WO2018190036A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018190036A1
WO2018190036A1 PCT/JP2018/008467 JP2018008467W WO2018190036A1 WO 2018190036 A1 WO2018190036 A1 WO 2018190036A1 JP 2018008467 W JP2018008467 W JP 2018008467W WO 2018190036 A1 WO2018190036 A1 WO 2018190036A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
rack
limit value
value
speed
Prior art date
Application number
PCT/JP2018/008467
Other languages
English (en)
French (fr)
Inventor
徹 坂口
翔也 丸山
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP18784608.4A priority Critical patent/EP3498571A4/en
Priority to JP2018561283A priority patent/JP6493643B2/ja
Priority to US16/333,356 priority patent/US10946891B2/en
Priority to CN201880017525.2A priority patent/CN110573407B/zh
Publication of WO2018190036A1 publication Critical patent/WO2018190036A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0469End-of-stroke control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • the present invention relates to an electric power steering apparatus that calculates a current command value based on at least a steering torque, drives a motor based on the current command value, and applies an assist force to a steering system of a vehicle.
  • the assist torque is reduced by reducing the magnitude of the current command value near the rack end, and the impact energy is reduced by attenuating the momentum at the time of end-fitting.
  • the present invention relates to an electric power steering apparatus that suppresses noise and improves steering feeling.
  • An electric power steering device that applies an assist force to a vehicle steering system by a rotational force of a motor transmits the driving force of the motor to a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a reduction gear. It is given as assist power.
  • EPS electric power steering device
  • Such a conventional electric power steering apparatus performs feedback control of motor current in order to accurately generate assist torque.
  • the motor applied voltage is adjusted so that the difference between the current command value and the motor current detection value becomes small.
  • the adjustment of the motor applied voltage is performed by the duty of PWM (pulse width modulation) control. It is done by adjustment.
  • the general configuration of the electric power steering apparatus will be described with reference to FIG. 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3. .
  • the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11. Based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12, the control unit 30 calculates the current command value of the assist command using the assist map, and calculates the calculated current.
  • the current supplied to the motor 20 is controlled by a voltage control value Vref obtained by compensating the command value.
  • the control unit 30 is connected to a CAN (Controller Area Network) 40 that transmits and receives various types of vehicle information, and the vehicle speed Vel can also be received from the CAN 40.
  • the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 30 is mainly composed of a CPU (including an MPU and MCU). General functions executed by a program inside the CPU are shown in FIG. The structure is
  • the steering torque Th from the torque sensor 10 and the vehicle speed Vel from the vehicle speed sensor 12 are input to and calculated by the torque control unit 31 that calculates the current command value.
  • the current command value Iref1 is input to the subtraction unit 32B and is subtracted from the motor current detection value Im.
  • the motor 20 is PWM driven via the inverter 37 with the PWM signal.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38, and is input to the subtraction unit 32B and fed back.
  • a rotation angle sensor 21 such as a resolver is connected to the motor 20, and the rotation angle ⁇ r is detected and output.
  • the present applicant configures a control system based on a physical model in International Publication No. 2016/104568 (Patent Document 1), and outputs a control target output (rack end) to a reference model.
  • Patent Document 1 Proposed an electric power steering device that reduces the impact force by suppressing the generation of noise at the end without making the driver feel uncomfortable with steering. ing.
  • a control system based on a physical model is configured, it is easy to make a prospect for constant design.
  • model following control is configured such that the output of the controlled object follows the reference model, it is possible to perform end contact suppression control that is robust to the load state (disturbance) and the variation of the controlled object.
  • Patent Document 2 As a safety measure, the applicant of the present invention disclosed in International Publication No. 2016/104571 (Patent Document 2) from a viscoelastic model following control unit that constitutes model following control in order to limit the maximum value of assist force.
  • Patent Document 2 has proposed an electric power steering device that limits the output of the power. The output is limited by the control amount limiting unit, and is limited using a fixed limit value, a limit value corresponding to the rack shaft force or the column shaft torque, or the like.
  • the limit of the control amount is strengthened to increase safety, so that more flexible measures can be taken.
  • a device that changes the limit value according to the steering speed is also proposed.
  • the present invention has been made under the circumstances described above, and an object of the present invention is to configure a control system based on a physical model so that the output of the control target (distance to the rack end) follows the reference model.
  • the model following control is configured to suppress the generation of noise at the end without causing the driver to feel uncomfortable, attenuate the impact force, and suppress the noise without deteriorating the turning radius.
  • An object of the present invention is to provide an electric power steering apparatus capable of performing the above.
  • the present invention relates to an electric power steering apparatus that calculates a current command value based on at least a steering torque and drives a motor based on the current command value to assist control the steering system.
  • a rack end approach determination unit that determines that the current range is within a range, adjusts the control amount based on at least the steering position information, the steering speed, and the steering state, and sets the current command value with the adjusted control amount. This is achieved by correcting.
  • the present invention relates to an electric power steering apparatus that calculates a first current command value based on at least a steering torque and drives the motor based on the first current command value to assist control the steering system.
  • the above object is based on the steering position information, determines that the vehicle is in the rack end proximity region, which is a predetermined range before the rack end, and outputs a rack displacement and switching signal.
  • a second axial force using the viscoelastic model as a reference model is generated.
  • the second axial force is controlled based on the viscoelastic model follow-up control unit and a steering state signal indicating at least the steering position information, the steering speed, and the increase or decrease of the return.
  • a control amount adjustment unit that sets a value and limits the second axial force, and a second current command value obtained by performing a second conversion on the limited second axial force. This is achieved by correcting the first current command value and performing the assist control.
  • the present invention relates to an electric power steering apparatus that calculates a first current command value based on at least a steering torque and drives the motor based on the first current command value to assist control the steering system.
  • the object is determined based on the steering position information to be within a predetermined range before the rack end, and a rack end approach determination unit that outputs a rack displacement and a switching signal, and a first current command value includes a first current command value.
  • Viscoelastic model follow-up control for generating a second axial force using a viscoelastic model as a reference model based on at least one of the first axial force and the rack displacement obtained by conversion and the switching signal.
  • a control amount adjustment unit that adjusts the second axial force based on the determination signal, and a second conversion that is obtained by performing a second conversion on the adjusted second axial force. This is achieved by correcting the first current command value with a current command value of 2 and performing the assist control.
  • the control system based on the physical model is configured, it is easy to make a prospect for the constant design.
  • model following control is configured so that the output of the controlled object (distance to the rack end) follows the normative model, so it is robust to robustness against load conditions (disturbances) and fluctuations in the controlled object. Suppression control is possible.
  • the control amount is adjusted based on the steering position information, the steering speed, the steering state, etc., the driver can cut to the rack end and can simultaneously achieve noise suppression and comfortable steering force. it can. By being able to operate to the rack end, the influence on the minimum turning radius can be reduced.
  • the present invention constitutes a control system based on a physical model in the vicinity of the rack end, uses a viscoelastic model (spring constant, viscous friction coefficient) as a reference model, and outputs the control target (distance to the rack end) to the reference model.
  • a viscoelastic model spring constant, viscous friction coefficient
  • This is an electric power steering device that constitutes model following control such that the driver follows, suppresses the generation of abnormal noise at the end of contact without causing the driver to feel uncomfortable steering, and attenuates the impact force.
  • Model following control is composed of a viscoelastic model following control unit, and the viscoelastic model following control unit is composed of a feedforward control unit and / or a feedback control unit, and normal assist control is performed outside a predetermined range before the rack end.
  • the model following control is performed within a predetermined range in front of the rack end to suppress hitting the rack end.
  • the present invention also provides model following based on information indicating the steering position (steering position information), such as steering angle (steering angle, column shaft angle), steering speed, steering state (addition, switchback), and the like.
  • steering position information such as steering angle (steering angle, column shaft angle), steering speed, steering state (addition, switchback), and the like.
  • a function of adjusting a control amount in the control hereinafter referred to as a “control amount adjustment function”.
  • the assist force is output so as to be balanced with the sum of the reaction force from the tire side (if the friction between the tire and the road surface is extremely low, only the manual input by the driver).
  • assistance is provided in the direction opposite to the steering direction of the driver.
  • the maximum assist force is limited in consideration of safety.
  • the maximum value of the assist force is limited.
  • the virtual rack end is formed at a position away from the actual rack end, so that the turning radius of the vehicle is increased and the possibility of deterioration in handling is reduced.
  • a limit value is set based on the position of the rack displacement, the steering speed, and the steering state in the region close to the rack end.
  • a steering angle as steering position information or a determination rack position described later may be used.
  • the reaction force from the tire side increases as the magnitude (absolute value)
  • the reaction force suddenly increases from a certain magnitude ⁇ d.
  • a process is performed in consideration of an increase in the reaction force so that the driver can easily steer in a region where the amount of increase is abrupt.
  • a threshold value ⁇ z is set in the vicinity of ⁇ d, and in the region where the magnitude of the steering angle
  • Such assist force (hereinafter referred to as “compensation assist force”) is added.
  • a rack displacement which is steering position information, or a later-described determination rack position may be used.
  • the present invention is obtained by adding a control amount adjustment function to the electric power steering apparatus proposed in Patent Document 1.
  • a control amount adjustment function is not added (hereinafter referred to as “base form”) will be described, and then an embodiment of the present invention based on the base form will be described.
  • FIG. 4 shows an example of the base form corresponding to FIG. 2.
  • the current command value Iref1 is converted into the rack axial force f by the conversion unit 101, and the rack axial force f is input to the viscoelastic model follow-up control unit 120.
  • the rack axial force f is equivalent to the column axial torque, but in the following description, it will be described as a rack axial force for convenience.
  • the generic term for rack axial force and column axial torque is axial force.
  • the rack position or rack displacement used to calculate the rack end approach is equivalent to the column shaft angle (handle angle). In the following description, the rack position or rack displacement will be described. The approach to the rack end may be determined based on the column shaft angle (handle angle).
  • symbol is attached
  • Kt is a torque constant [Nm / A]
  • Gr is a reduction ratio
  • Cf is a specific stroke [m / rev. ]
  • G1 Kt ⁇ Gr ⁇ (2 ⁇ / Cf).
  • the rotation angle ⁇ r from the rotation angle sensor 21 is input to the rack position conversion unit 100 and converted to the determination rack position Rx.
  • the determination rack position Rx is input to the rack end approach determination unit 110.
  • Rack end approach determination unit 110 as shown in FIG. 5, exerts a determination rack position Rx is within a predetermined position x 0 of the front rack end (rack end proximate region) end contact suppression control function when it is determined that the,
  • the rack displacement x is output and the switching signal SWS is output.
  • FIG. 5 only the rack end proximity region on the right side with respect to the origin is shown, but the rack end proximity region on the left side is set symmetrically with the origin.
  • the rack displacement x is output as a positive value in the right rack end proximity region, and the rack displacement x is output as a negative value in the left rack end proximity region.
  • the switching signal SWS is ON when in the rack end proximity region, and OFF when outside the region.
  • the switching signal SWS and the rack displacement x are input to the viscoelastic model following control unit 120 together with the rack axial force f.
  • the rack axial force ff controlled and calculated by the viscoelastic model follow-up control unit 120 is converted into a current command value Iref2 by the conversion unit 102, and the current command value Iref2 is added to the current command value Iref1 by the addition unit 103 to obtain a current command value Iref3. It becomes.
  • the assist control described above is performed based on the current command value Iref3.
  • the predetermined position x 0 to set the rack end proximal region shown in Figure 5, can be set to an appropriate position may be different values for the left and right. Further, although the rotation angle ⁇ r is obtained from the rotation angle sensor 21 connected to the motor, it may be obtained from the steering angle sensor.
  • the conversion from the rack axial force ff to the current command value Iref2 in the conversion unit 102 is performed according to the following formula 2.
  • the rack axial force f is input to the feedforward control unit 130 and the feedback control unit 140, and the rack displacement x is input to the feedback control unit 140.
  • the rack axial force FF from the feedforward control unit 130 is input to the switching unit 121, and the rack axial force FB from the feedback control unit 140 is input to the switching unit 122.
  • the switching units 121 and 122 are turned on / off by the switching signal SWS, and when the switching units 121 and 122 are turned off by the switching signal SWS, the outputs u 1 and u 2 are zero.
  • the rack axial force FF is output as the rack axial force u 1 from the switching unit 121
  • the rack axial force FB is output from the switching unit 122 as the rack axial force u 2.
  • the rack axial forces u 1 and u 2 from the switching units 121 and 122 are added by the adding unit 123, and the added rack axial force ff is output from the viscoelastic model following control unit 120.
  • the rack axial force ff is converted into a current command value Iref2 by the converter 102.
  • the rack displacement x is input to the feedforward control unit 130 and the feedback control unit 140, and the rack axial force f is input to the feedback control unit 140.
  • the rack axial force FF from the feedforward control unit 130 is input to the switching unit 121 and the rack axial force FB from the feedback control unit 140 is input to the switching unit 122, as in the base form 1 of FIG.
  • the switching units 121 and 122 are turned on / off by the switching signal SWS, and when the switching units 121 and 122 are turned off by the switching signal SWS, the outputs u 1 and u 2 are zero.
  • the rack axial force FF is output as the rack axial force u 1 from the switching unit 121
  • the rack axial force FB is output from the switching unit 122 as the rack axial force u 2.
  • the rack axial forces u 1 and u 2 from the switching units 121 and 122 are added by the adding unit 123, and the added rack axial force ff is output from the viscoelastic model following control unit 120.
  • the rack axial force ff is converted into a current command value Iref2 by the converter 102.
  • the switching units 121 and 122 are turned off by the switching signal SWS.
  • the torque control unit 31 calculates a current command value Iref1 based on the steering torque Th and the vehicle speed Vel (step S10).
  • the rack position conversion unit 100 converts the rotation angle ⁇ r from the rotation angle sensor 21 into the determination rack position Rx (step S11).
  • the rack end approach determination unit 110 determines whether the rack end is approaching based on the determination rack position Rx (step S12). If the rack end is not approaching, the rack axial force ff is not output from the viscoelastic model following control unit 120, and normal steering control based on the current command value Iref1 is executed (step S13), and is continued until the end. (Step S14).
  • step S20 the viscoelastic model tracking control by the viscoelastic model tracking control unit 120 is executed (step S20). That is, as shown in FIG. 9, the switching signal SWS is output from the rack end approach determination unit 110 (step S201), and the rack displacement x is output (step S202). Further, the conversion unit 101 converts the current command value Iref1 into the rack axial force f according to the equation 1 (step S203). 6, the feedforward control unit 130 performs feedforward control based on the rack axial force f (step S204), and the feedback control unit 140 performs feedback control based on the rack displacement x and the rack axial force f. This is performed (step S205).
  • the feedforward control unit 130 performs feedforward control based on the rack displacement x (step S204), and the feedback control unit 140 performs feedback control based on the rack displacement x and the rack axial force f. Is performed (step S205). In any case, the order of the feedforward control and the feedback control may be reversed.
  • the switching signal SWS from the rack end approach determination unit 110 is input to the switching units 121 and 122, and the switching units 121 and 122 are turned on (step S206).
  • the switching unit 121 and 122 is turned ON, the output rack shaft force FF from the feedforward controller 130 is a rack axial force u 1, the output rack shaft force from the feedback control unit 140 FB is a rack axial force u 2 Is done.
  • the rack axial forces u 1 and u 2 are added by the adding unit 123 (step S207), and the rack axial force ff as an addition result is converted by the converting unit 102 into the current command value Iref2 according to the equation 2 (step S208). .
  • the rack axial force FF and the rack axial force FB are respectively switched by the two switching units 121 and 122 and added by the adding unit 123, but the rack axial force FF and the rack shaft are added.
  • the output may be switched by one switching unit.
  • the viscoelastic model follow-up control unit 120 is a control system based on a physical model near the rack end, and within a predetermined angle before the rack end, the viscoelastic model (spring constant k 0 [N / m], Construct model following control with a viscous friction coefficient ⁇ [N / (m / s)]) as a reference model (input: force, output: physical model described by displacement) to suppress hitting the rack end Yes.
  • FIG. 10 shows a schematic diagram in the vicinity of the rack end, and the relationship between the mass m and the forces F 0 and F 1 is Equation 3.
  • the calculation of the viscoelastic model equation is described in, for example, Journal of Science and Engineering of Kansai University “Science and Technology” Vol. 17 (2010), “Basics of Elastic Films and Viscoelastic Mechanics” (Kenkichi Ohba).
  • Equations 4 to 6 are established.
  • Equation 7 is obtained by substituting Equation 4 to Equation 6 into Equation 3.
  • Equation 11 Equation 11 below.
  • Equation 14 is a third-order physical model (transfer function) indicating the characteristics from the input force f to the output displacement x.
  • Equation 15 the quadratic function expressed by Equation 15 will be described as a reference model Gm. That is, Equation 16 is used as the reference model Gm.
  • ⁇ 1 ⁇ .
  • N and D are expressed by the following equation (18).
  • the numerator of N is the numerator of P and the numerator of D is the denominator of P.
  • Equation 19 is derived from Equations 16 and 18.
  • the block N / F of the feedback control unit is the following equation (20).
  • the block D / F of the feedforward control unit is the following equation (21).
  • Equation 24 is derived.
  • FIG. 12 when the feedforward control system is considered by the path of the feedforward element 144 ⁇ the actual plant P, FIG. 12 is obtained.
  • P N / D
  • FIG. 12A becomes FIG. 12B
  • FIG. From FIG. 12C, f (m ⁇ s 2 + ⁇ ⁇ s + k0) x. Therefore, when this is inverse Laplace transformed, the following equation 29 is obtained.
  • the number 30 When the number 30 is arranged, the following 31 is obtained.
  • the number 31 When the number 31 is arranged for the input f, the number 32 is obtained.
  • the base form 3 in FIG. 15 corresponds to the base form 1 in FIG. 6, and the rack axial force f is input to the feedforward element 144 (D / F expressed by Equation 21) and the feedback control unit 140 in the feedforward control unit 130. Then, the rack displacement x is input to the feedback control unit 140. Further, the base form 4 in FIG. 16 corresponds to the base form 2 in FIG. 7, and the rack displacement x is input to the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130, and the rack axial force f is fed back. Input to the control unit 140.
  • the rack axial force FF from the feedforward element 144 is input to the b1 contact of the switching unit 121 in the base form 3 in FIG. Further, in the base form 4 of FIG. 16, the outputs of the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130 are subtracted by the subtraction unit 133, and the rack axial force FF that is the subtraction result of the subtraction unit 133 is obtained.
  • the signal is input to the b1 contact of the switching unit 121.
  • a fixed value “0” is input from the fixing unit 125 to the a1 contact of the switching unit 121.
  • the feedback control unit 140 includes a feedback element (N / F) 141, a subtraction unit 142, and a control element unit 143.
  • the rack axial force FB that is, the output of the control element unit 143 is input to the b2 contact of the switching unit 122.
  • a fixed value “0” is input from the fixing unit 126 to the a2 contact of the switching unit 122.
  • the rack axial force f is input to the feedforward element 144 in the feedforward control unit 130 and also to the feedback element (N / F) 141 of the feedback control unit 140.
  • the rack displacement x is subtracted and input to the subtraction unit 142 of the feedback control unit 140 and is also input to the parameter setting unit 124.
  • the parameter setting unit 124 outputs, for example, a spring constant k 0 and a viscous friction coefficient ⁇ having characteristics as shown in FIG. 17 with respect to the rack displacement x.
  • the spring constant k 0 and the viscous friction coefficient ⁇ are supplied to the feedforward control unit 130.
  • the feed forward element 144 and the feedback element (N / F) 141 in the feedback control unit 140 are input.
  • the characteristics of the spring constant k 0 and the viscous friction coefficient ⁇ may be characteristics with respect to the steering angle and the determination rack position, which are other steering position information, instead of the rack displacement.
  • the rack displacement x is input to the spring constant term 131 and the viscous friction coefficient term 132 in the feedforward control unit 130, and is also input to the subtraction unit 142 of the feedback control unit 140 for further parameter setting.
  • the rack axial force f is input to the feedback element (N / F) 141 of the feedback control unit 140.
  • the parameter setting unit 124 outputs a spring constant k 0 and a viscous friction coefficient ⁇ similar to those described above for the rack displacement x, and the spring constant k 0 is input to the spring constant term 131 and the feedback element (N / F) 141.
  • the viscous friction coefficient ⁇ is input to the viscous friction coefficient term 132 and the feedback element (N / F) 141.
  • switching signal SWS OFF
  • a switching signal SWS is output from the rack end approach determination unit 110 (step S21), and a rack displacement x is output (step S22).
  • the rack displacement x is input to the spring constant term 131, the viscous friction coefficient term 132, the parameter setting unit 124, and the subtraction unit 142.
