WO2018181813A1 - Epoxy resin composition and electronic component device - Google Patents

Epoxy resin composition and electronic component device Download PDF

Info

Publication number
WO2018181813A1
WO2018181813A1 PCT/JP2018/013454 JP2018013454W WO2018181813A1 WO 2018181813 A1 WO2018181813 A1 WO 2018181813A1 JP 2018013454 W JP2018013454 W JP 2018013454W WO 2018181813 A1 WO2018181813 A1 WO 2018181813A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
mass
compound
specific
Prior art date
Application number
PCT/JP2018/013454
Other languages
French (fr)
Japanese (ja)
Inventor
依子 井上
中村 真也
遠藤 由則
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201880021249.7A priority Critical patent/CN110461938A/en
Priority to JP2019510186A priority patent/JP7212830B2/en
Publication of WO2018181813A1 publication Critical patent/WO2018181813A1/en
Priority to JP2022212335A priority patent/JP2023030182A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an epoxy resin composition and an electronic component device.
  • the surface mounting type package is different from the conventional pin insertion type. That is, when the pins are attached to the wiring board, the conventional pin insertion type package is soldered from the back surface of the wiring board after the pins are inserted into the wiring board, so that the package is not directly exposed to high temperature.
  • the entire electronic component device is processed by a solder bath, a reflow device or the like, so that the package is directly exposed to a soldering temperature (reflow temperature).
  • reflow temperature soldering temperature
  • the package absorbs moisture, moisture due to moisture absorption rapidly expands during soldering, and the generated vapor pressure acts as a peeling stress, and peeling occurs between the insert of the element, lead frame, etc., and the sealing material. This may cause package cracks, poor electrical characteristics, and the like. For this reason, it is desired to develop a sealing material that is excellent in adhesiveness to the insert, and thus excellent in solder heat resistance (reflow resistance).
  • the use of various epoxy resin modifiers is also being studied.
  • the use of a silane coupling agent is being studied with a focus on improving the adhesion between the element and an insert such as a lead frame.
  • use of an epoxy group-containing silane coupling agent or amino group-containing silane coupling agent for example, see JP-A-11-147939
  • use of a sulfur atom-containing silane coupling agent for example, JP-A-2000-2000).
  • the adhesive improvement effect may not be enough only by using an epoxy group containing silane coupling agent or an amino group containing silane coupling agent.
  • the amino group-containing silane coupling agent described in JP-A-11-147939 has high reactivity, and when used in an epoxy resin composition for sealing, the fluidity when sealing is lowered.
  • the epoxy group-containing silane coupling agent and amino group-containing silane coupling agent described in JP-A-11-147939 have problems in fluidity, such as gelation of the silane coupling agent itself.
  • the present condition is that the epoxy resin composition which fully satisfies both reflow resistance and fluidity
  • Means for solving the above problems include the following embodiments.
  • An epoxy resin composition containing an epoxy resin having a melting point or softening point exceeding 40 ° C., a curing agent, and a compound having a glycidyl group and a melting point of 40 ° C. or less.
  • ⁇ 3> The epoxy resin according to ⁇ 1> or ⁇ 2>, wherein the content of the compound having a glycidyl group and a melting point of 40 ° C.
  • composition ⁇ 4> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 3>, further containing a curing accelerator.
  • an electronic component device including an epoxy resin composition excellent in reflow resistance while maintaining fluidity, and a cured product of the epoxy resin composition. Therefore, its industrial value is great.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of substances present in the composition unless otherwise specified. Means the total content or content.
  • the term “layer” refers to a case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. included.
  • laminate indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the epoxy resin composition according to the embodiment of the present invention includes an epoxy resin having a melting point or a softening point exceeding 40 ° C. (hereinafter also referred to as “(A) specific epoxy resin” or “specific epoxy resin”), and a curing agent (hereinafter referred to as “ (B) also referred to as “curing agent” or “curing agent”), a compound having a glycidyl group and a melting point of 40 ° C. or less (hereinafter also referred to as “(C) specific glycidyl compound” or “specific glycidyl compound”), Containing.
  • the epoxy resin composition may contain other components as necessary.
  • (C) specific glycidyl compound a liquid compound is mentioned at normal temperature (for example, 25 degreeC), for example. With this configuration, the epoxy resin composition is excellent in reflow resistance.
  • the epoxy resin composition has good fluidity.
  • the reason why the epoxy resin composition is excellent in reflow resistance while maintaining fluidity is not clear, but can be considered as follows. Specifically, when the glycidyl group in the specific glycidyl compound is bonded to the curing agent in the epoxy resin composition, an effect of improving the adhesive force and an effect of reducing the elastic modulus are obtained, and resistance to high resistance is maintained while maintaining high fluidity. This is considered to improve the reflow property.
  • the said epoxy resin composition what is a solid under normal temperature normal pressure (for example, 25 degreeC 1 atmosphere) is mentioned, for example.
  • normal temperature normal pressure for example, 25 degreeC 1 atmosphere
  • the specific glycidyl compound is a compound having a glycidyl group in the molecular structure and a melting point of 40 ° C. or lower.
  • the specific glycidyl compound may be used alone or in combination of two or more.
  • the number of glycidyl groups in one molecule of the specific glycidyl compound is preferably 1 to 6 and more preferably 2 to 4 from the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity.
  • the specific glycidyl compound preferably further has a dicyclopentadiene skeleton in the molecular structure from the viewpoint of obtaining an epoxy resin composition excellent in reflow resistance while maintaining fluidity.
  • a specific glycidyl compound having a glycidyl group and a dicyclopentadiene skeleton in the molecular structure the glycidyl group in the specific glycidyl compound is bonded to the curing agent in the epoxy resin composition, and further a dicyclopentadiene structure. It is presumed that the adhesive force is further improved because of the interaction with the metal surface.
  • the number of dicyclopentadiene skeletons that one molecule of the specific glycidyl compound has is preferably 1 to 4, more preferably 1 to 2, from the viewpoint of obtaining an epoxy resin composition excellent in reflow resistance while maintaining fluidity. .
  • specific examples of the specific glycidyl compound include dicyclopentadiene dimethanol diglycidyl ether.
  • specific examples of the specific glycidyl compound include rubber-crosslinked bisphenol-type epoxy resins and chelate-modified epoxy resins.
  • the molecular weight of the specific glycidyl compound is preferably 100 to 600, more preferably 200 to 400, from the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity. Further, the melting point of the specific glycidyl compound is 40 ° C. or less, and from the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity, 0 ° C. to 35 ° C. is preferable, and 0 ° C. to 30 ° C. is more preferable. preferable.
  • the epoxy equivalent of the specific glycidyl compound is preferably 165 g / eq to 365 g / eq, and more preferably 165 g / eq to 240 g / eq.
  • the content rate in the epoxy resin composition of a specific glycidyl compound 5 mass% or more and less than 45 mass% are preferable with respect to the total amount of (A) specific epoxy resin.
  • adhesiveness improves and there exists a tendency for the improvement effect of reflow resistance to be acquired.
  • a decrease in hardness during molding tends to be suppressed as compared with the case of 45% by mass or more.
  • the content of the specific glycidyl compound is more preferably 10% by mass or more and less than 45% by mass, more preferably 20% by mass or more and less than 45% by mass, and more preferably 25% by mass or more, with respect to the total amount of the (A) specific epoxy resin. Less than 45% by weight is particularly preferred. Moreover, as for the content rate of a specific glycidyl compound, 1 mass% or more is preferable with respect to the whole epoxy resin composition.
  • An epoxy resin composition contains at least 1 sort (s) of the epoxy resin (namely, (A) specific epoxy resin) whose melting
  • the melting point or softening point of the epoxy resin is a value measured by a single-cylinder rotational viscometer method described in JIS K 7234: 1986 and JIS K 7233: 1986.
  • the specific epoxy resin may be one generally used in an epoxy resin composition, and is not particularly limited as long as the melting point or the softening point exceeds 40 ° C.
  • the melting point or softening point of the specific epoxy resin is preferably 45 ° C. to 180 ° C., more preferably 50 ° C. to 150 ° C., more preferably 80 ° C. to 80 ° C. from the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity. 130 ° C. is more preferable, and 96 ° C. to 113 ° C. is particularly preferable.
  • the specific epoxy resin preferably contains two or more epoxy groups in one molecule.
  • the epoxy equivalent of the specific epoxy resin is preferably 100 g / eq to 1000 g / eq, more preferably 150 g / eq to 1000 g / eq, more preferably 150 g from the viewpoint of obtaining an epoxy resin composition excellent in reflow resistance while maintaining fluidity.
  • / Eq to 500 g / eq is more preferable, and 196 g / eq to 245 g / eq is particularly preferable.
  • the epoxy equivalent is measured by dissolving a weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for this titration.
  • the specific epoxy resin is specifically selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene.
  • phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene.
  • a novolak-type epoxy resin obtained by epoxidizing a novolak resin obtained by condensation or cocondensation of at least one phenolic compound and an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, propionaldehyde or the like under an acidic catalyst Phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, etc.
  • Phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, etc. Phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, etc.
  • the above-mentioned phenolic compound and an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde are acidic.
  • Triphenylmethane type epoxy resin obtained by epoxidizing triphenylmethane type phenol resin obtained by condensation or cocondensation under a medium; co-condensation of the above phenol compound, naphthol compound, and aldehyde compound under an acidic catalyst Copolymerized epoxy resin obtained by epoxidizing the novolak resin obtained by the above treatment; diphenylmethane type epoxy resin that is diglycidyl ether such as bisphenol A and bisphenol F; biphenyl that is diglycidyl ether of alkyl-substituted or unsubstituted biphenol Type epoxy resin; stilbene type epoxy resin which is diglycidyl ether of stilbene phenol compound; epoxy resin containing sulfur atom such as diglycidyl ether of bisphenol S and thiodiphenol type epoxy resin; butanedio Epoxy resins that are glycidyl ethers of alcohols such as polyethylene glycol and polypropylene glycol;
  • the specific epoxy resin includes bisphenol F type epoxy resin, stilbene type epoxy resin, and sulfur atom-containing epoxy resin which are epoxy resins having a bisphenol F skeleton from the viewpoint of fluidity and reflow resistance.
  • a novolac type epoxy resin is preferable from the viewpoint of curability
  • a dicyclopentadiene type epoxy resin is preferable from the viewpoint of low moisture absorption
  • a naphthalene type epoxy resin is preferable from the viewpoint of heat resistance and low warpage
  • flame retardant From the viewpoint of properties, a biphenylene type epoxy resin which is an epoxy resin having a biphenylene skeleton and a naphthol aralkyl type epoxy resin which is an epoxidized naphthol aralkyl resin are preferable.
  • Specific epoxy resins include bisphenol F type epoxy resins, stilbene type epoxy resins, sulfur atom-containing epoxy resins, novolac type epoxy resins, dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, biphenylene type epoxy resins, and naphthol aralkyl type epoxy resins. It is preferable to contain at least one of these. It is preferable from the viewpoint of improving high-temperature storage properties that a non-halogen and non-antimony resin (that is, an epoxy resin that does not have both a halogen atom and an antimony atom) is used by using a resin having good flame retardancy as the specific epoxy resin. .
  • the specific epoxy resin can be selected and used according to the purpose and manufacturing conditions.
  • a specific epoxy resin a biphenylene skeleton-containing phenol aralkyl type epoxy resin that is an epoxidized product of a phenol aralkyl resin containing a biphenylene skeleton, a methoxynaphthalene type epoxy resin that is an epoxy resin having a methoxynaphthalene skeleton, etc., alone or in combination Can be used.
  • Bisphenol F type epoxy resin stilbene type epoxy resin, sulfur atom-containing epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, biphenylene type epoxy resin, and naphthol aralkyl type epoxy for the entire specified epoxy resin 20 mass% or more is preferable, as for the total content rate of resin, 30 mass% or more is more preferable, and 50 mass% or more is further more preferable.
  • the total content of the specific epoxy resin is preferably 0.4% by mass to 28% by mass in the epoxy resin composition from the viewpoint of balance of various properties such as moldability, reflow resistance, and electrical reliability. A mass% to 26 mass% is more preferred.
  • the content of the specific epoxy resin in the epoxy resin composition is 28% by mass or less, the reflow resistance tends to be maintained better than when the content exceeds 28% by mass.
  • the epoxy resin composition contains at least one curing agent.
  • curing agent may be what is generally used for the epoxy resin composition, and there is no restriction
  • Examples of (B) curing agents include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents.
  • the curing agent is preferably a phenol curing agent, an amine curing agent, and an acid anhydride curing agent, and more preferably a phenol curing agent.
  • phenol curing agent examples include phenol resins and polyhydric phenol compounds having two or more phenolic hydroxyl groups in one molecule.
  • polyphenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, etc.
  • a novolak-type phenol resin obtained by co-condensation synthesized from the above phenolic compound and dimethoxyparaxylene, bis (methoxymethyl) biphenyl, etc.
  • Aralkyl-type phenolic resin (phenol aralkyl resin, naphthol aralkyl resin, etc.); paraxylylene-modified phenolic resin; metaxylylene-modified phenolic resin; melamine-modified phenolic resin; terpene-modified phenolic resin; Dicyclopentadiene-type phenol resin and dicyclopentadiene-type naphthol resin; cyclopentadiene-modified phenol resin; polycyclic aromatic ring-modified phenol resin; biphenyl-type phenol resin; phenolic compounds and aromatic aldehydes such as benzaldehyde and salicylaldehyde A triphenylmethane type phenol resin obtained by condensing or co-condensing a compound with an acidic catalyst; a phenol tree obtained by copolymerizing two or more of these compounds ; And the like. These phenol resins may be used alone or in combination of two or more.
  • Curing agents exemplified above i.e., novolak type phenol resin, aralkyl type phenol resin, paraxylylene modified phenol resin, metaxylylene modified phenol resin, melamine modified phenol resin, terpene modified phenol resin, dicyclopentadiene type phenol resin, dicyclopentadiene type A naphthol resin, a cyclopentadiene-modified phenol resin, a polycyclic aromatic ring-modified phenol resin, a biphenyl type phenol resin, a triphenylmethane type phenol resin, or a phenol resin obtained by copolymerizing two or more of these is any one
  • the seeds may be used alone or in combination of two or more.
  • the content of the above-described curing agents (the total when two or more are used) is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 80% by mass or more in the total amount of the curing agent.
  • the functional group equivalent of the curing agent is not particularly limited, and is preferably 70 g / eq to 1000 g / eq, more preferably 80 g / eq to 500 g / eq from the viewpoint of the balance of moldability, reflow resistance, and electrical reliability. preferable.
  • the functional group equivalent is a value measured according to JIS K0070: 1992.
  • the softening point or melting point of the curing agent is not particularly limited, and is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and 50 ° C. to 130 ° C. from the viewpoint of handleability when preparing the epoxy resin composition. Is more preferable.
  • curing agent is the same as the measuring method of the softening point or melting
  • the ratio of the number of functional groups is not particularly limited. In order to keep each unreacted component small, it is preferably set in the range of 0.5 to 2.0, more preferably in the range of 0.6 to 1.3.
  • the ratio is 0.5 or more
  • the epoxy resin composition is sufficiently cured as compared with the case where the ratio is less than 0.5, and the cured product of the epoxy resin composition has heat resistance, moisture resistance, and electricity. There is a tendency for the characteristics to be good.
  • the curing efficiency decreases due to excessive curing agent components, and a large amount of functional groups remain in the cured product. There is a tendency that deterioration of the electrical characteristics and moisture resistance of the package is suppressed.
  • the above ratio is 2.0 or less, and compared with the case where the ratio exceeds 2.0, the curing efficiency is reduced due to excess phenol resin component, and curing There is a tendency that a decrease in electrical characteristics and moisture resistance of the package due to a large amount of phenolic hydroxyl group remaining in the product is suppressed.
  • the epoxy resin composition comprises (A) a specific epoxy resin, (B) a curing agent, and (C) a specific glycidyl compound, and (D) a curing accelerator as required. May be included.
  • the curing accelerator is not limited as long as it is a compound that accelerates the reaction between (A) the specific epoxy resin and (B) the curing agent.
  • Examples of the curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7,1,5-diaza-bicyclo (4,3,0) nonene and 5,6-dibutyl.
  • Cycloamidine compounds such as amino-1,8-diaza-bicyclo (5,4,0) undecene-7; maleic anhydride, quinone compounds (for example, 1,4-benzoquinone, 2,5- Toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, A compound having intramolecular polarization formed by adding a compound having a ⁇ bond, such as phenyl-1,4-benzoquinone), diazophenylmethane, and a phenol resin; Tertiary amines such as ruamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives; imidazoles such as 2-methylimidazole, 2-phenylimid
  • phosphine compounds such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine; maleic anhydride, quinone compound, diazophenyl Phosphorus compounds having intramolecular polarization formed by adding a compound having a ⁇ bond such as methane or phenol resin; tetraphenylphosphonium tetraphenylborate, triphenylphosphine Tiger tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenyl borate, tetraphenyl boron salts and derivatives thereof such as N- methylmorpholine tetraphenylborate; and the like.
  • These curing accelerators may be used alone or in combination of two or more.
  • the content of the (D) curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, and is preferably 0.005% by mass to 2% by mass in the epoxy resin composition. A mass% to 0.5 mass% is more preferable.
  • the content of the curing accelerator in the epoxy resin composition is 0.005% by mass or more, the curability in a short time tends to be better than when it is less than 0.005% by mass,
  • the content is 2% by mass or less, the curing rate is not too high as compared with the case where the content exceeds 2% by mass, and thus a good molded product tends to be easily obtained.
  • the epoxy resin composition comprises at least one of (E) inorganic filler as required. May be included.
  • the inorganic filler can be used, for example, for the purposes of hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement, and strength improvement.
  • the kind of inorganic filler is not particularly limited. Specifically, spherical silica (for example, fused silica), crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, Examples include inorganic materials such as zirconia, zircon, fosterite, steatite, spinel, mullite, titania, talc, clay, mica and the like. An inorganic filler having a flame retardant effect may be used.
  • Examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxide such as composite hydroxide of magnesium and zinc, zinc borate, and zinc molybdate.
  • Examples of the shape of the inorganic filler include non-powder, beads spheroidized from the powder, and fibers.
  • inorganic fillers may be used alone or in combination of two or more.
  • spherical silica is preferable from the viewpoint of filling property and linear expansion coefficient
  • alumina is preferable from the viewpoint of high thermal conductivity.
  • the shape of the inorganic filler is preferably a spherical shape from the viewpoints of fillability and mold wear.
  • the content of the inorganic filler in the epoxy resin composition is preferably 60% by mass or more, from the viewpoint of flame retardancy, moldability, hygroscopicity, reduction of linear expansion coefficient, strength improvement, and reflow resistance. 95 mass% is more preferable from the viewpoint of flame retardancy, and 70 mass% to 90 mass% is more preferable.
  • the content of the inorganic filler in the epoxy resin composition is 60% by mass or more, flame retardancy and reflow resistance tend to be improved as compared to the case of less than 60% by mass.
  • the content of the inorganic filler in the epoxy resin composition is 95% by mass or less, the fluidity tends to be improved as compared with the case where it exceeds 95% by mass, and the flame retardancy tends to be improved.
  • the epoxy resin composition includes a coupling agent, a flame retardant, an anion exemplified below as necessary.
  • Various additives such as an exchanger, a release agent, a colorant, and a stress relaxation agent may be included.
  • the epoxy resin composition may contain at least one coupling agent in order to enhance the adhesion between the resin component and the filler, if necessary.
  • the coupling agent is not particularly limited as long as it is generally used in an epoxy resin composition, and has, for example, at least one of a primary amino group, a secondary amino group, and a tertiary amino group.
  • Various silane compounds such as silane compounds, epoxy silanes, mercapto silanes, alkyl silanes, ureido silanes, vinyl silanes (for example, the following silane coupling agents), titanium compounds (for example, the following titanate coupling agents), aluminum chelates And aluminum / zirconium-based compounds. From the viewpoint of reflow resistance, it is preferable to use the silane compound as a coupling agent.
  • coupling agents include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • silane coupling agent having a secondary amino group is preferred from the viewpoint of fluidity and flame retardancy.
  • the silane coupling agent having a secondary amino group is not particularly limited as long as it is a silane compound having a secondary amino group in the molecule. Specific examples thereof include ⁇ -anilinopropyltrimethoxysilane, ⁇ -anilinopropyltrisilane.
  • the content of the coupling agent in the epoxy resin composition is preferably 0.037% by mass to 4.75% by mass, more preferably 0.05% by mass to 5% by mass, and 0.1% by mass to 2.5%. More preferred is mass%.
  • the content of the coupling agent in the epoxy resin composition is 0.037% by mass or more, the adhesion with the frame tends to be improved as compared with the case of less than 0.037% by mass.
  • the moldability of the package tends to be improved as compared with the case where it exceeds 4.75 mass%.
  • At least one flame retardant can be blended as necessary to impart flame retardancy.
  • a flame retardant For example, the well-known organic or inorganic compound containing a halogen atom, an antimony atom, a nitrogen atom, or a phosphorus atom, a metal hydroxide, etc. are mentioned, These 1 type is used independently. Alternatively, two or more kinds may be used in combination.
  • the content of the flame retardant is not particularly limited as long as the flame retardant effect is achieved, and is preferably 1% by mass to 30% by mass and more preferably 2% by mass to 15% by mass with respect to the (A) specific epoxy resin.
  • an anion exchanger can be blended as necessary.
  • an epoxy resin composition uses an epoxy resin composition as a molding material for sealing, an anion is used from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of an electronic component device including a device to be sealed.
  • an anion exchanger A conventionally well-known thing can be used, As a specific example, Hydrotalcite; Hydrous oxide of the element chosen from magnesium, aluminum, titanium, zirconium, and bismuth; Etc.
  • An anion exchanger can be used individually by 1 type or in combination of 2 or more types. Among these, the anion exchanger is preferably a hydrotalcite represented by the following general formula (1).
  • the content of the anion exchanger is not particularly limited as long as it is a sufficient amount capable of capturing anions such as halogen ions, and is preferably 0.1% by mass to 30% by mass with respect to (A) the specific epoxy resin, 1% by mass to 5% by mass is more preferable.
  • release agents such as higher fatty acid, higher fatty acid metal salt, ester wax, polyolefin wax, polyethylene, polyethylene oxide, etc .; Colorant such as carbon black; Silicone oil , Stress relaxation agents such as silicone rubber powder; and the like can be blended as necessary.
  • the epoxy resin composition can be prepared by any method as long as various raw materials can be dispersed and mixed.
  • the raw materials are sufficiently mixed by a mixer or the like, and then mixed with a mixing roll, an extruder, or a raking machine. Examples thereof include a method of mixing or melt-kneading with a planetary mixer or the like and then cooling and defoaming and pulverizing as necessary.
  • An electronic component device includes an element and a cured product of the above-described epoxy resin composition that seals the element.
  • Electronic component devices include lead frames, pre-wired tape carriers, wiring boards, glass, silicon wafers and other supporting members or mounting substrates, elements (semiconductor chips, transistors, diodes, thyristors and other active elements, capacitors, resistors , Electronic devices, etc. in which necessary parts are mounted with the above-described epoxy resin composition.
  • the mounting substrate is not particularly limited, and specific examples include an organic substrate, an organic film, a ceramic substrate, an interposer substrate such as a glass substrate, a liquid crystal glass substrate, an MCM (Multi Chip Module) substrate, and a hybrid. Examples include IC substrates.
  • the electronic component device include a semiconductor device, and more specifically, an element such as a semiconductor chip is arranged on a lead frame (island, tab), and a terminal portion of an element such as a bonding pad
  • the lead parts are connected by wire bonding, bumps, etc., and then sealed by transfer molding etc.
  • DIP Device Inline Package
  • PLCC Physical Leaded Chip Carrier
  • QFP Quad Flat
  • SOP Small Outline Package
  • SOJ Small Outline J-lead package
  • TSOP Thin Small Outline Package
  • TQFP T Resin-encapsulated IC such as in Quad Flat Package
  • TCP Tepe Carrier Package
  • a semiconductor chip lead-bonded to a tape carrier is encapsulated with the epoxy resin composition
  • Semiconductor devices in which semiconductor chips connected by wire bonding, flip chip bonding, solder, etc. are mounted with bare chips such as COB (Chip On Board), COG (Chip On Glass), etc.
  • a low-pressure transfer molding method is the most common, but an injection molding method, The compression molding method etc. are also mentioned.
  • a dispensing method, a casting method, a printing method, or the like may be used as a method for obtaining an electronic component device such as a semiconductor device in which an element is sealed.
  • Epoxy resin 1 Thiodiphenol type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YSLV-120TE, epoxy equivalent 245, softening point 113 ° C.)
  • Epoxy resin 2 Aralkyl epoxy resin obtained by epoxidizing a phenol aralkyl resin containing a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., trade name: CER-3000L, epoxy equivalent 240, softening point 96 ° C.)
  • Epoxy resin 3 biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: YX-4000, epoxy equivalent 196, melting point 106 ° C.) It was used.
  • Curing agent 1 Phenol aralkyl resin having a hydroxyl group equivalent of 176 and a softening point of 70 ° C. (trade name: Milex XLC, manufactured by Mitsui Chemicals, Inc.)
  • Curing agent 2 Melamine-modified phenol resin having a hydroxyl equivalent weight of 120 and a softening point of 85 ° C (manufactured by Hitachi Chemical Co., Ltd., trade name: HPM-J3) It was used.
  • Liquid resin 1 dicyclopentadiene dimethanol diglycidyl ether (manufactured by ADEKA Corporation, trade name: EP-4088L, epoxy equivalent 165, melting point: 25 ° C. or less)
  • Liquid resin 2 rubber-crosslinked bisphenol type epoxy resin (manufactured by ADEKA, trade name: EPR-4030, epoxy equivalent 365, melting point: 25 ° C. or less)
  • Liquid resin 3 Chelate-modified epoxy resin (manufactured by ADEKA Corporation, trade name: EP-49-10N, epoxy equivalent 220, melting point: 25 ° C. or less) It was used.
  • Curing accelerator 1 Addition reaction product of triphenylphosphine and benzoquinone
  • Curing accelerator 2 Mixture of triparatolylphosphine and parabenzoquinone was used.
  • Fused silica Spherical fused silica having a volume average particle size of 18 ⁇ m and a specific surface area of 1.5 m 2 / g was used.
  • Coupling agent 1 ⁇ -mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-803)
  • Coupling agent 2 N-phenyl- ⁇ -aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-573)
  • Coupling agent 3 methyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-13) It was used.
  • Colorant Carbon black (Mitsubishi Chemical Corporation, trade name: MA100)
  • Mold release agent Montanate ester (manufactured by Clariant Japan Ltd., trade name: HW-E)
  • Additive Magnesium, aluminum, hydroxide, carbonate, hydrate (anion exchanger, hydrotalcite, manufactured by Sakai Chemical Industry Co., Ltd., trade name: HT-P) It was used.
  • the epoxy resin compositions of Examples and Comparative Examples were evaluated by the following various characteristic tests (1) to (5).
  • the evaluation results are summarized in Table 1 and Table 2 below.
  • the epoxy resin composition was molded by a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds unless otherwise specified. Further, post-curing was performed at 175 ° C. for 6 hours as necessary.
  • E is the flexural modulus (Pa)
  • ⁇ P is the load cell value (N)
  • ⁇ y is the displacement (mm)
  • Adhesive strength test A palladium-plated copper plate is placed on a mold provided with a 9 mm ⁇ 9 mm slit, and the epoxy resin composition is placed there under the above conditions with a diameter of 4 mm at the bottom, a diameter of 3 mm at the top, and a height of 4 mm. It was molded into a size, post-cured, and the shear adhesive strength (MPa) was measured with a bond tester (Series 4000 manufactured by Nordson Advanced Technology Co., Ltd.) at room temperature (25 ° C.) at a shear rate of 50 ⁇ m / s.
  • MPa shear adhesive strength
  • a treated product (“Cu—Ag” in the table) and a palladium alloy plating treated product (“PPF” in the table)) were produced by molding and post-curing using the epoxy resin composition under the above-mentioned conditions. After baking at 24 ° C. for 24 hours, humidifying at 60 ° C. and 60% RH for 40 hours, and then performing reflow treatment three times at 260 ° C. for 30 seconds, respectively, at the interface between the resin and the frame The presence or absence of delamination was observed with an ultrasonic flaw detector, and the reflow resistance was evaluated by the number of delamination generation packages relative to the number of test packages (20).
  • the ratio of the liquid resin 1 to the entire epoxy composition is higher than that of Example 4 and Example 5 in which the ratio of the liquid resin 1 to the entire epoxy composition is 1% by mass or less. It turns out that Example 6 and Example 7 which are 1 mass% or more are excellent by reflow resistance.

