WO2018210027A1 - 一种柔性石墨烯纤维及其连续化制备方法 - Google Patents

一种柔性石墨烯纤维及其连续化制备方法 Download PDF

Info

Publication number
WO2018210027A1
WO2018210027A1 PCT/CN2018/077328 CN2018077328W WO2018210027A1 WO 2018210027 A1 WO2018210027 A1 WO 2018210027A1 CN 2018077328 W CN2018077328 W CN 2018077328W WO 2018210027 A1 WO2018210027 A1 WO 2018210027A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
graphene
fiber
flexible
fibers
Prior art date
Application number
PCT/CN2018/077328
Other languages
English (en)
French (fr)
Inventor
高超
许震
肖友华
Original Assignee
杭州高烯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州高烯科技有限公司 filed Critical 杭州高烯科技有限公司
Publication of WO2018210027A1 publication Critical patent/WO2018210027A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • the invention relates to the field of preparation of nano materials, in particular to a flexible graphene fiber and a continuous preparation method thereof.
  • Graphene is a two-dimensional crystal material composed of a single atomic layer, which has excellent electrical properties (electron mobility at room temperature up to 2 ⁇ 10 5 cm 2 /Vs), outstanding thermal conductivity of 5000 W / (MK), extraordinary The specific surface area (2630M 2 /g), its Young's modulus (1100GPa) and breaking strength (125GPa), etc., make its application prospects very broad. Since the preparation of graphene fibers was first reported in 2011 (Nat. Commun. 2011, 2, 571), the preparation and functionalization of graphene fibers has become a hot research topic. Although graphene fibers have been prepared, the reported graphene fibers are less flexible. In 2016, graphene fibers with the strongest strength of 2.2 GPa were reported (Adv. Mater. 2016, 28, 6449), but The tensile elongation at break is less than 1%, showing very poor flexibility and almost no requirement for fiber weaving.
  • the patent (application number: 201510000105.1) is mainly based on CVD method, high temperature loading of graphene film under copper foil catalysis, separation and twisting to obtain graphene fiber; patent ( Application No.: 201510000113.6) The graphene oxide film is mainly cut and twisted into graphene fibers; the patent (201610049453.2, 201610049310.1) is mainly based on the graphene film which has been reduced to obtain graphene fibers.
  • Graphene film is a macroscopic application form of graphene.
  • most of the current flexible graphene films are based on the shrinkage of the stretched polymer substrate to control the macroscopic undulation wrinkles of the graphene film or to prepare the corresponding structure of the graphene film based on the surface structure of the substrate. It does not assemble the macroscopic graphene film by controlling the state of the graphene monolith, which is not spontaneously generated. In the process of twisting, tensile twisting is produced. When the film is twisted, the micro-sheet is less flexible, and defects are easily generated, resulting in a serious decrease in the strength of the fiber as a whole. More importantly, the traditional method for preparing graphene film wrinkles selects a polymer base material, which is often limited in application due to the need to pre-stretch or surface treat the polymer substrate.
  • the invention is based on the two-dimensional macromolecule, based on the treatment of the poor solvent, so that the graphene oxide sheet collapses and wrinkles, and the sheet and the sheet overlap each other to form physical cross-linking, gelation, and self-supporting graphene oxide.
  • the gel strip is dried to obtain a continuous graphene oxide strip with rich microscopic and macroscopic folds, which has excellent flexibility and elongation at break of 20-50%; the flexible graphene oxide ribbon is twisted into flexible graphite oxide.
  • the olefin fiber is subjected to reduction and post treatment to obtain a flexible graphene fiber. Therefore, a graphene fiber capable of efficiently and continuously producing both mechanical strength and flexibility can meet the requirements of graphene fiber for better large-scale application.
  • the object of the present invention is to provide a flexible graphene fiber and a continuous preparation method thereof in view of the deficiencies of the prior art.
  • the object of the present invention is achieved by the following technical solutions: a flexible graphene fiber obtained by twisting a graphene oxide ribbon into a flexible graphene oxide fiber, and further obtaining the graphite oxide;
  • the olefinic band is formed by lapped graphene oxide sheets bonded to each other with a crystallinity of less than 60%.
  • a method for continuously preparing flexible graphene fibers comprising the following steps:
  • the graphene oxide is dissolved in a polar solvent to obtain a graphene oxide liquid crystal solution having a concentration of 1 to 30 mg/mL.
  • the continuous graphene oxide ribbon is twisted by a twisting device to obtain a flexible graphene fiber after reduction.
