WO2018230907A1 - 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차 - Google Patents

배터리 모듈과 이를 포함하는 배터리 팩 및 자동차 Download PDF

Info

Publication number
WO2018230907A1
WO2018230907A1 PCT/KR2018/006604 KR2018006604W WO2018230907A1 WO 2018230907 A1 WO2018230907 A1 WO 2018230907A1 KR 2018006604 W KR2018006604 W KR 2018006604W WO 2018230907 A1 WO2018230907 A1 WO 2018230907A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
battery cell
battery
short circuit
battery module
Prior art date
Application number
PCT/KR2018/006604
Other languages
English (en)
French (fr)
Inventor
홍순창
김효찬
최항준
유계연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL18817230T priority Critical patent/PL3540823T3/pl
Priority to EP18817230.8A priority patent/EP3540823B1/en
Priority to CN201880004176.0A priority patent/CN109923695B/zh
Priority to JP2019529564A priority patent/JP7027638B2/ja
Priority to US16/336,337 priority patent/US11011802B2/en
Publication of WO2018230907A1 publication Critical patent/WO2018230907A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/04Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack and a vehicle including the same. More particularly, the present invention relates to a battery module and a battery pack including the same and improved stability by preventing overcharging of the battery module.
  • водородн ⁇ е ⁇ е ⁇ ество Commercially available secondary batteries include nickel cadmium batteries, nickel hydride batteries, nickel zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. The self-discharge rate is very low and the energy density is high.
  • Such lithium secondary batteries mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with the positive electrode active material and the negative electrode active material are disposed with a separator interposed therebetween, and a packaging material that seals the electrode assembly together with the electrolyte solution, that is, a battery case.
  • a lithium secondary battery may be classified into a can type secondary battery in which an electrode assembly is embedded in a metal can and a pouch type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of the exterior material.
  • the battery pack of the hybrid vehicle or the electric vehicle includes a plurality of secondary batteries, and the plurality of secondary batteries are connected to each other in series and in parallel to improve capacity and output.
  • the secondary battery has excellent electrical properties, but heat and gas are generated by causing decomposition reactions of active materials and electrolytes, which are components of the battery, in abnormal operating states such as overcharge, overdischarge, high temperature exposure, and electrical short circuit. There is a problem that a so-called swelling phenomenon in which the battery expands occurs. Swelling may accelerate the decomposition reaction and cause explosion and ignition of the secondary battery due to thermal runaway.
  • the secondary battery has a protection circuit that blocks current during overcharge, over discharge, and overcurrent, a PTC element (Positive Temperature Coefficient Element) that blocks current by greatly increasing resistance when temperature rises, and blocks current when pressure rises due to gas generation. Or a safety vent such as a safety vent for exhausting gas.
  • a PTC element Physical Temperature Coefficient Element
  • the secondary battery repeats a constant expansion and contraction even in a normal operating state instead of an abnormal operating state, and thus may be disconnected even when expanded in a normal range, thereby having a problem in operating reliability.
  • the present invention is applied to the expansion of the at least one of the first battery cell and the second battery cell due to the expansion force is moved and contacted toward the first bus bar and the second bus bar to electrically connect the first bus bar and the second bus bar. It is an object of the present invention to provide a battery module, a battery pack including the same, and a vehicle which can prevent the overcharge of the battery module by breaking the break formed in the first bus bar by causing a short circuit.
  • a battery module including: a first bus bar electrically connected to a first electrode lead of a first battery cell, a second bus bar electrically connected to a second electrode lead of a second battery cell;
  • the first bus bar and the second bus bar are electrically connected to the first bus bar and the second bus bar by receiving an expansion force due to an increase in volume of at least one of the first battery cell and the second battery cell.
  • a cartridge for accommodating or supporting at least a portion of the short circuit portion and the first electrode lead, the second electrode lead, the first bus bar, the second bus bar, and the short circuit portion to generate a short circuit.
  • the short-circuit portion has a short-circuit terminal whose one end is supported inside the cartridge to provide an elastic force in a direction opposite to the expansion force, the short-circuit terminal receiving the elastic force from the elastic member in contact with the other end of the elastic member.
  • a slide bar having a rack gear formed along the surface of the other end, and a pinion gear at one end thereof engaged with the rack gear to support the other end of the slide bar, and the other end of which is the first battery cell and the second battery cell. It may include an expansion force transmission unit in contact with each end to receive the expansion force.
  • the slide bar may be spaced apart from the first battery cell and the second battery cell by receiving only the elastic force.
  • the expansion force transmitting unit receives the expansion force and moves toward the first bus bar and the second bus bar, and receives the applied expansion force.
  • An expansion force can be transmitted to the slide bar through the rack gear meshed with the pinion gear.
  • the slide bar receives the expansion force through the rack gear meshed with the pinion gear so that the first bus bar and the first battery cell are provided. 2 You can move towards the busbar.
  • the short circuit terminal may contact the first bus bar and the second bus bar to electrically connect the first bus bar and the second bus bar to generate a short circuit.
  • the short terminal may be formed of a conductive material.
  • the cartridge is formed in the inner receiving space of the shape corresponding to the outer shape of the short circuit portion can accommodate the short circuit portion inside.
  • the accommodation space may be formed to correspond to the volume of the elastic member according to the restoration state of the elastic member.
  • the cartridge supports at least a portion of each of the first electrode leads and the first busbars that are electrically in contact with each other, and each of the second electrode leads and the second busbars that are electrically in contact with each other. Support at least a portion.
  • At least one of the first bus bar and the second bus bar may include a break portion that is broken when the short circuit occurs to block electrical connection to the outside.
  • the battery pack according to the present invention may include the battery module.
  • An automobile according to the present invention may include the battery module.
  • the first bus bar and the second bus bar is electrically connected between the first bus bar and the second bus bar through an expansion force due to an increase in volume of at least one of the first battery cell and the second battery cell, thereby causing a short circuit to occur.
  • a break formed in at least one of the bus bar and the second bus bar may be broken to prevent overcharging of the battery module, thereby improving stability of the battery module.
  • FIG. 1 is a perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • FIG 3 is a diagram illustrating an upper surface of the battery module before volume increase according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram illustrating only a first battery cell, a first bus bar, a second battery cell, and a second bus bar of a battery module according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating a side surface before a break portion of the battery module is broken according to an embodiment of the present invention.
  • FIG. 6 is a view illustrating a side surface of the battery module after breakage of the battery module according to the exemplary embodiment.
  • FIG. 7 is a perspective view of a short circuit of a battery module according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a view illustrating an upper surface of a state in which a part of the cartridge is cut out of the components of the battery module according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an upper surface of the battery module after volume increase according to an exemplary embodiment of the present invention.
  • FIG. 10 is an equivalent circuit diagram before overcharge of a battery module according to an embodiment of the present invention.
  • FIG. 11 is an equivalent circuit diagram immediately after a short circuit part is moved after overcharging of a battery module according to an exemplary embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of the cartridge of the battery module according to an embodiment of the present invention.
  • FIG. 14 is a perspective view showing the inside of the cartridge of the battery module according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of a battery module according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view of a battery module according to an embodiment of the present invention
  • Figure 3 is a volume of a battery module according to an embodiment of the present invention The figure which shows the upper surface before an increase.
  • a battery module may include battery cells 110a and 110b, bus bars 200a and 200b, a short circuit unit 300, and a cartridge 400. have.
  • the battery cells 110a and 110b may be provided in plural numbers, and the battery cells 110a and 110b may be stacked side by side in the left and right directions.
  • the type of the battery cells 110a and 110b is not particularly limited, and various secondary batteries may be employed in the battery module according to the present invention.
  • the battery cells 110a and 110b may be formed of lithium ion batteries, lithium polymer batteries, nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, and the like.
  • the battery cells 110a and 110b may be lithium secondary batteries.
  • the battery cells 110a and 110b may be classified into pouch type, cylindrical shape, and square shape according to the type of the exterior material.
  • the battery cells 110a and 110b of the battery module according to the present invention may be pouch type secondary batteries.
  • each of the battery cells 110a and 110b When the battery cells 110a and 110b are implemented as pouch-type secondary batteries, as shown in FIG. 2, each of the battery cells 110a and 110b has a wide surface located at left and right sides of each other, and thus each battery cell 110a. , 110b) may be configured such that the wide surfaces face each other. In this case, each of the battery cells 110a and 110b may include electrode leads 120a and 120b protruding forward and bent.
  • the electrode leads 120a and 120b may be configured of a positive lead and a negative lead, and the positive lead may be connected to the positive electrode plate of the electrode assembly, and the negative lead may be connected to the negative electrode plate of the electrode assembly.
  • the battery cells 110a and 110b according to the present invention may be composed of a first battery cell 110a positioned on the left side and a second battery cell 110b positioned on the right side.
  • each of the electrode leads of the first battery cell 110a and the second battery cell 110b may be disposed such that the electrode leads 120a and 120b having different polarities face the same direction.
  • the first battery cell 110a may be disposed such that the first electrode lead 120a, which is a positive electrode, faces forward, and the second battery cell 110b is a negative electrode.
  • the two electrode leads 120b may be disposed to face forward.
  • first battery cell 110a may be disposed so that the second electrode lead 120b, which is a cathode, faces rearward, and the first electrode lead 120a, which is a positive electrode, faces the rear of the second battery cell 110b. It may be arranged to.
  • the second electrode lead 120b of the first battery cell 110a and the first electrode lead 120b of the second battery cell 110b may be electrically connected.
  • first electrode lead 120a of the first battery cell 110a may be electrically connected to the first bus bar 200a to be described later, thereby receiving a positive voltage from an external voltage source.
  • second electrode lead 120b of the second battery cell 110b may be electrically connected to the second bus bar 200b, which will be described later, to receive a negative voltage from an external voltage source.
  • the first bus bar 200a may be a bus bar electrically connected to the first electrode lead 120a of the first battery cell 110a among the bus bars 200a and 200b according to the present invention.
  • the bar 200b may be a bus bar electrically connected to the second electrode lead 120b of the second battery cell 110b among the bus bars 200a and 200b according to the present invention.
  • connection structure between the first electrode lead 120a and the first bus bar 200a of the first battery cell 110a and the second electrode lead 120b and the second battery cell 110b according to the present invention.
  • the connection structure between the two bus bars 200b will be described in detail.
  • FIG. 4 is a diagram illustrating only a first battery cell, a first bus bar, a second battery cell, and a second bus bar of a battery module according to an embodiment of the present invention.
  • the first electrode lead 120a of the first battery cell 110a protrudes forward from the first battery cell 110a and is bent at approximately right angles to the outside of the battery module so that the first bus It may be in contact with the bar 200a.
  • the second electrode lead 120b of the second battery cell 110b protrudes forward from the second battery cell 110b and then outside of the battery module, that is, the first electrode of the first battery cell 110a described above.
  • the lead 120a may be bent at an approximately right angle in the opposite direction to the bent direction to be in contact with the second bus bar 200b.
  • the first bus bar 200a and the second bus bar 200b may be formed in a shape in which a plurality of long plates in the vertical direction are bent at right angles.
  • the first bus bar 200a is in contact with the first electrode lead 120a of the first battery cell 110a and then bent vertically toward the first bent portion B1 and the first bent portion.
  • a second bent portion B2 extending from B1 and being bent toward the inside of the battery module; a second bent portion B3 extending from the second bent portion B2 and being bent toward the front of the battery module;
  • the fourth bent portion B4 extending from the bent portion B3 and being bent toward the outside of the battery module, and the fifth bent portion B5 extending from the fourth bent portion B4 and being bent toward the front of the battery module. It can be provided.
  • the second bus bar 200b is in contact with the second electrode lead 120b of the second battery cell 110b, and is then bent vertically to the sixth bent portion B6 and the sixth bent portion B6.
  • Extending from the 7th bend B7 bent toward the inside of the battery module, extending from the seventh bend B7 the eighth bend B8, the eighth bend bent toward the front of the battery module A ninth bent portion B9 extending from B8 and being bent toward the outside of the battery module; a tenth bent portion B10 extending from the ninth bent portion B9 and being bent toward the front of the battery module. Can be.
  • the first bus bar 200a and the second bus bar 200b are bent toward each other from the second bent portion B2 and the seventh bent portion B7, respectively, so that the separation distance is reduced and the third bent portion is bent. Since the portion B3 and the eighth bent portion B8 are bent toward the front of the battery module and extended in parallel, the separation distance may be maintained.