Abstract

An epoxy resin composition containing an epoxy resin having a melting point or softening point higher than 40°C, a curing agent, and a compound having a glycidyl group and a melting point of 40°C or lower.

Description

エポキシ樹脂組成物及び電子部品装置Epoxy resin composition and electronic component device
 本発明は、エポキシ樹脂組成物及び電子部品装置に関する。 The present invention relates to an epoxy resin composition and an electronic component device.
 近年の電子機器の小型化、軽量化、高性能化等に伴い、実装の高密度化が進んでいる。これにより、電子部品装置の主流は従来のピン挿入型のパッケージから、IC(Integrated Circuit)、LSI(Large Scale Intergration)等の表面実装型のパッケージへと変化しつつある。 With recent downsizing, weight reduction, and higher performance of electronic devices, mounting density has been increasing. As a result, the mainstream of electronic component devices is changing from a conventional pin insertion type package to a surface mount type package such as an IC (Integrated Circuit) or LSI (Large Scale Integration).
 表面実装型のパッケージは、従来のピン挿入型のものと実装方法が異なっている。すなわち、ピンを配線板に取り付ける際、従来のピン挿入型パッケージはピンを配線板に挿入した後に配線板の裏面からはんだ付けを行うため、パッケージが直接高温にさらされることはなかった。しかし、表面実装型パッケージでは電子部品装置全体がはんだバス、リフロー装置等で処理されるため、パッケージが直接はんだ付け温度(リフロー温度)にさらされる。この結果、パッケージが吸湿した場合、はんだ付けの際に吸湿による水分が急激に膨張し、発生した蒸気圧が剥離応力として働き、素子、リードフレーム等のインサートと封止材との間で剥離を発生させ、パッケージクラック、電気的特性不良等の原因となる場合がある。このため、インサートに対する接着性に優れ、ひいてははんだ耐熱性(耐リフロー性)に優れる封止材料の開発が望まれている。 The surface mounting type package is different from the conventional pin insertion type. That is, when the pins are attached to the wiring board, the conventional pin insertion type package is soldered from the back surface of the wiring board after the pins are inserted into the wiring board, so that the package is not directly exposed to high temperature. However, in the surface mount type package, the entire electronic component device is processed by a solder bath, a reflow device or the like, so that the package is directly exposed to a soldering temperature (reflow temperature). As a result, when the package absorbs moisture, moisture due to moisture absorption rapidly expands during soldering, and the generated vapor pressure acts as a peeling stress, and peeling occurs between the insert of the element, lead frame, etc., and the sealing material. This may cause package cracks, poor electrical characteristics, and the like. For this reason, it is desired to develop a sealing material that is excellent in adhesiveness to the insert, and thus excellent in solder heat resistance (reflow resistance).
 これらの要求に対応するために、これまで主材となる固体状エポキシ樹脂について様々な検討がされている。例えば、固形状エポキシ樹脂として、ビフェニル型エポキシ樹脂又はナフタレン型エポキシ樹脂を用いる方法が検討されている(例えば、特開昭64-65116号公報及び特開2007-231159号公報参照)。 In order to meet these demands, various studies have been made on solid epoxy resins as the main material. For example, a method using a biphenyl type epoxy resin or a naphthalene type epoxy resin as a solid epoxy resin has been studied (see, for example, JP-A Nos. 64-65116 and 2007-231159).
 また種々のエポキシ樹脂改質材の使用も検討されており、その中の一例として、素子とリードフレーム等のインサートとの密着力向上に注目して、シランカップリング剤の使用が検討されている。具体的には、エポキシ基含有シランカップリング剤又はアミノ基含有シランカップリング剤の使用(例えば、特開平11-147939号公報参照)及び硫黄原子含有シランカップリング剤の使用(例えば、特開2000-103940号公報参照)がある。 In addition, the use of various epoxy resin modifiers is also being studied. As an example, the use of a silane coupling agent is being studied with a focus on improving the adhesion between the element and an insert such as a lead frame. . Specifically, use of an epoxy group-containing silane coupling agent or amino group-containing silane coupling agent (for example, see JP-A-11-147939) and use of a sulfur atom-containing silane coupling agent (for example, JP-A-2000-2000). -103940).
 しかしながら、ビフェニル型エポキシ樹脂又はナフタレン型エポキシ樹脂を用いただけでは、流動性及び耐リフロー性のバランスをとることが困難であった。
 また、エポキシ基含有シランカップリング剤又はアミノ基含有シランカップリング剤を用いるだけでは、接着性向上効果が十分でない場合があった。特に上記特開平11-147939号公報に記載のアミノ基含有シランカップリング剤は反応性が高く、封止用エポキシ樹脂組成物に用いた場合は、封止するときの流動性が低下する。さらに、上記特開平11-147939号公報に記載のエポキシ基含有シランカップリング剤及びアミノ基含有シランカップリング剤は、シランカップリング剤自体がゲル化する等、流動性に課題がある。
 また、上記特開2000-103940号公報に記載の硫黄原子含有シランカップリング剤を用いた場合は、Ag及びAuのような貴金属との接着性向上効果が十分でなく、耐リフロー性の向上効果も不十分である。
However, it has been difficult to balance fluidity and reflow resistance only by using a biphenyl type epoxy resin or a naphthalene type epoxy resin.
Moreover, the adhesive improvement effect may not be enough only by using an epoxy group containing silane coupling agent or an amino group containing silane coupling agent. In particular, the amino group-containing silane coupling agent described in JP-A-11-147939 has high reactivity, and when used in an epoxy resin composition for sealing, the fluidity when sealing is lowered. Further, the epoxy group-containing silane coupling agent and amino group-containing silane coupling agent described in JP-A-11-147939 have problems in fluidity, such as gelation of the silane coupling agent itself.
In addition, when the sulfur atom-containing silane coupling agent described in JP-A-2000-103940 is used, the effect of improving the adhesion with noble metals such as Ag and Au is not sufficient, and the effect of improving the reflow resistance. Is insufficient.
 上述したように、耐リフロー性と流動性との両方を十分に満足するエポキシ樹脂組成物は得られていないのが現状である。
 本開示はかかる状況に鑑みなされたもので、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物、及び前記エポキシ樹脂組成物の硬化物を備える電子部品装置を提供することを課題とするものである。
As mentioned above, the present condition is that the epoxy resin composition which fully satisfies both reflow resistance and fluidity | liquidity is not obtained.
This indication is made in view of this situation, and makes it a subject to provide an electronic component device provided with the epoxy resin composition which is excellent in reflow resistance while maintaining fluidity, and the hardened | cured material of the said epoxy resin composition. Is.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>融点又は軟化点が40℃を超えるエポキシ樹脂と、硬化剤と、グリシジル基を有し融点が40℃以下である化合物と、を含有するエポキシ樹脂組成物。
<2>前記グリシジル基を有し融点が40℃以下である化合物が、ジシクロペンタジエン骨格を有する<1>に記載のエポキシ樹脂組成物。
<3>前記グリシジル基を有し融点が40℃以下である化合物の含有率が、前記エポキシ樹脂に対し、5質量%以上45質量%未満である<1>又は<2>に記載のエポキシ樹脂組成物。
<4>さらに、硬化促進剤を含有する<1>~<3>のいずれかに記載のエポキシ樹脂組成物。
<5>さらに、無機充填剤を含有する<1>~<4>のいずれかに記載のエポキシ樹脂組成物。
<6>さらに、シラン化合物を含有する<1>~<5>のいずれかに記載のエポキシ樹脂組成物。
<7>前記エポキシ樹脂の融点又は軟化点が、80℃~130℃である<1>~<6>のいずれかに記載のエポキシ樹脂組成物。
<8>前記グリシジル基を有し融点が40℃以下である化合物のエポキシ当量が、165g/eq~365g/eqである<1>~<7>のいずれかに記載のエポキシ樹脂組成物。
<9>前記グリシジル基を有し融点が40℃以下である化合物の含有率が、前記エポキシ樹脂に対し、20質量%以上45質量%未満である<1>~<8>のいずれかに記載のエポキシ樹脂組成物。
<10>素子と、前記素子を封止する<1>~<9>のいずれかに記載のエポキシ樹脂組成物の硬化物と、を備える電子部品装置。
Means for solving the above problems include the following embodiments.
<1> An epoxy resin composition containing an epoxy resin having a melting point or softening point exceeding 40 ° C., a curing agent, and a compound having a glycidyl group and a melting point of 40 ° C. or less.
<2> The epoxy resin composition according to <1>, wherein the compound having a glycidyl group and a melting point of 40 ° C. or less has a dicyclopentadiene skeleton.
<3> The epoxy resin according to <1> or <2>, wherein the content of the compound having a glycidyl group and a melting point of 40 ° C. or less is 5% by mass or more and less than 45% by mass with respect to the epoxy resin. Composition.
<4> The epoxy resin composition according to any one of <1> to <3>, further containing a curing accelerator.
<5> The epoxy resin composition according to any one of <1> to <4>, further containing an inorganic filler.
<6> The epoxy resin composition according to any one of <1> to <5>, further containing a silane compound.
<7> The epoxy resin composition according to any one of <1> to <6>, wherein the epoxy resin has a melting point or softening point of 80 ° C to 130 ° C.
<8> The epoxy resin composition according to any one of <1> to <7>, wherein an epoxy equivalent of the compound having a glycidyl group and a melting point of 40 ° C. or less is 165 g / eq to 365 g / eq.
<9> The content of the compound having a glycidyl group and a melting point of 40 ° C. or less is 20% by mass or more and less than 45% by mass with respect to the epoxy resin, according to any one of <1> to <8> Epoxy resin composition.
<10> An electronic component device comprising: an element; and a cured product of the epoxy resin composition according to any one of <1> to <9>, which seals the element.
 本開示によれば、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物、及び前記エポキシ樹脂組成物の硬化物を備える電子部品装置を提供することができる。従って、その工業的価値は大である。 According to the present disclosure, it is possible to provide an electronic component device including an epoxy resin composition excellent in reflow resistance while maintaining fluidity, and a cured product of the epoxy resin composition. Therefore, its industrial value is great.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
In the present disclosure, numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of substances present in the composition unless otherwise specified. Means the total content or content.
In the present disclosure, the term “layer” refers to a case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. included.
In the present disclosure, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
<エポキシ樹脂組成物>
 本発明の実施形態に係るエポキシ樹脂組成物は、融点又は軟化点が40℃を超えるエポキシ樹脂(以下「(A)特定エポキシ樹脂」又は「特定エポキシ樹脂」ともいう)と、硬化剤(以下「(B)硬化剤」又は「硬化剤」ともいう)と、グリシジル基を有し融点が40℃以下である化合物(以下「(C)特定グリシジル化合物」又は「特定グリシジル化合物」ともいう)と、を含有する。エポキシ樹脂組成物は、必要に応じてその他の成分を含んでもよい。なお、(C)特定グリシジル化合物としては、例えば、常温(例えば、25℃)で液状の化合物が挙げられる。
 かかる構成により、上記エポキシ樹脂組成物は、耐リフロー性に優れる。また、上記エポキシ樹脂組成物は、流動性が良好である。
<Epoxy resin composition>
The epoxy resin composition according to the embodiment of the present invention includes an epoxy resin having a melting point or a softening point exceeding 40 ° C. (hereinafter also referred to as “(A) specific epoxy resin” or “specific epoxy resin”), and a curing agent (hereinafter referred to as “ (B) also referred to as “curing agent” or “curing agent”), a compound having a glycidyl group and a melting point of 40 ° C. or less (hereinafter also referred to as “(C) specific glycidyl compound” or “specific glycidyl compound”), Containing. The epoxy resin composition may contain other components as necessary. In addition, as (C) specific glycidyl compound, a liquid compound is mentioned at normal temperature (for example, 25 degreeC), for example.
With this configuration, the epoxy resin composition is excellent in reflow resistance. The epoxy resin composition has good fluidity.
 エポキシ樹脂組成物が流動性を維持しつつ耐リフロー性に優れる理由は明らかでないが、以下のように考えることができる。具体的には、特定グリシジル化合物中のグリシジル基がエポキシ樹脂組成物中の硬化剤と結合することにより、接着力の向上効果及び弾性率の低減効果が得られ、高い流動性を維持しつつ耐リフロー性が向上するためと考えられる。 The reason why the epoxy resin composition is excellent in reflow resistance while maintaining fluidity is not clear, but can be considered as follows. Specifically, when the glycidyl group in the specific glycidyl compound is bonded to the curing agent in the epoxy resin composition, an effect of improving the adhesive force and an effect of reducing the elastic modulus are obtained, and resistance to high resistance is maintained while maintaining high fluidity. This is considered to improve the reflow property.
 上記エポキシ樹脂組成物は、例えば、常温常圧(例えば、25℃1気圧)下において固体であるものが挙げられる。固体の形状に制限はなく、粉状、粒状、タブレット状等、如何なる形状でもよい。
 また、上記エポキシ樹脂組成物は、封止用樹脂組成物、さらにはトランスファーモールド用樹脂組成物として用いてもよい。
As for the said epoxy resin composition, what is a solid under normal temperature normal pressure (for example, 25 degreeC 1 atmosphere) is mentioned, for example. There is no restriction | limiting in the shape of a solid, Any shapes, such as powder form, a granular form, and a tablet form, may be sufficient.
Moreover, you may use the said epoxy resin composition as a resin composition for sealing, and also as a resin composition for transfer molds.
(C)特定グリシジル化合物
 (C)特定グリシジル化合物は、分子構造中にグリシジル基を有し融点が40℃以下の化合物である。特定グリシジル化合物は1種単独でも、2種以上を組み合わせて用いてもよい。
 エポキシ樹脂組成物が特定グリシジル化合物を含むことにより、流動性を維持しつつ耐リフロー性に優れる。
 なお、特定グリシジル化合物の1分子が有するグリシジル基の数は、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、1~6が好ましく、2~4がより好ましい。
(C) Specific glycidyl compound (C) The specific glycidyl compound is a compound having a glycidyl group in the molecular structure and a melting point of 40 ° C. or lower. The specific glycidyl compound may be used alone or in combination of two or more.
When the epoxy resin composition contains the specific glycidyl compound, it has excellent reflow resistance while maintaining fluidity.
The number of glycidyl groups in one molecule of the specific glycidyl compound is preferably 1 to 6 and more preferably 2 to 4 from the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity.
 特定グリシジル化合物は、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、分子構造中にさらにジシクロペンタジエン骨格を有することが好ましい。分子構造中にグリシジル基及びジシクロペンタジエン骨格を有する特定グリシジル化合物を含有させることにより、特定グリシジル化合物中のグリシジル基がエポキシ樹脂組成物中の硬化剤と結合することに加え、さらにジシクロペンタジエン構造が金属表面へ相互作用するため、接着力がさらに向上すると推測される。
 なお、特定グリシジル化合物の1分子が有するジシクロペンタジエン骨格の数は、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、1~4が好ましく、1~2がより好ましい。
The specific glycidyl compound preferably further has a dicyclopentadiene skeleton in the molecular structure from the viewpoint of obtaining an epoxy resin composition excellent in reflow resistance while maintaining fluidity. By including a specific glycidyl compound having a glycidyl group and a dicyclopentadiene skeleton in the molecular structure, the glycidyl group in the specific glycidyl compound is bonded to the curing agent in the epoxy resin composition, and further a dicyclopentadiene structure. It is presumed that the adhesive force is further improved because of the interaction with the metal surface.