  • the polar solvent is selected from the group consisting of: N,N-dimethylformamide, water, N-methylpyrrolidone, dimethyl sulfoxide, N,N-dimethylacetamide, and the like. One or more of them are mixed in any ratio.
  • the poor solvent coagulation bath is selected from the group consisting of: ethyl acetate, dichloromethane, alkanes, methanol, ethanol, n-butanol, ethylene glycol, propylene glycol, glycerol, isobutanol, methyl acetate
  • butyl acetate, acetic acid and the like are mixed in any ratio.
  • step 3 by adjusting the collection speed of the roller shaft, a graphene oxide strip having a draw ratio of 1:1 to 5:1 and an orientation degree of more than 50% can be obtained, and the strength of the highly oriented graphene oxide strip can be obtained. Up to 200MPa.
  • the reduction mode is selected from the group consisting of chemical reduction, thermal reduction, electroreduction, and the like.
  • the graphene oxide fiber is immersed in an aqueous solution of hydriodic acid and heated at 70-100 ° C for 5-24 h.
  • the method further comprises post-treating the flexible graphene fiber obtained after the reduction, the post-treatment comprising one or more simultaneous treatments such as heat treatment, electroplating treatment, sizing treatment, doping treatment, and the like.
  • the heat treatment is heating, annealing, etc.;
  • the electroplating treatment is mainly to electroplate metal on the surface of the fiber, including gold, silver, copper, etc.;
  • the sizing treatment is mainly to coat the surface of the fiber with a polymer coating;
  • the doping treatment is mainly Elements such as K, Ca, Br, N, P, B, Li, Be, Na are incorporated by doping techniques.
  • the graphene fiber is heat-treated at 3000 ° C to obtain graphitized graphene fiber.
  • the present invention utilizes the interaction of a good solvent and a poor solvent to construct a continuous graphene ribbon having microscopic and macroscopic multi-stage pleats, which has excellent flexibility and resistance to certain stretching and bending.
  • the flexible graphene ribbon is twisted into continuous flexible graphene oxide fibers, and reduced and post-treated to obtain flexible graphene fibers. It combines mechanical strength and elongation at break, while providing excellent electrical and thermal conductivity. After testing, the mechanical strength can reach 30-150MPa, the elongation at break is 10-100%, the electrical conductivity is 2X10 4 -5X10 5 S/m, and the thermal conductivity is 200-1000W/(MK).
  • Such flexible graphene fibers can be used to prepare graphene fabrics, and have important applications in various fields such as the garment industry (such as electric heating clothes) and lightweight wires.
  • Figure 1 is a schematic view showing the preparation of flexible continuous graphene fibers
  • Figure 2 is a SEM (A) and a cross-sectional view (B) of a flexible graphene oxide strip treated with a poor solvent;
  • Figure 3 is an external view of the flexible graphene fiber obtained by twisting
  • Figure 4 is a tensile curve of flexible graphene fibers
  • Figure 5 is an I-V test chart of flexible graphene fibers
  • Figure 6 is a flexible graphene oxide tape having a draw ratio of 1:2;
  • Figure 7 is an XRD pattern of two fibers prepared in Example 4 and Example 5.
  • the invention is based on the industrialized graphene oxide as a raw material, and uses a gelation of a poor solvent to continuously prepare a flexible graphene ribbon having microscopic and macroscopic folds, an elongation at break of 20-50%, and a strength of 20-200 MPa; further flexible graphite alkylene oxide to obtain twisted fibers, obtained by the reduction was treated alkenyl flexible graphite fibers, have been tested, the mechanical strength of up to 30-150MPa, elongation at break of 10-100%, a conductivity of 2 ⁇ 10 4 - 5 ⁇ 10 5 S / m, thermal conductivity of 200-1000W / (MK).
  • the invention can efficiently and continuously prepare the graphene fiber which has both mechanical strength and flexibility, and can better meet the requirements of the graphene fiber for better large-scale application.
  • the present invention extrudes a graphene liquid crystal solution through a rectangular spinning die device and solidifies through a poor solvent coagulation bath, and a good solvent of the liquid GO film is replaced by a poor solvent, resulting in shrinkage collapse of the graphene oxide sheet.
  • the GO sheets are wrinkled and overlapped with each other, similar to the crosslinked polymer to form a crosslinked network, thereby constructing an amorphous (amorphous) GO band, which is further collected and dried by a drying roller, and the solvent is volatilized during the drying process. Under capillary action, refolding occurs in macroscopic morphology, thereby obtaining a continuous flexible graphene oxide ribbon.