  • the third bent portion B3 of the first bus bar 200a and the eighth bent portion B8 of the second bus bar 200b are located close to each other, whereby a shorting part (300 in FIG. 3) to be described below.
  • a shorting part 300 in FIG. 3 to be described below.
  • the width of the short terminal (322 in FIG. 3) formed at the other end of the slide bar (320 in FIG. 3) is short, the first bus bar (200a) and the second bus bar (200b) may be in contact with the first bus bar ( 200a) and the second bus bar 200b may be electrically shorted.
  • the first electrode lead 120a of the first battery cell 110a and the first bus bar 200a are in contact with each other and are electrically connected to each other in the support groove of the cartridge (400 of FIG. 2) described later (see FIG. 2).
  • a portion of the 430 may be inserted and supported.
  • the second electrode lead 120b and the second bus bar 200b of the second battery cell 110b are in contact with each other in a state in which they are electrically connected to the support groove of the cartridge (400 of FIG. 2) described later (see FIG. 2).
  • a portion of the 430 may be inserted and supported.
  • FIG. 5 is a view showing a side before the break of the battery module according to an embodiment of the present invention
  • Figure 6 is a view showing a side after the break of the battery module according to an embodiment of the present invention ego
  • the first bus bar 200a may include a first bent part B1 and a second bent part in a section between the first bent part B1 and the second bent part B2.
  • a fracture portion 210a having a narrower cross-sectional area than an outer section between B2) may be formed.
  • the breaker 210a may have a smaller cross-sectional area than an outer section between the first bent part B1 and the second bent part B2, thereby increasing resistance.
  • the breaker 210a may be electrically connected to the first bus bar 200a and the second bus bar 200b of FIG. 3, so that the first bus bar 200a and the second bus bar 200b of FIG. 3 may be electrically connected to each other. And when a short circuit is formed between the external voltage source, as shown in Figure 6, the overcurrent flows in the first bus bar 200a may be broken by generating a high temperature resistance heat.
  • the battery module according to the present invention may be electrically connected to the first electrode bar of the first battery cell 110a when the first bus bar 200a and the second bus bar 200b of FIG. 3 are electrically connected to each other to generate a short circuit. Since the breaker 210a of the first bus bar 200a that electrically connects between 120a and the external voltage source is broken, charging may be stopped.
  • the battery module according to the present invention applies the expansion force generated by the volume increase due to the overcharging of the first battery module 110a to the short circuit portion 300 (FIG. 3) to the first bus bar 200a and the second bus bar. (200b in FIG. 3) may be electrically connected. Subsequently, in the battery module according to the present invention, the breaking part 210a of the first bus bar 200a is broken due to the high current short-circuit current flowing through the first bus bar 200a and the second bus bar (200b of FIG. 3). As a result, the charging may be stopped to prevent the battery module from being overcharged.
  • break portion 210a of the battery module according to an embodiment of the present invention has been described as being formed in the first bus bar 200a, but the break portion of the battery module according to another embodiment of the present invention is connected to the second bus bar.
  • the break portion of the battery module according to another embodiment of the present invention may be formed in both the first bus bar and the second bus bar.
  • the breaker 210a may be formed to have a smaller width than the adjacent region as described above, but is not limited thereto, and may be made of a metal having a lower melting point than the adjacent region. As long as it can function as a breakable portion (210a) of the present invention can be applied without limitation.
  • FIG. 7 is a perspective view of a short circuit of a battery module according to an exemplary embodiment of the present invention
  • FIG. 8 is a view illustrating a top surface of a cartridge part of a battery module according to an exemplary embodiment.
  • the short circuit unit 300 receives the expansion force due to the increase in the volume of at least one of the first battery cell 110a and the second battery cell 110b and receives the first bus bar 200a and the first bus bar 200a and the first bus bar 200a and the first bus bar 200a. By moving toward the second bus bar 200b and in contact with the first bus bar 200a and the second bus bar 200b, a short circuit may occur.
  • the short circuit 300 may include an elastic member 310, a slide bar 320 and the expansion force transmission unit (330a, 330b).
  • one end of the elastic member 310 may be supported inside the cartridge 400 to provide an elastic force in a direction opposite to the expansion force.
  • the elastic member 310 has a spring S inserted between the first plate P1 in contact with one end of the slide bar 320 and the second plate P2 in contact with the inside of the cartridge 400.
  • the elastic force can be provided in the direction (a) toward the slide bar 320 and the direction (b) toward the cartridge 400.
  • the slide bar 320 may include a short circuit terminal 322 contacting the second plate P2 of the elastic member 310 at one end of which the elastic force is applied from the elastic member 310.
  • the plate-shaped short terminal 322 provided at one end of the slide bar 320 may be subjected to an elastic force in the a direction by surface contact with the second plate P2 of the elastic member 310.
  • the other end of the slide bar 320 may be provided with a rack gear 321 is formed with a plurality of protrusions protruding along the surface.
  • the slide bar 320 may be composed of a first plate extending from the other end to one end and a second plate vertically in contact with one end of the first plate. That is, the slide bar 320 may be formed in a 'T' shape by dropping the two plates vertically.
  • the rack gear 321 described above is formed on the other end surface of the first plate, and the rack gear 321 may be formed of a plurality of protruding protrusions.
  • the expansion force transmission units 330a and 330b may include the first expansion force transmission unit 330a which contacts the rack gear 321 formed on the left surface of the other end surface of the rack gear 321 of the slide bar 320, and the rack formed on the right surface of the slide bar 320.
  • the second expansion force transmitting part 330b may be in contact with the gear 321.
  • the first expansion force transmission unit 330a and the second expansion force transmission unit 330b have the same role as the component, and the shapes from one end to the other end may be symmetrical.
  • the first expansion force transmitting unit 330a may be provided with a pinion gear 331a that engages with the rack gear 321 at one end and supports the other end of the slide bar 320.
  • the pinion gear 331a provided at one end of the first expansion force transmitting unit 330a may have a disk shape, and a plurality of protrusions may protrude along the outer circumference of the disk.
  • the plurality of protrusions of the pinion gage 331a may be inserted between the plurality of protrusions of the rack gear 321 to fix and support the first expansion force transmitting part 330a to the slide bar 320.
  • the expansion force may be applied.
  • a plurality of bent portions are formed between the other end and one end of the first expansion force transmitting unit 330a, and thus may be disposed in a space formed between the first battery cell 110a and the slide bar 320.
  • the other end of the slide bar 320 is gear-coupled with the first expansion force transmission unit 330a and the second expansion force transmission unit 330b in contact with the first battery cell 110a and the second battery cell 110b, respectively.
  • One end of the slide bar 320 may be applied with an elastic force from the elastic member 310 in contact with the inside of the cartridge 400.
  • the short circuit terminal 322 of the slide bar 320 may be connected to the first bus bar 200a and the second bus bar ( The elastic force enough to be spaced apart from the 200b may be applied from the elastic member 320 so as not to contact the first bus bar 200a and the second bus bar 200b.
  • FIG. 9 is a diagram illustrating an upper surface of the battery module after volume increase according to an exemplary embodiment of the present invention.
  • one or more volumes of the first battery cell 110a and the second battery cell 110b may increase.
  • the expansion force is applied to the first expansion force transmitting unit 330a
  • the expansion force is applied to the second expansion force transmitting unit 330b. Can be applied.
  • the first expansion force transmitting unit 330a and the second expansion force transmitting unit 330b can be applied to the forward expansion force.
  • the first expansion force transmission unit 330a and the second expansion force transmission unit 330b transmit the expansion force to the slide bar 320 coupled to the gear, and the slide bar 320 receiving the expansion force is the first bus bar 200a.
  • the direction c toward the second bus bar 200b is the first bus bar 200a.
  • the short circuit terminal 322 formed at the other end of the slide bar 320 contacts the first bus bar 200a and the second bus bar 200b to contact the first bus bar 200a and the second bus bar 200b.
  • the circuit including the short circuit terminal 322, the 1st bus bar 200a, and the 2nd bus bar 200b can form a short circuit.
  • the short circuit terminal 322 may be formed of a conductive material.
  • the short circuit part 300 may include the first battery cell ( The expansion force is applied from 110a) and the second battery cell 110b to move to the first bus bar 200a and the second bus bar 200b to electrically connect the first bus bar 200a and the second bus bar 200b. By connecting with, a short circuit can be generated.
  • the short circuit unit 300 may generate a short circuit by electrically connecting the first bus bar 200a and the second bus bar 200b.
  • the slide bar 320 receives the expansion force from only the first expansion force transmitting unit 330a and receives the first bus bar 200a and the second bus. May be moved to bar 200b.
  • the slide bar 320 may receive the expansion force according to the increase in volume, and is moved to the first bus bar 200a and the second bus bar 200b.
  • the first bus bar 200a and the second bus bar 200b may be electrically connected to generate a short circuit.
  • the slide bar 320 receives the expansion force from only the second expansion force transmitting unit 330b so that the first bus bar 200a and the second bus bar ( 200b).
  • the slide bar 320 may receive the expansion force according to the volume increase, and the first and second bus bars 200a and 200b may be transferred to the first bus bar 200a and the second bus bar 200b.
  • the first bus bar 200a and the second bus bar 200b may be electrically connected to generate a short circuit.
  • FIG. 10 is an equivalent circuit diagram before overcharge of a battery module according to an embodiment of the present invention
  • FIG. 11 is an equivalent circuit diagram immediately after a short circuit part is moved after overcharge of a battery module according to an embodiment of the present invention
  • the first battery cell 110a and the second battery cell 110b are connected to each other. Since the volume does not increase, the first bus bar 200a and the second bus bar 200b may not be electrically shorted.
  • the short circuit part 300 has an expansion force. Received may be moved to the first bus bar (200a) and the second bus bar (200b). Accordingly, the short circuit terminal 322 of FIG. 8 contacts the first bus bar 200a and the second bus bar 200b to contact the first bus bar 200a and the second bus bar 200b. ) Can be electrically connected to generate a short circuit.
  • a short circuit including the short circuit 300, the first bus bar 200a, and the second bus bar 200b may be formed, and the high current I may flow.
  • the fracture portion 210a having a large resistance value generates a high temperature resistance heat as the cross-sectional area is narrow.
  • FIG 13 is a cross-sectional view of the cartridge of the battery module according to an embodiment of the present invention
  • Figure 14 is a perspective view showing the inside of the cartridge of the battery module according to an embodiment of the present invention.
  • the cartridge 400 is positioned between the first battery cell 110a and the second battery cell 110b, so that the second electrode lead 120b of the first battery cell 110a, At least a portion of the second electrode lead 120b, the first bus bar 200a, the second bus bar 200b, and the short circuit part 300 of the second battery cell 110b may be accommodated or supported.
  • the cartridge 400 may support the first electrode lead 120a and the first bus bar 200a of the first battery cell 110a electrically connected to each other in a bottom contact with each other.
  • the second electrode lead 120b and the second bus bar 200b of the second battery cell 110b connected to each other may be supported from below.
  • the cartridge 400 may include the first electrode lead 120a of the first battery cell 110a, the second electrode lead 120b of the second battery cell 110b, the first bus bar 200a and the second.
  • a support groove 430 having a shape corresponding to the bent shape of the bus bar 200b may be formed.
  • the cartridge 400 is formed inside the receiving space 410 of the shape corresponding to the outer shape of the short circuit portion 300 and the outer shape of the short circuit portion 300 can accommodate the short circuit portion 300 inside.
  • the accommodation space 410 of the cartridge 400 may be formed to correspond to the volume when the elastic member 310 of the short circuit portion 300 is restored in the deformed state.
  • the accommodating space 410 of the cartridge 400 may be formed in response to the changing volume when the elastic member 310 of FIG. 7 repeats deformation and restoration.
  • the accommodation space 410 may be formed inside the cartridge 400 in a shape corresponding to the outer shape of the short circuit 300.
  • the battery module according to the present invention accurately breaks the first bus bar during abnormal expansion of the battery cell to cut off power supplied from an external voltage source, thereby preventing overcharging of the battery module, thereby improving stability of the battery module.
  • the battery pack according to the present invention includes one or more battery modules described above.
  • the battery pack may further include a case for accommodating the battery module, various devices for controlling charging and discharging of the battery module, for example, a battery management system (BMS), a current sensor, a fuse, and the like, in addition to the battery module.
  • BMS battery management system
  • the battery pack according to an embodiment of the present invention includes a first bus bar, a second bus bar, a short circuit part, and a cartridge for each battery module, so that the first bus bar is broken when abnormally expanding the battery cell and is supplied from an external voltage source. By cutting off the power, the overcharge prevention can be performed for each battery module.
  • the battery module according to the present invention can be applied to an automobile such as an electric vehicle or a hybrid vehicle. That is, the vehicle according to the present invention may include a battery module according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명에 따른 배터리 모듈은 제1 배터리 셀의 제1 전극 리드와 전기적으로 연결된 제1 버스바, 제2 배터리 셀의 제2 전극 리드와 전기적으로 연결된 제2 버스바, 상기 제1 배터리 셀 및 상기 제2 배터리 셀 중 하나 이상의 체적 증가로 인한 팽창력을 인가받아 상기 제1 버스바 및 상기 제2 버스바를 향해 이동하여 상기 제1 버스바 및 상기 제2 버스바를 전기적으로 연결시켜 단락(Short)을 발생시키는 단락부 및 상기 제1 전극 리드, 상기 제2 전극 리드, 상기 제1 버스바, 상기 제2 버스바 및 상기 단락부의 적어도 일부를 수용 또는 지지하는 카트리지를 포함한다.

