allocation table used in the corresponding time slot All consecutive symbols indicated by the corresponding indexed row do not belong to the first set of symbols.
  • a modulo operation on a first value which is a configurable value or a constant value
  • the corresponding HARQ process number is sequentially increased by 1 according to the scheduling order and uses the modulo operation on the first value.
  • the first value is a configurable value or a constant value.
  • a modulo operation on a first value which is a configurable value or a constant value
  • the corresponding HARQ process number is increased by 1 in sequence according to the scheduling order and uses the modulo operation on the first value, which can be Configured numerical value or constant value; for one of the first type of PDSCH, at least one of the symbols indicated by the corresponding indexed row of the resource allocation table used in the corresponding time slot is the same as the first symbol.
  • the symbols in the set overlap.
  • the first type of PDSCH is not received.
  • the first type of PDSCH is a PDSCH that overlaps with symbols in the first symbol set.
  • the expression that the first numerical value is a configurable numerical value or a constant value includes: when the first parameter value is provided, the first numerical value is equal to the first parameter value; otherwise, the first parameter value is equal to the first parameter value.
  • a value equals 8.
  • a feature of the method in the first node disclosed in this application includes:
  • the at least one HARQ-ACK bit includes at least HARQ-ACK bits for PDSCHs in the first PDSCH group that do not overlap with symbols in the first symbol set.
  • the at least one HARQ-ACK bit includes a HARQ-ACK codebook.
  • the at least one HARQ-ACK bit does not include HARQ-ACK bits for PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set.
  • the at least one HARQ-ACK bit includes a bit representing NACK generated for a PDSCH in the first PDSCH group that overlaps with symbols in the first symbol set.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in Figure 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called EPS (Evolved Packet System) 200 or some other suitable term.
  • EPS200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network, 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet service 230.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN210 through S1/NG interface.
  • EPC/5G-CN210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S -GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is the control node that handles signaling between UE201 and EPC/5G-CN210. Basically, MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 corresponds to the second node in this application.
  • the gNB 203 corresponds to the first node in this application.
  • the gNB 203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the first node and the second node in this application both correspond to the UE 201, for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between the communication node device (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • At least part of the first information block in this application is generated from the RRC sublayer 306.
  • At least part of the first information block in this application is generated in the MAC sublayer 302.
  • At least part of the first information block in this application is generated in the MAC sublayer 352.
  • At least part of the first information block in this application is generated by the PHY301.
  • At least part of the first information block in this application is generated by the PHY351.
  • At least part of the second information block in this application is generated from the RRC sublayer 306.
  • At least part of the second information block in this application is generated in the MAC sublayer 302.
  • At least part of the second information block in this application is generated in the MAC sublayer 352.
  • At least part of the second information block in this application is generated by the PHY301.
  • At least part of the second information block in this application is generated by the PHY351.
  • At least part of the first signaling in this application is generated in the RRC sublayer 306.
  • At least part of the first signaling in this application is generated in the MAC sublayer 302.
  • At least part of the first signaling in this application is generated in the MAC sublayer 352.
  • At least part of the first signaling in this application is generated by the PHY301.
  • At least part of the first signaling in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer. Similar to in The transmit function at the first communication device 410 is described in the transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 implements header compression, encryption based on wireless resource allocation , packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for the user plane and control plane. The controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the second communications device 450 to the first communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is user equipment
  • the second node is user equipment
  • the first node is user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK). ) protocol performs error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 device at least: receives a first information block, a second information block and first signaling, the first information block is used to determine the first resource; receives at least part of the first PDSCH group, The first PDSCH group includes a plurality of PDSCHs; wherein the HARQ process number indicated by the first signaling is applied to the first symbol in the first PDSCH group that does not overlap with the symbols in the first symbol set.
  • the corresponding HARQ process number is increased by 1 in sequence according to the scheduling order and adopts the modulo of the first value.
  • the first value is a configurable value or a constant value;
  • the first symbol set includes symbols indicated as uplink by the second information block and at least one symbol in the first resource, so The at least one symbol in the first resource is indicated as downlink by the second information block.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first An information block, a second information block and first signaling, the first information block being used to determine a first resource; receiving at least part of a first PDSCH group, the first PDSCH group including a plurality of PDSCHs; wherein , the HARQ process number indicated by the first signaling is applied to the first symbol in the first PDSCH group The first PDSCH whose symbols in the set do not overlap; for each subsequent PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set, the corresponding HARQ process number is in the scheduling order Increasing by 1 sequentially and using a modulo operation on the first value, which is a configurable value or a constant value; the first symbol set includes the symbols indicated as uplink by the second information block and the At least one symbol in the first resource is indicated by the second information block as downlink
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least: sends a first information block, a second information block and first signaling, where the first information block is used to determine the first resource; sends at least part of the first PDSCH group,
  • the first PDSCH group includes a plurality of PDSCHs; wherein the HARQ process number indicated by the first signaling is applied to the first symbol in the first PDSCH group that does not overlap with the symbols in the first symbol set.
  • the corresponding HARQ process number is increased by 1 in sequence according to the scheduling order and adopts the modulo of the first value.
  • the first value is a configurable value or a constant value;
  • the first symbol set includes symbols indicated as uplink by the second information block and at least one symbol in the first resource, so The at least one symbol in the first resource is indicated as downlink by the second information block.
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first An information block, a second information block and first signaling, the first information block being used to determine a first resource; sending at least part of a first PDSCH group, the first PDSCH group including a plurality of PDSCHs; wherein , the HARQ process number indicated by the first signaling is applied to the first PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set; for each of the first PDSCH group For subsequent PDSCHs that do not overlap with symbols in the first symbol set, the corresponding HARQ process numbers are sequentially increased by 1 according to the scheduling order and use the modulo operation on the first value, which is a configurable value. or a constant value; the first symbol set includes symbols indicated as uplink by the second information block and at least one symbol in the first resource, and the at least one symbol in the first resource
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information block in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used to send the first information block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second information block in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used to send the second information block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used to send the first signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send at least one HARQ-ACK bit.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used to receive at least one HARQ-ACK bit.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U1 and the second node U2 communicate through the air interface.
  • the first node U1 receives the first information block and the second information block in step S511; receives the first signaling in step S512; and receives at least part of the first PDSCH group in step S513.
  • the second node U2 sends the first information block and the second information block in step S521; sends the first signaling in step S522; and sends at least part of the first PDSCH group in step S523.
  • the first information block is used to determine the first resource; the first PDSCH group includes multiple PDSCHs; the HARQ process number indicated by the first signaling is applied to the first The first PDSCH in the PDSCH group that does not overlap with the symbols in the first symbol set; for each subsequent PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set, the corresponding The HARQ process number is increased by 1 in sequence according to the scheduling order and uses the modulo operation on the first value; if the first parameter value is provided, the first value is equal to the first parameter value; otherwise, the first value is equal to 8 ; the first parameter value is configured by RRC layer signaling; the first symbol set includes symbols indicated as uplink by the second information block and at least one symbol in the first resource, The at least one symbol in the first resource is indicated by the second information block as downlink; the PDSCHs in the first PDSCH group are all PDSCHs scheduled by the first signaling.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH;
  • the name of the first information block includes At least one of cell, BWP, symbol, slot, subframe, duration, time, energy, network, and the name of the first information block includes on, off, activ, deactiv, silent, dorman, enabl, disabl , at least one of mut, sleep, punctur, suspend, sav.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between the base station equipment and the user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between user equipment and user equipment.
  • the meaning of the first node U1 receiving a PDSCH includes: the first node U1 receives a signal in this PDSCH.
  • the meaning that the first node U1 receives a PDSCH includes: the signal transmitted through this PDSCH is received by the first node U1.
  • the meaning that the first node U1 receives a PDSCH includes: the first node U1 receives at least one transport block in this PDSCH.
  • the meaning of the second node U2 sending a PDSCH includes: the second node U2 sends a signal in this PDSCH.
  • the meaning of the second node U2 sending a PDSCH includes: the second node U2 sends at least one transport block in this PDSCH.