  • This microscopic and macroscopic multi-stage pleats give the graphene tape excellent flexibility and resistance to certain stretching and bending. It has been tested to have a crystallinity of less than 60%, even less than 30%, and an elongation at break of 20 to 50%.
  • the flexible graphene fibers are obtained by twisting, reduction and post-treatment by a twisting device.
  • a continuous liquid graphene oxide ribbon was prepared by placing an aqueous solution of graphene oxide at a concentration of 10 mg/mL in a rectangular spinning die apparatus.
  • the graphene oxide gel band is formed by solidification in an ethyl acetate coagulation bath.
  • the continuous flexible graphene oxide ribbon is obtained by drawing without drying on the drying roller shaft (as shown in Fig. 2).
  • the surface of the graphene strip has a very rich pleat structure, and the curved undulation of the cross-sectional view also indicates that the graphene sheet is not regularly deposited, and thus the graphene strip is a full wrinkle from the inside to the outside.
  • the belt has a crystallinity of 23% and an elongation at break of 18%, and folds are repeated for more than 100,000 times without leaving creases.
  • the continuous graphene oxide ribbon is twisted by a twisting device to obtain flexible graphene oxide fibers (as shown in FIG. 3).
  • the graphene oxide fiber was reduced by aqueous hydriodic acid solution at 80 ° C for 10 h, washed and dried to obtain a graphene fiber.
  • the tensile curve is as shown in Fig. 4, and the elongation at break is about 85%, and the strength is about 60 MPa.
  • the CV curve is as shown in Fig. 5, and the electric conductivity is about 2.5 ⁇ 10 4 S/m, and the thermal conductivity is 200 W / (MK).
  • a N-methylpyrrolidone solution having a concentration of 5 mg/mL of graphene oxide was placed in a rectangular spinning apparatus to prepare a continuous liquid graphene oxide ribbon.
  • the graphene oxide gel band is formed by solidification in an ethanol coagulation bath.
  • the graphene oxide fiber obtained by adding a continuous graphene oxide ribbon by a twisting device.
  • the graphene oxide fiber was reduced by aqueous hydriodic acid solution at 85 ° C for 8 h, washed and dried to obtain a graphene fiber.
  • the elongation at break is about 40% and the strength is about 150 MPa.
  • the electrical conductivity is about 2 x 10 5 S/m and the thermal conductivity is 800 W/(MK).
  • the graphene oxide fiber obtained by adding a continuous graphene oxide ribbon by a twisting device.
  • the graphene oxide fiber is reduced by a hydroiodic acid aqueous solution at 70 ° C for 15 h, washed and dried to obtain a graphene fiber.
  • the graphene fiber is graphitized at a high temperature of 3000 ° C and then coated with a polymer (PS) coating, and has an elongation at break of about 100% and a strength of about 110 MPa.
  • the electrical conductivity is about 1.5 x 10 5 S/m and the thermal conductivity is 600 W/(MK).
  • the continuous graphene fiber prepared by the poor solvent gelation treatment has good flexibility, the elongation at break is as high as 100%, and the strength is also up to 150 MPa, which is good. Meet the requirements of taking weaving.
  • a graphene oxide DMF solution having a concentration of 15 mg/mL was placed in a rectangular spinning die apparatus to prepare a 20 cm liquid graphene oxide ribbon.
  • the graphene oxide gel band is formed by solidification in an ethyl acetate coagulation bath.
  • the continuous flexible graphene oxide strip was obtained by drawing without drying on the drying roller shaft, and its crystallinity was 22%.
  • the elongation at break in the mechanical tensile test was 15%, and the fold was repeated for more than 100,000 times without leaving a fold. mark.
  • the continuous graphene oxide ribbon is twisted by a twisting device to obtain a flexible graphene oxide fiber.
  • the graphene oxide fiber is reduced by a hydroiodic acid aqueous solution at 90 ° C for 10 h, and washed and dried to obtain a flexible graphene fiber. It has an elongation at break of about 80% and a strength of about 75 MPa.
  • a graphene oxide DMF solution having a concentration of 15 mg/mL was placed in a rectangular spinning die apparatus to prepare a liquid graphene oxide strip of 20 cm in length.
  • the graphene oxide ribbon is formed by direct drying at 80 ° C, and the elongation at break is 2%, and the crystallinity is 80%.
  • the graphene oxide ribbon is twisted by a twisting device to obtain graphene oxide fibers.
  • the graphene oxide fiber is reduced by a hydroiodic acid aqueous solution at 90 ° C for 10 h, and washed and dried to obtain a graphene fiber. It has an elongation at break of about 8% and a strength of about 30 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明公开了一种柔性石墨烯纤维及其连续化制备方法,该方法是将具有宏观和微观褶皱的氧化石墨烯带(断裂伸长率为20-50%,强度为20-200MPa)经加捻得到连续的柔性氧化石墨烯纤维,进一步经还原得到柔性石墨烯纤维;其兼具良好的力学强度和优异的柔性,同时具有很好的导电性能和导热性能;其断裂伸长率为10-100%,强度为30-150MPa,导电率为2×10 4-5×10 5S/m,导热率为200-1000W/(MK)。这种柔性石墨烯纤维可以用于制备石墨烯织物,具有良好的服用优势。在服装行业(电热服等),轻质导线等多个领域具有重要应用。

