WO2018179908A1 - ガラスパネルユニットの製造方法、およびガラス窓の製造方法 - Google Patents

ガラスパネルユニットの製造方法、およびガラス窓の製造方法 Download PDF

Info

Publication number
WO2018179908A1
WO2018179908A1 PCT/JP2018/004627 JP2018004627W WO2018179908A1 WO 2018179908 A1 WO2018179908 A1 WO 2018179908A1 JP 2018004627 W JP2018004627 W JP 2018004627W WO 2018179908 A1 WO2018179908 A1 WO 2018179908A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
panel unit
glass
glass panel
manufacturing
Prior art date
Application number
PCT/JP2018/004627
Other languages
English (en)
French (fr)
Inventor
将 石橋
瓜生 英一
長谷川 和也
野中 正貴
阿部 裕之
清水 丈司
治彦 石川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019508708A priority Critical patent/JP6796812B2/ja
Priority to EP18777909.5A priority patent/EP3604245B1/en
Publication of WO2018179908A1 publication Critical patent/WO2018179908A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present disclosure relates to a method for manufacturing a glass panel unit and a method for manufacturing a glass window.
  • a glass panel unit in which an internal space in a decompressed state is formed between a pair of glass plates is conventionally known.
  • a plurality of pillars (spacers) are arranged in the internal space in the reduced pressure state.
  • Patent Document 1 describes that a low radiation film may be provided on the inner surface of one of the pair of glass plates.
  • the following problems may occur. That is, when a plurality of pillars are arranged on the glass with mesh, when the arrangement of each pillar is inspected by image processing, each pillar and the net may overlap each other and hinder the inspection.
  • the present disclosure uses a common process to manufacture a glass panel unit having a structure in which various types of glass plates and a glass plate having a low radiation film are overlapped, and a glass window using the glass panel unit.
  • the purpose is to manufacture.
  • the method for manufacturing a glass panel unit includes an arrangement process, a bonding process, a pressure reduction process, and a sealing process.
  • the arrangement step is a step of arranging a plurality of pillars on the first substrate.
  • the bonding step includes airtightly bonding the first substrate and the second substrate facing the first substrate via a frame-shaped sealing material surrounding the plurality of pillars, whereby the first substrate and the first substrate In this step, an internal space surrounded by the sealing material is formed between the two substrates.
  • the decompression step is a step of decompressing the internal space.
  • the sealing step is a step of sealing the internal space in a reduced pressure state.
  • the first substrate includes a first glass plate and a low radiation film positioned on the first glass plate. In the arranging step, the plurality of pillars are arranged on the low radiation film.
  • the method for manufacturing a glass window according to one aspect of the present disclosure includes a fitting step of fitting the glass panel unit into a window frame.
  • Drawing 1A is a sectional view showing the 1st glass board used with the manufacturing method of the glass panel unit of one embodiment.
  • FIG. 1B is a cross-sectional view showing a state where the low radiation film is positioned on the first glass plate.
  • FIG. 1C is a cross-sectional view showing a state where the low radiation layer and the protective layer are located on the first glass plate.
  • FIG. 2 is a side view showing a part of the apparatus used in the arrangement process of the manufacturing method according to the embodiment.
  • FIG. 3 is a plan view showing the first substrate used in the bonding step of the manufacturing method of the above. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a perspective view showing a first substrate and a second substrate used in the bonding step.
  • FIG. 6 is a plan view showing a glass panel unit manufactured by the above manufacturing method.
  • 7 is a cross-sectional view taken along line BB in FIG.
  • FIG. 8 is a cross-sectional view showing a glass panel unit of Modification 1.
  • FIG. 9 is a plan view showing a glass panel unit of Modification 2.
  • 10 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 11 is a cross-sectional view showing another example of the glass panel unit of Modification 2.
  • FIG. 12 is a plan view showing a glass window including the glass panel unit of the embodiment.
  • the present embodiment relates to a method for manufacturing a glass panel unit and a method for manufacturing a glass window, and more particularly, to a method for manufacturing a glass panel unit having a reduced internal space, and a method for manufacturing a glass window using the glass panel unit. .
  • the glass panel unit 90 and the glass window 9 including the glass panel unit 90 according to an embodiment will be described in order based on the attached drawings.
  • each structure is shown schematically in the accompanying drawings, and the dimensional shape of each illustrated structure is different from the actual dimensional shape.
  • the glass panel unit 90 of one embodiment includes a first substrate 1, a second substrate 2, a sealing material 5, a plurality of pillars 4, and a getter 45.
  • the glass panel unit 90 includes many pillars 4.
  • the first substrate 1 includes a first glass plate 15 and a low radiation layer 170 that covers one side in the thickness direction of the first glass plate 15.
  • the low radiation layer 170 covers the surface of the first glass plate 15 that faces the second substrate 2.
  • the surface of the first substrate 1 that faces the second substrate 2 is constituted by the surface of the low radiation layer 170.
  • the second substrate 2 is composed of a meshed glass 61.
  • the netted glass 61 is a glass plate in which a net 615 formed of a wire is incorporated.
  • the netted glass 61 has high fire resistance because the net 615 prevents the netted glass 61 from collapsing when exposed to a flame.
  • the second substrate 2 only needs to be composed of at least the meshed glass 61, and appropriate coating may be applied to both sides or one side of the meshed glass 61 in the thickness direction.
  • the sealing material 5 includes a frame 500 formed using a thermal adhesive such as glass frit, and an arc-shaped partition 502 formed using a thermal adhesive such as glass frit.
  • the material forming the frame 500 and the material forming the partition 502 preferably have different melting temperatures.
  • the frame body 500 is bonded to the peripheral edge of the first substrate 1 and the peripheral edge of the second substrate 2, respectively.
  • the peripheral portions of the first substrate 1 and the second substrate 2 are joined airtightly via the frame body 500.
  • the partition 502 divides the space surrounded by the frame body 500 into a space 59 communicating with the exhaust hole 55 of the first substrate 1 and an internal space 51 excluding the space 59.
  • a cap 552 is fitted into the exhaust hole 55 from the outside.
  • the plurality of pillars 4 and getters 45 are located in the internal space 51.
  • the internal space 51 is a heat insulating space that is decompressed to a degree of vacuum of 0.1 Pa or less, for example.
  • the plurality of pillars 4 are dispersedly arranged at a distance from each other.
  • the material, dimensional shape, arrangement pattern, and the like of the plurality of pillars 4 can be set as appropriate.
  • Each pillar 4 presses against the surface of the first substrate 1 facing the second substrate 2 and presses against the surface of the second substrate 2 facing the first substrate 1.
  • the interval between the second substrates 2 is maintained at a predetermined interval.
  • the surface of the second substrate 2 that faces the first substrate 1 is constituted by the surface of the meshed glass 61.
  • the getter 45 is configured to adsorb gas molecules, and is located at a distance from each of the plurality of pillars 4.
  • the getter 45 is installed on the first substrate 1, but may be installed on the second substrate 2.
  • the manufacturing method of the glass panel unit 90 includes an arrangement process, an inspection process, a joining process, a decompression process, and a sealing process.
  • a plurality of pillars 4 are arranged on the first substrate 1 using the punching device 7 shown in FIG.
  • the protective layer 171 is provided on the first substrate 1 in this step.