  • the parameter setting unit 124 calculates the spring constant k 0 and the viscous friction coefficient ⁇ obtained according to the characteristics of FIG. 17 according to the rack displacement x, the spring constant term 131, the viscous friction coefficient term 132, and the feedback element (N / F) 141. (Step S23).
  • the converter 101 converts the current command value Iref1 into the rack axial force f (step S23A), and the rack axial force f is input to the feedback element (N / F) 141 and is subjected to N / F calculation (step S24). .
  • the N / F calculation value is added to the subtraction unit 142, the rack displacement x is subtracted (step S24A), and the subtraction value is Cd calculated by the control element unit 143 (step S24B).
  • the calculated rack axial force FB is output from the control element unit 143 and input to the contact point b2 of the switching unit 122.
  • the viscous friction coefficient term 132 in the feedforward control unit 130 calculates “( ⁇ ) ⁇ s ⁇ x” based on the viscous friction coefficient ⁇ (step S25).
  • the spring constant term 131 sets the spring constant k 0 (step S25A).
  • the subtraction unit subtracts “k 0 ⁇ x” and “( ⁇ ) ⁇ s ⁇ x” (step S25B), and outputs the rack axial force FF as the calculation result.
  • the rack axial force FF is input to the contact b1 of the switching unit 121.
  • “S ⁇ x” is calculated as a time derivative of x. Further, the calculation order of the feedforward control unit 130 and the feedback control unit 140 may be reversed.
  • the switching signal SWS from the rack end approach determination unit 110 is input to the switching units 121 and 122, and the respective contacts of the switching units 121 and 122 are switched from a1 to b1 and from a2 to b2.
  • the rack axial forces u 1 and u 2 from the switching units 121 and 122 are added by the adding unit 123 (step S26), and the rack axial force ff as the addition result is converted to the current command value Iref2 by the converting unit 102 (step S26).
  • S26A The current command value Iref2 is input to the adding unit 103, added to the current command value Iref1 (step S27), steering control is executed, and the process goes to step S14.
  • control element unit 143 may have any configuration of PID (proportional integral derivative) control, PI control, and PD control.
  • PID proportional integral derivative
  • PI control PI control
  • PD control PD control.
  • the operation of the base form 3 in FIG. 15 is the same except that the portion (element) to which the rack axial force f and the rack displacement x are input is different. Further, in the base form 3 in FIG. 15 and the base form 4 in FIG. 16, control calculations of both the feedforward control unit 130 and the feedback control unit 140 are executed, but the configuration of only the feedforward control unit 130 may be used, Only the feedback control unit 140 may be configured.
  • the current command value Iref1 is converted into the rack axial force f by the conversion unit 101, and the rack axial force ff is converted into the current command value Iref2 by the conversion unit 102, but the conversion coefficient G1 in the conversion unit 101 and the conversion unit
  • the functions of the conversion units 101 and 102 are included in the viscoelastic model following control unit 120, and the conversion unit 101 and 102 may be eliminated.
  • the control parameters (control gain: proportional gain, integral gain, differential gain) of the control element unit 143 (Cd) may be changed based on the steering position information.
  • the control gain is reduced, the vicinity of the rack end, to increase the control gain.
  • the vicinity of the rack end can be increased shock suppression.
  • the rack axial force (and column shaft torque) is a positive value when the handle is turned to the right (hereinafter referred to as “right turn steering”), and the handle is moved to the left. It is assumed that the value is set to a negative value when the vehicle is turned off (hereinafter referred to as “left turn steering”). Also, the rack displacement relative to the right rack end in the forward direction of the vehicle is a positive value, the rack displacement relative to the left rack end is a negative value, and the steering speed when steering in the right rack end direction is positive. The steering speed at the time of steering in the rack end direction on the left side is a negative value.
  • FIG. 19 shows a configuration example of the first embodiment corresponding to FIG. 4.
  • a steering speed calculation unit 150 Compared to the configuration example shown in FIG. 4, a steering speed calculation unit 150, a steering information extraction unit 160, and a control amount adjustment unit 170 are provided. The control amount adjustment function is realized by these.
  • the maximum value and the minimum value of the rack axial force ff (control amount) output from the viscoelastic model follow-up control unit 120 are limited.
  • the upper limit value and the lower limit value are set as the limit value, and further, the limit value in the case of right turn steering (the upper limit value in this case is “right turn upper limit value”, the lower limit value is “right turn lower limit value”) And a limit value in the case of left turn steering (in this case, the upper limit value is “left turn upper limit value” and the lower limit value is “left turn lower limit value”). Then, the limit value is set based on the rack axial force f converted from the current command value Iref1.
  • the right turn upper limit RU is a value obtained by adding the adjustment value Vf to a value obtained by inverting the sign of the rack axial force f as shown in the following equation 33
  • the right turning lower limit RL is expressed as the rack axial force f as shown in the following equation 34.
  • the left-cut upper limit value LU and the left-cut lower limit value LL are values such as the following formulas 35 and 36 in which the right-cut upper limit value RU and the right-cut lower limit value RL are interchanged. If it is less than the value obtained by inverting the sign of VF ( ⁇ VF), the left turn lower limit LL is set to ⁇ VF, and if the left turn upper limit LU is less than zero, the left turn upper limit LU is set to zero.
  • the adjustment value Vf is a predetermined value (for example, 2 Nm), but the adjustment value Va is a value set based on the steering speed, the rack displacement, and the steering state (increase and return). The setting method will be described.
  • a predetermined position (hereinafter referred to as “threshold position”) x a (the rack displacement x at this time is defined as x f ) is set in the rack end proximity region shown in FIG.
  • the region from the threshold position x a to the rack end steer region 2”
  • the steering state is failback, i.e. the rack displacement x is given the entire rack end proximate area when moving in the direction of the position x 0 and "switchback region”.
  • FIG. 20 only the right side of the origin is shown, but the same is set for the left side.
  • the adjustment value Va is variable with respect to the magnitude (absolute value)
  • the maximum value (hereinafter referred to as “maximum adjustment value”) of the adjustment value Va is Vah, and the minimum value (hereinafter referred to as “minimum adjustment value”).
  • the maximum adjustment value Vah is set.
  • the minimum adjustment value Val is set.
  • the change amount of the adjustment value Va is changed according to the above three areas. That is, in the increased region 1, as shown in FIG. 21B, even if the steering speed ⁇ is slow, the adjustment value Va is strongly suppressed from changing in the direction of the maximum adjustment value Vah. When the speed is fast, the adjustment value Va is changed sufficiently fast in the direction of the minimum adjustment value Val. In the cut-back area, the adjustment value Va is changed in the same manner as in the additional area 1. In the increased area 2, contrary to the increased area 1, as shown in FIG. 21C, the change to the maximum adjustment value Vah follows to some extent quickly, and the change to the minimum adjustment value Val. To be strongly suppressed.
  • the adjustment value Va becomes close to the minimum adjustment value Val and can be strongly controlled so that it becomes the virtual rack end in the direction toward the rack end.
  • the adjustment value Va gradually approaches the maximum adjustment value Vah, and the assist force toward the rack end gradually recovers, so that the driver can cut into the rack end.
  • the adjustment value Va changes rapidly in the direction of the minimum adjustment value Val. Therefore, when the increase is made again, it is possible to strongly control so that the virtual rack end can be quickly formed.
  • the change amount of the adjustment value Va is specifically changed by rate limit processing that limits the change amount. For example, when the absolute value of the difference from the previous adjustment value is the change amount ⁇ Va of the adjustment value Va, the upper limit value ⁇ Vamax is set for the change amount ⁇ Va, and the change amount ⁇ Va exceeds the upper limit value ⁇ Vamax. The adjustment value Va is added or subtracted so that becomes the upper limit value ⁇ Vamax. Then, in the increase area 1 and the return area, when changing in the direction of the maximum adjustment value Vah (hereinafter, this change is referred to as “adjustment value increase”), the upper limit value ⁇ Vamax is set so that the change amount ⁇ Va becomes smaller.
  • the upper limit value ⁇ Vamax is increased or the upper limit value is set so that the change amount ⁇ Va increases. Not set.
  • the upper limit value ⁇ Vamax is increased or the upper limit value is not set so that the change amount ⁇ Va is increased.
  • the upper limit value ⁇ Vamax is reduced so that the value becomes smaller.
  • the limit value is set in this way, for example, when the rack axial force f changes with respect to the steering angle as indicated by a one-dot chain line in FIG. 22, the right turn upper limit value RU and the left turn lower limit value LL are indicated by solid lines.
  • the maximum value and minimum value of the right turn lower limit value RL and the maximum value and minimum value of the left turn upper limit value LU change as shown by a broken line.
  • an upper limit value and a lower limit value may be set for the difference itself instead of the absolute value of the difference to limit the difference.
  • an upper limit value (and a lower limit value) is set to limit the rate of change of the adjustment value Va (ratio of the amount increased or decreased from the previous adjustment value), not the change amount of the adjustment value Va. May be.
  • the steering speed calculation unit 150 receives the rack displacement x output from the rack end approach determination unit 110 and calculates the steering speed ⁇ from the amount of change.
  • the steering speed ⁇ is input to the steering information extraction unit 160 and the control amount adjustment unit 170.
  • the steering speed ⁇ may be calculated from the steering angle ⁇ or the like.
  • the steering information extraction unit 160 uses the rack displacement x and the steering speed ⁇ to determine the steering state (increase and return) and the steering direction (right and left). That is, as shown in FIG. 23, when the rack displacement x and the steering speed ⁇ have the same sign, it is determined as “increase”, and when they do not match, it is determined as “return”, and the rack displacement x is correct. When the value is negative, it is judged as “right turn”, and when it is negative, it is judged as “left turn”.
  • the determination result of the steering state is output as the steering state signal Sc, and the determination result of the steering direction is output as the steering direction signal Sd.
  • a steering angle ⁇ or the like may be used.
  • the control amount adjusting unit 170 sets a limit value based on the rack axial force f, the rack displacement x, the steering speed ⁇ , the steering state signal Sc, and the steering direction signal Sd, and the rack axial force ff is set using the set limit value. To limit. A configuration example of the control amount adjusting unit 170 is shown in FIG.
  • the control amount adjustment unit 170 includes an adjustment value setting unit 171 and a control amount restriction unit 172.
  • the adjustment value setting unit 171 determines the adjustment value Va based on the rack displacement x, the steering speed ⁇ , and the steering state signal Sc. That is, when the rack displacement x is and steering state signal Sc below x f is "steer", is determined to be steered in the steer region 1, as shown in FIG.
  • the adjustment value Va is determined by the magnitude
  • the control amount limiting unit 172 inputs the rack axial forces f and ff and the steering direction signal Sd together with the adjustment value Va.
  • the steering direction signal Sd is “right turn”
  • the right turn upper limit value RU and the right turn lower limit value are calculated from the rack axial force f, the adjustment value Va, and the preset adjustment value Vf using Equations 33 and 34.
  • RL is calculated and used to limit the rack axial force ff.
  • the steering direction signal Sd is “left turn”
  • the left turn upper limit LU and the left turn lower limit LL are calculated from the rack axial force f and the adjustment values Va and Vf using the equations 35 and 36, and are used.
  • the limited rack axial force ff is output to the conversion unit 102 as the rack axial force ffm.
  • FIG. 25 is a flowchart showing an example of the entire operation. Compared with the flowchart of FIG. 8, processing by the control amount adjustment function is added to the viscoelastic model following control, so step S20 is changed to step S20A.
  • step S20A An example of the operation in the viscoelastic model following control (step S20A) is shown in the flowchart of FIG. Compared with the flowchart of FIG. 9, step S207A is added, and step S208 is changed to step S208A.
  • step S207A the control amount adjustment function is executed by the steering speed calculation unit 150, the steering information extraction unit 160, and the control amount adjustment unit 170, and the rack axial force ff output from the viscoelastic model following control unit 120 is limited.
  • FIG. 27 shows a detailed operation example of step S207A.
  • the steering speed calculation unit 150 calculates the steering speed ⁇ from the rack displacement x output from the rack end approach determination unit 110 (step S207B).
  • the steering information extraction unit 160 inputs the rack displacement x and the steering speed ⁇ , and determines whether the steering state is “increase” or “return” by the condition determination as shown in FIG. 23 (step S207C). The determination result is output as the steering state signal Sc. At the same time, it is determined whether the steering direction is “right turn” or “left turn” (step S207D), and the determination result is output as a steering direction signal Sd.
  • the steering state signal Sc and the steering direction signal Sd are input to the control amount adjustment unit 170.
  • the adjustment value setting unit 171 checks the value of the steering state signal Sc (Step S207E), when the steering state signal Sc is "steer”, if the rack displacement x is x f below ( In step S207F, according to the characteristics shown in FIGS. 21A and 21B, the magnitude
  • of the steering speed ⁇ and the adjustment value Va are determined by the rate limit process according to the characteristics shown in FIGS. 21A and 21B (step S207G).
  • the adjustment value Va is input to the control amount restriction unit 172.
  • the control amount limiting unit 172 confirms the value of the steering direction signal Sd (step S207I).
  • the steering direction signal Sd is “right turn”
  • the rack axial force f, the adjustment value Va, and A right turn upper limit RU and a right turn lower limit RL are calculated from the adjustment value Vf (step S207J).
  • step S207K If the rack axial force ff is greater than or equal to the upper right limit value RU (step S207K), the rack axial force ff is set to the upper right limit value RU (step S207L), and if the rack axial force ff is less than or equal to the lower right limit value RL (step S207L) In step S207M), the value of the rack axial force ff is set to the lower right limit RL (step S207N). Otherwise, the value of the rack axial force ff is not changed.
  • step S207I When the steering direction signal Sd is “left turn” (step S207I), the left turn upper limit LU and the left turn lower limit LL are calculated from the rack axial force f, the adjustment value Va, and the adjustment value Vf using Equations 35 and 36. (Step S207O). If the rack axial force ff is greater than or equal to the upper left limit value LU (step S207P), the rack axial force ff is set to the upper left limit value LU (step S207Q), and if the rack axial force ff is less than or equal to the lower left limit value LL ( In step S207R), the value of the rack axial force ff is set to the lower left limit LL (step S207S).
  • the limited rack axial force ff is output as the rack axial force ffm (step S207T).
  • the rack axial force ffm is converted into the current command value Iref2 by the conversion unit 102 (step S208A), and is added to the current command value Iref1 by the addition unit 103.
  • FIG. 28 shows the state of change when steering in the rack end direction on the right side
  • FIG. 28 (A) shows the state of change in the current command values Iref1, Iref2, Iref3 and steering torque Th.
  • the horizontal axis represents time t
  • the vertical axis represents the current command value and the steering torque.
  • the horizontal axis represents time t and the vertical axis represents the determination rack position and the steering speed, but only the determination rack position is shown as a scale, and the corresponding rack displacement is shown in parentheses.
  • the maximum adjustment value Vah is assumed to be a value corresponding to the maximum value of the current command value Iref1.
  • the determination rack position Rx at time t1 exceeds a predetermined position x 0, since the current command value Ierf2 is output, the steering torque Th increases, the steering speed ⁇ is smaller It will become. Further steering in the rack end direction, beyond determining rack position Rx at time t2 the threshold position x a (rack displacement x exceeds the x f) enters the additional turning region 2, the magnitude of the steering speed ⁇ is zero As the value approaches, the adjustment value Va gradually changes toward the maximum adjustment value Vah.
  • the adjustment value Va gradually changes in substantially one direction.
  • the current command value Iref2 also gradually changes at a substantially constant rate in substantially one direction.
  • the current command values Iref1 and Iref2 are added, and the current command value Iref3 for instructing the final assist force gradually increases, so that steering in the rack end direction is possible.
  • the current command value Iref2 gradually changes at a substantially constant rate in substantially one direction, there is no sudden change in assist force, and the driver can steer in the rack end direction without a sense of incongruity.
  • the rate limit process is performed on the adjustment value Va.
  • the rate limit process may be performed on the right turn lower limit RL and the left turn upper limit LU.
  • the rate limit process is performed by the control amount limiting unit 172.
  • the adjustment value Vf is a predetermined value, it may be a value set based on the steering speed, the rack displacement, and the steering state, similarly to the adjustment value Va.
  • the left turn upper limit value and the left turn lower limit value are values obtained by replacing the right turn upper limit value and the right turn lower limit value. However, the left turn upper limit value and the left turn lower limit value need not be changed.
  • the steering direction signal Sd is not necessary. Therefore, the steering information extraction unit 160 determines the steering direction and the control amount restriction unit 172 switches the operation based on the steering direction signal Sd. It becomes unnecessary.
  • the rack end proximity area is divided into two areas when the steering state is increased, but it is divided into three or more areas by setting multiple threshold positions, etc.
  • the amount may be changed.
  • the change amount of the adjustment value may be changed by dividing into a plurality of regions. For example, as shown in FIG.
  • the change amount ⁇ Va is smaller when the adjustment value is higher than when the adjustment value is lower (restriction). To be stronger).
  • the amount of change ⁇ Va is larger (the limit is weaker) when the adjustment value is higher than when the adjustment value is lower.
  • the following equation 37 is satisfied so that the change (limitation) is between the increasing area 1 and the increasing area 3 and between the returning area 1 and the returning area 3.
  • the amount of change ⁇ Va is smaller when the adjustment value is higher than when the adjustment value is lower (so that the limit becomes stronger).
  • the upper limit value should satisfy the following equation (38). .
  • the amount of change ⁇ Va is smaller when the adjustment value is higher than when the adjustment value is lower (so that the limit becomes stronger).
  • the increase area 2 and the increased area 3 when the change amount ⁇ Va is larger (so that the limit is weaker) when the adjustment value is higher than when the adjustment value is lower, the upper limit is 39 To satisfy.
  • the areas are overlapped at the time of addition and at the time of return, but they may be set so as not to overlap. Further, the number of areas to be set may be changed at the time of adding back and at the time of returning, for example, three areas may be set for increasing and one or two areas may be set for returning.
  • a condition for the steering torque Th is added to the setting condition for the increased area 2, the setting condition for the increased area 2 in the first embodiment is increased, and the threshold position x
  • a predetermined threshold value for example, 10 Nm
  • Thf torque threshold value
  • the adjustment value Va is obtained by the same processing as the increase region 2 in the first embodiment.
  • the adjustment value Va is determined by the same processing as that in the increase area 1 and the return area in the first embodiment. This makes it possible to cut into the rack end only when the steering torque is large.
  • the steering torque Th is input to the adjustment value setting unit of the control amount adjustment unit.
  • a configuration example of the control amount adjusting unit in the second embodiment is shown in FIG.
  • the control amount adjusting unit 270 the control amount limiting unit 172 is the same as that in the first embodiment, but the adjustment value setting unit 271 is based on the steering torque Th in addition to the rack displacement x, the steering speed ⁇ , and the steering state signal Sc. To determine the adjustment value Va.
  • the operation of the second embodiment is the same except that the operation of the adjustment value setting unit 271 is different from the operation example of the first embodiment.
  • An example of the operation of the adjustment value setting unit 271 will be described with reference to the flowchart of FIG.
  • the adjustment value setting unit 271 checks the value of the steering state signal Sc (step S207E). ) When the steering state signal Sc is “added”, the value of the rack displacement x is confirmed (step S207F). If the rack displacement x is greater than x f, if the steering torque Th is the threshold Thf or less (step S207F1), according to the characteristic shown in FIG. 21 (A) and (B), the magnitude of the steering speed omega
  • step S207F1 If the steering torque Th is larger than the threshold value Thf (step S207F1), the magnitude of the steering speed ⁇
  • the adjustment value Va is changed with the characteristics shown in FIG. 21 in the increase area 1, the increase area 2, and the return area, but in the third embodiment, this change is simplified.
  • the amount of change when the adjustment value is increased is set to zero, and the amount of change when the adjustment value is reduced is not zero. Let it be a small value A1.
  • the amount of change when the adjustment value is reduced is set to zero, and the amount of change when the adjustment value is increased is set to a predetermined small value A2 that is not zero.
  • A1 and A2 may be the same value or different values.
  • the configuration example of the third embodiment is basically the same as the configuration example of the first embodiment shown in FIGS. 19 and 24, but the operation in the adjustment value setting unit of the control amount adjustment unit is different. That is, the adjustment value setting unit sets the change amount when the adjustment value is increased to zero in the increase region 1 and the return region, sets the change amount when the adjustment value is down to A1, and increases the adjustment value in the increase region 2.
  • the amount of change at the time of is A2, and the amount of change when the adjustment value is down is zero.
  • the adjustment value Va is constant at a value close to the maximum adjustment value Vah when the magnitude of the steering speed ⁇ is small, and close to the minimum adjustment value Val when the magnitude of the steering speed ⁇ is large. It becomes constant at.
  • the operation of the third embodiment is the same except that the operation in the adjustment value setting unit is different from the operation example of the first embodiment as described above.
  • the simplification of the change in the adjustment value Va in the third embodiment may be applied to the second embodiment. That is, when the steering torque Th is less than or equal to the threshold value Thf in the increase region 2 in addition to the increase region 1 and the return region, the amount of change when the adjustment value is increased is zero, and the amount of change when the adjustment value is decreased is A1. To do. Only when the steering torque Th is larger than the threshold value Thf in the increasing region 2, the amount of change when the adjustment value is reduced is set to zero, and the amount of change when the adjustment value is increased is set to A2.