Description

배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
본 발명은 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차에 관한 것으로, 더욱 상세하게는 배터리 모듈의 과충전을 방지하여 안정도가 향상된 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차에 관한 것이다.
본 출원은 2017년 6월 15일자로 출원된 한국출원번호 제10-2017-0076020호를 우선권 주장하며, 그에 대한 모든 내용은 인용에 의해 본 출원에 원용된다.
근래에 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 자동차나 전력저장장치와 같은 중대형 장치에도 이차 전지가 널리 이용되고 있다. 특히, 탄소 에너지가 점차 고갈되고 환경에 대한 관심이 높아지면서, 미국, 유럽, 일본, 한국을 비롯하여 전 세계적으로 하이브리드 자동차와 전기 자동차에 세간의 이목이 집중되고 있다. 이러한 하이브리드 자동차나 전기 자동차에 있어서 가장 핵심적 부품은 차량 모터로 구동력을 부여하는 배터리 팩이다. 하이브리드 자동차나 전기 자동차는 배터리 팩의 충방전을 통해 차량의 구동력을 얻을 수 있기 때문에, 엔진만을 이용하는 자동차에 비해 연비가 뛰어나고 공해 물질을 배출하지 않거나 감소시킬 수 있다는 점에서 사용자들이 점차 크게 늘어나고 있는 실정이다. 그리고, 이러한 하이브리드 자동차나 전기 자동차의 배터리 팩에는 다수의 이차 전지가 포함되며, 이러한 다수의 이차 전지들은 서로 직렬 및 병렬로 연결됨으로써 용량 및 출력을 향상시킨다.
이러한 이차 전지는 우수한 전기적 특성을 가지고 있지만, 과충전, 과방전, 고온 노출, 전기적 단락 등 비정상적인 작동 상태에서 전지의 구성요소들인 활물질, 전해질 등의 분해반응이 유발되어 열과 가스가 발생하고, 이로 인해 이차 전지가 팽창하는, 이른바 스웰링 현상이 일어나는 문제점이 있다. 스웰링 현상은 이러한 분해반응을 가속화시켜 열폭주 현상에 의한 이차 전지의 폭발 및 발화를 초래하기도 한다.
따라서, 이차 전지에는 과충전, 과방전, 과전류 시 전류를 차단하는 보호회로, 온도 상승 시 저항이 크게 증가하여 전류를 차단하는 PTC 소자(Positive Temperature Coefficient Element), 가스 발생에 따른 압력 상승 시 전류를 차단하거나 가스를 배기하는 안전벤트 등의 안전 시스템이 구비되어 있다.
특히, 종래에는 스웰링 현상이 발생하더라도 전지팩의 안전성을 보장하기 위하여, 이차 전지들의 부피가 팽창하면 물리적 변화에 의해 단전되는 전기적 연결부재에 대한 연구가 이루어진 바 있다.
다만, 이러한 전기적 연결부재를 사용하더라도 이차 전지들이 일정 부피 이상으로 팽창 시 단전을 확실하게 담보하기 어렵다는 문제점 있다.
또한, 이차 전지는 비정상적인 작동상태가 아닌 정상적인 작동 상태일 때에도 일정한 팽창과 수축을 반복하는 바, 정상적인 범위 내에서 팽창 시에도 단전될 수 있어 작동 신뢰성에 문제점이 있다.
본 발명은 제1 배터리 셀 및 제2 배터리 셀 중 하나 이상의 체적 증가로 인한 팽창력을 인가받아 제1 버스바 및 제2 버스바를 향해 이동 및 접촉하여 제1 버스바 및 제2 버스바를 전기적으로 연결시켜 단락(Short)이 발생되도록 함으로써, 제1 버스바에 형성된 파단부가 파단되어 배터리 모듈의 과충전을 방지할 수 있는 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차를 제공하는데 그 목적이 있다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 기술적 과제를 해결하기 위한 본 발명에 따른 배터리 모듈은 제1 배터리 셀의 제1 전극 리드와 전기적으로 연결된 제1 버스바, 제2 배터리 셀의 제2 전극 리드와 전기적으로 연결된 제2 버스바, 상기 제1 배터리 셀 및 상기 제2 배터리 셀 중 하나 이상의 체적 증가로 인한 팽창력을 인가받아 상기 제1 버스바 및 상기 제2 버스바를 향해 이동하여 상기 제1 버스바 및 상기 제2 버스바를 전기적으로 연결시켜 단락(Short)을 발생시키는 단락부 및 상기 제1 전극 리드, 상기 제2 전극 리드, 상기 제1 버스바, 상기 제2 버스바 및 상기 단락부의 적어도 일부를 수용 또는 지지하는 카트리지를 포함한다.
바람직하게, 상기 단락부는 일단이 상기 카트리지의 내측에 지지되어 상기 팽창력의 반대 방향으로 탄성력을 제공하는 탄성 부재 일단에 상기 탄성, 부재의 타단과 접촉하여 상기 탄성 부재로부터 상기 탄성력을 인가받는 단락 단자를 구비하고, 타단의 표면을 따라 형성된 랙 기어를 구비하는 슬라이드 바 및 일단에 상기 랙 기어와 맞물려 상기 슬라이드 바의 타단을 지지하는 피니언 기어를 구비하고, 타단이 상기 제1 배터리 셀 및 제2 배터리 셀 각각의 일단과 접촉되어 상기 팽창력을 인가받는 팽창력 전달부를 포함할 수 있다.
바람직하게, 상기 슬라이드 바는 상기 제1 배터리 셀 및 상기 제2 배터리 셀 모두 체적이 증가하지 않는 경우, 상기 탄성력만을 인가받아 상기 단락 단자가 상기 제1 배터리 셀 및 제2 배터리 셀과 이격될 수 있다.
바람직하게, 상기 팽창력 전달부는 상기 제1 배터리 셀 및 상기 제2 배터리 셀 중 하나 이상의 체적이 증가하는 경우, 상기 팽창력을 인가받아 상기 제1 버스바 및 상기 제2 버스바를 향해 이동하고, 상기 인가받은 팽창력을 상기 피니언 기어와 맞물린 상기 랙 기어를 통해 상기 슬라이드 바에 전달할 수 있다.
바람직하게, 상기 슬라이드 바는 상기 제1 배터리 셀 및 상기 제2 배터리 셀 중 하나 이상의 체적이 증가하는 경우, 상기 피니언 기어와 맞물린 상기 랙 기어를 통해 상기 팽창력을 전달받아 상기 제1 버스바 및 상기 제2 버스바를 향해 이동할 수 있다.
바람직하게, 상기 단락 단자는 상기 제1 버스바 및 상기 제2 버스바와 접촉하여 상기 제1 버스바 및 상기 제2 버스바를 전기적으로 연결시켜 단락을 발생시킬 수 있다.
바람직하게, 상기 단락 단자는 전도성 재질로 형성될 수 있다.
바람직하게, 상기 카트리지는 내측에 상기 단락부의 외형에 대응되는 형상의 수용 공간이 형성되어 상기 단락부를 내측에 수용할 수 있다.
바람직하게, 상기 수용 공간은 상기 탄성 부재의 복원 상태에 따른 상기 탄성 부재의 체적에 대응되도록 형성될 수 있다.
바람직하게, 상기 카트리지는 대면 접촉하여 전기적으로 연결된 상기 제1 전극 리드 및 상기 제1 버스바 각각의 적어도 일부를 지지하고, 대면 접촉하여 전기적으로 연결된 상기 제2 전극 리드 및 상기 제2 버스바 각각의 적어도 일부를 지지할 수 있다.
바람직하게, 상기 제1 버스바 및 상기 제2 버스바 중 적어도 어느 하나는 상기 단락이 발생되는 경우, 파단되어 외부와의 전기적 연결을 차단하는 파단부를 포함할 수 있다.
본 발명에 따른 배터리 팩은 상기 배터리 모듈을 포함할 수 있다.
본 발명에 따른 자동차는 상기 배터리 모듈을 포함할 수 있다.
본 발명에 따르면, 제1 배터리 셀 및 제2 배터리 셀 중 하나 이상의 체적 증가로 인한 팽창력을 통해 제1 버스바 및 제2 버스바 사이가 전기적으로 연결되도록 하고, 이로써 단락이 발생되도록 함으로써, 제1 버스바 및 제2 버스바 중 적어도 어느 하나에 형성된 파단부가 파단되어 배터리 모듈의 과충전을 방지하여 배터리 모듈의 안정성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈의 사시도이다.
도 2는 본 발명의 일 실시예에 따른 배터리 모듈의 분해 사시도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 모듈의 체적 증가 전의 상면을 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 배터리 모듈의 제1 배터리 셀, 제1 버스바, 제2 배터리 셀 및 제2 버스바만을 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 배터리 모듈의 파단부가 파단되기 전의 측면을 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 배터리 모듈의 파단부가 파단된 후의 측면을 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 배터리 모듈의 단락부의 사시도이다.