  • the first substrate 1 in the first substrate 1, as shown in FIG. 1A, FIG. 1B, FIG. 1C, etc., there is a low emission layer 170 on the surface of the first glass plate 15, and a protective layer 171 is further provided on the surface of the low emission layer 170.
  • the low radiation layer 170 and the protective layer 171 constitute a low radiation film 17.
  • the protective layer 171 is formed using, for example, carbon.
  • the apparatus 7 includes a stage-shaped substrate support portion 71, a punch die 72 installed above the substrate support portion 71, a sheet 400 supplied above the punch die 72, and a sheet 400. Are provided with a plurality of punches 73 installed above.
  • the substrate support unit 71 supports the first substrate 1 in a posture in which the low radiation film 17 is located at the upper end.
  • the punching die 72 is located above the first substrate 1 supported by the substrate support portion 71.
  • the punching die 72 has a plurality of through holes 721 penetrating vertically.
  • a sheet 400 is placed on the upper surface of the punching die 72 so as to cover the plurality of through holes 721.
  • Various materials such as resin and metal are used for the material of the sheet 400.
  • Each punch 73 has a columnar shape, and more specifically, a cylindrical shape. Each punch 73 is configured to punch a portion 401 of the sheet 400 placed on the punching die 72 downward at the front end surface thereof. A part 401 of the sheet 400 and a through hole 721 of the punching die 72 are located below the front end surface of each punch 73. Each punch 73 has a size and shape that can be inserted into the through hole 721.
  • each punch 73 is driven in a straight track toward the bottom. Thereby, each punch 73 punches a part 401 of the sheet 400 downward through the through-hole 721 of the punching die 72.
  • the punched portions 401 are pressed against the surface of the low radiation film 17 included in the first substrate 1, that is, the surface of the protective layer 171 in a state where each of the punched portions 401 is in contact with the front end surface of the punch 73, thereby forming the pillar 4.
  • the apparatus 7 is configured to drive a plurality of punches 73 simultaneously onto the sheet 400. However, the apparatus 7 is not limited to this form, and may be configured to drive at least one punch 73 into the sheet 400. That's fine.
  • the low radiation layer 170 of the low radiation film 17 is covered with the protective layer 171, even if the portion 401 of each pillar 4 is pressed against the low radiation film 17, the low radiation layer 170 is not damaged. It can be suppressed.
  • the means for arranging each pillar 4 on the first substrate 1 is not limited to an apparatus such as the apparatus 7 that continuously performs punching and arrangement from the sheet 400 by punching, and other apparatuses and other means. It is also possible to use. Further, the low emission film 17 may not include the protective layer 171. In this case, the low emission layer 17 is constituted by the low emission layer 170.
  • each pillar 4 is properly arranged on the first substrate 1. Specifically, the first substrate 1 is photographed using a camera, and an inspection is performed by performing appropriate image processing on the photographed image.
  • the joining process is performed.
  • a sealing material 5 and a getter 45 are further arranged on the surface of the low radiation film 17 of the first substrate 1 as shown in FIGS.
  • the frame body 500 and the partition 502 included in the sealing material 5 are applied to the surface of the low radiation film 17 of the first substrate 1 using a coating device such as a dispenser, and then dried and pre-baked.
  • a ventilation path 504 is formed in the partition 502.
  • the first substrate 1 and the second substrate 2, that is, the glass 61 with a mesh are set with the sealant 5, the plurality of pillars 4, and the getter 45 sandwiched therebetween as shown in FIG. And heated in a joining furnace.
  • the peripheral edges of the first substrate 1 and the second substrate 2 are hermetically bonded through the frame 500 melted by heating.
  • the internal space 51 and the space 59 communicate with each other through the ventilation path 504.
  • the protective layer 171 that has covered the low radiation layer 170 in the arranging step is gasified in the internal space 51 by heating in the joining furnace in the joining step. Note that the protective layer 171 can be heated and gasified at a timing other than heating in the bonding furnace, that is, at an appropriate timing between the disposing step and the decompression step.
  • an exhaust pipe is connected to the first substrate 1 so as to communicate with the exhaust hole 55, for example, and the internal space 51 is decompressed through the exhaust pipe to a degree of vacuum of 0.1 Pa or less, for example.
  • the internal space 51 is evacuated in the decompression step.
  • the gasified component of the protective layer 171 is discharged from the internal space 51 together with other air components.
  • the partition 502 is deformed so as to block the air passage 504 by being melted by heating at a predetermined temperature. Thereby, the internal space 51 is sealed while maintaining a reduced pressure state, specifically, a vacuum state.
  • the melting temperature of the partition 502 is preferably set higher than the melting temperature of the frame body 500. This setting more reliably prevents the partition 502 from being deformed and closing the air passage 504 at the joining step.
  • the passage of heat due to solar radiation is suppressed by the first substrate 1 having the low radiation layer 170, and the fire resistance is enhanced by the second substrate 2 having the meshed glass 61. It is done.
  • the plurality of pillars 4 are not arranged on the second substrate 2, that is, the netted glass 61 in the manufacturing process, but the plurality of pillars 4 are arranged on the first substrate 1. It does not overlap with 615, and it is possible to suppress the occurrence of defects in the inspection.
  • one exhaust hole 55 is provided in the first substrate 1.
  • a plurality of exhaust holes 55 are provided in the first substrate 1. It is also possible to provide one or a plurality of exhaust holes 55 in the second substrate 2.
  • the internal space 51 is sealed by deforming the partition 502.
  • the internal space 51 can be sealed by other methods. For example, it is possible to seal the internal space 51 by heating and melting a thermal adhesive such as glass frit inserted into the exhaust hole 55 while the internal space 51 is maintained in a reduced pressure state, thereby closing the exhaust hole 55. is there.
  • the second substrate 2A is composed of a rubbed glass 62 having a rough surface 620.
  • An appropriate coating may be further applied to the surface of the rubbed glass 62 opposite to the rough surface 620.
  • the rough surface 620 is a surface on which many fine irregularities are formed by the surface treatment.
  • the rubbed glass 62 has a rough surface 620 and is configured to be translucent or opaque. Since the rough surface 620 faces the internal space 51, it is possible to prevent water from attaching to the rough surface 620 and seeing it through.
  • the passage of heat due to solar radiation is suppressed by the first substrate 1 having the low radiation layer 170, and the entire transparency is suppressed by the second substrate 2 ⁇ / b> A having the rubbing glass 62.
  • the plurality of pillars 4 are not arranged on the second substrate 2A, that is, the rubbing glass 62 having the rough surface 620, but are arranged on the first substrate 1, so that a special rough surface is used. Each pillar 4 is stably arranged without using the arranging means.
  • the glass panel unit 90B of Modification 2 includes a third substrate 3 facing the second substrate 2, and a second seal that hermetically joins the peripheral edges of the second substrate 2 and the third substrate 3 over the entire circumference.
  • the material 38 is further provided.
  • the third substrate 3 only needs to be composed of at least the third glass plate 35.
  • the third substrate 3 is transparent as a whole, but may be translucent or non-transparent.
  • a second internal space sealed by a second sealing material 38 is formed.
  • a frame-shaped spacer 34 is further arranged inside the frame-shaped second sealing material 38.