  • Embodiment 6 illustrates a schematic diagram illustrating the PDSCH in the first PDSCH group and the corresponding HARQ process number according to an embodiment of the present application, as shown in FIG. 6 .
  • a box represents a PDSCH in the first PDSCH group; wherein, a white filled box represents a PDSCH in the first PDSCH group that does not overlap with symbols in the first symbol set.
  • the filled squares with diagonal lines represent PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set
  • the white filled squares with thick edges represent the PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set.
  • the first PDSCH where the symbols in the set do not overlap.
  • the first PDSCH group includes 4 PDSCHs, and the PDSCHs in the first PDSCH group from first to last according to the scheduling order are: PDSCH#0, PDSCH#1, PDSCH#2, PDSCH# 3;
  • the HARQ process number indicated by the first signaling is ID#0, the ID#0 is applied to the PDSCH#1, and the HARQ process number corresponding to the PDSCH#3 is equal to the ID#0
  • the PDSCH#0 and the PDSCH#2 are not received.
  • Embodiment 7 illustrates a schematic diagram illustrating the PDSCHs in the first PDSCH group and the corresponding HARQ process numbers according to an embodiment of the present application, as shown in FIG. 7 .
  • a box represents a PDSCH in the first PDSCH group; wherein, a white filled box represents a PDSCH in the first PDSCH group that does not overlap with symbols in the first symbol set.
  • the filled squares with diagonal lines represent PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set
  • the white filled squares with thick edges represent the PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set.
  • the first PDSCH where the symbols in the set do not overlap.
  • the first PDSCH group includes 5 PDSCHs.
  • the PDSCHs in the first PDSCH group from first to last according to the scheduling order are: PDSCH#0, PDSCH#1, PDSCH#2, PDSCH# 3.
  • PDSCH#4 the HARQ process number indicated by the first signaling is ID#0, the ID#0 is applied to the PDSCH#0, and the HARQ process number corresponding to the PDSCH#1 is equal to the The sum of ID#0 and 1 modulo the first value.
  • the HARQ process number corresponding to PDSCH#3 is equal to the sum of ID#0 and 2 modulo the first value.
  • the HARQ process number corresponding to the PDSCH#4 is equal to the sum of the ID#0 and 3 modulo the first value.
  • the PDSCH#2 is not received.
  • Embodiment 8 illustrates a schematic diagram illustrating the PDSCHs in the first PDSCH group and the corresponding HARQ process numbers according to an embodiment of the present application, as shown in FIG. 8 .
  • a box represents a PDSCH in the first PDSCH group; wherein, a white filled box represents a PDSCH in the first PDSCH group that does not overlap with symbols in the first symbol set.
  • the filled squares with diagonal lines represent PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set
  • the white filled squares with thick edges represent the PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set.
  • the first PDSCH where the symbols in the set do not overlap.
  • the first numerical value is equal to 8; the first PDSCH group includes 5 PDSCHs, and the PDSCHs in the first PDSCH group from first to last according to the scheduling order are: PDSCH#0, PDSCH# 1, PDSCH#2, PDSCH#3, PDSCH#4; the HARQ process number indicated by the first signaling is equal to 6, the HARQ process number corresponding to the PDSCH#0 is equal to 6, and the HARQ process number corresponding to the PDSCH#1 The HARQ process number of is equal to 7, the HARQ process number corresponding to the PDSCH#2 is equal to 0, and the HARQ process number corresponding to the PDSCH#3 is equal to 1.
  • the PDSCH#4 is not received.
  • Embodiment 9 illustrates a schematic diagram illustrating the first value according to an embodiment of the present application, as shown in FIG. 9 .
  • the first value is a configurable value or a constant value.
  • the first value is configurable.
  • the first value is configured by higher layer signaling.
  • the first value is configured by RRC layer signaling.
  • the first value is the value of parameter nrofHARQ-ProcessesForPDSCH.
  • the first value is a constant value.
  • the first numerical value is a positive integer.
  • the first value is equal to 8.
  • the first value is equal to 16.
  • the first value is equal to 32.
  • the first numerical value is not greater than 16.
  • the first numerical value is not greater than 32.
  • the first value is related to the number of HARQ processes.
  • the first value is no greater than the number of available HARQ processes.
  • the first value is not greater than the maximum number of HARQ processes supported by the first node on one serving cell.
  • the first value is not greater than the maximum number of HARQ processes supported by the first node for the serving cell scheduled by the first signaling.
  • Embodiment 10 illustrates a schematic diagram of the relationship between the first information block and the first resource according to an embodiment of the present application, as shown in FIG. 10 .
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH and PDCCH.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH and CSI-RS.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH, PDCCH and CSI-RS.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least two of PDSCH, PDCCH or CSI-RS.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive any downlink signal.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the first resource, the first symbol and the second information block according to an embodiment of the present application, as shown in FIG. 11 .
  • the first resource includes a first symbol indicated by the second information block as uplink and not used for transmitting at least PUSCH.
  • the first symbol belongs to the first symbol set.
  • the first symbol is not used to transmit at least PUSCH (Physical uplink shared channel, physical uplink shared channel) and PUCCH (Physical uplink control channel, physical uplink control channel).
  • PUSCH Physical uplink shared channel, physical uplink shared channel
  • PUCCH Physical uplink control channel, physical uplink control channel
  • the first symbol is not used to transmit PUSCH and at least one of PUCCH, PRACH (Physical random access channel, physical random access channel) or SRS (Sounding reference signal, sounding reference signal) .
  • PUCCH Physical random access channel, physical random access channel
  • SRS Sounding reference signal
  • the first symbol is not used to transmit PUSCH, PUCCH, PRACH or SRS.
  • the first symbol is not used to send any uplink signal.
  • the first resource includes a first symbol, which is indicated by the second information block as an uplink and is not used to transmit at least one of PUSCH, PUCCH, PRACH or SRS. .
  • the first information block is used to determine that the first symbol is not used to transmit at least PUSCH.
  • the first information block is used to determine that the first symbol is not used to transmit at least PUSCH and PUCCH.
  • the first information block is used to determine that the first symbol is not used to transmit at least one of PUSCH, PUCCH, PRACH or SRS.
  • the first information block is used to determine that the first symbol is not used to transmit PUSCH, PUCCH, PRACH or SRS.
  • the first information block is used to determine that the first symbol is not used to transmit any uplink signal.
  • the first information block is used to indicate that the first symbol is not used to transmit at least PUSCH.
  • the first information block is used to indicate that the first symbol is not used to transmit at least PUSCH and PUCCH.
  • the first information block is used to indicate that the first symbol is not used to transmit at least one of PUSCH, PUCCH, PRACH or SRS.
  • the first information block is used to indicate that the first symbol is not used to transmit PUSCH, PUCCH, PRACH or SRS.
  • the first information block is used to indicate that the first symbol is not used to transmit any uplink signal.
  • Embodiment 12 illustrates a schematic diagram of the relationship between the first resource, the second symbol and the second information block according to an embodiment of the present application, as shown in FIG. 12 .
  • the first resource includes a second symbol
  • the second symbol is indicated by the second information block as a flexible symbol.
  • the second symbol belongs to the first symbol set.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 13 .
  • the first node device processing device 1300 includes a first receiver 1301 and a first transmitter 1302.
  • the first node device 1300 is a base station.
  • the first node device 1300 is user equipment.
  • the first node device 1300 is a relay node.
  • the first node device 1300 is a vehicle-mounted communication device.
  • the first node device 1300 is a user equipment supporting V2X communication.
  • the first node device 1300 is a relay node that supports V2X communication.
  • the first node device 1300 is a user equipment supporting operations on a high-frequency spectrum.
  • the first node device 1300 is a user equipment supporting operations on a shared spectrum.
  • the first node device 1300 is a user device supporting XR services.
  • the first receiver 1301 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least one of the sources 467.
  • the first receiver 1301 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first five of source 467.
  • the first receiver 1301 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first four of source 467.
  • the first receiver 1301 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first three of source 467.
  • the first receiver 1301 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. At least the first two in source 467.
  • the first transmitter 1302 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least one of the data sources 467.