도 8은 본 발명의 일 실시예에 따른 배터리 모듈의 구성요소 중에서 카트리지 일부를 절개한 상태의 상면을 도시한 도면이다.
도 9는 본 발명의 일 실시예에 따른 배터리 모듈의 체적 증가 후의 상면을 도시한 도면이다.
도 10은 본 발명의 일 실시예에 따른 배터리 모듈의 과충전 전의 등가 회로도이다.
도 11은 본 발명의 일 실시예에 따른 배터리 모듈의 과충전 후 단락부가 이동한 직후의 등가 회로도이다.
도 12는 본 발명의 일 실시예에 따른 배터리 모듈의 과충전 후 단락부가 이동하여 파단부가 파단된 후의 등가 회로도이다.
도 13은 본 발명의 일 실시예에 따른 배터리 모듈의 카트리지의 단면을 도시한 도면이다.
도 14는 본 발명의 일 실시예에 따른 배터리 모듈의 카트리지를 내부를 도시한 사시도이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 배터리 모듈의 분해 사시도이며, 도 3은 본 발명의 일 실시예에 따른 배터리 모듈의 체적 증가 전의 상면을 도시한 도면이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈은 배터리 셀(110a, 110b), 버스바(200a, 200b), 단락부(300) 및 카트리지(400)를 포함할 수 있다.
상기 배터리 셀(110a, 110b)은 복수 개로 구비될 수 있으며, 각 배터리 셀(110a, 110b)은 좌우 방향으로 나란하게 적층될 수 있다.
배터리 셀(110a, 110b)의 종류는 특별히 한정되지 않으며 다양한 이차 전지가 본 발명에 따른 배터리 모듈에 채용될 수 있다. 예를 들어, 상기 배터리 셀(110a, 110b)은, 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성될 수 있다. 특히, 상기 배터리 셀(110a, 110b)은 리튬 이차 전지일 수 있다.
한편, 배터리 셀(110a, 110b)은 외장재의 종류에 따라 파우치형, 원통형, 각형 등으로 분류될 수 있다. 특히, 본 발명에 따른 배터리 모듈의 배터리 셀(110a, 110b)은 파우치형 이차전지일 수 있다.
배터리 셀(110a, 110b)이 파우치형 이차 전지로 구현된 경우, 도 2에 도시된 바와 같이, 각 배터리 셀(110a, 110b)은 넓은 면이 서로 좌측과 우측에 위치하여, 각 배터리 셀(110a, 110b) 간 넓은 면이 서로 대면되도록 구성될 수 있다. 또한, 이 경우, 각 배터리 셀(110a, 110b)은 전방을 향해 돌출되다 절곡된 형태로 형성되는 전극 리드(120a, 120b)를 구비할 수 있다.
전극 리드(120a, 120b)는 양극리드와 음극리드로 구성될 수 있으며, 양극리드는 전극 조립체의 양극판에 연결되고, 음극리드는 전극 조립체의 음극판에 연결될 수 있다.
한편, 본 발명에 따른 배터리 셀(110a, 110b)은 좌측에 위치하는 제1 배터리 셀(110a)과 우측에 위치하는 제2 배터리 셀(110b)로 구성될 수 있다. 이때, 제1 배터리 셀(110a) 및 제2 배터리 셀(110b) 각각의 전극 리드는 다른 극성의 전극 리드(120a, 120b)가 같은 방향을 향하도록 배치될 수 있다.
보다 구체적으로, 도 2에 도시된 바와 같이, 제1 배터리 셀(110a)은 양극인 제1 전극 리드(120a)가 전방을 향하도록 배치될 수 있고, 제2 배터리 셀(110b)은 음극인 제2 전극 리드(120b)가 전방을 향하도록 배치될 수 있다.
또한, 제1 배터리 셀(110a)은 음극인 제2 전극 리드(120b)가 후방을 향하도록 배치될 수 있고, 제2 배터리 셀(110b)은 양극인 제1 전극 리드(120a)가 후방을 향하도록 배치될 수 있다.
이때, 제1 배터리 셀(110a)의 제2 전극 리드(120b)와 제2 배터리 셀(110b)의 제1 전극 리드(120b)는 전기적으로 연결될 수 있다.
한편, 제1 배터리 셀(110a)의 제1 전극 리드(120a)는 후술되는 제1 버스바(200a)와 전기적으로 연결됨으로써, 외부 전압원으로부터 양극 전압을 인가받을 수 있다. 또한, 제2 배터리 셀(110b)의 제2 전극 리드(120b)는 후술되는 제2 버스바(200b)와 전기적으로 연결됨으로써, 외부 전압원으로부터 음극 전압을 인가받을 수 있다.
여기서, 제1 버스바(200a)는 본 발명에 따른 버스바(200a, 200b) 중에서 제1 배터리 셀(110a)의 제1 전극 리드(120a)와 전기적으로 연결되는 버스바일 수 있으며, 제2 버스바(200b)는 본 발명에 따른 버스바(200a, 200b) 중에서 제2 배터리 셀(110b)의 제2 전극 리드(120b)와 전기적으로 연결되는 버스바일 수 있다.
이하에서 본 발명에 따른 제1 배터리 셀(110a)의 제1 전극 리드(120a)와 제1 버스바(200a) 간의 연결 구조와 제2 배터리 셀(110b)의 제2 전극 리드(120b)와 제2 버스바(200b) 간의 연결 구조에 대해 구체적으로 설명하도록 한다.
도 4는 본 발명의 일 실시예에 따른 배터리 모듈의 제1 배터리 셀, 제1 버스바, 제2 배터리 셀 및 제2 버스바만을 도시한 도면이다.
도 4를 더 참조하면, 제1 배터리 셀(110a)의 제1 전극 리드(120a)는 제1 배터리 셀(110a)로부터 전방을 향해 돌출되다가 배터리 모듈의 외측을 향해 대략 직각으로 절곡됨으로써 제1 버스바(200a)와 대면 접촉될 수 있다.
또한, 제2 배터리 셀(110b)의 제2 전극 리드(120b)는 제2 배터리 셀(110b)로부터 전방을 향해 돌출되다가 배터리 모듈의 외측 즉, 상술된 제1 배터리 셀(110a)의 제1 전극 리드(120a)가 절곡된 방향의 반대 방향을 향해 대략 직각으로 절곡됨으로써 제2 버스바(200b)에 대면 접촉될 수 있다.
제1 버스바(200a) 및 제2 버스바(200b)는 상하 방향으로 길이가 긴 플레이트가 직각으로 다수 절곡된 형상으로 형성될 수 있다.
보다 구체적으로, 제1 버스바(200a)는 제1 배터리 셀(110a)의 제1 전극 리드(120a)와 대면 접촉되다가 전방을 향해 수직으로 절곡된 제1 절곡부(B1), 제1 절곡부(B1)로부터 연장되다 배터리 모듈의 내측을 향해 절곡된 제2 절곡부(B2), 제2 절곡부(B2)로부터 연장되다 배터리 모듈의 전방을 향해 절곡된 제3 절곡부(B3), 제3 절곡부(B3)로부터 연장되다 배터리 모듈의 외측을 향해 절곡된 제4 절곡부(B4), 제4 절곡부(B4)로부터 연장되다 배터리 모듈의 전방을 향해 절곡된 제5 절곡부(B5)를 구비할 수 있다.
또한, 제2 버스바(200b)는 제2 배터리 셀(110b)의 제2 전극 리드(120b)와 대면 접촉되다가 전방을 향해 수직으로 절곡된 제6 절곡부(B6), 제6 절곡부(B6)로부터 연장되다 배터리 모듈의 내측을 향해 절곡된 제7 절곡부(B7), 제7 절곡부(B7)로부터 연장되다 배터리 모듈의 전방을 향해 절곡된 제8 절곡부(B8), 제8 절곡부(B8)로부터 연장되다 배터리 모듈의 외측을 향해 절곡된 제9 절곡부(B9), 제9 절곡부(B9)로부터 연장되다 배터리 모듈의 전방을 향해 절곡된 제10 절곡부(B10)를 구비할 수 있다.
이때, 제1 버스바(200a) 및 제2 버스바(200b)는 각각 제2 절곡부(B2) 및 제7 절곡부(B7)부터 서로를 향해 절곡되어 연장됨으로써 이격 거리가 줄어들고, 제3 절곡부(B3) 및 제8 절곡부(B8)부터 배터리 모듈의 전방을 향해 절곡되어 평행하게 연장됨으로써 이격 거리가 유지될 수 있다.
이를 통해, 제1 버스바(200a)의 제3 절곡부(B3)와 제2 버스바(200b)의 제8 절곡부(B8)가 근접하게 위치함으로써, 후술되는 단락부(도 3의 300)의 슬라이드 바(도 3의 320) 타단에 형성된 단락 단자(도 3의 322)의 폭이 짧게 형성되더라도 제1 버스바(200a) 및 제2 버스바(200b)와 동시에 접촉하여 제1 버스바(200a) 및 제2 버스바(200b)를 전기적으로 단락시킬 수 있다.
한편, 제1 배터리 셀(110a)의 제1 전극 리드(120a)와 제1 버스바(200a)는 대면 접촉하여 전기적으로 연결된 상태에서 후술되는 카트리지(도 2의 400)의 지지홈(도 2의 430)에 일부가 삽입되어 지지될 수 있다.
