WO2020129249A1 - Resin composition for sealing and electronic component device - Google Patents

Resin composition for sealing and electronic component device Download PDF

Info

Publication number
WO2020129249A1
WO2020129249A1 PCT/JP2018/047311 JP2018047311W WO2020129249A1 WO 2020129249 A1 WO2020129249 A1 WO 2020129249A1 JP 2018047311 W JP2018047311 W JP 2018047311W WO 2020129249 A1 WO2020129249 A1 WO 2020129249A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin
mass
resin composition
curing agent
Prior art date
Application number
PCT/JP2018/047311
Other languages
French (fr)
Japanese (ja)
Inventor
高士 山本
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020561127A priority Critical patent/JPWO2020129249A1/en
Priority to PCT/JP2018/047311 priority patent/WO2020129249A1/en
Publication of WO2020129249A1 publication Critical patent/WO2020129249A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a sealing resin composition and an electronic component device.
  • the mounting density is increasing.
  • the mainstream of electronic component devices is changing from the conventional pin insertion type package to the surface mount type package.
  • the surface mount type package is different in mounting method from the conventional pin insertion type package. That is, when the pins are attached to the wiring board, the conventional pin insertion type package does not directly expose the package to high temperature because the pins are inserted into the wiring board and then soldering is performed from the back surface of the wiring board.
  • the surface mount type package since the entire electronic component device is processed by the solder bath, the reflow device, etc., the package is directly exposed to the soldering temperature (reflow temperature).
  • the package absorbs moisture, moisture due to moisture absorption expands rapidly during soldering, and the generated vapor pressure acts as peeling stress, causing peeling between the insert such as the element and lead frame and the sealing material. If they are generated, they may cause package cracks, poor electrical characteristics, and the like. Therefore, development of a sealing material having excellent solder heat resistance (reflow resistance) is desired.
  • epoxy resin which is the main material of the encapsulating material.
  • a method of using a biphenyl type epoxy resin or a naphthalene type epoxy resin as an epoxy resin has been studied (see, for example, JP-A-64-65116 and JP-A-2007-231159).
  • a mold underfill material (hereinafter also referred to as “MUF material”) used in a double side mold (Double Side Mold, hereinafter also referred to as “DSM”) method in which chips are mounted on both the upper surface and the lower surface of a substrate for high density mounting. Development is desired.
  • the encapsulating material used for the surface mount type package is required to have reflow resistance.
  • the reflow resistance is improved by reducing the water absorption rate, the elastic modulus at high temperature (for example, 260° C.), and the like.
  • it is also required to raise the glass transition temperature after curing the sealing material (for example, to 140° C. or higher).
  • the reflow resistance tends to be low, and it is difficult to achieve both the glass transition temperature and the reflow resistance.
  • the sealing material used for the surface mount type package is required to have fluidity.
  • the MUF material used in the DSM system package is required to have high fluidity so that a narrow gap can be filled.
  • the glass transition temperature tends to be low, and it is difficult to achieve both high fluidity and high glass transition temperature.
  • the present disclosure has been made in view of such circumstances, a cured product having both a low elastic modulus at high temperature and a high glass transition temperature is obtained, and the resin composition for sealing having high fluidity and An object is to provide an electronic component device using this.
  • Means for solving the above problems include the following embodiments.
  • a first epoxy resin having an epoxy equivalent of 300 g/eq or more and having a plurality of naphthalene skeletons in the molecule;
  • a second epoxy resin having a viscosity at 150° C. of 0.02 Pa ⁇ sec or less and a number average molecular weight of 1000 or less;
  • a curing agent A resin composition for encapsulation containing: ⁇ 2>
  • the encapsulating resin composition according to ⁇ 1> or ⁇ 2> which includes, as the curing agent, a curing agent having a viscosity of 0.5 Pa ⁇ sec or less at 150°C.
  • curing agent is a resin composition for sealing as described in ⁇ 4> containing at least 1 sort(s) selected from the group which consists of a phenol resin and a polyhydric phenol compound.
  • ⁇ 6> The encapsulating resin composition according to ⁇ 5>, wherein the phenolic resin includes at least one selected from the group consisting of novolac type phenolic resin and triphenylmethane type phenolic resin.
  • ⁇ 7> The encapsulating resin composition according to any one of ⁇ 4> to ⁇ 6>, further including, as the curing agent, a second curing agent having a functional group equivalent of 120 g/eq or more.
  • curing agent is a resin composition for closure as described in ⁇ 7> containing at least 1 sort(s) selected from the group which consists of a phenol resin and a polyhydric phenol compound.
  • ⁇ 9> The encapsulating resin composition according to ⁇ 8>, wherein the phenolic resin contains an aralkyl type phenolic resin.
  • ⁇ 10> The encapsulating resin composition according to any one of ⁇ 7> to ⁇ 9>, in which the second curing agent contains a compound having a biphenyl skeleton in the molecule.
  • ⁇ 11> The encapsulating resin composition according to any one of ⁇ 1> to ⁇ 10>, wherein the first epoxy resin further has a benzene skeleton in the molecule.
  • ⁇ 12> The encapsulating resin composition according to ⁇ 11>, wherein the first epoxy resin further has a methylene group directly bonded to the naphthalene skeleton and the benzene skeleton.
  • ⁇ 13> The encapsulating resin composition according to any one of ⁇ 1> to ⁇ 12>, in which the first epoxy resin has a glycidyloxy group directly bonded to the naphthalene skeleton.
  • ⁇ 14> The encapsulating resin composition according to any one of ⁇ 1> to ⁇ 13>, wherein the content of the second epoxy resin is 50 parts by mass to 150 parts by mass with respect to 100 parts by mass of the first epoxy resin. Stuff.
  • ⁇ 15> The encapsulating resin composition according to any one of ⁇ 1> to ⁇ 14>, further including a third epoxy resin that is an epoxy resin other than the first epoxy resin and the second epoxy resin.
  • ⁇ 16> The encapsulating resin composition according to ⁇ 15>, wherein the epoxy equivalent of the third epoxy resin is 200 g/eq or more.
  • ⁇ 17> The encapsulating resin composition according to ⁇ 15> or ⁇ 16>, in which the third epoxy resin contains a biphenyl skeleton.
  • ⁇ 18> The encapsulating resin composition according to any one of ⁇ 15> to ⁇ 17>, in which the third epoxy resin is an aralkyl type epoxy resin.
  • An electronic component device comprising an element and a cured product of the encapsulating resin composition according to any one of ⁇ 1> to ⁇ 18>, which encapsulates the element.
  • a cured product having both a low elastic modulus at a high temperature and a high glass transition temperature is obtained, and the fluidity of the encapsulating resin composition and an electronic component device using the same are high. Can be provided.
  • each component may include a plurality of types of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content of each component means the total content of the plurality of substances present in the composition, unless otherwise specified.
  • the encapsulating resin composition according to the present disclosure (hereinafter, also simply referred to as “composition”) has an epoxy equivalent of 300 g/eq or more, a first epoxy resin having a plurality of naphthalene skeletons in the molecule, and 150 It contains a second epoxy resin having a viscosity of 0.02 Pa ⁇ sec or less at 0° C. and a number average molecular weight of 1000 or less, and a curing agent.
  • the above composition can provide a cured product that has both a low elastic modulus at high temperature (hereinafter also referred to as “high temperature low elastic modulus”) and a high glass transition temperature (hereinafter also referred to as “high Tg”), and , High liquidity.
  • high temperature low elastic modulus a low elastic modulus at high temperature
  • high Tg a high glass transition temperature
  • the encapsulating resin composition used for encapsulating the surface-mounting type package is required to have a high temperature and low elastic modulus of the cured product in order to improve the reflow resistance.
  • a high Tg of the cured product is required.
  • the encapsulating resin composition is also required to have high fluidity so that the composition itself can be injected into a narrow gap.
  • the encapsulating resin composition used for DSM is required to have the high temperature low elastic modulus, high Tg, and high fluidity at high levels.
  • the glass transition temperature of the cured product is likely to be high, but the elastic modulus at high temperature is also likely to be high. Not only lowers the glass transition temperature, but also tends to lower the glass transition temperature. It is also difficult to achieve both high Tg and high fluidity. Specifically, when a low-viscosity component is included in order to improve fluidity, the glass transition temperature of the cured product tends to be low.
  • the composition of the present disclosure includes a first epoxy resin having a plurality of naphthalene skeletons and an epoxy equivalent in the above range, and a second epoxy resin having a viscosity at 150° C. and a number average molecular weight in the above range. And a resin. Therefore, high fluidity can be obtained while achieving both high temperature low elastic modulus and high Tg of the cured product. Although the reason for this is not clear, a high Tg of the cured product can be obtained even if the first epoxy resin has a plurality of naphthalene skeletons and thus the epoxy equivalent is large, and the epoxy equivalent is within the above range. It is speculated that a high temperature low elastic modulus is obtained.
  • the glass in the case of combining with the second epoxy resin Small decrease in transition temperature. Therefore, it is presumed that high fluidity can be obtained while achieving both high temperature low elastic modulus and high Tg of the cured product.
  • the composition of the present disclosure contains the first epoxy resin and the second epoxy resin, a cured product having a low water absorption rate can be obtained.
  • the composition of the present disclosure contains at least a first epoxy resin and a second epoxy resin as an epoxy resin, and may further contain another epoxy resin as necessary.
  • the total content of the first epoxy resin and the second epoxy resin is preferably 50% by mass or more, and more preferably 65% by mass or more, based on all the epoxy resins contained in the composition. ..
  • the total content of the first epoxy resin and the second epoxy resin may be 90% by mass or more, 95% by mass or more, and 98% by mass or more.
  • the first epoxy resin is not particularly limited as long as it has an epoxy equivalent of 300 g/eq or more and has a plurality of naphthalene skeletons in the molecule.
  • the first epoxy resin may be used alone or in combination of two or more.
  • the epoxy equivalent of the first epoxy resin is preferably 300 g/eq to 500 g/eq, and preferably 300 g/eq to 400 g/eq, from the viewpoint of achieving both high temperature low elastic modulus and high Tg of the cured product. Is more preferable and 300 g/eq to 350 g/eq is even more preferable.
  • the epoxy equivalent is measured by dissolving the weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and potentiometrically titrating with a perchloric acid acetic acid standard solution. An indicator may be used for this titration.
  • the number average molecular weight of the first epoxy resin is not particularly limited as long as the epoxy equivalent is in the above range, and may be in the range of 300 to 1500, preferably 300 to 1000 from the viewpoint of fluidity, It is more preferably 300 to 800.
  • the number average molecular weight is measured by gel permeation chromatography (GPC) by a usual method.
  • the softening point or melting point is not particularly limited. From the viewpoint of handleability during preparation of the encapsulating resin composition, the softening point or melting point is preferably 50° C. to 130° C., more preferably 60° C. to 110° C., and 70° C. It is more preferably 90°C.
  • the melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234:1986.
  • the viscosity of the first epoxy resin at 150° C. is preferably 0.05 Pa ⁇ sec to 0.5 Pa ⁇ sec, and 0.1 Pa ⁇ sec to, from the viewpoint of achieving both fluidity and high Tg of the cured product. 0.4 Pa ⁇ sec is more preferable, and 0.2 Pa ⁇ sec to 0.3 Pa ⁇ sec is further preferable.
  • the viscosity at 150° C. is measured with a rheometer MCR301 (Anton Paar). Specifically, a temperature decreasing process of decreasing the temperature of the measurement target from 150° C. to 30° C. and a temperature increasing process of increasing the temperature of the measurement target from 30° C. to 150° C. are performed in this order, and in the temperature increasing process, The viscosity (Pa ⁇ sec) at 150° C. is measured.
  • the measurement conditions are as follows: frequency: 1 Hz, plate: ⁇ 12 mm, gap: 0.2 mm, temperature decrease rate during temperature decrease process: 2° C./min, temperature increase rate during temperature increase process: 2° C./min
  • the first epoxy resin may further have a connecting group between the plurality of naphthalene skeletons.
  • the linking group include a hydrocarbon group such as an alkylene group, a carbonyl group, and an oxygen atom.
  • the first epoxy resin preferably has an alkylene group, and more preferably has a methylene group.
  • the first epoxy resin may have a benzene skeleton in the molecule in addition to the plurality of naphthalene skeletons.
  • the naphthalene skeleton and the benzene skeleton of the first epoxy resin may be bonded via a linking group.
  • the linking group that connects the naphthalene skeleton and the benzene skeleton include a hydrocarbon group such as an alkylene group, a carbonyl group, an oxygen atom, and the like. Among them, an alkylene group is preferable, and a methylene group is more preferable. That is, the first epoxy resin preferably has in its molecule a methylene group that is directly bonded to the naphthalene skeleton and the benzene skeleton.
  • the first epoxy resin has at least two epoxy groups in one molecule.
  • the number of epoxy groups that the first epoxy resin has in one molecule is not particularly limited as long as the epoxy equivalent in the first epoxy resin is in the above range, and 2 to 5 can be mentioned, and 2 to 4 can be mentioned. It is preferably 2-3.
  • the epoxy group is preferably bound to the naphthalene skeleton.
  • the epoxy group is preferably bonded to at least one selected from the group consisting of a naphthalene skeleton and a benzene skeleton, and among them, bonded to the naphthalene skeleton.
  • the two or more epoxy groups are bonded to the naphthalene skeleton, they may be bonded to one naphthalene skeleton or different naphthalene skeletons, and it is preferable that they are bonded to different naphthalene skeletons.
  • the epoxy group When the epoxy group is bonded to the naphthalene skeleton, the epoxy group may be bonded directly to the naphthalene skeleton, or bonded via a linking group (hydrocarbon group such as alkylene group, carbonyl group, oxygen atom, etc.). Good. Among these, it is preferable that the epoxy group is bonded to the naphthalene skeleton via a linking group.
  • the epoxy group is bonded to the naphthalene skeleton through a linking group
  • glycidyl group, glycidyloxy group, glycidyloxycarbonyl group, epoxycycloalkyl group (epoxycyclopentyl group, epoxycyclohexyl group, epoxycyclooctyl group, etc.) etc.
  • the form in which at least one selected is directly bonded to the naphthalene skeleton is mentioned, and among them, the form in which the glycidyloxy group is directly bonded to the naphthalene skeleton is preferable.
  • the first epoxy resin may further have other substituents (alkyl group, alkoxy group, aryl group, aralkyl group, etc.).
  • Examples of the first epoxy resin include epoxy resins represented by the following general formula (I).
  • R 1 to R 5 each independently represent a monovalent organic group having 1 to 18 carbon atoms
  • a1 represents an integer of 0 to 4
  • a2 represents an integer of 0 to 3.
  • A3 is an integer of 0 to 4
  • a4 is an integer of 0 to 4
  • a5 is an integer of 0 to 2
  • a1+a2 is 6 or less
  • a4+a5 is 5 or less
  • m1 is 1 Indicates 4
  • Examples of the monovalent organic group having 1 to 18 carbon atoms represented by R 1 to R 5 in the general formula (I) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
  • a1 to a5 are preferably integers of 0 to 1, and more preferably 0.
  • M1 in the general formula (I) is preferably 1 to 2, and more preferably 1.
  • the content ratio of the first epoxy resin to the total epoxy resin contained in the composition is preferably 20% by mass to 90% by mass, more preferably 30% by mass to 80% by mass, and further preferably 35% by mass to 70% by mass. ..
  • the content of the first epoxy resin with respect to the total of the resin components contained in the composition is preferably 15% by mass to 70% by mass, more preferably 25% by mass to 60% by mass, and 30% by mass to 50% by mass. Is more preferable.
  • the content of the first epoxy resin in the entire composition is preferably 1.5% by mass to 10% by mass, more preferably 2.5% by mass to 8% by mass, and further preferably 3% by mass to 7% by mass. preferable.
  • the second epoxy resin is not particularly limited as long as it is an epoxy resin other than the first epoxy resin, has a viscosity at 150° C. of 0.02 Pa ⁇ sec or less and a number average molecular weight of 1000 or less. It is not something that will be done.
  • the 2nd epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the viscosity of the second epoxy resin at 150° C. is 0.02 Pa ⁇ sec or less, and from the viewpoint of fluidity and high Tg, it is preferably 0.0001 Pa ⁇ sec to 0.02 Pa ⁇ sec, and 0.001 Pa ⁇ sec. -Sec to 0.02 Pa-sec is more preferable, and 0.005 Pa-sec to 0.02 Pa-sec is further preferable.
  • the number average molecular weight of the second epoxy resin is 1,000 or less, and from the viewpoint of fluidity and high Tg, it is preferably 150 to 850, more preferably 200 to 700, and more preferably 300 to 600. Is more preferable.
  • the epoxy equivalent of the second epoxy resin is not particularly limited as long as the viscosity at 150° C. and the number average molecular weight are within the above ranges, and examples thereof include 150 g/eq to 300 g/eq, and 165 g/from the viewpoint of curability. eq to 275 g/eq is preferable, and 180 g/eq or more and less than 250 g/eq is more preferable.
  • the softening point or melting point is not particularly limited. From the viewpoint of handleability when preparing the encapsulating resin composition, the softening point or melting point is preferably 50° C. to 130° C., more preferably 75° C. to 125° C., and 100° C. More preferably, it is 120°C.
  • the second epoxy resin are selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A and bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A and bisphenol F
  • naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • a novolak type epoxy resin obtained by epoxidizing a novolak resin obtained by condensing or cocondensing at least one phenolic compound with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, or propionaldehyde under an acidic catalyst Phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, etc.
  • Triphenylmethane type phenol obtained by condensing or co-condensing the above phenolic compound with an aromatic aldehyde compound such as benzaldehyde and salicylaldehyde under an acidic catalyst.
  • Triphenylmethane type epoxy resin obtained by epoxidizing resin
  • Copolymer type epoxy obtained by epoxidizing novolak resin obtained by cocondensing the above-mentioned phenol compound and naphthol compound with an aldehyde compound under an acidic catalyst.
  • Diphenylmethane type epoxy resin which is diglycidyl ether of bisphenol A, bisphenol F, etc.
  • Biphenyl type epoxy resin which is diglycidyl ether of alkyl-substituted or unsubstituted biphenol
  • Stilbene type epoxy which is diglycidyl ether of stilbene phenol compound
  • Sulfur atom-containing epoxy resin which is a diglycidyl ether such as bisphenol S
  • Epoxy resin which is a glycidyl ether of alcohols such as butanediol, polyethylene glycol, polypropylene glycol
  • Phthalic acid isophthalic acid, tetrahydrophthalic acid, etc.
  • Glycidyl ester type epoxy resin which is a glycidyl ester of a carboxylic acid compound; glycidyl amine type epoxy resin, in which active hydrogen bonded to the nitrogen atom of aniline, diaminodiphenylmethane, isocyanuric acid, etc.
  • dicyclopentadiene Dicyclopentadiene-modified epoxy resin obtained by epoxidizing a co-condensation resin of a phenol compound; vinyl cyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxy obtained by epoxidizing an olefin bond in the molecule Cyclohexanecarboxylate, 2-(3,4-epoxy)cyclohex Alicyclic epoxy resins such as xyl-5,5-spiro(3,4-epoxy)cyclohexane-m-dioxane; glycidyl ethers of para-xylylene-modified phenolic resins, para-xylylene-modified epoxy resins, glycidyl ethers of meta-xylylene-modified phenolic resins Metaxylylene-modified epoxy resin; terpene-modified epoxy resin
  • the second epoxy resin is a biphenyl-type epoxy resin, a stilbene-type epoxy resin, a diphenylmethane-type epoxy resin, a sulfur atom-containing epoxy resin, a novolac-type epoxy resin, a dicyclopentadiene-modified, from the viewpoint of a balance between reflow resistance and fluidity.
  • Epoxy resin, triphenylmethane type epoxy resin, copolymer type epoxy resin, and aralkyl type epoxy resin are preferable, and from the viewpoint of fluidity, biphenyl type epoxy resin, stilbene type epoxy resin, diphenylmethane type epoxy resin, and sulfur atom-containing Type epoxy resin is more preferable, biphenyl type epoxy resin, diphenylmethane type epoxy resin, and sulfur atom-containing type epoxy resin are further preferable, and among the biphenyl type epoxy resin and diphenylmethane type epoxy resin, bisphenol F type epoxy resin having a bisphenol F skeleton, Among the sulfur atom-containing epoxy resins, a bisphenol S epoxy resin having a bisphenol S skeleton is particularly preferable, and a biphenyl epoxy resin is extremely preferable.
  • the second epoxy resin is preferably an epoxy resin that does not have a plurality of naphthalene skeletons and an epoxy resin that has a plurality of naphthalene skeletons and does not have an ether bond connecting between naphthalene skeletons.
  • An epoxy resin having no or one naphthalene skeleton is more preferable, and an epoxy resin having no naphthalene skeleton is further preferable.
  • the biphenyl type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton.
  • an epoxy resin represented by the following general formula (II) is preferable.
  • 3,8',5' and 5'positions are methyl groups when the positions where oxygen atoms are substituted in R 8 are 4 and 4'positions.
  • YX-4000H (Mitsubishi Chemical Corporation, trade name) other R 8 is a hydrogen atom, all the R 8 are hydrogen atoms 4,4'-bis (2,3-epoxypropoxy) biphenyl, When all R 8 s are hydrogen atoms, and when the positions where oxygen atoms are substituted in R 8 s are 4 and 4'positions, the 3,3',5,5' positions are methyl groups and the other R When 8 is a hydrogen atom, YL-6121H (Mitsubishi Chemical Corporation, trade name), which is a mixed product, is available as a commercial product.
  • YL-6121H Mitsubishi Chemical Corporation, trade name
  • R 8 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an aromatic group having 4 to 18 carbon atoms, and all of them may be the same or different.
  • n is an average value and represents a number of 0 to 2.
  • R 8 is preferably each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group.
  • n is preferably 0 or 1, and more preferably 0.
  • the stilbene type epoxy resin is not particularly limited as long as it is an epoxy resin having a stilbene skeleton.
  • an epoxy resin represented by the following general formula (III) is preferable.
  • 3,3′,5,5′ positions are methyl groups when the positions where oxygen atoms are substituted in R 9 are 4 and 4′ positions.
  • R 9 is a hydrogen atom other than the above, and all of R 10 are hydrogen atoms, and three of the 3, 3′, 5, 5′ positions of R 9 are methyl groups, ESLV-210 (Sumitomo Chemical Co., Ltd., trade name), etc., which is a mixture of one of which is a t-butyl group, the other R 9 is a hydrogen atom, and all R 10 are hydrogen atoms, It is available as a commercial product.
  • R 9 and R 10 represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all may be the same or different.
  • n is an average value and represents a number of 0 to 2.
  • R 9 and R 10 are each independently a hydrogen atom or a carbon number of 1 to 5 Is preferably a monovalent organic group, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n is preferably 0 or 1, and more preferably 0.
  • the diphenylmethane type epoxy resin is not particularly limited as long as it is an epoxy resin having a diphenylmethane skeleton, and among them, an epoxy resin represented by the following general formula (IV) is preferable, and a bisphenol F type epoxy which is an epoxy resin having a bisphenol F skeleton. Resins are more preferred.
  • R 11 are hydrogen atoms
  • R 12 is replaced with oxygen atoms at positions 4 and 4', 3,3
  • YSLV-80XY bisphenol F type epoxy resin, Nippon Steel Chemical & Material Co., Ltd., trade name
  • R 11 and R 12 represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • n is an average value and represents a number of 0 to 2.
  • R 11 and R 12 are each independently preferably a hydrogen atom or a monovalent organic group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group. Further, in the formula (IV), n is preferably 0 or 1, and more preferably 0.
  • the sulfur atom-containing epoxy resin is not particularly limited as long as it is a sulfur atom-containing epoxy resin, and among them, an epoxy resin represented by the following general formula (V) is preferable, and a bisphenol S is an epoxy resin having a bisphenol S skeleton. S-type epoxy resin is more preferable.
  • the epoxy resins represented by the following general formula (V) when the position where the oxygen atom is substituted in R 13 is 4 and 4′ positions, the 3,3′ positions are t-butyl groups, YSLV-120TE (bisphenol S-type epoxy resin, Nippon Steel Chemical & Materials Co., Ltd., trade name) in which the 6,6′ position is a methyl group and the other R 13 is a hydrogen atom is commercially available. is there.
  • R 13 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • n is an average value and represents a number of 0 to 2.
  • R 13 's are preferably each independently a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n is preferably 0 or 1, and more preferably 0.
  • the content of the second epoxy resin with respect to the total epoxy resin contained in the composition is preferably 10% by mass to 80% by mass, more preferably 15% by mass to 70% by mass, and further preferably 15% by mass to 65% by mass. , 20 mass% to 55 mass% are particularly preferable.
  • the content of the second epoxy resin with respect to 100 parts by mass of the first epoxy resin is preferably 15 parts by mass to 150 parts by mass, more preferably 35 parts by mass to 150 parts by mass, further preferably 50 parts by mass to 150 parts by mass. , 60 parts by mass to 140 parts by mass, particularly preferably 75 parts by mass to 125 parts by mass.
  • the content of the second epoxy resin with respect to the total of the resin components contained in the composition is preferably 10% by mass to 70% by mass, more preferably 15% by mass to 70% by mass, and 25% by mass to 60% by mass. Is more preferable, and 30% by mass to 50% by mass is particularly preferable.
  • the content of the second epoxy resin in the entire composition is preferably 1.0% by mass to 10% by mass, more preferably 1.5% by mass to 10% by mass, and 2.5% by mass to 8% by mass. Is more preferable, and 3% by mass to 7% by mass is particularly preferable.
  • the composition may optionally contain an epoxy resin other than the first epoxy resin and the second epoxy resin.
  • the other epoxy resin is not particularly limited as long as it is an epoxy resin other than the first epoxy resin and the second epoxy resin, a novolac type epoxy resin, a triphenylmethane type epoxy resin, a copolymerization type epoxy resin, Diphenylmethane type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, sulfur atom-containing epoxy resin, epoxy resin which is a glycidyl ether of alcohols, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, dicyclopentadiene modified epoxy resin , Alicyclic epoxy resin, paraxylylene modified epoxy resin, metaxylylene modified epoxy resin, terpene modified epoxy resin, dicyclopentadiene modified epoxy resin, cyclopentadiene modified epoxy resin, polycyclic aromatic ring modified epoxy resin, naphthalene type epoxy resin, halogen
  • an aralkyl type epoxy resin such as a biphenylene aralkyl type epoxy resin or a xylylene aralkyl type epoxy resin may be used as the third epoxy resin among other epoxy resins.
  • the third epoxy resin is preferably an aralkyl type epoxy resin, and among them, a biphenylene aralkyl type epoxy resin and a xylylene aralkyl type epoxy resin are more preferable.
  • the third epoxy resin preferably does not have a naphthalene skeleton.
  • the third epoxy resin preferably has a skeleton containing an aromatic ring other than the naphthalene ring, more preferably has a biphenyl skeleton, and is more preferably a biphenylene aralkyl type epoxy resin having a biphenyl skeleton. ..