  • the first transmitter 1302 includes the antenna 452, the transmitter 454, and the multi-antenna transmitter in Figure 4 of this application. At least the first five of processor 457, transmit processor 468, controller/processor 459, memory 460 and data source 467.
  • the first transmitter 1302 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first four of data sources 467.
  • the first transmitter 1302 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first three of data sources 467.
  • the first transmitter 1302 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first two of data sources 467.
  • the first receiver 1301 receives a first information block, a second information block and first signaling, and the first information block is used to determine the first resource; the first receiver 1301 , receiving at least part of the first PDSCH group, the first PDSCH group including a plurality of PDSCHs; wherein the HARQ process number indicated by the first signaling is applied to the first symbol in the first PDSCH group.
  • the first value is equal to the first parameter value; otherwise, the first value is equal to 8; the first parameter value is configured by the RRC layer.
  • the PDSCHs in the first PDSCH group are all PDSCHs scheduled by the first signaling.
  • PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set are not received.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH.
  • the first resource includes a first symbol, which is indicated by the second information block as uplink and is not used to transmit at least PUSCH.
  • the name of the first information block includes at least one of cell, BWP, symbol, slot, subframe, duration, time, energy, and network, and the name of the first information block includes At least one of on, off, activ, deactiv, silent, dorman, enabl, disabl, mut, sleep, punctur, suspend, sav.
  • the first transmitter 1302 sends at least one HARQ-ACK bit; wherein the at least one HARQ-ACK bit includes at least one HARQ-ACK bit for the first PDSCH group and the first symbol set. HARQ-ACK bits of PDSCH whose symbols do not overlap.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 14 .
  • the second node device processing device 1400 includes a second transmitter 1401 and a second receiver 1402.
  • the second node device 1400 is user equipment.
  • the second node device 1400 is a base station.
  • the second node device 1400 is a satellite device.
  • the second node device 1400 is a relay node.
  • the second node device 1400 is a vehicle-mounted communication device.
  • the second node device 1400 is a user equipment supporting V2X communication.
  • the second node device 1400 is a device that supports operations on a high-frequency spectrum.
  • the second node device 1400 is a device that supports operations on a shared spectrum.
  • the second node device 1400 is a device that supports XR services.
  • the second node device 1400 is one of a test device, a test equipment, and a test instrument.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least one.
  • the second transmitter 1401 includes the antenna 420 and the transmitter 418 in Figure 4 of this application. At least the first five of processor 471, transmit processor 416, controller/processor 475 and memory 476.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first four.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first three.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first two.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least one.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first five.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first four.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first three.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first two.
  • the second transmitter 1401 sends a first information block, a second information block and first signaling, and the first information block is used to determine the first resource; the second transmitter 1401 , sending at least part of the first PDSCH group, the first PDSCH group including a plurality of PDSCHs; wherein the HARQ process number indicated by the first signaling is applied to the first symbol in the first PDSCH group The first PDSCH whose symbols in the set do not overlap; for each subsequent PDSCH in the first PDSCH group that does not overlap with the symbols in the first symbol set, the corresponding HARQ process number is in the scheduling order Increasing by 1 sequentially and using a modulo operation on the first value, which is a configurable value or a constant value; the first symbol set includes the symbols indicated as uplink by the second information block and the At least one symbol in the first resource is indicated by the second information block as downlink.
  • the first value is equal to the first parameter value; otherwise, the first value is equal to 8; the first parameter value is configured by the RRC layer.
  • the PDSCHs in the first PDSCH group are all PDSCHs scheduled by the first signaling.
  • PDSCHs in the first PDSCH group that overlap with symbols in the first symbol set are not sent.
  • the first information block is used to indicate that the at least one symbol in the first resource is not used to receive at least PDSCH.
  • the first resource includes a first symbol, which is indicated by the second information block as uplink and is not used to transmit at least PUSCH.
  • the name of the first information block includes at least one of cell, BWP, symbol, slot, subframe, duration, time, energy, and network, and the name of the first information block includes At least one of on, off, activ, deactiv, silent, dorman, enabl, disabl, mut, sleep, punctur, suspend, sav.
  • the second receiver 1402 receives at least one HARQ-ACK bit; wherein the at least one HARQ-ACK bit includes at least one for the first PDSCH group and the first symbol set. HARQ-ACK bits of PDSCH whose symbols do not overlap.
  • the first node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. Wireless communications equipment.