  • the configuration example of the fourth embodiment is basically the same as the configuration examples of the other embodiments, but the operation at the rack end approach determination unit is different. That is, the rack end approach determination unit determines whether the steering to the rack end on the basis of the position x 0 is the start position of the rack end proximate region (set value) to the rack displacement x with the origin, the rack end If it is determined that the steering to using the rack displacement x at that point, updates the predetermined position x 0. The determination as to whether or not the vehicle has been steered to the rack end is made by setting a threshold value (virtual end threshold value) for the rack displacement x. For example, as shown in FIG.
  • the determination rack position Rx predetermined position x 0 or less, i.e., performed when it is determined that the rack end proximate region outside. If it is determined that the vehicle has been steered to the rack end a plurality of times before it is determined that it is outside the rack end proximity region, the maximum value (hereinafter referred to as “maximum excess length”) Exm of the excess length Ex calculated each time is set to use updating predetermined position x 0. Note that an average value or the like may be used instead of the maximum value.
  • the operation of the fourth embodiment is the same as that of the fourth embodiment except that the operation at the rack end approach determination unit is different from the operation example of the other embodiments.
  • An operation example of the rack end approach determination unit in the fourth embodiment will be described with reference to the flowchart of FIG. At the start of the operation, zero is set for the maximum excess length Exm.
  • Rack end approach determination unit inputs a determination rack position Rx outputted from the rack position conversion section 100, for determination rack position Rx is sure exceeds a predetermined position x 0 (step S121).
  • determination rack position Rx had exceeded the predetermined position x 0 determines that the rack end approaching, outputs a switching signal SWS and rack displacement x (step S122).
  • rack displacement x is not exceed the threshold value x t (step S123)
  • calculates the excess length Ex step S124
  • the excess length Ex is greater than the maximum excess length EXM (step S125)
  • the excess length Ex The maximum excess length Exm is set (step S126).
  • step S127 If excess length Ex is less than or equal to the maximum excess length Exm updating the maximum excess length Exm is not performed, if the rack displacement x does not exceed the threshold value x t is not performed including the calculation of the excess length Ex.
  • step S127 if the maximum excess length EXM has been updated (step S127), and updates the predetermined position x 0 with the maximum excess length EXM (step S128) The maximum excess length Exm is cleared (step S129). If the maximum excess length Exm has not been updated (step S127), it clears the update and maximum excess length Exm predetermined position x 0 is not performed.
  • each time updating the predetermined position x 0 for example, such as by subtracting the maximum excess length Exm smaller value may be changed a threshold x t.
  • updating the predetermined position x 0 is carried out at a rack end approach determination in the direction of right and left, it may be changed in the right and left magnitude threshold x t to be set.
  • the update of the determination and the predetermined position x 0 if the steering to the rack end, the rack displacement x without based on the determination rack position Rx be performed by setting a threshold value and a position relative to the determined rack position Rx good.
  • the determination as to whether or not the vehicle has been steered to the rack end may be made based on the column shaft angle (handle angle) and the column shaft angle threshold value ⁇ t (value corresponding to the threshold value x t ).
  • the rack end proximity region may be divided into three or more regions, and the amount of change in the adjustment value may be changed in each region. Even when the state is the switchback, the amount of change in the adjustment value may be changed by dividing it into a plurality of regions.
  • farthest area from the rack end (area of FIG. 29 from the predetermined position x 0 to the threshold position x a) is included in the rack end distant region
  • the region closest to the rack end in FIG. 29 the threshold position x b To the rack end
  • FIG. 35 shows a configuration example of the fifth embodiment corresponding to FIG. 4.
  • a steering speed calculation unit 350 a steering state extraction unit 360, a state determination unit 370, and control An amount adjustment unit 380 is added, and a control amount adjustment function is realized by these.
  • the compensation assist force may be increased at the Ft increase rate. Further, the compensation assist force is increased because the steering angle magnitude
  • is equal to or higher than the virtual steering speed ⁇ z, the entire assist force is recovered until the steering can be performed at the steering speed, and it is not necessary to recover the assist force beyond that. is there. Further, when the steering state is the switchback, it is necessary to assist in the returning direction, and it is necessary to reduce the compensation assist force.
  • the steering speed calculation unit 350 calculates the steering speed ⁇ ′ from the steering angle ⁇ .
  • the steering speed ⁇ ′ may be calculated from the rack displacement x or the like.
  • Steering state extraction unit 360 determines a steering state (addition and return) using steering angle ⁇ and steering speed ⁇ ′. That is, as shown in FIG. 36, when the signs of the steering angle ⁇ and the steering speed ⁇ ′ coincide with each other, “increase” is determined, and when they do not coincide with each other, “return” is determined. The determination result is output as a steering state signal Sc '. Note that a rack displacement x or the like may be used instead of the steering angle ⁇ .
  • the state determination unit 370 uses the steering angle ⁇ , the steering speed ⁇ ′, and the steering state signal Sc ′ to determine the approaching state to the rack end that determines increase / decrease in the compensation assist force, and outputs the determination result as the determination signal Js. To do. Specifically, when the steering angle magnitude
  • is equal to or smaller than the threshold ⁇ z, Js 0. When the steering angle magnitude
  • is smaller than the virtual steering speed ⁇ z and the steering state signal Sc ′ is “increase”, Js 1.
  • the control amount adjustment unit 380 decreases the compensation assist force at a decrease rate calculated from the decrease time Tr.
  • the control amount adjustment unit 380 adjusts the rack axial force ff output from the viscoelastic model follow-up control unit 120 by increasing or decreasing the compensation assist force based on the value of the determination signal Js.
  • the determination signal Js is 0, the region where the reaction force increase need not be compensated is steered, and therefore no compensation assist force is added to the rack axial force ff.
  • the determination signal Js is 1, the compensation assist force is increased at the increase rate Ft and added to the rack axial force ff.
  • the determination signal Js is 2, since the entire assist force is recovered, the compensation assist force is not increased, and the compensation assist force in the previous control cycle is added to the rack axial force ff.
  • the determination signal Js is 3, since it is a state of switching back, the compensation assist force is reduced and added to the rack axial force ff.
  • FIG. 37 shows a configuration example of the control amount adjusting unit 380.
  • the control amount adjusting unit 380 includes an axial force limiting unit 381, a compensation assist force generating unit 382, and an adding unit 383.
  • the axial force limiting unit 381 limits the rack axial force ff according to the determination signal Js. That is, when the determination signal Js changes from 0 to 1, the rack axial force ff at that time is stored as the rack axial force ffx, and the rack axial force ffx is used as the limit value until the determination signal Js becomes 0. And the restricted rack axial force is output as the rack axial force ffc. When the determination signal Js is 0, the rack axial force ff is output as it is as the rack axial force ffc.
  • the compensation assist force generation unit 382 generates a compensation assist force fa according to the determination signal Js.
  • the determination signal Js is 0, the compensation assist force fa is zero.
  • the compensation assist force fa is increased at the increase rate Ft. That is, the initial value of the compensation assist force fa is set to zero, and the compensation assist force fa is increased in proportion to the time with the increase rate Ft.
  • the determination signal Js is 2
  • the compensation assist force fa does not increase or decrease and remains the previous value.
  • the rack axial force ffc and the compensation assist force fa are added by the adding unit 383 and output as the rack axial force ffm '.
  • the rack axial force is limited by the axial force limiting unit 381 from the time when the assist is increased, and in the region where the steering angle magnitude
  • FIG. 38 shows an example of the entire operation in a flowchart. Compared with the flowchart of FIG. 8, the processing by the control amount adjustment function is added to the viscoelastic model follow-up control, so step S20 is changed to step S20a.
  • step S20a An example of operation in the viscoelastic model following control (step S20a) is shown in the flowchart of FIG. Compared with the flowchart of FIG. 9, step S207a is added, and step S208 is changed to step S208a.
  • step S207a the control amount adjustment function is executed by the steering speed calculation unit 350, the steering state extraction unit 360, the state determination unit 370, and the control amount adjustment unit 380, and the rack axial force ff output from the viscoelastic model following control unit 120 is obtained.
  • Adjust. FIG. 40 shows a detailed operation example of step S207a.
  • the steering speed calculator 350 receives the steering angle ⁇ , and calculates the steering speed ⁇ ′ from the steering angle ⁇ (step S207b).
  • the steering speed ⁇ ′ is input to the steering state extraction unit 360 and the state determination unit 370.
  • the steering state extraction unit 360 inputs the steering angle ⁇ together with the steering speed ⁇ ′, and determines whether the steering state is “increase” or “return” by condition determination as shown in FIG. 36 (step S207c).
  • the determination result is output to the state determination unit 370 as the steering state signal Sc ′.
  • the state determination unit 370 receives the steering angle ⁇ , the steering speed ⁇ ′, and the steering state signal Sc ′, determines the approaching state to the rack end, and outputs the determination signal Js.
  • step S207d when the steering angle magnitude
  • step S207d When the steering angle magnitude
  • step S207i When the magnitude of the steering speed
  • the determination signal Js is input to the control amount adjustment unit 380.
  • the axial force limiting unit 381 confirms the value of the determination signal Js, and if the determination signal Js is 0 (step S207l), the rack axial force ff is directly output as the rack axial force ffc (step S207m). ).
  • step S207l If the determination signal Js is other than 0 (step S207l), if the determination signal Js is changed from 0 to 1 (step S207n), the input rack axial force ff is stored as the rack axial force ffx (step S207o). The rack axial force ffx is output as the rack axial force ffc. Otherwise, the rack axial force ffx is set as a limiting value to limit the rack axial force ff (step S207p) and output as the rack axial force ffc. The rack axial force ffc is input to the adding unit 383.
  • the compensation assist force generation unit 382 also confirms the value of the determination signal Js (step S207q).
  • step S207r the compensation assist force fa is set to 0 (step S207r).
  • the determination signal Js is 1, the compensation assist force fa is increased at an increase rate Ft and output (step S207s).
  • the determination signal Js is 2, the compensation assist force fa is output with the previous value (step S207t).
  • the determination signal Js is 3
  • the compensation assist force fa at that time is divided by the decrease time Tr to calculate the decrease rate (step S207u), and the compensation assist force fa is decreased by the calculated decrease rate and output (step S207u).
  • the compensation assist force fa is input to the adder 383, added to the rack axial force ffc (step S207w), and the addition result is output as the rack axial force ffm '(step S207x).
  • the rack axial force ffm ' is converted into the current command value Iref2 by the conversion unit 102 (step S208a), and is added to the current command value Iref1 by the addition unit 103. Note that the operations of the axial force limiting unit 381 and the compensation assist force generating unit 382 in the control amount adjusting unit 380 may be performed in reverse order or in parallel.
  • the axial force limiting unit 381 in the control amount adjusting unit 380 limits the rack axial force ff using the rack axial force ffx as a limit value until the determination signal Js becomes 0.
  • the rack axial force ffx may be output as the rack axial force ffc until Js becomes zero.
  • the latter process can be realized with a configuration different from that of the control amount adjusting unit 380.
  • An example of the configuration (sixth embodiment) is shown in FIG.
  • the control amount adjustment unit 480 of the sixth embodiment includes an axial force adjustment unit 481, a compensation assist force generation unit 382, a switching unit 483, a subtraction unit 484, addition units 485 and 486, and a fixing unit 487.
  • the axial force adjustment unit 481 stores the rack axial force ff at that time as the rack axial force ffx, and the rack axial force ffx is increased to the rack axis until the determination signal Js becomes 0. Output as force ffa.
  • the rack axial force ff is output as it is as the rack axial force ffa.
  • the addition value fad from the addition unit 485 is input to the contact point a, and the fixed value “0” output from the fixing unit 487 is input to the contact point b.
  • the switching unit 483 switches the contact point according to the value of the determination signal Js. That is, when the determination signal Js is 1, 2 or 3, it is connected to the contact a, and when the determination signal Js is 0, it is connected to the contact b.
  • the compensation assist force generation unit 382 is the same as that in the fifth embodiment.
  • the output from the switching unit 483 and the rack axial force ff are added and output as the rack axial force ffm ′.
  • the switching unit 483 is connected to the contact point a, so that the rack axial force ffm ′ can be determined from And the compensation assist force fa.
  • the rack axial force ffm ′ is adjusted by increasing / decreasing the compensation assist force fa.
  • the switching unit 483 is connected to the contact b, and “0” is added to the rack axial force ff, so that the rack axial force ff is directly output as the rack axial force ffm ′. Will be.
  • the operation of the sixth embodiment is the same as that of the fifth embodiment except that the operation of the control amount adjusting unit 480 is different from that of the fifth embodiment.
  • the rack axial force ffm ′ can be adjusted by increasing / decreasing the compensation assist force fa.
  • an effect equivalent to that of limiting the rack axial force ff is obtained by adjusting the parameters of the viscoelastic model following control unit.
  • FIG. 42 shows a configuration example of the seventh embodiment.
  • the viscoelastic model follow-up control unit and the control amount adjustment unit are changed, and the viscoelastic model follow-up control unit 520 includes a rack displacement x, a switching signal SWS, and In addition to the rack axial force f, a steering angle ⁇ is input.
  • the spring constant k 0 in the parameters of the viscoelastic model follow-up control unit is adjusted.
  • the characteristic of the spring constant k 0 is defined in the parameter setting unit 124 as the characteristic with respect to the rack displacement x.
  • the characteristic of the spring constant k 0 is defined by the parameter setting unit, but it is defined as the characteristic with respect to the steering angle ⁇ , not the rack displacement x. Therefore, the steering angle ⁇ input to the viscoelastic model follow-up control unit 520 is input to the parameter setting unit.
  • the characteristic of the spring constant k 0 is, for example, as shown in FIG. In FIG. 43, ⁇ 0 is a steering angle corresponding to a predetermined position x 0 before the rack end, and a steering angle corresponding to the rack displacement x, that is, a steering angle with ⁇ 0 as the origin is defined as a steering angle displacement.
  • the characteristic of the spring constant k 0 is that the steering angle ⁇ (precisely the magnitude of the steering angle ⁇
  • the spring constant k 0 In the region, as in the case of the base forms 3 and 4, as the steering angle ⁇ (rack displacement x in the base forms 3 and 4) increases, the spring constant k 0 also increases. However, in the region where the steering angle ⁇ exceeds the threshold value ⁇ z, when the value of the spring constant k 0 at the steering angle ⁇ z is k1, the spring force and the steering angle displacement ⁇ ( ⁇ z ⁇ 0 ) ( ⁇ The value of the spring constant k 0 at the steering angular displacement ⁇ ( ⁇ z ⁇ 0 ) is set to k1 / ⁇ so that the spring force at> 1) is approximately the same.
  • the steering feeling can be changed by adjusting the above settings. That is, when the spring constant k 0 at the steering angular displacement ⁇ ( ⁇ z ⁇ 0 ) is set lower than the above setting, the drag (spring force) at the steering angular displacement ⁇ ( ⁇ z ⁇ 0 ) is the same at the steering angle ⁇ z. Since it becomes smaller than the drag, steering becomes easier.
  • the axial force limiting unit 381 in the fifth embodiment limits the rack axial force ff according to the determination signal Js.
  • the axial force limiting unit 581 in the seventh embodiment uses the rack axial force due to occurrence of an abnormality or the like. It is used for the purpose of preventing ff from becoming extremely large, and the rack axial force ff is limited by a predetermined fixed value limit value. Therefore, the determination signal Js is not used in the axial force limiting unit 581 and is not input. Note that the axial force limiting portion 581 may not be provided when the rack axial force ff does not become extremely large.
  • the operation of the seventh embodiment is different from the fifth embodiment only in the setting of the spring constant k 0 in the viscoelastic model following control unit 520 and the operation of the axial force limiting unit 581 in the control amount adjusting unit 580. Other operations are the same as those in the fifth embodiment.
  • step S202 in which the rack displacement x in the flowchart shown in FIG. 39 is output and step S203 in which the current command value Iref1 is converted into the rack axial force f. in the parameter setting in the setting unit (corresponding to step S23 in the flowchart shown in FIG. 18), the spring constant k 0 is determined according to the characteristics shown in FIG. 43 according to ⁇ steering angle.
  • the axial force limiting unit 581 to which the rack axial force ff is input indicates that the rack axial force ff is a predetermined limit value (fixed). Value) or less (step S20711), the rack axial force ff is directly output as the rack axial force ffc (step S207m).
  • the limit value is output as the rack axial force ffc (step S207p1). Thereafter, the operation is the same as that of the control amount adjustment unit 380 of the fifth embodiment (step S207q ⁇ ).
  • the rack axial force ff may be limited by adjusting the viscous friction coefficient ⁇ according to the steering angle ⁇ .
  • the characteristic of the viscous friction coefficient ⁇ is a characteristic that maintains the value of the viscous friction coefficient ⁇ at the steering angle ⁇ z in a region where the steering angle ⁇ exceeds the threshold ⁇ z.
  • the parameter characteristics may be defined not as characteristics with respect to the steering angle ⁇ but as characteristics with respect to the rack displacement x as in the case of the base forms 3 and 4, or as characteristics with respect to the determination rack position Rx. good.
  • FIG. 46 shows a configuration example of the eighth embodiment. Compared to the configuration example of the fifth embodiment shown in FIG. 35, a rack displacement limiting unit 690 is inserted between the rack end approach determining unit 110 and the viscoelastic model follow-up control unit 120, and a seventh control amount adjusting unit is used. The control amount adjustment unit 580 in the embodiment is used.
  • the rack displacement limiting unit 690 receives the rack displacement x and the determination signal Js, and limits the rack displacement x according to the determination signal Js. That is, when the determination signal Js changes from 0 to 1, the rack displacement x at that time is stored as the rack displacement xf, and until the determination signal Js becomes 0, the rack displacement x is limited as a limit value.
  • the limited rack displacement is output as the rack displacement xm.
  • the rack displacement x is output as it is as the rack displacement xm.
  • the rack axial force ff output from the viscoelastic model follow-up control unit 120 is consequently restricted. .
  • the rack displacement restriction unit 690 places a restriction, the same control amount adjustment unit 580 as that of the seventh embodiment is used as the control amount adjustment unit.
  • the operation of the rack displacement restriction unit 690 is added to the operation of the control amount adjustment unit 580 of the seventh embodiment, compared to the fifth embodiment.
  • the operation of the rack displacement limiting unit 690 is added after step S202 in which the rack displacement x in the flowchart shown in FIG. 39 is output. That is, an operation example of the rack displacement limiting unit 690 will be described with reference to the flowchart of FIG. 47.
  • the rack displacement x is input to the rack displacement limiting unit 690 together with the determination signal Js.
  • the rack displacement limiting unit 690 confirms the value of the determination signal Js. If the determination signal Js is 0 (step S202A), the rack displacement x is output as the rack displacement xm as it is (step S202B).
  • step S202A When the determination signal Js is other than 0 (step S202A), when the determination signal Js is changed from 0 to 1 (step S202C), the input rack displacement x is stored as the rack displacement xf (step S202D), and the rack displacement is detected. xf is output as the rack displacement xm, otherwise, the rack displacement x is limited using the rack displacement xf as a limit value (step S202E) and output as the rack displacement xm. The rack displacement xm is input to the viscoelastic model following control unit 120. Thereafter, the process continues to step S203.
  • the rack displacement limiting unit 690 does not limit the rack displacement x using the rack displacement xf as a limit value until the determination signal Js becomes 0, but does not limit the rack displacement xf until the determination signal Js becomes 0. May be output as Further, not the rack displacement x but the determination rack position Rx may be limited.
  • the assist force increases in the steering angle range where the reaction force increases.
  • the driver can steer to the actual rack end. Therefore, you may mount the function mounted in 4th Embodiment with respect to these embodiment.
  • the steering angle (rack displacement) when actually steered to the rack end (more accurately, when it is determined that the steering has been reached to the rack end) is detected, and the virtual rack is detected using the detected steering angle (rack displacement).
  • the rack end proximity region is corrected so that the end is within an appropriate range with respect to the actual rack end.
  • the configuration example in this case (the ninth embodiment) is basically the same as the configuration examples in the fifth to eighth embodiments, but the operation of the rack end approach determination unit is the rack end approach determination unit in the fourth embodiment. It becomes the operation.
  • the rack axial force ffm ′ continues to increase in the increased assist state, and for example, the rack axial force ffm ′ continues to increase even in the steering state where the steering speed ⁇ ′ is zero.
  • a limiter is provided at the subsequent stage of the control amount adjusting unit, and the rack axial force ffm 'is limited with zero being a limit value.
  • a limiter is provided after the compensation assist force generation unit in the control amount adjustment unit to limit the compensation assist force fa.
  • the compensation assist force generation unit increases the compensation assist force fa in proportion to time at a constant increase rate Ft, it may be increased not in proportion but in a curve.
  • the increase rate Ft may be changed according to the magnitude of the steering speed
  • the rate of increase Ft is constant at a predetermined value Fz until the magnitude
  • the increase rate Ft decreases, and the increase rate Ft may be zero at ⁇ z + Lw (Lw is a fixed value).
  • the compensation assist force fa is decreased, the compensation assist force fa may be decreased in a curved line, and the decrease rate may be a fixed value or a value calculated by another calculation formula.
  • the state determination unit makes a determination based on the magnitude (absolute value) of the steering angle ⁇ and the steering speed ⁇ ′, but sets a positive / negative threshold and a virtual steering speed, and uses the steering angle ⁇ and the steering speed ⁇ ′ as they are. Then, the determination may be made. In this case, the threshold value and the magnitude of the virtual steering speed may be changed between a positive case and a negative case.
  • the determination is made if the steering speed magnitude
  • the steering torque is considered to be a large value (for example, 10 Nm).
  • the determination signal Js 1.
  • the determination in step S207i is that “the magnitude of the steering speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】物理モデルに基づいた制御系を構成し、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を抑制し、衝撃力を減衰すると共に、旋回半径を悪化させずに異音を抑制することが可能な電動パワーステアリング装置を提供する。 【解決手段】ラックエンド手前の所定の範囲内で粘弾性モデルを規範モデルとし、前記電流指令値を補正する制御量を出力する粘弾性モデル追従制御部と、操舵位置情報に基づいてラックエンド手前の所定の範囲にあることを判定するラックエンド接近判定部とを具備し、少なくとも操舵位置情報、操舵速度及び操舵状態に基づいて制御量を調整し、調整された制御量で電流指令値を補正する。

