WO2018205539A1 - 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用 - Google Patents

一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用 Download PDF

Info

Publication number
WO2018205539A1
WO2018205539A1 PCT/CN2017/111338 CN2017111338W WO2018205539A1 WO 2018205539 A1 WO2018205539 A1 WO 2018205539A1 CN 2017111338 W CN2017111338 W CN 2017111338W WO 2018205539 A1 WO2018205539 A1 WO 2018205539A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
zinc oxide
zinc
porous carbon
dimensional
Prior art date
Application number
PCT/CN2017/111338
Other languages
English (en)
French (fr)
Inventor
杨东杰
王欢
邱学青
楼宏铭
刘伟峰
钱勇
欧阳新平
文思斯
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/318,916 priority Critical patent/US11059031B2/en
Publication of WO2018205539A1 publication Critical patent/WO2018205539A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J35/39
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/36Biochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the technical field of organic/inorganic hybrid materials, and particularly relates to a three-dimensional lignin porous carbon/zinc oxide composite material and its preparation and application in the field of photocatalysis.
  • lignin As the second largest component in plants, lignin is rich in aromatic rings with a three-dimensional network structure. The polymer has a carbon content of more than 50%.
  • lignin and its derivatives have been reported as template-modified zinc oxide nanoparticles.
  • Chinese patent CN 103183372 A published on July 23, 2013, a template method for solid phase preparation of nano zinc oxide. The method is prepared by first preparing alkali lignin by Mannich reaction to obtain ligninamine, and then using the obtained ligninamine as a template, physically grinding and compounding with solid sodium carbonate and zinc salt, and then placing the horse on the horse.
  • the ligninamine in the invention acts only as a template, and the lignin component in the final product is pyrolyzed by high temperature, and the main component carbon element in lignin is not fully utilized.
  • the Chinese invention patent application CN106024423A of the present invention discloses a "lignin-based graphene/zinc oxide hybrid composite material, a preparation method and application thereof", and the invention firstly performs carboxylation graft modification of lignin to improve The dispersibility of lignin in aqueous solution, the modified lignin is compounded with zinc oxalate, and then carbonized to prepare a lignin-based graphene/zinc oxide composite material having a sheet-like graphene structure with a nanometer thickness. .
  • the present invention directly utilizes a high carbon content of lignin and a three-dimensional network structure to prepare a three-dimensional lignin porous carbon/zinc oxide composite material, which is used as a photocatalyst to degrade organic dye contaminants, and can fully utilize a three-dimensional lignin porous carbon structure.
  • the developed interstitial structure adsorbs organic dye contaminants, significantly improves the degradation efficiency and degradation rate of zinc oxide, and has potential application value in the field of photocatalytic degradation of organic pollutants.
  • the primary object of the present invention is to provide a three-dimensional wood. Porous carbon/zinc oxide composite.
  • Another object of the present invention is to provide a method for preparing the above three-dimensional lignin porous carbon/zinc oxide composite material.
  • the method of the invention adopts industrial lignin as a dispersing agent and a carbon source, and prepares a three-dimensional lignin porous carbon/zinc oxide composite material having uniform structure by a two-step method under high temperature conditions, and the raw materials used are easy to obtain, the cost is low, and the industrial production is favorable. .
  • Still another object of the present invention is to provide the use of the above three-dimensional lignin porous carbon/zinc oxide composite material in the field of photocatalysis.
  • a method for preparing a three-dimensional lignin porous carbon/zinc oxide composite material is a two-step method.
  • the first step is to prepare a lignin and zinc oxide precursor composite by a hydrothermal method from a zinc salt, a weak alkali salt and an industrial lignin.
  • a three-dimensional lignin porous carbon/zinc oxide composite was prepared by high temperature calcination of lignin and zinc oxide precursor composite.
  • the amount of each reactant used is as follows:
  • the industrial lignin is selected from the group consisting of wood pulp alkali lignin, bamboo pulp alkali lignin, wheat straw alkali lignin, reed pulp alkali lignin, bagasse alkali lignin, alfalfa grass alkali lignin and biorefinery enzyme. Decomposing at least one of lignin;
  • the zinc salt is at least one of zinc oxalate, zinc acetate, zinc nitrate, zinc chloride, zinc carbonate and zinc sulfate; preferably at least one of zinc oxalate, zinc nitrate and zinc acetate; more preferably nitric acid Zinc.
  • the weak base salt is at least one of sodium oxalate, sodium carbonate and sodium hydrogencarbonate; preferably sodium hydrogencarbonate.
  • the mass concentration of the zinc salt solution in the step (1) is preferably from 20 to 40%.
  • the mass concentration of the weak base salt solution in the step (1) is preferably from 20 to 40%.