  • the second node device in this application includes but Not limited to mobile phones, tablets, notebooks, Internet cards, low-power devices, eMTC equipment, NB-IoT equipment, vehicle communication equipment, aircraft, aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication equipment, aircraft, aircraft, drones, remote controls Wireless communication equipment such as aircraft.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial Base stations, test devices, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,接收第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;所述第一接收机,接收第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其是支持蜂窝网的无线通信***中的无线信号的传输方法和装置。
背景技术
网络节能对于环境的可持续性、减少环境影响以及节约运营成本都非常重要。随着5G网络更加密集的布局,更多天线的使用、更大的带宽和更多的频带的利用,以及传输数据速率的不断提高,增强网络节能成为5G发展的一个重要方面;在适当的场景中关闭掉部分传输资源是实现网络节能的一种有效方案。
发明内容
对PDSCH传输的增强是5G NR演进的一个重要方面,如何将增强的PDSCH传输与网络节能的相关配置进行匹配是一个需要解决的关键问题。需要说明的是,上述描述采用网络节能相关的场景作为例子;本申请也同样适用于其他场景,比如非网络节能的相关场景,eMBB(Enhance Mobile Broadband,增强型移动宽带),URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信),MBS(Multicast and Broadcast Services,多播和广播服务),IoT(Internet of Things,物联网),车联网,NTN(non-terrestrial networks,非地面网络),共享频谱(shared spectrum)等,并取得类似的技术效果。此外,不同场景(包括但不限于网络节能相关场景,非网络节能的相关场景,eMBB,URLLC,MBS,IoT,车联网,NTN,共享频谱)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;
接收第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;
其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
作为一个实施例,本申请要解决的问题包括:如何确定PDSCH所对应的HARQ进程。
作为一个实施例,本申请要解决的问题包括:如何针对不同配置有效地实现被所述第一信令所调度的多个PDSCH所对应的HARQ进程号的确定。
作为一个实施例,本申请要解决的问题包括:如何提高HARQ进程的利用效率。
作为一个实施例,本申请要解决的问题包括:如何在网络节能的相关场景中确定被一个DCI信令所调度的多个PDSCH所对应的HARQ进程号。
作为一个实施例,本申请要解决的问题包括:如何在MBS场景中确定被一个DCI信令所调度的多个PDSCH所对应的HARQ进程号。
作为一个实施例,本申请要解决的问题包括:如何在支持XR(Extended Reality,扩展现实)业务的 场景中确定被一个DCI信令所调度的多个PDSCH所对应的HARQ进程号。
作为一个实施例,本申请要解决的问题包括:如何在车联网/V2X场景中确定被一个DCI信令所调度的多个PDSCH所对应的HARQ进程号。
作为一个实施例,本申请要解决的问题包括:如何提高基站调度或配置的灵活性。
作为一个实施例,本申请要解决的问题包括:如何处理被指示为下行链路且不被用于接收至少PDSCH的符号对PDSCH所对应的HARQ进程号的影响。
作为一个实施例,上述方法的好处包括:保证了通信双方对HARQ进程的理解一致性。
作为一个实施例,上述方法的好处包括:有利于网络节能。
作为一个实施例,上述方法的好处包括:提高了资源利用率。
作为一个实施例,上述方法的好处包括:有利于提高频谱效率。
作为一个实施例,上述方法的好处包括:兼容性好。
作为一个实施例,上述方法的好处包括:对现有3GPP标准的改动小。
根据本申请的一个方面,上述方法的特征在于,
如果第一参数值被提供,所述第一数值等于所述第一参数值;否则,所述第一数值等于8;所述第一参数值是由RRC层所配置的。
根据本申请的一个方面,上述方法的特征在于,
所述第一PDSCH组中的PDSCH都是所述第一信令所调度的PDSCH。
根据本申请的一个方面,上述方法的特征在于,
所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH不被接收。
根据本申请的一个方面,上述方法的特征在于,
所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
根据本申请的一个方面,上述方法的特征在于,
所述第一资源包括第一符号,所述第一符号被所述第二信息块指示为上行链路且不被用于发送至少PUSCH。
根据本申请的一个方面,上述方法的特征在于,
所述第一信息块的名字中包括cell,BWP,symbol,slot,subframe,duration,time,energy,network中的至少之一,并且,所述第一信息块的名字中包括on,off,activ,deactiv,silen,dorman,enabl,disabl,mut,sleep,punctur,suspend,sav中的至少之一。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;
发送第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;
其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
根据本申请的一个方面,上述方法的特征在于,
如果第一参数值被提供,所述第一数值等于所述第一参数值;否则,所述第一数值等于8;所述第一参数值是由RRC层所配置的。
根据本申请的一个方面,上述方法的特征在于,
所述第一PDSCH组中的PDSCH都是所述第一信令所调度的PDSCH。
根据本申请的一个方面,上述方法的特征在于,
所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH不被发送。
根据本申请的一个方面,上述方法的特征在于,
所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
根据本申请的一个方面,上述方法的特征在于,
所述第一资源包括第一符号,所述第一符号被所述第二信息块指示为上行链路且不被用于发送至少PUSCH。
根据本申请的一个方面,上述方法的特征在于,
所述第一信息块的名字中包括cell,BWP,symbol,slot,subframe,duration,time,energy,network中的至少之一,并且,所述第一信息块的名字中包括on,off,activ,deactiv,silen,dorman,enabl,disabl,mut,sleep,punctur,suspend,sav中的至少之一。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;
所述第一接收机,接收第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;
其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;
所述第二发射机,发送第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;
其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的第一PDSCH组中的PDSCH以及相应的HARQ进程号的说明示意图;
图7示出了根据本申请的一个实施例的第一PDSCH组中的PDSCH以及相应的HARQ进程号的说明示意图;
图8示出了根据本申请的一个实施例的第一PDSCH组中的PDSCH以及相应的HARQ进程号的说明示意图;
图9示出了根据本申请的一个实施例的第一数值的说明示意图;
图10示出了根据本申请的一个实施例的第一信息块和第一资源之间关系的示意图;
图11示出了根据本申请的一个实施例的第一资源,第一符号以及第二信息块之间关系的示意图;
图12示出了根据本申请的一个实施例的第一资源,第二符号以及第二信息块之间关系的示意图;
图13示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点,在步骤101中接收第一信息块,第二信息块和第一信令;在步骤102中接收第一PDSCH组中的至少部分。
在实施例1中,所述第一信息块被用于确定第一资源;所述第一PDSCH组包括多个PDSCH;其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
作为一个实施例,所述第一信息块在所述第二信息块之前被接收。
作为一个实施例,所述第一信息块在所述第二信息块之后被接收。
作为一个实施例,所述第一信息块与所述第二信息块同时被接收。
作为一个实施例,所述第二信息块包括物理层信令。
作为一个实施例,所述第二信息块包括DCI(Downlink control information,下行链路控制信息)。
作为一个实施例,所述第二信息块包括更高层(higher layer)信令。
作为一个实施例,所述第二信息块包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第二信息块包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第二信息块包括至少一个IE(Information Element,信息元素)中的至少一个域。
作为一个实施例,所述第二信息块包括一个DCI格式中的至少一个域。
作为一个实施例,所述第二信息块是一个MAC CE。
作为一个实施例,所述第二信息块包括一个MAC CE中的至少一个域。
作为一个实施例,所述第二信息块是一个IE。
作为一个实施例,所述第二信息块是一个IE中的一个域。
作为一个实施例,所述第二信息块是一个更高层参数。
作为一个实施例,所述第二信息块包括时域配置信息。
作为一个实施例,所述第二信息块包括TDD UL/DL的配置信息。
作为一个实施例,所述第二信息块包括tdd-UL-DL-ConfigurationCommon。
作为一个实施例,所述第二信息块包括tdd-UL-DL-ConfigurationDedicated。
作为一个实施例,所述第二信息块包括tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated。
作为一个实施例,所述第二信息块包括tdd-UL-DL-ConfigurationCommon或tdd-UL-DL-ConfigurationDedicated中的至少之一。
作为一个实施例,所述第一信息块包括物理层信令。
作为一个实施例,所述第一信息块包括DCI(Downlink control information,下行链路控制信息)。
作为一个实施例,所述第一信息块包括更高层(higher layer)信令。
作为一个实施例,所述第一信息块包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信息块包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信息块包括至少一个IE(Information Element,信息元素)中的至少一个域。
作为一个实施例,所述第一信息块是一个DCI格式中的一个域。
作为一个实施例,所述第一信息块是一个MAC CE。
作为一个实施例,所述第一信息块是一个MAC CE中的一个域。
作为一个实施例,所述第一信息块是一个IE。
作为一个实施例,所述第一信息块是一个IE中的一个域。
作为一个实施例,所述第一信息块是一个更高层参数。
为一个实施例,所述第一信息块的名字中包括off。
作为一个实施例,所述第一信息块的名字中包括on。
为一个实施例,所述第一信息块的名字中包括cell和off。
作为一个实施例,所述第一信息块的名字中包括cell和on。
作为一个实施例,所述第一信息块的名字中包括cell,on和off。
为一个实施例,所述第一信息块的名字中包括BWP和off。
作为一个实施例,所述第一信息块的名字中包括BWP和on。
作为一个实施例,所述第一信息块的名字中包括BWP,on和off。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括energy,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括sav,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括power,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括network,且所述第一信息块的名字中包括on或off中的至少之一。
作为一个实施例,所述第一信息块的名字中包括activ。
作为一个实施例,所述第一信息块的名字中包括deactiv。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括activ或deactiv中的至少之一。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括activ或deactiv中的至少之一。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括activ或deactiv中的至少之一。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括activ或deactiv中的至少之一。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括activ或deactiv中的至少之一。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括activ或deactiv中的至少之一。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括activ或deactiv中的至少之一。