  • the third epoxy resin which is an aralkyl type epoxy resin having a biphenyl skeleton include an epoxy resin represented by the following general formula (VI).
  • the xylylene aralkyl type epoxy resin include epoxy resins having a structure in which the biphenylene skeleton in the following general formula (VI) is replaced with a xylylene skeleton.
  • R 14 to R 17 each independently represent a monovalent organic group having 1 to 18 carbon atoms
  • a 6 to a 8 each independently represent an integer of 0 to 4
  • a9 represents an integer of 0 to 3
  • m2 represents 1 to 3.
  • Examples of the monovalent organic group having 1 to 18 carbon atoms represented by R 14 to R 17 in the general formula (VI) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
  • a6 to a9 are preferably integers of 0 to 1, and more preferably 0.
  • M2 in the general formula (VI) is preferably 1 to 2, and more preferably 1.
  • the viscosity of the third epoxy resin at 150° C. may be higher than 0.02 Pa ⁇ sec, and may be in the range of 0.02 Pa ⁇ sec to 0.1 Pa ⁇ sec. From the viewpoint of fluidity, 0.02 Pa ⁇ sec. It is preferably from sec to 0.08 Pa ⁇ sec, more preferably from 0.02 Pa ⁇ sec to 0.06 Pa ⁇ sec.
  • the number average molecular weight of the third epoxy resin is, for example, in the range of 200 to 1200. From the viewpoint of fluidity, it is preferably 250 to 700, and more preferably 300 to 600.
  • the epoxy equivalent in the third epoxy resin is in the range of 180 g/eq to 320 g/eq, preferably 200 g/eq to 300 g/eq, and more preferably 230 g/eq to 280 g/eq from the viewpoint of curability.
  • its softening point or melting point is not particularly limited and may be, for example, in the range of 40° C. to 130° C., from the viewpoint of handleability during preparation of the encapsulating resin composition. 50° C. to 130° C. is preferable, and 50° C. to 100° C. is more preferable.
  • the content of the third epoxy resin with respect to the total epoxy resin contained in the composition is in the range of 2% by mass to 60% by mass, and from the viewpoint of lowering the high temperature elastic modulus while maintaining the glass transition temperature and the fluidity. 10% by mass to 50% by mass is preferable, and 20% by mass to 40% by mass is more preferable.
  • the content of the third epoxy resin with respect to the total of the resin components contained in the composition is in the range of 5% by mass to 40% by mass, and the high temperature elastic modulus is low while maintaining the glass transition temperature and the fluidity. From this viewpoint, 10% by mass to 30% by mass is preferable, and 15% by mass to 25% by mass is more preferable.
  • the content of the third epoxy resin in the entire composition is in the range of 0.5% by mass to 7% by mass, preferably 1% by mass to 5% by mass, and 1.5% by mass to 4% by mass. Is more preferable.
  • the composition comprises at least one hardener.
  • the curing agent may be one generally used in encapsulating resin compositions containing an epoxy resin and is not particularly limited.
  • the curing agent include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent, and a blocked isocyanate curing agent.
  • the curing agent is preferably a phenol curing agent, an amine curing agent, and an acid anhydride curing agent, and more preferably a phenol curing agent.
  • the phenol curing agent examples include a phenol resin having two or more phenolic hydroxyl groups in one molecule and a polyhydric phenol compound.
  • polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, etc.
  • a phenol compound and at least one phenolic compound selected from the group consisting of naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene, and an aldehyde compound such as formaldehyde, acetaldehyde, and propionaldehyde under an acidic catalyst a novolak type phenol resin obtained by condensation or co-condensation; an aralkyl type phenol resin synthesized from the above phenolic compound and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc.
  • a triphenylmethane type phenolic resin a phenolic resin obtained by copolymerizing two or more of these.
  • These phenol resins and polyhydric phenol compounds may be used alone or in combination of two or more.
  • the phenol curing agent is preferably a novolac type phenol resin, an aralkyl type phenol resin, and a triphenylmethane type phenol resin.
  • the viscosity of the curing agent at 150° C. is preferably 0.02 Pa ⁇ sec to 0.5 Pa ⁇ sec, and 0.05 Pa ⁇ sec to 0.4 Pa from the viewpoint of achieving both fluidity and high Tg of the cured product. -Sec is more preferable, and 0.1 Pa-sec to 0.3 Pa-sec is further preferable.
  • the curing agent When the curing agent is solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and reflow resistance, it is preferably 40° C. to 180° C., and from the viewpoint of handleability during production of the encapsulating resin composition, the softening point or melting point is 50° C. to 130° C. Is more preferable, and 55° C. to 100° C. is further preferable.
  • the melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
  • the number average molecular weight of the curing agent is not particularly limited and may be in the range of 100 to 5000. From the viewpoint of fluidity, it is preferably 100 to 2000, more preferably 100 to 1500.
  • the functional group equivalent of the curing agent is not particularly limited, and is preferably 70 g/eq to 1000 g/eq, more preferably 80 g/eq to 500 g/eq, from the viewpoint of a balance between high temperature low elastic modulus, high Tg, and fluidity. 85 g/eq to 300 g/eq is more preferable, and 90 g/eq to 200 g/eq is particularly preferable.
  • the functional group equivalent refers to a value measured according to JIS K0070:1992.
  • first curing agent a curing agent having a functional group equivalent of less than 120 g/eq (hereinafter, also referred to as “first curing agent”) is used from the viewpoint of a balance between high temperature low elastic modulus, high Tg, and fluidity.
  • first curing agent examples include a phenol curing agent (that is, a phenol resin and a polyphenol compound), and among them, a phenol resin is preferable, and a novolac type phenol resin, an aralkyl type phenol resin, and a triphenylmethane type phenol resin.
  • novolac type phenolic resins and triphenylmethane type phenolic resins are more preferred.
  • novolac type phenolic resins examples include phenolic resins represented by the following general formula (VII).
  • R 31 to R 33 each independently represent a monovalent organic group having 1 to 18 carbon atoms
  • b11 represents an integer of 0 to 4
  • b12 represents an integer of 0 to 3.
  • B13 is an integer of 0 to 4
  • n4 is 0 to 3.
  • Examples of the monovalent organic group having 1 to 18 carbon atoms represented by R 31 to R 33 in the general formula (VII) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
  • B11 to b13 in the general formula (VII) are preferably integers of 0 to 1, and more preferably 0.
  • N4 in the general formula (VII) is preferably 0 to 2, and more preferably 0 to 1.
  • triphenylmethane type phenol resin examples include a phenol resin represented by the following general formula (VIII).
  • R 26 to R 30 each independently represent a monovalent organic group having 1 to 18 carbon atoms
  • b 6 to b 7 each independently represent an integer of 0 to 4
  • b8 represents an integer of 0 to 3
  • b9 to b10 each independently represents an integer of 0 to 4
  • n3 represents 0 to 3.
  • Examples of the monovalent organic group having 1 to 18 carbon atoms represented by R 26 to R 30 in the general formula (VIII) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
  • b6 to b10 are preferably integers of 0 to 1, and more preferably 0.
  • N3 in the general formula (VIII) is preferably 1 to 2, and more preferably 1.
  • the composition contains a first curing agent
  • the composition has a functional group equivalent in addition to the first curing agent, from the viewpoint of further lowering the high temperature elastic modulus while maintaining the glass transition temperature and the fluidity as necessary.
  • the second curing agent include a phenol curing agent (that is, a phenol resin and a polyphenol compound), and among them, a phenol resin is preferable, and a novolac type phenol resin, an aralkyl type phenol, and a triphenylmethane type phenol resin are preferable.
  • the aralkyl-type phenol resin is more preferable, and the aralkyl-type phenol resin having a biphenyl skeleton is further preferable.
  • a preferable combination of the first curing agent and the second curing agent is a first curing agent which is a triphenylmethane type phenol resin.
  • a second curing agent which is an aralkyl-type phenol resin.
  • Examples of the aralkyl type phenol resin having a biphenyl skeleton include a phenol resin represented by the following general formula (IX).
  • R 21 to R 25 each independently represent a monovalent organic group having 1 to 18 carbon atoms
  • b 1 to b 3 each independently represent an integer of 0 to 4
  • b4 to b5 each independently represent an integer of 0 to 3
  • n1 represents 1 to 3
  • n2 represents 0 to 3.
  • the monovalent organic group having 1 to 18 carbon atoms represented by R 21 to R 25 in the general formula (IX) includes a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
  • b1 to b5 are preferably integers of 0 to 1, and more preferably 0.
  • N1 in the general formula (IX) is preferably 1 to 2, and more preferably 1.
  • N2 in the general formula (IX) is preferably 0 to 2, and more preferably 0-1.
  • the content of the entire curing agent is preferably 10 parts by mass to 50 parts by mass with respect to 100 parts by mass of all the epoxy resins (that is, the entire epoxy resin including the first epoxy resin and the second epoxy resin) contained in the composition, 15 to 40 parts by mass is more preferable, and 20 to 35 parts by mass is further preferable.
  • the content of the entire curing agent with respect to the total of the resin components contained in the composition is preferably 5.0% by mass to 35% by mass, more preferably 10% by mass to 30% by mass, and 15% by mass to 25% by mass. Is more preferable.
  • the content of the entire curing agent with respect to the entire composition is preferably 0.5% by mass to 5.0% by mass, more preferably 1.0% by mass to 3.0% by mass, and 1.5% by mass to 2% by mass. More preferably, it is 0.5% by mass.
  • the content of the second curing agent with respect to 100 parts by weight of the first curing agent is preferably 40 parts by mass to 100 parts by mass, and 50 parts by mass or more. 90 parts by mass is more preferable, and 55 parts by mass to 85 parts by mass is further preferable.
  • the mixing ratio of the epoxy resin and the curing agent is the ratio of the number of functional groups of the curing agent (phenolic hydroxyl group in the case of a phenol curing agent) to the number of epoxy groups of the epoxy resin from the viewpoint of suppressing the unreacted content of each.
  • (Functional group number of curing agent/Epoxy group number of epoxy resin) is preferably set within a range of 0.5 to 2.0, and set within a range of 0.6 to 1.3. Is more preferable, and it is still more preferable to set it in the range of 0.8 to 1.2.
  • the composition may further contain a curing accelerator if necessary.
  • the curing accelerator is not limited as long as it is a compound that accelerates the reaction between the epoxy resin contained in the composition and the curing agent.
  • 1,8-diaza-bicyclo(5,4,0)undecene-7,1,5-diaza-bicyclo(4,3,0)nonene, 5,6-dibutylamino-1,8 A cycloamidine compound such as diaza-bicyclo(5,4,0)undecene-7; maleic anhydride, a quinone compound (eg, 1,4-benzoquinone, 2,5-toluquinone, 1,4 -Naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and phenyl-1, 4-benzoquinone), diazophenylmethane, a compound having an intramolecular polarization formed by adding a compound having a ⁇ bond such as phenol resin; benzyl
  • imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and the like; derivatives thereof; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris( 4-Methylphenyl)phosphine, diphenylphosphine, phenylphosphine, and other phosphine compounds; intramolecularly formed by adding a compound having a ⁇ bond such as maleic anhydride, the above quinone compound, diazophenylmethane, or phenol resin to the above phosphine compound Phosphorus compounds having polarization; Tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, tetraphenylboron salts such as
  • the content of the curing accelerator with respect to the entire composition is not particularly limited as long as the curing promoting effect is achieved, and is 0.005% by mass to 2% by mass. Is preferable, and 0.01% by mass to 0.5% by mass is more preferable.
  • the composition may optionally further comprise an inorganic filler.
  • the inorganic filler can be used, for example, for the purpose of hygroscopicity, reduction of linear expansion coefficient, improvement of thermal conductivity, and improvement of strength.
  • the type of inorganic filler is not particularly limited. Specifically, spherical silica (for example, fused silica), crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, Inorganic materials such as zirconia, zircon, fosterite, steatite, spinel, mullite, titania, talc, clay and mica can be mentioned. You may use the inorganic filler which has a flame retardant effect.
  • Examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, complex metal hydroxides such as complex hydroxide of magnesium and zinc, zinc borate, and zinc molybdate.
  • Examples of the shape of the inorganic filler include non-powder, spherical beads, fibers, and the like.
  • inorganic fillers may be used alone or in combination of two or more.
  • spherical silica is preferable from the viewpoint of filling property and reduction of linear expansion coefficient
  • alumina is preferable from the viewpoint of high thermal conductivity.
  • the shape of the inorganic filler is preferably spherical from the viewpoints of filling properties and mold abrasion properties.
  • the content of the inorganic filler with respect to the entire composition is 60% by mass from the viewpoint of flame retardancy, moldability, hygroscopicity, linear expansion coefficient reduction, strength improvement and reflow resistance.
  • the above is preferable, 60 mass% to 95 mass% is more preferable from the viewpoint of flame retardancy, and 70 mass% to 90 mass% is further preferable.
  • the composition may further contain a coupling agent, if necessary, in order to enhance the adhesiveness between the resin component and the inorganic filler.
  • the coupling agent is not particularly limited as long as it is generally used in a sealing resin composition containing an epoxy resin, and at least a primary amino group, a secondary amino group, and a tertiary amino group.
  • Examples include silane compounds having one kind, various silane compounds such as epoxysilane, mercaptosilane, alkylsilane, ureidosilane, and vinylsilane, titanium compounds, aluminum chelates, and aluminum/zirconium compounds. From the viewpoint of reflow resistance, it is preferable to use the above silane compound as a coupling agent, and it is more preferable to use a silane compound having a secondary amino group in the molecule.
  • the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass, and 0.1 parts by mass to 2.5 parts by mass with respect to 100 parts by mass of the inorganic filler. More preferably, it is parts by mass.
  • the amount of the coupling agent is 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler, the adhesiveness with the frame tends to be further improved.
  • the amount of the coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
  • the composition may further contain a mold release agent, if necessary, from the viewpoint of obtaining good mold releasability from the mold during molding.
  • the release agent is not particularly limited, and conventionally known ones can be used. Specific examples of the release agent include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid ester, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. Can be mentioned.
  • the release agents may be used alone or in combination of two or more.
  • the amount of the releasing agent is preferably 0.01 parts by mass to 10 parts by mass, more preferably 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the resin component.
  • the amount of the release agent is 0.01 parts by mass or more with respect to 100 parts by mass of the resin component, the releasability tends to be sufficiently obtained.
  • it is 10 parts by mass or less, better adhesiveness tends to be obtained.
  • the composition may further contain a colorant, if desired.
  • a colorant include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, red lead and red iron oxide.
  • the content of the colorant can be appropriately selected according to the purpose and the like.
  • the colorants may be used alone or in combination of two or more.
  • the composition may optionally further comprise a stress relieving agent.
  • a stress relaxation agent By including the stress relaxation agent, the warp deformation of the package and the occurrence of package cracks can be further reduced.
  • the stress relaxation agent include known stress relaxation agents (flexible agents) generally used such as silicone oil and silicone rubber particles.
  • stress relaxation agents include thermoplastic elastomers such as silicone-based, styrene-based, olefin-based, urethane-based, polyester-based, polyether-based, polyamide-based and polybutadiene-based thermoplastic elastomers, NR (natural rubber), NBR (acrylonitrile- (Butadiene rubber), acrylic rubber, urethane rubber, rubber particles such as silicone powder, methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer Rubber particles having a core-shell structure such as The stress relaxation agent may be used alone or in combination of two or more kinds.
  • thermoplastic elastomers such as silicone-based, styrene-based, olefin-based, urethane-based, polyester-based, polyether-based, polyamide-based and polybutadiene-based thermoplastic
  • the composition may further contain other additives, if necessary.
  • Other additives include flame retardants, anion exchangers, adhesion promoters and the like. Further, various additives well known in the art may be added to the composition, if necessary.
  • the method for preparing the composition is not particularly limited.
  • a general method there can be mentioned a method in which predetermined amounts of components are sufficiently mixed with a mixer or the like, then melt-kneaded with a mixing roll, an extruder or the like, cooled, and pulverized. More specifically, for example, a method of uniformly agitating and mixing predetermined amounts of the above-mentioned components, kneading with a kneader, roll, extruder or the like preheated to 70° C. to 140° C., cooling, and pulverizing. Can be mentioned.
  • the composition is preferably solid at room temperature and atmospheric pressure (for example, 25° C. and atmospheric pressure).
  • the shape of the composition when it is a solid is not particularly limited, and examples thereof include powder, granules, and tablets. From the viewpoint of handleability, it is preferable that the size and weight of the curable resin composition when it is in the form of a tablet be such that it meets the molding conditions of the package.
  • the use of the composition is not particularly limited, and the composition can be used in various electronic component devices.
  • the composition of the present disclosure provides a cured product having a low elastic modulus at a high temperature and a high glass transition temperature, and has high fluidity. Therefore, the composition of the present disclosure is particularly suitable for use as a mold underfill material that fills a narrow gap of a DSM in which chips are mounted on both the top surface and the bottom surface of a substrate for high-density mounting.
  • An electronic component device includes an element and a cured product of the above sealing resin composition that seals the element.
  • elements semiconductor chips, transistors, diodes, active elements such as thyristors, active elements such as thyristors, capacitors, resistors
  • support members or mounting substrates such as lead frames, pre-wired tape carriers, wiring boards, glass, and silicon wafers.
  • Passive elements such as coils, etc. are mounted and necessary parts are sealed with the above-mentioned sealing resin composition.
  • the mounting substrate is not particularly limited, and specific examples include organic substrates, organic films, ceramic substrates, interposer substrates such as glass substrates, liquid crystal glass substrates, MCM (Multi Chip Module) substrates, and hybrid substrates. Examples include IC substrates.
  • a specific example of the electronic component device is, for example, a semiconductor device, and more specifically, an element such as a semiconductor chip is arranged on a lead frame (island, tab), and a terminal portion of the element such as a bonding pad is provided.
  • DIP Dual Inline Package
  • PLCC Plastic Leaded Chip Carrier
  • QFP QFP ( Quad Flat Package)
  • SOP Small Outline Package
  • SOJ Small Outline J-lead package
  • TSOP Thin Small Carrier Outer Package Package
  • TQFP Fluor Package
  • TQFP Fluor Package
  • TQFP Fluor Package
  • TCP Tepe Carrier Package obtained by encapsulating the semiconductor chip with the encapsulating resin composition; a semiconductor chip that is connected to wiring formed on a wiring board or glass by wire bonding, flip chip bonding, soldering, or the like.
  • Bare-chip mounted semiconductor devices such as COB (Chip On Board) and COG (Chip On Glass) sealed with the sealing resin composition; wire bonding, flip chip bonding, to wiring formed on a wiring board or glass,
  • a hybrid IC or MCM in which at least one of an active element (semiconductor chip, transistor, diode, thyristor, etc.) and a passive element (capacitor, resistor, coil, etc.) connected by solder or the like is encapsulated with the encapsulating resin composition.
  • a semiconductor chip is mounted on an interposer substrate on which terminals for connecting to a mother board are formed, and the semiconductor chip and wiring formed on the interposer substrate are connected by bumps or wire bonding, and then the semiconductor chip is formed by the resin composition for sealing.
  • BGA Bit Grid Array
  • CSP Chip Size Package
  • MCP Multi Chip Package
  • these semiconductor devices are stacked type packages in which two or more elements are mounted on a mounting substrate in a stacked manner, two or more elements can be sealed with the resin composition for encapsulation at one time. It may be a sealed one-piece mold type package.
  • these semiconductor devices may be a DSM (Double Side Mold) type package in which chips are mounted on both the upper surface and the lower surface of the substrate and are mounted at high density.
  • a method for obtaining an electronic component device such as a semiconductor device in which an element is encapsulated by using the encapsulating resin composition as an encapsulating material
  • a low-pressure transfer molding method an injection molding method, a compression molding method, or the like
  • a dispensing method a casting method, a printing method or the like may be used.
  • Epoxy resin 1-1 Epoxy resin represented by the general formula (I) (where a1 to a5 are all 0, m1 is 1 to 4), epoxy equivalent 320 g/eq, softening point 77° C., 150° C. Viscosity 0.25 Pa ⁇ sec, number average molecular weight 300, Nippon Steel Chemical & Materials Co., Ltd., trade name “ESN-475V”
  • Epoxy resin 2-1 Biphenyl type epoxy resin, epoxy equivalent 192 g/eq, softening point 107° C., viscosity at 150° C.
  • Epoxy resin 2-2 Bisphenol F type epoxy resin, epoxy equivalent 192 g/eq, melting point 66° C., viscosity at 150° C. 0.01 Pa ⁇ sec, number average molecular weight 384, Nippon Steel Chemical & Materials Co., Ltd., trade name “YSLV- 80XY” Epoxy resin 2-3: Bisphenol S type epoxy resin, epoxy equivalent 245 g/eq, melting point 111° C., viscosity at 150° C.
  • Epoxy resin 3-1 aralkyl type epoxy resin, epoxy resin represented by the general formula (VI) (where a6 to a9 are all 0, m2 is 1 to 3), epoxy equivalent 269 g/eq, softening point 52 .4° C., 150° C. viscosity 0.04 Pa ⁇ sec, number average molecular weight 450, Nippon Kayaku Co., Ltd., trade name “NC-3000 LLC”
  • Epoxy resin C-1 novolac type epoxy resin, epoxy equivalent 200 g/eq, softening point 60° C., viscosity at 150° C.
  • Epoxy resin C-2 triphenylmethane type epoxy resin, epoxy equivalent 167 g/eq, softening point 61° C., viscosity at 150° C. 0.11 Pa ⁇ sec, number average molecular weight 850, Nippon Kayaku Co., Ltd., trade name “EPPN- 501HY”
  • Curing agent 1 Novolak type phenolic resin represented by the above general formula (VII) (provided that b11 to b13 are all 0, n4 is 0 to 3), hydroxyl group equivalent 104 g/eq, softening point 71° C., 150° C.
  • Curing agent 2 triphenylmethane type phenolic resin represented by the above general formula (VIII) (however, b6 to b10 are all 0, n3 is 0 to 3), hydroxyl group equivalent 103 g/eq, softening point 83° C., 150 Viscosity at 0.10 Pa ⁇ sec, number average molecular weight 550, Meiwa Kasei Co., Ltd., trade name “MEH-7500-3S”
  • Hardener 3 Phenolic resin represented by the above general formula (IX) (provided that b1 to b5 are all 0, n1 is 1 to 3, n2 is 0 to 3), hydroxyl equivalent is 166 g/eq, softening point 66° C. , Viscosity at 150° C. 0.05 Pa ⁇ sec, number average molecular weight 1100, Mei
  • Curing accelerator 1 Imidazole curing accelerator, Hitachi Chemical Co., Ltd., trade name "HP-850NP”
  • Curing accelerator 2 Phosphorus curing accelerator, addition product of tributylphosphine and benzoquinone
  • Coupling agent 1 3-methacryloxypropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd., trade name "KBM-503”
  • Coupling agent 2 3-phenylaminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd., trade name "KBM-573” Release Agent: Hoechst Wax, Clariant, trade name "HW-E” Pigment: Carbon black, Mitsubishi Chemical Corporation, trade name “MA600”
  • the resin composition for encapsulation was molded into a disk having a diameter of 50 mm and a thickness of 3 mm under the above-mentioned molding conditions (molding temperature: 175° C.), and immediately after molding, a Shore D type hardness meter (Kobunshi Keiki Co., Ltd., Asker, type) The hardness at the time of heating was measured using a D durometer).
  • the encapsulating resin composition was molded under the above molding conditions (molding temperature: 175° C.) to prepare a test piece having a shape of 19 mm ⁇ 3 mm ⁇ 3 mm.
  • the glass transition temperature (hereinafter abbreviated as Tg) was determined from the bending point of the linear expansion curve measured on the test piece using a thermomechanical analyzer (TAS-100) of Rigaku Denki, under the condition of a temperature rising rate of 5° C./min. ..
  • Tg glass transition temperature
  • TAS-100 thermomechanical analyzer
  • the linear expansion coefficient hereinafter, the former is abbreviated as ⁇ 1 and the latter abbreviated as ⁇ 2) was obtained from the inclinations of Tg or less and the inclinations of Tg or more.
  • the encapsulating resin composition was molded under the above molding conditions (molding temperature: 175° C.) to prepare a test piece having a shape of 70 mm ⁇ 10 mm ⁇ 3 mm.
  • Molding temperature 175° C.
  • a three-point support type bending test according to JIS-K-6911 (2006) was conducted at 250° C. to obtain the high-temperature bending elastic modulus, high-temperature bending strength, and high-temperature elongation at break, respectively. It was The flexural modulus E is defined by the following formula.
  • E is a bending elastic modulus (MPa)
  • P is a load cell value (N)
  • y is a displacement amount (mm)
  • the bottom surface (adhesive surface) of the encapsulating resin composition has a circular shape with an area of 10 mm 2 , the upper surface has a circular shape of 8 mm 2 , and the truncated cone has a height of 4 mm. It was molded into a shape and post-cured at 180° C. for 90 seconds. After that, using a bond tester (Nordson Advanced Technology Co., Ltd., product name “Dage 4000”), the shear rate was set to 50 ⁇ m/s and the height was set to 100 ⁇ m while keeping the temperature of the copper plate at room temperature (25° C.). Then, the shear adhesive force (MPa) applied when the test piece fell off was determined as the adhesive strength.
  • MPa shear adhesive force
  • Resin composition for encapsulation of 80-pin flat package (QFP) (lead frame material: copper alloy, lead tip silver-plated product) with external dimensions of 20 mm ⁇ 14 mm ⁇ 2 mm mounted with 8 mm ⁇ 10 mm ⁇ 0.4 mm silicon chip.
  • QFP 80-pin flat package
  • the molded product was molded under the above molding conditions (molding temperature: 175° C.), and post-cured at 180° C. for 5 hours to prepare a test package.
  • the test package was humidified under the conditions of 85° C., 60% RH, and 168 hours, and reflow treatment was performed under the conditions of 260° C. for 10 seconds.
  • the presence or absence of peeling of the lead frame die paddle top portion was observed using an ultrasonic imaging device (SAT), and the number of peeling-generated packages was evaluated with respect to the total number of test packages (10). Further, with respect to the test packages after the reflow treatment, the presence or absence of cracks was observed with a microscope, and the number of cracked packages was evaluated with respect to the total number of test packages (10).
  • SAT ultrasonic imaging device
  • the glass transition temperature of the cured product was 140° C. or higher, the high temperature bending elastic modulus of the cured product was low, and a sealing composition having high fluidity was obtained.
  • the spiral flow (fluidity) is improved without significantly changing the glass transition temperature and the high temperature bending elastic modulus, as compared with Reference Example 1.
  • the glass transition temperature of Comparative Example B-1 is significantly lower than that of Comparative Example B-2. Further, it can be seen that the water absorption rate in this example is lower than that in the comparative example.