  • the industrial lignin After adding the industrial lignin to the zinc oxide precursor as described in the step (2), it is preferably stirred for 10 to 30 minutes to be uniform.
  • the heat preservation in the step (2) is preferably carried out by placing the system in a hydrothermal reaction vessel.
  • the separation and drying described in the step (3) are carried out by suction filtration of the lignin and zinc oxide precursor complex, and the filter cake is dried; more preferably, drying at 40 to 60 ° C for 3 to 6 hours.
  • the invention also provides a three-dimensional lignin porous carbon/zinc oxide composite material prepared by the above method.
  • the composite material has a three-dimensional pore structure, and its structure is regular.
  • the zinc oxide nanoparticles are uniformly embedded in the three-dimensional lignin porous carbon, and are applied to the field of photocatalysis, especially as a photocatalyst for photocatalytic degradation of organic dye pollutants. It can significantly improve the degradation efficiency and degradation rate, and has potential application value in the field of photocatalytic degradation of organic pollutants.
  • the method of the invention uses the cheap industrial lignin as a raw material to make the industrial lignin obtain high value utilization, and the method of the invention has the advantages that the process flow is simple and easy to operate, the cost is low, and the industrial production is suitable.
  • the present invention has the following advantages and beneficial effects:
  • the method of the invention adopts industrial lignin as a dispersing agent and a carbon source, and prepares a three-dimensional lignin porous carbon/zinc oxide composite by two-step calcination under high temperature conditions, and the oxygen-containing group of industrial lignin is removed during the calcination process, and the zinc salt is decomposed. Zinc oxide is formed, leaving a void, and the resulting product is a three-dimensional lignin porous carbon/zinc oxide composite.
  • the method of the invention has the advantages of simple process, easy control, easy availability of raw materials and low production cost, and the obtained three-dimensional lignin porous carbon/zinc oxide composite material has good photocatalytic effect and is suitable for industrial production.
  • Example 1 is a scanning electron micrograph of a three-dimensional lignin porous carbon/zinc oxide composite prepared in Example 2.
  • Example 2 is a transmission electron micrograph of a three-dimensional lignin porous carbon/zinc oxide composite prepared in Example 2.
  • Example 4 is a Raman spectrum of a three-dimensional lignin porous carbon/zinc oxide composite prepared in Example 4.
  • Example 5 is a photocatalytic degradation of a three-dimensional lignin porous carbon/zinc oxide composite prepared in Example 2. The experimental results of the concentration change of Danming B.
  • the crystal structure of the prepared three-dimensional lignin porous carbon/zinc oxide composite was measured by Bruker D8 Advance X-ray powder diffractometer according to the method described in the specification; using LabRAMAramis Micro-Raman spectrometer determines the carbonization effect of lignin in the prepared three-dimensional lignin porous carbon/zinc oxide composite according to the method of the specification; the microstructure of the prepared three-dimensional lignin porous carbon/zinc oxide composite is scanned electron Microscopy (SEM, Merlin, Zeiss) and transmission electron microscopy (TEM, JEM ⁇ 2100F, JEOL) were characterized, and the carbonization effect was characterized by Raman spectroscopy (LabRAMAramis, France).
  • FIG. 3 is an XRD pattern of the three-dimensional lignin porous carbon/zinc oxide composite prepared in Examples 1 to 5. It can be seen from the figure that zinc oxide in the prepared composite material is a typical hexagonal wurtzite structure, and the results show that During the preparation of the hybrid structure, the addition of industrial lignin did not alter the nanostructured crystalline form of zinc oxide.
  • Example 4 is a Raman spectrum of the three-dimensional lignin porous carbon/zinc oxide composite prepared in Example 4. From the figure, the characteristic peak of zinc oxide at 200-400 cm -1 and the characteristic peak D of the carbon material can be seen. G peak, which proves that the three-dimensional lignin porous carbon/zinc oxide composite material has been successfully obtained.
  • Example 5 is an experimental result of the photocatalytic degradation of rhodamine B in the three-dimensional lignin porous carbon/zinc oxide composite prepared in Example 2.
  • Three sets of three-dimensional lignin porous carbon/zinc oxide composite materials prepared in Example 3 were weighed separately. 60mg, 60mg of each group of pure zinc oxide were weighed separately, and the weighed three-dimensional lignin porous carbon/zinc oxide composite and pure zinc oxide were added to 100mL of methyl orange solution with a concentration of 15mg/L. Under the irradiation of simulated sunlight (500W xenon lamp), a group of solutions were taken at intervals to determine the concentration, and a set of blank comparison experiments without adding any catalyst was placed. The experimental results show that the obtained three-dimensional lignin porous carbon/zinc oxide composite has excellent photocatalytic degradation of methyl orange, and its photocatalytic degradation rate is about 5.1 times higher than that of pure zinc oxide.