作为一个实施例,所述第一信息块的名字中包括activated或active或activating或activation。
作为一个实施例,所述第一信息块的名字中包括deactivated或inactive或deactivating或deactivation。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括activated或active或activating或activation或deactivated或inactive或deactivating或deactivation中的至少之一。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括activated或active或activating或activation或deactivated或inactive或deactivating或deactivation中的至少之一。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括activated或active或activating或activation或deactivated或inactive或deactivating或deactivation中的至少之一。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括activated或active或activating或activation或deactivated或inactive或deactivating或deactivation中的至少之一。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括activated或active或activating或activation或deactivated或inactive或deactivating或deactivation中的至少之一。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括activated或active或activating或activation或deactivated或inactive或deactivating或deactivation中的至少之一。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括activated或active或activating或activation或deactivated或inactive或deactivating或deactivation中的至少之一。
作为一个实施例,所述第一信息块的名字中包括silent。
作为一个实施例,所述第一信息块的名字中包括silence。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括silent或silence。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括silent或silence。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括silent或silence。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括silent或silence。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括silent或silence。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括silent或silence。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括silent或silence。
作为一个实施例,所述第一信息块的名字中包括dormant。
作为一个实施例,所述第一信息块的名字中包括dormancy。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括dormant或dormancy。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括dormant或dormancy。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括dormant或dormancy。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括dormant或dormancy。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括dormant或dormancy。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括dormant或dormancy。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括dormant或 dormancy。
作为一个实施例,所述第一信息块的名字中包括enabl。
作为一个实施例,所述第一信息块的名字中包括disabl。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括enabl或disabl中的至少之一。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括enabl或disabl中的至少之一。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括enabl或disabl中的至少之一。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括enabl或disabl中的至少之一。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括enabl或disabl中的至少之一。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括enabl或disabl中的至少之一。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括enabl或disabl中的至少之一。
作为一个实施例,所述第一信息块的名字中包括enabling或enabled。
作为一个实施例,所述第一信息块的名字中包括disabling或disabled。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括enabling或enabled或disabling或disabled中的至少之一。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括enabling或enabled或disabling或disabled中的至少之一。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括enabling或enabled或disabling或disabled中的至少之一。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括enabling或enabled或disabling或disabled中的至少之一。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括enabling或enabled或disabling或disabled中的至少之一。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括enabling或enabled或disabling或disabled中的至少之一。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括enabling或enabled或disabling或disabled中的至少之一。
作为一个实施例,所述第一信息块的名字中包括mute。
作为一个实施例,所述第一信息块的名字中包括muting。
作为一个实施例,所述第一信息块的名字中包括muted。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括mute或muting或muted。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括mute或muting或muted。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括mute或muting或muted。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括mute或muting或muted。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括mute或muting或muted。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括mute或muting或muted。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括mute或muting或muted。
作为一个实施例,所述第一信息块的名字中包括energy。
作为一个实施例,所述第一信息块的名字中包括saving。
作为一个实施例,所述第一信息块的名字中包括network。
作为一个实施例,所述第一信息块的名字中包括power。
作为一个实施例,所述第一信息块的名字中包括puncture。
作为一个实施例,所述第一信息块的名字中包括punctured。
作为一个实施例,所述第一信息块的名字中包括puncturing。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括puncture或punctured或puncturing。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括puncture或punctured或puncturing。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括puncture或punctured或puncturing。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括puncture或punctured或puncturing。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括puncture或punctured或puncturing。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括puncture或punctured或puncturing。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括puncture或punctured或puncturing。
作为一个实施例,所述第一信息块的名字中包括sleep。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括sleep。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括sleep。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括sleep。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括sleep。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括sleep。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括sleep。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括sleep。
作为一个实施例,所述第一信息块的名字中包括suspend。
作为一个实施例,所述第一信息块的名字中包括cell,且所述第一信息块的名字中包括suspend。
作为一个实施例,所述第一信息块的名字中包括BWP,且所述第一信息块的名字中包括suspend。
作为一个实施例,所述第一信息块的名字中包括symbol,且所述第一信息块的名字中包括suspend。
作为一个实施例,所述第一信息块的名字中包括slot,且所述第一信息块的名字中包括suspend。
作为一个实施例,所述第一信息块的名字中包括subframe,且所述第一信息块的名字中包括suspend。
作为一个实施例,所述第一信息块的名字中包括duration,且所述第一信息块的名字中包括suspend。
作为一个实施例,所述第一信息块的名字中包括time,且所述第一信息块的名字中包括suspend。
作为一个实施例,所述第一资源中的符号所属的符号种类的名字中包括所述第一信息块的名字中所包括的至少部分连续的字母。
作为一个实施例,所述第一信息块指示所述第一资源中的符号是第一类符号,所述第一类符号的名字中包括cell,BWP,on,off,activ,deactiv,silen,dorman,enabl,disabl,mut,energy,sav,network,sleep,punctur,suspend,duration中的至少之一。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括DCI(Downlink control information,下行链路控制信息)。
作为一个实施例,所述第一信令包括更高层(higher layer)信令。
作为一个实施例,所述第一信令包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信令包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令包括至少一个IE(Information Element,信息元素)中的至少一个域。
