WO2018177175A1 - 一种电池电极及其制备方法和电池 - Google Patents

一种电池电极及其制备方法和电池 Download PDF

Info

Publication number
WO2018177175A1
WO2018177175A1 PCT/CN2018/079820 CN2018079820W WO2018177175A1 WO 2018177175 A1 WO2018177175 A1 WO 2018177175A1 CN 2018079820 W CN2018079820 W CN 2018079820W WO 2018177175 A1 WO2018177175 A1 WO 2018177175A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
battery
current collector
electrode
layer
Prior art date
Application number
PCT/CN2018/079820
Other languages
English (en)
French (fr)
Inventor
周慧慧
李阳兴
刘辰光
许国成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18776082.2A priority Critical patent/EP3595048B1/en
Publication of WO2018177175A1 publication Critical patent/WO2018177175A1/zh
Priority to US16/582,557 priority patent/US11349163B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of energy storage devices, in particular to a battery electrode, a preparation method thereof and a battery.
  • Battery heat generation and thermal runaway are mainly affected by internal factors such as charge and discharge rate, internal resistance, depth of discharge (DOD), current state of charge (SOC), capacity, ambient temperature, and heat dissipation.
  • internal factors such as charge and discharge rate, internal resistance, depth of discharge (DOD), current state of charge (SOC), capacity, ambient temperature, and heat dissipation.
  • DOD depth of discharge
  • SOC current state of charge
  • capacity ambient temperature
  • heat dissipation due to the agglomeration of the internal materials of the electrode, the resistance rises sharply, and the heat generation increases.
  • Figure 1 shows the internal heat distribution of the conventional electrode. . Therefore, the construction of an effective heat-dissipating electrode is an effective solution for improving the high-temperature performance of the battery.
  • the embodiments of the present invention provide a battery electrode having a specific thermal conduction path inside the cell material, so that the heat inside the cell can be effectively transferred to the environment to solve the problem of the single cell interior in the prior art.
  • the heat generated cannot be conducted from the inside to the environment in time, resulting in poor battery high temperature performance.
  • a first aspect of the embodiments of the present invention provides a battery electrode including a current collector and an electrode material layer disposed on the current collector, the electrode material layer including an electrode active material and a sheet-like structure graphene.
  • the surface modification of the graphene has magnetically responsive nano-dots, wherein the graphene having a mass ratio of more than 50% is at an angle of 45° to 90° with the surface on which the electrode material layer is disposed on the current collector.
  • the orientations are aligned to form a thermally conductive path having a particular orientation.
  • the magnetically responsive nano-dots are spaced apart on the surface of the sheet-like graphene such that the sheet-like graphene is aligned in the same direction with respect to the surface on which the electrode material layer is disposed on the current collector.
  • the mass ratio of the arrangement of the current collector at an angle of 45° to 90° is 70% to 100%.
  • the graphene is arranged at an angle of 80° to 90° with the current collector.
  • the graphene is a single layer or a plurality of layers of graphene having a thickness ranging from 0.3 nm to 50 nm.
  • the graphene has a mass content of 0.1% to 20%.
  • the current collector surface is provided with a heat conductive modification layer, and the electrode material layer is disposed on the surface of the heat conduction modification layer, and the heat conduction modification layer and the graphene in the electrode material layer constitute an interconnected heat conduction network.
  • the material of the heat conductive modification layer includes at least one of a carbon material and a heat conductive metal material.
  • the thermally conductive metal material includes gold, silver, copper, aluminum, and the like.
  • the carbon material includes one or more of carbon black, acetylene black, crystalline graphene, reduced graphene, and graphene containing a doping element including nitrogen, phosphorus, sulfur, boron, fluorine. And one or more of chlorine.
  • the carbon material of the thermally conductive modified layer and the graphene in the electrode material layer are tightly bonded by a ⁇ - ⁇ interaction, so that the graphene and the thermally conductive modified layer form a three-dimensional heat conduction network interconnected.
  • the thermally conductive modified layer has a thickness of from 0.5 nm to 500 nm.
  • the thermally conductive modified layer is prepared on the current collector by a physical coating method, a chemical vapor deposition method, an evaporation deposition method, or a sputtering method.
  • the current collector comprises a metal foil or an alloy foil, the metal foil comprising copper, titanium, aluminum, platinum, rhodium, ruthenium, nickel, tungsten, rhenium, gold or silver foil, the alloy foil comprising stainless steel Or an alloy containing at least one of copper, titanium, aluminum, platinum, rhodium, ruthenium, nickel, tungsten, rhenium, gold, and silver.
  • the metal foil may further include a doping element including one or more of platinum, rhodium, iron, cobalt, gold, copper, zinc, aluminum, magnesium, palladium, iridium, silver, and tungsten. .
  • the surface of the current collector is provided with a secondary structure, and a material portion of the thermally conductive modified layer is deposited on the surface of the secondary structure.
  • the secondary structure includes vertical array protrusions.
  • the height of the protrusion is from 1% to 50% of the thickness of the current collector.
  • the magnetically responsive nanodots include one or more of an oxide, an alloy, and a composite material containing a magnetic element including at least one of iron, cobalt, and nickel.
  • the oxide, alloy, and composite material including at least one of iron, cobalt, and nickel are ferromagnetic substances.
  • the magnetically responsive nanodots further include other doping elements including one or more of platinum, rhodium, iron, cobalt, gold, copper, zinc, aluminum, magnesium, palladium, iridium, silver, and tungsten. Kind.
  • the magnetically responsive nanodots have a particle size of 50 nm or less.
  • the electrode active material is a material that can be energy-stored by deintercalation ions, and the electrode active material has a particle diameter of 3 nm to 30 ⁇ m.
  • the ions include one of lithium ions, sodium ions, potassium ions, magnesium ions, and aluminum ions.
  • the electrode material layer has a thickness of from 5 ⁇ m to 150 ⁇ m.
  • the graphene in the electrode material layer has a magnetic response function, and can be oriented and arranged under the adjustment of an external magnetic field to construct a heat source for quickly deriving the internal heat of the battery core.
  • the heat conduction channel can effectively heat the internal heat of the battery from the center to the environment, and improve the high temperature performance of the battery.
  • the introduction of graphene makes the dispersion of the electrode material more uniform, avoiding the agglomeration of the electrode material and reducing the internal resistance. Reduces battery heat, which further improves the high temperature performance of the battery.
  • a second aspect of the embodiments of the present invention provides a method for preparing a battery electrode, including the following steps:
  • the graphene modified with the magnetically responsive nano-dots is mixed with the electrode active material and the binder to obtain a slurry, and the slurry is coated on the current collector under the action of an external magnetic field, and an external magnetic field is applied. Drying, aligning the graphene to obtain an electrode material layer, that is, obtaining a battery electrode, wherein the graphene is greater than 50% by mass of the graphene and the electrode material layer is disposed on the current collector
  • the surfaces are arranged at an angular orientation of 45°-90° to form a thermally conductive path having a particular orientation.
  • a magnetic field is applied during the coating and drying of the slurry, which may be from a fixed magnet or a rotating magnetic field.
  • the graphite having the magnetic response nano-dots is modified by the surface suspended in the slurry.
  • the olefins, as a whole exhibiting ferromagnetism, tend to align in the same direction as the direction of the applied magnetic field, i.e., the graphene eventually exhibits a vertically oriented alignment with the planar direction of the current collector.
  • the graphene modified with magnetically responsive nano dots is prepared by microwave synthesis, hydrothermal method, magnetron sputtering method, vapor deposition method, or chemical vapor deposition method.
  • the above preparation method further comprises the steps of: preparing a thermally conductive modified layer on the current collector by a physical coating method, a chemical vapor deposition method, an evaporation deposition method or a sputtering method; and then the slurry is further processed
  • the material is uniformly coated on the surface of the thermally conductive modified layer, and dried under the action of a magnetic field to orient the graphene to obtain an electrode material layer.
  • an embodiment of the present invention further provides a battery including the battery electrode according to the first aspect of the embodiment of the present invention.
  • the battery electrode may be a positive electrode or a negative electrode.
  • the battery includes a metal lithium battery, a lithium ion battery, a sodium ion battery, a magnesium ion battery, an aluminum ion battery, an air battery, or a fuel battery.
  • FIG. 1 is a schematic diagram of internal heat distribution of a conventional conventional electrode
  • FIG. 2 is a schematic structural view of a battery electrode according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of heat flow of a battery electrode according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic view showing a preparation process of a battery electrode according to Embodiment 1 of the present invention.
  • embodiments of the present invention provide a battery electrode including a current collector and an electrode material layer disposed on the current collector, the electrode material layer including the electrode An active material and a sheet-like structure graphene having a surface modified with magnetically responsive nano-dots, wherein the graphene is greater than 50% by mass of the graphene and the electrode material is disposed on the current collector
  • the surfaces of the layers are arranged at an angular orientation of 45°-90° to form a thermally conductive path having a particular orientation.
  • the magnetic response nano-dots refers to nanoparticles that are sensitive to a magnetic field and can generate a magnetic response.
  • the magnetically responsive nano-dots are spaced apart on the surface of the sheet-like graphene such that the sheet-like graphene is aligned in the same direction with respect to the surface on which the electrode material layer is disposed on the current collector.
  • the graphene in the electrode material layer has magnetic response nano-dots due to the surface modification, so that the ordered arrangement can be realized under the applied magnetic field, and the orientation is built inside the cell, and the parallel from the inside to the outside is fast.
  • the heat conduction channel improves the heat dissipation performance of the battery, and solves the problem that the internal heat of the existing core material cannot be timely guided to the periphery of the environment; meanwhile, the introduction of graphene can improve the uniform dispersion between the graphene and the active material, and avoid the active material.
  • the agglomeration between the particles makes the heat distribution more uniform.
  • the graphene has a mass ratio of 70%-100% to the current collector at an angle of 45°-90°, and further may be 80%-95%.
  • the graphene is arranged at an angle of 80°-90° to the current collector.
  • the thermally conductive skeleton inside the cell material composed of graphene has the shortest heat conduction path, so that the heat of the center of the cell can be transferred to the current collector at the fastest speed.