  • the frame-shaped spacer 34 has a hollow portion in at least a part of its circumferential direction.
  • the hollow portion of the spacer 34 is filled with a desiccant 36.
  • the spacer 34 is made of a metal such as aluminum and has a through hole 341.
  • the through hole 341 opens on the inner peripheral surface of the spacer 34.
  • the hollow portion of the spacer 34 communicates with the second internal space through the through hole 341.
  • the desiccant 36 is, for example, silica gel.
  • the second sealing material 38 is made of a highly airtight resin such as silicon resin or butyl rubber.
  • the second internal space is a space sealed by the second substrate 2, the third substrate 3, and the second sealing material 38, and is filled with a dry gas.
  • the dry gas is, for example, a dry rare gas such as argon, or dry air.
  • the glass panel unit 90B of the modified example 2 exhibits even higher heat insulation.
  • the position of the third substrate 3 is not limited to the position facing the second substrate 2.
  • the third substrate 3 may be opposed to the first substrate 1 or the second substrate. As shown in FIG. 11, when the third substrate 3 faces the first substrate 1, the second sealing material 38 is bonded to the peripheral edges of the first substrate 1 and the third substrate 3.
  • the manufacturing method of the glass panel unit 90B of Modification 2 includes a second joining step in addition to the above-described arrangement step, inspection step, joining step, exhausting step, and sealing step.
  • the second bonding step is a step in which the third substrate 3 is bonded to the second substrate 2 via the second sealing material 38.
  • the second bonding step is a step in which the third substrate 3 is bonded to the first substrate 1 via the second sealing material 38.
  • Glass window 9 The glass window 9 manufactured using the glass panel unit 90 of one Embodiment is demonstrated based on FIG.
  • the glass window 9 includes a glass panel unit 90 according to an embodiment and a rectangular frame-like window frame 95 fitted into the peripheral edge of the glass panel unit 90.
  • the frame body 500 of the sealing material 5 of the glass panel unit 90 is preferably in a position covered with the window frame 95 when viewed from the front.
  • the method of manufacturing the glass window 9 includes a fitting process of fitting the window frame 95 into the glass panel unit 90 in addition to the processes for manufacturing the glass panel unit 90 of the embodiment.
  • the glass panel unit 90 ⁇ / b> A of the first modification may be fitted into the window frame 95, or the glass panel unit 90 ⁇ / b> B of the second modification may be fitted into the window frame 95.
  • the method for manufacturing the glass panel unit according to the first aspect includes an arrangement step, a joining step, a decompression step, and a sealing step.
  • the arranging step is a step of arranging a plurality of pillars (4) on the first substrate (1).
  • a frame-shaped sealing material (5) surrounding the plurality of pillars (4) is placed between the first substrate (1) and the second substrate (2; 2A; 2B) facing the first substrate (1).
  • the first substrate (1) and the second substrate (2; 2A; 2B) are hermetically bonded.
  • the depressurization step is a step of depressurizing the internal space (51).
  • the sealing step is a step of sealing the internal space (51) in a reduced pressure state.
  • the first substrate (1) includes a first glass plate (15) and a low radiation film (17) located on the first glass plate (15).
  • a plurality of pillars (4) are arranged on the low radiation film (17).
  • substrate (2; 2A; 2B) can be stacked to produce a glass panel unit (90).
  • a common process that is, an arrangement process, a bonding process, regardless of the type of the glass sheet.
  • the plurality of pillars (4) are arranged on the first substrate (1) in the arrangement step.
  • the net (615) of the entering glass (61) does not interfere with each pillar (4).
  • the second substrate (2B) is the frosted glass (62)
  • the plurality of pillars (4) are not on the frosted glass (62) having the rough surface (620) but on the first substrate (1) side. Therefore, the plurality of pillars (4) are stably arranged in the arranging step.
  • the manufacturing method of the glass panel unit of the 1st aspect it is not necessary to provide the special process according to the kind of glass plate which comprises a 2nd board
  • the manufacturing method of the glass panel unit of the second aspect can be combined with the manufacturing method of the glass panel unit of the first aspect.
  • membrane (17) is located on the low radiation layer (170) located on a 1st glass plate (15), and a low radiation layer (170).
  • a protective layer (171) is included.
  • a plurality of pillars (4) are arranged on the surface of the protective layer (171).
  • the manufacturing method of the glass panel unit of the second aspect when the plurality of pillars (4) are arranged on the low radiation film (17), the low radiation layer (170) may be damaged. 171).
  • the manufacturing method of the glass panel unit of the third aspect can be combined with the manufacturing method of the glass panel unit of the second aspect.
  • the protective layer (171) is gasified by the heating performed between an arrangement
  • the glass panel unit (90; 90A; 90B) is manufactured with the protective layer (171) removed.
  • the manufacturing method of the glass panel unit of the fourth aspect can be combined with the manufacturing method of the glass panel unit of the third aspect.
  • the joining step includes a step of melting the sealing material (5) by heating.
  • the protective layer (171) is gasified by heating in the bonding process.
  • the protective layer (171) is removed during the joining step.
  • the manufacturing method of the glass panel unit of the fifth aspect can be combined with the manufacturing method of the glass panel unit of any one of the first to fourth aspects.
  • substrate (2A) contains a meshed glass (61).
  • the glass panel unit (90A) having high fire resistance can be manufactured. Moreover, since the plurality of pillars (4) are arranged on the first substrate (1) side in the arrangement step, when inspection by image processing is performed before the bonding step, the meshed glass (61) The net (615) does not interfere with each pillar (4).
  • the manufacturing method of the glass panel unit of the sixth aspect can be combined with the manufacturing method of the glass panel unit of any one of the first to fourth aspects.
  • the second substrate (2B) includes rubbed glass (62) having a rough surface (620).
  • the first substrate (1) and the second substrate (2B) are bonded with the rough surface (620) facing the first substrate (1).
  • the opaque or translucent glass panel unit (90B) as a whole can be manufactured.
  • the plurality of pillars (4) are arranged not on the frosted glass (62) having the rough surface (620) but on the first substrate (1) side. The arrangement of (4) is performed stably.
  • the manufacturing method of the glass panel unit of the seventh aspect can be combined with the manufacturing method of the glass panel unit of any one of the first to sixth aspects.
  • the manufacturing method of the glass panel unit according to the seventh aspect further includes a second joining step.
  • the third substrate (3) including the third glass plate (35) is attached to the first substrate (1) or the second substrate (2; 2A; 2B) with a frame-shaped second seal. This is a step of airtight joining through the material (38).
  • a glass panel unit (90; 90A; 90B) with higher heat insulation is manufactured.
  • the manufacturing method of the glass window of the eighth aspect can be combined with the manufacturing method of the glass panel unit of any one of the first to seventh aspects.
  • the manufacturing method of the glass panel window according to the eighth aspect includes a fitting step of fitting the glass panel unit (90; 90A; 90B) into the window frame (95).
  • a low radiation film is obtained through a common process, that is, an arrangement process, a bonding process, a decompression process, a sealing process, and a fitting process regardless of the type of glass plate.
  • a glass window (9) with (17) can be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