Description

一种柔性石墨烯纤维及其连续化制备方法 技术领域
本发明涉及纳米材料制备领域,特别是一种柔性石墨烯纤维及其连续化制备方法。
背景技术
石墨烯是由单原子层构成的二维晶体材料,其有优异的电学性能(室温下电子迁移率可达2×10 5cm 2/Vs),突出的导热性能5000W/(MK),超常的比表面积(2630M 2/g),其杨氏模量(1100GPa)和断裂强度(125GPa)等,使得其应用前景十分广阔。2011年首次报道了石墨烯纤维的制备以来(Nat.Commun.2011,2,571),石墨烯纤维的制备及其功能化已成为当前的研究热点。虽然目前已有制备得到的石墨烯纤维,但是报道的石墨烯纤维的柔性较差,2016年报道了强度最强达到2.2GPa的石墨烯纤维(Adv.Mater.2016,28,6449),但其拉伸断裂伸长率不到1%,显示了非常差的柔性,几乎无法满足纤维编织的要求。
与现有报道的加捻而成的纯石墨烯纤维对比,专利(申请号:201510000105.1)主要是基于CVD法在铜箔催化下高温负载石墨烯薄膜,经分离加捻得到石墨烯纤维;专利(申请号:201510000113.6)主要是将氧化石墨烯薄膜分切,加捻成石墨烯纤维;专利(201610049453.2,201610049310.1)主要是基于已经还原的石墨烯膜卷绕得到石墨烯纤维。
石墨烯膜是石墨烯的一个宏观应用形式。然而,目前的柔性石墨烯膜大都基于拉伸的高分子基底的收缩来控制石墨烯膜的宏观起伏褶皱或者基于基底的表面结构来制备相应结构的石墨烯膜。其不是通过控制石墨烯单片的状态来组装宏观石墨烯膜,这种褶皱不是自发产生的。在加捻过程中,会产生拉伸扭曲的作用,这种膜加捻处理时由于微观单片的柔性较差,很容易产生缺陷,导致纤维整体的强度下降严重。更重要的是,传统制备石墨烯膜褶皱的方法选择了高分子基底材料,由于需要对高分子基底进行预拉伸或表面处理,其在应用方面往往受到了很大的限制。
本发明从二维大分子的角度,基于不良溶剂处理,使得氧化石墨烯片塌缩褶皱,片与片之间相互搭接,形成物理交联,发生凝胶化,得到自支撑的氧化石墨烯凝胶带,经干燥得到了具有丰富微观和宏观褶皱的连续氧化石墨烯带,其具有极好的柔性,断裂伸长率20~50%;柔性的氧化石墨烯带经加捻成柔性氧 化石墨烯纤维,经还原和后处理得到柔性石墨烯纤维。因此一种能够高效连续制备兼具力学强度和柔性的石墨烯纤维更能满足石墨烯纤维的服用要求,以便更好的大规模应用。
发明内容
本发明的目的在于针对现有技术的不足,提供一种柔性石墨烯纤维及其连续化制备方法。
本发明的目的是通过以下技术方案实现的:一种柔性石墨烯纤维,所述柔性石墨烯纤维由氧化石墨烯带经加捻成柔性氧化石墨烯纤维,进一步经还原后得到;所述氧化石墨烯带由褶皱的氧化石墨烯片相互搭接而成,结晶度低于60%。
一种柔性石墨烯纤维的连续化制备方法,包括以下步骤:
(1)将氧化石墨烯溶于极性溶剂中,得到氧化石墨烯液晶溶液,浓度为1-30mg/mL。
(2)氧化石墨烯液晶溶液通过矩形的纺丝模头挤出,经过不良溶剂凝固浴凝固形成自支撑的氧化石墨烯凝胶带。
(3)经干燥辊轴收集、干燥,得到连续的多褶皱氧化石墨烯带。
(4)将连续氧化石墨烯带经加捻装置加捻,还原后得到柔性石墨烯纤维。
进一步地,步骤1中,所述极性溶剂选自:N,N-二甲基甲酰胺,水,N-甲基吡咯烷酮,二甲亚砜,N,N-二甲基乙酰胺等中的一种或者多种按任意配比混合而成。
进一步地,步骤2中,不良溶剂凝固浴选自:乙酸乙酯,二氯甲烷,烷烃类,甲醇,乙醇,正丁醇,乙二醇,丙二醇,丙三醇,异丁醇,乙酸甲酯,乙酸丁酯,乙酸等中的一种或者多种按照任意比例混合而成。
进一步地,步骤3中,可通过调节辊轴的收集速度,得到牵伸比为1:1到5:1,取向度大于50%的氧化石墨烯带,高取向的氧化石墨烯带的强度可达200MPa。