  • the graphene may be a single layer or a plurality of layers of graphene, and the thickness may be from 0.3 nm to 50 nm. Further, the thickness may be from 2 nm to 30 nm. Suitable graphene thickness dimensions ensure a better orderly alignment in the electrode material layer.
  • the mass content of the graphene in the electrode material layer is 0.1%-20%, and further may be 0.5%-2%, 1%-5%, 5%-10%, 10%- 15%.
  • the graphene has good electrical conductivity and can serve as a conductive agent at the same time.
  • the current collector surface is further provided with a heat conductive modification layer
  • the electrode material layer is disposed on the surface of the heat conduction modification layer
  • the heat conduction modification layer and the graphene in the electrode material layer are interconnected.
  • Thermal network The thermal conductive modification layer is configured to form a complete and continuous heat conduction channel between the electrode material layer and the current collector, so that the heat inside the battery core can be transmitted to the current collector more quickly, and further transmitted to the battery peripheral environment to improve the heat dissipation characteristics of the battery.
  • the interconnected heat conduction network composed of the heat conductive modification layer and the graphene in the electrode material layer has good conductivity at the same time, and can provide a fast channel for the electrons, thereby reducing the internal resistance of the battery and further reducing the heat while improving the electrochemical performance of the battery. .
  • the thermally conductive modified layer and the graphene in the electrode material layer form a three-dimensional heat conduction network interconnected by physical or chemical interaction.
  • the material of the heat conductive modification layer includes at least one of a carbon material and a heat conductive metal material.
  • the thermally conductive metal material may be a material such as gold, silver, copper, aluminum or the like.
  • the carbon material comprises one or more of carbon black, acetylene black, crystalline graphene, reduced graphene and graphene containing doping elements, including nitrogen and phosphorus.
  • doping elements including nitrogen and phosphorus.
  • the carbon material of the thermally conductive modified layer and the graphene in the electrode material layer are tightly bonded by a ⁇ - ⁇ interaction, so that the graphene and the thermally conductive modified layer form an interconnection.
  • Three-dimensional thermal network The thermally conductive metal material and the graphene in the electrode material layer form a three-dimensional heat conduction network interconnected by physical contact.
  • the thermally conductive modified layer has a thickness of from 0.5 nm to 500 nm. Further, the heat conductive modification layer has a thickness of 10 nm to 300 nm and 30 nm to 150 nm. Setting a certain thickness ensures the mechanical strength of the thermally conductive modified layer, maintains its arrangement shape on the surface of the current collector, and improves the effective contact with the graphene in the electrode material layer.
  • the thermally conductive modified layer is prepared on the current collector by a physical coating method, a chemical vapor deposition method, an evaporation deposition method, or a sputtering method.
  • the current collector comprises a metal foil or an alloy foil
  • the metal foil comprises copper, titanium, aluminum, platinum, rhodium, ruthenium, nickel, tungsten, rhenium, gold or silver foil.
  • the alloy foil includes stainless steel or an alloy containing at least one of copper, titanium, aluminum, platinum, rhodium, ruthenium, nickel, tungsten, rhenium, gold, and silver.
  • the metal foil may further include a doping element including one or more of platinum, rhodium, iron, cobalt, gold, copper, zinc, aluminum, magnesium, palladium, iridium, silver, and tungsten. .
  • the surface of the current collector is provided with a secondary structure, and a material portion of the thermally conductive modified layer is deposited on the surface of the secondary structure.
  • the secondary structure may be a vertical array of protrusions, such as linear protrusions, columnar protrusions, and the like.
  • the material of the secondary structure may be an oxide of a current collector substrate, such as a secondary structure of a copper oxide current collector surface provided with a copper oxide material.
  • the height of the protrusion may be 1%-50%, further 10%-30%, 20%-40% of the thickness of the current collector.
  • the secondary structure on the current collector allows a portion of the thermally conductive modified layer material to be interspersed in the electrode material layer, thereby improving effective contact with graphene in the electrode material layer, enhancing interconnection, and improving heat dissipation.
  • the magnetically responsive nano-dots comprise one or more of an oxide, an alloy, and a composite material containing a magnetic element, and the magnetic element includes at least one of iron, cobalt, and nickel.
  • the magnetically responsive nanodots further comprise other doping elements including platinum, rhodium, iron, cobalt, gold, copper, zinc, aluminum, magnesium, palladium, iridium, silver, and tungsten. One or more of them.
  • the magnetically responsive nanodots have a particle size of 50 nm or less. Further, the magnetically responsive nanodots have a particle size of 5 nm to 20 nm.
  • Appropriate particle size can ensure that the magnetic response nano-dots can be firmly bonded to the graphene sheets, and it is not easy to fall off, which helps to achieve the orientation alignment effect of graphene.
  • a suitable particle size is advantageous for ensuring battery performance.
  • the mass of the magnetically responsive nanodots is less than 5% of the total mass of the electrode material layer. Further, it is 2% or less.
  • the suitable mass content not only ensures the alignment of graphene, but also helps to ensure battery performance.
  • the battery electrode may be a positive electrode or a negative electrode.
  • the electrode active material is a material capable of energy storage by deintercalation ions
  • the electrode active material has a particle diameter of 3 nm to 30 ⁇ m, further has a particle diameter of 50 nm to 5 ⁇ m
  • the ions include lithium ions, sodium ions, and potassium.
  • the electrode active material includes, but is not limited to, a composite material of a metal, an inorganic non-metal, an oxide, a nitride, a boride, a sulfide, a chloride, or a plurality of energy storage materials.
  • the electrode material layer further includes a binder
  • the binder may be polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), and carboxymethyl.
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • PTFE polytetrafluoroethylene
  • carboxymethyl carboxymethyl.
  • CMC Cellulose
  • SBR styrene butadiene rubber
  • sodium alginate and the like.
  • a conductive agent such as conductive carbon black or the like may also be included in the electrode material layer.
  • the electrode material layer has a thickness of from 5 ⁇ m to 150 ⁇ m, further from 20 to 50 ⁇ m.
  • the battery electrode provided by the embodiment of the invention utilizes graphene with magnetic response function as a heat-dissipating conductor, and under the guidance of an external magnetic field, the ordered arrangement of graphene and the heat-conducting skeleton are formed in the electrode material layer, thereby maximizing the amount of oriented heat conduction.
  • the heat is diffused from the inside of the cell to the current collector; the battery electrode provided by the embodiment of the invention further provides a heat conductive modification layer on the surface of the current collector to form a current collector heat conduction skeleton, which is integrated with the graphene heat conduction skeleton to promote heat through the current collector.
  • the orientation of the magnetic graphene introduced in the electrode material layer can simultaneously reduce the internal resistance of the battery, reduce the heat generation, improve the rate characteristic of the battery, and ensure the performance of the battery capacity.
  • an embodiment of the present invention further provides a method for preparing a battery electrode, including the following steps:
  • the current collector includes, but is not limited to, a metal foil or an alloy foil
  • the metal foil includes copper, titanium, aluminum, platinum, rhodium, ruthenium, nickel, tungsten, rhenium, gold or silver foil.
  • the alloy foil comprises stainless steel or an alloy containing at least one of copper, titanium, aluminum, platinum, rhodium, ruthenium, nickel, tungsten, rhenium, gold, and silver.
  • the alloy foil has the above-mentioned elements as a main component.
  • the metal foil may further comprise a doping element including, but not limited to, one of platinum, rhodium, iron, cobalt, gold, copper, zinc, aluminum, magnesium, palladium, iridium, silver, tungsten. Or a variety.
  • a doping element including, but not limited to, one of platinum, rhodium, iron, cobalt, gold, copper, zinc, aluminum, magnesium, palladium, iridium, silver, tungsten. Or a variety.
  • the thermally conductive modified layer can be prepared by a physical coating method, a chemical vapor deposition method, an evaporation deposition method, or a sputtering method.
  • the material of the thermally conductive modified layer may be a carbon material, which may include one or more of carbon black, acetylene black, crystalline graphene, reduced graphene, and graphene containing a doping element.
  • the doping element includes one or more of nitrogen, phosphorus, sulfur, boron, fluorine, and chlorine.
  • the thermally conductive modified layer has a thickness of from 0.5 nm to 500 nm. Further, the heat conductive modification layer has a thickness of 10 nm to 300 nm.
  • the surface of the current collector may be pre-arranged with a secondary structure, and a thermally conductive modified layer is disposed to deposit a portion of the material of the thermally conductive modified layer on the surface of the secondary structure.
  • the secondary structure may be a vertical array of protrusions, such as linear protrusions, columnar protrusions, and the like.
  • the material of the secondary structure may be an oxide of a current collector substrate, such as a secondary structure of a copper oxide current collector surface provided with a copper oxide material.
  • the height of the protrusion may be 1%-50%, further 10%-30%, 20%-40% of the thickness of the current collector.
  • a copper foil current collector is taken as an example, and a method for preparing a graphene heat conductive modified layer on a surface thereof comprises the following steps:
  • a method of forming a secondary structure such as a nano-array on the surface of the current collector includes, but is not limited to, a micro-oxidation method, a chemical etching method, a photo-etching method, a molecular beam epitaxy method, and a laser ablation method.
  • a method for preparing a graphene-modified layer on the surface of the current collector includes, but is not limited to, a vapor deposition method, a physical coating method, an evaporation deposition method, and a magnetron sputtering method.
  • the carbon source may be a gas phase carbon source gas stream, such as methane, ethane, propane, butane, ethylene, propylene, etc., or a vapor carbon source molecule carried by an inert gas partial pressure, such as a benzene solution, an acetonitrile solution, or a styrene.
  • a solution or the like, an inert gas such as He, N 2 , Xe, Ar, Kr, Xe, or the like, and a mixed gas rate of 5 mL/min to 300 mL/min.
  • the process of growing the graphene by the plating layer comprises two temperature rising intervals, and the first interval is usually firstly heated to 300 ° C to 500 ° C to convert impurities or impure phase states contained in the current collector into pure phase.
  • the temperature is first raised to 450 ° C; the second interval is further heated to 600 ° C - 1000 ° C, and a reaction carbon source is introduced to catalyze the growth of graphene on the surface of the current collector, optionally continuing to heat to 600 ° C to 800 ° C.