作为一个实施例,所述第一信令是一个DCI格式(format)。
作为一个实施例,所述第一信令包括一个DCI格式中的至少一个域。
作为一个实施例,所述第一信令采用DCI格式1_1,DCI格式4_1,DCI格式4_2或DCI格式1_2中之一。
作为一个实施例,所述第一信令采用DCI格式1_0。
作为一个实施例,所述第一信令采用DCI格式1_1。
作为一个实施例,所述第一信令采用DCI格式4_0。
作为一个实施例,所述第一信令采用DCI格式4_1。
作为一个实施例,所述第一信令采用DCI格式4_2。
作为一个实施例,所述第一信令采用DCI格式1_2。
作为一个实施例,所述第一信令是一个MAC CE。
作为一个实施例,所述第一信令包括一个MAC CE中的至少一个域。
作为一个实施例,所述第一信令是一个IE。
作为一个实施例,所述第一信息块被用于指示所述第一资源。
作为一个实施例,所述第一信息块显式指示所述第一资源。
作为一个实施例,所述第一信息块隐式指示所述第一资源。
作为一个实施例,所述第一信息块被用于配置所述第一资源。
作为一个实施例,所述第一信息块被用于指示所述第一资源所包括的符号。
作为一个实施例,所述第一信息块被用于指示所述第一资源所包括的时隙。
作为一个实施例,所述第一信息块被用于指示所述第一资源所包括的子帧。
作为一个实施例,所述第一信息块被用于指示所述第一资源所包括的持续时间(duration)。
作为一个实施例,所述第一资源包括多个符号(symbol)。
作为一个实施例,所述第一资源中的一个符号或所述第一符号集合的一个符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,所述第一资源中的一个符号或所述第一符号集合的一个符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述第一资源中的一个符号或所述第一符号集合的一个符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一资源中的一个符号或所述第一符号集合的一个符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述第一资源中的一个符号或所述第一符号集合的一个符号包括连续的时域资源。
作为一个实施例,所述第一资源中的一个符号或所述第一符号集合的一个符号包括循环前缀。
作为一个实施例,所述第一符号集合包括所述第一资源中的所有符号。
作为一个实施例,所述第一资源与被所述第二信息块指示为上行链路的所述符号有交集。
作为一个实施例,所述第一资源与被所述第二信息块指示为上行链路的所述符号没有交集。
作为一个实施例,所述第一资源包括时域资源。
作为一个实施例,所述第一资源包括至少一个时隙(slot)。
作为一个实施例,所述第一资源包括至少一个子帧(subframe)。
作为一个实施例,所述第一资源包括至少一个持续时间(duration)。
作为一个实施例,所述第一资源中的所述至少一个符号包括至少一个时隙中的所有符号。
作为一个实施例,存在一个时隙,这个时隙中的仅部分符号属于所述第一资源中的所述至少一个符号。
作为一个实施例,所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
作为一个实施例,所述第一资源中的所述至少一个符号不被用于接收任何PDSCH。
作为一个实施例,所述第一资源中的所述至少一个符号不被用于接收至少PDSCH和PDCCH。
作为一个实施例,所述第一资源中的所述至少一个符号不被用于接收至少PDSCH和CSI-RS。
作为一个实施例,所述第一资源中的所述至少一个符号不被用于接收至少PDSCH,PDCCH和CSI-RS。
作为一个实施例,所述第一资源中的所述至少一个符号不被用于接收PDSCH,PDCCH或CSI-RS中的至少两者。
作为一个实施例,所述第一资源中的所述至少一个符号不被用于接收任何下行链路信号。
作为一个实施例,所述第一资源中的每个符号都不被用于接收至少PDSCH。
作为一个实施例,所述第一资源中的每个符号都不被用于接收至少PDSCH和PDCCH。
作为一个实施例,所述第一资源中的每个符号都不被用于接收至少PDSCH和CSI-RS。
作为一个实施例,所述第一资源中的每个符号都不被用于接收至少PDSCH,PDCCH和CSI-RS。
作为一个实施例,所述第一资源中的每个符号都不被用于接收PDSCH,PDCCH或CSI-RS中的至少两者。
作为一个实施例,所述第一资源中的每个符号都不被用于接收任何下行链路信号。
作为一个实施例,无论所述第一资源中的所述至少一个符号所属的时隙中的PDSCH是否超过针对PDSCH接收的UE能力,所述第一资源中的所述至少一个符号都不被用于接收PDSCH。
作为一个实施例,所述第一信息块被用于确定所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
作为一个实施例,所述第一信息块被用于确定所述第一资源中的所述至少一个符号不被用于接收至少PDSCH(Physical downlink shared channel,物理下行链路共享信道)和PDCCH(Physical downlink control channel,物理下行链路控制信道)。
作为一个实施例,所述第一信息块被用于确定所述第一资源中的所述至少一个符号不被用于接收至少PDSCH和CSI-RS(Channel state information Reference signal,信道状态信息参考信号)。
作为一个实施例,所述第一信息块被用于确定所述第一资源中的所述至少一个符号不被用于接收至少PDSCH,PDCCH和CSI-RS。
作为一个实施例,所述第一信息块被用于确定所述第一资源中的所述至少一个符号不被用于接收PDSCH,PDCCH或CSI-RS中的至少两者。
作为一个实施例,所述第一信息块被用于确定所述第一资源中的所述至少一个符号不被用于接收任何下行链路信号。
作为一个实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
作为一个实施例,所述表述被所述第二信息块指示为上行链路包括:被所述第二信息块配置为上行链路。
作为一个实施例,所述表述被所述第二信息块指示为上行链路包括:被所述第二信息块指示为预留给上行链路。
作为一个实施例,所述表述被所述第二信息块指示为上行链路包括:基于所述第二信息块的指示/配置,被预留给上行链路传输。
作为一个实施例,所述表述被所述第二信息块指示为下行链路包括:被所述第二信息块配置为下行链路。
作为一个实施例,所述表述被所述第二信息块指示为下行链路包括:被所述第二信息块指示为预留给下行链路。
作为一个实施例,所述表述被所述第二信息块指示为下行链路包括:基于所述第二信息块的指示/配置,被预留给下行链路传输。
作为一个实施例,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路且不被用于接收至少PDSCH。
作为一个实施例,所述第一资源中的至少一个符号被所述第二信息块指示为下行链路。
作为一个实施例,所述第一信令包括HARQ process number域。
作为一个实施例,所述第一信令包括HARQ process ID域。
作为一个实施例,所述第一信令包括被用于指示HARQ进程号(HARQ(Hybrid automatic repeat request)process ID)的域。
作为一个实施例,所述第一信令在所述第一信息块和所述第二信息块之后被接收。
作为一个实施例,所述第一资源中的所述至少一个符号不被用于发送至少PDSCH。
作为一个实施例,所述第一PDSCH组中与所述第一符号集合中的符号有交叠的每个PDSCH均不被接收。
作为一个实施例,所述第一PDSCH组中与所述第一符号集合中的符号有交叠的至少一PDSCH不被接收。
作为一个实施例,所述第一PDSCH组中的PDSCH在时域上依次排列。
作为一个实施例,所述第一PDSCH组中的多个PDSCH在时域上分别属于不同时隙。
作为一个实施例,所述第一PDSCH组中的多个PDSCH在时域上分别占用不同时隙。
作为一个实施例,所述表述后续的是针对所述第一PDSCH组中与所述第一符号集合中的符号没有交叠的所述第一个PDSCH而言的。
作为一个实施例,所述表述按照调度顺序(scheduled order)包括以下含义:按照所述第一PDSCH组中的PDSCH在时域上从早到晚的顺序。
作为一个实施例,所述表述按照调度顺序包括以下含义:按照所述第一PDSCH组中的PDSCH所对应的SLIV在时域资源分配表中所属的被索引的行中的先后顺序。
作为一个实施例,所述调度顺序是基于所述第一信令的指示所确定的。
作为一个实施例,所述调度顺序是基于RRC层信令的配置所确定的。
作为一个实施例,所述调度顺序是预先定义好的。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:针对这个PDSCH所分配的至少一个符号与所述第一符号集合中的至少一个符号有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:针对这个PDSCH所分配的至少一个符号属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:针对这个PDSCH所分配的连续符号中的至少一个符号与所述第一符号集合中的至少一个符号有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:针对这个PDSCH所分配的连续符号中的至少一个符号属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:针对这个PDSCH所分配的所有符号与所述第一符号集合中的任何符号均没有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:针对这个PDSCH所分配的所有符号均不属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:针对这个PDSCH所分配的连续符号中的所有符号与所述第一符号集合中的任何符号均没有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:针对这个PDSCH所分配的连续符号中的所有符号均不属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:在所采用的资源分配表中由所对应的被索引的行所指示的分配给这个PDSCH的至少一个符号与所述第一符号集合中的至少一个符号有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意 思包括:在所采用的资源分配表中由所对应的被索引的行所指示的分配给这个PDSCH的所有符号与所述第一符号集合中的任何符号均没有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:在所采用的资源分配表中由所对应的被索引的行所指示的分配给这个PDSCH的至少一个符号属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:在所采用的资源分配表中由所对应的被索引的行所指示的分配给这个PDSCH的所有符号均不属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:在所采用的资源分配表中由所对应的被索引的行所指示的分配给这个PDSCH的连续符号中的至少一个符号与所述第一符号集合中的至少一个符号有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:在所采用的资源分配表中由所对应的被索引的行所指示的分配给这个PDSCH的连续符号中的所有符号与所述第一符号集合中的任何符号均没有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:在所采用的资源分配表中由所对应的被索引的行所指示的分配给这个PDSCH的连续符号中的至少一个符号属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:在所采用的资源分配表中由所对应的被索引的行所指示的分配给这个PDSCH的连续符号中的所有符号均不属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:对于这个PDSCH,在所对应的时隙中所使用资源分配表的所对应的被索引的行所指示的至少一个符号与所述第一符号集合中的至少一个符号有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:对于这个PDSCH,在所对应的时隙中所使用资源分配表的所对应的被索引的行所指示的所有连续的符号与所述第一符号集合中的任何符号均没有交叠。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号有交叠的意思包括:对于这个PDSCH,在所对应的时隙中所使用资源分配表的所对应的被索引的行所指示的至少一个符号属于所述第一符号集合。
作为一个实施例,所述第一PDSCH组中的一个PDSCH与所述第一符号集合中的符号没有交叠的意思包括:对于这个PDSCH,在所对应的时隙中所使用资源分配表的所对应的被索引的行所指示的所有连续的符号均不属于所述第一符号集合。
作为一个实施例,所述表述“对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值”包括:
对于所述第一PDSCH组中每个后续的的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;对于未接收的PDSCH,如果在所对应的时隙中所使用资源分配表的所对应的被索引的行所指示的符号中至少有一个与所述第一符号集合中的符号有交叠,则HARQ进程号不增加。
作为一个实施例,所述表述“对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值”包括:
对于所述第一PDSCH组中每个后续的不属于第一类PDSCH的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;对于一个所述第一类PDSCH,在所对应的时隙中所使用资源分配表的所对应的被索引的行所指示的符号中至少有一个与所述第一符号集合中的符号有交叠。
作为一个实施例,所述第一类PDSCH不被接收。