課題は、共通の工程を用いて、多様な種類のガラス板と、低放射膜を有するガラス板が重なった構造のガラスパネルユニットを製造することである。ガラスパネルユニットの製造方法は、配置工程、接合工程、減圧工程、および封止工程を備える。配置工程は、第一基板(1)に複数のピラー(4)を配置する工程である。第一基板(1)は、第一ガラス板(15)と第一ガラス板(15)上に位置する低放射膜(17)を含む。配置工程では、低放射膜(17)に対して複数のピラー(4)を配置する。

Description

ガラスパネルユニットの製造方法、およびガラス窓の製造方法
 本開示は、ガラスパネルユニットの製造方法、およびガラス窓の製造方法に関する。
 一対のガラス板の間に、減圧状態の内部空間が形成されたガラスパネルユニットが、従来知られている。減圧状態の内部空間には、一対のガラス板の間の距離を維持するために、複数のピラー(スペーサ)が配置される。
 この種のガラスパネルユニットにおいて、一対のガラス板のうち一方のガラス板の内面に低放射膜を設けてもよいことが、特許文献1等に記載されている。
 多様な種類のガラス板に対して、低放射膜を有するガラス板を重ねてガラスパネルユニットを製造するときに、前者のガラス板の種類に応じて、製造工程(装置)を変更することが必要となる場合がある。
 たとえば、網入りガラスに対して、低放射膜を有するガラス板を重ねてガラスパネルユニットを製造する場合に、以下のような問題が生じるおそれがある。すなわち、網入りガラスの上に複数のピラーが配置されていると、各ピラーの配置を画像処理で検査する際に、各ピラーと網が重なって検査の邪魔になる場合がある。
 これを避けるため、網と重ならないように各ピラーを配置するには、網入りガラスの種類に応じてピラーの配置形態を変更する必要が生じ、製造工程(装置)の共通化が困難となる。
日本国公開特許公報2002-255594号
 本開示は、共通の工程を用いて、多様な種類のガラス板と、低放射膜を有するガラス板が重なった構造のガラスパネルユニットを製造すること、およびこのガラスパネルユニットを用いたガラス窓を製造することを、目的とする。
 本開示の一態様に係るガラスパネルユニットの製造方法は、配置工程、接合工程、減圧工程、および封止工程を備える。前記配置工程は、第一基板に複数のピラーを配置する工程である。前記接合工程は、前記複数のピラーを囲む枠状のシール材を介して、前記第一基板と前記第一基板に対向する第二基板を気密に接合することで、前記第一基板と前記第二基板の間に、前記シール材に囲まれた内部空間を形成する工程である。前記減圧工程は、前記内部空間を減圧する工程である。前記封止工程は、前記内部空間を、減圧状態で封止する工程である。前記第一基板は、第一ガラス板と、前記第一ガラス板上に位置する低放射膜を含み、前記配置工程では、前記低放射膜に前記複数のピラーを配置する。
 本開示の一態様に係るガラス窓の製造方法は、前記ガラスパネルユニットを、窓枠に嵌め込む嵌め込み工程を備える。
図1Aは、一実施形態のガラスパネルユニットの製造方法で用いられる第一ガラス板を示す断面図である。図1Bは、同上の第一ガラス板上に低放射膜が位置する状態を示す断面図である。図1Cは、同上の第一ガラス板上に低放射層と保護層が位置する状態を示す断面図である。 図2は、同上の製造方法の配置工程で用いられる装置を一部破断して示す側面図である。 図3は、同上の製造方法の接合工程で用いられる第一基板を示す平面図である。 図4は、図3のA-A線断面図である。 図5は、同上の接合工程で用いられる第一基板と第二基板を示す斜視図である。 図6は、同上の製造方法で製造されたガラスパネルユニットを示す平面図である。 図7は、図6のB-B線断面図である。 図8は、変形例1のガラスパネルユニットを示す断面図である。 図9は、変形例2のガラスパネルユニットを示す平面図である。 図10は、図9のC-C線断面図である。 図11は、変形例2のガラスパネルユニットの他例を示す断面図である。 図12は、上記実施形態のガラスパネルユニットを備えるガラス窓を示す平面図である。
 本実施形態は、ガラスパネルユニットの製造方法、およびガラス窓の製造方法に関し、特に、減圧された内部空間を有するガラスパネルユニットの製造方法、およびこのガラスパネルユニットを用いたガラス窓の製造方法に関する。
 添付図面に基づいて、一実施形態のガラスパネルユニット90およびガラスパネルユニット90を備えるガラス窓9について、順に説明する。なお、添付図面においては各構成を概略的に示しており、図示の各構成の寸法形状は、実際の寸法形状とは異なる。
 (ガラスパネルユニット)
 図6、図7に示すように、一実施形態のガラスパネルユニット90は、第一基板1、第二基板2、シール材5、複数のピラー4、およびゲッター45を備える。本実施形態では、ガラスパネルユニット90は、ピラー4を多数備えている。
 第一基板1は、第一ガラス板15と、第一ガラス板15の厚み方向の一側を覆う低放射層170を備える。低放射層170は、第一ガラス板15のうち第二基板2に対向する面を覆う。第一基板1のうち第二基板2に対向する面は、低放射層170の表面で構成されている。
 第二基板2は、網入りガラス61で構成されている。網入りガラス61は、針金で形成された網615が内蔵されたガラス板である。網入りガラス61は、火炎を浴びたときに崩壊することが網615によって抑えられるので、高い防火性を有する。
 第二基板2は、少なくとも網入りガラス61で構成されていればよく、網入りガラス61の厚み方向の両側または片側に、適宜のコーティングが施されてもよい。
 シール材5は、ガラスフリット等の熱接着剤を用いて形成された枠体500と、同じくガラスフリット等の熱接着剤を用いて形成された円弧状の仕切り502を含む。枠体500を形成する材料と、仕切り502を形成する材料とでは、互いに溶融温度が相違することが好ましい。
 枠体500は、第一基板1の周縁部と、第二基板2の周縁部に、それぞれ接合されている。第一基板1と第二基板2の互いの周縁部は、枠体500を介して気密に接合されている。
 仕切り502は、枠体500に囲まれる空間を、第一基板1が有する排気孔55に連通する空間59と、空間59を除く内部空間51とに仕切っている。排気孔55には、外側からキャップ552が嵌め込まれている。複数のピラー4およびゲッター45は、内部空間51に位置する。内部空間51は、たとえば0.1Pa以下の真空度に至るまで減圧された断熱空間である。
 複数のピラー4は、互いに距離をあけて分散配置されている。複数のピラー4の材料、寸法形状、配置パターン等は、適宜に設定され得る。
 各ピラー4は、第一基板1のうち第二基板2に対向する面に押し当たり、かつ、第二基板2のうち第一基板1に対向する面に押し当たることで、第一基板1と第二基板2の間隔を、所定間隔に維持する。第二基板2のうち第一基板1に対向する面は、網入りガラス61の表面で構成されている。
 ゲッター45は、気体分子を吸着するように構成されており、複数のピラー4のそれぞれから、距離をあけて位置する。ゲッター45は、第一基板1に設置されているが、第二基板2に設置されてもよい。
 次に、一実施形態のガラスパネルユニット90を製造するための各工程について説明する。
 一実施形態のガラスパネルユニット90の製造方法は、配置工程、検査工程、接合工程、減圧工程、および封止工程を備える。
 配置工程では、図2に示すパンチングの装置7を用いて、第一基板1に複数のピラー4が配置される。
 この工程での第一基板1には、保護層171が設けられている。
 つまり、第一基板1においては、図1A、図1B及び図1C等に示すように、第一ガラス板15の表面に低放射層170があり、低放射層170の表面にさらに保護層171があり、低放射層170と保護層171で低放射膜17が構成されている。保護層171は、たとえばカーボンを用いて形成される。
 図2に示すように、装置7は、ステージ状の基板支持部71と、基板支持部71の上方に設置される抜き型72と、抜き型72の上方に供給されるシート400と、シート400の上方に設置される複数のパンチ73を備える。
 基板支持部71は、第一基板1を、低放射膜17が上端に位置する姿勢で支持する。