  • the magnetically responsive nano-dots comprise one or more of an oxide, an alloy, and a composite material containing a magnetic element, and the magnetic element includes at least one of iron, cobalt, and nickel.
  • the magnetically responsive nanodots further comprise other doping elements including platinum, rhodium, iron, cobalt, gold, copper, zinc, aluminum, magnesium, palladium, iridium, silver, and tungsten. One or more of them.
  • the magnetically responsive nanodots have a particle size of 50 nm or less. Further, the magnetically responsive nanodots have a particle size of 5 nm to 20 nm.
  • the method for preparing a surface-modified graphene having magnetically responsive nano-dots by using a microwave synthesis method comprises the steps of: taking a graphene oxide solution, adding a magnetic-responsive nano-dot precursor material thereto, obtaining a mixed solution, and mixing the mixed solution
  • the temperature was raised to 150 ° C for 30 min in 1-5 min to obtain a graphene dispersion with surface-modified magnetically responsive nano-dots, that is, graphene having surface-modified magnetically-responsive nano-dots was obtained.
  • the microwave frequency is 2450MHz
  • the power is 400-2000W
  • the heating rate is 10-30 ° C / min
  • the reaction temperature is 120-200 ° C
  • the reaction time is 5-30 min.
  • the method for preparing graphene surface-modified with magnetically responsive nano-dots by chemical vapor deposition comprises the steps of: taking a certain amount of graphene powder in a ceramic crucible, and then placing it in a tube furnace, argon gas (flow 200-300 sccm) protection The temperature is raised to 230-280 ° C, and then the precursor material of the magnetically responsive nano-dots (such as H 2 Fe[P(OCH 2 ) 3 ] 4 , H 2 Fe[P(CH 3 ) 3 ] 4 ) is bubbled. The reaction was carried out for 5-30 min in a tube furnace (air flow 400 sccm) to obtain graphene having surface-modified magnetically responsive nano-dots (Fe 3 O 4 ).
  • the method for preparing graphene surface-modified with magnetically responsive nano-dots by vapor deposition deposition comprises the following steps: A. Applying graphene powder on a silicon wafer as a substrate to be plated. The vapor deposition furnace chamber was subjected to rough pumping for 10 minutes. When the vacuum degree reached 0.2 Torr, the chamber of the vapor deposition furnace was finely pumped for 10 minutes. When the degree of vacuum reached 2 ⁇ 10 -5 Torr, argon gas was added to the chamber of the vapor deposition furnace. At the same time, the bias voltage is about 10KV, so that argon gas forms argon ions and forms a discharge effect on the surface of the iron oxide substrate, and impurities on the surface of the iron oxide are removed; B.
  • the temperature is maintained for 20 min. After the heating is stopped, the substrate temperature is lowered to 400 ° C -420 ° C, and the iron oxide raw material is heated and vaporized by the large current 240A-330A, and the substrate is rotated. After 5 minutes, the ferrite molecules move to the graphene powder under vacuum.
  • the substrate is formed into a graphene having a surface modified with a magnetically responsive nanodots (Fe 3 O 4 ).
  • the method for preparing graphene surface-modified with magnetically responsive nano-dots by hydrothermal method comprises the following steps: taking 60 mL of graphene oxide solution (1 mg/mL), and dropping 0.01 mL/L Fe(NO 3 ) 3 solution 5 mL, 0.1 mol 1mL of ammonia water, stirred at room temperature for 10min, the mixed solution was placed in a 100mL reaction kettle, and reacted at 120-180 ° C for 30-120min to obtain a graphene dispersion with surface-modified magnetically responsive nano-dots, washed and dried to obtain surface modification.
  • Graphene with magnetically responsive nanodots takes 60 mL of graphene oxide solution (1 mg/mL), and dropping 0.01 mL/L Fe(NO 3 ) 3 solution 5 mL, 0.1 mol 1mL of ammonia water, stirred at room temperature for 10min, the mixed solution was placed in a 100mL reaction kettle, and reacted at 120-
  • the electrode active material may be a positive electrode active material or a negative electrode active material, and specifically may have materials for energy storage by deintercalation ions, including but not limited to metals, inorganic nonmetals, oxides, and nitrides. , a composite of boride, sulfide, chloride, or a variety of energy storage materials.
  • the binder may be polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), sodium alginate or the like.
  • the solvent in the slurry may be N-methylpyrrolidone (NMP) or water.
  • the applied magnetic field applies to the current collector during the coating and drying process, the direction of the applied magnetic field being perpendicular to a surface on the current collector on which the electrode material layer is disposed, so as to be suspended in the slurry
  • the surface modification in the material has graphene with magnetically responsive nanodots that tend to align in the same direction as the direction of the applied magnetic field, the magnetically responsive nanodots having ferromagnetism.
  • the applied magnetic field can be applied below, above, and the like of the current collector.
  • the graphene in the slurry Under the action of external magnetic force, the graphene in the slurry will be aligned on the current collector, and interact with the heat conductive modified layer material of the current collector surface layer through ⁇ - ⁇ to form a three-dimensional network interconnected.
  • the ordered heat conduction channel of the graphene inside the cell material is interconnected with the heat conduction channel of the heat conductive modification layer of the current collector, thereby constructing an integrated overall heat conduction skeleton from the inside of the cell material to the electrode shell.
  • the method for preparing the battery electrode provided by the above embodiments of the present invention has a simple process and is suitable for large-scale production.
  • an embodiment of the present invention further provides a battery including the battery electrode described above in the embodiment of the present invention.
  • the battery electrode may be a positive electrode or a negative electrode.
  • the battery may be a metal lithium battery, a lithium ion battery, a sodium ion battery, a magnesium ion battery, an aluminum ion battery, an air battery, or a fuel battery.
  • a method for preparing a battery electrode comprising the steps of:
  • Copper current collector with graphene plating on the surface copper foil (99.9% purity) was immersed in 1 mol/L hydrochloric acid solution for 10 min to remove surface impurities, washed repeatedly with water, dried, and then placed with copper foil. In a N 2 protective atmosphere, the temperature was raised to 600 ° C in 30 min, and 5% (oxygen accounted for the volume fraction of the entire incoming gas stream) was subjected to micro-oxidation treatment for 1 h to form a three-dimensional current collector having a CuO nanowire array grown on the surface.
  • the neodymium magnet adjusts the direction of the magnetic field so that the graphene having magnetic induction characteristics in the electrode slurry is subjected to a magnetic field force, and the orientation is vertically arranged on the current collector, and then the pole piece is dried under the action of the magnetic field force, in the process, in the slurry
  • Graphene and graphene plating on the current collector form a three-dimensional network of interconnected graphene through ⁇ - ⁇ interaction to obtain a negative electrode material layer, that is, a battery negative electrode sheet is obtained.
  • the graphene in the negative electrode material layer has a mass ratio of more than 50% and an angular orientation of 45°-90° with respect to the plane of the current collector to form a heat conduction path having a specific orientation.
  • FIG. 2 is a schematic structural view of a battery electrode according to Embodiment 1 of the present invention.
  • 10 is a current collector
  • 20 is a graphene plating layer (ie, a heat conductive modified layer)
  • 30 is an oriented alignment of graphene
  • 40 is magnetic.
  • 50 is an electrode active material (silicon carbon powder).
  • 3 is a schematic diagram of heat flow of a battery electrode according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a preparation process of a battery electrode according to an embodiment of the present invention.
  • the negative electrode sheet of the battery prepared in Example 1 of the present invention is used as a negative electrode of a lithium ion battery, and the electrolyte is 1 mol/L LiPF 6 /EC+PC+DEC+EMC (Volume ratio 1:0.3:1:1), the diaphragm is a PP/PE/PP three-layer diaphragm, which is made into a soft pack battery of about 4Ah for full battery performance.
  • a method for preparing a battery electrode comprising the steps of:
  • Aluminum-magnesium alloy current collector with graphene coating on the surface The aluminum-magnesium alloy current collector was first immersed in a 0.1 mol/L hydrochloric acid solution for 5 min to remove the surface impurities of the current collector, and repeatedly rinsed and dried with water. The aluminum-magnesium alloy current collector was placed in a H 2 /Ar mixed atmosphere, and the temperature was raised from room temperature to 450 ° C at a rate of 10 ° C/min, and the temperature was maintained for 1 h to remove the impurity salts which may remain in the current collector. Then, the temperature was raised to 700 ° C at 3 ° C / min, and a mixture of 3% acetonitrile / Ar was introduced. After 1 h of reaction, the temperature was naturally lowered to room temperature to obtain an aluminum-magnesium alloy current collector having a graphene coating on the surface;
  • the electrode Place a 800mT neodymium magnet to adjust the direction of the magnetic field so that the graphene with magnetic induction characteristics in the electrode slurry is subjected to magnetic field force, and the orientation is vertically arranged on the current collector, and then the pole piece is dried under the action of the magnetic field force.
  • the electrode The graphene with magnetic response in the slurry and the graphene graphene on the current collector form a three-dimensional network of interconnected graphene through ⁇ - ⁇ interaction to obtain a positive electrode material layer, that is, a positive electrode tab of the battery is obtained.
  • the graphene of the positive electrode material layer has a mass ratio of more than 50% and an angular orientation of 45 to 90 degrees with the current collector to form a heat conduction path having a specific orientation.
  • the spherical graphite powder, the binder SBR, the conductive carbon black are dispersed in water at a mass ratio of 8:1:1 to prepare a mixed slurry, and the mixed slurry is coated on the surface of the copper foil current collector, and dried.
  • the graphite negative electrode sheet was prepared by compaction and slicing, and the positive electrode tab of the battery prepared in Example 2 of the present invention was used as a positive electrode of a lithium ion battery, and the electrolyte was 1 mol/L LiPF 6 /PC+EC+DEC (volume ratio was 1). :4:5), the diaphragm is a PP/PE/PP three-layer diaphragm, which is made into a soft pack battery of about 4Ah, which is used to test the performance of the whole battery.