Description

電動パワーステアリング装置
 本発明は、少なくとも操舵トルクに基づいて電流指令値を演算し、電流指令値によってモータを駆動し、車両の操舵系にアシスト力を付与するようにした電動パワーステアリング装置に関し、特に粘弾性モデルを規範モデルとし、ラックエンド近傍で電流指令値の大きさを低減することによりアシストトルクを減少させ、端当て時の勢いを減衰して衝撃エネルギーを低くし、運転者が不快に感じる打音(異音)を抑制し、操舵フィーリングを向上した電動パワーステアリング装置に関する。
 車両の操舵系にモータの回転力でアシスト力を付与する電動パワーステアリング装置(EPS)は、モータの駆動力を、減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸にアシスト力として付与するようになっている。かかる従来の電動パワーステアリング装置は、アシスト力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、電流指令値とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のデューティの調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいて、アシストマップを用いてアシスト指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御値Vrefによってモータ20に供給する電流を制御する。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VelはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(MPUやMCUを含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Velは電流指令値を演算するトルク制御部31に入力され、演算された電流指令値Iref1は減算部32Bに入力され、モータ電流検出値Imと減算される。減算部32Bでの減算結果である偏差I(=Iref1-Im)はPI制御等の電流制御部35で制御され、電流制御された電圧制御値VrefがPWM制御部36に入力されてデューティを演算され、PWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。モータ20にはレゾルバ等の回転角センサ21が連結されており、回転角θrが検出されて出力される。
 このような電動パワーステアリング装置では、操舵系の最大舵角(ラックエンド)の近傍で大きなアシストトルクがモータにより付加されると、操舵系が最大舵角に至った時点で大きな衝撃が生じ、打音(異音)が発生して、運転者が不快に感じる可能性がある。
 このような問題点に対して、本出願人は、国際公開第2016/104568号(特許文献1)にて、物理モデルに基づいた制御系を構成し、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を抑制し、衝撃力を減衰する電動パワーステアリング装置を提案している。特許文献1の電動パワーステアリング装置では、物理モデルに基づいた制御系を構成しているので、定数設計に見通しが立て易くなる。また、規範モデルに制御対象の出力が追従するようなモデルフォローイング制御を構成しているので、負荷状態(外乱)や制御対象の変動にロバスト(頑健)な端当て抑制制御が可能となる。
 しかし、特許文献1の電動パワーステアリング装置では、仮想ラックエンドがあるように、即ち、運転者がハンドルを切り込もうとしてもラックエンドであるかのようにハンドルが進まないようにするために、運転者の手入力とタイヤ側からの反力との和に釣り合うようにアシスト力を出力している。このとき、運転者の操舵方向と逆方向にアシストすることになるので、その最大値を制限しておく等の安全方策が必要となる場合がある。運転者の操舵方向と同じ方向へのアシストにおいても、同様に安全方策が必要となる場合がある。
 その安全方策として、本出願人は、国際公開第2016/104571号(特許文献2)にて、アシスト力の最大値を制限するために、モデルフォローイング制御を構成する粘弾性モデル追従制御部からの出力を制限する電動パワーステアリング装置を提案している。出力の制限は制御量制限部にて行われ、固定の制限値、ラック軸力若しくはコラム軸トルクに応じた制限値等を用いて制限を行っている。また、操舵速度が速いときは仮想ラックエンドになるように強く制御し、遅いときは制御量の制限を強くして安全性を高める等、より柔軟な対応を取ることが可能となるように、操舵速度により制限値を変更する装置も提案している。
国際公開第2016/104568号 国際公開第2016/104571号
 しかしながら、アシスト力の最大値を制限する特許文献2の電動パワーステアリング装置でも、ラックエンドに当たるときの異音を抑制するために、ラックエンド手前に仮想ラックエンドを形成するように制御量を生成しているので、仮想ラックエンドが実際のラックエンドと離れた位置に形成された場合、その位置が離れていればいるほど、車両の旋回半径が大きくなり、取り回しが悪化する可能性がある。操舵速度のみで制限値を変更するようにしても、この可能性を小さくするのは難しい。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、物理モデルに基づいた制御系を構成し、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を抑制し、衝撃力を減衰すると共に、旋回半径を悪化させずに異音を抑制することが可能な電動パワーステアリング装置を提供することにある。
 本発明は、少なくとも操舵トルクに基づいて電流指令値を演算し、前記電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置に関し、本発明の上記目的は、ラックエンド手前の所定の範囲内で粘弾性モデルを規範モデルとし、前記電流指令値を補正する制御量を出力する粘弾性モデル追従制御部と、操舵位置情報に基づいて前記ラックエンド手前の所定の範囲にあることを判定するラックエンド接近判定部とを具備し、少なくとも前記操舵位置情報、操舵速度及び操舵状態に基づいて前記制御量を調整し、調整された前記制御量で前記電流指令値を補正することにより達成される。
 また、少なくとも操舵トルクに基づいて第1の電流指令値を演算し、前記第1の電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置に関し、本発明の上記目的は、操舵位置情報に基づいてラックエンド手前の所定の範囲であるラックエンド近接領域にあることを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、前記第1の電流指令値に第1の変換を行って求められる第1の軸力及び前記ラック変位の内の少なくとも1つ並びに前記切替信号に基づいて、粘弾性モデルを規範モデルとした第2の軸力を生成する粘弾性モデル追従制御部と、少なくとも前記操舵位置情報、操舵速度及び切増し又は切戻しを示す操舵状態信号に基づいて前記第2の軸力に対して制限値を設定し、前記第2の軸力を制限する制御量調整部とを具備し、前記制限された第2の軸力に第2の変換を行って求められる第2の電流指令値で前記第1の電流指令値を補正して前記アシスト制御を行うことにより達成される。
 また、少なくとも操舵トルクに基づいて第1の電流指令値を演算し、前記第1の電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置に関し、本発明の上記目的は、操舵位置情報に基づいてラックエンド手前の所定の範囲にあることを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、前記第1の電流指令値に第1の変換を行って求められる第1の軸力及び前記ラック変位の内の少なくとも1つ並びに前記切替信号に基づいて、粘弾性モデルを規範モデルとした第2の軸力を生成する粘弾性モデル追従制御部と、少なくとも前記操舵位置情報、操舵速度及び切増し又は切戻しを示す操舵状態信号に基づいて前記ラックエンドへの接近状態を判定し、判定信号を出力する状態判定部と、前記判定信号に基づいて前記第2の軸力を調整する制御量調整部とを具備し、前記調整された第2の軸力に第2の変換を行って求められる第2の電流指令値で前記第1の電流指令値を補正して前記アシスト制御を行うことにより達成される。
 本発明の電動パワーステアリング装置によれば、物理モデルに基づいた制御系を構成しているので、定数設計に見通しが立て易くなる。また、規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成しているので、負荷状態(外乱)や制御対象の変動にロバスト(頑健)な端当て抑制制御が可能となる。更に、操舵位置情報、操舵速度、操舵状態等に基づいて制御量を調整しているので、運転者はラックエンドまで切り込むことが可能となり、異音抑制と快適な操舵力を同時に達成することができる。ラックエンドまで操作できることにより、最小旋回半径に対しての影響も軽減できる。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 ラックエンド手前の所定角度内における操舵角と反力の変化例を示す図である。 基盤形態の構成例を示すブロック図である。 ラック位置変換部の特性例を示す図である。 粘弾性モデル追従制御部の構成例(基盤形態1)を示すブロック図である。 粘弾性モデル追従制御部の構成例(基盤形態2)を示すブロック図である。 基盤形態の動作例(全体)を示すフローチャートである。 粘弾性モデル追従制御の動作例(基盤形態)を示すフローチャートである。 粘弾性モデルの模式図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細原理を説明するためのブロック図である。 粘弾性モデル追従制御部の詳細な構成例(基盤形態3)を示すブロック図である。 粘弾性モデル追従制御部の詳細な構成例(基盤形態4)を示すブロック図である。 ラック変位によって規範モデルのパラメータを変更する例を示す図である。 粘弾性モデル追従制御部の動作例(基盤形態4)を示すフローチャートである。 本発明の構成例(第1実施形態)を示すブロック図である。 ラックエンド近接領域内の領域例を示す図である。 操舵速度の大きさに対する調整値の特性例を示す図である。 制限値の変化例を示す図である。 操舵状態及び操舵方向の判定条件を示す図である。 制御量調整部の構成例(第1実施形態)を示すブロック図である。 本発明の全体の動作例(第1実施形態)を示すフローチャートである。 粘弾性モデル追従制御の動作例(第1実施形態)を示すフローチャートである。 制御量制限の動作例(第1実施形態)を示すフローチャートである。 ラックエンド接近時の各データの時間的変化の例を示す図である。 ラックエンド近接領域内の他の領域例を示す図である。 制御量調整部の構成例(第2実施形態)を示すブロック図である。 調整値設定部の動作例(第2実施形態)を示すフローチャートである。 調整値の変化を簡素化した場合の操舵速度の大きさに対する調整値の特性例を示す図である。 ラック変位に対する閾値の設定例を示す図である。 ラックエンド接近判定部の動作例(第4実施形態)を示すフローチャートである。 本発明の構成例(第5実施形態)を示すブロック図である。 操舵状態の判定条件を示す図である。 制御量調整部の構成例(第5実施形態)を示すブロック図である。 本発明の全体の動作例(第5実施形態)を示すフローチャートである。 粘弾性モデル追従制御の動作例(第5実施形態)を示すフローチャートである。 制御量調整の動作例(第5実施形態)を示すフローチャートである。 制御量調整部の構成例(第6実施形態)を示すブロック図である。 本発明の構成例(第7実施形態)を示すブロック図である。 操舵角によってバネ定数を変更する例を示す図である。 制御量調整部の構成例(第7実施形態)を示すブロック図である。 制御量調整部の動作例(第7実施形態)を示すフローチャートである。 本発明の構成例(第8実施形態)を示すブロック図である。 ラック変位制限部の動作例を示すフローチャートである。 操舵角によって増加率を変更する例を示す図である。
 本発明は、ラックエンド近傍の物理モデルに基づいた制御系を構成し、粘弾性モデル(バネ定数、粘性摩擦係数)を規範モデルとし、その規範モデルに制御対象の出力(ラックエンドまでの距離)が追従するようなモデルフォローイング制御を構成し、運転者に操舵違和感を与えずに端当て時の異音の発生を抑制し、衝撃力を減衰する電動パワーステアリング装置である。
 モデルフォローイング制御は粘弾性モデル追従制御部で構成し、粘弾性モデル追従制御部をフィードフォワード制御部若しくはフィードバック制御部或いはその両者で構成し、ラックエンド手前の所定の範囲外では通常のアシスト制御を行い、ラックエンド手前の所定の範囲内でモデルフォローイング制御を行い、ラックエンドに当たることを抑制する。
 また、本発明は、操舵角(ハンドル角度、コラム軸角度)等のように操舵位置を示す情報(操舵位置情報)、操舵速度及び操舵状態(切増し、切戻し)等に基づいてモデルフォローイング制御での制御量を調整する機能(以下、「制御量調整機能」とする)を有する。
 モデルフォローイング制御では、仮想ラックエンドがあるように、即ち、運転者がハンドルを切り込もうとしてもラックエンドであるかのようにハンドルが進まないようにするために、運転者の手入力とタイヤ側からの反力との和に釣り合うようにアシスト力を出力する(タイヤと路面の摩擦が極低い場合は、運転者の手入力分だけとなる)。しかし、この場合、運転者の操舵方向と逆方向にアシストすることになる。本発明の1つでは、安全性を考慮して、アシスト力の最大値を制限する。運転者の操舵方向と同じ方向へのアシストにおいても、同様に、アシスト力の最大値を制限する。更に、仮想ラックエンドが実際のラックエンドと離れた位置に形成されることにより、車両の旋回半径が大きくなり、取り回しが悪化する可能性を小さくするために、アシスト力の最大値の制限において、ラックエンドに近接した領域でのラック変位の位置、操舵速度及び操舵状態に基づいた制限値を設定する。なお、ラック変位の代わりに、操舵位置情報である操舵角や後述の判定用ラック位置を使用しても良い。
 ラックエンド手前の所定角度内においては、操舵角θの大きさ(絶対値)|θ|が大きくなるに従い、図3に示すように、タイヤ側からの反力(セルフアライニングトルク(SAT))も大きくなり、ある大きさθdからは反力が急激に大きくなる。本発明の別の1つでは、急激に大きくなる領域で運転者が容易に操舵できるように、反力の上昇分を考慮した処理を行う。具体的には、θdの近傍に閾値θzを設定し、操舵角の大きさ|θ|が閾値θzを超えた領域において、操舵速度及び操舵状態を判定材料として、反力の上昇分を補償するようなアシスト力(以下、「補償アシスト力」とする)を付加する。なお、操舵角の代わりに、操舵位置情報であるラック変位や後述の判定用ラック位置を使用しても良い。
 以下に、本発明の実施形態を、図面を参照して説明する。
 本発明は、特許文献1で提案されている電動パワーステアリング装置に対して、制御量調整機能を追加したものである。そこで、先ず、制御量調整機能を追加していない実施形態(以下、「基盤形態」とする)について説明し、その後、基盤形態を基にした本発明の実施形態について説明する。
 図4は基盤形態の一例を図2に対応させて示しており、電流指令値Iref1は変換部101でラック軸力fに変換され、ラック軸力fは粘弾性モデル追従制御部120に入力される。ラック軸力fはコラム軸トルクと等価であるが、以下の説明では便宜的にラック軸力として説明する。なお、ラック軸力及びコラム軸トルクの総称が軸力である。また、ラックエンド接近を算出するために用いるラック位置、或いはラック変位はコラム軸角度(ハンドル角度)と等価であるが、以下の説明ではラック位置、或いはラック変位として説明する。コラム軸角度(ハンドル角度)によりラックエンドへの接近を判定するようにしても良い。なお、図2に示される構成と同一構成には同一符号を付して説明は省略する。
 電流指令値Iref1からラック軸力fへの変換は、下記数1に従って行われる。
Figure JPOXMLDOC01-appb-M000001
ここで、Ktをトルク定数[Nm/A]、Grを減速比、Cfを比ストローク[m/rev.]として、G1=Kt×Gr×(2π/Cf)である。
 回転角センサ21からの回転角θrはラック位置変換部100に入力され、判定用ラック位置Rxに変換される。判定用ラック位置Rxはラックエンド接近判定部110に入力される。ラックエンド接近判定部110は図5に示すように、判定用ラック位置Rxがラックエンド手前の所定位置x以内(ラックエンド近接領域)にあると判定したときに端当て抑制制御機能を働かせ、ラック変位xを出力すると共に切替信号SWSを出力する。図5においては、原点に対し右側のラックエンド近接領域のみを示しているが、左側のラックエンド近接領域は原点対称に設定される。また、右側のラックエンド近接領域内では、ラック変位xは正の値として出力され、左側のラックエンド近接領域内では、ラック変位xは負の値として出力され、ラックエンド近接領域外のときはゼロである。切替信号SWSは、ラックエンド近接領域内のときにONであり、領域外のときにOFFである。切替信号SWS及びラック変位xは、ラック軸力fと共に粘弾性モデル追従制御部120へ入力される。粘弾性モデル追従制御部120で制御演算されたラック軸力ffは変換部102で電流指令値Iref2に変換され、電流指令値Iref2は加算部103で電流指令値Iref1と加算されて電流指令値Iref3となる。電流指令値Iref3に基づいて、上述したアシスト制御が行われる。
 なお、図5に示すラックエンド近接領域を設定する所定位置xは、適宜な位置に設定可能であり、左右で異なる値としても良い。また、回転角θrをモータに連結された回転角センサ21から得ているが、舵角センサから取得するようにしても良い。
 変換部102でのラック軸力ffから電流指令値Iref2への変換は、下記数2に従って行われる。
Figure JPOXMLDOC01-appb-M000002
 
 粘弾性モデル追従制御部120の詳細を、図6又は図7に示す。
 図6の基盤形態1では、ラック軸力fはフィードフォワード制御部130及びフィードバック制御部140に入力され、ラック変位xはフィードバック制御部140に入力される。フィードフォワード制御部130からのラック軸力FFは切替部121に入力され、フィードバック制御部140からのラック軸力FBは切替部122に入力される。切替部121及び122は切替信号SWSによってON/OFFされ、切替信号SWSによってOFFされているときは、各出力u及びuはゼロである。切替信号SWSによって切替部121及び122がONされたとき、切替部121から、ラック軸力FFがラック軸力uとして出力され、切替部122から、ラック軸力FBがラック軸力uとして出力される。切替部121及び122からのラック軸力u及びuが加算部123で加算され、加算値のラック軸力ffが粘弾性モデル追従制御部120から出力される。ラック軸力ffは、変換部102で電流指令値Iref2に変換される。
 また、図7の基盤形態2では、ラック変位xはフィードフォワード制御部130及びフィードバック制御部140に入力され、ラック軸力fはフィードバック制御部140に入力される。以下は図6の基盤形態1と同様に、フィードフォワード制御部130からのラック軸力FFは切替部121に入力され、フィードバック制御部140からのラック軸力FBは切替部122入力される。切替部121及び122は切替信号SWSによってON/OFFされ、切替信号SWSによってOFFされているときは、各出力u及びuはゼロである。切替信号SWSによって切替部121及び122がONされたとき、切替部121から、ラック軸力FFがラック軸力uとして出力され、切替部122から、ラック軸力FBがラック軸力uとして出力される。切替部121及び122からのラック軸力u及びuが加算部123で加算され、加算値のラック軸力ffが粘弾性モデル追従制御部120から出力される。ラック軸力ffは変換部102で電流指令値Iref2に変換される。
 このような構成において、先ず基盤形態の動作例全体を図8のフローチャートを参照して、次いで粘弾性モデル追従制御(基盤形態1及び2)の動作例を図9のフローチャートを参照して説明する。
 スタート段階においては、切替部121及び122は切替信号SWSによってOFFされている。そして、動作がスタートすると先ず、トルク制御部31は操舵トルクTh及び車速Velに基づいて電流指令値Iref1を演算する(ステップS10)。ラック位置変換部100は回転角センサ21からの回転角θrを判定用ラック位置Rxに変換する(ステップS11)。ラックエンド接近判定部110は判定用ラック位置Rxに基づいてラックエンド接近か否かを判定する(ステップS12)。ラックエンド接近でない場合には、粘弾性モデル追従制御部120からラック軸力ffは出力されず、電流指令値Iref1に基づく通常の操舵制御が実行され(ステップS13)、終了となるまで継続される(ステップS14)。
 一方、ラックエンド接近判定部110でラックエンド接近が判定された場合には、粘弾性モデル追従制御部120による粘弾性モデル追従制御が実行される(ステップS20)。即ち、図9に示すように、ラックエンド接近判定部110から切替信号SWSが出力されると共に(ステップS201)、ラック変位xが出力される(ステップS202)。また、変換部101は、前記数1に従って電流指令値Iref1をラック軸力fに変換する(ステップS203)。図6の基盤形態1では、フィードフォワード制御部130はラック軸力fに基づいてフィードフォワード制御を行い(ステップS204)、フィードバック制御部140はラック変位x及びラック軸力fに基づいてフィードバック制御を行う(ステップS205)。また、図7の基盤形態2では、フィードフォワード制御部130はラック変位xに基づいてフィードフォワード制御を行い(ステップS204)、フィードバック制御部140はラック変位x及びラック軸力fに基づいてフィードバック制御を行う(ステップS205)。なお、いずれの場合も、フィードフォワード制御及びフィードバック制御の順番は、逆であっても良い。
 ラックエンド接近判定部110からの切替信号SWSは切替部121及び122に入力され、切替部121及び122がONされる(ステップS206)。切替部121及び122がONされると、フィードフォワード制御部130からのラック軸力FFがラック軸力uとして出力され、フィードバック制御部140からのラック軸力FBがラック軸力uとして出力される。ラック軸力u及びuは加算部123で加算され(ステップS207)、加算結果としてのラック軸力ffが変換部102で、前記数2に従って電流指令値Iref2に変換される(ステップS208)。なお、本基盤形態では、2つの切替部121及び切替部122でラック軸力FF及びラック軸力FBをそれぞれ切り替え、加算部123で加算する構成となっているが、ラック軸力FFとラック軸力FBを加算した後に、1つの切替部で出力を切り替えても良い。
 ここで、粘弾性モデル追従制御部120は、ラックエンド近辺の物理モデルに基づいた制御系となっており、ラックエンド手前の所定角度以内で粘弾性モデル(バネ定数k[N/m]、粘性摩擦係数μ[N/(m/s)])を規範モデル(入力:力、出力:変位で記述された物理モデル)としたモデルフォローイング制御を構成し、ラックエンドに当たることを抑制している。
 図10はラックエンド近傍の模式図を示しており、質量mと力F,Fの関係は数3である。粘弾性モデルの方程式の算出は、例えば関西大学理工学会誌「理工学と技術」Vol.17(2010)の「弾性膜と粘弾性の力学の基礎」(大場謙吉)に示されている。
Figure JPOXMLDOC01-appb-M000003
そして、ラック変位x、xに対して、k、kをバネ定数とすると、数4~数6が成立する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
従って、上記数3に上記数4~数6を代入して数7となる。
Figure JPOXMLDOC01-appb-M000007
上記数7を微分すると、下記数8となり、μ/kを両辺に乗算すると数9となる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
そして、数7と数9を加算すると、数10となる。
Figure JPOXMLDOC01-appb-M000010
数10に上記数4及び数6を代入すると、下記数11となる。
Figure JPOXMLDOC01-appb-M000011
ここで、μ/k=τ,k=E,μ(1/k+1/k)=τδとすると、上記数11は数12となり、ラプラス変換すると数13が成立する。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
上記数13をX(s)/F(s)で整理すると、下記数14となる。
Figure JPOXMLDOC01-appb-M000014
数14は入力力fから出力変位xまでの特性を示す3次の物理モデル(伝達関数)となり、バネ定数k=∞のバネとするとτ→0であり、τδ=μ・1/kであるので、2次関数の下記数15が導かれる。
Figure JPOXMLDOC01-appb-M000015
 