또한, 제2 배터리 셀(110b)의 제2 전극 리드(120b)와 제2 버스바(200b)는 대면 접촉하여 전기적으로 연결된 상태에서 후술되는 카트리지(도 2의 400)의 지지홈(도 2의 430)에 일부가 삽입되어 지지될 수 있다.
상술된 카트리지(도 2의 400)에 대해서는 후술하여 자세히 설명하도록 한다.
도 5는 본 발명의 일 실시예에 따른 배터리 모듈의 파단부가 파단되기 전의 측면을 도시한 도면이고, 도 6은 본 발명의 일 실시예에 따른 배터리 모듈의 파단부가 파단된 후의 측면을 도시한 도면이고
도 5 및 도 6을 더 참조하면, 제1 버스바(200a)는 제1 절곡부(B1)와 제2 절곡부(B2)의 사이 구간에는 제1 절곡부(B1)와 제2 절곡부(B2)의 사이 외측 구간 보다 단면적이 좁은 파단부(210a)가 형성될 수 있다.
이러한, 파단부(210a)는 제1 절곡부(B1)와 제2 절곡부(B2)의 사이 외측 구간 보다 단면적이 좁음으로써, 저항값이 커질 수 있다.
이에 따라, 파단부(210a)는 제1 버스바(200a)와 제2 버스바(도 3의 200b)가 전기적으로 연결되어 제1 버스바(200a), 제2 버스바(도 3의 200b) 및 외부 전압원 간에 단락 회로가 형성되는 경우, 도 6에 도시된 바와 같이, 제1 버스바(200a)에 과전류가 흐르게 되어 고온의 저항열이 발생함으로써 파단될 수 있다.
이를 통해, 본 발명에 따른 배터리 모듈은 제1 버스바(200a)와 제2 버스바(도 3의 200b)가 전기적으로 연결되어 단락이 발생되면 제1 배터리 셀(110a)의 제1 전극 리드(120a)와 외부 전압원 사이를 전기적으로 연결하는 제1 버스바(200a)의 파단부(210a)가 파단됨으로써, 충전이 중단될 수 있다.
즉, 본 발명에 따른 배터리 모듈은 제1 배터리 모듈(110a)의 과충전으로 인한 체적 증가로 발생하는 팽창력을 단락부(도 3의 300)에 인가시켜 제1 버스바(200a)와 제2 버스바(도 3의 200b)를 전기적으로 연결시킬 수 있다. 이어서, 본 발명에 따른 배터리 모듈은 제1 버스바(200a)와 제2 버스바(도 3의 200b)에 흐르는 고전류의 단락 전류로 인해 제1 버스바(200a)의 파단부(210a)가 파단됨으로써, 충전을 중단시켜 배터리 모듈의 과충전의 진행을 방지할 수 있다.
한편, 본 발명의 일 실시예에 따른 배터리 모듈의 파단부(210a)는 제1 버스바(200a)에 형성되는 것으로 설명하였으나, 본 발명의 다른 실시예에 따른 배터리 모듈의 파단부는 제2 버스바에 형성될 수 있으며, 본 발명의 또 다른 실시예에 따른 배터리 모듈의 파단부는 제1 버스바와 제2 버스바 모두에 형성될 수 있다.
또한, 상기 파단부(210a)는 상술한 바와 같이, 인접 영역과 비교하여 폭이 더 좁게 형성될 수도 있으나, 이에 한정되지 않고, 인접 영역 보다 융점이 낮은 금속으로 이루어지는 경우도 가능하며, 그 밖에도 퓨즈로써 기능할 수 있는 형태라면 본 발명의 파단부(210a)로써 제한없이 적용 가능하다.
이하, 상술된 단락부(300)에 대해 구체적으로 설명하도록 한다.
도 7은 본 발명의 일 실시예에 따른 배터리 모듈의 단락부의 사시도이고, 도 8은 본 발명의 일 실시예에 따른 배터리 모듈의 구성요소 중에서 카트리지 일부를 절개한 상태의 상면을 도시한 도면이다.
도 7 및 도 8을 참조하면, 단락부(300)는 제1 배터리 셀(110a) 및 제2 배터리 셀(110b) 중 하나 이상의 체적 증가로 인한 팽창력을 인가받아 제1 버스바(200a) 및 제2 버스바(200b)를 향해 이동하여 제1 버스바(200a) 및 제2 버스바(200b)와 접촉함으로써, 단락을 일으킬 수 있다.
이를 위하여, 단락부(300)는 탄성 부재(310), 슬라이드 바(320) 및 팽창력 전달부(330a, 330b)를 포함할 수 있다.
탄성 부재(310)는 도 8에 도시된 바와 같이, 일단이 카트리지(400)의 내측에 지지되어 팽창력의 반대 방향으로 탄성력을 제공할 수 있다.
보다 구체적으로, 탄성 부재(310)는 슬라이드 바(320)의 일단에 접촉하는 제1 플레이트(P1)와 카트리지(400)의 내측에 접촉하는 제2 플레이트(P2) 사이에 스프링(S)이 삽입되어 형성됨으로써, 슬라이드 바(320)로의 방향(a)과 카트리지(400)로의 방향(b)으로 탄성력을 제공할 수 있다.
이때, 슬라이드 바(320)는 탄성 부재(310)으로부터 탄성력이 인가되는 일단에 탄성 부재(310)의 제2 플레이트(P2)와 접촉하는 단락 단자(322)를 구비할 수 있다.
즉, 슬라이드 바(320)의 일단에 구비된 플레이트 형상의 단락 단자(322)는 탄성 부재(310)의 제2 플레이트(P2)와 면접촉함으로써, a 방향의 탄성력을 인가받을 수 있다.
한편, 슬라이드 바(320)의 타단에는 표면을 따라 복수의 돌기가 돌출 형성된 랙 기어(321)를 구비할 수 있다.
보다 구체적으로, 슬라이드 바(320)는 타단에서 일단까지 길게 연장된 제1 플레이트와 이러한 제1 플레이트의 일단에서 수직하게 접하는 제2 플레이트로 구성될 수 있다. 즉, 슬라이드 바(320)은 두 플레이트 수직하게 적하여 'T'자 형상으로 형성될 수 있다.
여기서, 제1 플레이트의 타단 표면에는 상술된 랙 기어(321)가 형성되며, 랙 기어(321)는 돌출된 복수의 돌기로 구성될 수 있다.
팽창력 전달부(330a, 330b)는 슬라이드 바(320)의 랙 기어(321)의 타단 표면 중에서 좌측 표면에 형성된 랙 기어(321)와 접촉하는 제1 팽창력 전달부(330a), 우측 표면에 형성된 랙 기어(321)와 접촉하는 제2 팽창력 전달부(330b)로 구성될 수 있다.
제1 팽창력 전달부(330a)와 제2 팽창력 전달부(330b)는 구성 요소와 역할이 동일하며, 일단부터 타단까지의 형상이 좌우 대칭될 수 있다.
이에 따라, 반복되는 설명을 피하기 위하여 팽창력 전달부(330a, 330b)를 대표하여 제1 팽창력 전달부(330a)만을 설명하도록 한다.
제1 팽창력 전달부(330a)는 일단에 랙 기어(321)와 맞물려 슬라이드 바(320)의 타단을 지지하는 피니언 기어(331a)를 구비할 수 있다.
보다 구체적으로, 제1 팽창력 전달부(330a)의 일단에 구비된 피니언 기어(331a)는 원반 형상으로 형성되고, 원반의 외주를 따라 복수의 돌기가 돌출 형성될 수 있다.
이에 따라, 피니언 기언(331a)의 복수의 돌기는 랙 기어(321)의 복수의 돌기 사이에 삽입됨으로써, 제1 팽창력 전달부(330a)를 슬라이드 바(320)에 고정 및 지지시킬 수 있다.
한편, 제1 팽창력 전달부(330a)의 타단은 제1 배터리 셀(110a)의 일단에 접촉되어 제1 배터리 셀(110a)의 체적이 증가하는 경우, 팽창력을 인가받을 수 있다.
이때, 제1 팽창력 전달부(330a)의 타단과 일단 사이는 복수의 굴곡부가 형성됨으로써, 제1 배터리 셀(110a)과 슬라이드 바(320) 사이에 형성된 공간에 배치될 수 있다.
즉, 슬라이드 바(320)의 타단은 제1 배터리 셀(110a) 및 제2 배터리 셀(110b)과 각각 접촉된 제1 팽창력 전달부(330a) 및 제2 팽창력 전달부(330b)와 기어 결합되고, 슬라이드 바(320)의 일단은 카트리지(400)의 내측과 접촉된 탄성 부재(310)로부터 탄성력이 인가될 수 있다.
이를 통해, 제1 배터리 셀(110a)와 제2 배터리 셀(110b) 모두가 팽창되지 않는 경우, 슬라이드 바(320)의 단락 단자(322)는 제1 버스바(200a) 및 제2 버스바(200b)와 이격될 만큼의 탄성력을 탄성부재(320)로부터 인가받아 제1 버스바(200a) 및 제2 버스바(200b)와 접촉하지 않을 수 있다.
도 9는 본 발명의 일 실시예에 따른 배터리 모듈의 체적 증가 후의 상면을 도시한 도면이다.
도 9를 더 참조하면, 배터리 모듈이 과충전되면 제1 배터리 셀(110a)와 제2 배터리 셀(110b) 중 하나 이상의 체적이 증가할 수 있다. 이때, 제1 배터리 셀(110a)의 체적이 증가하면 제1 팽창력 전달부(330a)로 팽창력이 인가되고, 제2 배터리 셀(110b)의 체적이 증가하면 제2 팽창력 전달부(330b)로 팽창력이 인가될 수 있다.
이하에서는, 제1 배터리 셀(110a)와 제2 배터리 셀(110b) 모두가 체적이 증가된 경우, 배터리 모듈의 과충전을 방지하는 과정에 대해 설명하도록 한다.