  • a method for preparing a battery electrode comprising the steps of:
  • the atmosphere was adjusted to H 2 /Ar, the temperature was raised to 850 ° C, and a 10% acetonitrile/Ar mixture gas was introduced, and after 0.5 h of reaction, the temperature was naturally lowered to room temperature to obtain a copper current collector having a graphene plating layer on the surface;
  • the graphene plating layer forms a three-dimensional network of interconnected graphene through ⁇ - ⁇ interaction to obtain a negative electrode material layer, that is, a battery negative electrode sheet is obtained.
  • the graphene in the anode material layer has a mass ratio of more than 50% and an angular orientation of 45 to 90 degrees with the current collector to form a heat conduction path having a specific orientation.
  • the lithium cobaltate positive electrode sheet was obtained by compaction and slicing, and the negative electrode sheet of the battery prepared in Example 3 of the present invention was used as a negative electrode of a lithium ion battery, and the electrolyte was 1 mol/L LiPF 6 /EC+PC+DEC+EMC (volume Ratio 1:0.3:1:1), the diaphragm is a PP/PE/PP three-layer diaphragm, which is made into a 3.5Ah soft pack battery for testing full battery performance.
  • a method for preparing a battery electrode comprising the steps of:
  • Aluminum-magnesium alloy current collector with graphene coating on the surface The aluminum-magnesium alloy current collector was first immersed in a 0.1 mol/L hydrochloric acid solution for 5 min to remove the surface impurities of the current collector, and repeatedly rinsed and dried with water. The aluminum-magnesium alloy current collector was placed in a H 2 /Ar mixed atmosphere, and the temperature was raised from room temperature to 500 ° C at a rate of 5 ° C/min, and the temperature was kept at 1 h to remove the impurity salts which may remain in the current collector. Then, the temperature was raised to 650 ° C at 3 ° C / min, and a mixture of 3% toluene / Ar was introduced. After 1 h of reaction, the temperature was naturally lowered to room temperature to obtain an aluminum-magnesium alloy current collector having a graphene coating on the surface;
  • the graphene with magnetic response in the NMC532 cathode material slurry and the graphene on the current collector form a three-dimensional network of interconnected graphene through ⁇ - ⁇ interaction to obtain a cathode material.
  • the layer, that is, the positive electrode tab of the battery is obtained.
  • the graphene in the positive electrode material layer has a mass ratio of more than 50% and an angular orientation of 45°-90° with the current collector to form a heat conduction path having a specific orientation.
  • the graphite negative electrode sheet was obtained by compaction and slicing, and the positive electrode tab of the battery prepared in Example 4 of the present invention was used as a positive electrode of a lithium ion battery, and the electrolyte was 1 mol/L LiPF 6 /PC+EC+DEC (volume ratio 1: 4:5), the diaphragm is a PP/PE/PP three-layer diaphragm, which is made into a soft pack battery of about 4 Ah for testing the performance of the whole battery.
  • a method for preparing a battery electrode comprising the steps of:
  • the graphene having magnetic induction characteristics in the electrode slurry is subjected to a magnetic field force, and the orientation is vertically arranged on the current collector, and then the pole piece is dried under the magnetic field force to obtain a negative electrode material layer, thereby obtaining a battery negative electrode piece.
  • the graphene in the anode material layer has a mass ratio of more than 50% and an angular orientation of 45 to 90 degrees with the current collector to form a heat conduction path having a specific orientation.
  • the lithium cobaltate positive electrode sheet was prepared by compaction and slicing.
  • the negative electrode sheet of the battery prepared in Example 1 of the present invention was used as a negative electrode of a lithium ion battery, and the electrolyte was 1 mol/L LiPF 6 /EC+PC+DEC+EMC ( Volume ratio 1:0.3:1:1), the diaphragm is a PP/PE/PP three-layer diaphragm, which is made into a soft pack battery of about 4Ah, which is used to test the performance of the whole battery.
  • a method for preparing a battery electrode comprising the steps of:
  • Copper current collector with acetylene black plating on the surface a copper current collector having a columnar convex array on the surface was first immersed in a 0.05 mol/L hydrochloric acid solution for 20 min to remove impurities on the surface of the current collector, and then repeatedly rinsed with water. drying. The current collector was then placed in a H 2 /Ar mixed atmosphere, and the temperature was raised from room temperature to 350 ° C at a rate of 5 ° C/min, and the temperature was maintained for 2 hours to remove the impurity salts which may remain in the current collector. Then, the temperature was raised to 800 ° C at 5 ° C / min, and a mixture of 5% acetylene / Ar was introduced. After 1.5 h of reaction, the temperature was naturally lowered to room temperature to obtain a copper current collector having an acetylene black plating layer on the surface;
  • ternary NCA Commercial LiNi 0.8 Co 0.15 Al 0.05 O 2 (ternary NCA) powder, binder PTFE, conductive carbon black, dispersed in NMP solvent at a mass ratio of 8:1:1 to prepare a mixed slurry.
  • the material is coated on the surface of the aluminum foil, dried, compacted and sliced to obtain a ternary NCA positive electrode sheet.
  • the negative electrode sheet of the battery prepared in Example 6 of the present invention is used as a negative electrode of a lithium ion battery, and the electrolyte is 1 mol/L LiPF 6 .
  • the diaphragm is a PP/PE/PP three-layer diaphragm, which is made into a 4Ah soft pack battery for testing full battery performance.
  • a method for preparing a battery electrode comprising the steps of:
  • Titanium current collector with thermal aluminum coating on the surface immerse the titanium foil current collector in a mixed solution of hydrochloric acid and nitric acid with an acid concentration of 0.1 mol/L for 20 min to remove impurities on the surface of the titanium foil, and then rinse repeatedly with water. , drying, into the vacuum magnetron sputtering coating machine, once open the total power supply, mechanical pump, polymer pump, until the background vacuum is better than 2.0 ⁇ 10 -4 Pa, filled with high purity argon, and fixed The gas flow rate was 30 mL/min, and the target base distance was 70 mm. Prior to coating, the aluminum target was sputtered for 10 min to remove surface contaminants. During the coating process, the sputtering power was maintained at 70 W and the sputtering time was 1 h to obtain a titanium foil current collector having an aluminum plating layer on the surface;
  • the synthetic magnetic response nano-dot precursor material H 2 Fe[P(OCH 2 ) 3 ] 4 is bubbled
  • the method passes through a tube furnace (airflow 400 sccm), and reacts for 50 min to obtain a graphene having a surface-modified magnetic response nano-dots (Fe 3 O 4 );
  • an electrode slurry taking a titanium current collector having a thermally conductive aluminum plating layer on the surface, uniformly coating the electrode slurry on the surface of the heat conductive aluminum plating layer, and placing a neodymium magnet of 700-1000 mT 6 cm below the current collector during the coating process Adjusting the direction of the magnetic field so that the graphene having magnetic induction characteristics in the electrode slurry is subjected to a magnetic field force, and the orientation is vertically arranged on the current collector, and then the pole piece is dried under the action of the magnetic field force.
  • the electrode paste has The magnetically responsive graphene and the thermally conductive aluminum coating on the current collector form a three-dimensional network of interconnected graphene-aluminum layers by physical contact to obtain a positive electrode material layer, that is, a positive electrode tab of the battery is obtained.
  • the graphene in the positive electrode material layer has a mass ratio of more than 50% and an angular orientation of 45°-90° with the current collector to form a heat conduction path having a specific orientation.
  • a binder PAA a conductive acetylene black
  • dispersing in water at a mass ratio of 9:0.3:0.7 to prepare a mixed slurry, applying the mixed slurry to the surface of the copper foil current collector, and drying
  • the compact carbon negative electrode sheet was prepared by compaction and slicing.