作为一个实施例,所述第一类PDSCH是与所述第一符号集合中的符号有交叠的PDSCH。
作为一个实施例,所述表述所述第一数值是可配置的数值或常数值包括:当第一参数值被提供时,所述第一数值等于所述第一参数值;否则,所述第一数值等于8。
作为一个实施例,本申请所公开的所述第一节点中的所述方法的一个特征包括:
发送至少一个HARQ-ACK比特;
其中,所述至少一个HARQ-ACK比特包括至少针对所述第一PDSCH组中与所述第一符号集合中的符号没有交叠的PDSCH的HARQ-ACK比特。
作为一个实施例,所述至少一个HARQ-ACK比特包括一个HARQ-ACK码本。
作为一个实施例,所述至少一个HARQ-ACK比特不包括针对所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH的HARQ-ACK比特。
作为一个实施例,所述至少一个HARQ-ACK比特包括针对所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH所生成的表示NACK的比特。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述PHY351。
作为一个实施例,本申请中的所述第二信息块中的至少部分生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息块中的至少部分生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信息块中的至少部分生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二信息块中的至少部分生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息块中的至少部分生成于所述PHY351。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在 从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;接收第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;接收第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号 集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;发送第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;发送第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息块。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信息块。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信息块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送至少一个HARQ-ACK比特。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收至少一个HARQ-ACK比特。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。
第一节点U1,在步骤S511中接收第一信息块和第二信息块;在步骤S512中接收第一信令;在步骤S513中接收第一PDSCH组中的至少部分。
第二节点U2,在步骤S521中发送第一信息块和第二信息块;在步骤S522中发送第一信令;在步骤S523中发送第一PDSCH组中的至少部分。
在实施例5中,所述第一信息块被用于确定第一资源;所述第一PDSCH组包括多个PDSCH;所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算;如果第一参数值被提供,所述第一数值等于所述第一参数值;否则,所述第一数值等于8;所述第一参数值是由RRC层信令所配置的;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路;所述第一PDSCH组中的PDSCH都是所述第一信令所调度的PDSCH。
作为实施例5的一个子实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH;所述第一信息块的名字中包括cell,BWP,symbol,slot,subframe,duration,time,energy,network中的至少之一,并且,所述第一信息块的名字中包括on,off,activ,deactiv,silen,dorman,enabl,disabl,mut,sleep,punctur,suspend,sav中的至少之一。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第一节点U1接收一个PDSCH的意思包括:所述第一节点U1在这个PDSCH中接收信号。
作为一个实施例,所述第一节点U1接收一个PDSCH的意思包括:通过这个PDSCH被传输的信号被所述第一节点U1接收。
作为一个实施例,所述第一节点U1接收一个PDSCH的意思包括:所述第一节点U1在这个PDSCH中接收至少一个传输块。
作为一个实施例,所述第二节点U2发送一个PDSCH的意思包括:所述第二节点U2在这个PDSCH中发送信号。
作为一个实施例,所述第二节点U2发送一个PDSCH的意思包括:所述第二节点U2在这个PDSCH中发送至少一个传输块。
实施例6
实施例6示例了根据本申请的一个实施例的第一PDSCH组中的PDSCH以及相应的HARQ进程号的说明示意图,如附图6所示。在附图6中,一个方框表示所述第一PDSCH组中的一个PDSCH;其中,白色填充方框表示所述第一PDSCH组中与所述第一符号集合中的符号没有交叠的PDSCH,斜线填充方框表示所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH,加粗边线的白色填充方框表示所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH。
在实施例6中,所述第一PDSCH组包括4个PDSCH,所述第一PDSCH组中的PDSCH按照调度顺序由先到后依次为:PDSCH#0,PDSCH#1,PDSCH#2,PDSCH#3;所述第一信令所指示的HARQ进程号是ID#0,所述ID#0被应用于所述PDSCH#1,所述PDSCH#3所对应的HARQ进程号等于所述ID#0与1之和对所述第一数值取模的结果。
作为实施例6的一个子实施例,所述PDSCH#0和所述PDSCH#2不被接收。
实施例7
实施例7示例了根据本申请的一个实施例的第一PDSCH组中的PDSCH以及相应的HARQ进程号的说明示意图,如附图7所示。在附图7中,一个方框表示所述第一PDSCH组中的一个PDSCH;其中,白色填充方框表示所述第一PDSCH组中与所述第一符号集合中的符号没有交叠的PDSCH,斜线填充方框表示所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH,加粗边线的白色填充方框表示所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH。
在实施例7中,所述第一PDSCH组包括5个PDSCH,所述第一PDSCH组中的PDSCH按照调度顺序由先到后依次为:PDSCH#0,PDSCH#1,PDSCH#2,PDSCH#3,PDSCH#4;所述第一信令所指示的HARQ进程号是ID#0,所述ID#0被应用于所述PDSCH#0,所述PDSCH#1所对应的HARQ进程号等于所述ID#0与1之和对所述第一数值取模的结果,所述PDSCH#3所对应的HARQ进程号等于所述ID#0与2之和对所述第一数值取模的结果,所述PDSCH#4所对应的HARQ进程号等于所述ID#0与3之和对所述第一数值取模的结果。
作为实施例7的一个子实施例,所述PDSCH#2不被接收。
实施例8
实施例8示例了根据本申请的一个实施例的第一PDSCH组中的PDSCH以及相应的HARQ进程号的说明示意图,如附图8所示。在附图8中,一个方框表示所述第一PDSCH组中的一个PDSCH;其中,白色填充方框表示所述第一PDSCH组中与所述第一符号集合中的符号没有交叠的PDSCH,斜线填充方框表示所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH,加粗边线的白色填充方框表示所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH。
在实施例8中,所述第一数值等于8;所述第一PDSCH组包括5个PDSCH,所述第一PDSCH组中的PDSCH按照调度顺序由先到后依次为:PDSCH#0,PDSCH#1,PDSCH#2,PDSCH#3,PDSCH#4;所述第一信令所指示的HARQ进程号等于6,所述PDSCH#0所对应的HARQ进程号等于6,所述PDSCH#1所对应的HARQ进程号等于7,所述PDSCH#2所对应的HARQ进程号等于0,所述PDSCH#3所对应的HARQ进程号等于1。
作为实施例8的一个子实施例,所述PDSCH#4不被接收。
实施例9
实施例9示例了根据本申请的一个实施例的第一数值的说明示意图,如附图9所示。
在实施例9中,所述第一数值是可配置的数值或常数值。
作为一个实施例,所述第一数值是可配置的。
作为一个实施例,所述第一数值是更高层信令所配置的。
作为一个实施例,所述第一数值是RRC层信令所配置的。
作为一个实施例,所述第一数值是参数nrofHARQ-ProcessesForPDSCH的值。
作为一个实施例,所述第一数值是常数值。
作为一个实施例,所述第一数值是正整数。
作为一个实施例,所述第一数值等于8。
作为一个实施例,所述第一数值等于16。
作为一个实施例,所述第一数值等于32。
作为一个实施例,所述第一数值不大于16。
作为一个实施例,所述第一数值不大于32。
作为一个实施例,所述第一数值与HARQ进程的数量相关。
作为一个实施例,所述第一数值不大于可用的HARQ进程的数量。
作为一个实施例,所述第一数值不大于在一个服务小区上所述第一节点所支持的HARQ进程的最大数量。
作为一个实施例,所述第一数值不大于针对所述第一信令所调度的服务小区所述第一节点所支持的HARQ进程的最大数量。
实施例10
实施例10示例了根据本申请的一个实施例的第一信息块和第一资源之间关系的示意图,如附图10所示。
在实施例10中,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
作为一个实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH和PDCCH。
作为一个实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH和CSI-RS。
作为一个实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH,PDCCH和CSI-RS。
作为一个实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收PDSCH,PDCCH或CSI-RS中的至少两者。
作为一个实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收任何下行链路信号。
实施例11
实施例11示例了根据本申请的一个实施例的第一资源,第一符号以及第二信息块之间关系的示意图,如附图11所示。
在实施例11中,所述第一资源包括第一符号,所述第一符号被所述第二信息块指示为上行链路且不被用于发送至少PUSCH。
作为一个实施例,所述第一符号属于所述第一符号集合。
作为一个实施例,所述第一符号不被用于发送至少PUSCH(Physical uplink shared channel,物理上行链路共享信道)和PUCCH(Physical uplink control channel,物理上行链路控制信道)。
作为一个实施例,所述第一符号不被用于发送PUSCH以及PUCCH,PRACH(Physical random access channel,物理随机接入信道)或SRS(Sounding reference signal,探测参考信号)三者中的至少之一。
作为一个实施例,所述第一符号不被用于发送PUSCH,PUCCH,PRACH或SRS。
作为一个实施例,所述第一符号不被用于发送任何上行链路信号。
作为一个实施例,所述第一资源包括第一符号,所述第一符号被所述第二信息块指示为上行链路且不被用于发送PUSCH,PUCCH,PRACH或SRS中的至少之一。
作为一个实施例,所述第一信息块被用于确定所述第一符号不被用于发送至少PUSCH。
作为一个实施例,所述第一信息块被用于确定所述第一符号不被用于发送至少PUSCH和PUCCH。
作为一个实施例,所述第一信息块被用于确定所述第一符号不被用于发送PUSCH,PUCCH,PRACH或SRS中的至少之一。
作为一个实施例,所述第一信息块被用于确定所述第一符号不被用于发送PUSCH,PUCCH,PRACH或SRS。
作为一个实施例,所述第一信息块被用于确定所述第一符号不被用于发送任何上行链路信号。
作为一个实施例,所述第一信息块被用于指示所述第一符号不被用于发送至少PUSCH。
作为一个实施例,所述第一信息块被用于指示所述第一符号不被用于发送至少PUSCH和PUCCH。
作为一个实施例,所述第一信息块被用于指示所述第一符号不被用于发送PUSCH,PUCCH,PRACH或SRS中的至少之一。
作为一个实施例,所述第一信息块被用于指示所述第一符号不被用于发送PUSCH,PUCCH,PRACH或SRS。
作为一个实施例,所述第一信息块被用于指示所述第一符号不被用于发送任何上行链路信号。
实施例12
实施例12示例了根据本申请的一个实施例的第一资源,第二符号以及第二信息块之间关系的示意图,如附图12所示。
在实施例12中,所述第一资源包括第二符号,所述第二符号被所述第二信息块指示为灵活(flexible)符号。
作为一个实施例,所述第二符号属于所述第一符号集合。
实施例13
实施例13示例了一个第一节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第一节点设备处理装置1300包括第一接收机1301和第一发射机1302。
作为一个实施例,所述第一节点设备1300是基站。