Abstract

一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用。第一步由锌盐、弱碱盐和工业木质素通过水热法制备木质素与氧化锌前驱体复合物,第二步通过高温锻烧木质素与氧化锌前驱体复合物制备三维木质素多孔碳/氧化锌复合材料。复合材料具有三维孔状结构,其结构规整,氧化锌纳米颗粒均匀的嵌在三维木质素多孔碳纳米片层之间,将其应用于光催化领域,特别是用做光催化剂光催化降解有机染料污染物,可显著提高降解效率和降解速率,在光催化降解有机污染物领域具有潜在的应用价值。

Description

一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用 技术领域
本发明属于有机/无机杂化材料技术领域,特别涉及一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用。
背景技术
针对目前资源和能源紧缺和环境污染的问题,合理地开发可再生资源,合成一些高附加值的功能性环保材料具有重要意义。另一方面,我国是纺织大国,印染工业体系庞大,年产纺织印染废水至少1.5亿吨,而纺织印染废水中含有大量有机污染物,成分复杂,在自然环境下难以自行降解,属于难以处理的工业废水之一。目前以半导体为催化剂,利用光催化氧化降解有机污染物已经成为环境保护科学研究的一个热点。纳米氧化锌具有较宽的禁带宽度,较大的激子束缚能,同时又具有低毒,化学、光学性质稳定,光催化效率高等优良特性,其应用已涉及光电子器件、气体传感器、防晒剂、抗菌材料、光催化等方面,因此在多个领域尤其是光催化领域具有很大的发展潜力。
但氧化锌作为光催化剂降解有机物的过程中,由于载流子的复合等因素,其光催化活性非常低,显著降低了降解的速率和效率。目前已有大量研究表明通过负载适量石墨烯可以有效提高氧化锌的光催化降解效率和速率,Weng B等[Weng,B.Yang,M.Q.Zhang,N.Xu,Y.J.Toward the enhanced photoactivity and photostability of ZnOnanospheres via intimate surface coating with reduced graphene oxide[J].J.Mater.Chem.A 2(2014)9380-9389.]报道了一种通过氧化锡负载到单层石墨烯上制备出结构均一的石墨烯/氧化锌复合材料,将其应用于光催化降解罗丹明B污染物表现出优异的性能。
木质素作为植物中的第二大组分,是富含有芳香环的具有三维网络结构的 高分子,其含碳量高达50%以上。近年来,将木质素及其衍生物作为模板改性氧化锌纳米颗粒的研究已有报道,如中国专利CN 103183372 A 2013年7月23日公布了《一种模板法固相制备纳米氧化锌的方法》,其制备方法是先将碱木质素通过曼尼希反应制备得到木素胺,再将所得木质素胺作为模板,将其与固体碳酸钠和锌盐进行物理研磨复合,然后置于马弗炉中在空气氛围下煅烧,除去木质素胺,得到固体氧化锌纳米颗粒,所制备的氧化锌纳米颗粒的光催化性质有所提高。该发明中的木质素胺仅仅起着模板的作用,最终产品中木质素成分都被高温煅烧裂解了,木质素中的主要成分碳元素没有得到充分利用。
目前石墨烯/氧化锌复合材料存在的不足之处:在制备过程中,使用价格昂贵的石墨烯或氧化石墨烯原料,且需要使用强酸或者强碱对石墨烯或氧化石墨烯进行有效分散,原材料成本太高,限制了其商业应用前景。工业木质素主要来源于造纸制浆和生物炼制产业,我国每年产生约2千万吨,工业木质素高值化利用对于资源和环境具有重要的意义。本发明申请人前期的中国发明专利申请CN106024423A公布了一种《木质素基石墨烯/氧化锌杂化复合材料及制备方法和应用》,该发明首先对木质素进行羧基化接枝改性,提高木质素在水溶液中的分散性,将改性后的木质素与草酸锌进行复合,再将其进行碳化制备具有纳米级厚度的片层类石墨烯结构的木质素基石墨烯/氧化锌复合材料。但是,光催化领域的碳复合材料需要大量且规整的孔道结构,这些孔道结构有利于吸附染料有机污染物,而片层类石墨烯结构缺乏这些大量且规整的孔道结构,不利于其在光催化领域的应用。因此,本发明直接利用木质素高碳含量和三维网络结构制备一种三维木质素多孔碳/氧化锌复合材料,将其用做光催化剂降解有机染料污染物,可充分利用三维木质素多孔碳结构中发达的空隙结构吸附有机染料污染物,显著提高氧化锌的降解效率和降解速率,在光催化降解有机污染物领域具有潜在的应用价值。