  • the positive electrode sheet of the battery prepared in Example 7 of the present invention was used as a positive electrode of a lithium ion battery, and the electrolyte was 1 mol/L LiPF 6 /PC+EC+DEC (volume ratio was 1:4:5), the diaphragm is a PP/PE/PP three-layer diaphragm, which is made into a soft pack battery of about 3.5Ah, which is used to test the performance of the whole battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本发明实施例提供了一种电池电极,包括集流体和设置在所述集流体上的电极材料层,所述电极材料层包括电极活性材料和片状结构石墨烯,所述石墨烯的表面修饰有磁响应纳米点,所述石墨烯中,大于50%质量占比的所述石墨烯与所述集流体上设置所述电极材料层的表面呈45°-90°角度取向排列,以形成具有特定取向的导热路径。该电池电极的电芯材料内部具有特定取向的快速导热路径,从而可使电芯内部热量有效向外传递至集流体,并由集流体传递至外周环境,解决了现有技术中单一电芯内部产生的热量无法及时从内部传导至环境,导致电池高温性能差的问题。本发明实施例还提供了该电池电极的制备方法和包含该电池电极的电池。

Description

一种电池电极及其制备方法和电池 技术领域
本发明涉及储能器件技术领域,特别是涉及一种电池电极及其制备方法和电池。
背景技术
二次电池已经在消费电子、通信领域得到广泛应用,快充和高能是发展下一代储能技术的主要诉求。然而,随着电池的充电速度加快,能量密度不断提升,电池工作过程将产生大量热量,带来电芯内部温度急剧升高、电极材料结构变化、电池容量快速衰减,以及不容忽视的安全隐患。
电池产热及热失控主要受充放电倍率、内阻、放电深度(DOD)、当前荷电状态(SOC)、容量等内在因素和环境温度、散热方式的影响。其中,由于电极内部材料团聚,电阻骤升,产热加大,但缺乏有序互联的导热网络及时疏导热量,是电池内部过热的主要原因,如图1所示为传统电极的内部热量分布示意图。因此,构建出有效散热的电极,是改善电池高温性能的有效方案。
发明内容
鉴于此,本发明实施例提供了一种电池电极,其电芯材料内部具有特定取向的快速导热路径,从而可使电芯内部热量有效传递至环境外延,以解决现有技术中单一电芯内部产生的热量无法及时从内部传导至环境,导致电池高温性能差的问题。
具体地,本发明实施例第一方面提供了一种电池电极,包括集流体和设置在所述集流体上的电极材料层,所述电极材料层包括电极活性材料和片状结构石墨烯,所述石墨烯的表面修饰有磁响应纳米点,所述石墨烯中,大于50%质量占比的所述石墨烯与所述集流体上设置所述电极材料层的表面呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
所述磁响应纳米点间隔分布在所述片状结构石墨烯表面上,使所述片状结构石墨烯在磁场作用下相对于所述集流体上设置所述电极材料层的表面同向排列。
所述石墨烯中,与所述集流体呈45°-90°角度排列的质量占比为70%-100%。
所述电极材料层中,所述石墨烯均与所述集流体呈80°-90°角度排列。
所述石墨烯为单层或多层石墨烯,厚度尺寸为0.3nm-50nm。
所述电极材料层中,石墨烯的质量含量为0.1%-20%。
所述集流体表面设有导热修饰层,所述电极材料层设置在所述导热修饰层表面,所述导热修饰层与所述电极材料层中的石墨烯构成互联的导热网络。
所述导热修饰层的材料包括碳材料、导热金属材料中的至少一种。所述导热金属材料包括金、银、铜、铝等。
所述碳材料包括碳黑、乙炔黑、晶态石墨烯、还原石墨烯和含掺杂元素的石墨烯中的一种或多种,所述掺杂元素包括氮、磷、硫、硼、氟和氯中的一种或多种。
所述导热修饰层的碳材料与所述电极材料层中的石墨烯通过π-π相互作用紧密结合在一起,使所述石墨烯与所述导热修饰层形成互联贯穿的三维导热网络。
所述导热修饰层的厚度为0.5nm-500nm。
所述导热修饰层通过物理涂覆法、化学气相沉积法、蒸镀沉积法或溅射法制备在所述集 流体上。
所述集流体包括金属箔材或合金箔材,所述金属箔材包括铜、钛、铝、铂、铱、钌、镍、钨、钽、金或银箔材,所述合金箔材包括不锈钢、或含铜、钛、铝、铂、铱、钌、镍、钨、钽、金和银中至少一种元素的合金。所述金属箔材可进一步包含掺杂元素,所述掺杂元素包括铂、钌、铁、钴、金、铜、锌、铝、镁、钯、铑、银、钨中的一种或多种。
所述集流体的表面设置有次级结构,所述导热修饰层的材料部分沉积在所述次级结构表面。所述次级结构包括垂直阵列凸起。
所述凸起的高度为所述集流体厚度的1%-50%。
所述磁响应纳米点包括含有磁性元素的氧化物、合金、复合材料中的一种或多种,所述磁性元素包括铁、钴、镍中的至少一种。所述包括铁、钴、镍中至少一种的氧化物、合金、复合材料均为铁磁性物质。
所述磁响应纳米点还包括其他掺杂元素,所述掺杂元素包括铂、钌、铁、钴、金、铜、锌、铝、镁、钯、铑、银和钨中的一种或多种。
所述磁响应纳米点的粒径小于等于50nm。
所述电极活性材料为可通过脱嵌离子进行能量存储的材料,所述电极活性材料的粒径为3nm-30μm。所述离子包括锂离子、钠离子、钾离子、镁离子和铝离子中的一种。
所述电极材料层的厚度为5μm-150μm。
本发明实施例第一方面提供的电池电极,电极材料层中的石墨烯,由于具备磁响应功能,可在外加磁场的调节下,实现取向有序排列,构建出将电芯内部热量快速导出的导热通道,从而可使电池内部热量从中心有效疏导至环境外延,提高电池的高温性能,此外,石墨烯的引入,使电极材料的分散更加均匀,避免了电极材料的团聚,降低了内阻,减少了电池发热,从而进一步提高了电池的高温性能。
相应地,本发明实施例第二方面提供了一种电池电极的制备方法,包括以下步骤:
在片状结构石墨烯表面修饰磁响应纳米点,得到表面修饰有磁响应纳米点的石墨烯;
将所述表面修饰有磁响应纳米点的石墨烯与电极活性材料、粘结剂混合得到浆料,在外加磁场的作用下,将所述浆料涂布在集流体上,并在外加磁场作用下烘干,使石墨烯取向排列,得到电极材料层,即得到电池电极,所述石墨烯中,大于50%质量占比的所述石墨烯与所述集流体上设置所述电极材料层的表面呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
在涂布和烘干浆料的过程中施加磁场作用,该磁场作用可以来自固定的磁体,也可为旋转磁场。理想状态下,当所述外加磁场的方向与所述电极材料层所在的集流体表面垂直时,在涂布和烘干过程中,由于悬浮于浆料中的表面修饰有磁响应纳米点的石墨烯,由于整体表现为铁磁性而趋向于与所述外加磁场方向相同的方向排列,即使得石墨烯最终呈现与集流体平面方向垂直取向排列。但在实际工艺过程中,石墨烯除受到磁场力的作用外,还会受到本身重力、颗粒与颗粒之间作用力等力的影响,因此石墨烯最终的排列状态是这些力的综合作用的结果,也因此,外加磁场的方向在实际工艺过程将需要视实际情况作出调整,以获得大于50%质量占比的石墨烯与集流体呈45°-90°角度取向排列的结果。
本发明实施例中,所述表面修饰有磁响应纳米点的石墨烯采用微波合成法、或水热法、或磁控溅射法、或蒸镀沉积法、或化学气相沉积法制备。
本发明实施例上述的制备方法进一步包括如下步骤:先采用物理涂覆法、化学气相沉积 法、蒸镀沉积法或溅射法在所述集流体上制备导热修饰层;然后再将所述浆料均匀涂布在所述导热修饰层表面,并在磁场作用下烘干,使石墨烯取向排列,得到电极材料层。
此外,本发明实施例还提供了一种电池,该电池包括本发明实施例第一方面所述的电池电极。所述电池电极可以是正极或负极。所述电池包括金属锂电池、锂离子电池、钠离子电池、镁离子电池、铝离子电池、空气电池或燃料电池。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为现有传统电极的内部热量分布示意图;
图2为本发明实施例1提供的电池电极的结构示意图;
图3为本发明实施例1提供的电池电极的热量流动示意图;
图4为本发明实施例1提供的电池电极的制备流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例进行说明。
为解决单一电芯内部热量无法有效疏导至电池外周的问题,本发明实施例提供了一种电池电极,包括集流体和设置在所述集流体上的电极材料层,所述电极材料层包括电极活性材料和片状结构石墨烯,所述石墨烯的表面修饰有磁响应纳米点,所述石墨烯中,大于50%质量占比的所述石墨烯与所述集流体上设置所述电极材料层的表面呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
本发明实施方式中,所述磁响应纳米点是指对磁场具有感应,可产生磁响应的纳米颗粒。所述磁响应纳米点间隔分布在所述片状结构石墨烯表面上,使所述片状结构石墨烯在磁场作用下相对于所述集流体上设置所述电极材料层的表面同向排列。
本发明实施方式中,电极材料层中的石墨烯,由于表面修饰有磁响应纳米点,因此可在外加磁场下实现有序排列,在电芯内部构建出定向的,由内至外的平行快速导热通道,提高电池的散热性能,解决了现有电芯材料内部热量无法由中心及时疏导至环境外周的问题;同时,石墨烯的引入可提高石墨烯与活性材料间的均匀分散,避免活性材料颗粒之间的团聚,使得产热分布更加均一。可选地,所述石墨烯中,与所述集流体呈45°-90°角度排列的质量占比为70%-100%,进一步地可为80%-95%。