Abstract

A resin composition for sealing, which contains: a first epoxy resin that has an epoxy equivalent of 300 g/eq or more, while having a plurality of naphthalene skeletons in each molecule; a second epoxy resin that has a viscosity at 150°C of 0.02 Pa·sec or less and a number average molecular weight of 1,000 or less; and a curing agent.

Description

封止用樹脂組成物及び電子部品装置Sealing resin composition and electronic component device
 本発明は、封止用樹脂組成物及び電子部品装置に関する。 The present invention relates to a sealing resin composition and an electronic component device.
 近年の電子機器の小型化、軽量化、高性能化等に伴い、実装の高密度化が進んでいる。これにより、電子部品装置の主流は従来のピン挿入型のパッケージから、表面実装型のパッケージへと変化しつつある。 With the recent miniaturization, weight reduction, and high performance of electronic devices, the mounting density is increasing. As a result, the mainstream of electronic component devices is changing from the conventional pin insertion type package to the surface mount type package.
 表面実装型のパッケージは、従来のピン挿入型のものと実装方法が異なっている。すなわち、ピンを配線板に取り付ける際、従来のピン挿入型パッケージはピンを配線板に挿入した後に配線板の裏面からはんだ付けを行うため、パッケージが直接高温にさらされることはなかった。しかし、表面実装型パッケージでは電子部品装置全体がはんだバス、リフロー装置等で処理されるため、パッケージが直接はんだ付け温度(リフロー温度)にさらされる。この結果、パッケージが吸湿した場合、はんだ付けの際に吸湿による水分が急激に膨張し、発生した蒸気圧が剥離応力として働き、素子、リードフレーム等のインサートと封止材との間で剥離を発生させ、パッケージクラック、電気的特性不良等の原因となる場合がある。このため、はんだ耐熱性(耐リフロー性)に優れる封止材料の開発が望まれている。  The surface mount type package is different in mounting method from the conventional pin insertion type package. That is, when the pins are attached to the wiring board, the conventional pin insertion type package does not directly expose the package to high temperature because the pins are inserted into the wiring board and then soldering is performed from the back surface of the wiring board. However, in the surface mount type package, since the entire electronic component device is processed by the solder bath, the reflow device, etc., the package is directly exposed to the soldering temperature (reflow temperature). As a result, when the package absorbs moisture, moisture due to moisture absorption expands rapidly during soldering, and the generated vapor pressure acts as peeling stress, causing peeling between the insert such as the element and lead frame and the sealing material. If they are generated, they may cause package cracks, poor electrical characteristics, and the like. Therefore, development of a sealing material having excellent solder heat resistance (reflow resistance) is desired.
 これらの要求に対応するために、これまで封止材料の主材となるエポキシ樹脂について様々な検討がされている。例えば、エポキシ樹脂として、ビフェニル型エポキシ樹脂又はナフタレン型エポキシ樹脂を用いる方法が検討されている(例えば、特開昭64-65116号公報及び特開2007-231159号公報参照)。 In order to meet these requirements, various studies have been conducted on epoxy resin, which is the main material of the encapsulating material. For example, a method of using a biphenyl type epoxy resin or a naphthalene type epoxy resin as an epoxy resin has been studied (see, for example, JP-A-64-65116 and JP-A-2007-231159).
 近年、基板の上面及び下面の両方にチップを搭載させ高密度に実装するダブルサイドモールド(Double Side Mold、以下「DSM」ともいう)方式に用いるモールドアンダーフィル材(以下「MUF材」ともいう)の開発が望まれている。 In recent years, a mold underfill material (hereinafter also referred to as “MUF material”) used in a double side mold (Double Side Mold, hereinafter also referred to as “DSM”) method in which chips are mounted on both the upper surface and the lower surface of a substrate for high density mounting. Development is desired.
 上述のように、表面実装型のパッケージに用いられる封止材料には、耐リフロー性が要求される。特にDSM方式では、パッケージの構造が複雑で高密度になるため、より高い耐リフロー性が求められる。耐リフロー性は、吸水率の低減、高温(例えば260℃)における弾性率の低減等により向上する。
 一方で、高温環境下での信頼性を向上させるため、封止材料の硬化後におけるガラス転移温度を高く(例えば140℃以上に)することも求められている。しかし、例えば架橋点を多くすることでガラス転移温度を向上させようとすると、耐リフロー性が低くなりやすく、ガラス転移温度と耐リフロー性との両立は難しい。
 さらに、表面実装型のパッケージに用いられる封止材料には流動性が求められる。特に、DSM方式のパッケージではチップが高密度に配置されるため、DSM方式のパッケージに用いるMUF材には特に狭ギャップに充填できる高い流動性が求められる。しかし、例えば低粘度の成分を含有させることで流動性を向上させようとするとガラス転移温度が低くなりやすく、高い流動性と高いガラス転移温度との両立は難しい。
As described above, the encapsulating material used for the surface mount type package is required to have reflow resistance. Particularly in the DSM method, since the package structure is complicated and the density becomes high, higher reflow resistance is required. The reflow resistance is improved by reducing the water absorption rate, the elastic modulus at high temperature (for example, 260° C.), and the like.
On the other hand, in order to improve reliability in a high temperature environment, it is also required to raise the glass transition temperature after curing the sealing material (for example, to 140° C. or higher). However, if an attempt is made to improve the glass transition temperature by increasing the number of crosslinking points, the reflow resistance tends to be low, and it is difficult to achieve both the glass transition temperature and the reflow resistance.
Furthermore, the sealing material used for the surface mount type package is required to have fluidity. In particular, since the chips are arranged in a high density in the DSM system package, the MUF material used in the DSM system package is required to have high fluidity so that a narrow gap can be filled. However, for example, if an attempt is made to improve fluidity by containing a low-viscosity component, the glass transition temperature tends to be low, and it is difficult to achieve both high fluidity and high glass transition temperature.
 本開示は、かかる状況に鑑みなされたもので、高温における弾性率が低いこととガラス転移温度が高いこととを両立した硬化物が得られ、かつ、流動性が高い封止用樹脂組成物及びこれを用いた電子部品装置を提供することを課題とするものである。 The present disclosure has been made in view of such circumstances, a cured product having both a low elastic modulus at high temperature and a high glass transition temperature is obtained, and the resin composition for sealing having high fluidity and An object is to provide an electronic component device using this.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>
 エポキシ当量が300g/eq以上であり、分子内に複数のナフタレン骨格を有する第1のエポキシ樹脂と、
 150℃における粘度が0.02Pa・sec以下であり、数平均分子量が1000以下である第2のエポキシ樹脂と、
 硬化剤と、
 を含む封止用樹脂組成物。
<2>
 前記第2のエポキシ樹脂が、ビフェニル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びビスフェノールS型エポキシ樹脂からなる群より選択される少なくとも1種を含む<1>に記載の封止用樹脂組成物。
<3>
 前記硬化剤として、150℃における粘度が0.5Pa・sec以下である硬化剤を含む<1>又は<2>に記載の封止用樹脂組成物。
<4>
 前記硬化剤として、官能基当量が120g/eq未満である第1の硬化剤を含む<1>~<3>のいずれか1つに記載の封止用樹脂組成物。
<5>
 前記第1の硬化剤は、フェノール樹脂及び多価フェノール化合物からなる群より選択される少なくとも1種を含む<4>に記載の封止用樹脂組成物。
<6>
 前記フェノール樹脂は、ノボラック型フェノール樹脂及びトリフェニルメタン型フェノール樹脂からなる群より選択される少なくとも1種を含む<5>に記載の封止用樹脂組成物。
<7>
 前記硬化剤として、官能基当量が120g/eq以上である第2の硬化剤をさらに含む<4>~<6>のいずれか1つに記載の封止用樹脂組成物。
<8>
 前記第2の硬化剤は、フェノール樹脂及び多価フェノール化合物からなる群より選択される少なくとも1種を含む<7>に記載の封止用樹脂組成物。
<9>
 前記フェノール樹脂は、アラルキル型フェノール樹脂を含む<8>に記載の封止用樹脂組成物。
<10>
 前記第2の硬化剤は、分子内にビフェニル骨格を有する化合物を含む<7>~<9>のいずれか1つに記載の封止用樹脂組成物。
<11>
 前記第1のエポキシ樹脂は、分子内にベンゼン骨格をさらに有する<1>~<10>のいずれか1つに記載の封止用樹脂組成物。
<12>
 前記第1のエポキシ樹脂は、前記ナフタレン骨格と前記ベンゼン骨格とに直接結合するメチレン基をさらに有する<11>に記載の封止用樹脂組成物。
<13>
 前記第1のエポキシ樹脂は、前記ナフタレン骨格に直接結合するグリシジルオキシ基を有する<1>~<12>のいずれか1つに記載の封止用樹脂組成物。
<14>
 前記第1のエポキシ樹脂100質量部に対する前記第2のエポキシ樹脂の含有量は、50質量部~150質量部である<1>~<13>のいずれか1つに記載の封止用樹脂組成物。
<15>
 前記第1のエポキシ樹脂及び前記第2のエポキシ樹脂以外のエポキシ樹脂である第3のエポキシ樹脂をさらに含む<1>~<14>のいずれか1つに記載の封止用樹脂組成物。
<16>
 前記第3のエポキシ樹脂のエポキシ当量が200g/eq以上である<15>に記載の封止用樹脂組成物。
<17>
 前記第3のエポキシ樹脂がビフェニル骨格を含む<15>又は<16>に記載の封止用樹脂組成物。
<18>
 前記第3のエポキシ樹脂がアラルキル型エポキシ樹脂である<15>~<17>のいずれか1つに記載の封止用樹脂組成物。
<19>
 素子と、前記素子を封止する<1>~<18>のいずれか1つに記載の封止用樹脂組成物の硬化物と、を備える電子部品装置。
Means for solving the above problems include the following embodiments.
<1>
A first epoxy resin having an epoxy equivalent of 300 g/eq or more and having a plurality of naphthalene skeletons in the molecule;
A second epoxy resin having a viscosity at 150° C. of 0.02 Pa·sec or less and a number average molecular weight of 1000 or less;
A curing agent,
A resin composition for encapsulation containing:
<2>
The encapsulating resin composition according to <1>, wherein the second epoxy resin contains at least one selected from the group consisting of a biphenyl type epoxy resin, a bisphenol F type epoxy resin, and a bisphenol S type epoxy resin.
<3>
The encapsulating resin composition according to <1> or <2>, which includes, as the curing agent, a curing agent having a viscosity of 0.5 Pa·sec or less at 150°C.
<4>
The encapsulating resin composition according to any one of <1> to <3>, which includes, as the curing agent, a first curing agent having a functional group equivalent of less than 120 g/eq.
<5>
The said 1st hardening|curing agent is a resin composition for sealing as described in <4> containing at least 1 sort(s) selected from the group which consists of a phenol resin and a polyhydric phenol compound.
<6>
The encapsulating resin composition according to <5>, wherein the phenolic resin includes at least one selected from the group consisting of novolac type phenolic resin and triphenylmethane type phenolic resin.
<7>
The encapsulating resin composition according to any one of <4> to <6>, further including, as the curing agent, a second curing agent having a functional group equivalent of 120 g/eq or more.
<8>
The said 2nd hardening|curing agent is a resin composition for closure as described in <7> containing at least 1 sort(s) selected from the group which consists of a phenol resin and a polyhydric phenol compound.
<9>
The encapsulating resin composition according to <8>, wherein the phenolic resin contains an aralkyl type phenolic resin.
<10>
The encapsulating resin composition according to any one of <7> to <9>, in which the second curing agent contains a compound having a biphenyl skeleton in the molecule.
<11>
The encapsulating resin composition according to any one of <1> to <10>, wherein the first epoxy resin further has a benzene skeleton in the molecule.
<12>
The encapsulating resin composition according to <11>, wherein the first epoxy resin further has a methylene group directly bonded to the naphthalene skeleton and the benzene skeleton.
<13>
The encapsulating resin composition according to any one of <1> to <12>, in which the first epoxy resin has a glycidyloxy group directly bonded to the naphthalene skeleton.
<14>
The encapsulating resin composition according to any one of <1> to <13>, wherein the content of the second epoxy resin is 50 parts by mass to 150 parts by mass with respect to 100 parts by mass of the first epoxy resin. Stuff.
<15>
The encapsulating resin composition according to any one of <1> to <14>, further including a third epoxy resin that is an epoxy resin other than the first epoxy resin and the second epoxy resin.
<16>
The encapsulating resin composition according to <15>, wherein the epoxy equivalent of the third epoxy resin is 200 g/eq or more.
<17>
The encapsulating resin composition according to <15> or <16>, in which the third epoxy resin contains a biphenyl skeleton.
<18>
The encapsulating resin composition according to any one of <15> to <17>, in which the third epoxy resin is an aralkyl type epoxy resin.
<19>
An electronic component device comprising an element and a cured product of the encapsulating resin composition according to any one of <1> to <18>, which encapsulates the element.
 本開示によれば、高温における弾性率が低いこととガラス転移温度が高いこととを両立した硬化物が得られ、かつ、流動性が高い封止用樹脂組成物及びこれを用いた電子部品装置を提供することができる。 According to the present disclosure, a cured product having both a low elastic modulus at a high temperature and a high glass transition temperature is obtained, and the fluidity of the encapsulating resin composition and an electronic component device using the same are high. Can be provided.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
In the present disclosure, the numerical ranges indicated by using “to” include the numerical values before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit of the numerical range described in other stages. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may include a plurality of types of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content of each component means the total content of the plurality of substances present in the composition, unless otherwise specified.
<封止用樹脂組成物>
 本開示に係る封止用樹脂組成物(以下、単に「組成物」ともいう)は、エポキシ当量が300g/eq以上であり、分子内に複数のナフタレン骨格を有する第1のエポキシ樹脂と、150℃における粘度が0.02Pa・sec以下であり、数平均分子量が1000以下である第2のエポキシ樹脂と、硬化剤と、を含む。
 上記組成物は、高温における弾性率が低いこと(以下「高温低弾性率」ともいう)とガラス転移温度が高いこと(以下「高Tg」ともいう)とを両立した硬化物が得られ、かつ、流動性が高い。
<Sealing resin composition>
The encapsulating resin composition according to the present disclosure (hereinafter, also simply referred to as “composition”) has an epoxy equivalent of 300 g/eq or more, a first epoxy resin having a plurality of naphthalene skeletons in the molecule, and 150 It contains a second epoxy resin having a viscosity of 0.02 Pa·sec or less at 0° C. and a number average molecular weight of 1000 or less, and a curing agent.
The above composition can provide a cured product that has both a low elastic modulus at high temperature (hereinafter also referred to as “high temperature low elastic modulus”) and a high glass transition temperature (hereinafter also referred to as “high Tg”), and , High liquidity.
 前述のように、表面実装型のパッケージの封止に用いられる封止用樹脂組成物には、耐リフロー性を向上させるために硬化物の高温低弾性率が求められる一方で、高温環境下での信頼性を向上させるために硬化物の高Tgが求められる。また、上記封止用樹脂組成物には、狭ギャップに注入できるように、組成物自体の流動性が高いことも求められる。特に、前述のようにDSMに用いられる封止用樹脂組成物には、上記高温低弾性率、高Tg、及び高流動性が、それぞれ高いレベルで求められる。
 しかしながら、硬化物の高温低弾性率と高Tgとを両立させることは難しい。具体的には、例えば、樹脂の架橋点を多くすると、硬化物のガラス転移温度は高くなりやすいが高温における弾性率も高くなりやすく、樹脂の架橋点を少なくすると、硬化物の高温における弾性率が低くなるだけでなくガラス転移温度も低くなりやすい。
 また、高Tgと高い流動性との両立も難しい。具体的には、流動性を向上させるために低粘度の成分を含有させると、硬化物のガラス転移温度が低くなりやすい。
As described above, the encapsulating resin composition used for encapsulating the surface-mounting type package is required to have a high temperature and low elastic modulus of the cured product in order to improve the reflow resistance. In order to improve the reliability of the cured product, a high Tg of the cured product is required. Further, the encapsulating resin composition is also required to have high fluidity so that the composition itself can be injected into a narrow gap. In particular, as described above, the encapsulating resin composition used for DSM is required to have the high temperature low elastic modulus, high Tg, and high fluidity at high levels.
However, it is difficult to achieve both high temperature low elastic modulus and high Tg of the cured product. Specifically, for example, if the cross-linking point of the resin is increased, the glass transition temperature of the cured product is likely to be high, but the elastic modulus at high temperature is also likely to be high. Not only lowers the glass transition temperature, but also tends to lower the glass transition temperature.
It is also difficult to achieve both high Tg and high fluidity. Specifically, when a low-viscosity component is included in order to improve fluidity, the glass transition temperature of the cured product tends to be low.
 これに対して、本開示の組成物は、複数のナフタレン骨格を有しエポキシ当量が前記範囲である第1のエポキシ樹脂と、150℃における粘度及び数平均分子量が前記範囲である第2のエポキシ樹脂と、を含んでいる。
 そのため、硬化物の高温低弾性率と高Tgとを両立しつつ、高い流動性が得られる。その理由は定かではないが、第1のエポキシ樹脂が複数のナフタレン骨格を有することでエポキシ当量が大きくても硬化物の高Tgが得られるとともに、エポキシ当量が前記範囲であることにより硬化物の高温低弾性率が得られるものと推測される。加えて、理由は定かではないが、例えば第1のエポキシ樹脂に代えてエポキシ当量の小さな多官能クレゾールノボラック型のエポキシ樹脂を用いた場合に比べて、第2のエポキシ樹脂と組み合わせた場合におけるガラス転移温度の低下が小さい。したがって、硬化物の高温低弾性率と高Tgとを両立しつつ高い流動性が得られるものと推測される。
 加えて、本開示の組成物は、前記第1のエポキシ樹脂と前記第2のエポキシ樹脂とを含んでいることにより、吸水率の低い硬化物が得られる。
On the other hand, the composition of the present disclosure includes a first epoxy resin having a plurality of naphthalene skeletons and an epoxy equivalent in the above range, and a second epoxy resin having a viscosity at 150° C. and a number average molecular weight in the above range. And a resin.
Therefore, high fluidity can be obtained while achieving both high temperature low elastic modulus and high Tg of the cured product. Although the reason for this is not clear, a high Tg of the cured product can be obtained even if the first epoxy resin has a plurality of naphthalene skeletons and thus the epoxy equivalent is large, and the epoxy equivalent is within the above range. It is speculated that a high temperature low elastic modulus is obtained. In addition, although the reason is not clear, for example, compared with the case of using a polyfunctional cresol novolac type epoxy resin having a small epoxy equivalent in place of the first epoxy resin, the glass in the case of combining with the second epoxy resin Small decrease in transition temperature. Therefore, it is presumed that high fluidity can be obtained while achieving both high temperature low elastic modulus and high Tg of the cured product.
In addition, since the composition of the present disclosure contains the first epoxy resin and the second epoxy resin, a cured product having a low water absorption rate can be obtained.
 以下、本開示の組成物を構成する各成分について詳細に説明する。 Hereinafter, each component constituting the composition of the present disclosure will be described in detail.
(エポキシ樹脂)
 本開示の組成物は、エポキシ樹脂として、少なくとも第1のエポキシ樹脂及び第2のエポキシ樹脂を含み、必要に応じて他のエポキシ樹脂を含んでもよい。
 なお、第1のエポキシ樹脂及び第2のエポキシ樹脂の合計含有率は、組成物に含まれる全エポキシ樹脂に対し、50質量%以上であることが好ましく、65質量%以上であることがより好ましい。また、第1のエポキシ樹脂及び第2のエポキシ樹脂の合計含有率は、90質量%以上であってもよく、95質量%以上であってもよく、98質量%以上であってもよい。
(Epoxy resin)
The composition of the present disclosure contains at least a first epoxy resin and a second epoxy resin as an epoxy resin, and may further contain another epoxy resin as necessary.
The total content of the first epoxy resin and the second epoxy resin is preferably 50% by mass or more, and more preferably 65% by mass or more, based on all the epoxy resins contained in the composition. .. The total content of the first epoxy resin and the second epoxy resin may be 90% by mass or more, 95% by mass or more, and 98% by mass or more.
-第1のエポキシ樹脂-
 第1のエポキシ樹脂は、エポキシ当量が300g/eq以上であり、分子内に複数のナフタレン骨格を有するエポキシ樹脂であれば特に限定されるものではない。第1のエポキシ樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-First epoxy resin-
The first epoxy resin is not particularly limited as long as it has an epoxy equivalent of 300 g/eq or more and has a plurality of naphthalene skeletons in the molecule. The first epoxy resin may be used alone or in combination of two or more.
 第1のエポキシ樹脂におけるエポキシ当量は、硬化物の高温低弾性率と高Tgとを両立させる観点から、300g/eq~500g/eqであることが好ましく、300g/eq~400g/eqであることがより好ましく、300g/eq~350g/eqであることがさらに好ましい。
 ここで、エポキシ当量は、秤量したエポキシ樹脂をメチルエチルケトン等の溶剤に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。この滴定には、指示薬を用いてもよい。
The epoxy equivalent of the first epoxy resin is preferably 300 g/eq to 500 g/eq, and preferably 300 g/eq to 400 g/eq, from the viewpoint of achieving both high temperature low elastic modulus and high Tg of the cured product. Is more preferable and 300 g/eq to 350 g/eq is even more preferable.
Here, the epoxy equivalent is measured by dissolving the weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and potentiometrically titrating with a perchloric acid acetic acid standard solution. An indicator may be used for this titration.
 第1のエポキシ樹脂における数平均分子量は、エポキシ当量が上記範囲であれば特に限定されるものではなく、300~1500の範囲が挙げられ、流動性の観点から300~1000であることが好ましく、300~800であることがより好ましい。
 数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、通常の方法で測定される。
The number average molecular weight of the first epoxy resin is not particularly limited as long as the epoxy equivalent is in the above range, and may be in the range of 300 to 1500, preferably 300 to 1000 from the viewpoint of fluidity, It is more preferably 300 to 800.
The number average molecular weight is measured by gel permeation chromatography (GPC) by a usual method.
 第1のエポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。封止用樹脂組成物の調製の際の取扱い性の観点からは、軟化点又は融点は、50℃~130℃であることが好ましく、60℃~110℃であることがより好ましく、70℃~90℃であることがさらに好ましい。
 なお、エポキシ樹脂の融点は示差走査熱量測定(DSC)で測定される値とし、エポキシ樹脂の軟化点はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。
When the first epoxy resin is solid, its softening point or melting point is not particularly limited. From the viewpoint of handleability during preparation of the encapsulating resin composition, the softening point or melting point is preferably 50° C. to 130° C., more preferably 60° C. to 110° C., and 70° C. It is more preferably 90°C.
The melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234:1986.
 第1のエポキシ樹脂の150℃における粘度は、流動性と硬化物の高Tgとを両立させる観点から、0.05Pa・sec~0.5Pa・secであることが好ましく、0.1Pa・sec~0.4Pa・secであることがより好ましく、0.2Pa・sec~0.3Pa・secであることがさらに好ましい。
 ここで、150℃における粘度は、レオメータMCR301(アントンパール社)で測定する。具体的には、測定対象の温度を150℃から30℃まで降下させる降温過程と、測定対象の温度を30℃から150℃まで上昇させる昇温過程と、をこの順に実施し、昇温過程での150℃における粘度(Pa・sec)を測定する。測定条件は、振動数:1Hz、プレート:φ12mm、ギャップ:0.2mm、降温過程における降温速度:2℃/min、昇温過程における昇温速度:2℃/minとする。
The viscosity of the first epoxy resin at 150° C. is preferably 0.05 Pa·sec to 0.5 Pa·sec, and 0.1 Pa·sec to, from the viewpoint of achieving both fluidity and high Tg of the cured product. 0.4 Pa·sec is more preferable, and 0.2 Pa·sec to 0.3 Pa·sec is further preferable.
Here, the viscosity at 150° C. is measured with a rheometer MCR301 (Anton Paar). Specifically, a temperature decreasing process of decreasing the temperature of the measurement target from 150° C. to 30° C. and a temperature increasing process of increasing the temperature of the measurement target from 30° C. to 150° C. are performed in this order, and in the temperature increasing process, The viscosity (Pa·sec) at 150° C. is measured. The measurement conditions are as follows: frequency: 1 Hz, plate: φ12 mm, gap: 0.2 mm, temperature decrease rate during temperature decrease process: 2° C./min, temperature increase rate during temperature increase process: 2° C./min.
 第1のエポキシ樹脂は、前記複数のナフタレン骨格間に、さらに連結基を有していてもよい。連結基としては、アルキレン基等の炭化水素基、カルボニル基、酸素原子などが挙げられる。第1のエポキシ樹脂は、上記連結基の中でも、アルキレン基を有することが好ましく、メチレン基を有することがより好ましい。 The first epoxy resin may further have a connecting group between the plurality of naphthalene skeletons. Examples of the linking group include a hydrocarbon group such as an alkylene group, a carbonyl group, and an oxygen atom. Among the linking groups, the first epoxy resin preferably has an alkylene group, and more preferably has a methylene group.
 第1のエポキシ樹脂は、前記複数のナフタレン骨格に加えて、さらにベンゼン骨格を分子内に有していてもよい。第1のエポキシ樹脂がベンゼン骨格を有する場合、第1のエポキシ樹脂が有するナフタレン骨格とベンゼン骨格とが連結基を介して結合していてもよい。ナフタレン骨格とベンゼン骨格とを結合する連結基としては、アルキレン基等の炭化水素基、カルボニル基、酸素原子などが挙げられ、その中でもアルキレン基が好ましく、メチレン基がより好ましい。つまり、第1のエポキシ樹脂は、ナフタレン骨格とベンゼン骨格とに直接結合するメチレン基を分子内に有することが好ましい。 The first epoxy resin may have a benzene skeleton in the molecule in addition to the plurality of naphthalene skeletons. When the first epoxy resin has a benzene skeleton, the naphthalene skeleton and the benzene skeleton of the first epoxy resin may be bonded via a linking group. Examples of the linking group that connects the naphthalene skeleton and the benzene skeleton include a hydrocarbon group such as an alkylene group, a carbonyl group, an oxygen atom, and the like. Among them, an alkylene group is preferable, and a methylene group is more preferable. That is, the first epoxy resin preferably has in its molecule a methylene group that is directly bonded to the naphthalene skeleton and the benzene skeleton.
 第1のエポキシ樹脂は、1分子中にエポキシ基を少なくとも2以上有する。第1のエポキシ樹脂が1分子中に有するエポキシ基の数は、第1のエポキシ樹脂におけるエポキシ当量が上記範囲であればとくに限定されるものではなく、2~5が挙げられ、2~4が好ましく、2~3がより好ましい。
 上記エポキシ基は、ナフタレン骨格に結合していることが好ましい。第1のエポキシ樹脂がナフタレン骨格の他にベンゼン骨格を有する場合、エポキシ基はナフタレン骨格及びベンゼン骨格からなる群より選択される少なくとも1種に結合していることが好ましく、その中でもナフタレン骨格に結合していることがより好ましく、ナフタレン骨格のみに結合していることがさらに好ましい。
 上記2以上のエポキシ基がナフタレン骨格に結合する場合、1つのナフタレン骨格に結合してもよく、異なるナフタレン骨格に結合してもよく、その中でも異なるナフタレン骨格に結合していることが好ましい。
The first epoxy resin has at least two epoxy groups in one molecule. The number of epoxy groups that the first epoxy resin has in one molecule is not particularly limited as long as the epoxy equivalent in the first epoxy resin is in the above range, and 2 to 5 can be mentioned, and 2 to 4 can be mentioned. It is preferably 2-3.
The epoxy group is preferably bound to the naphthalene skeleton. When the first epoxy resin has a benzene skeleton in addition to the naphthalene skeleton, the epoxy group is preferably bonded to at least one selected from the group consisting of a naphthalene skeleton and a benzene skeleton, and among them, bonded to the naphthalene skeleton. Is more preferable, and it is still more preferable that it is bonded only to the naphthalene skeleton.
When the two or more epoxy groups are bonded to the naphthalene skeleton, they may be bonded to one naphthalene skeleton or different naphthalene skeletons, and it is preferable that they are bonded to different naphthalene skeletons.
 エポキシ基がナフタレン骨格に結合している場合、エポキシ基は、ナフタレン骨格に直接結合してもよく、連結基(アルキレン基等の炭化水素基、カルボニル基、酸素原子など)を介して結合してもよい。その中でも、エポキシ基が連結基を介してナフタレン骨格に結合していることが好ましい。エポキシ基が連結基を介してナフタレン骨格に結合する形態としては、グリシジル基、グリシジルオキシ基、グリシジルオキシカルボニル基、エポキシシクロアルキル基(エポキシシクロペンチル基、エポキシシクロヘキシル基、エポキシシクロオクチル基等)などから選択される少なくとも一種がナフタレン骨格に直接結合する形態が挙げられ、その中でも、グリシジルオキシ基がナフタレン骨格に直接結合する形態が好ましい。 When the epoxy group is bonded to the naphthalene skeleton, the epoxy group may be bonded directly to the naphthalene skeleton, or bonded via a linking group (hydrocarbon group such as alkylene group, carbonyl group, oxygen atom, etc.). Good. Among these, it is preferable that the epoxy group is bonded to the naphthalene skeleton via a linking group. As the form in which the epoxy group is bonded to the naphthalene skeleton through a linking group, glycidyl group, glycidyloxy group, glycidyloxycarbonyl group, epoxycycloalkyl group (epoxycyclopentyl group, epoxycyclohexyl group, epoxycyclooctyl group, etc.), etc. The form in which at least one selected is directly bonded to the naphthalene skeleton is mentioned, and among them, the form in which the glycidyloxy group is directly bonded to the naphthalene skeleton is preferable.
 第1のエポキシ樹脂は、さらに他の置換基(アルキル基、アルコキシ基、アリール基、アラルキル基等)を有してもよい。 The first epoxy resin may further have other substituents (alkyl group, alkoxy group, aryl group, aralkyl group, etc.).
 第1のエポキシ樹脂としては、例えば、下記一般式(I)で表されるエポキシ樹脂が挙げられる。 Examples of the first epoxy resin include epoxy resins represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(I)中、R~Rは、それぞれ独立に、炭素数1~18の1価の有機基を示し、a1は0~4の整数を示し、a2は0~3の整数を示し、a3は0~4の整数を示し、a4は0~4の整数を示し、a5は0~2の整数を示し、a1+a2は6以下であり、a4+a5は5以下であり、m1は1~4を示す。 In the general formula (I), R 1 to R 5 each independently represent a monovalent organic group having 1 to 18 carbon atoms, a1 represents an integer of 0 to 4, and a2 represents an integer of 0 to 3. A3 is an integer of 0 to 4, a4 is an integer of 0 to 4, a5 is an integer of 0 to 2, a1+a2 is 6 or less, a4+a5 is 5 or less, and m1 is 1 Indicates 4
 一般式(I)中のR~Rで示される炭素数1~18の1価の有機基としては、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基、置換又は非置換のアリール基、置換又は非置換のアラルキル基等が挙げられる。
 一般式(I)中のa1~a5は、0~1の整数であることが好ましく、0であることがより好ましい。
 一般式(I)中のm1は、1~2であることが好ましく、1であることがより好ましい。
Examples of the monovalent organic group having 1 to 18 carbon atoms represented by R 1 to R 5 in the general formula (I) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
In the general formula (I), a1 to a5 are preferably integers of 0 to 1, and more preferably 0.
M1 in the general formula (I) is preferably 1 to 2, and more preferably 1.
 組成物に含まれるエポキシ樹脂全体に対する第1のエポキシ樹脂の含有率は、20質量%~90質量%が好ましく、30質量%~80質量%がより好ましく、35質量%~70質量%がさらに好ましい。
 また、組成物に含まれる樹脂成分の合計に対する第1のエポキシ樹脂の含有率は、15質量%~70質量%が好ましく、25質量%~60質量%がより好ましく、30質量%~50質量%がさらに好ましい。
 また、組成物全体に対する第1のエポキシ樹脂の含有率は、1.5質量%~10質量%が好ましく、2.5質量%~8質量%がより好ましく、3質量%~7質量%がさらに好ましい。
The content ratio of the first epoxy resin to the total epoxy resin contained in the composition is preferably 20% by mass to 90% by mass, more preferably 30% by mass to 80% by mass, and further preferably 35% by mass to 70% by mass. ..
The content of the first epoxy resin with respect to the total of the resin components contained in the composition is preferably 15% by mass to 70% by mass, more preferably 25% by mass to 60% by mass, and 30% by mass to 50% by mass. Is more preferable.
The content of the first epoxy resin in the entire composition is preferably 1.5% by mass to 10% by mass, more preferably 2.5% by mass to 8% by mass, and further preferably 3% by mass to 7% by mass. preferable.
-第2のエポキシ樹脂-
 第2のエポキシ樹脂は、第1のエポキシ樹脂以外のエポキシ樹脂であり、かつ、150℃における粘度が0.02Pa・sec以下であり、数平均分子量が1000以下であるエポキシ樹脂であれば特に限定されるものではない。第2のエポキシ樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-Second epoxy resin-
The second epoxy resin is not particularly limited as long as it is an epoxy resin other than the first epoxy resin, has a viscosity at 150° C. of 0.02 Pa·sec or less and a number average molecular weight of 1000 or less. It is not something that will be done. The 2nd epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 第2のエポキシ樹脂の150℃における粘度は、0.02Pa・sec以下であり、流動性及び高Tgの観点から、0.0001Pa・sec~0.02Pa・secであることが好ましく、0.001Pa・sec~0.02Pa・secであることがより好ましく、0.005Pa・sec~0.02Pa・secであることがさらに好ましい。 The viscosity of the second epoxy resin at 150° C. is 0.02 Pa·sec or less, and from the viewpoint of fluidity and high Tg, it is preferably 0.0001 Pa·sec to 0.02 Pa·sec, and 0.001 Pa·sec. -Sec to 0.02 Pa-sec is more preferable, and 0.005 Pa-sec to 0.02 Pa-sec is further preferable.
 第2のエポキシ樹脂の数平均分子量は、1000以下であり、流動性及び高Tgの観点から、150~850であることが好ましく、200~700であることがより好ましく、300~600であることがさらに好ましい。 The number average molecular weight of the second epoxy resin is 1,000 or less, and from the viewpoint of fluidity and high Tg, it is preferably 150 to 850, more preferably 200 to 700, and more preferably 300 to 600. Is more preferable.
 第2のエポキシ樹脂におけるエポキシ当量は、150℃における粘度及び数平均分子量が前記範囲であれば特に限定されるものではなく、150g/eq~300g/eqが挙げられ、硬化性の観点から165g/eq~275g/eqが好ましく、180g/eq以上250g/eq未満がより好ましい。 The epoxy equivalent of the second epoxy resin is not particularly limited as long as the viscosity at 150° C. and the number average molecular weight are within the above ranges, and examples thereof include 150 g/eq to 300 g/eq, and 165 g/from the viewpoint of curability. eq to 275 g/eq is preferable, and 180 g/eq or more and less than 250 g/eq is more preferable.
 第2のエポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。封止用樹脂組成物の調製の際の取扱い性の観点からは、軟化点又は融点は、50℃~130℃であることが好ましく、75℃~125℃であることがより好ましく、100℃~120℃であることがさらに好ましい。 When the second epoxy resin is solid, its softening point or melting point is not particularly limited. From the viewpoint of handleability when preparing the encapsulating resin composition, the softening point or melting point is preferably 50° C. to 130° C., more preferably 75° C. to 125° C., and 100° C. More preferably, it is 120°C.
 第2のエポキシ樹脂の具体例としては、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有型エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン変性エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはシリコーン樹脂のエポキシ化物、アクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。 Specific examples of the second epoxy resin are selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A and bisphenol F, and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. A novolak type epoxy resin obtained by epoxidizing a novolak resin obtained by condensing or cocondensing at least one phenolic compound with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, or propionaldehyde under an acidic catalyst ( Phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, etc.); Triphenylmethane type phenol obtained by condensing or co-condensing the above phenolic compound with an aromatic aldehyde compound such as benzaldehyde and salicylaldehyde under an acidic catalyst. Triphenylmethane type epoxy resin obtained by epoxidizing resin; Copolymer type epoxy obtained by epoxidizing novolak resin obtained by cocondensing the above-mentioned phenol compound and naphthol compound with an aldehyde compound under an acidic catalyst. Resin; Diphenylmethane type epoxy resin which is diglycidyl ether of bisphenol A, bisphenol F, etc.; Biphenyl type epoxy resin which is diglycidyl ether of alkyl-substituted or unsubstituted biphenol; Stilbene type epoxy which is diglycidyl ether of stilbene phenol compound Resin: Sulfur atom-containing epoxy resin which is a diglycidyl ether such as bisphenol S; Epoxy resin which is a glycidyl ether of alcohols such as butanediol, polyethylene glycol, polypropylene glycol; Phthalic acid, isophthalic acid, tetrahydrophthalic acid, etc. Glycidyl ester type epoxy resin, which is a glycidyl ester of a carboxylic acid compound; glycidyl amine type epoxy resin, in which active hydrogen bonded to the nitrogen atom of aniline, diaminodiphenylmethane, isocyanuric acid, etc. is replaced with a glycidyl group; dicyclopentadiene Dicyclopentadiene-modified epoxy resin obtained by epoxidizing a co-condensation resin of a phenol compound; vinyl cyclohexene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxy obtained by epoxidizing an olefin bond in the molecule Cyclohexanecarboxylate, 2-(3,4-epoxy)cyclohex Alicyclic epoxy resins such as xyl-5,5-spiro(3,4-epoxy)cyclohexane-m-dioxane; glycidyl ethers of para-xylylene-modified phenolic resins, para-xylylene-modified epoxy resins, glycidyl ethers of meta-xylylene-modified phenolic resins Metaxylylene-modified epoxy resin; terpene-modified epoxy resin, which is a glycidyl ether of terpene-modified phenol resin; dicyclopentadiene-modified epoxy resin, which is a glycidyl ether of dicyclopentadiene-modified phenol resin; cyclopentadiene-modified, which is a glycidyl ether of cyclopentadiene-modified phenol resin Epoxy resin; Polycyclic aromatic ring-modified epoxy resin, which is a glycidyl ether of polycyclic aromatic ring-modified phenol resin; Naphthalene-type epoxy resin, which is a glycidyl ether of naphthalene ring-containing phenol resin; Halogenated phenol novolac-type epoxy resin; Hydroquinone-type epoxy resin A trimethylolpropane type epoxy resin; a linear aliphatic epoxy resin obtained by oxidizing an olefin bond with a peracid such as peracetic acid; an aralkyl type phenol resin such as a phenol aralkyl resin or a naphthol aralkyl resin which is epoxidized. Aralkyl type epoxy resin; and the like. Further, epoxy resin such as epoxy resin of silicone resin and epoxy resin of acrylic resin can also be used.
 第2のエポキシ樹脂は、耐リフロー性と流動性のバランスの観点から、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン変性エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、共重合型エポキシ樹脂、及びアラルキル型エポキシ樹脂が好ましく、さらに流動性の観点から、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、及び硫黄原子含有型エポキシ樹脂がより好ましく、ビフェニル型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、及び硫黄原子含有型エポキシ樹脂がさらに好ましく、ビフェニル型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂の中でもビスフェノールF骨格を有するビスフェノールF型エポキシ樹脂、及び硫黄原子含有型エポキシ樹脂の中でもビスフェノールS骨格を有するビスフェノールS型エポキシ樹脂が特に好ましく、ビフェニル型エポキシ樹脂が極めて好ましい。
 なお、第2のエポキシ樹脂は、複数のナフタレン骨格を有さないエポキシ樹脂、及び複数のナフタレン骨格を有しナフタレン骨格間を結合するエーテル結合を有さないエポキシ樹脂が好ましく、ナフタレン骨格を有さないか又は1つのナフタレン骨格を有するエポキシ樹脂がより好ましく、ナフタレン骨格を有さないエポキシ樹脂がさらに好ましい。
The second epoxy resin is a biphenyl-type epoxy resin, a stilbene-type epoxy resin, a diphenylmethane-type epoxy resin, a sulfur atom-containing epoxy resin, a novolac-type epoxy resin, a dicyclopentadiene-modified, from the viewpoint of a balance between reflow resistance and fluidity. Epoxy resin, triphenylmethane type epoxy resin, copolymer type epoxy resin, and aralkyl type epoxy resin are preferable, and from the viewpoint of fluidity, biphenyl type epoxy resin, stilbene type epoxy resin, diphenylmethane type epoxy resin, and sulfur atom-containing Type epoxy resin is more preferable, biphenyl type epoxy resin, diphenylmethane type epoxy resin, and sulfur atom-containing type epoxy resin are further preferable, and among the biphenyl type epoxy resin and diphenylmethane type epoxy resin, bisphenol F type epoxy resin having a bisphenol F skeleton, Among the sulfur atom-containing epoxy resins, a bisphenol S epoxy resin having a bisphenol S skeleton is particularly preferable, and a biphenyl epoxy resin is extremely preferable.
The second epoxy resin is preferably an epoxy resin that does not have a plurality of naphthalene skeletons and an epoxy resin that has a plurality of naphthalene skeletons and does not have an ether bond connecting between naphthalene skeletons. An epoxy resin having no or one naphthalene skeleton is more preferable, and an epoxy resin having no naphthalene skeleton is further preferable.
 ビフェニル型エポキシ樹脂は、ビフェニル骨格を有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(II)で表されるエポキシ樹脂が好ましい。下記一般式(II)で表されるエポキシ樹脂の中でもRのうち酸素原子が置換している位置を4及び4’位としたときの3,3’,5,5’位がメチル基であり、それ以外のRが水素原子であるYX-4000H(三菱ケミカル株式会社、商品名)、全てのRが水素原子である4,4’-ビス(2,3-エポキシプロポキシ)ビフェニル、全てのRが水素原子の場合並びにRのうち酸素原子が置換している位置を4及び4’位としたときの3,3’,5,5’位がメチル基でそれ以外のRが水素原子である場合の混合品であるYL-6121H(三菱ケミカル株式会社、商品名)等が市販品として入手可能である。 The biphenyl type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton. For example, an epoxy resin represented by the following general formula (II) is preferable. Among the epoxy resins represented by the following general formula (II), 3,8',5' and 5'positions are methyl groups when the positions where oxygen atoms are substituted in R 8 are 4 and 4'positions. There, YX-4000H (Mitsubishi Chemical Corporation, trade name) other R 8 is a hydrogen atom, all the R 8 are hydrogen atoms 4,4'-bis (2,3-epoxypropoxy) biphenyl, When all R 8 s are hydrogen atoms, and when the positions where oxygen atoms are substituted in R 8 s are 4 and 4'positions, the 3,3',5,5' positions are methyl groups and the other R When 8 is a hydrogen atom, YL-6121H (Mitsubishi Chemical Corporation, trade name), which is a mixed product, is available as a commercial product.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(II)中、Rは水素原子、炭素数1~12のアルキル基又は炭素数4~18の芳香族基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~2の数を示す。
 なお、式(II)中、Rは、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましい。また、式(II)中、nは、0又は1が好ましく、0がより好ましい。
In the formula (II), R 8 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an aromatic group having 4 to 18 carbon atoms, and all of them may be the same or different. n is an average value and represents a number of 0 to 2.
In the formula (II), R 8 is preferably each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group. Further, in the formula (II), n is preferably 0 or 1, and more preferably 0.
 スチルベン型エポキシ樹脂は、スチルベン骨格を有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(III)で表されるエポキシ樹脂が好ましい。下記一般式(III)で表されるエポキシ樹脂の中でも、Rのうち酸素原子が置換している位置を4及び4’位としたときの3,3’,5,5’位がメチル基であり、それ以外のRが水素原子であり、R10の全てが水素原子である場合と、Rのうち3,3’,5,5’位のうちの3つがメチル基であり、1つがt-ブチル基であり、それ以外のRが水素原子であり、R10の全てが水素原子である場合との混合品であるESLV-210(住友化学株式会社、商品名)等が市販品として入手可能である。 The stilbene type epoxy resin is not particularly limited as long as it is an epoxy resin having a stilbene skeleton. For example, an epoxy resin represented by the following general formula (III) is preferable. Among the epoxy resins represented by the following general formula (III), 3,3′,5,5′ positions are methyl groups when the positions where oxygen atoms are substituted in R 9 are 4 and 4′ positions. And R 9 is a hydrogen atom other than the above, and all of R 10 are hydrogen atoms, and three of the 3, 3′, 5, 5′ positions of R 9 are methyl groups, ESLV-210 (Sumitomo Chemical Co., Ltd., trade name), etc., which is a mixture of one of which is a t-butyl group, the other R 9 is a hydrogen atom, and all R 10 are hydrogen atoms, It is available as a commercial product.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(III)中、R及びR10は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~2の数を示す。
 なお、式(III)中、R及びR10は、それぞれ独立に、水素原子又は炭素数1~5
の1価の有機基が好ましく、水素原子又は炭素数1~4のアルキル基がより好ましい。また、式(III)中、nは、0又は1が好ましく、0がより好ましい。
In formula (III), R 9 and R 10 represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all may be the same or different. n is an average value and represents a number of 0 to 2.
In the formula (III), R 9 and R 10 are each independently a hydrogen atom or a carbon number of 1 to 5
Is preferably a monovalent organic group, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Further, in the formula (III), n is preferably 0 or 1, and more preferably 0.