 抜き型72は、基板支持部71に支持された第一基板1の上方に位置する。抜き型72は、上下に貫通する複数の貫通孔721を有する。抜き型72の上面には、複数の貫通孔721を覆うようにシート400が載せられる。シート400の材質には、樹脂、金属等の各種の材質が用いられる。
 各パンチ73は、柱状であり、詳しくは、円柱状である。各パンチ73は、抜き型72に載せられたシート400の一部分401を、その先端面で下方に打ち抜くように構成されている。各パンチ73の先端面の下方には、シート400の一部分401と、抜き型72の貫通孔721が位置する。各パンチ73は、貫通孔721に挿し通すことが可能な寸法形状を有する。
 配置工程では、各パンチ73が、下方にむけて一直線状の軌道で打ち込まれる。これにより、各パンチ73が、シート400の一部分401を、抜き型72の貫通孔721を通じて下方に打ち抜く。打ち抜かれた一部分401は、それぞれパンチ73の先端面に当たった状態で、第一基板1が備える低放射膜17の表面、つまり保護層171の表面に押し付けられ、ピラー4を構成する。装置7は、複数のパンチ73をシート400に対して同時に打ち込むように構成されているが、装置7はこの形態に限定されず、少なくとも一つのパンチ73をシート400に打ち込むように構成されていればよい。
 低放射膜17のうち、低放射層170は保護層171で覆われているので、各ピラー4の一部分401が低放射膜17に勢いよく押し付けられても、低放射層170が傷付くことは抑えられる。
 なお、各ピラー4を第一基板1に配置する手段は、装置7のような、パンチングによってシート400からの打ち抜きと配置を連続的に実行する装置に限定されず、他の装置や他の手段を用いることも可能である。また、低放射膜17が保護層171を備えないことも有り得る。この場合には、低放射層170で低放射膜17が構成される。
 検査工程では、第一基板1に各ピラー4が適正に配置されているか否かが、検査される。具体的には、カメラを用いて第一基板1が撮影され、撮影された画像に適宜の画像処理が施されることにより、検査が行われる。
 検査工程を行った後に、接合工程が行われる。
 接合工程を行う段階において、第一基板1の低放射膜17の表面には、図3、図4及び図5に示すように、シール材5とゲッター45がさらに配置されている。
 シール材5に含まれる枠体500と仕切り502は、ディスペンサー等の塗布装置を用いて、第一基板1の低放射膜17の表面に塗布され、その後に乾燥および仮焼成される。接合工程では、仕切り502に通気路504が形成されている。
 接合工程では、第一基板1と、第二基板2、つまり網入りガラス61とは、図5等に示すように、シール材5、複数のピラー4、およびゲッター45を挟んだ状態でセットされ、接合炉内で加熱される。
 加熱により溶融した枠体500を介して、第一基板1と第二基板2の互いの周縁部が気密に接合される。この段階では、内部空間51と空間59は、通気路504を通じて互いに連通している。
 配置工程において低放射層170を覆っていた保護層171は、接合工程における接合炉内での加熱により、内部空間51においてガス化される。なお、接合炉内での加熱以外のタイミング、つまり配置工程と減圧工程の間の適宜のタイミングで、保護層171を加熱してガス化することも可能である。
 減圧工程では、たとえば排気孔55に連通するように第一基板1に排気管が接続され、排気管を通じて、内部空間51が、たとえば0.1Pa以下の真空度に至るまで減圧される。言い換えると、減圧工程では、内部空間51が真空引きされる。このとき、ガス化した保護層171の成分は、他の空気成分と共に内部空間51から排出される。
 封止工程では、仕切り502が所定温度で加熱溶融されることで、通気路504を塞ぐように仕切り502が変形する。これにより、内部空間51が、減圧状態、詳しくは真空状態を維持したままで封止される。
 仕切り502の溶融温度は、枠体500の溶融温度よりも高く設定されていることが好ましい。この設定により、接合工程の段階で仕切り502が変形して通気路504を塞ぐことが、より確実に防止される。
 以上、説明した一実施形態のガラスパネルユニット90においては、低放射層170を有する第一基板1によって日射による熱の通過が抑制され、網入りガラス61を有する第二基板2によって防火性が高められる。しかも、製造過程において、第二基板2、つまり網入りガラス61に複数のピラー4を配置するのではなく、第一基板1に複数のピラー4を配置するので、検査工程において各ピラー4が網615に重なることがなく、検査に不具合を生じることが抑えられる。
 一実施形態のガラスパネルユニット90では、排気孔55を第一基板1に一つ設けているが、内部空間51を減圧状態で封止できるのであれば、排気孔55を第一基板1に複数設けることや、排気孔55を第二基板2に一つまたは複数設けることも可能である。
 また、一実施形態のガラスパネルユニット90では、仕切り502を変形させることで内部空間51を封止しているが、他の方法で内部空間51を封止することも可能である。たとえば、内部空間51を減圧状態に維持したまま、排気孔55に挿入したガラスフリット等の熱接着剤を加熱溶融させて排気孔55を塞ぎ、これにより内部空間51を封止することも可能である。
 続いて、上記実施形態のガラスパネルユニット90の変形例について説明する。以下では、既に説明した構成と同様の構成については、図中に上記実施形態と同一の符号を付して説明を省略し、異なる構成については、詳しく説明する。
 (変形例1)
 変形例1のガラスパネルユニット90Aについて、図8に基づいて説明する。
 変形例1においては、第二基板2Aが、粗面620を有する擦りガラス62で構成されている。擦りガラス62の粗面620とは反対側の面には、さらに適宜のコーティングが施されてもよい。
 粗面620は、表面処理によって多数の微細な凹凸が形成された面である。擦りガラス62は、粗面620を有することで、半透明または不透明に構成されている。粗面620は、内部空間51に面しているので、粗面620に水が付着して透けて視えることは防止されている。
 変形例1のガラスパネルユニット90Aにおいては、低放射層170を有する第一基板1によって、日射による熱の通過が抑制され、擦りガラス62を有する第二基板2Aによって、全体の透明性が抑えられる。しかも、配置工程において、複数のピラー4が、第二基板2A、つまり粗面620を有する擦りガラス62に配置されるのではなく、第一基板1に配置されるので、粗面用の特別な配置手段を用いずとも、各ピラー4が安定的に配置される。
 (変形例2)
 変形例2のガラスパネルユニット90Bについて、図9、図10に基づいて説明する。
 変形例2のガラスパネルユニット90Bは、第二基板2に対向する第三基板3と、第二基板2と第三基板3の互いの周縁部を全周に亘って気密に接合する第二シール材38を、さらに備える。
 第三基板3は、少なくとも第三ガラス板35で構成されていればよい。第三基板3は、全体として透明であるが、半透明または非透明でもよい。
 第二基板2と第三基板3の互いの対向面22,32の間には、第二シール材38により封止された第二の内部空間が、形成されている。
 図10に示すように、枠状である第二シール材38の内側には、枠状のスペーサ34が、さらに配置されている。枠状のスペーサ34は、その周方向の少なくとも一部に、中空部分を有する。スペーサ34の中空部分には、乾燥剤36が充填されている。
 スペーサ34はアルミニウム等の金属で形成されており、貫通孔341を有する。貫通孔341は、スペーサ34の内周面に開口している。スペーサ34の中空部分は、貫通孔341を介して第二の内部空間に連通している。
 乾燥剤36は、たとえばシリカゲルである。第二シール材38は、たとえばシリコン樹脂、ブチルゴム等の高気密性の樹脂で形成されている。
 第二の内部空間は、第二基板2、第三基板3および第二シール材38で密閉された空間であり、乾燥ガスが充填されている。乾燥ガスは、たとえばアルゴン等の乾燥した希ガス、または乾燥空気である。変形例2のガラスパネルユニット90Bは、さらに高い断熱性を発揮する。
 なお、第三基板3の位置は、第二基板2に対向する位置に限定されない。第三基板3は、第一基板1または第二基板に対向すればよい。図11に示すように、第三基板3が第一基板1に対向する場合には、第二シール材38が、第一基板1と第三基板3の互いの周縁部に接合される。