可选地,所述电极材料层中,所述石墨烯均与所述集流体呈80°-90°角度排列。这样由石墨烯构成的电芯材料内部的导热骨架具有最短的导热路径,从而可以最快的速度将电芯中心的热量传递至集流体。
本发明实施方式中,所述石墨烯可为单层或多层石墨烯,厚度尺寸可为0.3nm-50nm。进一步地厚度尺寸可为2nm-30nm。适合的石墨烯厚度尺寸,能够保证其在电极材料层中实现较好的有序排列。
本发明实施方式中,所述电极材料层中,石墨烯的质量含量为0.1%-20%,进一步地可为0.5%-2%,1%-5%,5%-10%,10%-15%。所述石墨烯具有良好的导电性能,可同时作为导电剂。
本发明实施方式中,所述集流体表面进一步设有导热修饰层,所述电极材料层设置在所 述导热修饰层表面,所述导热修饰层与所述电极材料层中的石墨烯构成互联的导热网络。导热修饰层的设置使得电极材料层与集流体之间构建了完整连贯的导热通道,从而使电芯内部热量能更快速地传递至集流体,并进一步传递至电池***环境,提升电池的散热特性。由导热修饰层与电极材料层中的石墨烯构成的互联导热网络同时具备良好导电性,可为电子提供快速通道,因此在提升电池电化学性能发挥的同时,可降电池内阻,进一步减少发热。
所述导热修饰层与电极材料层中的石墨烯通过物理或化学相互作用形成互联贯穿的三维导热网络。
本发明实施方式中,所述导热修饰层的材料包括碳材料、导热金属材料中的至少一种。所述导热金属材料可以是金、银、铜、铝等材料。
本发明实施方式中,所述碳材料包括碳黑、乙炔黑、晶态石墨烯、还原石墨烯和含掺杂元素的石墨烯中的一种或多种,所述掺杂元素包括氮、磷、硫、硼、氟和氯中的一种或多种。掺杂可进一步提升石墨烯导电率,降低电池内阻,减少发热。
本发明实施方式中,所述导热修饰层的碳材料与所述电极材料层中的石墨烯通过π-π相互作用紧密结合在一起,使所述石墨烯与所述导热修饰层形成互联贯穿的三维导热网络。所述导热金属材料与电极材料层中的石墨烯通过物理接触形成互联贯穿的三维导热网络。
本发明实施方式中,所述导热修饰层的厚度为0.5nm-500nm。进一步地,导热修饰层的厚度为10nm-300nm、30nm-150nm。设置一定厚度可保证导热修饰层的机械强度,保持其在集流体表面的排布形状,提高与电极材料层中石墨烯的有效接触。
本发明实施方式中,所述导热修饰层通过物理涂覆法、化学气相沉积法、蒸镀沉积法或溅射法制备在所述集流体上。
本发明实施方式中,所述集流体包括金属箔材或合金箔材,所述金属箔材包括铜、钛、铝、铂、铱、钌、镍、钨、钽、金或银箔材,所述合金箔材包括不锈钢、或含铜、钛、铝、铂、铱、钌、镍、钨、钽、金和银中至少一种元素的合金。所述金属箔材可进一步包含掺杂元素,所述掺杂元素包括铂、钌、铁、钴、金、铜、锌、铝、镁、钯、铑、银、钨中的一种或多种。
本发明一实施方式中,所述集流体的表面设置有次级结构,所述导热修饰层的材料部分沉积在所述次级结构表面。所述次级结构可以是垂直阵列凸起,如线状凸起、柱状凸起等。所述次级结构的材质可以是集流体基材的氧化物,如铜箔集流体表面设置氧化铜材质的次级结构。其中,所述凸起的高度可为所述集流体厚度的1%-50%,进一步地为10%-30%、20%-40%。集流体上的次级结构使得导热修饰层材料部分穿插在所述电极材料层中,从而可提高与电极材料层中石墨烯的有效接触,增强互联,提升散热效果。
本发明实施方式中,所述磁响应纳米点包括含有磁性元素的氧化物、合金、复合材料中的一种或多种,所述磁性元素包括铁、钴、镍中的至少一种。本发明实施方式中,所述磁响应纳米点还包括其他掺杂元素,所述掺杂元素包括铂、钌、铁、钴、金、铜、锌、铝、镁、钯、铑、银和钨中的一种或多种。可选地,所述磁响应纳米点的粒径小于等于50nm。进一步地,磁响应纳米点的粒径为5nm-20nm。合适的粒径大小,既能保证磁响应纳米点可以牢固结合在石墨烯片层上,不易脱落,从而有助于达到石墨烯的取向排列效果,此外,由于磁响应纳米点本身没有储能作用,因此合适的粒径大小有利于保证电池性能。
本发明实施方式中,所述磁响应纳米点的质量占整个所述电极材料层总质量的5%以下。进一步地为2%以下。适合的质量含量,不仅能保证石墨烯的取向排列效果,也有利于保证电 池性能。
本发明实施方式中,所述电池电极可以是正极,也可以是负极。所述电极活性材料为可通过脱嵌离子进行能量存储的材料,所述电极活性材料的粒径为3nm-30μm,进一步地粒径为50nm-5μm,所述离子包括锂离子、钠离子、钾离子、镁离子和铝离子中的一种。具体地,所述电极活性材料包括但不仅限于金属、无机非金属、氧化物、氮化物、硼化物、硫化物、氯化物、或多种储能材料的复合材料。具体的,例如可以是锂、镁、钾、镁、硫、磷、硅、钴酸锂、磷酸铁锂、层状梯度化合物、Li 2CO 3、Li 4SiO 4、LiF、Li 3PO 3、TiO 2、Li 2TiO 3、Li 4Ti 5O 12、SiO 2、SnO 2、NiS、CuS、FeS、MnS、Ag 2S、TiS 2等。
本发明实施方式中,所述电极材料层中还包括粘结剂,所述粘结剂可以是聚偏氟乙烯(PVDF),聚乙烯醇(PVA),聚四氟乙烯(PTFE),羧甲基纤维素(CMC),丁苯橡胶(SBR),海藻酸钠等。本发明实施方式中,所述电极材料层中还可包括导电剂,如导电碳黑等。
所述电极材料层的厚度为5μm-150μm,进一步地为20-50μm。
本发明实施例提供的电池电极,利用具有磁响应功能的石墨烯为散热导体,在外加磁场引导下,使石墨烯有序排列与电极材料层中形成导热骨架,从而最大化定向疏导热量,使热量由电芯内部扩散至集流体;本发明实施例提供的电池电极,进一步在集流体表面设置导热修饰层形成集流体导热骨架,使之与石墨烯导热骨架结合为一体,促使热量经由集流体传导至电池外周,从而构建出从电芯材料内部至电池外周的快速散热通道,提高了电池的高温性能。此外,电极材料层中引入的取向排列磁性石墨烯,可同时降低电池内阻,减少产热,提高电池的倍率特性,保障电池容量性能的发挥。
相应地,本发明实施例还提供了一种电池电极的制备方法,包括以下步骤:
(1)提供集流体,采用物理涂覆法、化学气相沉积法、蒸镀沉积法或溅射法在所述集流体上制备导热修饰层;
(2)取片状结构石墨烯,采用微波合成法、水热法、磁控溅射法、蒸镀沉积法或化学气相沉积法制备表面修饰有磁响应纳米点的石墨烯;
(3)将所述表面修饰有磁响应纳米点的石墨烯与电极活性材料、粘结剂混合得到浆料,在外加磁场的作用下,将所述浆料均匀涂布在所述导热修饰层表面,并在磁场作用下烘干,使石墨烯取向排列,得到电极材料层,即得到电池电极,所述电极材料层中的石墨烯,大于50%质量占比的石墨烯与所述集流体上设置所述电极材料层的表面呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
步骤(1)中,所述集流体包括但不仅限于金属箔材或合金箔材,所述金属箔材包括铜、钛、铝、铂、铱、钌、镍、钨、钽、金或银箔材,所述合金箔材包括不锈钢、或含铜、钛、铝、铂、铱、钌、镍、钨、钽、金和银中至少一种元素的合金。可选地,所述合金箔材以上述这些元素为主体成分。所述金属箔材可进一步包含掺杂元素,所述掺杂元素包括但不限于铂、钌、铁、钴、金、铜、锌、铝、镁、钯、铑、银、钨中的一种或多种。
所述导热修饰层可采用物理涂覆法、化学气相沉积法、蒸镀沉积法或溅射法制备。所述导热修饰层的材料可以是碳材料,所述碳材料可包括碳黑、乙炔黑、晶态石墨烯、还原石墨烯和含掺杂元素的石墨烯中的一种或多种。所述掺杂元素包括氮、磷、硫、硼、氟和氯中的一种或多种。
所述导热修饰层的厚度为0.5nm-500nm。进一步地,导热修饰层的厚度为10nm-300nm。
可选地,所述集流体的表面可预先设置次级结构,再设置导热修饰层,使所述导热修饰 层的材料部分沉积在所述次级结构表面。所述次级结构可以是垂直阵列凸起,如线状凸起、柱状凸起等。所述次级结构的材质可以是集流体基材的氧化物,如铜箔集流体表面设置氧化铜材质的次级结构。其中,所述凸起的高度可为所述集流体厚度的1%-50%,进一步地为10%-30%、20%-40%。
本发明一具体实施方式中,以铜箔集流体为例,在其表面制备石墨烯导热修饰层的方法,包括如下步骤:
步骤(i):取洁净铜箔集流体,烘干后,置于在O 2/N 2的混合气氛下,150℃-300℃下进行微氧化处理,使铜箔表面自发生成纳米CuO线性阵列;
步骤(ii):以步骤(i)得到的表面具有纳米CuO线性阵列的铜箔集流体为模板,在惰性气氛保护下,继续升温至600℃-900℃,并引入碳源,碳源分子在CuO纳米阵列的催化作用下,于阵列表面均匀镀层生长石墨烯,从而得到石墨烯导热修饰层。
步骤(i)中,在所述集流体表面形成纳米阵列等次级结构的方法,包括但不仅限于微氧化法、化学刻蚀法、光刻蚀法、分子束外延法、激光消融法。
步骤(ii)中,在所述集流体表面制备石墨烯修饰层的方法,包括但不仅限于气相沉积法、物理涂覆法、蒸镀沉积法、磁控溅射法。所述碳源可以为气相碳源气流,如甲烷、乙烷、丙烷、丁烷、乙烯、丙烯等,也可为惰性气体分压携带的蒸汽碳源分子,如苯溶液、乙腈溶液、苯乙烯溶液等,惰性气体如He、N 2、Xe、Ar、Kr、Xe等,混合气体速率为5mL/min-300mL/min。
步骤(ii)中,所述镀层生长石墨烯的过程包含两段升温区间,第一区间通常先升温至300℃-500℃,使集流体可能包含的杂质或不纯的相态转换为纯相,可选地先升温至450℃;第二区间继续加热至600℃-1000℃,并引入反应碳源,在集流体表面催化生长石墨烯,可选地继续加热至600℃-800℃。
步骤(2)中,所述磁响应纳米点包括含有磁性元素的氧化物、合金、复合材料中的一种或多种,所述磁性元素包括铁、钴、镍中的至少一种。本发明实施方式中,所述磁响应纳米点还包括其他掺杂元素,所述掺杂元素包括铂、钌、铁、钴、金、铜、锌、铝、镁、钯、铑、银和钨中的一种或多种。可选地,所述磁响应纳米点的粒径小于等于50nm。进一步地,磁响应纳米点的粒径为5nm-20nm。