 ジフェニルメタン型エポキシ樹脂は、ジフェニルメタン骨格を有するエポキシ樹脂であれば特に限定されず、その中でも下記一般式(IV)で表されるエポキシ樹脂が好ましく、ビスフェノールF骨格を有するエポキシ樹脂であるビスフェノールF型エポキシ樹脂がより好ましい。下記一般式(IV)で表されるエポキシ樹脂の中でも、R11の全てが水素原子であり、R12のうち酸素原子が置換している位置を4及び4’位としたときの3,3’,5,5’位がメチル基であり、それ以外のR12が水素原子であるYSLV-80XY(ビスフェノールF型エポキシ樹脂、日鉄ケミカル&マテリアル株式会社、商品名)等が市販品として入手可能である。 The diphenylmethane type epoxy resin is not particularly limited as long as it is an epoxy resin having a diphenylmethane skeleton, and among them, an epoxy resin represented by the following general formula (IV) is preferable, and a bisphenol F type epoxy which is an epoxy resin having a bisphenol F skeleton. Resins are more preferred. Among the epoxy resins represented by the following general formula (IV), all of R 11 are hydrogen atoms, and when R 12 is replaced with oxygen atoms at positions 4 and 4', 3,3 Commercially available YSLV-80XY (bisphenol F type epoxy resin, Nippon Steel Chemical & Material Co., Ltd., trade name) in which the', 5, 5'position is a methyl group and the other R 12 is a hydrogen atom It is possible.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(IV)中、R11及びR12は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~2の数を示す。
 なお、式(IV)中、R11及びR12は、それぞれ独立に、水素原子又は炭素数1~3の1価の有機基が好ましく、水素原子又はメチル基がより好ましい。また、式(IV)中、nは、0又は1が好ましく、0がより好ましい。
In formula (IV), R 11 and R 12 represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. n is an average value and represents a number of 0 to 2.
In formula (IV), R 11 and R 12 are each independently preferably a hydrogen atom or a monovalent organic group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group. Further, in the formula (IV), n is preferably 0 or 1, and more preferably 0.
 硫黄原子含有型エポキシ樹脂は、硫黄原子を含有するエポキシ樹脂であれば特に限定されず、その中でも下記一般式(V)で表されるエポキシ樹脂が好ましく、ビスフェノールS骨格を有するエポキシ樹脂であるビスフェノールS型エポキシ樹脂がより好ましい。下記一般式(V)で表されるエポキシ樹脂の中でも、R13のうち酸素原子が置換している位置を4及び4’位としたときの3,3’位がt-ブチル基であり、6,6’位がメチル基であり、それ以外のR13が水素原子であるYSLV-120TE(ビスフェノールS型エポキシ樹脂、日鉄ケミカル&マテリアル株式会社、商品名)等が市販品として入手可能である。 The sulfur atom-containing epoxy resin is not particularly limited as long as it is a sulfur atom-containing epoxy resin, and among them, an epoxy resin represented by the following general formula (V) is preferable, and a bisphenol S is an epoxy resin having a bisphenol S skeleton. S-type epoxy resin is more preferable. Among the epoxy resins represented by the following general formula (V), when the position where the oxygen atom is substituted in R 13 is 4 and 4′ positions, the 3,3′ positions are t-butyl groups, YSLV-120TE (bisphenol S-type epoxy resin, Nippon Steel Chemical & Materials Co., Ltd., trade name) in which the 6,6′ position is a methyl group and the other R 13 is a hydrogen atom is commercially available. is there.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(V)中、R13は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~2の数を示す。
 なお、式(V)中、R13は、それぞれ独立に、水素原子又は炭素数1~5の1価の有機基が好ましく、水素原子又は炭素数1~4のアルキル基がより好ましい。また、式(V)中、nは、0又は1が好ましく、0がより好ましい。
In formula (V), R 13 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different. n is an average value and represents a number of 0 to 2.
In the formula (V), R 13 's are preferably each independently a hydrogen atom or a monovalent organic group having 1 to 5 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Further, in the formula (V), n is preferably 0 or 1, and more preferably 0.
 組成物に含まれるエポキシ樹脂全体に対する第2のエポキシ樹脂の含有率は、10質量%~80質量%が好ましく、15質量%~70質量%がより好ましく、15質量%~65質量%がさらに好ましく、20質量%~55質量%が特に好ましい。
 第1のエポキシ樹脂100質量部に対する第2のエポキシ樹脂の含有量は、15質量部~150質量部が好ましく、35質量部~150質量部がより好ましく、50質量部~150質量部がさらに好ましく、60質量部~140質量部が特に好ましく、75質量部~125質量部が極めて好ましい。
 また、組成物に含まれる樹脂成分の合計に対する第2のエポキシ樹脂の含有率は、10質量%~70質量%が好ましく、15質量%~70質量%がより好ましく、25質量%~60質量%がさらに好ましく、30質量%~50質量%が特に好ましい。
 また、組成物全体に対する第2のエポキシ樹脂の含有率は、1.0質量%~10質量%が好ましく、1.5質量%~10質量%がより好ましく、2.5質量%~8質量%がさらに好ましく、3質量%~7質量%が特に好ましい。
The content of the second epoxy resin with respect to the total epoxy resin contained in the composition is preferably 10% by mass to 80% by mass, more preferably 15% by mass to 70% by mass, and further preferably 15% by mass to 65% by mass. , 20 mass% to 55 mass% are particularly preferable.
The content of the second epoxy resin with respect to 100 parts by mass of the first epoxy resin is preferably 15 parts by mass to 150 parts by mass, more preferably 35 parts by mass to 150 parts by mass, further preferably 50 parts by mass to 150 parts by mass. , 60 parts by mass to 140 parts by mass, particularly preferably 75 parts by mass to 125 parts by mass.
The content of the second epoxy resin with respect to the total of the resin components contained in the composition is preferably 10% by mass to 70% by mass, more preferably 15% by mass to 70% by mass, and 25% by mass to 60% by mass. Is more preferable, and 30% by mass to 50% by mass is particularly preferable.
The content of the second epoxy resin in the entire composition is preferably 1.0% by mass to 10% by mass, more preferably 1.5% by mass to 10% by mass, and 2.5% by mass to 8% by mass. Is more preferable, and 3% by mass to 7% by mass is particularly preferable.
-他のエポキシ樹脂-
 組成物は、必要に応じて、第1のエポキシ樹脂及び第2のエポキシ樹脂以外の他のエポキシ樹脂を含んでもよい。
 他のエポキシ樹脂は、第1のエポキシ樹脂及び第2のエポキシ樹脂以外のエポキシ樹脂であれば特に限定されるものではなく、ノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、共重合型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、アルコール類のグリシジルエーテルであるエポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン変性エポキシ樹脂、脂環型エポキシ樹脂、パラキシリレン変性エポキシ樹脂、メタキシリレン変性エポキシ樹脂、テルペン変性エポキシ樹脂、ジシクロペンタジエン変性エポキシ樹脂、シクロペンタジエン変性エポキシ樹脂、多環芳香環変性エポキシ樹脂、ナフタレン型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、線状脂肪族エポキシ樹脂、アラルキル型エポキシ樹脂、シリコーン樹脂のエポキシ化物、アクリル樹脂のエポキシ化物等が挙げられ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-Other epoxy resins-
The composition may optionally contain an epoxy resin other than the first epoxy resin and the second epoxy resin.
The other epoxy resin is not particularly limited as long as it is an epoxy resin other than the first epoxy resin and the second epoxy resin, a novolac type epoxy resin, a triphenylmethane type epoxy resin, a copolymerization type epoxy resin, Diphenylmethane type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, sulfur atom-containing epoxy resin, epoxy resin which is a glycidyl ether of alcohols, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, dicyclopentadiene modified epoxy resin , Alicyclic epoxy resin, paraxylylene modified epoxy resin, metaxylylene modified epoxy resin, terpene modified epoxy resin, dicyclopentadiene modified epoxy resin, cyclopentadiene modified epoxy resin, polycyclic aromatic ring modified epoxy resin, naphthalene type epoxy resin, halogenated Phenol novolac type epoxy resin, hydroquinone type epoxy resin, trimethylolpropane type epoxy resin, linear aliphatic epoxy resin, aralkyl type epoxy resin, epoxidized silicone resin, epoxidized acrylic resin, etc. Or may be used in combination of two or more kinds.
 他のエポキシ樹脂は、目的に応じて選択してもよい。高温低弾性率及び低吸水性の観点から、他のエポキシ樹脂の中でも第3のエポキシ樹脂として、ビフェニレンアラルキル型エポキシ樹脂、キシリレンアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂を用いてもよい。
 上記第3のエポキシ樹脂は、第1のエポキシ樹脂及び第2のエポキシ樹脂以外のエポキシ樹脂のうち、アラルキル型エポキシ樹脂が好ましく、その中でも、ビフェニレンアラルキル型エポキシ樹脂及びキシリレンアラルキル型エポキシ樹脂がより好ましい。第3のエポキシ樹脂は、ナフタレン骨格を有さないことが好ましい。また、第3のエポキシ樹脂は、ナフタレン環以外の芳香環を含む骨格を有することが好ましく、その中でもビフェニル骨格を有することがより好ましく、ビフェニル骨格を有するビフェニレンアラルキル型エポキシ樹脂であることがより好ましい。
 ビフェニル骨格を有するアラルキル型エポキシ樹脂(すなわち、ビフェニレンアラルキル型エポキシ樹脂)である第3のエポキシ樹脂としては、下記一般式(VI)で表されるエポキシ樹脂が挙げられる。
 なお、キシリレンアラルキル型エポキシ樹脂としては、下記一般式(VI)におけるビフェニレン骨格をキシリレン骨格に置き換えた構造のエポキシ樹脂が挙げられる。
Other epoxy resins may be selected according to the purpose. From the viewpoint of high temperature low elastic modulus and low water absorption, an aralkyl type epoxy resin such as a biphenylene aralkyl type epoxy resin or a xylylene aralkyl type epoxy resin may be used as the third epoxy resin among other epoxy resins.
Of the epoxy resins other than the first epoxy resin and the second epoxy resin, the third epoxy resin is preferably an aralkyl type epoxy resin, and among them, a biphenylene aralkyl type epoxy resin and a xylylene aralkyl type epoxy resin are more preferable. preferable. The third epoxy resin preferably does not have a naphthalene skeleton. Further, the third epoxy resin preferably has a skeleton containing an aromatic ring other than the naphthalene ring, more preferably has a biphenyl skeleton, and is more preferably a biphenylene aralkyl type epoxy resin having a biphenyl skeleton. ..
Examples of the third epoxy resin which is an aralkyl type epoxy resin having a biphenyl skeleton (that is, a biphenylene aralkyl type epoxy resin) include an epoxy resin represented by the following general formula (VI).
Examples of the xylylene aralkyl type epoxy resin include epoxy resins having a structure in which the biphenylene skeleton in the following general formula (VI) is replaced with a xylylene skeleton.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(VI)中、R14~R17は、それぞれ独立に、炭素数1~18の1価の有機基を示し、a6~a8は、それぞれ独立に、0~4の整数を示し、a9は0~3の整数を示し、m2は1~3を示す。 In the general formula (VI), R 14 to R 17 each independently represent a monovalent organic group having 1 to 18 carbon atoms, and a 6 to a 8 each independently represent an integer of 0 to 4, a9 represents an integer of 0 to 3, and m2 represents 1 to 3.
 一般式(VI)中のR14~R17で示される炭素数1~18の1価の有機基としては、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基、置換又は非置換のアリール基、置換又は非置換のアラルキル基等が挙げられる。
 一般式(VI)中のa6~a9は、0~1の整数であることが好ましく、0であることがより好ましい。
 一般式(VI)中のm2は、1~2であることが好ましく、1であることがより好ましい。
Examples of the monovalent organic group having 1 to 18 carbon atoms represented by R 14 to R 17 in the general formula (VI) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
In the general formula (VI), a6 to a9 are preferably integers of 0 to 1, and more preferably 0.
M2 in the general formula (VI) is preferably 1 to 2, and more preferably 1.
 第3のエポキシ樹脂の150℃における粘度は、0.02Pa・secより高くてもよく、0.02Pa・sec~0.1Pa・secの範囲が挙げられ、流動性の観点から、0.02Pa・sec~0.08Pa・secであることが好ましく、0.02Pa・sec~0.06Pa・secであることがより好ましい。
 第3のエポキシ樹脂の数平均分子量は、200~1200の範囲が挙げられ、流動性の観点から、250~700であることが好ましく、300~600であることがより好ましい。
 第3のエポキシ樹脂におけるエポキシ当量は、180g/eq~320g/eqの範囲が挙げられ、硬化性の観点から200g/eq~300g/eqが好ましく、230g/eq~280g/eqがより好ましい。
 第3のエポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されず、例えば40℃~130℃の範囲が挙げられ、封止用樹脂組成物の調製の際の取扱い性の観点から、50℃~130℃であることが好ましく、50℃~100℃であることがより好ましい。
The viscosity of the third epoxy resin at 150° C. may be higher than 0.02 Pa·sec, and may be in the range of 0.02 Pa·sec to 0.1 Pa·sec. From the viewpoint of fluidity, 0.02 Pa·sec. It is preferably from sec to 0.08 Pa·sec, more preferably from 0.02 Pa·sec to 0.06 Pa·sec.
The number average molecular weight of the third epoxy resin is, for example, in the range of 200 to 1200. From the viewpoint of fluidity, it is preferably 250 to 700, and more preferably 300 to 600.
The epoxy equivalent in the third epoxy resin is in the range of 180 g/eq to 320 g/eq, preferably 200 g/eq to 300 g/eq, and more preferably 230 g/eq to 280 g/eq from the viewpoint of curability.
When the third epoxy resin is a solid, its softening point or melting point is not particularly limited and may be, for example, in the range of 40° C. to 130° C., from the viewpoint of handleability during preparation of the encapsulating resin composition. 50° C. to 130° C. is preferable, and 50° C. to 100° C. is more preferable.
 組成物に含まれるエポキシ樹脂全体に対する第3のエポキシ樹脂の含有率は、2質量%~60質量%の範囲が挙げられ、ガラス転移温度及び流動性を維持しつつ高温弾性率を低くする観点から、10質量%~50質量%が好ましく、20質量%~40質量%がより好ましい。
 また、組成物に含まれる樹脂成分の合計に対する第3のエポキシ樹脂の含有率は、5質量%~40質量%の範囲が挙げられ、ガラス転移温度及び流動性を維持しつつ高温弾性率を低くする観点から、10質量%~30質量%が好ましく、15質量%~25質量%がより好ましい。
 また、組成物全体に対する第3のエポキシ樹脂の含有率は、0.5質量%~7質量%の範囲が挙げられ、1質量%~5質量%が好ましく、1.5質量%~4質量%がより好ましい。
The content of the third epoxy resin with respect to the total epoxy resin contained in the composition is in the range of 2% by mass to 60% by mass, and from the viewpoint of lowering the high temperature elastic modulus while maintaining the glass transition temperature and the fluidity. 10% by mass to 50% by mass is preferable, and 20% by mass to 40% by mass is more preferable.
The content of the third epoxy resin with respect to the total of the resin components contained in the composition is in the range of 5% by mass to 40% by mass, and the high temperature elastic modulus is low while maintaining the glass transition temperature and the fluidity. From this viewpoint, 10% by mass to 30% by mass is preferable, and 15% by mass to 25% by mass is more preferable.
The content of the third epoxy resin in the entire composition is in the range of 0.5% by mass to 7% by mass, preferably 1% by mass to 5% by mass, and 1.5% by mass to 4% by mass. Is more preferable.
(硬化剤)
 組成物は、硬化剤の少なくとも1種を含む。硬化剤はエポキシ樹脂を含む封止用樹脂組成物に一般に使用されているものでよく、特に制限はない。
 硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は、流動性を維持しつつ耐リフロー性に優れるエポキシ樹脂組成物を得る観点から、フェノール硬化剤、アミン硬化剤、及び酸無水物硬化剤が好ましく、フェノール硬化剤がより好ましい。
(Curing agent)
The composition comprises at least one hardener. The curing agent may be one generally used in encapsulating resin compositions containing an epoxy resin and is not particularly limited.
Examples of the curing agent include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent, and a blocked isocyanate curing agent. From the viewpoint of obtaining an epoxy resin composition having excellent reflow resistance while maintaining fluidity, the curing agent is preferably a phenol curing agent, an amine curing agent, and an acid anhydride curing agent, and more preferably a phenol curing agent.
 フェノール硬化剤としては、例えば、1分子中に2個以上のフェノール性水酸基を有するフェノール樹脂及び多価フェノール化合物が挙げられる。具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等と、から合成されるアラルキル型フェノール樹脂(フェノールアラルキル樹脂、ナフトールアラルキル樹脂等);パラキシリレン変性フェノール樹脂;メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物とジシクロペンタジエンとの共重合により合成されるジシクロペンタジエン変性フェノール樹脂及びジシクロペンタジエン変性ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂;などが挙げられる。これらのフェノール樹脂及び多価フェノール化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 フェノール硬化剤は、これらの中でも、ノボラック型フェノール樹脂、アラルキル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂が好ましい。
Examples of the phenol curing agent include a phenol resin having two or more phenolic hydroxyl groups in one molecule and a polyhydric phenol compound. Specifically, polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, etc. Of a phenol compound and at least one phenolic compound selected from the group consisting of naphthol compounds such as α-naphthol, β-naphthol, and dihydroxynaphthalene, and an aldehyde compound such as formaldehyde, acetaldehyde, and propionaldehyde under an acidic catalyst. A novolak type phenol resin obtained by condensation or co-condensation; an aralkyl type phenol resin synthesized from the above phenolic compound and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc. (phenol aralkyl resin, naphthol aralkyl resin, etc.) Paraxylylene-modified phenol resin; metaxylylene-modified phenol resin; melamine-modified phenol resin; terpene-modified phenol resin; dicyclopentadiene-modified phenol resin and dicyclopentadiene-modified naphthol resin synthesized by copolymerization of the above phenolic compound and dicyclopentadiene Cyclopentadiene modified phenol resin; polycyclic aromatic ring modified phenol resin; biphenyl type phenol resin; obtained by condensing or co-condensing the above phenolic compound with an aromatic aldehyde compound such as benzaldehyde and salicylaldehyde under an acidic catalyst. A triphenylmethane type phenolic resin; a phenolic resin obtained by copolymerizing two or more of these. These phenol resins and polyhydric phenol compounds may be used alone or in combination of two or more.
Among these, the phenol curing agent is preferably a novolac type phenol resin, an aralkyl type phenol resin, and a triphenylmethane type phenol resin.
 硬化剤の150℃における粘度は、流動性と硬化物の高Tgとを両立させる観点から、0.02Pa・sec~0.5Pa・secであることが好ましく、0.05Pa・sec~0.4Pa・secであることがより好ましく、0.1Pa・sec~0.3Pa・secであることがさらに好ましい。 The viscosity of the curing agent at 150° C. is preferably 0.02 Pa·sec to 0.5 Pa·sec, and 0.05 Pa·sec to 0.4 Pa from the viewpoint of achieving both fluidity and high Tg of the cured product. -Sec is more preferable, and 0.1 Pa-sec to 0.3 Pa-sec is further preferable.
 硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、封止用樹脂組成物の製造時における取扱い性の観点からは、軟化点又は融点は、50℃~130℃であることがより好ましく、55℃~100℃であることがさらに好ましい。
 硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。
When the curing agent is solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and reflow resistance, it is preferably 40° C. to 180° C., and from the viewpoint of handleability during production of the encapsulating resin composition, the softening point or melting point is 50° C. to 130° C. Is more preferable, and 55° C. to 100° C. is further preferable.
The melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
 硬化剤の数平均分子量は、特に限定されるものではなく、100~5000の範囲が挙げられ、流動性の観点から100~2000であることが好ましく、100~1500であることがより好ましい。 The number average molecular weight of the curing agent is not particularly limited and may be in the range of 100 to 5000. From the viewpoint of fluidity, it is preferably 100 to 2000, more preferably 100 to 1500.
 硬化剤の官能基当量は特に制限されず、高温低弾性率、高Tg、及び流動性のバランスの観点から、70g/eq~1000g/eqが好ましく、80g/eq~500g/eqがより好ましく、85g/eq~300g/eqがさらに好ましく、90g/eq~200g/eqが特に好ましい。
なお、官能基当量は、JIS K0070:1992に準拠して測定された値をいう。
The functional group equivalent of the curing agent is not particularly limited, and is preferably 70 g/eq to 1000 g/eq, more preferably 80 g/eq to 500 g/eq, from the viewpoint of a balance between high temperature low elastic modulus, high Tg, and fluidity. 85 g/eq to 300 g/eq is more preferable, and 90 g/eq to 200 g/eq is particularly preferable.
The functional group equivalent refers to a value measured according to JIS K0070:1992.
-第1の硬化剤-
 特に、硬化剤として、高温低弾性率、高Tg、及び流動性のバランスの観点から、官能基当量が120g/eq未満である硬化剤(以下「第1の硬化剤」ともいう)を用いることが好ましい。
 第1の硬化剤としては、フェノール硬化剤(すなわち、フェノール樹脂及び多価フェノール化合物)が挙げられ、その中でもフェノール樹脂が好ましく、ノボラック型フェノール樹脂、アラルキル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂が好ましく、ノボラック型フェノール樹脂及びトリフェニルメタン型フェノール樹脂がより好ましい。
-First curing agent-
In particular, as the curing agent, a curing agent having a functional group equivalent of less than 120 g/eq (hereinafter, also referred to as “first curing agent”) is used from the viewpoint of a balance between high temperature low elastic modulus, high Tg, and fluidity. Is preferred.
Examples of the first curing agent include a phenol curing agent (that is, a phenol resin and a polyphenol compound), and among them, a phenol resin is preferable, and a novolac type phenol resin, an aralkyl type phenol resin, and a triphenylmethane type phenol resin. Are preferred, and novolac type phenolic resins and triphenylmethane type phenolic resins are more preferred.
 ノボラック型フェノール樹脂としては、下記一般式(VII)で表されるフェノール樹脂が挙げられる。 Examples of novolac type phenolic resins include phenolic resins represented by the following general formula (VII).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(VII)中、R31~R33は、それぞれ独立に、炭素数1~18の1価の有機基を示し、b11は0~4の整数を示し、b12は0~3の整数を示し、b13は0~4の整数を示し、n4は0~3を示す。 In the general formula (VII), R 31 to R 33 each independently represent a monovalent organic group having 1 to 18 carbon atoms, b11 represents an integer of 0 to 4 and b12 represents an integer of 0 to 3. B13 is an integer of 0 to 4, and n4 is 0 to 3.
 一般式(VII)中のR31~R33で示される炭素数1~18の1価の有機基としては、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基、置換又は非置換のアリール基、及び置換又は非置換のアラルキル基等が挙げられる。
 一般式(VII)中のb11~b13は、0~1の整数であることが好ましく、0であることがより好ましい。
 一般式(VII)中のn4は、0~2であることが好ましく、0~1あることがより好ましい。
Examples of the monovalent organic group having 1 to 18 carbon atoms represented by R 31 to R 33 in the general formula (VII) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
B11 to b13 in the general formula (VII) are preferably integers of 0 to 1, and more preferably 0.
N4 in the general formula (VII) is preferably 0 to 2, and more preferably 0 to 1.