The number of dicyclopentadiene skeletons that one molecule of the specific glycidyl compound has is preferably 1 to 4, more preferably 1 to 2, from the viewpoint of obtaining an epoxy resin composition excellent in reflow resistance while maintaining fluidity. .
 特定グリシジル化合物の具体例としては、例えば、ジシクロペンタジエンジメタノールジグリシジルエーテルが挙げられる。
 また、特定グリシジル化合物の具体例としては、上記化合物のほか、例えば、ゴム架橋ビスフェノール型エポキシ樹脂、キレート変性型エポキシ樹脂も挙げられる。
Specific examples of the specific glycidyl compound include dicyclopentadiene dimethanol diglycidyl ether.
In addition to the above compounds, specific examples of the specific glycidyl compound include rubber-crosslinked bisphenol-type epoxy resins and chelate-modified epoxy resins.
 特定グリシジル化合物の分子量は、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、100~600が好ましく、200~400がより好ましい。
 また、特定グリシジル化合物の融点は、40℃以下であり、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、0℃~35℃が好ましく、0℃~30℃がより好ましい。
 また、特定グリシジル化合物のエポキシ当量は、165g/eq~365g/eqが好ましく、165g/eq~240g/eqがより好ましい。
The molecular weight of the specific glycidyl compound is preferably 100 to 600, more preferably 200 to 400, from the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity.
Further, the melting point of the specific glycidyl compound is 40 ° C. or less, and from the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity, 0 ° C. to 35 ° C. is preferable, and 0 ° C. to 30 ° C. is more preferable. preferable.
The epoxy equivalent of the specific glycidyl compound is preferably 165 g / eq to 365 g / eq, and more preferably 165 g / eq to 240 g / eq.
 特定グリシジル化合物のエポキシ樹脂組成物中の含有率は、(A)特定エポキシ樹脂の合計量に対して5質量%以上45質量%未満が好ましい。5質量%以上であることにより、5質量%未満である場合に比べて接着性が向上し、耐リフロー性の向上効果が得られる傾向がある。また、45質量%未満であることにより、45質量%以上である場合に比べて成形時の硬度の低下が抑えられる傾向がある。
 なお、特定グリシジル化合物の含有率は、(A)特定エポキシ樹脂の合計量に対して10質量%以上45質量%未満がより好ましく、20質量%以上45質量%未満がさらに好ましく、25質量%以上45質量%未満が特に好ましい。
 また、特定グリシジル化合物の含有率は、エポキシ樹脂組成物全体に対して1質量%以上が好ましい。
As for the content rate in the epoxy resin composition of a specific glycidyl compound, 5 mass% or more and less than 45 mass% are preferable with respect to the total amount of (A) specific epoxy resin. By being 5 mass% or more, compared with the case where it is less than 5 mass%, adhesiveness improves and there exists a tendency for the improvement effect of reflow resistance to be acquired. Moreover, when it is less than 45% by mass, a decrease in hardness during molding tends to be suppressed as compared with the case of 45% by mass or more.
The content of the specific glycidyl compound is more preferably 10% by mass or more and less than 45% by mass, more preferably 20% by mass or more and less than 45% by mass, and more preferably 25% by mass or more, with respect to the total amount of the (A) specific epoxy resin. Less than 45% by weight is particularly preferred.
Moreover, as for the content rate of a specific glycidyl compound, 1 mass% or more is preferable with respect to the whole epoxy resin composition.
(A)特定エポキシ樹脂
 エポキシ樹脂組成物は、融点又は軟化点が40℃を超えるエポキシ樹脂(すなわち(A)特定エポキシ樹脂)の少なくとも1種を含む。
 ここで、エポキシ樹脂の融点又は軟化点は、JIS K 7234:1986及びJIS K 7233:1986に記載の単一円筒回転粘度計法により測定される値とする。
 特定エポキシ樹脂は、エポキシ樹脂組成物に一般的に使用されているものでよく、融点又は軟化点が40℃を超えるものであれば特に制限はない。
 特定エポキシ樹脂の融点又は軟化点は、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、45℃~180℃が好ましく、50℃~150℃がより好ましく、80℃~130℃がさらに好ましく、96℃~113℃が特に好ましい。
(A) Specific epoxy resin An epoxy resin composition contains at least 1 sort (s) of the epoxy resin (namely, (A) specific epoxy resin) whose melting | fusing point or softening point exceeds 40 degreeC.
Here, the melting point or softening point of the epoxy resin is a value measured by a single-cylinder rotational viscometer method described in JIS K 7234: 1986 and JIS K 7233: 1986.
The specific epoxy resin may be one generally used in an epoxy resin composition, and is not particularly limited as long as the melting point or the softening point exceeds 40 ° C.
The melting point or softening point of the specific epoxy resin is preferably 45 ° C. to 180 ° C., more preferably 50 ° C. to 150 ° C., more preferably 80 ° C. to 80 ° C. from the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity. 130 ° C. is more preferable, and 96 ° C. to 113 ° C. is particularly preferable.
 特定エポキシ樹脂は、中でも1分子中にエポキシ基を2個以上含有するものが好ましい。
 特定エポキシ樹脂のエポキシ当量は、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、100g/eq~1000g/eqが好ましく、150g/eq~1000g/eqがより好ましく、150g/eq~500g/eqがさらに好ましく、196g/eq~245g/eqが特に好ましい。
 エポキシ当量は、秤量したエポキシ樹脂をメチルエチルケトン等の溶剤に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。この滴定には、指示薬を用いてもよい。
In particular, the specific epoxy resin preferably contains two or more epoxy groups in one molecule.
The epoxy equivalent of the specific epoxy resin is preferably 100 g / eq to 1000 g / eq, more preferably 150 g / eq to 1000 g / eq, more preferably 150 g from the viewpoint of obtaining an epoxy resin composition excellent in reflow resistance while maintaining fluidity. / Eq to 500 g / eq is more preferable, and 196 g / eq to 245 g / eq is particularly preferable.
The epoxy equivalent is measured by dissolving a weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for this titration.
 特定エポキシ樹脂として、具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物と、を酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールSのジグリシジルエーテル、チオジフェノール型エポキシ樹脂等の硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物との共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;ビフェニレン骨格を含有するフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはシリコーン樹脂のエポキシ化物、アクリル樹脂のエポキシ化物等も特定エポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 The specific epoxy resin is specifically selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and naphthol compounds such as α-naphthol, β-naphthol, and dihydroxynaphthalene. A novolak-type epoxy resin obtained by epoxidizing a novolak resin obtained by condensation or cocondensation of at least one phenolic compound and an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, propionaldehyde or the like under an acidic catalyst ( Phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, etc.); the above-mentioned phenolic compound and an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde are acidic. Triphenylmethane type epoxy resin obtained by epoxidizing triphenylmethane type phenol resin obtained by condensation or cocondensation under a medium; co-condensation of the above phenol compound, naphthol compound, and aldehyde compound under an acidic catalyst Copolymerized epoxy resin obtained by epoxidizing the novolak resin obtained by the above treatment; diphenylmethane type epoxy resin that is diglycidyl ether such as bisphenol A and bisphenol F; biphenyl that is diglycidyl ether of alkyl-substituted or unsubstituted biphenol Type epoxy resin; stilbene type epoxy resin which is diglycidyl ether of stilbene phenol compound; epoxy resin containing sulfur atom such as diglycidyl ether of bisphenol S and thiodiphenol type epoxy resin; butanedio Epoxy resins that are glycidyl ethers of alcohols such as polyethylene glycol and polypropylene glycol; glycidyl ester type epoxy resins that are glycidyl esters of polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid, and tetrahydrophthalic acid; aniline, diaminodiphenylmethane Glycidylamine type epoxy resin in which active hydrogen bonded to nitrogen atom such as isocyanuric acid is substituted with glycidyl group; dicyclopentadiene type epoxy in which cocondensation resin of dicyclopentadiene and phenol compound is epoxidized Resin; vinylcyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, which is an epoxidized olefin bond in the molecule, -Alicyclic epoxy resins such as (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane; paraxylylene-modified epoxy resins that are glycidyl ethers of paraxylylene-modified phenol resins; metaxylylene Metaxylylene-modified epoxy resin that is glycidyl ether of modified phenolic resin; Terpene-modified epoxy resin that is glycidyl ether of terpene-modified phenolic resin; Dicyclopentadiene-modified epoxy resin that is glycidyl ether of dicyclopentadiene-modified phenolic resin; Cyclopentadiene-modified phenolic resin A cyclopentadiene-modified epoxy resin that is a glycidyl ether of polycyclic aromatic ring-modified epoxy resin that is a glycidyl ether of a polycyclic aromatic ring-modified phenol resin; Naphthalene type epoxy resin which is glycidyl ether of naphthalene ring-containing phenol resin; halogenated phenol novolac type epoxy resin; hydroquinone type epoxy resin; trimethylolpropane type epoxy resin; obtained by oxidizing olefin bond with peracid such as peracetic acid A linear aliphatic epoxy resin; an aralkyl type epoxy resin obtained by epoxidizing an aralkyl type phenol resin such as a phenol aralkyl resin or a naphthol aralkyl resin containing a biphenylene skeleton; Furthermore, epoxidized products of silicone resins, epoxidized products of acrylic resins, and the like can be cited as specific epoxy resins. These epoxy resins may be used alone or in combination of two or more.
 特定エポキシ樹脂としては、上記エポキシ樹脂のなかでも、流動性及び耐リフロー性の観点からはビスフェノールF骨格を有するエポキシ樹脂であるビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、及び硫黄原子含有エポキシ樹脂が好ましく、硬化性の観点からはノボラック型エポキシ樹脂が好ましく、低吸湿性の観点からはジシクロペンタジエン型エポキシ樹脂が好ましく、耐熱性及び低反り性の観点からはナフタレン型エポキシ樹脂が好ましく、難燃性の観点からはビフェニレン骨格を有するエポキシ樹脂であるビフェニレン型エポキシ樹脂及びナフトールアラルキル樹脂をエポキシ化したものであるナフトールアラルキル型エポキシ樹脂が好ましい。
 特定エポキシ樹脂は、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、硫黄原子含有エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニレン型エポキシ樹脂、及びナフトールアラルキル型エポキシ樹脂の少なくとも1種を含有していることが好ましい。特定エポキシ樹脂として難燃性の良好な樹脂を用いて、ノンハロゲン及びノンアンチモンとする(つまり、ハロゲン原子及びアンチモン原子の両方を有さないエポキシ樹脂を用いる)ことが高温放置特性向上の観点から好ましい。
Among the above epoxy resins, the specific epoxy resin includes bisphenol F type epoxy resin, stilbene type epoxy resin, and sulfur atom-containing epoxy resin which are epoxy resins having a bisphenol F skeleton from the viewpoint of fluidity and reflow resistance. Preferably, a novolac type epoxy resin is preferable from the viewpoint of curability, a dicyclopentadiene type epoxy resin is preferable from the viewpoint of low moisture absorption, a naphthalene type epoxy resin is preferable from the viewpoint of heat resistance and low warpage, and flame retardant From the viewpoint of properties, a biphenylene type epoxy resin which is an epoxy resin having a biphenylene skeleton and a naphthol aralkyl type epoxy resin which is an epoxidized naphthol aralkyl resin are preferable.
Specific epoxy resins include bisphenol F type epoxy resins, stilbene type epoxy resins, sulfur atom-containing epoxy resins, novolac type epoxy resins, dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, biphenylene type epoxy resins, and naphthol aralkyl type epoxy resins. It is preferable to contain at least one of these. It is preferable from the viewpoint of improving high-temperature storage properties that a non-halogen and non-antimony resin (that is, an epoxy resin that does not have both a halogen atom and an antimony atom) is used by using a resin having good flame retardancy as the specific epoxy resin. .
 なお、特定エポキシ樹脂は、目的及び製造条件等にあわせて選択して用いることができる。例えば、特定エポキシ樹脂として、ビフェニレン骨格を含有するフェノールアラルキル樹脂のエポキシ化物であるビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂及びメトキシナフタレン骨格を有するエポキシ樹脂であるメトキシナフタレン型エポキシ樹脂等を、単独又は組み合わせて用いることができる。 It should be noted that the specific epoxy resin can be selected and used according to the purpose and manufacturing conditions. For example, as a specific epoxy resin, a biphenylene skeleton-containing phenol aralkyl type epoxy resin that is an epoxidized product of a phenol aralkyl resin containing a biphenylene skeleton, a methoxynaphthalene type epoxy resin that is an epoxy resin having a methoxynaphthalene skeleton, etc., alone or in combination Can be used.
 特定エポキシ樹脂全体に対する、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、硫黄原子含有エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニレン型エポキシ樹脂、及びナフトールアラルキル型エポキシ樹脂の合計の含有率は、20質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上がさらに好ましい。 Bisphenol F type epoxy resin, stilbene type epoxy resin, sulfur atom-containing epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, biphenylene type epoxy resin, and naphthol aralkyl type epoxy for the entire specified epoxy resin 20 mass% or more is preferable, as for the total content rate of resin, 30 mass% or more is more preferable, and 50 mass% or more is further more preferable.
 特定エポキシ樹脂全体の含有率は、成形性、耐リフロー性、及び電気的信頼性等の各種特性バランスの観点から、エポキシ樹脂組成物中0.4質量%~28質量%が好ましく、1.1質量%~26質量%がより好ましい。特定エポキシ樹脂のエポキシ樹脂組成物中の含有率が28質量%以下であると、28質量%を超える場合に比較して耐リフロー性が良好に保たれる傾向がある。また0.4質量%以上であると、0.4質量%未満である場合に比較して流動性が良好に保たれる傾向がある。 The total content of the specific epoxy resin is preferably 0.4% by mass to 28% by mass in the epoxy resin composition from the viewpoint of balance of various properties such as moldability, reflow resistance, and electrical reliability. A mass% to 26 mass% is more preferred. When the content of the specific epoxy resin in the epoxy resin composition is 28% by mass or less, the reflow resistance tends to be maintained better than when the content exceeds 28% by mass. Moreover, there exists a tendency for fluidity | liquidity to be kept favorable as it is 0.4 mass% or more compared with the case where it is less than 0.4 mass%.
(B)硬化剤
 エポキシ樹脂組成物は、硬化剤の少なくとも1種を含む。硬化剤はエポキシ樹脂組成物に一般に使用されているものでよく、特に制限はない。
 (B)硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、フェノール硬化剤、アミン硬化剤、及び酸無水物硬化剤が好ましく、フェノール硬化剤がより好ましい。