进一步地,步骤4中,还原方式选自化学还原、热还原、电还原等。例如:将氧化石墨烯纤维浸泡在氢碘酸水溶液中,于70-100℃下加热5-24h。
进一步地,还包括对还原后得到的柔性石墨烯纤维进行后处理,所述后处理包括热处理,电镀处理,上浆处理,掺杂处理等一种或几种同时处理。
进一步地,所述热处理是加热、退火等处理;电镀处理主要是在纤维表面电镀金属,包括金、银、铜等;上浆处理主要是在纤维表面涂覆高分子涂层; 掺杂处理主要是通过通过掺杂技术掺入K,Ca,Br,N,P,B,Li,Be,Na等元素。例如:将的石墨烯纤维经3000℃热处理得到石墨化的石墨烯纤维。
本发明的有益效果:本发明利用良溶剂和不良溶剂的相互作用,构建了具有微观、宏观多级褶皱的连续石墨烯带,具有极好的柔性,耐一定的拉伸和弯折。并将这种柔性石墨烯带加捻成连续的柔性氧化石墨烯纤维,经还原和后处理得到柔性石墨烯纤维。其兼具了力学强度和断裂伸长率,同时具有优异的导电和导热性能。经测试,其力学强度可达30-150MPa,断裂伸长率为10-100%,导电率为2X10 4-5X10 5S/m,导热率为200-1000W/(MK)。这种柔性石墨烯纤维可用于制备石墨烯织物,在服装行业(如电热服等),轻质导线等多个领域具有重要的应用。
附图说明
图1柔性连续石墨烯纤维的制备示意图;
图2经不良溶剂处理的柔性氧化石墨烯带SEM(A)和截面图(B);
图3加捻得到的柔性石墨烯纤维的外观图;
图4柔性石墨烯纤维的拉伸曲线;
图5柔性石墨烯纤维的I-V测试图;
图6牵伸比为1:2的柔性氧化石墨烯带;
图7为实施例4和实施例5制备的两种纤维的XRD图。
具体实施方式
本发明基于已工业化的氧化石墨烯为原料,利用不良溶剂的凝胶化作用,连续制备具有微观、宏观褶皱的柔性石墨烯带,断裂伸长率20-50%,强度为20-200MPa;进一步加捻得到柔性氧化石墨烯纤维,经还原和后处理得到柔性石墨烯纤维,经测试,其力学强度可达30-150MPa,断裂伸长率为10-100%,导电率为2×10 4-5×10 5S/m,导热率为200-1000W/(MK)。其避免了贵金属高温催化,避免了薄膜分切加捻很难实现足够长度的石墨烯纤维的缺点。本发明能够高效连续制备兼具力学强度和柔性的石墨烯纤维更能满足石墨烯纤维的服用要求,以便更好的大规模应用。
如图1所示,本发明将石墨烯液晶溶液经过矩形纺丝模头装置挤出,经不良溶剂凝固浴凝固,液态GO膜的良溶剂被不良溶剂置换,导致氧化石墨烯片发生收缩坍塌,GO片发生褶皱,相互搭接,类似交联高分子形成交联网络,从而构建出不定形态(非晶态)的GO带,进一步经干燥辊轴收集、干燥,在干 燥过程中,不良溶剂挥发,在毛细管作用下,宏观形态上发生再褶皱,从而得到连续的柔性氧化石墨烯带。这种微观和宏观的多级褶皱赋予了石墨烯带具有极好的柔性,耐一定的拉伸和弯折。经测试,其结晶度低于60%,甚至达到30%以下,断裂伸长率20~50%。通过加捻装置加捻,还原和后处理得到柔性石墨烯纤维。
下面结合附图及实施例对本发明作进一步的描述,本实施例只用于对本发明作进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据上述发明的内容作出一些非本质的改变和调整,均属于本发明的保护范围。
实施例1:
1、将浓度为10mg/mL的氧化石墨烯水溶液置于矩形纺丝模头装置中制备连续的液态氧化石墨烯带。
2、经乙酸乙酯凝固浴凝固形成氧化石墨烯凝胶带。
3、经干燥辊轴无牵伸收集得到连续的柔性氧化石墨烯带(如图2所示)。其中石墨烯带表面具有很丰富的褶皱结构,同时截面图的弯曲起伏也说明了石墨烯片不是规整堆积的,由此可知石墨烯带是由内而外的全面褶皱。其带的结晶度为23%,断裂伸长率为18%,反复对折10万次以上未留下折痕。