 本基盤形態では、数15で表される2次関数を規範モデルGmとして説明する。即ち、数16を規範モデルGmとしている。ここで、μ=μとしている。
Figure JPOXMLDOC01-appb-M000016
 
 次に、電動パワーステアリング装置の実プラント146を下記数17で表わされるPとし、本基盤形態の規範モデル追従型制御を2自由度制御系で設計すると、Pn及びPdを実際のモデルとして図11の構成となる。ブロック143(Cd)は制御要素部を示している。(例えば朝倉書店発行の前田肇、杉江俊治著「アドバンスト制御のためのシステム制御理論」参照)
Figure JPOXMLDOC01-appb-M000017
実プラントPを安定な有理関数の比で表わすために、N及びDを下記数18で表わす。Nの分子はPの分子、Dの分子はPの分母となる。ただし、αは(s+α)=0の極が任意に選択できる。
Figure JPOXMLDOC01-appb-M000018
 
 図11の構成を規範モデルGmに適用すると、x/f=Gmとなるためには、1/Fを下記数19のように設定する必要がある。なお、数19は、数16及び数18より導かれる。
Figure JPOXMLDOC01-appb-M000019
フィードバック制御部のブロックN/Fは下記数20である。
Figure JPOXMLDOC01-appb-M000020
フィードフォワード制御部のブロックD/Fは下記数21である。
Figure JPOXMLDOC01-appb-M000021
 
 2自由度制御系の一例を示す図11において、実プラントPへの入力(ラック軸力若しくはコラム軸トルクに対応する電流指令値)uは、下記数22で表される。
Figure JPOXMLDOC01-appb-M000022
また、実プラントPの出力(ラック変位)xは下記数23である。
Figure JPOXMLDOC01-appb-M000023
数23を整理し、出力xの項を左辺に、fの項を右辺に揃えると、数24が導かれる。
Figure JPOXMLDOC01-appb-M000024
数24を入力fに対する出力xの伝達関数として表わすと、数25となる。ここで、3項目以降ではP=Pn/Pdとして表現している。
 
 実プラントPを正確に表現できたとすれば、Pn=N、Pd=Dとすることができ、入力fに対する出力xの特性は、Pn/F(=N/F)として表わされるので、数26が成立する。
Figure JPOXMLDOC01-appb-M000026
入力fに対して出力xの特性(規範モデル(伝達関数))を、下記数27のようにすると考えるとき、
Figure JPOXMLDOC01-appb-M000027
1/Fを下記数28のようにすることで達成できる。
Figure JPOXMLDOC01-appb-M000028
 
 図11において、フィードフォワード制御系をフィードフォワード要素144→実プラントPの経路で考えると、図12となる。ここで、P=N/Dとすると、図12(A)は図12(B)となり、数20より図12(C)が得られる。図12(C)より、f=(m・s+μ・s+k0)xとなるので、これを逆ラプラス変換すると、下記数29が得られる。
Figure JPOXMLDOC01-appb-M000029
 