其中,采用微波合成法制备表面修饰有磁响应纳米点的石墨烯的方法包括如下步骤:取氧化石墨烯溶液,向其中加入磁响应纳米点前驱体材料,得到混合溶液,将所述混合溶液于微波反应器中,在1-5min的时间内升温至150℃反应30min,得到表面修饰有磁响应纳米点的石墨烯分散液,即得到表面修饰有磁响应纳米点的石墨烯。其中,微波频率为2450MHz,功率为400-2000W,升温速度10-30℃/min,反应温度120-200℃,反应时间5-30min。
采用化学气相沉积法制备表面修饰有磁响应纳米点的石墨烯的方法包括如下步骤:取一定量石墨烯粉体于陶瓷坩埚,然后置于管式炉中,氩气(气流200-300sccm)保护下升温至230-280℃,然后将磁响应纳米点的前驱体材料(如H 2Fe[P(OCH 2) 3] 4,H 2Fe[P(CH 3) 3] 4)采用鼓泡法通入管式炉(气流400sccm)中,反应5-30min,即得到表面修饰有磁响应纳米点(Fe 3O 4)的石墨烯。
采用蒸镀沉积法制备表面修饰有磁响应纳米点的石墨烯的方法包括如下步骤:A、将石墨烯粉体涂布于硅片上,作为被镀物。对蒸镀炉腔体内进行10min粗抽,当真空度达到0.2Torr时,对蒸镀炉腔体细抽10min,当真空度达到2×10 -5Torr时,对蒸镀炉腔体内加氩气同时并加偏压约10KV,使氩气形成氩离子并对氧化铁基板表面形成放电效应,清除氧化铁表面杂 质;B、对氧化铁基板加热20min至600℃-800℃时,保持此温度20min后停止加热,在基板温度降至400℃-420℃,同样用大电流240A-330A对氧化铁原材料加热气化成分子并旋转基板,5min后,在真空状态下铁氧分子运动至石墨烯粉体的基片,形成表面修饰有磁响应纳米点(Fe 3O 4)的石墨烯。
采用水热法制备表面修饰有磁响应纳米点的石墨烯的方法包括如下步骤:取60mL氧化石墨烯溶液(1mg/mL),滴入0.01mol/L Fe(NO 3) 3溶液5mL,0.1mol/L氨水1mL,室温下搅拌10min,将混合溶液置于100mL反应釜,120-180℃下反应30-120min,得到表面修饰有磁响应纳米点的石墨烯分散液,洗涤烘干,得到表面修饰有磁响应纳米点的石墨烯。
步骤(3)中,所述电极活性材料可为正极活性材料或负极活性材料,具体可为具有通过脱嵌离子实现能量存储的材料,包括但不仅限于金属、无机非金属、氧化物、氮化物、硼化物、硫化物、氯化物、或多种储能材料的复合材料。具体的,例如可以是锂、镁、钾、镁、硫、磷、硅、钴酸锂、磷酸铁锂、层状梯度化合物、Li 2CO 3、Li 4SiO 4、LiF、Li 3PO 3、TiO 2、Li 2TiO 3、Li 4Ti 5O 12、SiO 2、SnO 2、NiS、CuS、FeS、MnS、Ag 2S、TiS 2等。
粘结剂可以是聚偏氟乙烯(PVDF),聚乙烯醇(PVA),聚四氟乙烯(PTFE),羧甲基纤维素(CMC),丁苯橡胶(SBR),海藻酸钠等。所述浆料中的溶剂可以是N-甲基吡咯烷酮(NMP)、水。
在所述涂布和烘干过程中,对所述集流体施加所述外加磁场,所述外加磁场的方向与所述集流体上设置所述电极材料层的表面垂直,使得悬浮于所述浆料中的表面修饰有磁响应纳米点的石墨烯趋向于与所述外加磁场方向相同的方向排列,所述磁响应纳米点具有铁磁性。外加磁场可以施加在集流体下方、上方等位置。
在外加磁场力作用下,浆料中的石墨烯将取向排列于集流体上,并与集流体表层的导热修饰层材料,通过π-π相互作用,形成互联贯穿的三维网络。使得电芯材料内部的石墨烯有序导热通道与集流体的导热修饰层导热通道互联,从而构建出从电芯材料内部至电极外壳的一体化整体导热骨架。
本发明实施例上述提供的电池电极的制备方法,工艺简单,适于规模化生产。
相应地,本发明实施例还提供了一种电池,所述电池包括本发明实施例上述的电池电极。所述电池电极可以是正极或负极。所述电池可以是金属锂电池、锂离子电池、钠离子电池、镁离子电池、铝离子电池、空气电池或燃料电池。
下面分多个实施例对本发明实施例方案进行进一步的说明。
实施例1
一种电池电极的制备方法,包括以下步骤:
(1)表面具有石墨烯镀层的铜集流体构建:将铜箔(99.9%纯度)浸泡于1mol/L盐酸溶液中10min,除去表面杂质,用清水反复冲洗、烘干后,将铜箔置于N 2保护气氛中,30min内升温至600℃,通入5%(氧气占整个通入气流的体积分数)痕量氧气进行微氧化处理1h,形成表面生长有CuO纳米线阵列的三维集流体。继而调节气氛至H 2/Ar,升温至700℃,并引入3%甲烷/Ar混合气体(3%是指甲烷占总气体的体积分数),反应1h后自然降温至室温,得到表面具有石墨烯镀层的铜集流体,所述石墨烯镀层部分覆盖在集流体平面上,部分覆盖在CuO纳米线阵列表面;
(2)表面修饰有磁响应纳米点的石墨烯的制备:在50mL氧化石墨烯溶液(1mg/mL)中加入1mL前驱体羰基铁(分析纯99%),然后置于微波反应器中,5min内快速升温至150℃ 后,反应30min,形成表面修饰有磁响应纳米点(Fe 3O 4)的石墨烯片分散液;
(3)负极活性材料层的制备:将表面修饰有磁响应纳米点的石墨烯片分散液反复清洗离心,与粘结剂PVDF、硅碳粉体以质量比1:1:8重新分散于NMP溶剂中,制成电极浆料;取表面具有石墨烯镀层的铜集流体,将电极浆料均匀涂布在石墨烯镀层表面,涂布过程中,在该集流体下方1-3cm处放置500mT的钕磁铁,调整磁场方向,使电极浆料中具有磁感应特性的石墨烯受磁场力作用,定向垂直排列于集流体上,继而在磁场力作用下烘干极片,此过程中,浆料中的石墨烯与集流体上的石墨烯镀层通过π-π相互作用形成互联贯穿的石墨烯三维网络,得到负极材料层,即得到电池负极极片。所述负极材料层中的石墨烯,有大于50%的质量占比与所述集流体的平面呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
如图2所示,为本发明实施例1的电池电极的结构示意图,图中,10为集流体,20为石墨烯镀层(即导热修饰层),30为取向排列的石墨烯,40为磁响应纳米点Fe 3O 4,50为电极活性材料(硅碳粉体)。图3为本发明实施例的电池电极的热量流动示意图;图4为本发明实施例提供的电池电极的制备流程示意图。
锂离子电池的制备
取商用钴酸锂粉体,粘结剂PTFE,导电碳黑,按照质量比例1:1:8分散于NMP溶剂中制成混合浆料,将该混合浆料涂覆于铝箔集流体表面,烘干、压实、切片,制得钴酸锂正极片,以本发明实施例1制得的电池负极极片作为锂离子电池负极,电解液为1mol/L LiPF 6/EC+PC+DEC+EMC(体积比1:0.3:1:1),隔膜为PP/PE/PP三层隔膜,制作成4Ah左右的软包电池,用于全电池性能。
实施例2
一种电池电极的制备方法,包括以下步骤:
(1)表面具有石墨烯镀层的铝镁合金集流体构建:将铝镁合金集流体先浸泡于0.1mol/L盐酸溶液中5min,除去集流体表面杂质,用清水反复冲洗、烘干。再将该铝镁合金集流体置于H 2/Ar混合气氛中,以10℃/min速率由室温升温至450℃,恒温1h,除去集流体中可能存留的杂质盐。继而以3℃/min升温至700℃,并引入3%乙腈/Ar混合气,反应1h后自然降温至室温,得到表面具有石墨烯镀层的铝镁合金集流体;
(2)表面修饰有磁响应纳米点的石墨烯的制备:在100mL氧化石墨烯溶液(1mg/mL)中加入2mL磁响应纳米点前驱体材料[Co(NH 3) 6]Cl 3,然后置于微波反应器,10min内快速升温至200℃后,反应20min,形成表面修饰有磁响应纳米点(Co 3O 4)的石墨烯片分散液;
(3)正极活性材料层的制备:将表面修饰有磁响应纳米点的石墨烯片分散液反复清洗离心,与钴酸锂粉体、粘结剂PVDF按质量比1:8:1重新分散于NMP溶剂中,制成电极浆料;取表面具有石墨烯镀层的铝镁合金集流体,将电极浆料均匀涂布在石墨烯镀层表面,涂布过程中,在该集流体下方4cm-8cm处放置800mT的钕磁铁,调整磁场方向,使电极浆料中具有磁感应特性的石墨烯受磁场力作用,定向垂直排列于集流体上,继而在磁场力作用下烘干极片,此过程中,电极浆料中的具有磁响应的石墨烯与集流体上的镀层石墨烯通过π-π相互作用形成互联贯穿的石墨烯三维网络,得到正极材料层,即得到电池正极极片。所述正极材料层的石墨烯,有大于50%的质量占比与所述集流体呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
锂离子电池的制备
取球型石墨粉体,粘结剂SBR,导电碳黑,按照质量比例8:1:1分散于水中制成混合浆料,将所述混合浆料涂覆于铜箔集流体表面,烘干、压实、切片,制得石墨负极片,以本发明实施例2制得的电池正极极片作为锂离子电池正极,电解液为1mol/L LiPF 6/PC+EC+DEC(体积比为1:4:5),隔膜为PP/PE/PP三层隔膜,制作成4Ah左右的软包电池,用于测试全电池性能。
实施例3
一种电池电极的制备方法,包括以下步骤:
(1)表面具有石墨烯镀层的铜集流体构建:将铜箔(99.9%纯度)浸泡于0.5mol/L盐酸溶液中10min,除去表面杂质,用清水反复冲洗、烘干后,将铜箔置于Ar保护气氛中,30min内升温至500℃,通入5%痕量氧气处理20min,形成表面生长有CuO纳米线的三维集流体。继而调节气氛至H 2/Ar,升温至850℃,并引入10%乙腈/Ar混合气,反应0.5h后自然降温至室温,得到表面具有石墨烯镀层的铜集流体;
(2)化学气相沉积法制备表面修饰有磁响应纳米点的石墨烯:取100g石墨烯粉体于陶瓷坩埚,置于管式炉中,氩气保护气氛下(气流200-300sccm),升温至230-280℃,将合成磁响应纳米点的前驱体材料H 2Fe[P(OCH 2) 3] 4采用鼓泡法通入管式炉(气流400sccm),反应30min,即得到表面修饰有磁响应纳米点(Fe 3O 4)的石墨烯;