发明内容
为了克服上述现有技术中氧化锌在光催化过程中由于载流子复合等因素导致光催化活性降低的缺点与不足,本发明的首要目的在于提供一种三维木质 素多孔碳/氧化锌复合材料。
本发明另一目的在于提供一种上述三维木质素多孔碳/氧化锌复合材料的制备方法。本发明方法采用工业木质素作为分散剂和碳源,通过两步法在高温条件煅烧制备结构均一的三维木质素多孔碳/氧化锌复合材料,使用的原料易于得到,成本低廉,有利于工业化生产。
本发明再一目的在于提供上述三维木质素多孔碳/氧化锌复合材料在光催化领域中的应用。
本发明的目的通过下述方案实现:
一种三维木质素多孔碳/氧化锌复合材料的制备方法,为两步法,第一步由锌盐、弱碱盐和工业木质素通过水热法制备木质素与氧化锌前驱体复合物,第二步通过高温煅烧木质素与氧化锌前驱体复合物制备三维木质素多孔碳/氧化锌复合材料。
具体包括以下步骤:
(1)往锌盐溶液中加入弱碱盐溶液,得到氧化锌前驱液;
(2)往氧化锌前驱液中加入工业木质素,搅拌均匀后,70~150℃保温1~8h,得到木质素与氧化锌前驱体复合物;
(3)将步骤(2)得到的木质素与氧化锌前驱体复合物分离、干燥,研磨成粉,在惰性气体氛围下500~750℃煅烧1.5~3h,得到三维木质素多孔碳/氧化锌复合材料;
以重量分数计,各反应物用量如下:
工业木质素10份;锌盐5~30份;弱碱盐5~30份。
所述的工业木质素选自木浆碱木质素、竹浆碱木质素、麦草浆碱木质素、芦苇浆碱木质素、蔗渣浆碱木质素、龙须草浆碱木质素和生物炼制酶解木质素中的至少一种;
所述的锌盐为草酸锌、醋酸锌、硝酸锌、氯化锌、碳酸锌和硫酸锌中的至少一种;优选为草酸锌、硝酸锌和醋酸锌中的至少一种;更优选为硝酸锌。
所述的弱碱盐为草酸钠、碳酸钠和碳酸氢钠中的至少一种;优选为碳酸氢钠。
步骤(1)中所述锌盐溶液的质量浓度优选为20~40%。
步骤(1)中所述弱碱盐溶液的质量浓度优选为20~40%。
步骤(2)中所述往氧化锌前驱液中加入工业木质素后,优选搅拌10~30min至均匀。
步骤(2)中所述保温优选将体系置于水热反应釜中进行。
步骤(3)中所述的分离、干燥优选将木质素与氧化锌前驱体复合物进行抽滤,滤饼烘干;更优选为在40~60℃下烘干3~6h。
本发明还提供上述方法制备得到的三维木质素多孔碳/氧化锌复合材料。该复合材料具有三维孔状结构,其结构规整,氧化锌纳米颗粒均匀的嵌在三维木质素多孔碳之间,将其应用于光催化领域,特别是用做光催化剂光催化降解有机染料污染物,可显著提高降解效率和降解速率,在光催化降解有机污染物领域具有潜在的应用价值。本发明方法以廉价的工业木质素为原料,使工业木质素得到了高值化利用,且本发明方法具有工艺流程简单易操作,成本低廉以及适合工业化生产等优点。
本发明相对于现有技术,具有如下的优点及有益效果:
本发明方法采用工业木质素作为分散剂和碳源,通过两步法在高温条件煅烧制备三维木质素多孔碳/氧化锌复合材料,煅烧过程中工业木质素的含氧基团去除,锌盐分解成氧化锌,留下空隙,生成的产物为三维木质素多孔碳/氧化锌复合材料。本发明方法流程简单,易于控制,原料易得,生产成本低,制得的三维木质素多孔碳/氧化锌复合材料光催化效果良好,适合工业化生产。
附图说明
图1为实施例2制备的三维木质素多孔碳/氧化锌复合材料的扫描电镜图。
图2为实施例2制备的三维木质素多孔碳/氧化锌复合材料的透射电镜图。
图3为实施例1~5制备的三维木质素多孔碳/氧化锌复合材料的X射线衍射图谱。
图4为实施例4制备的三维木质素多孔碳/氧化锌复合材料的拉曼光谱。
图5为实施例2制备的三维木质素多孔碳/氧化锌复合材料光催化降解罗 丹明B的浓度变化实验结果。
图6为实施例3制备的三维木质素多孔碳/氧化锌复合材料光催化降解甲基橙的浓度变化实验结果。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下列实施例中使用的物料均可从商业渠道获得。
实施例1
将5g硝酸锌和5g碳酸氢钠分别溶于水中配制成质量浓度为20%的溶液,随后将碳酸氢钠溶液加入到硝酸锌溶液中,在室温下搅拌。然后加入10g木浆碱木质素固体粉末,搅拌10min,将其转移至水热反应釜中70℃保温8h,得到木质素与氧化锌前驱体复合物,将其进行抽滤,把得到的滤饼置于低温烘箱内干燥,干燥温度为40℃,干燥时间为3h。将得到的固体研磨成粉末,然后在500℃下N2保护条件下煅烧3h,冷却至室温,获得三维木质素多孔碳/氧化锌复合材料。