(B) Curing agent The epoxy resin composition contains at least one curing agent. A hardening | curing agent may be what is generally used for the epoxy resin composition, and there is no restriction | limiting in particular.
Examples of (B) curing agents include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents. From the viewpoint of obtaining an epoxy resin composition excellent in reflow resistance while maintaining fluidity, the curing agent is preferably a phenol curing agent, an amine curing agent, and an acid anhydride curing agent, and more preferably a phenol curing agent.
 フェノール硬化剤としては、例えば、1分子中に2個以上のフェノール性水酸基を有するフェノール樹脂及び多価フェノール化合物が挙げられる。具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等と、から合成されるアラルキル型フェノール樹脂(フェノールアラルキル樹脂、ナフトールアラルキル樹脂等);パラキシリレン変性フェノール樹脂;メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物とジシクロペンタジエンとの共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂;などが挙げられる。これらのフェノール樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Examples of the phenol curing agent include phenol resins and polyhydric phenol compounds having two or more phenolic hydroxyl groups in one molecule. Specifically, polyphenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, etc. And at least one phenolic compound selected from the group consisting of naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene, and an aldehyde compound such as formaldehyde, acetaldehyde and propionaldehyde in an acidic catalyst. Or a novolak-type phenol resin obtained by co-condensation; synthesized from the above phenolic compound and dimethoxyparaxylene, bis (methoxymethyl) biphenyl, etc. Aralkyl-type phenolic resin (phenol aralkyl resin, naphthol aralkyl resin, etc.); paraxylylene-modified phenolic resin; metaxylylene-modified phenolic resin; melamine-modified phenolic resin; terpene-modified phenolic resin; Dicyclopentadiene-type phenol resin and dicyclopentadiene-type naphthol resin; cyclopentadiene-modified phenol resin; polycyclic aromatic ring-modified phenol resin; biphenyl-type phenol resin; phenolic compounds and aromatic aldehydes such as benzaldehyde and salicylaldehyde A triphenylmethane type phenol resin obtained by condensing or co-condensing a compound with an acidic catalyst; a phenol tree obtained by copolymerizing two or more of these compounds ; And the like. These phenol resins may be used alone or in combination of two or more.
 上記の例示した硬化剤(すなわち、ノボラック型フェノール樹脂、アラルキル型フェノール樹脂、パラキシリレン変性フェノール樹脂、メタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂、並びにこれら2種以上を共重合して得たフェノール樹脂)は、いずれか1種を単独で用いても2種以上を組み合わせて用いてもよい。上記の例示した硬化剤(2種以上を用いる場合はその合計)の含有率は、硬化剤全量中50質量%以上が好ましく、60質量%以上がより好ましく、80質量%以上がさらに好ましい。 Curing agents exemplified above (i.e., novolak type phenol resin, aralkyl type phenol resin, paraxylylene modified phenol resin, metaxylylene modified phenol resin, melamine modified phenol resin, terpene modified phenol resin, dicyclopentadiene type phenol resin, dicyclopentadiene type A naphthol resin, a cyclopentadiene-modified phenol resin, a polycyclic aromatic ring-modified phenol resin, a biphenyl type phenol resin, a triphenylmethane type phenol resin, or a phenol resin obtained by copolymerizing two or more of these is any one The seeds may be used alone or in combination of two or more. The content of the above-described curing agents (the total when two or more are used) is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 80% by mass or more in the total amount of the curing agent.
 硬化剤の官能基当量は特に制限されず、成形性、耐リフロー性、及び電気的信頼性等のバランスの観点から、70g/eq~1000g/eqが好ましく、80g/eq~500g/eqがより好ましい。なお、官能基当量は、JIS K0070:1992に準拠して測定された値をいう。
 また硬化剤の軟化点又は融点は特に制限されず、成形性及び耐リフロー性の観点から、40℃~180℃が好ましく、エポキシ樹脂組成物作製時における取扱い性の観点からは50℃~130℃がより好ましい。なお、硬化剤の軟化点又は融点の測定方法は、特定エポキシ樹脂の軟化点又は融点の測定方法と同様である。
The functional group equivalent of the curing agent is not particularly limited, and is preferably 70 g / eq to 1000 g / eq, more preferably 80 g / eq to 500 g / eq from the viewpoint of the balance of moldability, reflow resistance, and electrical reliability. preferable. The functional group equivalent is a value measured according to JIS K0070: 1992.
Further, the softening point or melting point of the curing agent is not particularly limited, and is preferably 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and 50 ° C. to 130 ° C. from the viewpoint of handleability when preparing the epoxy resin composition. Is more preferable. In addition, the measuring method of the softening point or melting | fusing point of a hardening | curing agent is the same as the measuring method of the softening point or melting | fusing point of a specific epoxy resin.
 エポキシ樹脂組成物において、(A)特定エポキシ樹脂及び(C)特定グリシジル化合物と(B)硬化剤との当量比、すなわち特定エポキシ樹脂及び特定グリシジル化合物におけるエポキシ基及びグリシジル基の総量に対する硬化剤中の官能基数の比(硬化剤中の官能基数/特定エポキシ樹脂及び特定グリシジル化合物中のエポキシ基数及びグリシジル基数の合計)は、特に制限はない。それぞれの未反応分を少なく抑えるために0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性並びに耐はんだ性及び耐リフロー性により優れるエポキシ樹脂組成物を得るためには、0.8~1.2の範囲に設定されることがさらに好ましい。上記比率が0.5以上であることにより、0.5未満である場合に比べ、エポキシ樹脂組成物が充分に硬化しやすくなり、エポキシ樹脂組成物の硬化物の耐熱性、耐湿性、及び電気特性が良好になる傾向がある。一方、上記比率が2.0以下であることにより2.0を超える場合に比べて、硬化剤成分が過剰となることによる硬化効率の低下、並びに硬化物中に多量の官能基が残ることによるパッケージの電気特性及び耐湿性の低下が抑制される傾向がある。特に、硬化剤としてフェノール硬化剤を用いた場合に上記比率が2.0以下であることにより2.0を超える場合に比べて、フェノール樹脂成分が過剰となることによる硬化効率の低下、並びに硬化物中に多量のフェノール性水酸基が残ることによるパッケージの電気特性及び耐湿性の低下が抑制される傾向がある。 In the epoxy resin composition, the equivalent ratio of (A) the specific epoxy resin and (C) the specific glycidyl compound and (B) the curing agent, that is, in the curing agent with respect to the total amount of epoxy groups and glycidyl groups in the specific epoxy resin and the specific glycidyl compound The ratio of the number of functional groups (the number of functional groups in the curing agent / the total number of epoxy groups and glycidyl groups in the specific epoxy resin and specific glycidyl compound) is not particularly limited. In order to keep each unreacted component small, it is preferably set in the range of 0.5 to 2.0, more preferably in the range of 0.6 to 1.3. In order to obtain an epoxy resin composition which is more excellent in moldability, solder resistance and reflow resistance, it is more preferably set in the range of 0.8 to 1.2. When the ratio is 0.5 or more, the epoxy resin composition is sufficiently cured as compared with the case where the ratio is less than 0.5, and the cured product of the epoxy resin composition has heat resistance, moisture resistance, and electricity. There is a tendency for the characteristics to be good. On the other hand, compared to the case where the ratio is 2.0 or less and more than 2.0, the curing efficiency decreases due to excessive curing agent components, and a large amount of functional groups remain in the cured product. There is a tendency that deterioration of the electrical characteristics and moisture resistance of the package is suppressed. In particular, when a phenol curing agent is used as the curing agent, the above ratio is 2.0 or less, and compared with the case where the ratio exceeds 2.0, the curing efficiency is reduced due to excess phenol resin component, and curing There is a tendency that a decrease in electrical characteristics and moisture resistance of the package due to a large amount of phenolic hydroxyl group remaining in the product is suppressed.
(D)硬化促進剤
 エポキシ樹脂組成物は、(A)特定エポキシ樹脂、(B)硬化剤、及び(C)特定グリシジル化合物のほかに、必要に応じて(D)硬化促進剤の少なくとも1種を含んでもよい。硬化促進剤としては、(A)特定エポキシ樹脂と(B)硬化剤との反応を促進する化合物であれば限定されるものではない。
 (D)硬化促進剤としては、例えば、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、1,5-ジアザ-ビシクロ(4,3,0)ノネン、5、6-ジブチルアミノ-1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等のシクロアミジン化合物;前記シクロアミジン化合物に、無水マレイン酸、キノン化合物(例えば、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン)、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール類及びこれらの誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等のホスフィン化合物;上記ホスフィン化合物に、無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体;などが挙げられる。これらの硬化促進剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(D) Curing Accelerator The epoxy resin composition comprises (A) a specific epoxy resin, (B) a curing agent, and (C) a specific glycidyl compound, and (D) a curing accelerator as required. May be included. The curing accelerator is not limited as long as it is a compound that accelerates the reaction between (A) the specific epoxy resin and (B) the curing agent.
(D) Examples of the curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7,1,5-diaza-bicyclo (4,3,0) nonene and 5,6-dibutyl. Cycloamidine compounds such as amino-1,8-diaza-bicyclo (5,4,0) undecene-7; maleic anhydride, quinone compounds (for example, 1,4-benzoquinone, 2,5- Toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, A compound having intramolecular polarization formed by adding a compound having a π bond, such as phenyl-1,4-benzoquinone), diazophenylmethane, and a phenol resin; Tertiary amines such as ruamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives; imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, etc. And phosphine compounds such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine; maleic anhydride, quinone compound, diazophenyl Phosphorus compounds having intramolecular polarization formed by adding a compound having a π bond such as methane or phenol resin; tetraphenylphosphonium tetraphenylborate, triphenylphosphine Tiger tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenyl borate, tetraphenyl boron salts and derivatives thereof such as N- methylmorpholine tetraphenylborate; and the like. These curing accelerators may be used alone or in combination of two or more.
 (D)硬化促進剤の含有率は、硬化促進効果が達成される量であれば特に制限されるものではなく、エポキシ樹脂組成物中0.005質量%~2質量%が好ましく、0.01質量%~0.5質量%がより好ましい。エポキシ樹脂組成物中における硬化促進剤の含有率が0.005質量%以上であることにより、0.005質量%未満である場合に比べ、短時間での硬化性が良好になる傾向があり、2質量%以下であることにより、2質量%を超える場合に比べ、硬化速度が速すぎないため、良好な成形品が得られやすくなる傾向がある。 The content of the (D) curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, and is preferably 0.005% by mass to 2% by mass in the epoxy resin composition. A mass% to 0.5 mass% is more preferable. When the content of the curing accelerator in the epoxy resin composition is 0.005% by mass or more, the curability in a short time tends to be better than when it is less than 0.005% by mass, When the content is 2% by mass or less, the curing rate is not too high as compared with the case where the content exceeds 2% by mass, and thus a good molded product tends to be easily obtained.
(E)無機充填剤
 エポキシ樹脂組成物は、(A)特定エポキシ樹脂、(B)硬化剤、及び(C)特定グリシジル化合物のほかに、必要に応じて(E)無機充填剤の少なくとも1種を含んでもよい。無機充填剤は、例えば、吸湿性、線膨張係数低減、熱伝導性向上、及び強度向上の目的で用いることができる。
(E) Inorganic filler In addition to (A) specific epoxy resin, (B) curing agent, and (C) specific glycidyl compound, the epoxy resin composition comprises at least one of (E) inorganic filler as required. May be included. The inorganic filler can be used, for example, for the purposes of hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement, and strength improvement.
 無機充填剤の種類は、特に制限されない。具体的には、球状シリカ(例えば、溶融シリカ)、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填剤を用いてもよい。難燃効果を有する無機充填剤としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛、モリブデン酸亜鉛などが挙げられる。
 無機充填剤の形状としては粉未、粉末を球形化したビーズ、繊維等が挙げられる。
The kind of inorganic filler is not particularly limited. Specifically, spherical silica (for example, fused silica), crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, Examples include inorganic materials such as zirconia, zircon, fosterite, steatite, spinel, mullite, titania, talc, clay, mica and the like. An inorganic filler having a flame retardant effect may be used. Examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxide such as composite hydroxide of magnesium and zinc, zinc borate, and zinc molybdate.
Examples of the shape of the inorganic filler include non-powder, beads spheroidized from the powder, and fibers.
 これらの無機充填剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。なかでも、充填性、線膨張係数の低減の観点からは球状シリカが、高熱伝導性の観点からはアルミナが好ましい。無機充填剤の形状は充填性及び金型摩耗性の点から球形が好ましい。 These inorganic fillers may be used alone or in combination of two or more. Among these, spherical silica is preferable from the viewpoint of filling property and linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity. The shape of the inorganic filler is preferably a spherical shape from the viewpoints of fillability and mold wear.
 エポキシ樹脂組成物中の無機充填剤の含有率は、難燃性、成形性、吸湿性、線膨張係数低減、強度向上及び耐リフロー性の観点から、60質量%以上が好ましく、60質量%~95質量%が難燃性の観点からより好ましく、70質量%~90質量%がさらに好ましい。エポキシ樹脂組成物中の無機充填剤の含有率が60質量%以上であることにより、60質量%未満である場合に比べ、難燃性及び耐リフロー性が向上する傾向がある。エポキシ樹脂組成物中の無機充填剤の含有率が95質量%以下であると、95質量%を超える場合に比べて流動性が向上する傾向があり、また難燃性も向上する傾向にある。 The content of the inorganic filler in the epoxy resin composition is preferably 60% by mass or more, from the viewpoint of flame retardancy, moldability, hygroscopicity, reduction of linear expansion coefficient, strength improvement, and reflow resistance. 95 mass% is more preferable from the viewpoint of flame retardancy, and 70 mass% to 90 mass% is more preferable. When the content of the inorganic filler in the epoxy resin composition is 60% by mass or more, flame retardancy and reflow resistance tend to be improved as compared to the case of less than 60% by mass. When the content of the inorganic filler in the epoxy resin composition is 95% by mass or less, the fluidity tends to be improved as compared with the case where it exceeds 95% by mass, and the flame retardancy tends to be improved.