 変形例2のガラスパネルユニット90Bの製造方法は、上述した配置工程、検査工程、接合工程、排気工程および封止工程に加えて、第二接合工程を備える。第二接合工程は、第二基板2に対して、第二シール材38を介して第三基板3が接合される工程である。なお、第三基板3が第一基板1に対向する場合、第二接合工程は、第一基板1に対して、第二シール材38を介して第三基板3が接合される工程である。
 (ガラス窓)
 一実施形態のガラスパネルユニット90を用いて製造されたガラス窓9について、図12に基づいて説明する。
 ガラス窓9は、一実施形態のガラスパネルユニット90と、ガラスパネルユニット90の周縁部に嵌め込まれた矩形枠状の窓枠95を備える。ガラス窓9においては、正面から視たときに、ガラスパネルユニット90のシール材5の枠体500が窓枠95に覆われる位置にあることが好ましい。
 ガラス窓9を製造する方法は、一実施形態のガラスパネルユニット90を製造するための各工程に加えて、ガラスパネルユニット90に窓枠95を嵌め込む嵌め込み工程を備える。嵌め込み工程において、変形例1のガラスパネルユニット90Aを窓枠95に嵌め込んでもよいし、変形例2のガラスパネルユニット90Bを窓枠95に嵌め込んでもよい。
 (態様)
 以上、説明した実施形態および各変形例から理解されるように、第1の態様のガラスパネルユニットの製造方法は、配置工程、接合工程、減圧工程、および封止工程を備える。配置工程は、第一基板(1)に複数のピラー(4)を配置する工程である。接合工程は、複数のピラー(4)を囲む枠状のシール材(5)を、第一基板(1)と第一基板(1)に対向する第二基板(2;2A;2B)の間に挟んで、第一基板(1)と第二基板(2;2A;2B)を気密に接合する工程である。接合工程では、第一基板(1)と第二基板(2;2A;2B)の間に、シール材(5)に囲まれた内部空間(51)を形成する。減圧工程は、内部空間(51)を減圧する工程である。封止工程は、内部空間(51)を、減圧状態で封止する工程である。第一基板(1)は、第一ガラス板(15)と、第一ガラス板(15)上に位置する低放射膜(17)を含む。配置工程では、低放射膜(17)に複数のピラー(4)を配置する。
 したがって、第1の態様のガラスパネルユニットの製造方法によれば、低放射膜(17)を有する第一基板(1)に対して、複数のピラー(4)を介して第二基板(2;2A;2B)を重ね、ガラスパネルユニット(90)を製造することができる。ここで、第二基板(2;2A;2B)として各種の網入りガラス、擦りガラス等の多様なガラス板を用いる場合も、ガラス板の種類によらず共通の工程、つまり配置工程、接合工程、減圧工程、および封止工程を経て、ガラスパネルユニット(90;90A;90B)を製造することができる。
 一例として、第二基板(2A)が網入りガラス(61)である場合も、配置工程では複数のピラー(4)が第一基板(1)に配置されるので、その後の検査工程において、網入りガラス(61)の網(615)が各ピラー(4)に重なって邪魔になることがない。また、第二基板(2B)が擦りガラス(62)である場合も、複数のピラー(4)は、粗面(620)を有する擦りガラス(62)ではなく第一基板(1)の側に配置されるため、配置工程において、複数のピラー(4)の配置は安定的に行われる。そのため、第1の態様のガラスパネルユニットの製造方法によれば、第二基板(2;2A;2B)を構成するガラス板の種類に応じた特別な工程を設ける必要なく、低放射膜(17)を有するガラスパネルユニット(90;90A;90B)を製造することができる。
 第2の態様のガラスパネルユニットの製造方法は、第1の態様のガラスパネルユニットの製造方法と組み合わせ得る。第2の態様のガラスパネルユニットの製造方法では、低放射膜(17)は、第一ガラス板(15)上に位置する低放射層(170)と、低放射層(170)上に位置する保護層(171)を含む。配置工程では、保護層(171)の表面に複数のピラー(4)を配置する。
 したがって、第2の態様のガラスパネルユニットの製造方法によれば、複数のピラー(4)を低放射膜(17)に配置したときに低放射層(170)が傷付くことが、保護層(171)の存在によって抑えられる。
 第3の態様のガラスパネルユニットの製造方法は、第2の態様のガラスパネルユニットの製造方法と組み合わせ得る。第3の態様のガラスパネルユニットの製造方法では、配置工程と減圧工程の間に行う加熱により、保護層(171)をガス化する。
 したがって、第3の態様のガラスパネルユニットの製造方法によれば、保護層(171)が除去された状態でガラスパネルユニット(90;90A;90B)が製造される。
 第4の態様のガラスパネルユニットの製造方法は、第3の態様のガラスパネルユニットの製造方法と組み合わせ得る。第4の態様のガラスパネルユニットの製造方法では、接合工程は、シール材(5)を加熱により溶融する工程を含む。接合工程の加熱により、保護層(171)をガス化する。
 したがって、第4の態様のガラスパネルユニットの製造方法によれば、接合工程の際に保護層(171)が除去される。
 第5の態様のガラスパネルユニットの製造方法は、第1~第4のいずれか一つの態様のガラスパネルユニットの製造方法と組み合わせ得る。第5の態様のガラスパネルユニットの製造方法では、第二基板(2A)は、網入りガラス(61)を含む。
 したがって、第5の態様のガラスパネルユニットの製造方法によれば、防火性の高いガラスパネルユニット(90A)を製造することができる。しかも、配置工程において、複数のピラー(4)は第一基板(1)の側に配置されるので、接合工程の前に、画像処理による検査を行ったときに、網入りガラス(61)の網(615)が各ピラー(4)に重なって邪魔になることがない。
 第6の態様のガラスパネルユニットの製造方法は、第1~第4のいずれか一つの態様のガラスパネルユニットの製造方法と組み合わせ得る。第6の態様のガラスパネルユニットの製造方法では、第二基板(2B)は、粗面(620)を有する擦りガラス(62)を含む。接合工程では、第一基板(1)に粗面(620)が対向する状態で、第一基板(1)と第二基板(2B)を接合する。
 したがって、第6の態様のガラスパネルユニットの製造方法によれば、全体として不透明または半透明なガラスパネルユニット(90B)を製造することができる。しかも、配置工程において、複数のピラー(4)は、粗面(620)を有する擦りガラス(62)に配置されるのではなく、第一基板(1)の側に配置されるので、各ピラー(4)の配置が安定的に行われる。
 第7の態様のガラスパネルユニットの製造方法は、第1~第6のいずれか一つの態様のガラスパネルユニットの製造方法と組み合わせ得る。第7の態様のガラスパネルユニットの製造方法は、第二接合工程をさらに備える。第二接合工程は、第三ガラス板(35)を含む第三基板(3)を、第一基板(1)または第二基板(2;2A;2B)に対して、枠状の第二シール材(38)を介して気密に接合する工程である。
 したがって、第7の態様のガラスパネルユニットの製造方法によれば、さらに断熱性の高いガラスパネルユニット(90;90A;90B)が製造される。
 第8の態様のガラス窓の製造方法は、第1~第7のいずれか一つの態様のガラスパネルユニットの製造方法と組み合わせ得る。第8の態様のガラスパネル窓の製造方法は、ガラスパネルユニット(90;90A;90B)を、窓枠(95)に嵌め込む嵌め込み工程を備える。
 したがって、第8の態様のガラス窓の製造方法によれば、ガラス板の種類によらず共通の工程、つまり配置工程、接合工程、減圧工程、封止工程、及び嵌め込み工程を経て、低放射膜(17)を有するガラス窓(9)を製造することができる。
 1 第一基板
 12 面
 15 第一ガラス板
 17 低放射膜
 170 低放射層
 171 保護層
 2,2A,2B 第二基板
 3 第三基板
 35 第三ガラス板
 38 第二シール材
 4 ピラー
 5 シール材
 51 内部空間
 55 排気孔
 61 網入りガラス
 62 擦りガラス
 620 粗面
 9 ガラス窓
 90,90A,90B ガラスパネルユニット
 95 窓枠