4、连续的氧化石墨烯带经加捻装置加捻得到柔性的氧化石墨烯纤维(如图3所示)。
5、将氧化石墨烯纤维经氢碘酸水溶液80℃还原10h,洗涤干燥,得到石墨烯纤维。其拉伸曲线如图4所示,断裂伸长率约85%,强度约60MPa。其C-V曲线如图5所示,导电率为约为2.5×10 4S/m,导热率为200W/(MK)。
实施例2:
1、将浓度为5mg/mL的氧化石墨烯的N-甲基吡咯烷酮溶液置于矩形纺丝装置中制备连续的液态氧化石墨烯带。
2、经乙醇凝固浴凝固形成氧化石墨烯凝胶带。
3、经干燥辊轴1:2牵伸收集得到连续的氧化石墨烯带(如图6所示),其膜的结晶度为40%,断裂伸长率为18%,反复对折10万次以上未留下折痕。
4、连续的氧化石墨烯带经加捻装置加捻得到的氧化石墨烯纤维。
5、将氧化石墨烯纤维经氢碘酸水溶液85℃还原8h,洗涤干燥,得到石墨烯纤维。
6、将石墨烯纤维经由3000℃高温石墨化处理后,其断裂伸长率约40%,强 度约150MPa。导电率为约为2×10 5S/m,导热率为800W/(MK)。
实施例3:
1、将浓度为15mg/mL的氧化石墨烯的N,N-二甲基甲酰胺溶液置于矩形纺丝装置中制备连续的液态氧化石墨烯纤维。
2、经正丁醇凝固浴凝固形成氧化石墨烯凝胶带。
3、经干燥辊轴1:1牵伸收集得到连续的氧化石墨烯带,其结晶度为21%,断裂伸长率为31%,反复对折10万次以上未留下折痕。
4、连续的氧化石墨烯带经加捻装置加捻得到的氧化石墨烯纤维。
5、将氧化石墨烯纤维经氢碘酸水溶液70℃还原15h,洗涤干燥,得到石墨烯纤维。
6、将石墨烯纤维经由3000℃高温石墨化处理后再经高分子(PS)涂层包裹,其断裂伸长率约100%,强度约110MPa。导电率为约为1.5×10 5S/m,导热率为600W/(MK)。
从以上实施例1-3可以看出,经不良溶剂凝胶化处理制备连续的石墨烯纤维具有很好的柔性,断裂伸长率高达100%;同时其强度也达到了150MPa,能够很好地满足服用编织要求。
实施例4:
1、将浓度为15mg/mL的氧化石墨烯DMF溶液置于矩形纺丝模头装置中制备20cm的液态氧化石墨烯带。
2、经乙酸乙酯凝固浴凝固形成氧化石墨烯凝胶带。
3、经干燥辊轴无牵伸收集得到连续的柔性氧化石墨烯带,其结晶度为22%,机械拉伸试验中的断裂伸长率为15%,反复对折10万次以上未留下折痕。
4、连续的氧化石墨烯带经加捻装置加捻得到柔性的氧化石墨烯纤维。
5、将氧化石墨烯纤维经氢碘酸水溶液90℃还原10h,洗涤干燥,得到柔性石墨烯纤维。其断裂伸长率约80%,强度约75MPa。
实施例5:
1、将浓度为15mg/mL的氧化石墨烯DMF溶液置于矩形纺丝模头装置中制备20cm长的液态氧化石墨烯带。
2、经直接80℃干燥形成氧化石墨烯带,其断裂伸长率为2%,结晶度为80%。
3、氧化石墨烯带经加捻装置加捻得到氧化石墨烯纤维。
4、将氧化石墨烯纤维经氢碘酸水溶液90℃还原10h,洗涤干燥,得到石墨烯纤维。其断裂伸长率约8%,强度约30MPa。
从实施例4和实施例5对比可以看出,经由不良溶剂凝胶化处理制备得到的具有微观、宏观褶皱的石墨烯带具有非常好的柔性优势,其相应经过加捻、还原得到的石墨烯纤维也兼具很好的力学强度和柔性。另一个常规的石墨烯带的断裂伸长率只有2%左右,经加捻还原得到的石墨烯纤维也不具有很好的柔性和力学强度。图7的XRD衍射对比图很明显说明了经由不良溶剂浸泡处理的石墨烯纤维的结晶性很低。因为石墨烯片在不良溶剂中的收缩褶皱和凝胶带在干燥过程中溶剂挥发而引起的收缩均会导致石墨烯带的宏观收缩。而未经不良溶剂浸泡处理堆积规整的石墨烯纤维具有较高的结晶峰,类似于结晶性高分子。