상술한 바와 같이, 배터리 모듈의 과충전으로 인해 제1 배터리 셀(110a) 및 제2 배터리 셀(110b)의 체적이 증가하는 경우, 제1 팽창력 전달부(330a) 및 제2 팽창력 전달부(330b)는 전방을 향하는 팽창력을 인가받을 수 있다.
이후, 제1 팽창력 전달부(330a) 및 제2 팽창력 전달부(330b)는 기어 결합된 슬라이드 바(320)로 팽창력을 전달하고, 팽창력을 전달받은 슬라이드 바(320)는 제1 버스바(200a) 및 제2 버스바(200b)를 향하는 방향(c)으로 이동할 수 있다. 최종적으로, 슬라이드 바(320)의 타단에 형성된 단락 단자(322)는 제1 버스바(200a) 및 제2 버스바(200b)와 접촉하여 제1 버스바(200a) 및 제2 버스바(200b)를 전기적으로 연결시킬 수 있다.
이로 인해, 단락 단자(322), 제1 버스바(200a) 및 제2 버스바(200b)를 포함하는 회로가 단락 회로를 형성할 수 있다.
이를 위하여, 단락 단자(322)는 전도성 재질로 형성될 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 배터리 모듈은 제1 배터리 셀(110a) 및 제2 배터리 셀(110b)이 과충전으로 인해 체적이 증가하는 경우, 단락부(300)는 제1 배터리 셀(110a) 및 제2 배터리 셀(110b)로부터 팽창력을 인가받아 제1 버스바(200a) 및 제2 버스바(200b)로 이동되어 제1 버스바(200a) 및 제2 버스바(200b)를 전기적으로 연결시킴으로써, 단락을 발생시킬 수 있다.
한편, 제1 배터리 셀(110a) 및 제2 배터리 셀(110b) 모두의 체적이 증가하는 경우 외에, 제1 배터리 셀(110a) 및 제2 배터리 셀(110b) 중 어느 하나의 체적이 증가하는 경우라도 단락부(300)는 제1 버스바(200a) 및 제2 버스바(200b)를 전기적으로 연결시켜 단락을 발생시킬 수 있다.
보다 구체적으로, 제1 배터리 셀(110a)의 체적만이 증가하는 경우, 슬라이드 바(320)는 제1 팽창력 전달부(330a)만으로부터 팽창력을 전달받아 제1 버스바(200a) 및 제2 버스바(200b)로 이동될 수 있다.
즉, 슬라이드 바(320)는 제1 배터리 셀(110a)의 체적만이 증가하더라도 체적 증가에 따른 팽창력을 전달받을 수 있고, 제1 버스바(200a) 및 제2 버스바(200b)로 이동됨으로써, 제1 버스바(200a) 및 제2 버스바(200b)를 전기적으로 연결시켜 단락을 발생시킬 수 있다.
반대로, 제2 배터리 셀(110b)의 체적만이 증가하는 경우, 슬라이드 바(320)는 제2 팽창력 전달부(330b)만으로부터 팽창력을 전달받아 제1 버스바(200a) 및 제2 버스바(200b)로 이동될 수 있다.
다시 말해, 슬라이드드 바(320)는 제2 배터리 셀(110b)의 체적만이 증가하더라도 체적 증가에 따른 팽창력을 전달받을 수 있고, 제1 버스바(200a) 및 제2 버스바(200b)로 이동됨으로써, 제1 버스바(200a) 및 제2 버스바(200b)를 전기적으로 연결시켜 단락을 발생시킬 수 있다.
이하, 본 발명의 일 실시예에 따른 배터리 모듈의 단락부의 이동에 따른 회로 구성에 대해 설명하도록 한다.
도 10은 본 발명의 일 실시예에 따른 배터리 모듈의 과충전 전의 등가 회로도이고, 도 11은 본 발명의 일 실시예에 따른 배터리 모듈의 과충전 후 단락부가 이동한 직후의 등가 회로도이고, 도 12는 본 발명의 일 실시예에 따른 배터리 모듈의 과충전 후 단락부가 이동하여 파단부가 파단된 후의 등가 회로도이다.
도 10 내지 도 12를 참조하면, 본 발명에 따른 배터리 모듈이 과충전되지 않고 정상 상태로 동작하는 경우, 도 10에 도시된 바와 같이, 제1 배터리 셀(110a) 및 제2 배터리 셀(110b)의 체적이 증가하지 않으므로 제1 버스바(200a) 및 제2 버스바(200b)는 전기적으로 단락되지 않을 수 있다.
하지만, 도 11에 도시된 바와 같이, 본 발명에 따른 배터리 모듈이 과충전되어 제1 배터리 셀(110a) 및 제2 배터리 셀(110b) 중 하나 이상의 체적이 증가하는 경우, 단락부(300)는 팽창력을 인가받아 제1 버스바(200a) 및 제2 버스바(200b)로 이동할 수 있다. 이에 따라, 단락부(300)의 단락 단자(도 8의 322)는 제1 버스바(200a) 및 제2 버스바(200b)와 접촉하여 제1 버스바(200a) 및 제2 버스바(200b)를 전기적으로 연결시킴으로써 단락을 발생시킬 수 있다.
이로 인해, 단락부(300), 제1 버스바(200a) 및 제2 버스바(200b)를 포함하는 단락 회로가 형성되어 고전류(I)가 흐를 수 있다.
이후, 제1 버스바(200a)에 고전류(I)가 지속적으로 흐르는 경우, 도 12에 도시된 바와 같이, 단면적이 좁게 형성되어 저항값이 큰 파단부(210a)는 고온의 저항열이 발생하여 파단됨으로써, 외부 전압원에서 배터리 모듈로 공급되는 전력이 차단되어 과충전을 방지할 수 있다.
도 13은 본 발명의 일 실시예에 따른 배터리 모듈의 카트리지의 단면을 도시한 도면이고, 도 14는 본 발명의 일 실시예에 따른 배터리 모듈의 카트리지를 내부를 도시한 사시도이다.
도 13 내지 도 14를 참조하면, 카트리지(400)는 제1 배터리 셀(110a)과 제2 배터리 셀(110b)의 사이에 위치하여 제1 배터리 셀(110a)의 제2 전극 리드(120b), 제2 배터리 셀(110b)의 제2 전극 리드(120b), 제1 버스바(200a), 제2 버스바(200b) 및 단락부(300)의 적어도 일부를 수용 또는 지지할 수 있다.
보다 구체적으로, 카트리지(400)는 대면 접촉하여 전기적으로 연결된 제1 배터리 셀(110a)의 제1 전극 리드(120a)와 제1 버스바(200a)를 하부에서 지지할 수 있으며, 대면 접촉하여 전기적으로 연결된 제2 배터리 셀(110b)의 제2 전극 리드(120b)와 제2 버스바(200b)를 하부에서 지지할 수 있다.
이를 위하여, 카트리지(400)는 제1 배터리 셀(110a)의 제1 전극 리드(120a), 제2 배터리 셀(110b)의 제2 전극 리드(120b), 제1 버스바(200a) 및 제2 버스바(200b)의 절곡 형상에 대응하는 형상의 지지홈(430)이 형성될 수 있다.
한편, 카트리지(400)는 내측에 단락부(300)의 외형과 단락부(300)의 외형에 대응되는 형상의 수용 공간(410)이 형성되어 단락부(300)를 내측에 수용할 수 있다.
이때, 카트리지(400)의 수용 공간(410)은 단락부(300)의 탄성 부재(310)가 변형 상태에서 복원되는 경우의 체적에 대응되도록 형성될 수 있다.
즉, 카트리지(400)의 수용 공간(410)은 단락부(300)의 탄성 부재(도 7의 310)가 변형과 복원을 반복하는 경우 변화하는 체적에 대응하여 형성될 수 있다.
다시 말해, 수용 공간(410)은 단락부(300)의 외형에 대응되는 형상으로 카트리지(400)의 내측에 형성될 수 있다.
이러한 본 발명에 따른 배터리 모듈은 배터리 셀의 비정상적인 팽창시 정확하게 제1 버스바를 파단시켜 외부 전압원으로부터 공급되는 전력을 차단함으로써, 배터리 모듈의 과충전을 방지하여 배터리 모듈의 안정성을 향상시킬 수 있다.
한편, 본 발명에 따른 배터리 팩은, 상술한 배터리 모듈을 하나 이상 포함한다. 이때, 배터리 팩에는 배터리 모듈 이외에, 이러한 배터리 모듈을 수납하기 위한 케이스, 배터리 모듈의 충방전을 제어하기 위한 각종 장치, 이를테면 BMS(Battery Management System), 전류 센서, 퓨즈 등이 더 포함될 수 있다. 특히, 본 발명의 일 실시예에 따른 배터리 팩은, 배터리 모듈 마다 제1 버스바, 제2 버스바, 단락부 및 카트리지를 구비하여 배터리 셀의 비정상적인 팽창 시 제1 버스바를 파단시켜 외부 전압원으로부터 공급되는 전력을 차단함으로써, 과충전 방지를 배터리 모듈마다 수행할 수 있다.
본 발명에 따른 배터리 모듈은, 전기 자동차나 하이브리드 자동차와 같은 자동차에 적용될 수 있다. 즉, 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈을 포함할 수 있다.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.