作为一个实施例,所述第一节点设备1300是用户设备。
作为一个实施例,所述第一节点设备1300是中继节点。
作为一个实施例,所述第一节点设备1300是车载通信设备。
作为一个实施例,所述第一节点设备1300是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1300是支持V2X通信的中继节点。
作为一个实施例,所述第一节点设备1300是支持高频频谱上的操作的用户设备。
作为一个实施例,所述第一节点设备1300是支持共享频谱上的操作的用户设备。
作为一个实施例,所述第一节点设备1300是支持XR业务的用户设备。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射器 处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一接收机1301,接收第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;所述第一接收机1301,接收第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
作为一个实施例,如果第一参数值被提供,所述第一数值等于所述第一参数值;否则,所述第一数值等于8;所述第一参数值是由RRC层所配置的。
作为一个实施例,所述第一PDSCH组中的PDSCH都是所述第一信令所调度的PDSCH。
作为一个实施例,所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH不被接收。
作为一个实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
作为一个实施例,所述第一资源包括第一符号,所述第一符号被所述第二信息块指示为上行链路且不被用于发送至少PUSCH。
作为一个实施例,所述第一信息块的名字中包括cell,BWP,symbol,slot,subframe,duration,time,energy,network中的至少之一,并且,所述第一信息块的名字中包括on,off,activ,deactiv,silen,dorman,enabl,disabl,mut,sleep,punctur,suspend,sav中的至少之一。
作为一个实施例,所述第一发射机1302,发送至少一个HARQ-ACK比特;其中,所述至少一个HARQ-ACK比特包括至少针对所述第一PDSCH组中与所述第一符号集合中的符号没有交叠的PDSCH的HARQ-ACK比特。
实施例14
实施例14示例了一个第二节点设备中的处理装置的结构框图,如附图14所示。在附图14中,第二节点设备处理装置1400包括第二发射机1401和第二接收机1402。
作为一个实施例,所述第二节点设备1400是用户设备。
作为一个实施例,所述第二节点设备1400是基站。
作为一个实施例,所述第二节点设备1400是卫星设备。
作为一个实施例,所述第二节点设备1400是中继节点。
作为一个实施例,所述第二节点设备1400是车载通信设备。
作为一个实施例,所述第二节点设备1400是支持V2X通信的用户设备。
作为一个实施例,所述第二节点设备1400是支持高频频谱上的操作的设备。
作为一个实施例,所述第二节点设备1400是支持共享频谱上的操作的设备。
作为一个实施例,所述第二节点设备1400是支持XR业务的设备。
作为一个实施例,所述第二节点设备1400是测试装置,测试设备,测试仪表中之一。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处 理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二发射机1401,发送第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;所述第二发射机1401,发送第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
作为一个实施例,如果第一参数值被提供,所述第一数值等于所述第一参数值;否则,所述第一数值等于8;所述第一参数值是由RRC层所配置的。
作为一个实施例,所述第一PDSCH组中的PDSCH都是所述第一信令所调度的PDSCH。
作为一个实施例,所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH不被发送。
作为一个实施例,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
作为一个实施例,所述第一资源包括第一符号,所述第一符号被所述第二信息块指示为上行链路且不被用于发送至少PUSCH。
作为一个实施例,所述第一信息块的名字中包括cell,BWP,symbol,slot,subframe,duration,time,energy,network中的至少之一,并且,所述第一信息块的名字中包括on,off,activ,deactiv,silen,dorman,enabl,disabl,mut,sleep,punctur,suspend,sav中的至少之一。
作为一个实施例,所述第二接收机1402,接收至少一个HARQ-ACK比特;其中,所述至少一个HARQ-ACK比特包括至少针对所述第一PDSCH组中与所述第一符号集合中的符号没有交叠的PDSCH的HARQ-ACK比特。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但 不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;
    所述第一接收机,接收第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;
    其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
  2. 根据权利要求1所述的第一节点,其特征在于,如果第一参数值被提供,所述第一数值等于所述第一参数值;否则,所述第一数值等于8;所述第一参数值是由RRC层所配置的。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一PDSCH组中的PDSCH都是所述第一信令所调度的PDSCH。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一PDSCH组中与所述第一符号集合中的符号有交叠的PDSCH不被接收。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一信息块被用于指示所述第一资源中的所述至少一个符号不被用于接收至少PDSCH。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一资源包括第一符号,所述第一符号被所述第二信息块指示为上行链路且不被用于发送至少PUSCH。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第一信息块的名字中包括cell,BWP,symbol,slot,subframe,duration,time,energy,network中的至少之一,并且,所述第一信息块的名字中包括on,off,activ,deactiv,silen,dorman,enabl,disabl,mut,sleep,punctur,suspend,sav中的至少之一。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;
    所述第二发射机,发送第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;
    其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;
    接收第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;
    其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息块,第二信息块和第一信令,所述第一信息块被用于确定第一资源;
    发送第一PDSCH组中的至少部分,所述第一PDSCH组包括多个PDSCH;
    其中,所述第一信令所指示的HARQ进程号被应用于所述第一PDSCH组中与第一符号集合中的符号没有交叠的第一个PDSCH;对于所述第一PDSCH组中每个后续的与所述第一符号集合中的符号没有交叠的PDSCH,所对应的HARQ进程号按照调度顺序依次增加1并采用对第一数值的模运算,所述第一数值是可配置的数值或常数值;所述第一符号集合包括被所述第二信息块指示为上行链路的符号和所述第一资源中的至少一个符号,所述第一资源中的所述至少一个符号被所述第二信息块指示为下行链路。
PCT/CN2023/102046 2022-06-27 2023-06-25 一种被用于无线通信的节点中的方法和装置 WO2024001935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210733993.8A CN117768899A (zh) 2022-06-27 2022-06-27 一种被用于无线通信的节点中的方法和装置
CN202210733993.8 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001935A1 true WO2024001935A1 (zh) 2024-01-04

Family

ID=89383224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102046 WO2024001935A1 (zh) 2022-06-27 2023-06-25 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117768899A (zh)
WO (1) WO2024001935A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385080A (zh) * 2018-12-28 2020-07-07 北京三星通信技术研究有限公司 发送上行控制信息的方法及设备
CN112740588A (zh) * 2019-03-26 2021-04-30 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
WO2022110047A1 (en) * 2020-11-27 2022-06-02 Nec Corporation Method, device and computer storage medium of communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385080A (zh) * 2018-12-28 2020-07-07 北京三星通信技术研究有限公司 发送上行控制信息的方法及设备
CN112740588A (zh) * 2019-03-26 2021-04-30 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
WO2022110047A1 (en) * 2020-11-27 2022-06-02 Nec Corporation Method, device and computer storage medium of communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "Remaining issues on PDSCH/PUSCH enhancements for NR 52.6-71 GHz", 3GPP DRAFT; R1-2203784, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 25 April 2022 (2022-04-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052137879 *

Also Published As

Publication number Publication date
CN117768899A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113078927B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020125402A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006578A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115623594A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024001935A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023246672A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023246742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024007879A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088397A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023227047A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088394A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207705A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143500A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830113

Country of ref document: EP

Kind code of ref document: A1