实施例2
将30g氯化锌和30g碳酸钠分别溶于水中配制成质量浓度为40%的溶液,随后将碳酸钠溶液加入到氯化锌溶液中,在室温下搅拌。然后加入10g竹浆碱木质素固体粉末,搅拌30min,将其转移至水热反应釜中90℃保温8h,得到木质素与氧化锌前驱体复合物,将其进行抽滤,把得到的滤饼置于低温烘箱内干燥,干燥温度为60℃,干燥时间为4h。将得到的固体研磨成粉末,然后在750℃下N2保护条件下煅烧1.5h,冷却至室温,获得三维木质素多孔碳/氧化锌复合材料。
实施例3
将15g草酸锌和15g碳酸氢钠分别溶于水中配制成质量浓度为30%的溶 液,随后将碳酸氢钠溶液加入到草酸锌溶液中,在室温下搅拌。然后加入10g麦草浆碱木质素固体粉末,搅拌20min,将其转移至水热反应釜中120℃保温2h,得到木质素与氧化锌前驱体复合物,将其进行抽滤,把得到的滤饼置于低温烘箱内干燥,干燥温度为40℃,干燥时间为5h。将得到的固体研磨成粉末,然后在650℃下N2保护条件下煅烧2h,冷却至室温,获得三维木质素多孔碳/氧化锌复合材料。
实施例4
将10g碳酸锌和10g草酸钠分别溶于水中配制成质量浓度为30%的溶液,随后将草酸钠溶液加入到碳酸锌溶液中,在室温下搅拌。然后加入10g芦苇浆碱木质素固体粉末,搅拌20min,将其转移至水热反应釜中130℃保温5h,得到木质素与氧化锌前驱体复合物,将其进行抽滤,把得到的滤饼置于低温烘箱内干燥,干燥温度为50℃,干燥时间为3h。将得到的固体研磨成粉末,然后在750℃下N2保护条件下煅烧2h,冷却至室温,获得三维木质素多孔碳/氧化锌复合材料。
实施例5
将20g硝酸锌和20g碳酸氢钠分别溶于水中配制成25%的溶液,随后将碳酸氢钠溶液加入到硝酸锌溶液中,在室温下搅拌。然后加入10g酶解木质素固体粉末,搅拌20min,将其转移至水热反应釜中150℃保温3h,冷却至室温后得到木质素与氧化锌前驱体复合物,将复合液进行抽滤,把得到的滤饼置于低温烘箱内干燥,干燥温度为50℃,干燥时间为4h。将得到的固体研磨成粉末,然后在750℃下N2保护条件下煅烧1.5h,冷却至室温,获得三维木质素多孔碳/氧化锌复合材料。
实施例效果说明
用布鲁克D8 Advance X射线粉末衍射仪按照其说明书描述的方法测定所制备的三维木质素多孔碳/氧化锌复合材料的晶型结构;用LabRAMAramis显 微拉曼光谱仪按照其说明书的方法测定所制备的三维木质素多孔碳/氧化锌复合材料中木质素的碳化效果;所制备的三维木质素多孔碳/氧化锌复合材料的微观形貌用扫描电子显微镜(SEM,Merlin,Zeiss)和透射电子显微镜(TEM,JEM~2100F,JEOL)进行了表征,碳化效果用拉曼光谱(LabRAMAramis,France)进行了表征。
从图1的扫描电子显微镜图可以看出氧化锌纳米颗粒与高温碳化所得三维木质素多孔碳非常紧密地复合在一起形成了三维木质素多孔碳/氧化锌纳米复合结构;从图2中可以明显看出氧化锌纳米粒子与三维木质素多孔碳复合在一起。
图3是实施例1~5制备的三维木质素多孔碳/氧化锌复合材料的XRD图谱,从图中可以看出所制备的复合材料中的氧化锌是典型的六方纤锌矿结构,结果表明在制备杂化结构的过程中,工业木质素的添加没有改变氧化锌的纳米结构晶型。
图4是实施例4所制备的三维木质素多孔碳/氧化锌复合材料的拉曼光谱图,从图可以看到200~400cm-1处氧化锌的特征峰和碳材料的特征峰D峰、G峰,证明已经成功获得三维木质素多孔碳/氧化锌复合材料。
图5是实施例2制备的三维木质素多孔碳/氧化锌复合材料光催化降解罗丹明B的浓度变化实验结果。
图6是实施例3制备的三维木质素多孔碳/氧化锌复合材料光催化降解甲基橙的浓度变化实验结果。
分别称取6组实施例2所制备的三维木质素多孔碳/氧化锌复合材料各60mg,同时分别称取6组纯的氧化锌各60mg,分别将所称取的三维木质素多孔碳/氧化锌复合材料和纯氧化锌加入到100mL质量浓度为15mg/L的罗丹明B溶液中,在模拟太阳光(500W氙灯)的照射下,每隔一段时间取出一组溶液测定其浓度,同时放一组不添加任何催化剂的空白对比实验。实验结果表明,所得到的三维木质素多孔碳/氧化锌复合材料具有优异的光催化降解罗丹明B的性能,其光催化降解速率相对于纯的氧化锌提高了约2.7倍。