 トリフェニルメタン型フェノール樹脂としては、下記一般式(VIII)で表されるフェノール樹脂が挙げられる。 Examples of the triphenylmethane type phenol resin include a phenol resin represented by the following general formula (VIII).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(VIII)中、R26~R30は、それぞれ独立に、炭素数1~18の1価の有機基を示し、b6~b7は、それぞれ独立に、0~4の整数を示し、b8は0~3の整数を示し、b9~b10は、それぞれ独立に、0~4の整数を示し、n3は0~3を示す。 In the general formula (VIII), R 26 to R 30 each independently represent a monovalent organic group having 1 to 18 carbon atoms, and b 6 to b 7 each independently represent an integer of 0 to 4, b8 represents an integer of 0 to 3, b9 to b10 each independently represents an integer of 0 to 4, and n3 represents 0 to 3.
 一般式(VIII)中のR26~R30で示される炭素数1~18の1価の有機基としては、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基、置換又は非置換のアリール基、及び置換又は非置換のアラルキル基等が挙げられる。
 一般式(VIII)中のb6~b10は、0~1の整数であることが好ましく、0であることがより好ましい。
 一般式(VIII)中のn3は、1~2であることが好ましく、1あることがより好ましい。
Examples of the monovalent organic group having 1 to 18 carbon atoms represented by R 26 to R 30 in the general formula (VIII) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
In general formula (VIII), b6 to b10 are preferably integers of 0 to 1, and more preferably 0.
N3 in the general formula (VIII) is preferably 1 to 2, and more preferably 1.
-第2の硬化剤-
 組成物が第1の硬化剤を含む場合、組成物は必要に応じてガラス転移温度及び流動性を維持しつつ高温弾性率をさらに低くする観点で、第1の硬化剤に加え、官能基当量が120g/eq以上である硬化剤(以下「第2の硬化剤」ともいう)をさらに含んでもよい。
 第2の硬化剤としては、フェノール硬化剤(すなわち、フェノール樹脂及び多価フェノール化合物)が挙げられ、その中でもフェノール樹脂が好ましく、ノボラック型フェノール樹脂、アラルキル型フェノール、及びトリフェニルメタン型フェノール樹脂が好ましく、アラルキル型フェノール樹脂がより好ましく、ビフェニル骨格を有するアラルキル型フェノール樹脂がさらに好ましい。
 また、組成物が第1の硬化剤及び第2の硬化剤を含む場合、第1の硬化剤と第2の硬化剤の好ましい組み合わせとしては、トリフェニルメタン型フェノール樹脂である第1の硬化剤とアラルキル型フェノール樹脂である第2の硬化剤との組み合わせが挙げられる。
-Second curing agent-
When the composition contains a first curing agent, the composition has a functional group equivalent in addition to the first curing agent, from the viewpoint of further lowering the high temperature elastic modulus while maintaining the glass transition temperature and the fluidity as necessary. May be 120 g/eq or more (hereinafter, also referred to as "second curing agent").
Examples of the second curing agent include a phenol curing agent (that is, a phenol resin and a polyphenol compound), and among them, a phenol resin is preferable, and a novolac type phenol resin, an aralkyl type phenol, and a triphenylmethane type phenol resin are preferable. The aralkyl-type phenol resin is more preferable, and the aralkyl-type phenol resin having a biphenyl skeleton is further preferable.
When the composition contains the first curing agent and the second curing agent, a preferable combination of the first curing agent and the second curing agent is a first curing agent which is a triphenylmethane type phenol resin. And a second curing agent which is an aralkyl-type phenol resin.
 ビフェニル骨格を有するアラルキル型フェノール樹脂としては、下記一般式(IX)で表されるフェノール樹脂が挙げられる。 Examples of the aralkyl type phenol resin having a biphenyl skeleton include a phenol resin represented by the following general formula (IX).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記一般式(IX)中、R21~R25は、それぞれ独立に、炭素数1~18の1価の有機基を示し、b1~b3は、それぞれ独立に、0~4の整数を示し、b4~b5は、それぞれ独立に、0~3の整数を示し、n1は1~3を示し、n2は0~3を示す。 In the general formula (IX), R 21 to R 25 each independently represent a monovalent organic group having 1 to 18 carbon atoms, and b 1 to b 3 each independently represent an integer of 0 to 4, b4 to b5 each independently represent an integer of 0 to 3, n1 represents 1 to 3 and n2 represents 0 to 3.
 一般式(IX)中のR21~R25で示される炭素数1~18の1価の有機基としては、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基、置換又は非置換のアリール基、及び置換又は非置換のアラルキル基等が挙げられる。
 一般式(IX)中のb1~b5は、0~1の整数であることが好ましく、0であることがより好ましい。
 一般式(IX)中のn1は、1~2であることが好ましく、1であることがより好ましい。
 一般式(IX)中のn2は、0~2であることが好ましく、0~1であることがより好ましい。
The monovalent organic group having 1 to 18 carbon atoms represented by R 21 to R 25 in the general formula (IX) includes a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted Examples thereof include an aryl group and a substituted or unsubstituted aralkyl group.
In the general formula (IX), b1 to b5 are preferably integers of 0 to 1, and more preferably 0.
N1 in the general formula (IX) is preferably 1 to 2, and more preferably 1.
N2 in the general formula (IX) is preferably 0 to 2, and more preferably 0-1.
-硬化剤の含有率等-
 組成物に含まれる全エポキシ樹脂(すなわち、第1のエポキシ樹脂及び第2のエポキシ樹脂を含むエポキシ樹脂全体)100質量部に対する硬化剤全体の含有量は、10質量部~50質量部が好ましく、15質量部~40質量部がより好ましく、20質量部~35質量部がさらに好ましい。
 また、組成物に含まれる樹脂成分の合計に対する硬化剤全体の含有率は、5.0質量%~35質量%が好ましく、10質量%~30質量%がより好ましく、15質量%~25質量%がさらに好ましい。
 また、組成物全体に対する硬化剤全体の含有率は、0.5質量%~5.0質量%が好ましく、1.0質量%~3.0質量%がより好ましく、1.5質量%~2.5質量%がさらに好ましい。
-Curing agent content-
The content of the entire curing agent is preferably 10 parts by mass to 50 parts by mass with respect to 100 parts by mass of all the epoxy resins (that is, the entire epoxy resin including the first epoxy resin and the second epoxy resin) contained in the composition, 15 to 40 parts by mass is more preferable, and 20 to 35 parts by mass is further preferable.
The content of the entire curing agent with respect to the total of the resin components contained in the composition is preferably 5.0% by mass to 35% by mass, more preferably 10% by mass to 30% by mass, and 15% by mass to 25% by mass. Is more preferable.
The content of the entire curing agent with respect to the entire composition is preferably 0.5% by mass to 5.0% by mass, more preferably 1.0% by mass to 3.0% by mass, and 1.5% by mass to 2% by mass. More preferably, it is 0.5% by mass.
 第1の硬化剤と第2の硬化剤とを併用する場合、第1の硬化剤100質量部に対する第2の硬化剤の含有量は、40質量部~100質量部が好ましく、50質量部~90質量部がより好ましく、55質量部~85質量部がさらに好ましい。 When the first curing agent and the second curing agent are used in combination, the content of the second curing agent with respect to 100 parts by weight of the first curing agent is preferably 40 parts by mass to 100 parts by mass, and 50 parts by mass or more. 90 parts by mass is more preferable, and 55 parts by mass to 85 parts by mass is further preferable.
 エポキシ樹脂と硬化剤の配合比は、それぞれの未反応分を少なく抑える観点からは、エポキシ樹脂のエポキシ基の数に対する硬化剤の官能基(フェノール硬化剤の場合はフェノール性水酸基)の数の比(硬化剤の官能基数/エポキシ樹脂のエポキシ基数)が0.5~2.0の範囲内となるように設定されることが好ましく、0.6~1.3の範囲内となるように設定されることがより好ましく、0.8~1.2の範囲内となるように設定されることがさらに好ましい。 The mixing ratio of the epoxy resin and the curing agent is the ratio of the number of functional groups of the curing agent (phenolic hydroxyl group in the case of a phenol curing agent) to the number of epoxy groups of the epoxy resin from the viewpoint of suppressing the unreacted content of each. (Functional group number of curing agent/Epoxy group number of epoxy resin) is preferably set within a range of 0.5 to 2.0, and set within a range of 0.6 to 1.3. Is more preferable, and it is still more preferable to set it in the range of 0.8 to 1.2.
(硬化促進剤)
 組成物は、必要に応じて、さらに硬化促進剤を含んでもよい。硬化促進剤は、組成物に含まれるエポキシ樹脂と硬化剤との反応を促進する化合物であれば限定されるものではない。
(Curing accelerator)
The composition may further contain a curing accelerator if necessary. The curing accelerator is not limited as long as it is a compound that accelerates the reaction between the epoxy resin contained in the composition and the curing agent.
 硬化促進剤としては、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、1,5-ジアザ-ビシクロ(4,3,0)ノネン、5、6-ジブチルアミノ-1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等のシクロアミジン化合物;前記シクロアミジン化合物に、無水マレイン酸、キノン化合物(例えば、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、及びフェニル-1,4-ベンゾキノン)、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール類及びこれらの誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等のホスフィン化合物;上記ホスフィン化合物に、無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体;などが挙げられる。これらの硬化促進剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 As the curing accelerator, 1,8-diaza-bicyclo(5,4,0)undecene-7,1,5-diaza-bicyclo(4,3,0)nonene, 5,6-dibutylamino-1,8 A cycloamidine compound such as diaza-bicyclo(5,4,0)undecene-7; maleic anhydride, a quinone compound (eg, 1,4-benzoquinone, 2,5-toluquinone, 1,4 -Naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and phenyl-1, 4-benzoquinone), diazophenylmethane, a compound having an intramolecular polarization formed by adding a compound having a π bond such as phenol resin; benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, etc. And their derivatives; imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and the like; derivatives thereof; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris( 4-Methylphenyl)phosphine, diphenylphosphine, phenylphosphine, and other phosphine compounds; intramolecularly formed by adding a compound having a π bond such as maleic anhydride, the above quinone compound, diazophenylmethane, or phenol resin to the above phosphine compound Phosphorus compounds having polarization; Tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, tetraphenylboron salts such as N-methylmorpholine tetraphenylborate and derivatives thereof; And so on. These curing accelerators may be used alone or in combination of two or more.
 組成物が硬化促進剤を含む場合、組成物全体に対する硬化促進剤の含有率は、硬化促進効果が達成される量であれば特に制限されるものではなく、0.005質量%~2質量%が好ましく、0.01質量%~0.5質量%がより好ましい。 When the composition contains a curing accelerator, the content of the curing accelerator with respect to the entire composition is not particularly limited as long as the curing promoting effect is achieved, and is 0.005% by mass to 2% by mass. Is preferable, and 0.01% by mass to 0.5% by mass is more preferable.
(無機充填剤)
 組成物は、必要に応じて、さらに無機充填剤を含んでもよい。無機充填剤は、例えば、吸湿性、線膨張係数低減、熱伝導性向上、及び強度向上の目的で用いることができる。
(Inorganic filler)
The composition may optionally further comprise an inorganic filler. The inorganic filler can be used, for example, for the purpose of hygroscopicity, reduction of linear expansion coefficient, improvement of thermal conductivity, and improvement of strength.
 無機充填剤の種類は、特に制限されない。具体的には、球状シリカ(例えば、溶融シリカ)、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填剤を用いてもよい。難燃効果を有する無機充填剤としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛、モリブデン酸亜鉛などが挙げられる。
 無機充填剤の形状としては粉未、粉末を球形化したビーズ、繊維等が挙げられる。
The type of inorganic filler is not particularly limited. Specifically, spherical silica (for example, fused silica), crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, Inorganic materials such as zirconia, zircon, fosterite, steatite, spinel, mullite, titania, talc, clay and mica can be mentioned. You may use the inorganic filler which has a flame retardant effect. Examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, complex metal hydroxides such as complex hydroxide of magnesium and zinc, zinc borate, and zinc molybdate.
Examples of the shape of the inorganic filler include non-powder, spherical beads, fibers, and the like.
 これらの無機充填剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。なかでも、充填性、線膨張係数の低減の観点からは球状シリカが、高熱伝導性の観点からはアルミナが好ましい。無機充填剤の形状は充填性及び金型摩耗性の点から球形が好ましい。 These inorganic fillers may be used alone or in combination of two or more. Among them, spherical silica is preferable from the viewpoint of filling property and reduction of linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity. The shape of the inorganic filler is preferably spherical from the viewpoints of filling properties and mold abrasion properties.
 組成物が無機充填剤を含む場合、組成物全体に対する無機充填剤の含有率は、難燃性、成形性、吸湿性、線膨張係数低減、強度向上及び耐リフロー性の観点から、60質量%以上が好ましく、60質量%~95質量%が難燃性の観点からより好ましく、70質量%~90質量%がさらに好ましい。 When the composition contains an inorganic filler, the content of the inorganic filler with respect to the entire composition is 60% by mass from the viewpoint of flame retardancy, moldability, hygroscopicity, linear expansion coefficient reduction, strength improvement and reflow resistance. The above is preferable, 60 mass% to 95 mass% is more preferable from the viewpoint of flame retardancy, and 70 mass% to 90 mass% is further preferable.
(カップリング剤)
 組成物が無機充填剤を含む場合、組成物は、必要に応じて、樹脂成分と無機充填剤との接着性を高めるために、さらにカップリング剤を含んでもよい。
 カップリング剤としては、エポキシ樹脂を含む封止用樹脂組成物に一般に使用されているものであればよく、特に制限はなく、1級アミノ基、2級アミノ基、及び3級アミノ基の少なくとも1種を有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物などが挙げられる。
 耐リフロー性の観点からは、カップリング剤として上記シラン化合物を用いることが好ましく、中でも分子内に2級アミノ基を有するシラン化合物を用いることがより好ましい。
(Coupling agent)
When the composition contains an inorganic filler, the composition may further contain a coupling agent, if necessary, in order to enhance the adhesiveness between the resin component and the inorganic filler.
The coupling agent is not particularly limited as long as it is generally used in a sealing resin composition containing an epoxy resin, and at least a primary amino group, a secondary amino group, and a tertiary amino group. Examples include silane compounds having one kind, various silane compounds such as epoxysilane, mercaptosilane, alkylsilane, ureidosilane, and vinylsilane, titanium compounds, aluminum chelates, and aluminum/zirconium compounds.
From the viewpoint of reflow resistance, it is preferable to use the above silane compound as a coupling agent, and it is more preferable to use a silane compound having a secondary amino group in the molecule.
 組成物がカップリング剤を含む場合、カップリング剤の量は、無機充填剤100質量部に対して0.05質量部~5質量部であることが好ましく、0.1質量部~2.5質量部であることがより好ましい。カップリング剤の量が無機充填剤100質量部に対して0.05質量部以上であると、フレームとの接着性がより向上する傾向にある。カップリング剤の量が無機充填剤100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the composition contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass, and 0.1 parts by mass to 2.5 parts by mass with respect to 100 parts by mass of the inorganic filler. More preferably, it is parts by mass. When the amount of the coupling agent is 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler, the adhesiveness with the frame tends to be further improved. When the amount of the coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
(離型剤)
 組成物は、必要に応じて、成形時における金型との良好な離型性を得る観点から、さらに離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。離型剤として、具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The composition may further contain a mold release agent, if necessary, from the viewpoint of obtaining good mold releasability from the mold during molding. The release agent is not particularly limited, and conventionally known ones can be used. Specific examples of the release agent include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid ester, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. Can be mentioned. The release agents may be used alone or in combination of two or more.
 組成物が離型剤を含む場合、離型剤の量は、樹脂成分100質量部に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性が得られる傾向にある。 When the composition contains a releasing agent, the amount of the releasing agent is preferably 0.01 parts by mass to 10 parts by mass, more preferably 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the resin component. When the amount of the release agent is 0.01 parts by mass or more with respect to 100 parts by mass of the resin component, the releasability tends to be sufficiently obtained. When it is 10 parts by mass or less, better adhesiveness tends to be obtained.
(着色剤)
 組成物は、必要に応じて、さらに着色剤を含んでもよい。着色剤としては、カーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Colorant)
The composition may further contain a colorant, if desired. Examples of the colorant include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, red lead and red iron oxide. The content of the colorant can be appropriately selected according to the purpose and the like. The colorants may be used alone or in combination of two or more.
(応力緩和剤)
 組成物は、必要に応じて、さらに応力緩和剤を含んでもよい。応力緩和剤を含むことにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。
 応力緩和剤としては、シリコーンオイル、シリコーンゴム粒子等、一般に使用されている公知の応力緩和剤(可とう剤)が挙げられる。応力緩和剤として、具体的には、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Stress relaxation agent)
The composition may optionally further comprise a stress relieving agent. By including the stress relaxation agent, the warp deformation of the package and the occurrence of package cracks can be further reduced.
Examples of the stress relaxation agent include known stress relaxation agents (flexible agents) generally used such as silicone oil and silicone rubber particles. Specific examples of stress relaxation agents include thermoplastic elastomers such as silicone-based, styrene-based, olefin-based, urethane-based, polyester-based, polyether-based, polyamide-based and polybutadiene-based thermoplastic elastomers, NR (natural rubber), NBR (acrylonitrile- (Butadiene rubber), acrylic rubber, urethane rubber, rubber particles such as silicone powder, methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer Rubber particles having a core-shell structure such as The stress relaxation agent may be used alone or in combination of two or more kinds.
(その他添加剤)
 組成物は、必要に応じて、さらにその他添加剤を含んでもよい。
 その他添加剤としては、難燃剤、陰イオン交換体、密着付与剤等が挙げられる。また、組成物には、必要に応じて当技術分野で周知の各種添加剤を添加してもよい。
(Other additives)
The composition may further contain other additives, if necessary.
Other additives include flame retardants, anion exchangers, adhesion promoters and the like. Further, various additives well known in the art may be added to the composition, if necessary.
(封止用樹脂組成物の調製方法)
 組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に撹拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
(Method for preparing encapsulating resin composition)
The method for preparing the composition is not particularly limited. As a general method, there can be mentioned a method in which predetermined amounts of components are sufficiently mixed with a mixer or the like, then melt-kneaded with a mixing roll, an extruder or the like, cooled, and pulverized. More specifically, for example, a method of uniformly agitating and mixing predetermined amounts of the above-mentioned components, kneading with a kneader, roll, extruder or the like preheated to 70° C. to 140° C., cooling, and pulverizing. Can be mentioned.
 組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であることが好ましい。組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。硬化性樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。 The composition is preferably solid at room temperature and atmospheric pressure (for example, 25° C. and atmospheric pressure). The shape of the composition when it is a solid is not particularly limited, and examples thereof include powder, granules, and tablets. From the viewpoint of handleability, it is preferable that the size and weight of the curable resin composition when it is in the form of a tablet be such that it meets the molding conditions of the package.
(封止用樹脂組成物の用途)
 組成物の用途は特に制限されず、種々の電子部品装置に用いることができる。上述したように、本開示の組成物は、高温における弾性率が低くガラス転移温度が高い硬化物が得られ、かつ、流動性が高い。そのため、本開示の組成物は、特に、基板のトップ面及びボトム面の両方にチップを搭載させて高密度に実装するDSMの狭ギャップに充填するモールドアンダーフィル材としても、好適に用いられる。
(Use of sealing resin composition)
The use of the composition is not particularly limited, and the composition can be used in various electronic component devices. As described above, the composition of the present disclosure provides a cured product having a low elastic modulus at a high temperature and a high glass transition temperature, and has high fluidity. Therefore, the composition of the present disclosure is particularly suitable for use as a mold underfill material that fills a narrow gap of a DSM in which chips are mounted on both the top surface and the bottom surface of a substrate for high-density mounting.
<電子部品装置>
 本発明の実施形態に係る電子部品装置は、素子と、前記素子を封止する上述の封止用樹脂組成物の硬化物と、を備える。
 電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材又は実装基板に、素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載し、必要な部分を上述の封止用樹脂組成物で封止した、電子部品装置などが挙げられる。
<Electronic component device>
An electronic component device according to an embodiment of the present invention includes an element and a cured product of the above sealing resin composition that seals the element.
As an electronic component device, elements (semiconductor chips, transistors, diodes, active elements such as thyristors, active elements such as thyristors, capacitors, resistors) are mounted on support members or mounting substrates such as lead frames, pre-wired tape carriers, wiring boards, glass, and silicon wafers. , Passive elements such as coils, etc. are mounted and necessary parts are sealed with the above-mentioned sealing resin composition.