 一方、図13に示すようなフィードフォワード制御系の伝達関数ブロックを考えると、下記数30が入力f及び出力xにおいて成立する。
Figure JPOXMLDOC01-appb-M000030
数30を整理すると下記31となり、数31を入力fについて整理すると、数32が得られる。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
数32を逆ラプラス変換すると上記数29となり、結果的に図14に示すように2つのフィードフォワード制御部A及びBは等価である。
 上記前提を踏まえ、以下に基盤形態の具体的な構成例を図15及び図16に示して説明する。図15の基盤形態3は図6の基盤形態1に対応し、ラック軸力fがフィードフォワード制御部130内のフィードフォワード要素144(数21で示されるD/F)及びフィードバック制御部140に入力され、ラック変位xがフィードバック制御部140に入力される。また、図16の基盤形態4は図7の基盤形態2に対応し、ラック変位xがフィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132に入力され、ラック軸力fがフィードバック制御部140に入力される。
 図15の基盤形態3ではフィードフォワード要素144からのラック軸力FFは切替部121のb1接点に入力される。また、図16の基盤形態4では、フィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132の出力を減算部133で減算し、減算部133の減算結果であるラック軸力FFが切替部121のb1接点に入力される。切替部121のa1接点には、固定部125から固定値「0」が入力されている。
 図15の基盤形態3及び図16の基盤形態4のいずれにおいても、フィードバック制御部140はフィードバック要素(N/F)141、減算部142、制御要素部143で構成され、フィードバック制御部140からのラック軸力FB、つまり制御要素部143の出力は切替部122のb2接点に入力される。切替部122のa2接点には、固定部126から固定値「0」が入力されている。
 図15の基盤形態3では、ラック軸力fはフィードフォワード制御部130内のフィードフォワード要素144に入力されると共に、フィードバック制御部140のフィードバック要素(N/F)141に入力される。ラック変位xはフィードバック制御部140の減算部142に減算入力されると共に、パラメータ設定部124に入力される。パラメータ設定部124はラック変位xに対して、例えば図17に示すような特性のバネ定数k及び粘性摩擦係数μを出力し、バネ定数k及び粘性摩擦係数μは、フィードフォワード制御部130内のフィードフォワード要素144及びフィードバック制御部140内のフィードバック要素(N/F)141に入力される。なお、バネ定数k及び粘性摩擦係数μの特性を、ラック変位ではなく、他の操舵位置情報である操舵角や判定用ラック位置に対する特性としても良い。
 図16の基盤形態4では、ラック変位xはフィードフォワード制御部130内のバネ定数項131及び粘性摩擦係数項132に入力されると共に、フィードバック制御部140の減算部142に入力され、更にパラメータ設定部124に入力される。ラック軸力fはフィードバック制御部140のフィードバック要素(N/F)141に入力される。パラメータ設定部124はラック変位xに対して、上述と同様なバネ定数k及び粘性摩擦係数μを出力し、バネ定数kはバネ定数項131及びフィードバック要素(N/F)141に入力され、粘性摩擦係数μは粘性摩擦係数項132及びフィードバック要素(N/F)141に入力される。
 また、切替信号SWSは、基盤形態3及び4においていずれも切替部121及び122に入力され、切替部121及び122の接点は通常時(切替信号SWS=OFF)はそれぞれ接点a1及びa2に接続されており、切替信号SWSがONになったときにそれぞれ接点b1及びb2に切替えられるようになっている。
 このような構成において、図16の基盤形態4の動作例を図18のフローチャートを参照して説明する。
 ラックエンド接近判定部110から切替信号SWSが出力されると共に(ステップS21)、ラック変位xが出力される(ステップS22)。ラック変位xはバネ定数項131、粘性摩擦係数項132、パラメータ設定部124及び減算部142に入力される。パラメータ設定部124は、ラック変位xに応じて図17の特性に従って求められたバネ定数k及び粘性摩擦係数μを、バネ定数項131、粘性摩擦係数項132及びフィードバック要素(N/F)141に設定する(ステップS23)。また、変換部101は電流指令値Iref1をラック軸力fに変換し(ステップS23A)、ラック軸力fはフィードバック要素(N/F)141に入力され、N/F演算される(ステップS24)。N/F演算値は減算部142に加算入力され、ラック変位xが減算され(ステップS24A)、その減算値が制御要素部143でCd演算される(ステップS24B)。制御要素部143から、演算されたラック軸力FBが出力されて切替部122の接点b2に入力される。
 フィードフォワード制御部130内の粘性摩擦係数項132は、粘性摩擦係数μに基づいて“(μ-η)・s・x”の演算を行う(ステップS25)。バネ定数項131はバネ定数kを設定する(ステップS25A)。減算部で“k・x”及び“(μ-η)・s・x”の減算を行い(ステップS25B)、演算結果としてラック軸力FFを出力する。ラック軸力FFは切替部121の接点b1に入力される。なお、“s・x”はxの時間微分として演算する。また、フィードフォワード制御部130及びフィードバック制御部140の演算の順番は、逆であっても良い。
 ラックエンド接近判定部110からの切替信号SWSは切替部121及び122に入力され、切替部121及び122の各接点がa1からb1へ、a2からb2へ切替えられる。切替部121及び122からのラック軸力u及びuが加算部123で加算され(ステップS26)、加算結果としてのラック軸力ffが変換部102で電流指令値Iref2に変換される(ステップS26A)。電流指令値Iref2は加算部103に入力され、電流指令値Iref1に加算され(ステップS27)、操舵制御が実行され、ステップS14へとつながる。
 なお、制御要素部143(Cd)は任意のPID(比例積分微分)制御、PI制御、PD制御の構成のいずれでも良い。また、図15の基盤形態3の動作も、ラック軸力f及びラック変位xが入力する部分(要素)が異なるだけで、同様である。さらに、図15の基盤形態3及び図16の基盤形態4では、フィードフォワード制御部130及びフィードバック制御部140の両方の制御演算を実行しているが、フィードフォワード制御部130のみの構成でも良く、フィードバック制御部140のみの構成でも良い。電流指令値Iref1は変換部101でラック軸力fに変換され、ラック軸力ffは変換部102で電流指令値Iref2に変換されているが、変換部101での変換係数であるG1及び変換部102での変換係数である1/G1を、フィードフォワード制御部130及びフィードバック制御部140のパラメータに乗算することにより、変換部101及び102の機能を粘弾性モデル追従制御部120に盛り込み、変換部101及び102をなくすようにしても良い。また、制御要素部143(Cd)の制御パラメータ(制御ゲイン:比例ゲイン、積分ゲイン、微分ゲイン)を操舵位置情報に基づいて変更しても良い。例えば、所定位置xの近辺では、制御ゲインを小さくし、ラックエンド付近では、制御ゲインを大きくする。これにより、所定位置xの近辺では制御量の急変が起きず、ラックエンド付近では衝撃抑制を大きくすることができる。
 次に、基盤形態を基にした本発明の実施形態について説明する。なお、本実施形態において、ラック軸力(及びコラム軸トルク)は、ハンドルが右に切られている状態(以下、「右切操舵」とする)のときは正の値に、ハンドルが左に切られている状態(以下、「左切操舵」とする)のときは負の値になるように設定されているとする。また、車両の前進方向に向かって右側のラックエンドに対するラック変位を正の値、左側のラックエンドに対するラック変位を負の値とし、右側のラックエンド方向への操舵のときの操舵速度を正の値、左側のラックエンド方向への操舵のときの操舵速度を負の値とする。
 先ず、アシスト力の最大値を制限する実施形態(第1~第4実施形態)について説明する。
 図19は第1実施形態の構成例を図4に対応させて示しており、図4に示される構成例に対して、操舵速度演算部150、操舵情報抽出部160及び制御量調整部170が追加されており、これらにより制御量調整機能が実現されている。
 第1実施形態では、粘弾性モデル追従制御部120から出力されるラック軸力ff(制御量)の最大値及び最小値を制限する。制限するために制限値として上限値及び下限値を設定し、更に、右切操舵の場合の制限値(この場合の上限値を「右切上限値」、下限値を「右切下限値」とする)と左切操舵の場合の制限値(この場合の上限値を「左切上限値」、下限値を「左切下限値」とする)をそれぞれ設定する。そして、電流指令値Iref1から変換されるラック軸力fに基づいて制限値を設定する。即ち、右切上限値RUは下記数33のようにラック軸力fの符号を反転した値に調整値Vfを加算した値とし、右切下限値RLは下記数34のようにラック軸力fの符号を反転した値に調整値Vaを加算した値とする。右切上限値RUが予め定められた境界値VFを超えた場合、右切上限値RUは境界値VFとし、右切下限値RLがゼロを超えた場合、右切下限値RLはゼロとする。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
左切上限値LU及び左切下限値LLは、右切上限値RU及び右切下限値RLを入れ替えた、下記数35及び数36のような値とするが、左切下限値LLが境界値VFの符号を反転した値(-VF)未満の場合、左切下限値LLは-VFとし、左切上限値LUがゼロ未満の場合、左切上限値LUはゼロにする。
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
更に、調整値Vfは所定の値(例えば2Nm)とするが、調整値Vaは、操舵速度、ラック変位及び操舵状態(切増し、切戻し)に基づいて設定される値とする。その設定方法について説明する。
 先ず、例えば、図5に示されるラックエンド近接領域内に所定の位置(以下、「閾値位置」とする)x(このときのラック変位xをxとする)を設定する。図20に示されるように、操舵状態が切増しのとき、即ちラック変位xがラックエンドの方向に移動しているとき、所定位置x(ラック変位x=0)から閾値位置x(ラック変位x=x)までの領域を「切増し領域1」、閾値位置xからラックエンドまでの領域を「切増し領域2」とし、操舵状態が切戻しのとき、即ちラック変位xが所定位置xの方向に移動しているときのラックエンド近接領域全体を「切戻し領域」とする。なお、図20では、原点に対し右側のみを示しているが、左側に対しても同様に設定される。
 調整値Vaは操舵速度ωの大きさ(絶対値)|ω|に対して可変とし、操舵速度ωの大きさが小さいときは制御量が弱くなるように調整値Vaを大きくし、操舵速度ωの大きさが大きくなるにつれ、制御量が強くなるように調整値Vaを小さくする。本実施形態では、図21(A)に示されるように、調整値Vaの最大値(以下、「最大調整値」とする)をVah、最小値(以下、「最小調整値」とする)をValにし、操舵速度ωの大きさがゼロの時に最大調整値Vahにし、操舵速度ωの大きさが大きくなると最小調整値Valとなるようにする。更に上記3つの領域に応じて調整値Vaの変化量を変えるようにする。即ち、切増し領域1では、図21(B)に示されるように、操舵速度ωが遅くなっても調整値Vaが最大調整値Vahの方向に変化するのを強く抑制し、操舵速度ωが速いときには調整値Vaが最小調整値Valの方向に変化するのが十分に速いようにする。切戻し領域では、切増し領域1と同様に調整値Vaを変化させる。切増し領域2では、切増し領域1の場合とは反対に、図21(C)に示されるように、最大調整値Vahへの変化はある程度速く追従するようにし、最小調整値Valへの変化は強く抑制されるようにする。調整値Vaをこのように変化させることにより、切増し領域1では、調整値Vaが最小調整値Valに近い値となり、ラックエンドに向かう方向において仮想ラックエンドになるように強く制御することができる。一方、切増し領域2では、調整値Vaが最大調整値Vahに徐々に近付き、ラックエンドに向かう方向のアシスト力が徐々に回復するので、運転者はラックエンドに切り込むことができるようになる。切戻し領域では、調整値Vaが最小調整値Valの方向に速く変化するので、再度切増しとなったとき、速やかに仮想ラックエンドが形成できるように強く制御することができる。
 調整値Vaの変化量の変更は、具体的には変化量を制限するレートリミット処理により行う。例えば、前回の調整値との差分の絶対値を調整値Vaの変化量ΔVaとし、変化量ΔVaに対して上限値ΔVamaxを設定し、変化量ΔVaが上限値ΔVamaxを超えた場合、変化量ΔVaが上限値ΔVamaxになるように調整値Vaを加減算する。そして、切増し領域1及び切戻し領域では、最大調整値Vahの方向に変化する(以下、この変化を「調整値アップ」とする)ときは、変化量ΔVaが小さくなるように、上限値ΔVamaxを小さくし、最小調整値Valの方向に変化する(以下、この変化を「調整値ダウン」とする)ときは、変化量ΔVaが大きくなるように、上限値ΔVamaxを大きくする、或いは上限値を設定しない。切増し領域2では、逆に、調整値アップのときは、変化量ΔVaが大きくなるように、上限値ΔVamaxを大きくする、或いは上限値を設定せず、調整値ダウンのときは、変化量ΔVaが小さくなるように、上限値ΔVamaxを小さくする。
 このように制限値を設定すると、例えば、ラック軸力fが操舵角に対して図22の一点鎖線で示されるように変化する場合、右切上限値RU及び左切下限値LLは実線で示されるように変化し、右切下限値RLの最大値及び最小値並びに左切上限値LUの最大値及び最小値は破線で示されるように変化する。
 なお、レートリミット処理において、差分の絶対値ではなく、差分そのものに対して上限値及び下限値を設定して制限をかけるようにしても良い。また、調整値Vaの変化量ではなく、調整値Vaの変化率(前回の調整値から増加又は減少した量の割合)に対して上限値(及び下限値)を設定して制限をかけるようにしても良い。
 図19に示される構成例の説明に戻ると、操舵速度演算部150は、ラックエンド接近判定部110から出力されるラック変位xを入力し、その変化量から操舵速度ωを算出する。操舵速度ωは操舵情報抽出部160及び制御量調整部170に入力される。なお、操舵速度ωは操舵角θ等から算出しても良い。
 操舵情報抽出部160は、ラック変位x及び操舵速度ωを用いて、操舵状態(切増し、切戻し)及び操舵方向(右切、左切)を判定する。即ち、図23に示されるように、ラック変位xと操舵速度ωの符号が一致しているときは「切増し」、一致していないときは「切戻し」と判定し、ラック変位xが正の値のときは「右切」、負の値のときは「左切」と判定する。操舵状態の判定結果は操舵状態信号Scとして出力され、操舵方向の判定結果は操舵方向信号Sdとして出力される。なお、ラック変位xの代わりに、操舵角θ等を用いても良い。
 制御量調整部170は、ラック軸力f、ラック変位x、操舵速度ω、操舵状態信号Sc及び操舵方向信号Sdに基づいて制限値を設定し、設定された制限値を用いてラック軸力ffに制限をかける。制御量調整部170の構成例を図24に示す。制御量調整部170は調整値設定部171及び制御量制限部172を備える。調整値設定部171は、ラック変位x、操舵速度ω及び操舵状態信号Scに基づいて調整値Vaを決定する。即ち、ラック変位xがx以下で且つ操舵状態信号Scが「切増し」の場合は、切増し領域1で操舵していると判断し、図21(A)及び(B)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する。ラック変位xがxを超え且つ操舵状態信号Scが「切増し」の場合は、切増し領域2で操舵していると判断し、図21(A)及び(C)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する。操舵状態信号Scが「切戻し」の場合は、切戻し領域で操舵していると判断し、図21(A)及び(B)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する。制御量制限部172は、調整値Vaと共に、ラック軸力f及びff並びに操舵方向信号Sdを入力する。そして、操舵方向信号Sdが「右切」の場合、数33及び34を用いて、ラック軸力f、調整値Va及び予め設定されている調整値Vfより右切上限値RU及び右切下限値RLを算出し、それらを用いてラック軸力ffに制限をかける。操舵方向信号Sdが「左切」の場合は、数35及び36を用いて、ラック軸力f、調整値Va及びVfより左切上限値LU及び左切下限値LLを算出し、それらを用いてラック軸力ffに制限をかける。制限されたラック軸力ffは、ラック軸力ffmとして変換部102に出力される。
 このような構成において、第1実施形態の動作例を、図25~図27のフローチャートを参照して説明する。
 図25に全体の動作例をフローチャートで示しており、図8のフローチャートと比べると、粘弾性モデル追従制御に制御量調整機能による処理が加わるので、ステップS20がステップS20Aに変更されている。
 粘弾性モデル追従制御(ステップS20A)での動作例を図26のフローチャートで示す。図9のフローチャートと比べると、ステップS207Aが追加され、ステップS208がステップS208Aに変更されている。ステップS207Aでは、操舵速度演算部150、操舵情報抽出部160及び制御量調整部170により制御量調整機能を実行し、粘弾性モデル追従制御部120から出力されたラック軸力ffに制限がかけられる。図27にステップS207Aの詳細な動作例を示す。操舵速度演算部150は、ラックエンド接近判定部110から出力されたラック変位xから操舵速度ωを算出する(ステップS207B)。操舵情報抽出部160は、ラック変位x及び操舵速度ωを入力し、図23に示されるような条件判定により、操舵状態が「切増し」か「切戻し」かを判定し(ステップS207C)、判定結果を操舵状態信号Scとして出力する。同時に、操舵方向が「右切」か「左切」かを判定し(ステップS207D)、判定結果を操舵方向信号Sdとして出力する。操舵状態信号Sc及び操舵方向信号Sdは制御量調整部170に入力される。制御量調整部170は、調整値設定部171において、操舵状態信号Scの値を確認し(ステップS207E)、操舵状態信号Scが「切増し」の場合、ラック変位xがx以下ならば(ステップS207F)、図21(A)及び(B)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する(ステップS207G)。ラック変位xがxを超えているならば(ステップS207F)、図21(A)及び(C)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する(ステップS207H)。操舵状態信号Scが「切戻し」の場合、図21(A)及び(B)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する(ステップS207G)。調整値Vaは制御量制限部172に入力される。制御量制限部172は、操舵方向信号Sdの値を確認し(ステップS207I)、操舵方向信号Sdが「右切」の場合、数33及び34を用いて、ラック軸力f、調整値Va及び調整値Vfより右切上限値RU及び右切下限値RLを算出する(ステップS207J)。ラック軸力ffが右切上限値RU以上ならば(ステップS207K)、ラック軸力ffの値を右切上限値RUとし(ステップS207L)、ラック軸力ffが右切下限値RL以下ならば(ステップS207M)、ラック軸力ffの値を右切下限値RLとし(ステップS207N)、それ以外ならばラック軸力ffの値は変更しない。操舵方向信号Sdが「左切」の場合(ステップS207I)、数35及び36を用いて、ラック軸力f、調整値Va及び調整値Vfより左切上限値LU及び左切下限値LLを算出する(ステップS207O)。ラック軸力ffが左切上限値LU以上ならば(ステップS207P)、ラック軸力ffの値を左切上限値LUとし(ステップS207Q)、ラック軸力ffが左切下限値LL以下ならば(ステップS207R)、ラック軸力ffの値を左切下限値LLとし(ステップS207S)、それ以外ならばラック軸力ffの値は変更しない。制限されたラック軸力ffはラック軸力ffmとして出力される(ステップS207T)。ラック軸力ffmは変換部102で電流指令値Iref2に変換され(ステップS208A)、加算部103で電流指令値Iref1に加算される。
 ここで、ラックエンドに接近して操舵した場合の各データ(信号)の変化例について説明する。
 図28は右側のラックエンド方向に操舵した場合の変化の様子を示しており、図28(A)は電流指令値Iref1、Iref2及びIref3並びに操舵トルクThの変化の様子を、図28(B)は判定用ラック位置Rx及び操舵速度ωの変化を示している。図28(A)において、横軸は時間t、縦軸は電流指令値及び操舵トルクである。図28(B)において、横軸は時間t、縦軸は判定用ラック位置及び操舵速度であるが、目盛としては判定用ラック位置のみを記載しており、対応するラック変位を括弧書きで示している。また、図28において、最大調整値Vahは電流指令値Iref1の最大値に対応する値にしているとする。
 右側のラックエンド方向に操舵していき、時点t1で判定用ラック位置Rxが所定位置xを越えると、電流指令値Ierf2が出力されるので、操舵トルクThが大きくなり、操舵速度ωは小さくなっていく。更にラックエンド方向に操舵し、時点t2で判定用ラック位置Rxが閾値位置xを越えて(ラック変位xがxを超えて)切増し領域2に入り、操舵速度ωの大きさがゼロに近くなってくると、調整値Vaは最大調整値Vahに向かって徐々に変化していく。切増し領域2において操舵速度ωが変動しても、切増し領域2では最大調整値Vahへの変化(調整値アップ)は最小調整値Valへの変化(調整値ダウン)より大きくなるように設定されているので、調整値Vaは略一方向に徐々に変化する。その結果、電流指令値Iref2も略一方向で略一定の割合で徐々に変化する。そして、電流指令値Iref1とIref2の加算結果であり、最終的なアシスト力を指示する電流指令値Iref3は徐々に大きくなるので、ラックエンド方向に操舵可能となる。また、電流指令値Iref2が略一方向で略一定の割合で徐々に変化するので、急激なアシスト力の変化がなく、運転者は違和感なくラックエンド方向に操舵できる。
 なお、本実施形態では、調整値Vaに対してレートリミット処理を行っているが、右切下限値RLや左切上限値LUに対してレートリミット処理を行っても良い。この場合、レートリミット処理は制御量制限部172で行うことになる。調整値Vfは所定の値としているが、調整値Vaと同様に、操舵速度、ラック変位及び操舵状態に基づいて設定される値としても良い。左切上限値及び左切下限値は右切上限値及び右切下限値を入れ替えた値としているが、入れ替えた値にしなくても良く、右切操舵の場合と左切操舵の場合で同じ制限値を使用しても良く、その場合は、操舵方向信号Sdは不要となるので、操舵情報抽出部160での操舵方向の判定及び制御量制限部172での操舵方向信号Sdによる動作の切替えも不要となる。
 また、ラックエンド近接領域を、操舵状態が切増しのときに2つの領域に分けているが、複数の閾値位置を設定する等で3つ以上の領域に分けて、各領域において調整値の変化量を変えるようにしても良い。また、操舵状態が切戻しのときも複数の領域に分けて、調整値の変化量を変えるようにしても良い。例えば、図29に示されるように、閾値位置xの他に閾値位置x(このときのラック変位xをxffとする)を設定し、ラックエンド近接領域を3つの領域に分け、操舵状態が切戻しのときも3つの領域で区別するようにし、「切増し領域1」、「切増し領域2」及び「切増し領域3」、並びに「切戻し領域1」、「切戻し領域2」及び「切戻し領域3」の合計6つの領域を設定する。そして、レートリミット処理で使用する調整値Vaの変化量ΔVaに対する上限値を、下記表1に示されるように、6つの領域毎で、更に調整値アップのときと調整値ダウンのときとで異なる値を設定する。
Figure JPOXMLDOC01-appb-T000037
表1の上限値に対して、例えば、切増し領域1、切戻し領域1及び切戻し領域3では調整値ダウンのときより調整値アップのときの方が変化量ΔVaが小さくなるように(制限が強くなるように)する。切増し領域3では調整値ダウンのときより調整値アップのときの方が変化量ΔVaが大きくなるように(制限が弱くなるように)する。切増し領域2及び切戻し領域2ではそれぞれ切増し領域1と切増し領域3の中間及び切戻し領域1と切戻し領域3の中間の変化(制限)となるように、下記数37を満たすようにする。
Figure JPOXMLDOC01-appb-M000038
切増し領域1、切増し領域2及び全ての切戻し領域では調整値ダウンのときより調整値アップのときの方が変化量ΔVaが小さくなるように(制限が強くなるように)する。切増し領域3では調整値ダウンのときより調整値アップのときの方が変化量ΔVaが大きくなるように(制限が弱くなるように)する場合は、上限値が下記数38を満たすようにする。
Figure JPOXMLDOC01-appb-M000039
切増し領域1及び全ての切戻し領域では調整値ダウンのときより調整値アップのときの方が変化量ΔVaが小さくなるように(制限が強くなるように)する。切増し領域2及び切増し領域3では調整値ダウンのときより調整値アップのときの方が変化量ΔVaが大きくなるように(制限が弱くなるように)する場合は、上限値が下記数39を満たすようにする。
Figure JPOXMLDOC01-appb-M000040
なお、図29では、切増しのときと切戻しのときで領域が重なっているが、重ならないように設定しても良い。また、切増しのときと切戻しのときで設定する領域の数を変えても良く、例えば切増しのときは3つの領域、切戻しのときは1つ又は2つの領域としても良い。
 本発明の第2実施形態について説明する。
 第2実施形態では、切増し領域2の設定条件に、操舵トルクThに対する条件を追加し、第1実施形態での切増し領域2の設定条件である、操舵状態が切増しで、閾値位置xからラックエンドまでの領域であることに加え、操舵トルクThが所定の閾値(トルク閾値)Thf(例えば10Nm)より大きい場合、第1実施形態における切増し領域2と同様の処理により調整値Vaを決定する。操舵トルクThが所定の閾値Thf以下の場合は、第1実施形態における切増し領域1及び切戻し領域と同様の処理により調整値Vaを決定する。これにより、操舵トルクが大きいときだけ、ラックエンドに切り込むことができるようになる。
 第2実施形態の構成例では、図19及び図24に示される第1実施形態の構成例と比べると、制御量調整部の調整値設定部に操舵トルクThが入力されることになる。第2実施形態での制御量調整部の構成例を図30に示す。制御量調整部270では、制御量制限部172は第1実施形態と同じであるが、調整値設定部271は、ラック変位x、操舵速度ω及び操舵状態信号Scに加え、操舵トルクThに基づいて調整値Vaを決定する。
 第2実施形態の動作は、調整値設定部271の動作が第1実施形態の動作例と異なるだけで、他は同じである。調整値設定部271の動作例を図31のフローチャートを参照して説明する。
 図27に示される操舵速度演算部150及び操舵情報抽出部160での動作(ステップS207B~S207D)が実行された後、調整値設定部271は、操舵状態信号Scの値を確認し(ステップS207E)、操舵状態信号Scが「切増し」の場合、ラック変位xの値を確認する(ステップS207F)。ラック変位xがxを超えている場合、操舵トルクThが閾値Thf以下ならば(ステップS207F1)、図21(A)及び(B)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する(ステップS207G)。操舵トルクThが閾値Thfより大きいならば(ステップS207F1)、図21(A)及び(C)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する(ステップS207H)。ラック変位xがx以下の場合は、図21(A)及び(B)に示される特性に従って、操舵速度ωの大きさ|ω|及びレートリミット処理により調整値Vaを決定する(ステップS207G)。操舵状態信号Scが「切戻し」の場合も、同様の処理により調整値Vaを決定する(ステップS207G)。調整値Vaは制御量制限部172に入力され、制御量制限部172は、第1実施形態と同様の動作(ステップS207I~S207T)により、ラック軸力ffmを出力する。
 本発明の第3実施形態について説明する。
 第1実施形態では、切増し領域1、切増し領域2及び切戻し領域において、調整値Vaを図21に示されるような特性で変化させているが、第3実施形態では、この変化を簡素化する。具体的には、切増し領域1及び切戻し領域においては、図32(A)に示すように、調整値アップでの変化量をゼロとし、調整値ダウンでの変化量をゼロではない所定の小さな値A1とする。切増し領域2においては、図32(B)に示すように、調整値ダウンでの変化量をゼロとし、調整値アップでの変化量をゼロではない所定の小さな値A2とする。なお、A1及びA2は同じ値でも違う値でも良い。このように簡素化することにより、調整値Vaを決定するための演算量やデータ量を削減することができる。
 第3実施形態の構成例は、図19及び図24に示される第1実施形態の構成例と基本的に同じであるが、制御量調整部の調整値設定部での動作が異なる。即ち、調整値設定部は、切増し領域1及び切戻し領域では、調整値アップのときの変化量はゼロとし、調整値ダウンのときの変化量はA1とし、切増し領域2では、調整アップのときの変化量はA2とし、調整値ダウンのときの変化量はゼロとする。変化量がゼロの場合、調整値Vaは、操舵速度ωの大きさが小さいときは最大調整値Vahに近い値で一定となり、操舵速度ωの大きさが大きいときは最小調整値Valに近い値で一定となる。
 第3実施形態の動作は、上述のように調整値設定部での動作が第1実施形態の動作例と異なるだけで、他は同じである。