 エポキシ樹脂組成物は、上述の成分(A)特定エポキシ樹脂、(B)硬化剤、及び(C)特定グリシジル化合物に加えて、必要に応じて以下に例示するカップリング剤、難燃剤、陰イオン交換体、離型剤、着色剤、応力緩和剤等の各種添加剤を含んでもよい。また、エポキシ樹脂組成物には、以下の添加剤に限定することなく、必要に応じて当技術分野で周知の各種添加剤を添加してもよい。 In addition to the above-mentioned component (A) specific epoxy resin, (B) curing agent, and (C) specific glycidyl compound, the epoxy resin composition includes a coupling agent, a flame retardant, an anion exemplified below as necessary. Various additives such as an exchanger, a release agent, a colorant, and a stress relaxation agent may be included. Moreover, you may add various additives well-known in this technical field to an epoxy resin composition as needed, without being limited to the following additives.
(F)カップリング剤
 エポキシ樹脂組成物は、必要に応じて、樹脂成分と充填剤との接着性を高めるために、カップリング剤の少なくとも1種を含んでもよい。
 カップリング剤としては、エポキシ樹脂組成物に一般に使用されているものであればよく、特に制限はなく、例えば、1級アミノ基、2級アミノ基、及び3級アミノ基の少なくとも1種を有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物(例えば、下記シラン系カップリング剤)、チタン系化合物(例えば、下記チタネート系カップリング剤)、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物などが挙げられる。
 耐リフロー性の観点からは、カップリング剤として上記シラン化合物を用いることが好ましい。
(F) Coupling agent The epoxy resin composition may contain at least one coupling agent in order to enhance the adhesion between the resin component and the filler, if necessary.
The coupling agent is not particularly limited as long as it is generally used in an epoxy resin composition, and has, for example, at least one of a primary amino group, a secondary amino group, and a tertiary amino group. Various silane compounds such as silane compounds, epoxy silanes, mercapto silanes, alkyl silanes, ureido silanes, vinyl silanes (for example, the following silane coupling agents), titanium compounds (for example, the following titanate coupling agents), aluminum chelates And aluminum / zirconium-based compounds.
From the viewpoint of reflow resistance, it is preferable to use the silane compound as a coupling agent.
 カップリング剤の具体例としては、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリメトキシシラン、γ-(N-メチル)アニリノプロピルトリメトキシシラン、γ-(N-エチル)アニリノプロピルトリメトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリエトキシシラン、γ-(N-メチル)アニリノプロピルトリエトキシシラン、γ-(N-エチル)アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジエチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジブチル)アミノプロピルメチルジメトキシシラン、γ-(N-メチル)アニリノプロピルメチルジメトキシシラン、γ-(N-エチル)アニリノプロピルメチルジメトキシシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられ、これらの1種を単独で用いても2種類以上を組み合わせて用いてもよい。 Specific examples of coupling agents include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopro Rutrimethoxysilane, γ- (N, N-diethyl) aminopropyltrimethoxysilane, γ- (N, N-dibutyl) aminopropyltrimethoxysilane, γ- (N-methyl) anilinopropyltrimethoxysilane, γ- (N-ethyl) anilinopropyltrimethoxysilane, γ- (N, N-dimethyl) aminopropyltriethoxysilane, γ- (N, N-diethyl) aminopropyltriethoxysilane, γ- (N, N-dibutyl) ) Aminopropyltriethoxysilane, γ- (N-methyl) anilinopropyltriethoxysilane, γ- (N-ethyl) anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropylmethyldimethoxysilane, γ- (N, N-diethyl) aminopropylmethyldimethoxysilane, γ- (N, N-dibutyl) ) Aminopropylmethyldimethoxysilane, γ- (N-methyl) anilinopropylmethyldimethoxysilane, γ- (N-ethyl) anilinopropylmethyldimethoxysilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethyl) Silane coupling agents such as (silylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane Isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, isopropyltri (N-aminoethyl-aminoethyl) titanate Tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ) Ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, tetraisopropyl bis (dioctyl) Phosphite) titanate coupling agents such as titanate These may be used alone or in combination of two or more.
 なかでも流動性、難燃性の観点からは2級アミノ基を有するシランカップリング剤が好ましい。2級アミノ基を有するシランカップリング剤は分子内に2級アミノ基を有するシラン化合物であれば特に制限はなく、具体例としては、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-アニリノプロピルメチルジエトキシシラン、γ-アニリノプロピルエチルジエトキシシラン、γ-アニリノプロピルエチルジメトキシシラン、γ-アニリノメチルトリメトキシシラン、γ-アニリノメチルトリエトキシシラン、γ-アニリノメチルメチルジメトキシシラン、γ-アニリノメチルメチルジエトキシシラン、γ-アニリノメチルエチルジエトキシシラン、γ-アニリノメチルエチルジメトキシシラン、N-(p-メトキシフェニル)-γ-アミノプロピルトリメトキシシラン、N-(p-メトキシフェニル)-γ-アミノプロピルトリエトキシシラン、N-(p-メトキシフェニル)-γ-アミノプロピルメチルジメトキシシラン、N-(p-メトキシフェニル)-γ-アミノプロピルメチルジエトキシシラン、N-(p-メトキシフェニル)-γ-アミノプロピルエチルジエトキシシラン、N-(p-メトキシフェニル)-γ-アミノプロピルエチルジメトキシシラン、γ-(N-メチル)アミノプロピルトリメトキシシラン、γ-(N-エチル)アミノプロピルトリメトキシシラン、γ-(N-ブチル)アミノプロピルトリメトキシシラン、γ-(N-ベンジル)アミノプロピルトリメトキシシラン、γ-(N-メチル)アミノプロピルトリエトキシシラン、γ-(N-エチル)アミノプロピルトリエトキシシラン、γ-(N-ブチル)アミノプロピルトリエトキシシラン、γ-(N-ベンジル)アミノプロピルトリエトキシシラン、γ-(N-メチル)アミノプロピルメチルジメトキシシラン、γ-(N-エチル)アミノプロピルメチルジメトキシシラン、γ-(N-ブチル)アミノプロピルメチルジメトキシシラン、γ-(N-ベンジル)アミノプロピルメチルジメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン等が挙げられる。 Of these, a silane coupling agent having a secondary amino group is preferred from the viewpoint of fluidity and flame retardancy. The silane coupling agent having a secondary amino group is not particularly limited as long as it is a silane compound having a secondary amino group in the molecule. Specific examples thereof include γ-anilinopropyltrimethoxysilane, γ-anilinopropyltrisilane. Ethoxysilane, γ-anilinopropylmethyldimethoxysilane, γ-anilinopropylmethyldiethoxysilane, γ-anilinopropylethyldiethoxysilane, γ-anilinopropylethyldimethoxysilane, γ-anilinomethyltrimethoxysilane, γ-anilinomethyltriethoxysilane, γ-anilinomethylmethyldimethoxysilane, γ-anilinomethylmethyldiethoxysilane, γ-anilinomethylethyldiethoxysilane, γ-anilinomethylethyldimethoxysilane, N- ( p-methoxyphenyl) -γ-aminopropyltri Toxisilane, N- (p-methoxyphenyl) -γ-aminopropyltriethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylmethyldimethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylmethyl Diethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylethyldiethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylethyldimethoxysilane, γ- (N-methyl) aminopropyltrimethoxy Silane, γ- (N-ethyl) aminopropyltrimethoxysilane, γ- (N-butyl) aminopropyltrimethoxysilane, γ- (N-benzyl) aminopropyltrimethoxysilane, γ- (N-methyl) aminopropyl Triethoxysilane, γ- (N-ethyl) aminopropyltrieth Sisilane, γ- (N-butyl) aminopropyltriethoxysilane, γ- (N-benzyl) aminopropyltriethoxysilane, γ- (N-methyl) aminopropylmethyldimethoxysilane, γ- (N-ethyl) aminopropyl Methyldimethoxysilane, γ- (N-butyl) aminopropylmethyldimethoxysilane, γ- (N-benzyl) aminopropylmethyldimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ- ( β-aminoethyl) aminopropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, and the like.
 エポキシ樹脂組成物中のカップリング剤の含有率は、0.037質量%~4.75質量%が好ましく、0.05質量%~5質量%がより好ましく、0.1質量%~2.5質量%がさらに好ましい。エポキシ樹脂組成物中のカップリング剤の含有率が0.037質量%以上であることにより、0.037質量%未満である場合に比べ、フレームとの接着性が向上する傾向があり、4.75質量%以下であることにより、4.75質量%を超える場合に比べ、パッケージの成形性が向上する傾向がある。 The content of the coupling agent in the epoxy resin composition is preferably 0.037% by mass to 4.75% by mass, more preferably 0.05% by mass to 5% by mass, and 0.1% by mass to 2.5%. More preferred is mass%. When the content of the coupling agent in the epoxy resin composition is 0.037% by mass or more, the adhesion with the frame tends to be improved as compared with the case of less than 0.037% by mass. By being 75 mass% or less, the moldability of the package tends to be improved as compared with the case where it exceeds 4.75 mass%.
 エポキシ樹脂組成物には、難燃性を付与するために必要に応じて難燃剤の少なくとも1種を配合することができる。難燃剤としては特に制限はなく、例えば、ハロゲン原子、アンチモン原子、窒素原子、又はリン原子を含む公知の有機又は無機の化合物、金属水酸化物等が挙げられ、これらの1種を単独で用いても2種以上を組み合わせて用いてもよい。難燃剤の含有率は、難燃効果が達成されれば特に制限はなく、(A)特定エポキシ樹脂に対して1質量%~30質量%が好ましく、2質量%~15質量%がより好ましい。 In the epoxy resin composition, at least one flame retardant can be blended as necessary to impart flame retardancy. There is no restriction | limiting in particular as a flame retardant, For example, the well-known organic or inorganic compound containing a halogen atom, an antimony atom, a nitrogen atom, or a phosphorus atom, a metal hydroxide, etc. are mentioned, These 1 type is used independently. Alternatively, two or more kinds may be used in combination. The content of the flame retardant is not particularly limited as long as the flame retardant effect is achieved, and is preferably 1% by mass to 30% by mass and more preferably 2% by mass to 15% by mass with respect to the (A) specific epoxy resin.
 エポキシ樹脂組成物には、陰イオン交換体の少なくとも1種を必要に応じて配合することができる。特に、エポキシ樹脂組成物は、エポキシ樹脂組成物を封止用成形材料として用いるものであるため、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、陰イオン交換体を含有することが好ましい。
 陰イオン交換体としては特に制限はなく、従来公知のものを用いることができ、具体例としては、ハイドロタルサイト類;マグネシウム、アルミニウム、チタン、ジルコニウム、及びビスマスから選ばれる元素の含水酸化物;等が挙げられる。陰イオン交換体は、1種を単独で又は2種以上を組み合わせて用いることができる。中でも、陰イオン交換体は、下記一般式(1)で示されるハイドロタルサイトが好ましい。
In the epoxy resin composition, at least one anion exchanger can be blended as necessary. In particular, since an epoxy resin composition uses an epoxy resin composition as a molding material for sealing, an anion is used from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of an electronic component device including a device to be sealed. It is preferable to contain an exchanger.
There is no restriction | limiting in particular as an anion exchanger, A conventionally well-known thing can be used, As a specific example, Hydrotalcite; Hydrous oxide of the element chosen from magnesium, aluminum, titanium, zirconium, and bismuth; Etc. An anion exchanger can be used individually by 1 type or in combination of 2 or more types. Among these, the anion exchanger is preferably a hydrotalcite represented by the following general formula (1).
 Mg1-XAl(OH)(COX/2・mHO   (1)
(式(1)中、0<X≦0.5、mは正の数)
Mg 1-X Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O (1)
(In formula (1), 0 <X ≦ 0.5, m is a positive number)
 上記陰イオン交換体の含有率は、ハロゲンイオン等の陰イオンを捕捉できる十分量であれば特に制限はなく、(A)特定エポキシ樹脂に対して0.1質量%~30質量%が好ましく、1質量%~5質量%がより好ましい。 The content of the anion exchanger is not particularly limited as long as it is a sufficient amount capable of capturing anions such as halogen ions, and is preferably 0.1% by mass to 30% by mass with respect to (A) the specific epoxy resin, 1% by mass to 5% by mass is more preferable.
 さらに、エポキシ樹脂組成物には、その他の添加剤として、高級脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリオレフィン系ワックス、ポリエチレン、酸化ポリエチレン等の離型剤;カーボンブラック等の着色剤;シリコーンオイル、シリコーンゴム粉末等の応力緩和剤;などを必要に応じて配合することができる。 Furthermore, in the epoxy resin composition, as other additives, release agents such as higher fatty acid, higher fatty acid metal salt, ester wax, polyolefin wax, polyethylene, polyethylene oxide, etc .; Colorant such as carbon black; Silicone oil , Stress relaxation agents such as silicone rubber powder; and the like can be blended as necessary.
 エポキシ樹脂組成物は、各種原材料を分散混合できるのであれば、いかなる手法を用いても調製でき、一般的な手法として、原材料をミキサー等によって十分混合した後、ミキシングロール、押出機、らいかい機、プラネタリミキサ等によって混合又は溶融混練した後、冷却し、必要に応じて脱泡及び粉砕する方法などを挙げることができる。また、必要に応じて成形条件に合うような寸法及び重量でタブレット化してもよい。 The epoxy resin composition can be prepared by any method as long as various raw materials can be dispersed and mixed. As a general method, the raw materials are sufficiently mixed by a mixer or the like, and then mixed with a mixing roll, an extruder, or a raking machine. Examples thereof include a method of mixing or melt-kneading with a planetary mixer or the like and then cooling and defoaming and pulverizing as necessary. Moreover, you may tablet into the dimension and weight which meet molding conditions as needed.
<電子部品装置>
 本発明の実施形態に係る電子部品装置は、素子と、前記素子を封止する上述のエポキシ樹脂組成物の硬化物と、を備える。
 電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材又は実装基板に、素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載し、必要な部分を上述のエポキシ樹脂組成物で封止した、電子部品装置などが挙げられる。
<Electronic component device>
An electronic component device according to an embodiment of the present invention includes an element and a cured product of the above-described epoxy resin composition that seals the element.
Electronic component devices include lead frames, pre-wired tape carriers, wiring boards, glass, silicon wafers and other supporting members or mounting substrates, elements (semiconductor chips, transistors, diodes, thyristors and other active elements, capacitors, resistors , Electronic devices, etc. in which necessary parts are mounted with the above-described epoxy resin composition.
 ここで、実装基板としては特に制限するものではなく、具体例としては、有機基板、有機フィルム、セラミック基板、ガラス基板等のインターポーザ基板、液晶用ガラス基板、MCM(Multi Chip Module)用基板、ハイブリットIC用基板等が挙げられる。 Here, the mounting substrate is not particularly limited, and specific examples include an organic substrate, an organic film, a ceramic substrate, an interposer substrate such as a glass substrate, a liquid crystal glass substrate, an MCM (Multi Chip Module) substrate, and a hybrid. Examples include IC substrates.