 ここで、実装基板としては特に制限するものではなく、具体例としては、有機基板、有機フィルム、セラミック基板、ガラス基板等のインターポーザ基板、液晶用ガラス基板、MCM(Multi Chip Module)用基板、ハイブリットIC用基板等が挙げられる。 Here, the mounting substrate is not particularly limited, and specific examples include organic substrates, organic films, ceramic substrates, interposer substrates such as glass substrates, liquid crystal glass substrates, MCM (Multi Chip Module) substrates, and hybrid substrates. Examples include IC substrates.
 電子部品装置の具体例としては、例えば、半導体装置が挙げられ、より具体的には、リードフレーム(アイランド、タブ)上に半導体チップ等の素子を配置し、ボンディングパッド等の素子の端子部とリード部をワイヤボンディング、バンプ等で接続した後、前記封止用樹脂組成物を用いてトランスファ成形等により封止してなる、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の樹脂封止型IC;テープキャリアにリードボンディングした半導体チップを、前記封止用樹脂組成物で封止したTCP(Tape Carrier Package);配線板又はガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップを、前記封止用樹脂組成物で封止したCOB(Chip On Board)、COG(Chip On Glass)等のベアチップ実装した半導体装置;配線板又はガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した能動素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等)及び受動素子(コンデンサ、抵抗体、コイル等)の少なくとも一方を、前記封止用樹脂組成物で封止したハイブリッドIC、MCM;マザーボード接続用の端子を形成したインターポーザ基板に半導体チップを搭載し、バンプ又はワイヤボンディングにより前記半導体チップとインターポーザ基板に形成された配線とを接続した後、前記封止用樹脂組成物で半導体チップ搭載側を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package);などが挙げられる。また、これらの半導体装置は、実装基板上に素子が2個以上重なった形で搭載されたスタックド(積層)型パッケージであっても、2個以上の素子を一度に封止用樹脂組成物で封止した一括モールド型パッケージであってもよい。また、これらの半導体装置は、基板の上面及び下面の両方にチップを搭載させ高密度に実装するDSM(Double Side Mold)方式のパッケージであってもよい。 A specific example of the electronic component device is, for example, a semiconductor device, and more specifically, an element such as a semiconductor chip is arranged on a lead frame (island, tab), and a terminal portion of the element such as a bonding pad is provided. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (QFP ( Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-lead package), TSOP (Thin Small Carrier Outer Package Package), TQFP (Final Package), TQFP (Final Package), etc. TCP (Tape Carrier Package) obtained by encapsulating the semiconductor chip with the encapsulating resin composition; a semiconductor chip that is connected to wiring formed on a wiring board or glass by wire bonding, flip chip bonding, soldering, or the like. Bare-chip mounted semiconductor devices such as COB (Chip On Board) and COG (Chip On Glass) sealed with the sealing resin composition; wire bonding, flip chip bonding, to wiring formed on a wiring board or glass, A hybrid IC or MCM in which at least one of an active element (semiconductor chip, transistor, diode, thyristor, etc.) and a passive element (capacitor, resistor, coil, etc.) connected by solder or the like is encapsulated with the encapsulating resin composition. A semiconductor chip is mounted on an interposer substrate on which terminals for connecting to a mother board are formed, and the semiconductor chip and wiring formed on the interposer substrate are connected by bumps or wire bonding, and then the semiconductor chip is formed by the resin composition for sealing. BGA (Ball Grid Array), CSP (Chip Size Package), and MCP (Multi Chip Package); In addition, even if these semiconductor devices are stacked type packages in which two or more elements are mounted on a mounting substrate in a stacked manner, two or more elements can be sealed with the resin composition for encapsulation at one time. It may be a sealed one-piece mold type package. Further, these semiconductor devices may be a DSM (Double Side Mold) type package in which chips are mounted on both the upper surface and the lower surface of the substrate and are mounted at high density.
 なお、前記封止用樹脂組成物を封止材として用いて、素子が封止された半導体装置等の電子部品装置を得る方法としては、低圧トランスファ成形法、インジェクション成形法、圧縮成形法等が挙げられる。素子が封止された半導体装置等の電子部品装置を得る方法として、ディスペンス方式、注型方式、印刷方式等を用いてもよい。 As a method for obtaining an electronic component device such as a semiconductor device in which an element is encapsulated by using the encapsulating resin composition as an encapsulating material, a low-pressure transfer molding method, an injection molding method, a compression molding method, or the like may be used. Can be mentioned. As a method of obtaining an electronic component device such as a semiconductor device in which elements are sealed, a dispensing method, a casting method, a printing method or the like may be used.
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。 Hereinafter, the above-described embodiment will be specifically described with reference to examples, but the scope of the above-described embodiments is not limited to these examples. In addition, "part" and "%" are based on mass unless otherwise specified.
[封止用樹脂組成物の調製]
 下記の材料を表1~表4に記載の組成(質量部)で混合し、混練温度80℃、混練時間15分の条件でロール混練を行うことによって、実施例及び比較例の封止用樹脂組成物を調製した。なお、表中の空欄は、当該成分を用いていないことを意味する。
[Preparation of resin composition for sealing]
The following materials were mixed in the compositions (parts by mass) shown in Tables 1 to 4, and roll-kneading was performed under conditions of a kneading temperature of 80° C. and a kneading time of 15 minutes to obtain the encapsulating resin of Examples and Comparative Examples. A composition was prepared. The blank in the table means that the component is not used.
(エポキシ樹脂)
 エポキシ樹脂1-1:前記一般式(I)で表されるエポキシ樹脂(ただし、a1~a5はいずれも0、m1は1~4)、エポキシ当量320g/eq、軟化点77℃、150℃における粘度0.25Pa・sec、数平均分子量300、日鉄ケミカル&マテリアル株式会社、商品名「ESN-475V」
 エポキシ樹脂2-1:ビフェニル型エポキシ樹脂、エポキシ当量192g/eq、軟化点107℃、150℃における粘度0.012Pa・sec、数平均分子量354、三菱ケミカル株式会社、商品名「YX-4000H」
 エポキシ樹脂2-2:ビスフェノールF型エポキシ樹脂、エポキシ当量192g/eq、融点66℃、150℃における粘度0.01Pa・sec、数平均分子量384、日鉄ケミカル&マテリアル株式会社、商品名「YSLV-80XY」
 エポキシ樹脂2-3:ビスフェノールS型エポキシ樹脂、エポキシ当量245g/eq、融点111℃、150℃における粘度0.01Pa・sec、数平均分子量490、日鉄ケミカル&マテリアル株式会社、商品名「YSLV-120TE」
 エポキシ樹脂3-1:アラルキル型エポキシ樹脂、前記一般式(VI)で表されるエポキシ樹脂(ただし、a6~a9はいずれも0、m2は1~3)、エポキシ当量269g/eq、軟化点52.4℃、150℃における粘度0.04Pa・sec、数平均分子量450、日本化薬株式会社、商品名「NC-3000LLC」
 エポキシ樹脂C-1:ノボラック型エポキシ樹脂、エポキシ当量200g/eq、軟化点60℃、150℃における粘度0.13Pa・sec、数平均分子量800、DIC株式会社、商品名「N500P-1」
 エポキシ樹脂C-2:トリフェニルメタン型エポキシ樹脂、エポキシ当量167g/eq、軟化点61℃、150℃における粘度0.11Pa・sec、数平均分子量850、日本化薬株式会社、商品名「EPPN-501HY」
(Epoxy resin)
Epoxy resin 1-1: Epoxy resin represented by the general formula (I) (where a1 to a5 are all 0, m1 is 1 to 4), epoxy equivalent 320 g/eq, softening point 77° C., 150° C. Viscosity 0.25 Pa·sec, number average molecular weight 300, Nippon Steel Chemical & Materials Co., Ltd., trade name “ESN-475V”
Epoxy resin 2-1: Biphenyl type epoxy resin, epoxy equivalent 192 g/eq, softening point 107° C., viscosity at 150° C. 0.012 Pa·sec, number average molecular weight 354, Mitsubishi Chemical Corporation, trade name “YX-4000H”
Epoxy resin 2-2: Bisphenol F type epoxy resin, epoxy equivalent 192 g/eq, melting point 66° C., viscosity at 150° C. 0.01 Pa·sec, number average molecular weight 384, Nippon Steel Chemical & Materials Co., Ltd., trade name “YSLV- 80XY"
Epoxy resin 2-3: Bisphenol S type epoxy resin, epoxy equivalent 245 g/eq, melting point 111° C., viscosity at 150° C. 0.01 Pa·sec, number average molecular weight 490, Nippon Steel Chemical & Materials Co., Ltd., trade name “YSLV- 120 TE"
Epoxy resin 3-1: aralkyl type epoxy resin, epoxy resin represented by the general formula (VI) (where a6 to a9 are all 0, m2 is 1 to 3), epoxy equivalent 269 g/eq, softening point 52 .4° C., 150° C. viscosity 0.04 Pa·sec, number average molecular weight 450, Nippon Kayaku Co., Ltd., trade name “NC-3000 LLC”
Epoxy resin C-1: novolac type epoxy resin, epoxy equivalent 200 g/eq, softening point 60° C., viscosity at 150° C. 0.13 Pa·sec, number average molecular weight 800, DIC Corporation, trade name “N500P-1”
Epoxy resin C-2: triphenylmethane type epoxy resin, epoxy equivalent 167 g/eq, softening point 61° C., viscosity at 150° C. 0.11 Pa·sec, number average molecular weight 850, Nippon Kayaku Co., Ltd., trade name “EPPN- 501HY"
(硬化剤)
 硬化剤1:前記一般式(VII)で表されるノボラック型フェノール樹脂(ただし、b11~b13はいずれも0、n4は0~3)、水酸基当量104g/eq、軟化点71℃、150℃における粘度0.05Pa・sec、数平均分子量900、明和化成株式会社、商品名「H-4」
 硬化剤2:前記一般式(VIII)で表されるトリフェニルメタン型フェノール樹脂(ただし、b6~b10はいずれも0、n3は0~3)、水酸基当量103g/eq、軟化点83℃、150℃における粘度0.10Pa・sec、数平均分子量550、明和化成株式会社、商品名「MEH-7500-3S」
 硬化剤3:前記一般式(IX)で表されるフェノール樹脂(ただし、b1~b5はいずれも0、n1は1~3、n2は0~3)、水酸基当量166g/eq、軟化点66℃、150℃における粘度0.05Pa・sec、数平均分子量1100、明和化成株式会社、商品名「MEHC-7841-4S」
(Curing agent)
Curing agent 1: Novolak type phenolic resin represented by the above general formula (VII) (provided that b11 to b13 are all 0, n4 is 0 to 3), hydroxyl group equivalent 104 g/eq, softening point 71° C., 150° C. Viscosity 0.05 Pa·sec, number average molecular weight 900, Meiwa Kasei Co., Ltd., trade name “H-4”
Curing agent 2: triphenylmethane type phenolic resin represented by the above general formula (VIII) (however, b6 to b10 are all 0, n3 is 0 to 3), hydroxyl group equivalent 103 g/eq, softening point 83° C., 150 Viscosity at 0.10 Pa·sec, number average molecular weight 550, Meiwa Kasei Co., Ltd., trade name “MEH-7500-3S”
Hardener 3: Phenolic resin represented by the above general formula (IX) (provided that b1 to b5 are all 0, n1 is 1 to 3, n2 is 0 to 3), hydroxyl equivalent is 166 g/eq, softening point 66° C. , Viscosity at 150° C. 0.05 Pa·sec, number average molecular weight 1100, Meiwa Kasei Co., Ltd., trade name “MEHC-7841-4S”
(その他の成分)
 硬化促進剤1:イミダゾール系硬化促進剤、日立化成株式会社、商品名「HP-850NP」
 硬化促進剤2:リン系硬化促進剤、トリブチルホスフィンとベンゾキノンの付加物
 カップリング剤1:3-メタクリロキシプロピルトリメトキシシラン、信越化学工業株式会社、商品名「KBM-503」
 カップリング剤2:3-フェニルアミノプロピルトリメトキシシラン、信越化学工業株式会社、商品名「KBM-573」
 離型剤:ヘキストワックス、クラリアント社、商品名「HW-E」
 顔料:カーボンブラック、三菱ケミカル株式会社、商品名「MA600」
 添加剤:密着付与剤、没食子酸
 シリコーン1:応力緩和剤、ポリシロキサン、東レ・ダウコーニング・シリコーン株式会社、商品名「AY42-119」
 シリコーン2:応力緩和剤、インデン-スチレン-クマロン共重合体、日塗化学株式会社、商品名「NH-100S」
 無機充填剤1:球状溶融シリカ、デンカ株式会社、商品名「FB-310MDC」
 無機充填剤2:球状溶融シリカ、デンカ株式会社、商品名「FB-510MDC」
 無機充填剤3:球状溶融シリカ、平均粒子径0.5μm、比表面積5.5m/g、株式会社アドマテックス、商品名「アドマファインSC2500-SQ」
(Other ingredients)
Curing accelerator 1: Imidazole curing accelerator, Hitachi Chemical Co., Ltd., trade name "HP-850NP"
Curing accelerator 2: Phosphorus curing accelerator, addition product of tributylphosphine and benzoquinone Coupling agent 1:3-methacryloxypropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd., trade name "KBM-503"
Coupling agent 2: 3-phenylaminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd., trade name "KBM-573"
Release Agent: Hoechst Wax, Clariant, trade name "HW-E"
Pigment: Carbon black, Mitsubishi Chemical Corporation, trade name "MA600"
Additives: adhesion promoter, gallic acid Silicone 1: stress relaxation agent, polysiloxane, Toray Dow Corning Silicone Co., Ltd., trade name "AY42-119"
Silicone 2: Stress relaxation agent, indene-styrene-coumarone copolymer, Nikkei Chemical Co., Ltd., trade name "NH-100S"
Inorganic filler 1: Spherical fused silica, Denka Co., Ltd., trade name "FB-310MDC"
Inorganic filler 2: Spherical fused silica, Denka Co., Ltd., trade name "FB-510MDC"
Inorganic filler 3: Spherical fused silica, average particle size 0.5 μm, specific surface area 5.5 m 2 /g, Admatex Co., Ltd., trade name “Admafine SC2500-SQ”
[封止用樹脂組成物の評価]
 実施例及び比較例で作製した封止用樹脂組成物の特性を、次の特性試験により評価した。評価結果を下記表1~表4に示す。
 なお、封止用樹脂組成物の成形は、トランスファ成形機を用い、以下に示す成形温度に金型温度を設定し、成形圧力6.9MPa、硬化時間120秒の条件で行った。
[Evaluation of resin composition for sealing]
The characteristics of the encapsulating resin compositions prepared in Examples and Comparative Examples were evaluated by the following characteristic tests. The evaluation results are shown in Tables 1 to 4 below.
The molding of the encapsulating resin composition was carried out using a transfer molding machine, setting the mold temperature to the molding temperature shown below, molding pressure of 6.9 MPa, and curing time of 120 seconds.
(スパイラルフロー)
 EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、封止用樹脂組成物をトランスファ成形機により、上記成形条件(ただし成形温度:180℃)で成形し、流動距離(cm)を求めた。
(Spiral flow)
Using a mold for spiral flow measurement according to EMMI-1-66, the encapsulating resin composition was molded by a transfer molding machine under the above molding conditions (however, molding temperature: 180° C.), and flow distance (cm) I asked.
(熱時硬度)
 封止用樹脂組成物を上記成形条件(ただし成形温度:175℃)で、直径50mm×厚み3mmの円板に成形し、成形後直ちにショアD型硬度計(高分子計器株式会社、アスカー、タイプDデュロメータ)を用いて熱時硬度を測定した。
(Hardness when heated)
The resin composition for encapsulation was molded into a disk having a diameter of 50 mm and a thickness of 3 mm under the above-mentioned molding conditions (molding temperature: 175° C.), and immediately after molding, a Shore D type hardness meter (Kobunshi Keiki Co., Ltd., Asker, type) The hardness at the time of heating was measured using a D durometer).
(ゲルタイム)
 JSRトレーディング株式会社のキュラストメータを用いて、封止用樹脂組成物3gを温度175℃で測定し、トルク曲線の立ち上がりまでの時間をゲルタイム(秒)とした。
(Geltime)
3 g of the resin composition for encapsulation was measured at a temperature of 175° C. using a curast meter of JSR Trading Co., Ltd., and the time until the rise of the torque curve was taken as the gel time (second).
(ガラス転移温度及び線膨張係数)
 封止用樹脂組成物を上記成形条件(ただし成形温度:175℃)で成形し、19mm×3mm×3mmの形状の試験片を作製した。理学電機の熱機械分析装置(TAS-100)を用い、試験片について昇温速度5℃/minの条件下で測定した線膨張曲線の屈曲点よりガラス転移温度(以下Tgと略す)を求めた。
 また、Tg以下の傾きとTg以上の傾きからそれぞれ線膨張係数(以下、前者をα1、後者をα2と略す)を求めた。
(Glass transition temperature and coefficient of linear expansion)
The encapsulating resin composition was molded under the above molding conditions (molding temperature: 175° C.) to prepare a test piece having a shape of 19 mm×3 mm×3 mm. The glass transition temperature (hereinafter abbreviated as Tg) was determined from the bending point of the linear expansion curve measured on the test piece using a thermomechanical analyzer (TAS-100) of Rigaku Denki, under the condition of a temperature rising rate of 5° C./min. ..
Further, the linear expansion coefficient (hereinafter, the former is abbreviated as α1 and the latter abbreviated as α2) was obtained from the inclinations of Tg or less and the inclinations of Tg or more.
(高温曲げ試験)
 封止用樹脂組成物を上記成形条件(ただし成形温度:175℃)で成形し、70mm×10mm×3mmの形状の試験片を作製した。A&D社のテンシロンを用い、JIS-K-6911(2006)に準拠した3点支持型曲げ試験を250℃にて行い、試験片の高温曲げ弾性率、高温曲げ強度、及び高温破断伸びをそれぞれ求めた。なお、曲げ弾性率Eは下記式にて定義される。
 ただし、下記式中、Eは曲げ弾性率(MPa)、Pはロードセルの値(N)、yは変位量(mm)、lはスパン=48mm、wは試験片幅=10mm、hは試験片厚さ=3mmである。
(High temperature bending test)
The encapsulating resin composition was molded under the above molding conditions (molding temperature: 175° C.) to prepare a test piece having a shape of 70 mm×10 mm×3 mm. Using Tensilon manufactured by A&D Co., a three-point support type bending test according to JIS-K-6911 (2006) was conducted at 250° C. to obtain the high-temperature bending elastic modulus, high-temperature bending strength, and high-temperature elongation at break, respectively. It was The flexural modulus E is defined by the following formula.
However, in the following formula, E is a bending elastic modulus (MPa), P is a load cell value (N), y is a displacement amount (mm), l is a span=48 mm, w is a test piece width=10 mm, and h is a test piece. Thickness=3 mm.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
(成形収縮率)
 封止用樹脂組成物を上記成形条件(ただし成形温度:175℃)で長さ80mm×幅10mm×厚さ3mmの大きさに成形し、180℃で90秒間後硬化した。予め測定した成形温度(180℃)における金型のキャビティの長さDと、室温(25℃)における硬化物の長さdと、から下記式により成形収縮率(%)を求めた。
 成形収縮率(%)=((D-d)/D)×100
(Molding shrinkage)
The encapsulating resin composition was molded into a size of length 80 mm×width 10 mm×thickness 3 mm under the above molding conditions (molding temperature: 175° C.), and post-cured at 180° C. for 90 seconds. From the length D of the cavity of the mold at the molding temperature (180° C.) measured in advance and the length d of the cured product at room temperature (25° C.), the molding shrinkage ratio (%) was determined by the following formula.
Molding shrinkage rate (%)=((D−d)/D)×100
(吸水率)
 封止用樹脂組成物を上記成形条件(ただし成形温度:175℃)で、直径50mm×厚さ3mmの円板に成形し、株式会社平山製作所のプレッシャー・クッカー試験装置を用いて、2atm(0.2MPa)、121℃の条件で、20時間のプレッシャー・クッカー処理を行った。プレッシャー・クッカー処理前後における円板の質量を測定し、下記式により吸水率(質量%)を求めた。
 吸水率(質量%)=((処理後の質量-処理前の質量)/処理前の質量)×100
(Water absorption rate)
The encapsulating resin composition was molded into a disk having a diameter of 50 mm and a thickness of 3 mm under the above-mentioned molding conditions (molding temperature: 175° C.), and 2 atm (0 The pressure cooker process was performed for 20 hours under the conditions of 0.2 MPa) and 121° C. The mass of the disk was measured before and after the pressure cooker treatment, and the water absorption rate (mass %) was calculated by the following formula.
Water absorption rate (mass %)=((mass after treatment−mass before treatment)/mass before treatment)×100
(接着強度)
 封止用樹脂組成物を上記成形条件(ただし成形温度:175℃)で、銅板上に、底面(接着面)が面積10mmの円形、上面が面積8mmの円形、高さ4mmの円錐台形状に成形し、180℃で90秒間後硬化した。その後、ボンドテスター(ノードソン・アドバンスト・テクノロジー株式会社、製品名「Dage 4000」)を用い、銅板の温度を室温(25℃)に保ちながら、せん断速度50μm/s、高さ100μmに設定して測定し、試験片が脱落したときにかかっていたせん断接着力(MPa)を接着強度として求めた。
(Adhesive strength)
Under the above molding conditions (molding temperature: 175° C.), the bottom surface (adhesive surface) of the encapsulating resin composition has a circular shape with an area of 10 mm 2 , the upper surface has a circular shape of 8 mm 2 , and the truncated cone has a height of 4 mm. It was molded into a shape and post-cured at 180° C. for 90 seconds. After that, using a bond tester (Nordson Advanced Technology Co., Ltd., product name “Dage 4000”), the shear rate was set to 50 μm/s and the height was set to 100 μm while keeping the temperature of the copper plate at room temperature (25° C.). Then, the shear adhesive force (MPa) applied when the test piece fell off was determined as the adhesive strength.
(耐リフロー性試験)
 8mm×10mm×0.4mmのシリコンチップを搭載した外形寸法20mm×14mm×2mmの80ピンフラットパッケージ(QFP)(リードフレーム材質:銅合金、リード先端銀メッキ処理品)を、封止用樹脂組成物を用いて上記成形条件(ただし成形温度:175℃)で成形して、さらに180℃で5時間後硬化を行い、試験パッケージを作製した。85℃、60%RH、168時間の条件で試験パッケージを加湿して、260℃で10秒の条件でリフロー処理を行った。リフロー処理後の試験パッケージに対し、超音波映像装置(SAT)を用いてリードフレームダイパドルトップ部分の剥離の有無を観察し、全試験パッケージ数(10個)に対する剥離発生パッケージ数を評価した。また、リフロー処理後の試験パッケージに対し、顕微鏡によりクラックの有無を観察し、全試験パッケージ数(10個)に対するクラック発生パッケージ数を評価した。
(Reflow resistance test)
Resin composition for encapsulation of 80-pin flat package (QFP) (lead frame material: copper alloy, lead tip silver-plated product) with external dimensions of 20 mm × 14 mm × 2 mm mounted with 8 mm × 10 mm × 0.4 mm silicon chip. The molded product was molded under the above molding conditions (molding temperature: 175° C.), and post-cured at 180° C. for 5 hours to prepare a test package. The test package was humidified under the conditions of 85° C., 60% RH, and 168 hours, and reflow treatment was performed under the conditions of 260° C. for 10 seconds. With respect to the test package after the reflow treatment, the presence or absence of peeling of the lead frame die paddle top portion was observed using an ultrasonic imaging device (SAT), and the number of peeling-generated packages was evaluated with respect to the total number of test packages (10). Further, with respect to the test packages after the reflow treatment, the presence or absence of cracks was observed with a microscope, and the number of cracked packages was evaluated with respect to the total number of test packages (10).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表に示すとおり、本実施例においては、硬化物におけるガラス転移温度が140℃以上であり、硬化物における高温曲げ弾性率が低く、かつ、流動性の高い封止用組成物が得られていることがわかる。特に、本実施例においては、参考例1に比べて、ガラス転移温度及び高温曲げ弾性率を大きく変化させずに、スパイラルフロー(流動性)を向上させていることがわかる。これに対し、比較例B-1では、比較例B-2に比べてガラス転移温度が大きく低下している。また、本実施例では、比較例に比べ、吸水率が低いことがわかる。 As shown in the above table, in this example, the glass transition temperature of the cured product was 140° C. or higher, the high temperature bending elastic modulus of the cured product was low, and a sealing composition having high fluidity was obtained. You can see that In particular, it can be seen that in the present example, the spiral flow (fluidity) is improved without significantly changing the glass transition temperature and the high temperature bending elastic modulus, as compared with Reference Example 1. On the other hand, the glass transition temperature of Comparative Example B-1 is significantly lower than that of Comparative Example B-2. Further, it can be seen that the water absorption rate in this example is lower than that in the comparative example.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein by reference.