 なお、第3実施形態における調整値Vaの変化の簡素化を、第2実施形態に適用しても良い。つまり、切増し領域1及び切戻し領域に加え、切増し領域2において操舵トルクThが閾値Thf以下の場合も、調整値アップでの変化量をゼロとし、調整値ダウンでの変化量をA1とする。切増し領域2において操舵トルクThが閾値Thfより大きい場合のみ、調整値ダウンでの変化量をゼロとし、調整値アップでの変化量をA2とする。
 本発明の第4実施形態について説明する。
 第1~第3実施形態に搭載の制御量調整機能によりラックエンドまで操舵できるようになるので、第4実施形態では、実際にラックエンドまで操舵したとき(正確には、ラックエンドまで操舵したと判定したとき)の舵角(ラック変位)を検知し、検知した舵角(ラック変位)を使用して仮想ラックエンドが実際のラックエンドに対して適切な範囲になるように、ラックエンド近接領域を補正する。
 第4実施形態の構成例は、他の実施形態の構成例と基本的に同じであるが、ラックエンド接近判定部での動作が異なる。即ち、ラックエンド接近判定部は、ラックエンド近接領域の開始位置(設定値)である所定位置xを原点としたラック変位xに基づいてラックエンドまで操舵したか否かを判定し、ラックエンドまで操舵したと判定した場合は、その地点でのラック変位xを用いて、所定位置xを更新する。ラックエンドまで操舵したか否かの判定は、ラック変位xに対して閾値(仮想エンド閾値)を設定することにより行う。例えば、図33に示すように、ラックエンド近辺に仮想エンド閾値として閾値xを設定し、ラック変位xが閾値xを越えたら、ラックエンドまで操舵したと判定する。なお、図33では、原点に対し右側のみを示しているが、左側の仮想エンド閾値も同様に設定される。所定位置xの更新は、ラック変位xが閾値xを越えた長さ(以下、「超過長」とする)Ex(=x-x)を算出し、所定位置xに超過長Exを加えることにより行う。また、所定位置xの更新は、ラックエンドまで操舵したと判定した後、判定用ラック位置Rxが所定位置x以下、即ちラックエンド近接領域外と判定したときに行う。ラックエンド近接領域外と判定されるまでに、ラックエンドまで操舵したと複数回判定した場合は、各回で算出した超過長Exの中の最大値(以下、「最大超過長」とする)Exmを使用して所定位置xを更新する。なお、最大値ではなく、平均値等を使用しても良い。
 第4実施形態の動作は、上述のようにラックエンド接近判定部での動作が他の実施形態の動作例と異なるだけで、他の動作は同じである。第4実施形態でのラックエンド接近判定部の動作例を、図34のフローチャートを参照して説明する。なお、動作開始時、最大超過長Exmにはゼロが設定される。
 ラックエンド接近判定部は、ラック位置変換部100から出力された判定用ラック位置Rxを入力し、判定用ラック位置Rxが所定位置xを越えているか確認する(ステップS121)。判定用ラック位置Rxが所定位置xを越えていた場合、ラックエンド接近と判定し、切替信号SWS及びラック変位xを出力する(ステップS122)。更に、ラック変位xが閾値xを越えていた場合(ステップS123)、超過長Exを算出し(ステップS124)、超過長Exが最大超過長Exmより大きい場合(ステップS125)、超過長Exを最大超過長Exmとする(ステップS126)。超過長Exが最大超過長Exm以下の場合は最大超過長Exmの更新は行わず、ラック変位xが閾値xを越えていない場合は超過長Exの算出も含めて行わない。判定用ラック位置Rxが所定位置xを越えていない場合、最大超過長Exmが更新されていたならば(ステップS127)、最大超過長Exmを用いて所定位置xを更新し(ステップS128)、最大超過長Exmをクリアする(ステップS129)。最大超過長Exmが更新されていないならば(ステップS127)、所定位置xの更新及び最大超過長Exmのクリアは行わない。
 なお、閾値xは固定値としているが、所定位置xの更新の度に、例えば最大超過長Exmより小さい値を減算する等により、閾値xを変更しても良い。また、所定位置xの更新は左右両方の方向でのラックエンド接近判定で行われるが、設定する閾値xの大きさは左右で変えても良い。ラックエンドまで操舵したかの判定及び所定位置xの更新を、ラック変位xではなく、判定用ラック位置Rxに基づき、判定用ラック位置Rxに対して閾値となる位置を設定して行っても良い。ラックエンドまで操舵したかの判定を、コラム軸角度(ハンドル角度)とコラム軸角度閾値θ(閾値xに相当する値)で行なっても良い。
 第2~第4実施形態においても、例えば図29に示されるように、ラックエンド近接領域を3つ以上の領域に分けて、各領域において調整値の変化量を変えるようにしても良く、操舵状態が切戻しのときも複数の領域に分けて、調整値の変化量を変えるようにしても良い。この場合、ラックエンドから最も遠い領域(図29では所定位置xから閾値位置xまでの領域)はラックエンドから遠い領域に含まれ、ラックエンドに最も近い領域(図29では閾値位置xからラックエンドまでの領域)はラックエンドに近い領域に含まれることになる。
 次に、反力の上昇分を考慮した処理を行う実施形態(第5~第9実施形態)について説明する。
 図35は第5実施形態の構成例を図4に対応させて示しており、図4に示される構成例に対して、操舵速度演算部350、操舵状態抽出部360、状態判定部370及び制御量調整部380が追加されており、これらにより制御量調整機能が実現されている。
 本実施形態では、操舵角の大きさ|θ|がθd以上である領域では操舵速度ωz[deg/sec](例えば、5deg/sec)で操舵していると想定する(以下、操舵速度ωzを「仮想操舵速度」と呼ぶ)。反力(SAT)は、図3に示されるように、近似的に傾きBiで増加すると仮定する。そして、この場合の反力の増加率Ft[Nm/sec]は下記数40で求められる。
Figure JPOXMLDOC01-appb-M000041
よって、反力の上昇分を補償するためには、補償アシスト力も、上記Ftの増加率で増加させていけば良い。また、補償アシスト力を増加させるのは、操舵角の大きさ|θ|が閾値θzを超え、更に、操舵速度ω’の大きさ|ω’|が仮想操舵速度ωzより小さく、操舵状態が切増しの場合(アシスト増加状態)である。操舵速度の大きさ|ω’|が仮想操舵速度ωz以上の場合は、その操舵速度で操舵できるまで全体のアシスト力が回復しているので、それ以上はアシスト力を回復する必要がないからである。また、操舵状態が切戻しの場合は、戻す方向へのアシストが必要となり、補償アシスト力を減少させる必要があるからである。
 操舵速度演算部350は、操舵角θから操舵速度ω’を算出する。なお、操舵速度ω’はラック変位x等から算出しても良い。
 操舵状態抽出部360は、操舵角θ及び操舵速度ω’を用いて、操舵状態(切増し、切戻し)を判定する。即ち、図36に示されるように、操舵角θと操舵速度ω’の符号が一致しているときは「切増し」、一致していないときは「切戻し」と判定する。判定結果は操舵状態信号Sc’として出力される。なお、操舵角θの代わりに、ラック変位x等を用いても良い。
 状態判定部370は、操舵角θ、操舵速度ω’及び操舵状態信号Sc’を用いて、補償アシスト力の増減を決定するラックエンドへの接近状態を判定し、判定結果を判定信号Jsとして出力する。具体的には、操舵角の大きさ|θ|が閾値θz以下の場合、Js=0とする。操舵角の大きさ|θ|が閾値θzより大きい場合、操舵速度の大きさ|ω’|が仮想操舵速度ωzより小さく、且つ、操舵状態信号Sc’が「切増し」ならば、Js=1とする。操舵速度の大きさ|ω’|が仮想操舵速度ωz以上で、且つ、操舵状態信号Sc’が「切増し」ならば、Js=2とする。操舵状態信号Sc’が「切戻し」ならば、Js=3とする。また、判定信号Jsを3として出力する場合、下記数41で算出される時間(以下、「減少時間」とする)Trも出力する。
Figure JPOXMLDOC01-appb-M000042
減少時間Trは、操舵角の大きさ|θ|が閾値θzを超えた後に操舵状態が「切戻し」になった場合、その後は「切戻し」となった際の操舵速度で操舵を継続するとの想定において、操舵角の大きさ|θ|が閾値θzになるまでの時間を表わす。制御量調整部380では、判定信号Jsが3の場合、この減少時間Trから算出される減少率で補償アシスト力を減少させる。
 制御量調整部380は、判定信号Jsの値に基づいて、補償アシスト力の増減により、粘弾性モデル追従制御部120から出力されるラック軸力ffを調整する。判定信号Jsが0の場合は、反力の上昇分を補償する必要がない領域を操舵しているので、ラック軸力ffに補償アシスト力を付加しない。判定信号Jsが1の場合は、補償アシスト力を増加率Ftで増加させて、ラック軸力ffに付加する。判定信号Jsが2の場合は、全体のアシスト力が回復しているので、補償アシスト力は増加させず、前回の制御周期での補償アシスト力をラック軸力ffに付加する。判定信号Jsが3の場合は、切戻しの状態なので、補償アシスト力を減少させて、ラック軸力ffに付加する。
 制御量調整部380の構成例を図37に示す。制御量調整部380は軸力制限部381、補償アシスト力生成部382及び加算部383を備える。
 軸力制限部381は判定信号Jsに応じてラック軸力ffに制限をかける。即ち、判定信号Jsが0から1になったら、その時点のラック軸力ffをラック軸力ffxとして記憶し、判定信号Jsが0になるまで、ラック軸力ffxを制限値としてラック軸力ffに制限をかけ、制限をかけられたラック軸力をラック軸力ffcとして出力する。判定信号Jsが0の場合は、ラック軸力ffをそのままラック軸力ffcとして出力する。
 補償アシスト力生成部382は判定信号Jsに応じた補償アシスト力faを生成する。判定信号Jsが0の場合は、補償アシスト力faはゼロとする。判定信号Jsが1の場合は、補償アシスト力faを増加率Ftで増加させる。即ち、補償アシスト力faの初期値をゼロとし、補償アシスト力faを増加率Ftで時間に比例して増加させる。判定信号Jsが2の場合は、補償アシスト力faは増減せず、前回の値のままとする。判定信号Jsが3の場合は、その時点の補償アシスト力faを減少時間Trで除算した減少率(=fa/Tr)[Nm/sec]で補償アシスト力faを減少させる。制御周期毎に減少率を演算し使用することにより、操舵角の大きさ|θ|が閾値θzになった時に補償アシスト力faがゼロとなる。
 ラック軸力ffc及び補償アシスト力faは加算部383で加算され、ラック軸力ffm’として出力される。
 このように、アシスト増加状態になった時点から軸力制限部381でラック軸力に制限をかけ、操舵角の大きさ|θ|が閾値θzを超えた領域では補償アシスト力生成部382でラック軸力に付加する補償アシスト力を調整するので、反力の上昇分を考慮した制御を行うことができる。反力上昇分を補償アシスト力が補うため、運転者はラックエンドまでの操舵が可能となり、旋回半径に悪影響を与えないようにできる。また、操舵速度が速いときは、アシスト力を上昇させないので、ラックエンドに速い速度で衝突する可能性を低くできる。
 このような構成において、第5実施形態の動作例を、図38~図40のフローチャートを参照して説明する。なお、補償アシスト力生成部382の補償アシスト力faには初期値としてゼロが設定してあるとする。
 図38に全体の動作例をフローチャートで示しており、図8のフローチャートと比べると、粘弾性モデル追従制御に制御量調整機能による処理が加わるので、ステップS20がステップS20aに変更されている。
 粘弾性モデル追従制御(ステップS20a)での動作例を図39のフローチャートで示す。図9のフローチャートと比べると、ステップS207aが追加され、ステップS208がステップS208aに変更されている。ステップS207aでは、操舵速度演算部350、操舵状態抽出部360、状態判定部370及び制御量調整部380により制御量調整機能を実行し、粘弾性モデル追従制御部120から出力されたラック軸力ffを調整する。図40にステップS207aの詳細な動作例を示す。操舵速度演算部350は、操舵角θを入力し、操舵角θから操舵速度ω’を算出する(ステップS207b)。操舵速度ω’は操舵状態抽出部360及び状態判定部370に入力される。操舵状態抽出部360は操舵速度ω’と共に操舵角θを入力し、図36に示されるような条件判定により、操舵状態が「切増し」か「切戻し」かを判定し(ステップS207c)、判定結果を操舵状態信号Sc’として状態判定部370に出力する。状態判定部370は操舵角θ、操舵速度ω’及び操舵状態信号Sc’を入力し、ラックエンドへの接近状態を判定し、判定信号Jsを出力する。具体的には、操舵角の大きさ|θ|が閾値θz以下の場合(ステップS207d)、判定信号Jsを0とする(ステップS207e)。操舵角の大きさ|θ|が閾値θzより大きい場合(ステップS207d)、操舵状態信号Sc’が「切戻し」ならば(ステップS207f)、判定信号Jsを3とし(ステップS207g)、更に、数41より減少時間Trを算出し(ステップS207h)、制御量調整部380に出力する。操舵状態信号Sc’が「切増し」ならば(ステップS207f)、操舵速度の大きさ|ω’|が仮想操舵速度ωzより小さいときは(ステップS207i)、判定信号Jsを1とする(ステップS207j)。操舵速度の大きさ|ω’|が仮想操舵速度ωz以上のときは(ステップS207i)、判定信号Jsを2とする(ステップS207k)。判定信号Jsは制御量調整部380に入力される。制御量調整部380では、軸力制限部381が判定信号Jsの値を確認し、判定信号Jsが0の場合(ステップS207l)、ラック軸力ffをそのままラック軸力ffcとして出力する(ステップS207m)。判定信号Jsが0以外の場合(ステップS207l)、判定信号Jsが0から1になった時ならば(ステップS207n)、入力したラック軸力ffをラック軸力ffxとして記憶し(ステップS207o)、ラック軸力ffxをラック軸力ffcとして出力する。そうでなければ、ラック軸力ffxを制限値としてラック軸力ffに制限をかけ(ステップS207p)、ラック軸力ffcとして出力する。ラック軸力ffcは加算部383に入力される。補償アシスト力生成部382も判定信号Jsの値を確認し(ステップS207q)、判定信号Jsが0の場合、補償アシスト力faを0にして出力する(ステップS207r)。判定信号Jsが1の場合、補償アシスト力faを増加率Ftで増加させて出力する(ステップS207s)。判定信号Jsが2の場合、補償アシスト力faを前回の値のままで出力する(ステップS207t)。判定信号Jsが3の場合、その時点の補償アシスト力faを減少時間Trで除算して減少率を算出し(ステップS207u)、算出した減少率で補償アシスト力faを減少させて出力する(ステップS207v)。補償アシスト力faは加算部383に入力され、ラック軸力ffcに加算され(ステップS207w)、加算結果がラック軸力ffm’として出力される(ステップS207x)。ラック軸力ffm’は変換部102で電流指令値Iref2に変換され(ステップS208a)、加算部103で電流指令値Iref1に加算される。なお、制御量調整部380での軸力制限部381及び補償アシスト力生成部382の動作は、順番が逆でも、並行して実行されても良い。
 本発明の第6実施形態について説明する。
 第5実施形態において、制御量調整部380内の軸力制限部381は、判定信号Jsが0になるまでラック軸力ffxを制限値としてラック軸力ffに制限をかけているが、判定信号Jsが0になるまでラック軸力ffxをラック軸力ffcとして出力するようにしても良い。後者の場合、制御量調整部380とは異なる構成で後者の処理を実現することも可能である。その構成例(第6実施形態)を図41に示す。第6実施形態の制御量調整部480は、軸力調整部481、補償アシスト力生成部382、切替部483、減算部484、加算部485及び486並びに固定部487を備える。
 軸力調整部481は、判定信号Jsが0から1になったら、その時点のラック軸力ffをラック軸力ffxとして記憶し、判定信号Jsが0になるまで、ラック軸力ffxをラック軸力ffaとして出力する。判定信号Jsが0の場合は、ラック軸力ffをそのままラック軸力ffaとして出力する。
 切替部483では、接点aには加算部485からの加算値fadが入力され、接点bには固定部487から出力される固定値「0」が入力されている。切替部483は判定信号Jsの値に応じて接点を切り替える。即ち、判定信号Jsが1、2又は3のときは接点aに接続し、判定信号Jsが0のときは接点bに接続する。
 補償アシスト力生成部382は第5実施形態と同じである。
 減算部484ではラック軸力ffaとラック軸力ffの差分Δf(=ffa-ff)が算出され、加算部485では差分Δfと補償アシスト力faの加算値fad(=Δf+fa)が算出され、加算部486では切替部483からの出力とラック軸力ffが加算され、ラック軸力ffm’として出力される。
 このように構成することにより、判定信号Jsが1、2又は3の場合、切替部483は接点aに接続するので、ラック軸力ffm’は、下記数42からわかるように、ラック軸力ffaと補償アシスト力faを加算した値となる。
Figure JPOXMLDOC01-appb-M000043
そして、判定信号Jsが1、2又は3の場合、ラック軸力ffaは記憶されたラック軸力ffxで一定であるから、補償アシスト力faの増減によりラック軸力ffm’が調整されることになる。判定信号Jsが0の場合は、切替部483は接点bに接続し、ラック軸力ffには「0」が加算されることになるので、ラック軸力ffがそのままラック軸力ffm’として出力されることになる。
 第6実施形態の動作は、上述の制御量調整部480の動作が第5実施形態と異なるだけで、他の動作は第5実施形態と同じである。
 なお、判定信号Jsが0の場合、ラック軸力ffa及び補償アシスト力faは使用されないので、軸力調整部481及び補償アシスト力生成部382は何も出力しないという動作でも良い。
 本発明の第7実施形態について説明する。
 第5実施形態では、制御量調整部380内の軸力制限部381にてラック軸力ffに制限をかけることにより、ラック軸力ffm’の調整を補償アシスト力faの増減で行えるようにしているが、第7実施形態では、粘弾性モデル追従制御部のパラメータを調整することにより、ラック軸力ffに制限をかけることと同等の効果を得るようにする。
 第7実施形態の構成例を図42に示す。図35に示される第5実施形態の構成例と比べると、粘弾性モデル追従制御部及び制御量調整部が変わっており、粘弾性モデル追従制御部520には、ラック変位x、切替信号SWS及びラック軸力fの他に、操舵角θが入力されている。
 第7実施形態では、粘弾性モデル追従制御部のパラメータ中のバネ定数kを調整する。図15に示される基盤形態3の構成例及び図16に示される基盤形態4の構成例では、バネ定数kの特性はラック変位xに対する特性としてパラメータ設定部124において定義されており、第7実施形態でもパラメータ設定部でバネ定数kの特性を定義するが、ラック変位xではなく、操舵角θに対する特性として定義する。よって、粘弾性モデル追従制御部520に入力される操舵角θは、パラメータ設定部に入力されることになる。
 バネ定数kの特性は、例えば図43に示されるような特性とする。図43において、θはラックエンド手前の所定位置xに対応する操舵角であり、ラック変位xに対応する操舵角、つまりθを原点とした操舵角を操舵角変位としている。バネ定数kの特性は、操舵角θ(正確には操舵角θの大きさ|θ|であるが、混同が生じない範囲では大きさも含めて操舵角θとする)が閾値θzを超えない領域では、基盤形態3及び4の場合と同様に、操舵角θ(基盤形態3及び4ではラック変位x)が増加するにつれ、バネ定数kも大きくなる。しかし、操舵角θが閾値θzを超えた領域では、操舵角θzでのバネ定数kの値がk1の場合、操舵角θzでのバネ力と操舵角変位β(θz―θ)(β>1)でのバネ力が同程度になるように、操舵角変位β(θz―θ)でのバネ定数kの値がk1/βとなるようにする。これにより、操舵角θが閾値θzを超えた領域においては、粘弾性モデル追従制御部520から出力されるラック軸力ffが大きくならないような制限がかかることになる。更に、上記の設定を調整することにより、操舵感を変えることができる。即ち、操舵角変位β(θz―θ)でのバネ定数kを上記の設定より低めにすると、操舵角変位β(θz―θ)での抗力(バネ力)は操舵角θzでの抗力より小さくなるので、操舵がより容易になる。逆に、操舵角変位β(θz―θ)でのバネ定数kを上記の設定より高めにすると、操舵角変位β(θz―θ)での抗力は操舵角θzでの抗力より大きくなるので、ラックエンドに進む抗力を感じながら操舵できることになる。
 第7実施形態での制御量調整部580の構成例を図44に示す。図37に示される制御量調整部380の構成例と比べると、軸力制限部が変わっている。第5実施形態での軸力制限部381は判定信号Jsに応じてラック軸力ffに制限をかけているが、第7実施形態での軸力制限部581は、異常発生等によりラック軸力ffが極端に大きくなるのを防止することを目的として使用され、予め定められた固定値の制限値によりラック軸力ffに制限をかける。よって、軸力制限部581では判定信号Jsは使用しないので、入力されていない。なお、ラック軸力ffが極端に大きくなることがないような場合等では、軸力制限部581はなくても良い。
 第7実施形態の動作は、第5実施形態と比べると、粘弾性モデル追従制御部520でのバネ定数kの設定と制御量調整部580での軸力制限部581の動作が異なるのみで、他の動作は第5実施形態と同じである。
 粘弾性モデル追従制御部520では、図39に示されるフローチャート中でのラック変位xが出力されるステップS202と電流指令値Iref1がラック軸力fに変換されるステップS203の間に実行されるパラメータ設定部でのパラメータ設定(図18に示されるフローチャートでのステップS23に相当)において、バネ定数kは操舵角θに応じて図43に示される特性に従って求められる。
 制御量調整部580の動作例を、図45に示されるフローチャートを参照して説明すると、ラック軸力ffを入力した軸力制限部581は、ラック軸力ffが予め定められた制限値(固定値)以下の場合(ステップS207l1)、ラック軸力ffをそのままラック軸力ffcとして出力する(ステップS207m)。ラック軸力ffが制限値より大きい場合(ステップS207l1)、制限値をラック軸力ffcとして出力する(ステップS207p1)。それ以降は第5実施形態の制御量調整部380と同じ動作である(ステップS207q~)。
 なお、第7実施形態ではバネ定数kのみを調整しているが、操舵角θに応じて粘性摩擦係数μも調整してラック軸力ffに制限をかけるようにしても良い。この場合、粘性摩擦係数μの特性を、操舵角θが閾値θzを超えた領域では操舵角θzでの粘性摩擦係数μの値を保持するような特性とするのが望ましい。また、パラメータの特性を、操舵角θに対する特性ではなく、基盤形態3及び4の場合と同様に、ラック変位xに対する特性として定義しても良く、判定用ラック位置Rxに対する特性として定義しても良い。
 本発明の第8実施形態について説明する。
 第7実施形態では、粘弾性モデル追従制御部のパラメータを調整することにより、ラック軸力ffに制限をかけることと同等の効果を得るようにしているが、第8実施形態では、ラック変位xに制限をかけることにより、ラック軸力ffに制限をかけることと同等の効果を得るようにする。
 第8実施形態の構成例を図46に示す。図35に示される第5実施形態の構成例と比べると、ラックエンド接近判定部110と粘弾性モデル追従制御部120との間にラック変位制限部690が挿入され、制御量調整部として第7実施形態での制御量調整部580が使用されている。
 ラック変位制限部690はラック変位x及び判定信号Jsを入力し、判定信号Jsに応じてラック変位xに制限をかける。即ち、判定信号Jsが0から1になったら、その時点のラック変位xをラック変位xfとして記憶し、判定信号Jsが0になるまで、ラック変位xfを制限値としてラック変位xに制限をかけ、制限をかけられたラック変位をラック変位xmとして出力する。判定信号Jsが0の場合は、ラック変位xをそのままラック変位xmとして出力する。このような制限をかけられたラック変位xmを粘弾性モデル追従制御部120に入力することにより、結果的に粘弾性モデル追従制御部120から出力されるラック軸力ffに制限がかかることになる。また、ラック変位制限部690で制限をかけるので、制御量調整部として、第7実施形態と同じ制御量調整部580を使用する。
 第8実施形態の動作は、第5実施形態と比べると、ラック変位制限部690の動作が加わり、制御量調整部の動作が第7実施形態の制御量調整部580の動作となる。
 ラック変位制限部690の動作は、図39に示されるフローチャート中でのラック変位xが出力されるステップS202の後に加わる。即ち、ラック変位制限部690の動作例を、図47のフローチャートを参照して説明すると、ラック変位xは、判定信号Jsと共にラック変位制限部690に入力される。ラック変位制限部690は、判定信号Jsの値を確認し、判定信号Jsが0の場合(ステップS202A)、ラック変位xをそのままラック変位xmとして出力する(ステップS202B)。判定信号Jsが0以外の場合(ステップS202A)、判定信号Jsが0から1になった時ならば(ステップS202C)、入力したラック変位xをラック変位xfとして記憶し(ステップS202D)、ラック変位xfをラック変位xmとして出力し、そうでなければ、ラック変位xfを制限値としてラック変位xに制限をかけ(ステップS202E)、ラック変位xmとして出力する。ラック変位xmは粘弾性モデル追従制御部120に入力される。その後は、ステップS203へと続く。
 なお、ラック変位制限部690は、判定信号Jsが0になるまでラック変位xfを制限値としてラック変位xに制限をかけるのではなく、判定信号Jsが0になるまでラック変位xfをラック変位xmとして出力しても良い。また、ラック変位xではなく、判定用ラック位置Rxに制限をかけるようにしても良い。
 第5~第8実施形態を採用することにより、反力が大きくなる舵角範囲でアシスト力が上昇する。これにより、運転者は実際のラックエンドまで操舵が可能となる。よって、これらの実施形態に対して、第4実施形態にて搭載された機能を搭載しても良い。即ち、実際にラックエンドまで操舵したとき(正確には、ラックエンドまで操舵したと判定したとき)の舵角(ラック変位)を検知し、検知した舵角(ラック変位)を使用して仮想ラックエンドが実際のラックエンドに対して適切な範囲になるように、ラックエンド近接領域を補正する。この場合の構成例(第9実施形態)は第5~第8実施形態の構成例と基本的に同じであるが、ラックエンド接近判定部の動作が第4実施形態でのラックエンド接近判定部の動作となる。
 第5~第9実施形態において、アシスト増加状態ではラック軸力ffm’の増加が継続し、例えば操舵速度ω’がゼロの保舵状態においてもラック軸力ffm’が増加し続けることになるので、増加に歯止めをかけても良い。例えば、制御量調整部の後段にリミッタを設け、ゼロを制限値として、ラック軸力ffm’に制限をかける。或いは、制御量調整部内の補償アシスト力生成部の後段にリミッタを設け、補償アシスト力faに制限をかける。補償アシスト力faに制限をかける場合の制限値としては、例えば、軸力制限部又は軸力調整部からの出力(ラック軸力ffc又はffa)の絶対値から所定値Mxを減算した値を使用する。Mx=0とした場合、ゼロを制限値としてラック軸力ffm’を制限した場合と同じになる。
 また、補償アシスト力生成部は、一定の増加率Ftで時間に比例して補償アシスト力faを増加させているが、比例ではなく、曲線的に増加させるようにしても良い。更に、操舵速度の大きさ|ω’|に応じて増加率Ftを変えるようにしても良い。例えば、図48に示されるように、操舵速度の大きさ|ω’|が仮想操舵速度ωzまでは増加率Ftは所定の値Fzで一定で、仮想操舵速度ωzを超えてからは操舵速度の大きさ|ω’|が大きくなるにつれ増加率Ftは小さくなり、ωz+Lw(Lwは固定値)において増加率Ftがゼロとなるようにしても良い。補償アシスト力faを減少させるときも曲線的に減少させても良く、減少率を固定値や他の計算式で算出した値としても良い。
 状態判定部では、操舵角θ及び操舵速度ω’の大きさ(絶対値)で判定を行っているが、正負の閾値及び仮想操舵速度を設定し、操舵角θ及び操舵速度ω’をそのまま使用して判定を行っても良い。この場合、正の場合と負の場合で閾値及び仮想操舵速度の大きさを変えても良い。
 更に、操舵角の大きさ|θ|が閾値θzより大きい場合、操舵速度の大きさ|ω’|が仮想操舵速度ωzより小さく、且つ、操舵状態信号Sc’が「切増し」ならば、判定信号Js=1としているが、これに操舵トルクの条件をつけることもできる。運転者がラックエンドまで操舵しようと操舵しているときには、操舵トルクは大きな値(例えば10Nm)となっていると考えられる。よって、操舵トルクThに閾値Thf(例えば10Nm)を設定し、操舵角の大きさ|θ|が閾値θzより大きい場合、操舵速度の大きさ|ω’|が仮想操舵速度ωzより小さく、操舵トルクThが閾値Thfよりも大きく、且つ、操舵状態信号Sc’が「切増し」ならば、判定信号Js=1とする。図40に示される制御量調整の動作例では、ステップS207iでの判定が、「操舵速度の大きさ|ω’|が仮想操舵速度ωzより小さく、且つ、操舵トルクの大きさ|Th|がThfより大きい」となる。このようにすることで、切増しの条件をより良く判定することができるようになる。
1        ハンドル
2        コラム軸(ステアリングシャフト、ハンドル軸)
10       トルクセンサ
12       車速センサ
13       バッテリ
14       舵角センサ
20       モータ
21       回転角センサ
30       コントロールユニット(ECU)
31       トルク制御部
35       電流制御部
36       PWM制御部
100      ラック位置変換部
101、102  変換部
110      ラックエンド接近判定部
120、520  粘弾性モデル追従制御部
121、122  切替部
124      パラメータ設定部
130      フィードフォワード制御部
140      フィードバック制御部
150、350  操舵速度演算部
160      操舵情報抽出部
170、270、380、480、580  制御量調整部
171、271  調整値設定部
172      制御量制限部
360      操舵状態抽出部
370      状態判定部
381、581  軸力制限部
382      補償アシスト力生成部
481      軸力調整部
690      ラック変位制限部