 電子部品装置の具体例としては、例えば、半導体装置が挙げられ、より具体的には、リードフレーム(アイランド、タブ)上に半導体チップ等の素子を配置し、ボンディングパッド等の素子の端子部とリード部をワイヤボンディング、バンプ等で接続した後、前記エポキシ樹脂組成物を用いてトランスファ成形等により封止してなる、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の樹脂封止型IC;テープキャリアにリードボンディングした半導体チップを、前記エポキシ樹脂組成物で封止したTCP(Tape Carrier Package);配線板又はガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップを、前記エポキシ樹脂組成物で封止したCOB(Chip On Board)、COG(Chip On Glass)等のベアチップ実装した半導体装置;配線板又はガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した能動素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等)及び受動素子(コンデンサ、抵抗体、コイル等)の少なくとも一方を、前記エポキシ樹脂組成物で封止したハイブリッドIC、MCM(Multi Chip Module);マザーボード接続用の端子を形成したインターポーザ基板に半導体チップを搭載し、バンプ又はワイヤボンディングにより前記半導体チップとインターポーザ基板に形成された配線とを接続した後、前記エポキシ樹脂組成物で半導体チップ搭載側を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package);などが挙げられる。また、これらの半導体装置は、実装基板上に素子が2個以上重なった形で搭載されたスタックド(積層)型パッケージであっても、2個以上の素子を一度にエポキシ樹脂組成物で封止した一括モールド型パッケージであってもよい。 Specific examples of the electronic component device include a semiconductor device, and more specifically, an element such as a semiconductor chip is arranged on a lead frame (island, tab), and a terminal portion of an element such as a bonding pad The lead parts are connected by wire bonding, bumps, etc., and then sealed by transfer molding etc. using the epoxy resin composition, DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat) Package), SOP (Small Outline Package), SOJ (Small Outline J-lead package), TSOP (Thin Small Outline Package), TQFP (T Resin-encapsulated IC such as in Quad Flat Package); TCP (Tape Carrier Package) in which a semiconductor chip lead-bonded to a tape carrier is encapsulated with the epoxy resin composition; wiring formed on a wiring board or glass; Semiconductor devices in which semiconductor chips connected by wire bonding, flip chip bonding, solder, etc. are mounted with bare chips such as COB (Chip On Board), COG (Chip On Glass), etc. sealed with the epoxy resin composition; wiring board or glass Active elements (semiconductor chips, transistors, diodes, thyristors, etc.) and passive elements (capacitors, resistors, coils) connected to the wiring formed above by wire bonding, flip chip bonding, solder, etc. ) At least one of them is sealed with the epoxy resin composition, a hybrid IC, MCM (Multi Chip Module); a semiconductor chip is mounted on an interposer substrate on which terminals for connecting a motherboard are formed, and the semiconductor chip is formed by bump or wire bonding BGA (Ball Grid Array), CSP (Chip Size Package), MCP (Multi Chip Package), etc., which are connected to the wiring formed on the interposer substrate with the epoxy resin composition. Is mentioned. In addition, even if these semiconductor devices are stacked type packages in which two or more elements are stacked on a mounting substrate, two or more elements are sealed with an epoxy resin composition at a time. It may be a collective mold type package.
 なお、前記エポキシ樹脂組成物を封止材として用いて、素子が封止された半導体装置等の電子部品装置を得る方法としては、低圧トランスファ成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等も挙げられる。素子が封止された半導体装置等の電子部品装置を得る方法として、ディスペンス方式、注型方式、印刷方式等を用いてもよい。 In addition, as a method for obtaining an electronic component device such as a semiconductor device in which an element is sealed using the epoxy resin composition as a sealing material, a low-pressure transfer molding method is the most common, but an injection molding method, The compression molding method etc. are also mentioned. As a method for obtaining an electronic component device such as a semiconductor device in which an element is sealed, a dispensing method, a casting method, a printing method, or the like may be used.
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。 Hereinafter, the above embodiment will be specifically described by way of examples, but the scope of the above embodiment is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.
 以下の成分をそれぞれ下記表1及び表2に示す質量部で配合し、押出機にて混練温度135℃、で溶融混練を行い、実施例及び比較例のエポキシ樹脂組成物を作製した。なお表中の空欄は「配合無し」を表す。 The following components were blended in parts by mass shown in Tables 1 and 2 below, and melt kneaded at a kneading temperature of 135 ° C. with an extruder to prepare epoxy resin compositions of Examples and Comparative Examples. Note that the blank in the table represents “no formulation”.
 (A)特定エポキシ樹脂としては、
 エポキシ樹脂1:チオジフェノール型エポキシ樹脂(新日鉄住金化学株式会社製、商品名:YSLV-120TE、エポキシ当量245、軟化点113℃)
 エポキシ樹脂2:ビフェニレン骨格を含有するフェノールアラルキル樹脂をエポキシ化したアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:CER-3000L、エポキシ当量240、軟化点96℃)
 エポキシ樹脂3:ビフェニル型エポキシ樹脂(三菱ケミカル株式会社製、商品名:YX-4000、エポキシ当量196、融点106℃)
 を使用した。
(A) As a specific epoxy resin,
Epoxy resin 1: Thiodiphenol type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YSLV-120TE, epoxy equivalent 245, softening point 113 ° C.)
Epoxy resin 2: Aralkyl epoxy resin obtained by epoxidizing a phenol aralkyl resin containing a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., trade name: CER-3000L, epoxy equivalent 240, softening point 96 ° C.)
Epoxy resin 3: biphenyl type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: YX-4000, epoxy equivalent 196, melting point 106 ° C.)
It was used.
 (B)硬化剤としては、
 硬化剤1:水酸基当量176、軟化点70℃のフェノールアラルキル樹脂(三井化学株式会社製、商品名:ミレックスXLC)
 硬化剤2:水酸基当量120、軟化点85℃のメラミン変性フェノール樹脂(日立化成株式会社製、商品名:HPM-J3)
 を使用した。
(B) As a curing agent,
Curing agent 1: Phenol aralkyl resin having a hydroxyl group equivalent of 176 and a softening point of 70 ° C. (trade name: Milex XLC, manufactured by Mitsui Chemicals, Inc.)
Curing agent 2: Melamine-modified phenol resin having a hydroxyl equivalent weight of 120 and a softening point of 85 ° C (manufactured by Hitachi Chemical Co., Ltd., trade name: HPM-J3)
It was used.
 (C)特定グリシジル化合物(構造中にグリシジル基を有する化合物)としては、
 液状樹脂1:ジシクロペンタジエンジメタノールジグリシジルエーテル(株式会社ADEKA製、商品名:EP-4088L、エポキシ当量165、融点:25℃以下)
 液状樹脂2:ゴム架橋ビスフェノール型エポキシ樹脂(株式会社ADEKA製、商品名:EPR-4030、エポキシ当量365、融点:25℃以下)
 液状樹脂3:キレート変性型エポキシ樹脂(株式会社ADEKA製、商品名:EP-49-10N、エポキシ当量220、融点:25℃以下)
 を使用した。
(C) As a specific glycidyl compound (compound having a glycidyl group in the structure),
Liquid resin 1: dicyclopentadiene dimethanol diglycidyl ether (manufactured by ADEKA Corporation, trade name: EP-4088L, epoxy equivalent 165, melting point: 25 ° C. or less)
Liquid resin 2: rubber-crosslinked bisphenol type epoxy resin (manufactured by ADEKA, trade name: EPR-4030, epoxy equivalent 365, melting point: 25 ° C. or less)
Liquid resin 3: Chelate-modified epoxy resin (manufactured by ADEKA Corporation, trade name: EP-49-10N, epoxy equivalent 220, melting point: 25 ° C. or less)
It was used.
 (D)硬化促進剤としては、
 硬化促進剤1:トリフェニルホスフィンとベンゾキノンの付加反応物
 硬化促進剤2:トリパラトリルホスフィン・パラベンゾキノンの混合物
 を使用した。
(D) As a curing accelerator,
Curing accelerator 1: Addition reaction product of triphenylphosphine and benzoquinone Curing accelerator 2: Mixture of triparatolylphosphine and parabenzoquinone was used.
 (E)無機充填剤としては、
 溶融シリカ:体積平均粒径18μm、比表面積1.5m/gの球状溶融シリカ
 を使用した。
(E) As an inorganic filler,
Fused silica: Spherical fused silica having a volume average particle size of 18 μm and a specific surface area of 1.5 m 2 / g was used.
 (F)カップリング剤としては、
 カップリング剤1:γ-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製、商品名:KBM-803)
 カップリング剤2:N-フェニル-γ-アミノプロピルトリメトキシシラン(信越化学工業株式会社製、商品名:KBM-573)
 カップリング剤3:メチルトリメトキシシラン(信越化学工業株式会社製、商品名:KBM―13)
 を使用した。
(F) As a coupling agent,
Coupling agent 1: γ-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-803)
Coupling agent 2: N-phenyl-γ-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-573)
Coupling agent 3: methyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-13)
It was used.
 その他、各種添加剤としては、
 着色剤:カーボンブラック(三菱ケミカル株式会社製、商品名:MA100)
 離型剤:モンタン酸エステル(クラリアントジャパン株式会社製、商品名:HW-E)
 添加剤:マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート(陰イオン交換体、ハイドロタルサイト類、堺化学工業株式会社製、商品名:HT-P)
 を使用した。
In addition, as various additives,
Colorant: Carbon black (Mitsubishi Chemical Corporation, trade name: MA100)
Mold release agent: Montanate ester (manufactured by Clariant Japan Ltd., trade name: HW-E)
Additive: Magnesium, aluminum, hydroxide, carbonate, hydrate (anion exchanger, hydrotalcite, manufactured by Sakai Chemical Industry Co., Ltd., trade name: HT-P)
It was used.
 実施例及び比較例のエポキシ樹脂組成物を、次の(1)~(5)の各種特性試験により評価した。評価結果を下記表1及び表2に纏めて示した。なお、エポキシ樹脂組成物の成形は、明示しない限りトランスファ成形機により、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で行った。また、必要に応じて後硬化を175℃で6時間行った。 The epoxy resin compositions of Examples and Comparative Examples were evaluated by the following various characteristic tests (1) to (5). The evaluation results are summarized in Table 1 and Table 2 below. The epoxy resin composition was molded by a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds unless otherwise specified. Further, post-curing was performed at 175 ° C. for 6 hours as necessary.
(1)スパイラルフロー
 EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、エポキシ樹脂組成物を上記条件で成形し、流動距離(cm)を求めた。
(1) Spiral flow The epoxy resin composition was molded under the above conditions using a spiral flow measurement mold according to EMMI-1-66, and the flow distance (cm) was determined.
(2)熱時硬度
 エポキシ樹脂組成物を上記条件で直径50mm、厚さ3mmの円板に成形し、成形後直ちにショアD型硬度計(株式会社上島製作所製、品番:HD-1120(タイプD))を用いて熱時硬度を測定した。
(2) Hardness during heating The epoxy resin composition was molded into a disk having a diameter of 50 mm and a thickness of 3 mm under the above conditions, and immediately after molding, a Shore D hardness meter (manufactured by Ueshima Seisakusho, product number: HD-1120 (Type D )) Was used to measure the hot hardness.
(3)260℃における曲げ弾性率(高温曲げ試験)
 エポキシ樹脂組成物を上記条件で10mm×70mm×3mmに成形、後硬化して試験片を作製した。得られた試験片をJIS K6911:2006に準じた3点曲げ試験を曲げ試験機(株式会社エー・アンド・デイ製、品名:テンシロン)を用いて恒温槽で260℃に保ちながら行い、下記の式より260℃における曲げ弾性率(MPa)を求めた。
 ただし、下記式中、「E」は曲げ弾性率(Pa)、「ΔP」はロードセルの値(N)、「Δy」は変位量(mm)、「l」はスパン(=48mm)、「w」は試験片幅(=10mm)、「h」は試験片厚さ(=3mm)を示す。
(3) Flexural modulus at 260 ° C (high temperature bending test)
The epoxy resin composition was molded into 10 mm × 70 mm × 3 mm under the above conditions and post-cured to prepare a test piece. The obtained test piece was subjected to a three-point bending test according to JIS K6911: 2006 using a bending tester (manufactured by A & D Co., Ltd., product name: Tensilon) while maintaining the temperature at 260 ° C. The flexural modulus (MPa) at 260 ° C. was determined from the equation.
In the following formula, “E” is the flexural modulus (Pa), “ΔP” is the load cell value (N), “Δy” is the displacement (mm), “l” is the span (= 48 mm), “w” "" Indicates a specimen width (= 10 mm), and "h" indicates a specimen thickness (= 3 mm).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(4)接着力試験
 9mm×9mmのスリットを設けた金型にパラジウムメッキした銅板を置き、そこにエポキシ樹脂組成物を上記の条件で、底面の直径4mm、上面の直径3mm、高さ4mmのサイズに成形して、後硬化し、ボンドテスター(ノードソン・アドバンスト・テクノロジー株式会社製シリーズ4000)によって、室温(25℃)にて、せん断速度50μm/sでせん断接着力(MPa)を測定した。
(4) Adhesive strength test A palladium-plated copper plate is placed on a mold provided with a 9 mm × 9 mm slit, and the epoxy resin composition is placed there under the above conditions with a diameter of 4 mm at the bottom, a diameter of 3 mm at the top, and a height of 4 mm. It was molded into a size, post-cured, and the shear adhesive strength (MPa) was measured with a bond tester (Series 4000 manufactured by Nordson Advanced Technology Co., Ltd.) at room temperature (25 ° C.) at a shear rate of 50 μm / s.
(5)耐リフロー性
 8mm×10mm×0.4mmのシリコンチップを搭載した20mm×14mm×2mmの80ピンフラットパッケージ(QFP)(リードフレーム材質:銅合金、ダイパッド部上面、及びリード先端部銀メッキ処理品(表中の「Cu-Ag」)、並びにパラジウム合金メッキ処理品(表中の「PPF」))を、エポキシ樹脂組成物を用いて上記条件で成形及び後硬化して作製し、125℃、24時間の条件でベークした後、60℃、60%RHの条件で、40時間加湿した後、260℃、30秒の条件で3回リフロー処理をそれぞれ行い、樹脂とフレームとの界面におけるはく離の有無を超音波探傷装置で観察し、試験パッケージ数(20個)に対するはく離発生パッケージ数で耐リフロー性を評価した。
(5) Reflow resistance 20 mm x 14 mm x 2 mm 80-pin flat package (QFP) mounted with an 8 mm x 10 mm x 0.4 mm silicon chip (Lead frame material: copper alloy, die pad top surface, and lead tip silver plating A treated product (“Cu—Ag” in the table) and a palladium alloy plating treated product (“PPF” in the table)) were produced by molding and post-curing using the epoxy resin composition under the above-mentioned conditions. After baking at 24 ° C. for 24 hours, humidifying at 60 ° C. and 60% RH for 40 hours, and then performing reflow treatment three times at 260 ° C. for 30 seconds, respectively, at the interface between the resin and the frame The presence or absence of delamination was observed with an ultrasonic flaw detector, and the reflow resistance was evaluated by the number of delamination generation packages relative to the number of test packages (20).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び表2から明らかなとおり、(C)特定グリシジル化合物を含有していない比較例は耐リフロー性が劣っている。これに対し(C)特定グリシジル化合物を含有している実施例1~7は比較例と比べ耐リフロー性に優れている。その理由は定かではないが、前記の通り、弾性率低減効果及び接着力の向上効果によるものと推測される。
 実施例1~3及び比較例の結果から、ジシクロペンタジエン構造を持つ多環芳香環化合物のほうがより耐リフロー性にすぐれていることがわかる。
 実施例4~7及び比較例の結果から、液状樹脂1のエポキシ組成物全体に対する割合が1質量%以下である実施例4及び実施例5に比べ、液状樹脂1のエポキシ組成物全体に対する割合が1質量%以上である実施例6及び実施例7は、耐リフロー性により優れていることがわかる。
As is clear from Tables 1 and 2, the comparative example not containing (C) the specific glycidyl compound is inferior in reflow resistance. On the other hand, Examples 1 to 7 containing (C) the specific glycidyl compound are superior in reflow resistance as compared with the comparative example. The reason is not clear, but as described above, it is presumed to be due to the effect of reducing the elastic modulus and the effect of improving the adhesive force.
From the results of Examples 1 to 3 and Comparative Example, it can be seen that the polycyclic aromatic ring compound having a dicyclopentadiene structure is more excellent in reflow resistance.
From the results of Examples 4 to 7 and the comparative example, the ratio of the liquid resin 1 to the entire epoxy composition is higher than that of Example 4 and Example 5 in which the ratio of the liquid resin 1 to the entire epoxy composition is 1% by mass or less. It turns out that Example 6 and Example 7 which are 1 mass% or more are excellent by reflow resistance.
 2017年3月31日に出願された日本国特許出願2017-072889号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に取り込まれる。
The disclosure of Japanese Patent Application No. 2017-072889 filed on Mar. 31, 2017 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, It is incorporated herein.