Claims (8)

  1.  第一基板に複数のピラーを配置する配置工程と、
     前記複数のピラーを囲む枠状のシール材を、前記第一基板と前記第一基板に対向する第二基板の間に挟んで、前記第一基板と前記第二基板を気密に接合することで、前記第一基板と前記第二基板の間に、前記シール材に囲まれた内部空間を形成する接合工程と、
     前記内部空間を減圧する減圧工程と、
     前記内部空間を、減圧状態で封止する封止工程を備え、
     前記第一基板は、第一ガラス板と、前記第一ガラス板上に位置する低放射膜を含み、
     前記配置工程では、前記低放射膜に前記複数のピラーを配置する、
     ガラスパネルユニットの製造方法。
  2.  前記低放射膜は、前記第一ガラス板上に位置する低放射層と、前記低放射層上に位置する保護層を含み、
     前記配置工程では、前記保護層の表面に前記複数のピラーを配置する、
     請求項1のガラスパネルユニットの製造方法。
  3.  前記配置工程と前記減圧工程の間に行う加熱により、前記保護層をガス化する、
     請求項2のガラスパネルユニットの製造方法。
  4.  前記接合工程は、前記シール材を加熱により溶融する工程を含み、
     前記接合工程の加熱により、前記保護層をガス化する、
     請求項3のガラスパネルユニットの製造方法。
  5.  前記第二基板は、網入りガラスを含む、
     請求項1~4のいずれか一つのガラスパネルユニットの製造方法。
  6.  前記第二基板は、粗面を有する擦りガラスを含み、
     前記接合工程では、前記第一基板に前記粗面が対向する状態で、前記第一基板と前記第二基板を接合する、
     請求項1~4のいずれか一つのガラスパネルユニットの製造方法。
  7.  第三ガラス板を含む第三基板を、前記第一基板または前記第二基板に対して、枠状の第二シール材を介して気密に接合する第二接合工程を、さらに備える、
     請求項1~6のいずれか一つのガラスパネルユニットの製造方法。
  8.  請求項1~7のいずれか一つのガラスパネルユニットの製造方法で製造されたガラスパネルユニットを、窓枠に嵌め込む嵌め込み工程を備える、
     ガラス窓の製造方法。
PCT/JP2018/004627 2017-03-31 2018-02-09 ガラスパネルユニットの製造方法、およびガラス窓の製造方法 WO2018179908A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019508708A JP6796812B2 (ja) 2017-03-31 2018-02-09 ガラスパネルユニットの製造方法、およびガラス窓の製造方法
EP18777909.5A EP3604245B1 (en) 2017-03-31 2018-02-09 Method for manufacturing glass panel unit and method for manufacturing glass window