Claims (13)

  1. 제1 배터리 셀의 제1 전극 리드와 전기적으로 연결된 제1 버스바;
    제2 배터리 셀의 제2 전극 리드와 전기적으로 연결된 제2 버스바;
    상기 제1 배터리 셀 및 상기 제2 배터리 셀 중 하나 이상의 체적 증가로 인한 팽창력을 인가받아 상기 제1 버스바 및 상기 제2 버스바를 향해 이동하여 상기 제1 버스바 및 상기 제2 버스바를 전기적으로 연결시켜 단락(Short)을 발생시키는 단락부; 및
    상기 제1 전극 리드, 상기 제2 전극 리드, 상기 제1 버스바, 상기 제2 버스바 및 상기 단락부의 적어도 일부를 수용 또는 지지하는 카트리지를
    포함하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 단락부는
    일단이 상기 카트리지의 내측에 지지되어 상기 팽창력의 반대 방향으로 탄성력을 제공하는 탄성 부재;
    일단에 상기 탄성 부재의 타단과 접촉하여 상기 탄성 부재로부터 상기 탄성력을 인가받는 단락 단자를 구비하고, 타단의 표면을 따라 형성된 랙 기어를 구비하는 슬라이드 바; 및
    일단에 상기 랙 기어와 맞물려 상기 슬라이드 바의 타단을 지지하는 피니언 기어를 구비하고, 타단이 상기 제1 배터리 셀 및 제2 배터리 셀 각각의 일단과 접촉되어 상기 팽창력을 인가받는 팽창력 전달부를
    포함하는 배터리 모듈.
  3. 제2항에 있어서,
    상기 슬라이드 바는
    상기 제1 배터리 셀 및 상기 제2 배터리 셀 모두 체적이 증가하지 않는 경우, 상기 탄성력만을 인가받아 상기 단락 단자가 상기 제1 배터리 셀 및 제2 배터리 셀과 이격되는 배터리 모듈.
  4. 제2항에 있어서,
    상기 팽창력 전달부는
    상기 제1 배터리 셀 및 상기 제2 배터리 셀 중 하나 이상의 체적이 증가하는 경우, 상기 팽창력을 인가받아 상기 제1 버스바 및 상기 제2 버스바를 향해 이동하고, 상기 인가받은 팽창력을 상기 피니언 기어와 맞물린 상기 랙 기어를 통해 상기 슬라이드 바에 전달하는 배터리 모듈.
  5. 제2항에 있어서,
    상기 슬라이드 바는
    상기 제1 배터리 셀 및 상기 제2 배터리 셀 중 하나 이상의 체적이 증가하는 경우, 상기 피니언 기어와 맞물린 상기 랙 기어를 통해 상기 팽창력을 전달받아 상기 제1 버스바 및 상기 제2 버스바를 향해 이동하는 배터리 모듈.
  6. 제2항에 있어서,
    상기 단락 단자는
    상기 제1 버스바 및 상기 제2 버스바와 접촉하여 상기 제1 버스바 및 상기 제2 버스바를 전기적으로 연결시켜 단락을 발생시키는 배터리 모듈.
  7. 제2항에 있어서,
    상기 단락 단자는
    전도성 재질로 형성되는 배터리 모듈.
  8. 제1항에 있어서,
    상기 카트리지는
    내측에 상기 단락부의 외형에 대응되는 형상의 수용 공간이 형성되어 상기 단락부를 내측에 수용하는 배터리 모듈.
  9. 제8항에 있어서,
    상기 수용 공간은
    상기 탄성 부재의 복원 상태에 따른 상기 탄성 부재의 체적에 대응되도록 형성되는 배터리 모듈.
  10. 제1항에 있어서,
    상기 카트리지는
    대면 접촉하여 전기적으로 연결된 상기 제1 전극 리드 및 상기 제1 버스바 각각의 적어도 일부를 지지하고, 대면 접촉하여 전기적으로 연결된 상기 제2 전극 리드 및 상기 제2 버스바 각각의 적어도 일부를 지지하는 배터리 모듈.
  11. 제1항에 있어서,
    상기 제1 버스바 및 상기 제2 버스바 중 적어도 어느 하나는
    상기 단락이 발생되는 경우, 파단되어 외부와의 전기적 연결을 차단하는 파단부를
    포함하는 배터리 모듈.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 모듈을
    포함하는 배터리 팩.
  13. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 모듈을
    포함하는 자동차.
PCT/KR2018/006604 2017-06-15 2018-06-11 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차 WO2018230907A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL18817230T PL3540823T3 (pl) 2017-06-15 2018-06-11 Moduł akumulatorowy oraz zawierający go pakiet akumulatorowy i pojazd
EP18817230.8A EP3540823B1 (en) 2017-06-15 2018-06-11 Battery module, and battery pack and vehicle including same
CN201880004176.0A CN109923695B (zh) 2017-06-15 2018-06-11 电池模块以及包括该电池模块的电池组和车辆
JP2019529564A JP7027638B2 (ja) 2017-06-15 2018-06-11 バッテリーモジュール、それを含むバッテリーパック及び自動車
US16/336,337 US11011802B2 (en) 2017-06-15 2018-06-11 Battery module with short-circuit unit, and battery pack and vehicle including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170076020A KR102201347B1 (ko) 2017-06-15 2017-06-15 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
KR10-2017-0076020 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230907A1 true WO2018230907A1 (ko) 2018-12-20