Claims (10)

  1.  融点又は軟化点が40℃を超えるエポキシ樹脂と、硬化剤と、グリシジル基を有し融点が40℃以下である化合物と、を含有するエポキシ樹脂組成物。 An epoxy resin composition containing an epoxy resin having a melting point or softening point exceeding 40 ° C., a curing agent, and a compound having a glycidyl group and a melting point of 40 ° C. or less.
  2.  前記グリシジル基を有し融点が40℃以下である化合物が、ジシクロペンタジエン骨格を有する請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the compound having a glycidyl group and a melting point of 40 ° C or lower has a dicyclopentadiene skeleton.
  3.  前記グリシジル基を有し融点が40℃以下である化合物の含有率が、前記エポキシ樹脂に対し、5質量%以上45質量%未満である請求項1又は請求項2に記載のエポキシ樹脂組成物。 3. The epoxy resin composition according to claim 1, wherein the content of the compound having a glycidyl group and a melting point of 40 ° C. or less is 5% by mass or more and less than 45% by mass with respect to the epoxy resin.
  4.  さらに、硬化促進剤を含有する請求項1~請求項3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, further comprising a curing accelerator.
  5.  さらに、無機充填剤を含有する請求項1~請求項4のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, further comprising an inorganic filler.
  6.  さらに、シラン化合物を含有する請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 5, further comprising a silane compound.
  7.  前記エポキシ樹脂の融点又は軟化点が、80℃~130℃である請求項1~請求項6のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 6, wherein a melting point or a softening point of the epoxy resin is 80 ° C to 130 ° C.
  8.  前記グリシジル基を有し融点が40℃以下である化合物のエポキシ当量が、165g/eq~365g/eqである請求項1~請求項7のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, wherein an epoxy equivalent of the compound having a glycidyl group and a melting point of 40 ° C or lower is 165 g / eq to 365 g / eq.
  9.  前記グリシジル基を有し融点が40℃以下である化合物の含有率が、前記エポキシ樹脂に対し、20質量%以上45質量%未満である請求項1~請求項8のいずれか1項に記載のエポキシ樹脂組成物。 The content of the compound having a glycidyl group and a melting point of 40 ° C or lower is 20% by mass or more and less than 45% by mass with respect to the epoxy resin. Epoxy resin composition.
  10.  素子と、前記素子を封止する請求項1~請求項9のいずれか1項に記載のエポキシ樹脂組成物の硬化物と、を備える電子部品装置。 An electronic component device comprising: an element; and a cured product of the epoxy resin composition according to any one of claims 1 to 9, which seals the element.
PCT/JP2018/013454 2017-03-31 2018-03-29 Epoxy resin composition and electronic component device WO2018181813A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880021249.7A CN110461938A (en) 2017-03-31 2018-03-29 Composition epoxy resin and electronic part apparatus
JP2019510186A JP7212830B2 (en) 2017-03-31 2018-03-29 Epoxy resin composition for encapsulation and electronic component device
JP2022212335A JP2023030182A (en) 2017-03-31 2022-12-28 Epoxy resin composition and electronic component device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072889 2017-03-31
JP2017072889 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181813A1 true WO2018181813A1 (en) 2018-10-04