分别称取6组实施例3所制备的三维木质素多孔碳/氧化锌复合材料各 60mg,同时分别称取6组纯的氧化锌各60mg,分别将所称取的三维木质素多孔碳/氧化锌复合材料和纯氧化锌加入到100mL质量浓度为15mg/L的甲基橙溶液中,在模拟太阳光(500W氙灯)的照射下,每隔一段时间取出一组溶液测定其浓度,同时放一组不添加任何催化剂的空白对比实验。实验结果表明,所得到的三维木质素多孔碳/氧化锌复合材料具有优异的光催化降解甲基橙的性能,其光催化降解速率相对于纯的氧化锌提高了约5.1倍。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种三维木质素多孔碳/氧化锌复合材料的制备方法,其特征在于为两步法,第一步由锌盐、弱碱盐和工业木质素通过水热法制备木质素与氧化锌前驱体复合物,第二步通过高温煅烧木质素与氧化锌前驱体复合物制备三维木质素多孔碳/氧化锌复合材料。
  2. 根据权利要求1所述的三维木质素多孔碳/氧化锌复合材料的制备方法,其特征在于具体包括以下步骤:
    (1)往锌盐溶液中加入弱碱盐溶液,得到氧化锌前驱液;
    (2)往氧化锌前驱液中加入工业木质素,搅拌均匀后,70~150℃保温1~8h,得到木质素与氧化锌前驱体复合物;
    (3)将步骤(2)得到的木质素与氧化锌前驱体复合物分离、干燥,研磨成粉,在惰性气体氛围下500~750℃煅烧1.5~3h,得到三维木质素多孔碳/氧化锌复合材料;
    以重量分数计,各反应物用量如下:
    工业木质素10份;锌盐5~30份;弱碱盐5~30份。
  3. 根据权利要求1或2所述的三维木质素多孔碳/氧化锌复合材料的制备方法,其特征在于:所述的工业木质素选自木浆碱木质素、竹浆碱木质素、麦草浆碱木质素、芦苇浆碱木质素、蔗渣浆碱木质素、龙须草浆碱木质素和生物炼制酶解木质素中的至少一种;
    所述的锌盐为草酸锌、醋酸锌、硝酸锌、氯化锌、碳酸锌和硫酸锌中的至少一种;
    所述的弱碱盐为草酸钠、碳酸钠和碳酸氢钠中的至少一种。
  4. 根据权利要求1或2所述的三维木质素多孔碳/氧化锌复合材料的制备方法,其特征在于:所述的锌盐为草酸锌、硝酸锌和醋酸锌中的至少一种;所述的弱碱盐为碳酸氢钠。
  5. 根据权利要求2所述的三维木质素多孔碳/氧化锌复合材料的制备方法,其特征在于:步骤(1)中所述锌盐溶液的质量浓度为20~40%;所述弱碱盐 溶液的质量浓度为20~40%。
  6. 根据权利要求2所述的三维木质素多孔碳/氧化锌复合材料的制备方法,其特征在于:步骤(2)中所述往氧化锌前驱液中加入工业木质素后搅拌10~30min至均匀;所述保温为将体系置于水热反应釜中进行。
  7. 根据权利要求2所述的三维木质素多孔碳/氧化锌复合材料的制备方法,其特征在于:步骤(3)中所述的分离、干燥为将木质素与氧化锌前驱体复合物进行抽滤,滤饼烘干。
  8. 一种三维木质素多孔碳/氧化锌复合材料,其特征在于根据权利要求1所述的制备方法得到。
  9. 权利要求8所述的三维木质素多孔碳/氧化锌复合材料在光催化领域中的应用。
  10. 权利要求8所述的三维木质素多孔碳/氧化锌复合材料在光催化降解有机染料污染物中的应用。
PCT/CN2017/111338 2017-05-11 2017-11-16 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用 WO2018205539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/318,916 US11059031B2 (en) 2017-05-11 2017-11-16 Three-dimensional lignin porous carbon/zinc oxide composite material and its preparation and application in the field of photocatalysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710328651.7A CN107282030B (zh) 2017-05-11 2017-05-11 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用
CN201710328651.7 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018205539A1 true WO2018205539A1 (zh) 2018-11-15