Claims (8)

  1. 一种柔性石墨烯纤维,其特征在于,所述柔性石墨烯纤维由氧化石墨烯带经加捻成柔性氧化石墨烯纤维,进一步经还原后得到;所述氧化石墨烯带由褶皱的氧化石墨烯片相互搭接而成,结晶度低于60%。
  2. 一种柔性石墨烯纤维的连续化制备方法,其特征在于,包括以下步骤:
    (1)将氧化石墨烯溶于极性溶剂中,得到氧化石墨烯液晶溶液,浓度为1-30mg/mL;
    (2)氧化石墨烯液晶溶液通过矩形的纺丝模头挤出,经过不良溶剂凝固浴凝固形成自支撑的氧化石墨烯凝胶带;
    (3)经干燥辊轴收集、干燥,得到连续的多褶皱氧化石墨烯带;
    (4)将连续氧化石墨烯带经加捻装置加捻,还原后得到柔性石墨烯纤维。
  3. 如权利要求2中所述的方法,其特征在于:步骤1中,所述极性溶剂选自:N,N-二甲基甲酰胺,水,N-甲基吡咯烷酮,二甲亚砜,N,N-二甲基乙酰胺中的一种或者多种按任意配比混合而成。
  4. 如权利要求2中所述的方法,其特征在于:步骤2中,不良溶剂凝固浴选自:乙酸乙酯,二氯甲烷,烷烃类,甲醇,乙醇,正丁醇,乙二醇,丙二醇,丙三醇,异丁醇,乙酸甲酯,乙酸丁酯,乙酸中的一种或者多种按照任意比例混合而成。
  5. 如权利要求2中所述的方法,其特征在于:步骤3中,可通过调节辊轴的收集速度,得到牵伸比为1:1到5:1,取向度大于50%的氧化石墨烯带,高取向的氧化石墨烯带的强度可达200MPa。
  6. 如权利要求2中所述的方法,其特征在于:步骤4中,还原方式选自化学还原、热还原、电还原。
  7. 如权利要求2所述的方法,其特征在于,还包括对还原后得到的柔性石墨烯纤维进行后处理,所述后处理选自热处理,电镀处理,上浆处理,掺杂处理中一种或几种同时处理。
  8. 如权利要求7所述的方法,其特征在于:所述热处理选自加热、退火;电镀处理主要是在纤维表面电镀金属;上浆处理主要是在纤维表面涂覆高分子涂层;掺杂处理主要是通过掺杂技术掺入K,Ca,Br,N,P,B,Li,Be或Na。
PCT/CN2018/077328 2017-05-19 2018-02-27 一种柔性石墨烯纤维及其连续化制备方法 WO2018210027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710360799.9 2017-05-19
CN201710360799.9A CN107151835B (zh) 2017-05-19 2017-05-19 一种柔性石墨烯纤维及其连续化制备方法

Publications (1)

Publication Number Publication Date
WO2018210027A1 true WO2018210027A1 (zh) 2018-11-22

Family

ID=59793135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077328 WO2018210027A1 (zh) 2017-05-19 2018-02-27 一种柔性石墨烯纤维及其连续化制备方法

Country Status (2)