Family

ID=63676421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013454 WO2018181813A1 (en) 2017-03-31 2018-03-29 Epoxy resin composition and electronic component device

Country Status (4)

Country Link
JP (2) JP7212830B2 (en)
CN (1) CN110461938A (en)
TW (1) TW201842052A (en)
WO (1) WO2018181813A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021050A (en) * 2019-07-30 2021-02-18 味の素株式会社 Resin composition
WO2022153762A1 (en) * 2021-01-14 2022-07-21 信越化学工業株式会社 Composition including organosilicon compound, rubber compounding agent, and rubber composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129272A1 (en) * 2010-04-13 2011-10-20 積水化学工業株式会社 Attachment material for semiconductor chip bonding, attachment film for semiconductor chip bonding, semiconductor device manufacturing method, and semiconductor device
JP2012153885A (en) * 2011-01-07 2012-08-16 Ajinomoto Co Inc Resin composition for peeling film
JP2013006981A (en) * 2011-06-24 2013-01-10 Mitsubishi Chemicals Corp Interlayer filling material composition and coating liquid thereof for three-dimensional multi-layer semiconductor device
JP2014521754A (en) * 2011-07-29 2014-08-28 ナミックス株式会社 Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and semiconductor manufacturing method
JP2015010146A (en) * 2013-06-28 2015-01-19 太陽インキ製造株式会社 Thermosetting resin composition, and printed wiring board
JP2016179564A (en) * 2015-03-23 2016-10-13 味の素株式会社 Resin sheet
WO2017057561A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Resin composition and multilayer substrate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551435A (en) * 1991-08-23 1993-03-02 Mitsui Toatsu Chem Inc Epoxy resin composition
JPH1121426A (en) * 1997-07-02 1999-01-26 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JP2001131393A (en) * 1999-10-29 2001-05-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2002128868A (en) * 2000-10-24 2002-05-09 Japan Epoxy Resin Kk Epoxy resin composition for sealing semiconductor
JP4096806B2 (en) * 2003-05-13 2008-06-04 ジャパンエポキシレジン株式会社 Phenol resin, epoxy resin curing agent, and epoxy resin composition
JP2007031698A (en) * 2005-06-21 2007-02-08 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
CN102656204B (en) * 2009-12-14 2014-08-27 新日铁住金化学株式会社 Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product
KR101480178B1 (en) * 2011-12-20 2015-01-09 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with the same
CN103819870B (en) * 2012-11-16 2016-06-15 株式会社田村制作所 Resin molding, metal forming, copper-clad plate and the multilayer laminated boards substrate on compositions of thermosetting resin, B rank
KR101518502B1 (en) * 2012-12-26 2015-05-11 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated with the same
JP6315170B2 (en) * 2013-09-30 2018-04-25 ナガセケムテックス株式会社 Epoxy resin composition for semiconductor encapsulation, semiconductor packaging structure, and method for producing the same
JP6555042B2 (en) * 2015-09-17 2019-08-07 味の素株式会社 Granular resin composition
CN106398112B (en) * 2016-05-31 2019-09-13 江苏华海诚科新材料股份有限公司 A kind of composition epoxy resin suitable for ESOP encapsulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129272A1 (en) * 2010-04-13 2011-10-20 積水化学工業株式会社 Attachment material for semiconductor chip bonding, attachment film for semiconductor chip bonding, semiconductor device manufacturing method, and semiconductor device
JP2012153885A (en) * 2011-01-07 2012-08-16 Ajinomoto Co Inc Resin composition for peeling film
JP2013006981A (en) * 2011-06-24 2013-01-10 Mitsubishi Chemicals Corp Interlayer filling material composition and coating liquid thereof for three-dimensional multi-layer semiconductor device
JP2014521754A (en) * 2011-07-29 2014-08-28 ナミックス株式会社 Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and semiconductor manufacturing method
JP2015010146A (en) * 2013-06-28 2015-01-19 太陽インキ製造株式会社 Thermosetting resin composition, and printed wiring board
JP2016179564A (en) * 2015-03-23 2016-10-13 味の素株式会社 Resin sheet
WO2017057561A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Resin composition and multilayer substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021050A (en) * 2019-07-30 2021-02-18 味の素株式会社 Resin composition
JP7255411B2 (en) 2019-07-30 2023-04-11 味の素株式会社 resin composition
WO2022153762A1 (en) * 2021-01-14 2022-07-21 信越化学工業株式会社 Composition including organosilicon compound, rubber compounding agent, and rubber composition
JP7415961B2 (en) 2021-01-14 2024-01-17 信越化学工業株式会社 Rubber composition containing organosilicon compound

Also Published As

Publication number Publication date
JP2023030182A (en) 2023-03-07
TW201842052A (en) 2018-12-01
JP7212830B2 (en) 2023-01-26
CN110461938A (en) 2019-11-15
JPWO2018181813A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP2023030182A (en) Epoxy resin composition and electronic component device
JP7060011B2 (en) Epoxy resin composition for encapsulation and electronic component equipment
JP2023076548A (en) Epoxy resin composition and electronic component device
JP4792768B2 (en) Epoxy resin composition for sealing and electronic component device
JP6171274B2 (en) Epoxy resin molding material for sealing and electronic component device
JP4892984B2 (en) Curable resin composition and electronic component device
JP2004156035A (en) Curing accelerator for curable resin, curable resin composition and electronic component device
JP6372967B2 (en) Epoxy resin molding material for sealing and electronic component device
JPWO2019054217A1 (en) Epoxy resin composition and electronic component equipment
JP2014129485A (en) Epoxy resin composition and electronic component device
JP2018104603A (en) Curable resin composition and electronic component device
US20220315793A1 (en) Encapsulating material for compression molding and electronic part device
JP6583312B2 (en) Epoxy resin molding material for sealing and electronic component device
JP7343978B2 (en) Epoxy resin composition and electronic component equipment
WO2020129248A1 (en) Sealing resin composition and electronic component device
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2007031698A (en) Epoxy resin composition and electronic part device
WO2020129249A1 (en) Resin composition for sealing and electronic component device
JPWO2020067016A1 (en) Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP2012107209A (en) Epoxy resin composition for sealing and electronic part device
JP3659150B2 (en) Epoxy resin molding material for sealing and electronic component device
WO2022149594A1 (en) Method for producing thermosetting resin composition, thermosetting resin composition, and electronic component device
JP2017106034A (en) Epoxy resin molding material for sealing and electronic component device
JP2008115364A (en) Epoxy resin composition and electronic component device
JP2022107373A (en) Method for producing thermosetting resin composition, thermosetting resin composition, and electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775365

Country of ref document: EP

Kind code of ref document: A1