Family

ID=64660968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006604 WO2018230907A1 (ko) 2017-06-15 2018-06-11 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차

Country Status (7)

Country Link
US (1) US11011802B2 (ko)
EP (1) EP3540823B1 (ko)
JP (1) JP7027638B2 (ko)
KR (1) KR102201347B1 (ko)
CN (1) CN109923695B (ko)
PL (1) PL3540823T3 (ko)
WO (1) WO2018230907A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102163656B1 (ko) 2017-06-27 2020-10-08 주식회사 엘지화학 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
US11063320B2 (en) * 2019-01-08 2021-07-13 Lg Chem, Ltd. Terminal busbar
KR20210064844A (ko) * 2019-11-26 2021-06-03 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
EP4222809A1 (en) * 2020-10-02 2023-08-09 Blue Solutions Canada Inc. Energy storage unit having a rack assembly and a plurality of battery modules

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130043258A (ko) * 2011-10-20 2013-04-30 주식회사 엘지화학 안전성이 향상된 전지팩
KR20140028943A (ko) * 2012-08-31 2014-03-10 주식회사 엘지화학 안전성이 향상된 이차전지
KR20140039451A (ko) * 2012-09-24 2014-04-02 주식회사 엘지화학 자동 전자 개폐기를 적용한 전지팩
KR101449307B1 (ko) * 2013-06-28 2014-10-08 현대자동차주식회사 배터리 안전장치
KR20160026469A (ko) * 2014-09-01 2016-03-09 에스케이이노베이션 주식회사 저전압 센싱모듈 일체형 버스바를 구비한 배터리모듈
KR20170076020A (ko) 2015-12-24 2017-07-04 주식회사 대유위니아 에어컨

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800937A (en) 1997-05-02 1998-09-01 Motorola, Inc. Current interrupt device for secondary batteries
CA2503505A1 (en) * 2002-10-25 2004-05-06 Rayovac Corporation Method and apparatus for regulating charging of electrochemical cells
JP2004319463A (ja) 2003-03-28 2004-11-11 Matsushita Electric Ind Co Ltd 二次電池
WO2005114811A2 (en) * 2004-05-17 2005-12-01 Railpower Technologies Corp. Design of a large battery pack for a hybrid locomotive
KR100542677B1 (ko) * 2004-06-25 2006-01-11 삼성에스디아이 주식회사 이차 전지
KR100579377B1 (ko) * 2004-10-28 2006-05-12 삼성에스디아이 주식회사 이차 전지
JP5188812B2 (ja) * 2004-12-23 2013-04-24 シーメンス アクチエンゲゼルシヤフト 開閉装置を安全に作動させる方法および装置
CN100570928C (zh) * 2005-09-07 2009-12-16 株式会社Lg化学 使用安全元件的二次电池
JP5092331B2 (ja) * 2006-09-29 2012-12-05 パナソニック株式会社 鉛蓄電池用エキスパンド格子および鉛蓄電池
CN101012798A (zh) * 2007-01-24 2007-08-08 潍柴动力股份有限公司 一种柴油机电起动装置
US7943252B2 (en) * 2007-11-21 2011-05-17 Lg Chem, Ltd. Battery module of improved safety and middle or large-sized battery pack containing the same
CN201178120Y (zh) * 2008-04-11 2009-01-07 山东电力研究院 移动机器人电池充电连接器
KR101128423B1 (ko) * 2008-04-28 2012-03-23 에스케이이노베이션 주식회사 전기자동차용 2차 전지의 안전 스위치 및 이를 이용한전기자동차용 2차 전지의 충방전 시스템
KR101041153B1 (ko) * 2009-03-04 2011-06-13 에스비리모티브 주식회사 이차전지 및 그 모듈
KR101072955B1 (ko) * 2009-08-14 2011-10-12 에스비리모티브 주식회사 전지 모듈
DE102009050316A1 (de) * 2009-10-16 2011-04-21 Elringklinger Ag Zellverbinder
JP5331085B2 (ja) * 2010-11-09 2013-10-30 三菱重工業株式会社 電池
KR101546545B1 (ko) 2010-12-09 2015-08-24 주식회사 엘지화학 파우치형 리튬이차전지
CN103493255B (zh) 2011-05-17 2015-09-30 株式会社Lg化学 改善的安全性的电池组
KR101359310B1 (ko) * 2011-07-25 2014-02-07 주식회사 엘지화학 안전성이 향상된 전지팩
EP2634835A1 (en) * 2011-12-02 2013-09-04 Hitachi, Ltd. Battery system
KR101404712B1 (ko) * 2012-01-26 2014-06-09 주식회사 엘지화학 안전성이 향상된 전지팩
KR101944837B1 (ko) * 2012-09-28 2019-02-07 에스케이이노베이션 주식회사 이차 전지용 배터리 셀의 과충전 방지장치
KR101428331B1 (ko) 2012-12-27 2014-08-07 현대자동차주식회사 차량용 배터리모듈의 안전장치
SE537191C2 (sv) * 2013-05-31 2015-03-03 Scania Cv Ab Intrinsiskt överladdningsskydd för battericell
KR101449306B1 (ko) * 2013-06-28 2014-10-08 현대자동차주식회사 배터리 과충전 보호장치
US10109444B2 (en) * 2013-12-17 2018-10-23 Siemens Aktiengesellschaft Electronic module for protecting a HVDC converter from current surges of energy discharges from a capacitor of the converter
JP2015118792A (ja) 2013-12-18 2015-06-25 トヨタ自動車株式会社 二次電池モジュール
KR101500222B1 (ko) 2013-12-18 2015-03-06 현대자동차주식회사 배터리 과충전 방지 장치
JP6281398B2 (ja) 2014-04-21 2018-02-21 株式会社豊田自動織機 電池モジュール
WO2015182615A1 (ja) * 2014-05-26 2015-12-03 日本ゴア株式会社 二次電池およびそれに用いるセパレータ
KR20160030688A (ko) 2014-09-11 2016-03-21 주식회사 루트제이드 과전류 차단수단이 구비된 이차전지
KR20170016065A (ko) 2015-08-03 2017-02-13 에스케이이노베이션 주식회사 이차 전지
KR102201344B1 (ko) * 2017-05-26 2021-01-08 주식회사 엘지화학 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130043258A (ko) * 2011-10-20 2013-04-30 주식회사 엘지화학 안전성이 향상된 전지팩
KR20140028943A (ko) * 2012-08-31 2014-03-10 주식회사 엘지화학 안전성이 향상된 이차전지
KR20140039451A (ko) * 2012-09-24 2014-04-02 주식회사 엘지화학 자동 전자 개폐기를 적용한 전지팩
KR101449307B1 (ko) * 2013-06-28 2014-10-08 현대자동차주식회사 배터리 안전장치
KR20160026469A (ko) * 2014-09-01 2016-03-09 에스케이이노베이션 주식회사 저전압 센싱모듈 일체형 버스바를 구비한 배터리모듈
KR20170076020A (ko) 2015-12-24 2017-07-04 주식회사 대유위니아 에어컨

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540823A4

Also Published As

Publication number Publication date
CN109923695B (zh) 2021-11-12
EP3540823B1 (en) 2020-10-21
EP3540823A4 (en) 2020-05-06
PL3540823T3 (pl) 2021-01-25
KR20180136803A (ko) 2018-12-26
US20190245186A1 (en) 2019-08-08
JP2020501312A (ja) 2020-01-16
KR102201347B1 (ko) 2021-01-08
US11011802B2 (en) 2021-05-18
CN109923695A (zh) 2019-06-21
EP3540823A1 (en) 2019-09-18
JP7027638B2 (ja) 2022-03-02

Similar Documents

Publication Publication Date Title
KR102201342B1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2021107336A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2019004632A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2019156390A1 (ko) 전류 차단부를 구비한 버스바 및 그것을 포함한 배터리 모듈
WO2018217040A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
EP2212941B1 (en) Battery module of improved safety and middle or large-sized battery pack containing the same
WO2018230907A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2019059538A1 (ko) 가이드 결합 구조를 포함한 배터리 모듈 및 그것을 포함한 배터리 팩
WO2012161423A1 (ko) 안전성이 향상된 전지팩
WO2013111978A1 (ko) 안전성이 향상된 전지팩
WO2019124876A1 (ko) 버스바 어셈블리를 구비한 배터리 모듈
WO2009157676A9 (ko) 안전성이 향상된 중대형 전지팩
WO2019245214A1 (ko) 이차 전지 및 버스바를 포함한 배터리 모듈
WO2013015524A1 (ko) 안전성이 향상된 전지팩
WO2018225920A1 (ko) 배터리 모듈
KR20060116424A (ko) 안전 시스템을 구비한 중대형 전지팩
WO2014185662A1 (ko) 과전류 차단 장치 및 이를 포함하는 이차전지 시스템
WO2019045238A1 (ko) 커넥터 파단 장치를 구비하는 배터리 모듈
WO2013039298A1 (ko) 이차전지용 부품 및 그 제조 방법, 및 상기 부품을 사용하여 제조된 이차전지와 조립 이차전지 장치
WO2018186659A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2021118028A1 (ko) 인근 모듈로의 가스 이동을 방지할 수 있는 전지 모듈
KR102249457B1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
KR102250180B1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2018221836A1 (ko) 배터리 팩 및 이의 제조방법
WO2021107318A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529564

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018817230

Country of ref document: EP

Effective date: 20190613

NENP Non-entry into the national phase

Ref country code: DE