Country Link
CN (1) CN107151835B (zh)
WO (1) WO2018210027A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102284825B1 (ko) * 2017-04-11 2021-08-02 항저우 고우시 테크놀로지 컴퍼니 리미티드 플렉시블 그래핀 필름 및 그 제조방법
CN107151835B (zh) * 2017-05-19 2019-07-23 杭州高烯科技有限公司 一种柔性石墨烯纤维及其连续化制备方法
CN107502995B (zh) * 2017-08-08 2019-08-16 杭州高烯科技有限公司 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
CN107804839B (zh) * 2017-11-28 2019-12-10 航天特种材料及工艺技术研究所 一种高弹性石墨烯气凝胶及其制备方法
CN108625161A (zh) * 2018-04-26 2018-10-09 五邑大学 氧化石墨烯接枝芳香纤维制造高温导线材料的方法
CN109322009A (zh) * 2018-08-24 2019-02-12 宿迁南航新材料与装备制造研究院有限公司 一种湿法纺丝制备的石墨烯纤维及其制备方法
CN110015659B (zh) * 2019-04-08 2020-11-10 杭州高烯科技有限公司 一种连续电热石墨化辊压设备
CN111218732A (zh) * 2020-03-06 2020-06-02 杭州高烯科技有限公司 一种石墨烯加捻纤维的制备方法
CN112127030A (zh) * 2020-09-22 2020-12-25 杭州高烯科技有限公司 一种加捻自融合石墨烯纤维的制备方法
CN112522796B (zh) * 2020-11-13 2021-09-28 浙江大学 一种纳米纤维及其制备方法
CN115233338B (zh) * 2022-08-04 2024-04-30 浙江大学 一种石墨烯材料的制备方法
CN115748234A (zh) * 2022-11-21 2023-03-07 浙江大学 一种高强石墨烯材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140050920A1 (en) * 2012-08-14 2014-02-20 Nthdegree Technologies Worldwide Inc. Graphene-Based Threads, Fibers or Yarns with Nth-Order Layers and Twisting and Methods of Fabricating Same
CN105648579A (zh) * 2016-03-31 2016-06-08 浙江大学 一种超细石墨烯纤维及其制备方法
EP3040307A1 (en) * 2015-01-05 2016-07-06 The Boeing Company Graphene fiber for aerospace composites
CN105803602A (zh) * 2015-01-02 2016-07-27 中原工学院 石墨烯膜加捻成型法制备石墨烯纤维的方法
CN107151835A (zh) * 2017-05-19 2017-09-12 杭州高烯科技有限公司 一种柔性石墨烯纤维及其连续化制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219797B (zh) * 2014-09-10 2016-01-06 浙江碳谷上希材料科技有限公司 一种石墨烯电热膜
CN105803587B (zh) * 2015-01-02 2017-11-07 中原工学院 流延法制备石墨烯纤维的方法
CN105544016B (zh) * 2016-01-25 2018-02-09 浙江碳谷上希材料科技有限公司 一种超级可拉伸的高导电的石墨烯纤维及其制备方法
CN106702731B (zh) * 2016-12-26 2019-08-20 浙江大学 一种石墨烯-银复合纤维及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140050920A1 (en) * 2012-08-14 2014-02-20 Nthdegree Technologies Worldwide Inc. Graphene-Based Threads, Fibers or Yarns with Nth-Order Layers and Twisting and Methods of Fabricating Same
CN105803602A (zh) * 2015-01-02 2016-07-27 中原工学院 石墨烯膜加捻成型法制备石墨烯纤维的方法
EP3040307A1 (en) * 2015-01-05 2016-07-06 The Boeing Company Graphene fiber for aerospace composites
CN105648579A (zh) * 2016-03-31 2016-06-08 浙江大学 一种超细石墨烯纤维及其制备方法
CN107151835A (zh) * 2017-05-19 2017-09-12 杭州高烯科技有限公司 一种柔性石墨烯纤维及其连续化制备方法

Also Published As

Publication number Publication date
CN107151835B (zh) 2019-07-23
CN107151835A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2018210027A1 (zh) 一种柔性石墨烯纤维及其连续化制备方法
CN110982114B (zh) 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
CN105603582B (zh) 一种高强度连续石墨烯纤维及其制备方法
CN107502995B (zh) 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
CN104451925B (zh) 一种水溶性聚合物/石墨烯复合纤维及其制备方法和应用
CN105648579A (zh) 一种超细石墨烯纤维及其制备方法
JP6004507B2 (ja) グラフェン繊維およびその形成方法
EP2209934B1 (en) Method for production of neat carbon nanotube articles processed from super acid solutions
CN105803602B (zh) 石墨烯膜加捻成型法制备石墨烯纤维的方法
CN110938898B (zh) 一种石墨烯纤维的制备方法
CN105543991B (zh) 一种螺旋结构石墨烯纤维及其制备方法和应用
WO2016151634A1 (ja) π型熱電変換素子のセル直列構造を有する機能性素子及びその作製方法
CN106986335B (zh) 一种柔性氧化石墨烯膜及其制备方法
JP6746782B2 (ja) 柔軟性グラフェン膜およびその製造方法
CN107055517A (zh) 一种柔性石墨烯膜及其制备方法
CN111003703B (zh) 一种结构功能一体化石墨烯材料及其制备方法
Wahab et al. Post-electrospinning thermal treatments on poly (4-methyl-1-pentene) nanofiber membranes for improved mechanical properties
CN113322546B (zh) 一种制备高伸长率石墨烯纤维的方法
KR101704246B1 (ko) 그래핀 옥사이드 및 탄소나노튜브 기반의 도전성 복합 섬유의 제조방법, 이로부터 제조된 복합 섬유 및 이를 포함하는 수퍼커패시터
Lee et al. Effect of collector grounding on directionality of electrospun titania fibers
WO2017045181A1 (zh) 一种金属氧化物宏观纤维及其制备方法
CN113429603A (zh) 一种纤维素/碳纳米管复合薄膜及其制备方法和应用
WO2023179007A1 (zh) 静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途
CN115748234A (zh) 一种高强石墨烯材料的制备方法
Shi et al. Controllable assembly of continuous hollow graphene fibers with robust mechanical performance and multifunctionalities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801894

Country of ref document: EP

Kind code of ref document: A1