Family

ID=60095082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111338 WO2018205539A1 (zh) 2017-05-11 2017-11-16 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用

Country Status (3)

Country Link
US (1) US11059031B2 (zh)
CN (1) CN107282030B (zh)
WO (1) WO2018205539A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247956A (zh) * 2021-04-25 2021-08-13 复旦大学 一种基于碳酸盐模板的金属氧化物纳米片制备方法
CN113247893A (zh) * 2021-06-15 2021-08-13 天津科技大学 一种利用高温水热辅助纤维素酶水解制得的木质生物质基多孔碳材料、应用和方法
CN116159574A (zh) * 2023-02-10 2023-05-26 浙江理工大学 一种用于流动式处理含油废水的复合材料的制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282030B (zh) 2017-05-11 2019-12-10 华南理工大学 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用
CN108246330B (zh) * 2018-01-12 2019-12-24 北京化工大学 一种基于木质素/金属超分子组装构筑单原子催化剂的方法
CN110152617A (zh) * 2018-01-17 2019-08-23 温州包鹿新材料有限公司 一种空气净化材料的制备方法
CN108176375A (zh) * 2018-01-17 2018-06-19 温州包鹿新材料有限公司 一种空气净化材料及其应用
CN108355636B (zh) * 2018-03-20 2020-09-25 商丘师范学院 一种碳掺杂氧化锌纳米复合材料的高效制备方法
CN108963267B (zh) * 2018-08-30 2021-01-05 天津大学 用于锂金属负极的三维多孔碳包覆氧化锌集流体的制备方法
CN109331777B (zh) * 2018-11-05 2021-12-14 浙江省地质矿产研究所 一种可回收再生碳网结合粉体非金属矿物多孔净水材料制备方法
CN109482178B (zh) * 2018-11-19 2020-05-22 华南理工大学 一种银增强型木质素碳/纳米二氧化钛复合光催化剂及其制备方法和应用
CN109485029B (zh) * 2018-11-19 2020-07-28 华南理工大学 一种木质素多孔碳纳米片及其制备方法和在超级电容器电极材料中的应用
CN110201660A (zh) * 2019-06-19 2019-09-06 塔里木大学 一种氧化锌/棉秆生物质炭复合材料及其制备方法和应用
CN112794324B (zh) * 2019-11-14 2022-10-25 华南理工大学 一种高介孔率木质素多级孔碳材料及其制备方法与应用
CN111774091B (zh) * 2020-06-08 2023-05-23 武汉纺织大学 一种用于光催化降解印染废水材料及其制备方法
CN112072085B (zh) * 2020-08-20 2021-06-25 华南理工大学 一种纳米木质素碳氧化锌复合材料及其制备方法与应用
CN112072086B (zh) * 2020-08-20 2021-06-25 华南理工大学 一种木质素富氮碳/氧化锌纳米复合材料及其制备方法与应用
CN112044430A (zh) * 2020-09-24 2020-12-08 哈尔滨理工大学 一种具有光催化降解亚甲基蓝的木质素碳/钨酸铋新型复合材料及其制备方法
CN112279245A (zh) * 2020-10-29 2021-01-29 安徽工业大学 一种制备超级电容器用分级多孔碳的方法
CN112337432B (zh) * 2020-11-03 2022-05-17 广州大学 一种过渡金属掺杂的碳微球及其制备方法与应用
CN112403456A (zh) * 2020-11-23 2021-02-26 泉州师范学院 一种ZnO/C纳米复合材料的合成及其在光催化抗菌中的应用
CN113384935A (zh) * 2021-07-14 2021-09-14 武汉钜能科技有限责任公司 一种吸油脱色过滤袋及其制备方法
CN113480862B (zh) * 2021-07-27 2022-08-09 南京工业大学 一种木质素-二氧化硅复合材料及其制备方法与应用
US11717810B1 (en) 2022-03-18 2023-08-08 Najran University Nanocomposite photocatalyst and method of degrading organic pollutant therewith
CN114733534A (zh) * 2022-05-07 2022-07-12 中国林业科学研究院林产化学工业研究所 一种溴氧化铋-木质素复合光催化剂及其制备方法和应用
CN114832842A (zh) * 2022-05-07 2022-08-02 中国林业科学研究院林产化学工业研究所 一种溴氧化铋-木质素基活性炭复合光催化剂及其制备方法和应用
CN115260540B (zh) * 2022-08-22 2023-11-21 南京林业大学 一种基于des快速制备木质素/氧化锌复合材料的方法
CN115678038B (zh) * 2022-11-07 2023-05-23 中策橡胶集团股份有限公司 一种木质素锌盐复合物、制备方法、应用、橡胶组合物和轮胎
CN115779889B (zh) * 2022-11-10 2024-05-03 中国林业科学研究院林产化学工业研究所 一种木质素炭/钼酸铋复合光催化剂及其制备方法和应用
CN115814796B (zh) * 2022-12-01 2024-03-01 广西大学 一种类芬顿催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106497148A (zh) * 2016-10-19 2017-03-15 武汉工程大学 一种高导电性纳米生物碳黑及其制备方法和应用
CN106925229A (zh) * 2017-04-12 2017-07-07 福州大学 一种铁锌基复合木质素活性炭脱硫剂及其制备方法
CN107282030A (zh) * 2017-05-11 2017-10-24 华南理工大学 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119955A (ja) * 1998-10-07 2000-04-25 Toray Ind Inc 抗菌・防カビ性繊維構造物
CN102239112A (zh) * 2008-06-18 2011-11-09 阿肯色大学理事会 碳-金属纳米复合物和其应用
CN103058263B (zh) * 2012-12-06 2014-12-03 江苏大学 木素胺模板法固相制备纳米氧化锌光催化剂的方法
CN103183372B (zh) 2013-04-07 2015-08-05 江苏大学 一种模板法固相制备纳米氧化锌的方法
KR101356990B1 (ko) * 2013-09-25 2014-02-03 한국에너지기술연구원 형상이 조절된 철 옥살레이트 수화물 입자 및 그 제조방법, 이 철 옥살레이트 수화물 입자를 이용하여 제조된 산화철/탄소 복합체 및 그 제조방법
US9352297B2 (en) * 2013-11-27 2016-05-31 King Fahd University Of Petroleum And Minerals Methods for preparing composites of activated carbon/zinc oxide and activated carbon/zinc oxide/nickel oxide for desulfurization of fuels
CN105214635B (zh) * 2015-10-26 2019-03-05 上海理工大学 一种复合光催化剂及其制备方法和应用
CN105289578A (zh) * 2015-11-24 2016-02-03 华南理工大学 一种金属氧化物/碳纳米管复合光催化剂及其制法与应用
CN105544018B (zh) * 2016-01-07 2017-08-25 黑龙江大学 一种利用静电纺丝法制备碳‑氧化锌纳米纤维的方法
CN105968852B (zh) * 2016-05-25 2018-04-13 华南理工大学 防紫外辐射的木质素基氧化锌复合颗粒及制备方法和应用
CN106024423B (zh) * 2016-05-25 2018-09-14 华南理工大学 木质素基石墨烯/氧化锌杂化复合材料及制备方法和应用
CN106633967B (zh) * 2016-09-14 2019-01-18 华南理工大学 一种二氧化钛/木质素基复合纳米颗粒及制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106497148A (zh) * 2016-10-19 2017-03-15 武汉工程大学 一种高导电性纳米生物碳黑及其制备方法和应用
CN106925229A (zh) * 2017-04-12 2017-07-07 福州大学 一种铁锌基复合木质素活性炭脱硫剂及其制备方法
CN107282030A (zh) * 2017-05-11 2017-10-24 华南理工大学 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, GUOCHAO ET AL.: "Preparation of Calendula-like Nano-ZnO Induced by Nano-lignin and Its Photocatalytic Performance", JOURNAL OF FUNCTIONAL MATERIALS, vol. 44, no. 23, 15 December 2013 (2013-12-15), pages 3452 - 3453, ISSN: 1001-9731 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247956A (zh) * 2021-04-25 2021-08-13 复旦大学 一种基于碳酸盐模板的金属氧化物纳米片制备方法
CN113247893A (zh) * 2021-06-15 2021-08-13 天津科技大学 一种利用高温水热辅助纤维素酶水解制得的木质生物质基多孔碳材料、应用和方法
CN116159574A (zh) * 2023-02-10 2023-05-26 浙江理工大学 一种用于流动式处理含油废水的复合材料的制备方法