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072697 2017-03-31
JP2017-072697 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018179908A1 true WO2018179908A1 (ja) 2018-10-04

Family

ID=63675118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004627 WO2018179908A1 (ja) 2017-03-31 2018-02-09 ガラスパネルユニットの製造方法、およびガラス窓の製造方法

Country Status (3)

Country Link
EP (1) EP3604245B1 (ja)
JP (1) JP6796812B2 (ja)
WO (1) WO2018179908A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086305A (ja) * 1998-09-17 2000-03-28 Nippon Sheet Glass Co Ltd ガラスパネル
JP2002255594A (ja) 2001-02-23 2002-09-11 Nippon Sheet Glass Co Ltd ガラスパネルの製造方法
JP2003321255A (ja) * 2002-05-07 2003-11-11 Nippon Sheet Glass Co Ltd 透光性ガラスパネル
JP2004352567A (ja) * 2003-05-29 2004-12-16 Nippon Sheet Glass Co Ltd 断熱・遮熱性ガラスパネル
US20060065350A1 (en) * 2004-09-27 2006-03-30 Guardian Industries Corp. Method of making heat treated coated glass article, and intermediate product used in same
WO2014109369A1 (ja) * 2013-01-11 2014-07-17 旭硝子株式会社 積層体および複層ガラス
WO2014109368A1 (ja) * 2013-01-11 2014-07-17 旭硝子株式会社 光学多層膜、積層体、および複層ガラス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183636A (ja) * 1995-12-28 1997-07-15 Nippon Sheet Glass Co Ltd 複層ガラス
CN107406310B (zh) * 2015-03-20 2020-06-30 松下知识产权经营株式会社 玻璃面板单元、玻璃窗和制造玻璃面板单元的方法
JP6425174B2 (ja) * 2015-03-20 2018-11-21 パナソニックIpマネジメント株式会社 真空ガラスパネルの製造方法
JP6425175B2 (ja) * 2015-03-20 2018-11-21 パナソニックIpマネジメント株式会社 真空ガラスパネル及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086305A (ja) * 1998-09-17 2000-03-28 Nippon Sheet Glass Co Ltd ガラスパネル
JP2002255594A (ja) 2001-02-23 2002-09-11 Nippon Sheet Glass Co Ltd ガラスパネルの製造方法
JP2003321255A (ja) * 2002-05-07 2003-11-11 Nippon Sheet Glass Co Ltd 透光性ガラスパネル
JP2004352567A (ja) * 2003-05-29 2004-12-16 Nippon Sheet Glass Co Ltd 断熱・遮熱性ガラスパネル
US20060065350A1 (en) * 2004-09-27 2006-03-30 Guardian Industries Corp. Method of making heat treated coated glass article, and intermediate product used in same
WO2014109369A1 (ja) * 2013-01-11 2014-07-17 旭硝子株式会社 積層体および複層ガラス
WO2014109368A1 (ja) * 2013-01-11 2014-07-17 旭硝子株式会社 光学多層膜、積層体、および複層ガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604245A4

Also Published As

Publication number Publication date
EP3604245A1 (en) 2020-02-05
EP3604245A4 (en) 2020-04-15
EP3604245B1 (en) 2023-07-26
JPWO2018179908A1 (ja) 2020-01-23
JP6796812B2 (ja) 2020-12-09

Similar Documents

Publication Publication Date Title
JP6664108B2 (ja) ガラスパネルユニットの製造方法、建具の製造方法、及びガラスパネルユニットの製造装置
TWI666375B (zh) 玻璃平板單元及玻璃窗
CN107074642B (zh) 玻璃面板单元的制造方法
JP6715485B2 (ja) ガラスパネルユニットの製造方法
WO2016147604A1 (ja) ガラスパネルユニットの製造方法、ガラス窓の製造方法、およびスペーサ付きガラス基板の製造装置
WO2020026624A1 (ja) ガラスパネルユニットの製造方法
JP2020164419A (ja) ガラスパネルユニットの製造方法、およびガラス窓の製造方法
JP7113298B2 (ja) ガラスパネルユニットの製造方法及びガラス窓の製造方法
WO2018179908A1 (ja) ガラスパネルユニットの製造方法、およびガラス窓の製造方法
JP6735509B2 (ja) ガラスパネルユニットの製造方法、およびガラス窓の製造方法
WO2018062124A1 (ja) ガラスパネルユニットの製造方法およびガラス窓の製造方法
JP7228819B2 (ja) ガラスパネルユニットを得るための組立て品及びガラスパネルユニットの製造方法
JP6868836B2 (ja) ガラスパネルユニットの製造方法、建具の製造方法及びガス吸着ユニット
TW201736314A (zh) 玻璃平板單元及具有該玻璃平板單元之門窗
JP6893321B2 (ja) ガラスパネルユニット及びこれを備える建具の製造方法
WO2018221396A1 (ja) ガラスパネルユニットの製造方法
EP3521258B1 (en) Method for producing glass panel unit
WO2018062071A1 (ja) ガラスパネルユニットの製造方法、およびガラス窓の製造方法
JP6771183B2 (ja) ガラスパネルユニットおよびこれを備えたガラス窓
WO2018179994A1 (ja) ガラスパネルユニット、及びガラス窓
JPWO2018221208A1 (ja) ガラスパネルユニットの製造方法及びガラス窓の製造方法
JPWO2019208002A1 (ja) ガラスパネルユニット、ガラス窓、ガラスパネルユニットの製造方法及びガラス窓の製造方法
JPS6327837B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018777909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018777909

Country of ref document: EP

Effective date: 20191031