Claims (31)

  1.  少なくとも操舵トルクに基づいて電流指令値を演算し、前記電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置において、
     ラックエンド手前の所定の範囲内で粘弾性モデルを規範モデルとし、前記電流指令値を補正する制御量を出力する粘弾性モデル追従制御部と、
     操舵位置情報に基づいて前記ラックエンド手前の所定の範囲にあることを判定するラックエンド接近判定部とを具備し、
     少なくとも前記操舵位置情報、操舵速度及び操舵状態に基づいて前記制御量を調整し、調整された前記制御量で前記電流指令値を補正するようにしたことを特徴とする電動パワーステアリング装置。
  2.  前記制御量の調整は、少なくとも前記操舵位置情報、前記操舵速度及び前記操舵状態に基づいて設定される制限値を用いて前記制御量の範囲を制限することにより行われる請求項1に記載の電動パワーステアリング装置。
  3.  前記ラックエンド手前の所定の範囲内においてラックエンドに近付く際に、前記操舵位置情報の大きさが所定の閾値を超え、且つ、前記操舵速度が所定の大きさより小さい場合、前記制御量を予め設定された増加率で増加するように調整する請求項1に記載の電動パワーステアリング装置。
  4.  前記粘弾性モデル追従制御部が、フィードバック制御部及びフィードフォワード制御部の少なくとも1つで構成されている請求項1乃至3のいずれかに記載の電動パワーステアリング装置。
  5.  前記粘弾性モデル追従制御部のパラメータを前記操舵位置情報に基づいて可変する請求項1乃至3のいずれかに記載の電動パワーステアリング装置。
  6.  少なくとも操舵トルクに基づいて第1の電流指令値を演算し、前記第1の電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置において、
     操舵位置情報に基づいてラックエンド手前の所定の範囲であるラックエンド近接領域にあることを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、
     前記第1の電流指令値に第1の変換を行って求められる第1の軸力及び前記ラック変位の内の少なくとも1つ並びに前記切替信号に基づいて、粘弾性モデルを規範モデルとした第2の軸力を生成する粘弾性モデル追従制御部と、
     少なくとも前記操舵位置情報、操舵速度及び切増し又は切戻しを示す操舵状態信号に基づいて前記第2の軸力に対して制限値を設定し、前記第2の軸力を制限する制御量調整部と、
    を具備し、前記制限された第2の軸力に第2の変換を行って求められる第2の電流指令値で前記第1の電流指令値を補正して前記アシスト制御を行うようにしたことを特徴とする電動パワーステアリング装置。
  7.  前記操舵位置情報によって、前記粘弾性モデル追従制御部のパラメータを変更する請求項6に記載の電動パワーステアリング装置。
  8.  前記第1の変換及び前記第2の変換の少なくとも1つを行わず、
     前記行わない変換での変換係数を前記粘弾性モデル追従制御部のパラメータに組み込んでいる請求項6に記載の電動パワーステアリング装置。
  9.  前記制御量調整部が、
     前記操舵速度が遅い場合、前記制限値として前記第2の軸力としての制御量が弱くなるような第1制限値を設定し、
     前記操舵速度が速い場合、前記制限値として前記制御量が強くなるような第2制限値を設定する請求項6乃至8のいずれかに記載の電動パワーステアリング装置。
  10.  前記制御量調整部が、
     前記操舵状態信号に応じて前記制限値の変化の態様を変更する請求項9に記載の電動パワーステアリング装置。
  11.  前記制御量調整部が、
     前記操舵位置情報に対して閾値を設定することにより、前記ラックエンド近接領域を、操舵状態が切増しのときに2つの領域に分割し、操舵状態が切戻しのときに1つの領域とし、
     前記操舵位置情報が前記ラックエンドから遠い領域に位置し且つ前記操舵状態信号が切増しの場合、又は、前記操舵状態信号が切戻しの場合、前記操舵速度に対応して前記制限値が前記第1制限値から前記第2制限値に移行する速さが、前記第2制限値から前記第1制限値に移行する速さよりも速く、
     前記操舵位置情報が前記ラックエンドに近い領域に位置し且つ前記操舵状態信号が切増しの場合、前記操舵速度に対応して前記制限値が前記第2制限値から前記第1制限値に移行する速さが、前記第1制限値から前記第2制限値に移行する速さよりも速くなるように、前記制限値を設定する請求項10に記載の電動パワーステアリング装置。
  12.  前記制御量調整部が、
     前記操舵位置情報に対して閾値を設定することにより、前記ラックエンド近接領域を複数の領域に分割し、
     前記領域が前記ラックエンドから遠い領域と前記ラックエンドに近い領域とに設定され、
     前記操舵位置情報が前記ラックエンドから遠い領域に位置し且つ前記操舵状態信号が切増しの場合、又は、前記操舵状態信号が切戻しの場合、前記操舵速度に対応して前記制限値が前記第1制限値から前記第2制限値に移行する速さが、前記第2制限値から前記第1制限値に移行する速さよりも速く、
     前記操舵位置情報が前記ラックエンドに近い領域に位置し且つ前記操舵状態信号が切増しの場合、前記操舵速度に対応して前記制限値が前記第2制限値から前記第1制限値に移行する速さが、前記第1制限値から前記第2制限値に移行する速さよりも速くなるように、前記制限値を設定する請求項10に記載の電動パワーステアリング装置。
  13.  前記制御量調整部が、
     前記操舵位置情報に対して閾値を設定することにより、前記ラックエンド近接領域を複数の領域に分割し、
     前記操舵位置情報が前記ラックエンドから最も遠い領域に位置し且つ前記操舵状態信号が切増しの場合、又は、前記操舵状態信号が切戻しの場合、前記操舵速度に対応して前記制限値が前記第1制限値から前記第2制限値に移行する速さが、前記第2制限値から前記第1制限値に移行する速さよりも速く、
     前記操舵位置情報が前記ラックエンドに最も近い領域に位置し且つ前記操舵状態信号が切増しの場合、前記操舵速度に対応して前記制限値が前記第2制限値から前記第1制限値に移行する速さが、前記第1制限値から前記第2制限値に移行する速さよりも速く、
     前記操舵位置情報が前記ラックエンドから最も遠い領域と前記ラックエンドに最も近い領域の中間の領域に位置し且つ前記操舵状態信号が切増しの場合、前記ラックエンドから最も遠い領域での前記移行する速さと前記ラックエンドに最も近い領域での前記移行する速さの中間の速さとなるように、前記制限値を設定する請求項10に記載の電動パワーステアリング装置。
  14.  前記制御量調整部が、
     前記操舵位置情報が前記ラックエンドから遠い領域に位置し且つ前記操舵状態信号が切増しの場合、又は、前記操舵状態信号が切戻しの場合、前記第1制限値から前記第2制限値に移行する速さは第1の所定の値で、前記第2制限値から前記第1制限値に移行する速さはゼロであり、
     前記操舵位置情報が前記ラックエンドに近い領域に位置し且つ前記操舵状態信号が切増しの場合、前記第2制限値から前記第1制限値に移行する速さは第2の所定の値で、前記第1制限値から前記第2制限値に移行する速さはゼロであるように、前記制限値を設定する請求項11乃至13のいずれかに記載の電動パワーステアリング装置。
  15.  前記制御量調整部が、
     前記制限値の設定を、前記操舵速度、前記操舵状態信号、前記操舵位置情報及び前記操舵トルクに基づいて行い、
     前記操舵位置情報が前記ラックエンドに近い領域に位置し且つ前記操舵状態信号が切増しの場合でも、前記操舵トルクが所定のトルク閾値以下ならば、前記移行する速さの設定を、前記操舵位置情報が前記ラックエンドから遠い領域に位置し且つ前記操舵状態信号が切増しの場合及び前記操舵状態信号が切戻しの場合と同様に行う請求項11乃至14のいずれかに記載の電動パワーステアリング装置。
  16.  前記制御量調整部が、
     前記操舵速度がゼロを含む低速で且つ前記操舵状態信号が切増しの場合、前記補正された第1の電流指令値が略一定の割合で大きくなるように、前記制限値を徐々に変化させる請求項10乃至15のいずれかに記載の電動パワーステアリング装置。
  17.  前記制御量調整部が、前記制限値を操舵方向に応じて設定する請求項6乃至16のいずれかに記載の電動パワーステアリング装置。
  18.  前記制御量調整部が、前記制限値を前記第1の軸力に基づいて設定する請求項6乃至17のいずれかに記載の電動パワーステアリング装置。
  19.  少なくとも操舵トルクに基づいて第1の電流指令値を演算し、前記第1の電流指令値に基づいてモータを駆動することにより、操舵系をアシスト制御する電動パワーステアリング装置において、
     操舵位置情報に基づいてラックエンド手前の所定の範囲にあることを判定し、ラック変位及び切替信号を出力するラックエンド接近判定部と、
     前記第1の電流指令値に第1の変換を行って求められる第1の軸力及び前記ラック変位の内の少なくとも1つ並びに前記切替信号に基づいて、粘弾性モデルを規範モデルとした第2の軸力を生成する粘弾性モデル追従制御部と、
     少なくとも前記操舵位置情報、操舵速度及び切増し又は切戻しを示す操舵状態信号に基づいて前記ラックエンドへの接近状態を判定し、判定信号を出力する状態判定部と、
     前記判定信号に基づいて前記第2の軸力を調整する制御量調整部と、
    を具備し、前記調整された第2の軸力に第2の変換を行って求められる第2の電流指令値で前記第1の電流指令値を補正して前記アシスト制御を行うようにしたことを特徴とする電動パワーステアリング装置。
  20.  前記操舵位置情報によって、前記粘弾性モデル追従制御部のパラメータを変更する請求項19に記載の電動パワーステアリング装置。
  21.  前記第1の変換及び前記第2の変換の少なくとも1つを行わず、
     前記行わない変換での変換係数を前記粘弾性モデル追従制御部のパラメータに組み込んでいる請求項19に記載の電動パワーステアリング装置。
  22.  前記制御量調整部が、
     前記判定信号より、前記接近状態が、前記操舵位置情報の大きさが所定の閾値を超え、前記操舵速度が所定の大きさより小さく、且つ、前記操舵状態信号が切増しであるアシスト増加状態と判断した場合、前記第2の軸力を予め設定された増加率で増加させる請求項19乃至21のいずれかに記載の電動パワーステアリング装置。
  23.  前記制御量調整部が、
     前記判定信号より、前記接近状態が、前記操舵位置情報の大きさが所定の閾値を超え、前記操舵速度が所定の大きさより小さく、前記操舵トルクが所定の値よりも大きく、且つ、前記操舵状態信号が切増しであるアシスト増加状態と判断した場合、前記第2の軸力を予め設定された増加率で増加させる請求項19乃至21のいずれかに記載の電動パワーステアリング装置。
  24.  前記制御量調整部が、
     前記アシスト増加状態になった時に記憶された前記第2の軸力を基に前記第2の軸力を増加させる請求項22又は23に記載の電動パワーステアリング装置。
  25.  前記制御量調整部が、
     前記判定信号より、前記接近状態が、前記操舵位置情報の大きさが所定の閾値を超え、前記操舵速度が所定の大きさより小さく、且つ、前記操舵状態信号が切増しであるアシスト増加状態と判断した場合、前記第2の軸力を予め設定された増加率で増加させ、
     前記粘弾性モデル追従制御部から出力される前記第2の軸力が、前記操舵位置情報の大きさが前記所定の閾値を超えた範囲では略同じになるように、前記粘弾性モデル追従制御部のパラメータが設定されている請求項20に記載の電動パワーステアリング装置。
  26.  前記制御量調整部が、
     前記判定信号より、前記接近状態が、前記操舵位置情報の大きさが所定の閾値を超え、前記操舵速度が所定の大きさより小さく、前記操舵トルクが所定の値よりも大きく、且つ、前記操舵状態信号が切増しであるアシスト増加状態と判断した場合、前記第2の軸力を予め設定された増加率で増加させ、
     前記粘弾性モデル追従制御部から出力される前記第2の軸力が、前記操舵位置情報の大きさが前記所定の閾値を超えた範囲では略同じになるように、前記粘弾性モデル追従制御部のパラメータが設定されている請求項20に記載の電動パワーステアリング装置。
  27.  前記アシスト増加状態になった時の前記操舵位置情報を記憶し、少なくとも前記アシスト増加状態では記憶した前記操舵位置情報を用いて前記粘弾性モデル追従制御部に入力する前記ラック変位を制限するラック変位制限部を更に具備する請求項22又は23に記載の電動パワーステアリング装置。
  28.  前記ラックエンド接近判定部が、
     前記ラックエンドまで操舵したと判定した場合、前記ラックエンド手前の所定の範囲を決定する設定値を更新する請求項1、6又は19に記載の電動パワーステアリング装置。
  29.  前記ラックエンド接近判定部が、
     前記操舵位置情報が前記ラックエンド近辺に設定された仮想エンド閾値を越えた場合、前記ラックエンドまで操舵したと判定し、前記仮想エンド閾値を越えた操舵位置情報に基づいて前記設定値を更新する請求項28に記載の電動パワーステアリング装置。
  30.  前記操舵位置情報が、少なくとも操舵角、ラック位置及び前記ラック変位のいずれかである請求項1及び5乃至29のいずれかに記載の電動パワーステアリング装置。
  31.  前記ラック変位はコラム軸角度と等価である請求項6乃至30のいずれかに記載の電動パワーステアリング装置。
PCT/JP2018/008467 2017-04-12 2018-03-06 電動パワーステアリング装置 WO2018190036A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18784608.4A EP3498571A4 (en) 2017-04-12 2018-03-06 ELECTRIC POWER STEERING DEVICE
JP2018561283A JP6493643B2 (ja) 2017-04-12 2018-03-06 電動パワーステアリング装置
US16/333,356 US10946891B2 (en) 2017-04-12 2018-03-06 Electric power steering apparatus
CN201880017525.2A CN110573407B (zh) 2017-04-12 2018-03-06 电动助力转向装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017078907 2017-04-12
JP2017-078907 2017-04-12
JP2017234074 2017-12-06
JP2017-234074 2017-12-06

Publications (1)

Publication Number Publication Date
WO2018190036A1 true WO2018190036A1 (ja) 2018-10-18

Family

ID=63792947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008467 WO2018190036A1 (ja) 2017-04-12 2018-03-06 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10946891B2 (ja)
EP (1) EP3498571A4 (ja)
JP (1) JP6493643B2 (ja)
CN (1) CN110573407B (ja)
WO (1) WO2018190036A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193976A1 (ja) * 2018-04-06 2019-10-10 日本精工株式会社 車両用操向装置
KR20200111439A (ko) * 2019-03-19 2020-09-29 현대모비스 주식회사 전동식 파워 스티어링 시스템의 걸림감 보상 장치 및 방법
JP2021066323A (ja) * 2019-10-24 2021-04-30 株式会社ジェイテクト 操舵制御装置
JP7063428B1 (ja) * 2021-03-12 2022-05-09 日本精工株式会社 転舵装置のエンド位置の検出装置、検出方法、およびプログラム
WO2022190452A1 (ja) * 2021-03-12 2022-09-15 日本精工株式会社 転舵装置のエンド位置の検出装置、検出方法、およびプログラム
US11524715B2 (en) * 2019-08-22 2022-12-13 Jtekt Corporation Steering device
JP7504273B2 (ja) 2018-04-16 2024-06-21 ジェイテクト ユーロップ 移動終了仮想止め部材へ接近する際のドライバーの感覚を改善するための、ステアリングラックの移動方向に応じた抵抗トルクの差異化

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6759822B2 (ja) * 2016-08-02 2020-09-23 いすゞ自動車株式会社 操舵補助装置及び操舵補助方法
CN112550439A (zh) * 2019-09-26 2021-03-26 株式会社捷太格特 转向控制装置
EP3858719B1 (en) * 2019-11-26 2022-11-16 NSK Ltd. Steering control device
KR20220014342A (ko) * 2020-07-22 2022-02-07 현대자동차주식회사 차량의 선회 제어 시스템 및 방법
CN115515839A (zh) * 2021-04-02 2022-12-23 日本精工株式会社 转向控制装置以及转向装置
CN113548110B (zh) * 2021-07-19 2022-03-25 东风汽车集团股份有限公司 连续可调的转向助力方法、***及计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341657A (ja) * 2005-06-07 2006-12-21 Nissan Motor Co Ltd 車両用制御装置
JP2009179229A (ja) * 2008-01-31 2009-08-13 Honda Motor Co Ltd 操舵システム
WO2016104568A1 (ja) * 2014-12-25 2016-06-30 日本精工株式会社 電動パワーステアリング装置
JP2016124337A (ja) * 2014-12-26 2016-07-11 株式会社ジェイテクト 電動パワーステアリング装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957071B2 (ja) * 2006-05-08 2012-06-20 日本精工株式会社 電動パワーステアリング装置の制御装置
JP4783352B2 (ja) * 2007-11-06 2011-09-28 本田技研工業株式会社 ラックアンドピニオン式電動パワーステアリング装置
FR2963918A1 (fr) * 2010-08-20 2012-02-24 Jtekt Europe Sas Securisation du couple d'assistance par un estimateur d'effort sur la cremaillere
FR3006277B1 (fr) * 2013-06-04 2017-02-17 Jtekt Europe Sas Utilisation d’un moteur d’assistance de direction pour simuler une butee de fin de course de ladite direction
FR3010378B1 (fr) * 2013-09-10 2017-01-13 Jtekt Europe Sas Procede de calcul en temps reel de la position absolue d’un organe de direction assistee a precision amelioree
JP6160576B2 (ja) * 2014-07-31 2017-07-12 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
US10144449B2 (en) * 2014-10-01 2018-12-04 Nsk Ltd. Electric power steering apparatus
CN107207041B (zh) 2014-12-25 2019-07-05 日本精工株式会社 电动助力转向装置
JP6103164B2 (ja) * 2014-12-25 2017-04-05 日本精工株式会社 電動パワーステアリング装置
US10059368B2 (en) * 2014-12-25 2018-08-28 Nsk Ltd. Electric power steering apparatus
JP6512430B2 (ja) * 2015-03-24 2019-05-15 株式会社ジェイテクト 電動パワーステアリング装置および電動パワーステアリング装置におけるゲイン設定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341657A (ja) * 2005-06-07 2006-12-21 Nissan Motor Co Ltd 車両用制御装置
JP2009179229A (ja) * 2008-01-31 2009-08-13 Honda Motor Co Ltd 操舵システム
WO2016104568A1 (ja) * 2014-12-25 2016-06-30 日本精工株式会社 電動パワーステアリング装置
JP2016124337A (ja) * 2014-12-26 2016-07-11 株式会社ジェイテクト 電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3498571A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193976A1 (ja) * 2018-04-06 2019-10-10 日本精工株式会社 車両用操向装置
JP7504273B2 (ja) 2018-04-16 2024-06-21 ジェイテクト ユーロップ 移動終了仮想止め部材へ接近する際のドライバーの感覚を改善するための、ステアリングラックの移動方向に応じた抵抗トルクの差異化
KR20200111439A (ko) * 2019-03-19 2020-09-29 현대모비스 주식회사 전동식 파워 스티어링 시스템의 걸림감 보상 장치 및 방법
KR102585082B1 (ko) 2019-03-19 2023-10-05 현대모비스 주식회사 전동식 파워 스티어링 시스템의 걸림감 보상 장치 및 방법
US11524715B2 (en) * 2019-08-22 2022-12-13 Jtekt Corporation Steering device
JP2021066323A (ja) * 2019-10-24 2021-04-30 株式会社ジェイテクト 操舵制御装置
JP7404027B2 (ja) 2019-10-24 2023-12-25 株式会社ジェイテクト 操舵制御装置
JP7063428B1 (ja) * 2021-03-12 2022-05-09 日本精工株式会社 転舵装置のエンド位置の検出装置、検出方法、およびプログラム
WO2022190452A1 (ja) * 2021-03-12 2022-09-15 日本精工株式会社 転舵装置のエンド位置の検出装置、検出方法、およびプログラム

Also Published As

Publication number Publication date
EP3498571A1 (en) 2019-06-19
US10946891B2 (en) 2021-03-16
US20200385052A1 (en) 2020-12-10
JP6493643B2 (ja) 2019-04-03
EP3498571A4 (en) 2019-11-06
CN110573407B (zh) 2022-04-12
JPWO2018190036A1 (ja) 2019-04-18
CN110573407A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
JP6493643B2 (ja) 電動パワーステアリング装置
JP6103163B2 (ja) 電動パワーステアリング装置
JP5257445B2 (ja) 電動パワーステアリング装置
JP5055741B2 (ja) 電動パワーステアリング装置の制御装置
JP6079942B2 (ja) 電動パワーステアリング装置
JP7264058B2 (ja) 操舵制御装置
JP7153244B2 (ja) 車両用操向装置
CN110248860B (zh) 电动助力转向装置
US10023226B2 (en) Electric power steering apparatus
WO2012133590A1 (ja) 電動パワーステアリング装置
JP5967336B2 (ja) 電動パワーステアリング装置
JP2017210216A (ja) 電動パワーステアリング装置の制御装置
CN110072760B (zh) 电动助力转向装置的控制装置
JP2017165266A (ja) 電動パワーステアリング装置
JP2017171059A (ja) 電動パワーステアリング装置
JP2017165307A (ja) 電動パワーステアリング装置
JP2017165306A (ja) 電動パワーステアリング装置
JP2017171058A (ja) 電動パワーステアリング装置
JP2017171062A (ja) 電動パワーステアリング装置
JP2017165235A (ja) 電動パワーステアリング装置
JP2017165239A (ja) 電動パワーステアリング装置
JP2017165268A (ja) 電動パワーステアリング装置
JP2014231237A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018561283

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018784608

Country of ref document: EP

Effective date: 20190314

NENP Non-entry into the national phase

Ref country code: DE