Also Published As

Publication number Publication date
CN107282030B (zh) 2019-12-10
US11059031B2 (en) 2021-07-13
US20190291081A1 (en) 2019-09-26
CN107282030A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2018205539A1 (zh) 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用
Wang et al. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity
Zhang et al. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation
Tian et al. Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting
CN107115884B (zh) 一种g-C3N4/TiO2纳米线组装结构光催化剂
CN108579787B (zh) 一种用于nadh再生的异质结光催化剂的制备方法
Jie et al. Preparation of LaMnO3/graphene thin films and their photocatalytic activity
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN103752334A (zh) 离子液体促进合成石墨相氮化碳纳米片可见光催化剂
CN111250135B (zh) 一种石墨相氮化碳纳米片材料及其制备方法和应用
Wang et al. Biomass derived the V-doped carbon/Bi2O3 composite for efficient photocatalysts
CN115283015B (zh) 一种有机金属骨架复合光催化剂BiVO4@NH2-MIL-125(Ti)的制备方法
CN112774718A (zh) 一种氧化亚铜/管状类石墨相氮化碳复合催化剂及其制备方法和应用
CN112958061A (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
Yu et al. Large-scale synthesis of flexible TiO2/N-doped carbon nanofibres: A highly efficient all-day-active photocatalyst with electron storage capacity
CN113772710B (zh) 一种二氧化铈纳米线的制备方法及其应用
Wu et al. Preparation of polymeric carbon nitride/TiO2 heterostructure with NH4Cl as template: Structural and photocatalytic studies
Wang et al. Ultrathin black TiO 2 nanosheet-assembled microspheres with high stability for efficient solar-driven photocatalytic hydrogen evolution
CN108545773A (zh) 一种纳米二氧化钛/三氧化钨复合材料粉末的制备方法
CN116212966B (zh) 一种间接z型多组分铋基mof异质结及其制备方法和应用
CN104028309A (zh) 一种复合型可见光催化剂及其制备方法
CN107442098B (zh) 一种采用可见光光解水制氢的钛酸锶催化剂及制备方法
CN113083281B (zh) 一种钼酸铋/碳柔性膜光催化材料及其制备方法与应用
CN113101959B (zh) 土壤修复用类石墨相氮化碳复合材料及其制备方法与应用
CN111974433B (zh) 一种榫卯结构复合光催化材料的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909341

Country of ref document: EP

Kind code of ref document: A1