Claims (19)

  1.  エポキシ当量が300g/eq以上であり、分子内に複数のナフタレン骨格を有する第1のエポキシ樹脂と、
     150℃における粘度が0.02Pa・sec以下であり、数平均分子量が1000以下である第2のエポキシ樹脂と、
     硬化剤と、
     を含む封止用樹脂組成物。
    A first epoxy resin having an epoxy equivalent of 300 g/eq or more and having a plurality of naphthalene skeletons in the molecule;
    A second epoxy resin having a viscosity at 150° C. of 0.02 Pa·sec or less and a number average molecular weight of 1000 or less;
    A curing agent,
    A resin composition for encapsulation containing:
  2.  前記第2のエポキシ樹脂が、ビフェニル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びビスフェノールS型エポキシ樹脂からなる群より選択される少なくとも1種を含む請求項1に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 1, wherein the second epoxy resin contains at least one selected from the group consisting of a biphenyl type epoxy resin, a bisphenol F type epoxy resin, and a bisphenol S type epoxy resin.
  3.  前記硬化剤として、150℃における粘度が0.5Pa・sec以下である硬化剤を含む請求項1又は請求項2に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 1 or 2, which contains, as the curing agent, a curing agent having a viscosity of 0.5 Pa·sec or less at 150°C.
  4.  前記硬化剤として、官能基当量が120g/eq未満である第1の硬化剤を含む請求項1~請求項3のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 3, wherein the curing agent includes a first curing agent having a functional group equivalent of less than 120 g/eq.
  5.  前記第1の硬化剤は、フェノール樹脂及び多価フェノール化合物からなる群より選択される少なくとも1種を含む請求項4に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 4, wherein the first curing agent includes at least one selected from the group consisting of a phenol resin and a polyhydric phenol compound.
  6.  前記フェノール樹脂は、ノボラック型フェノール樹脂及びトリフェニルメタン型フェノール樹脂からなる群より選択される少なくとも1種を含む請求項5に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 5, wherein the phenolic resin contains at least one selected from the group consisting of novolac type phenolic resin and triphenylmethane type phenolic resin.
  7.  前記硬化剤として、官能基当量が120g/eq以上である第2の硬化剤をさらに含む請求項4~請求項6のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 4 to 6, further comprising, as the curing agent, a second curing agent having a functional group equivalent of 120 g/eq or more.
  8.  前記第2の硬化剤は、フェノール樹脂及び多価フェノール化合物からなる群より選択される少なくとも1種を含む請求項7に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 7, wherein the second curing agent contains at least one selected from the group consisting of a phenol resin and a polyhydric phenol compound.
  9.  前記フェノール樹脂は、アラルキル型フェノール樹脂を含む請求項8に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 8, wherein the phenolic resin includes an aralkyl type phenolic resin.
  10.  前記第2の硬化剤は、分子内にビフェニル骨格を有する化合物を含む請求項7~請求項9のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 7 to 9, wherein the second curing agent contains a compound having a biphenyl skeleton in the molecule.
  11.  前記第1のエポキシ樹脂は、分子内にベンゼン骨格をさらに有する請求項1~請求項10のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 10, wherein the first epoxy resin further has a benzene skeleton in the molecule.
  12.  前記第1のエポキシ樹脂は、前記ナフタレン骨格と前記ベンゼン骨格とに直接結合するメチレン基をさらに有する請求項11に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 11, wherein the first epoxy resin further has a methylene group directly bonded to the naphthalene skeleton and the benzene skeleton.
  13.  前記第1のエポキシ樹脂は、前記ナフタレン骨格に直接結合するグリシジルオキシ基を有する請求項1~請求項12のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 12, wherein the first epoxy resin has a glycidyloxy group directly bonded to the naphthalene skeleton.
  14.  前記第1のエポキシ樹脂100質量部に対する前記第2のエポキシ樹脂の含有量は、50質量部~150質量部である請求項1~請求項13のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 13, wherein a content of the second epoxy resin with respect to 100 parts by mass of the first epoxy resin is 50 parts by mass to 150 parts by mass. Stuff.
  15.  前記第1のエポキシ樹脂及び前記第2のエポキシ樹脂以外のエポキシ樹脂である第3のエポキシ樹脂をさらに含む請求項1~請求項14のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 1 to 14, further comprising a third epoxy resin which is an epoxy resin other than the first epoxy resin and the second epoxy resin.
  16.  前記第3のエポキシ樹脂のエポキシ当量が200g/eq以上である請求項15に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 15, wherein the epoxy equivalent of the third epoxy resin is 200 g/eq or more.
  17.  前記第3のエポキシ樹脂がビフェニル骨格を含む請求項15又は請求項16に記載の封止用樹脂組成物。 The encapsulating resin composition according to claim 15 or 16, wherein the third epoxy resin contains a biphenyl skeleton.
  18.  前記第3のエポキシ樹脂がアラルキル型エポキシ樹脂である請求項15~請求項17のいずれか1項に記載の封止用樹脂組成物。 The encapsulating resin composition according to any one of claims 15 to 17, wherein the third epoxy resin is an aralkyl type epoxy resin.
  19.  素子と、前記素子を封止する請求項1~請求項18のいずれか1項に記載の封止用樹脂組成物の硬化物と、を備える電子部品装置。 An electronic component device comprising an element and a cured product of the encapsulating resin composition according to any one of claims 1 to 18 for encapsulating the element.
PCT/JP2018/047311 2018-12-21 2018-12-21 Resin composition for sealing and electronic component device WO2020129249A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020561127A JPWO2020129249A1 (en) 2018-12-21 2018-12-21 Encapsulating resin composition and electronic component equipment
PCT/JP2018/047311 WO2020129249A1 (en) 2018-12-21 2018-12-21 Resin composition for sealing and electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047311 WO2020129249A1 (en) 2018-12-21 2018-12-21 Resin composition for sealing and electronic component device

Publications (1)

Publication Number Publication Date
WO2020129249A1 true WO2020129249A1 (en) 2020-06-25

Family

ID=71102715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047311 WO2020129249A1 (en) 2018-12-21 2018-12-21 Resin composition for sealing and electronic component device

Country Status (2)

Country Link
JP (1) JPWO2020129249A1 (en)
WO (1) WO2020129249A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157623A1 (en) * 2020-02-06 2021-08-12 昭和電工マテリアルズ株式会社 Epoxy resin composition for transfer molding, production method therefor, epoxy resin composition for compression molding, and electronic component device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228663A (en) * 1994-02-17 1995-08-29 Dai Ichi Kogyo Seiyaku Co Ltd Epoxy resin and epoxy resin composition
JP2009108147A (en) * 2007-10-29 2009-05-21 Nippon Kayaku Co Ltd Phenolic resin, epoxy resin, epoxy resin composition and its cured product
JP2015038197A (en) * 2013-07-19 2015-02-26 味の素株式会社 Resin composition
JP2018152556A (en) * 2017-03-10 2018-09-27 味の素株式会社 Resin composition layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228663A (en) * 1994-02-17 1995-08-29 Dai Ichi Kogyo Seiyaku Co Ltd Epoxy resin and epoxy resin composition
JP2009108147A (en) * 2007-10-29 2009-05-21 Nippon Kayaku Co Ltd Phenolic resin, epoxy resin, epoxy resin composition and its cured product
JP2015038197A (en) * 2013-07-19 2015-02-26 味の素株式会社 Resin composition
JP2018152556A (en) * 2017-03-10 2018-09-27 味の素株式会社 Resin composition layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157623A1 (en) * 2020-02-06 2021-08-12 昭和電工マテリアルズ株式会社 Epoxy resin composition for transfer molding, production method therefor, epoxy resin composition for compression molding, and electronic component device

Also Published As

Publication number Publication date
JPWO2020129249A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7302598B2 (en) Curable resin composition and electronic component device
JP7472931B2 (en) Epoxy resin composition for sealing and electronic component device
JP7416116B2 (en) Epoxy resin compositions, curable resin compositions, and electronic component devices
JP2024012392A (en) Epoxy resin composition, and electronic component device
JP2023068032A (en) Additive for curable resin composition, curable resin composition and electronic component device
JP4792768B2 (en) Epoxy resin composition for sealing and electronic component device
JP7269579B2 (en) Epoxy resin composition and electronic component device
JP7212830B2 (en) Epoxy resin composition for encapsulation and electronic component device
WO2020129249A1 (en) Resin composition for sealing and electronic component device
WO2020129248A1 (en) Sealing resin composition and electronic component device
JP2018104603A (en) Curable resin composition and electronic component device
JP7119823B2 (en) Epoxy resin composition for encapsulation and electronic component device
JP2014129485A (en) Epoxy resin composition and electronic component device
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP7485009B2 (en) Epoxy resin composition for sealing and electronic component device
JP2012107209A (en) Epoxy resin composition for sealing and electronic part device
JP7484081B2 (en) Curable resin composition and electronic component device
TWI839335B (en) Epoxy resin composition for encapsulating electric component device and electric component device
JP7404725B2 (en) Encapsulant for transfer molding and electronic component equipment
WO2022149594A1 (en) Method for producing thermosetting resin composition, thermosetting resin composition, and electronic component device
JP2022107375A (en) Method for producing thermosetting resin composition, thermosetting resin composition, electronic component device, and method for manufacturing electronic component device
JP2022021900A (en) Sealing resin composition and electronic component device
JP2021195480A (en) Resin composition for sealing, and electronic component device
JP2022107374A (en) Method for producing thermosetting resin composition, thermosetting resin composition, and electronic component device
TW202035558A (en) Curable resin composition and electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18943899

Country of ref document: EP

Kind code of ref document: A1