(3)负极活性材料层的制备:将表面修饰有磁响应纳米点的石墨烯,导电碳黑,粘结剂SBR与硅碳粉体按质量比0.5:0.5:1:8分散于水中,制成电极浆料;取表面具有石墨烯镀层的铜集流体,将电极浆料均匀涂布在石墨烯镀层表面,涂布过程中,在该集流体下方5cm处放置700mT的钕磁铁,调整磁场方向,使电极浆料中具有磁感应特性的石墨烯受磁场力作用,定向垂直排列于集流体上,继而在磁场力作用下烘干极片,此过程中,浆料中的石墨烯与集流体上的石墨烯镀层通过π-π相互作用形成互联贯穿的石墨烯三维网络,得到负极材料层,即得到电池负极极片。所述负极材料层中的石墨烯,有大于50%的质量占比与所述集流体呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
锂离子电池的制备
取商用钴酸锂粉体,粘结剂PTFE,导电碳黑,按照质量比例8:1:1分散于NMP溶剂中制成混合浆料,将该混合浆料涂覆于铝箔表面,烘干、压实、切片,制得钴酸锂正极片,以本发明实施例3制得的电池负极极片作为锂离子电池负极,电解液为1mol/L LiPF 6/EC+PC+DEC+EMC(体积比1:0.3:1:1),隔膜为PP/PE/PP三层隔膜,制作成3.5Ah的软包电池,用于测试全电池性能。
实施例4
一种电池电极的制备方法,包括以下步骤:
(1)表面具有石墨烯镀层的铝镁合金集流体构建:将铝镁合金集流体先浸泡于0.1mol/L盐酸溶液中5min,除去集流体表面杂质,用清水反复冲洗、烘干。再将该铝镁合金集流体置于H 2/Ar混合气氛中,以5℃/min速率由室温升温至500℃,恒温1h,除去集流体中可能存留的杂质盐。继而以3℃/min升温至650℃,并引入3%甲苯/Ar混合气,反应1h后自然降温至室温,得到表面具有石墨烯镀层的铝镁合金集流体;
(2)采用水热法制备表面修饰有磁响应纳米点的石墨烯:取60mL氧化石墨烯溶液 (1mg/mL),滴入0.01mol/L Fe(NO 3) 3溶液5mL,0.1mol/L氨水1mL,室温下搅拌10min,将混合溶液置于100mL反应釜中,120-180℃下反应30-120min,得到表面修饰有磁响应纳米点的石墨烯分散液,洗涤烘干,得到表面修饰有磁响应纳米点的石墨烯;
(3)正极活性材料层的制备:将表面修饰有磁响应纳米点的石墨烯反复清洗离心,与LiNi 0.5Mn 0.3Co 0.2O 2(NMC532)正极材料重新分散于NMP溶剂中(石墨烯:粘结剂PVDF:NMC532正极材料=1:1:8wt%),制成电极浆料;取表面具有石墨烯镀层的铝镁合金集流体,将电极浆料均匀涂布在石墨烯镀层表面,涂布过程中,在该集流体下方3-5cm处放置800mT的钕磁铁,调整磁场方向,使电极浆料中具有磁感应特性的石墨烯受磁场力作用,定向垂直排列于集流体上,继而在磁场力作用下烘干极片,此过程中,NMC532正极材料浆料中的具有磁响应的石墨烯与集流体上的镀层石墨烯通过π-π相互作用形成互联贯穿的石墨烯三维网络,得到正极材料层,即得到电池正极极片。所述正极材料层中的石墨烯,有大于50%的质量占比与所述集流体呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
锂离子电池的制备
取导电碳黑,粘结剂SBR,球型石墨粉体,按照质量比例1.5:1.5:7分散于水中制成混合浆料,将该混合浆料涂覆于铜箔集流体表面,烘干、压实、切片,制得石墨负极片,以本发明实施例4制得的电池正极极片作为锂离子电池正极,电解液为1mol/L LiPF 6/PC+EC+DEC(体积比为1:4:5),隔膜为PP/PE/PP三层隔膜,制作成4Ah左右的软包电池,用于测试全电池性能。
实施例5
一种电池电极的制备方法,包括以下步骤:
(1)表面修饰有磁响应纳米点的石墨烯的制备:在50mL氧化石墨烯溶液(1mg/mL)中加入1mL前驱体羰基铁(分析纯99%),然后置于微波反应器中,5min内快速升温至150℃后,反应30min,形成表面修饰有磁响应纳米点(Fe 3O 4)的石墨烯片分散液;
(2)负极活性材料层的制备:将表面修饰有磁响应纳米点的石墨烯片分散液反复清洗离心,与粘结剂PVDF、硅碳粉体以质量比1:1:8重新分散于NMP溶剂中,制成电极浆料;取铜集流体,将电极浆料均匀涂布在该集流体表面,涂布过程中,在该集流体下方1-3cm处放置500mT的钕磁铁,调整磁场方向,使电极浆料中具有磁感应特性的石墨烯受磁场力作用,定向垂直排列于集流体上,继而在磁场力作用下烘干极片,得到负极材料层,即得到电池负极极片。所述负极材料层中的石墨烯,有大于50%的质量占比与所述集流体呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
锂离子电池的制备
取商用钴酸锂粉体,粘结剂PTFE,导电碳黑,按照质量比例1:1:8分散于NMP溶剂中制成混合浆料,然后将该混合浆料涂覆于铝箔表面,烘干、压实、切片,制得钴酸锂正极片,以本发明实施例1制得的电池负极极片作为锂离子电池负极,电解液为1mol/L LiPF 6/EC+PC+DEC+EMC(体积比1:0.3:1:1),隔膜为PP/PE/PP三层隔膜,制作成4Ah左右的软包电池,用于测试全电池性能。
实施例6
一种电池电极的制备方法,包括以下步骤:
(1)表面具有乙炔黑镀层的铜集流体构建:将表面具有柱状凸起阵列的铜集流体先浸泡于0.05mol/L盐酸溶液中20min,以除去集流体表面杂质,再用清水反复冲洗、烘干。然后将该集流体置于H 2/Ar混合气氛中,以5℃/min速率由室温升温至350℃,恒温2h,除去集流体中可能存留的杂质盐。继而以5℃/min升温至800℃,并引入5%乙炔/Ar混合气,反应1.5h后自然降温至室温,得到表面具有乙炔黑镀层的铜集流体;
(2)采用水热法制备表面修饰有磁响应纳米点的石墨烯:取20mL氧化石墨烯溶液(0.5mg/mL),滴入0.01mol/L FeCl 2·4H 2O溶液5mL,0.01mol/L FeCl 3·6H 2O溶液5mL,0.01mol/L NaOH 5mL,室温下搅拌20min,将混合溶液置于50mL微波反应器中,以30℃/min速率迅速升温至120℃下反应15min,得到表面修饰有磁响应纳米点的石墨烯分散液,洗涤烘干,得到表面修饰有磁响应纳米点的石墨烯;
(3)负极活性材料层的制备:将表面修饰有磁响应纳米点的石墨烯,导电碳黑,粘结剂海藻酸钠与硅碳粉体按质量比0.2:0.3:1:8.5分散于水中,制成电极浆料;取表面具有导热乙炔黑镀层的铜集流体,将电极浆料均匀涂布在导热乙炔黑镀层表面,涂布过程中,在该集流体下方5-8cm处放置1000mT的钕磁铁,调整磁场方向,使电极浆料中具有磁感应特性的石墨烯受磁场力作用,定向垂直排列于集流体上,继而在磁场力作用下烘干极片,此过程中,浆料中的石墨烯与集流体上的乙炔黑镀层通过π-π相互作用形成互联贯穿的石墨烯-乙炔黑三维网络,得到负极材料层,即得到电池负极极片。所述负极材料层中的石墨烯,有大于50%的质量占比与所述集流体呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
锂离子电池的制备
取商用LiNi 0.8Co 0.15Al 0.05O 2(三元NCA)粉体,粘结剂PTFE,导电碳黑,按照质量比例8:1:1分散于NMP溶剂中制成混合浆料,将该混合浆料涂覆于铝箔表面,烘干、压实、切片,制得三元NCA正极片,以本发明实施例6制得的电池负极极片作为锂离子电池负极,电解液为1mol/L LiPF 6/EC+PC+DEC+EMC(体积比1:0.3:1:1),隔膜为PP/PE/PP三层隔膜,制作成4Ah的软包电池,用于测试全电池性能。
实施例7
一种电池电极的制备方法,包括以下步骤:
(1)表面具有导热铝镀层的钛集流体构建:将钛箔集流体浸泡于酸浓度为0.1mol/L的盐酸与硝酸的混合溶液中20min,以除去钛箔表面杂质,再用清水反复冲洗、烘干,装入真空磁控溅射镀膜仪中,一次打开总电源、机械泵、高分子泵、直至本底真空度优于2.0×10 -4Pa,充入高纯氩气,并固定气流量为30mL/min,靶基距为70mm。镀膜前,对铝靶溅射10min,以除去表面污染物。镀膜过程中,溅射功率保持在70W,溅射时间1h,得到表面具有铝镀层的钛箔集流体;
(2)气相沉积法制备表面修饰有磁响应纳米点的石墨烯:取500g石墨烯粉体于陶瓷坩埚,置于管式炉中,氩气保护气氛下(气流100-200sccm),先升温至200℃,恒温1h,除去石墨烯粉体中的吸附水分和杂质盐,继而升温至280℃,将合成磁响应纳米点的前驱体材料H 2Fe[P(OCH 2) 3] 4采用鼓泡法通入管式炉(气流400sccm),反应50min,即得到表面修饰有磁响应纳米点(Fe 3O 4)的石墨烯;
(3)正极活性材料层的制备:将表面修饰有磁响应纳米点的石墨烯反复清洗离心,与钴酸锂粉体、粘结剂PVDF按质量比1:8:1重新分散于NMP溶剂中,制成电极浆料;取表面具 有导热铝镀层的钛集流体,将电极浆料均匀涂布在导热铝镀层表面,涂布过程中,在该集流体下方6cm处放置700-1000mT的钕磁铁,调整磁场方向,使电极浆料中具有磁感应特性的石墨烯受磁场力作用,定向垂直排列于集流体上,继而在磁场力作用下烘干极片,此过程中,电极浆料中的具有磁响应的石墨烯与集流体上的导热铝镀层通过物理接触形成互联贯穿的石墨烯-铝层三维网络,得到正极材料层,即得到电池正极极片。所述正极材料层中的石墨烯,有大于50%的质量占比与所述集流体呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
锂离子电池的制备
取商用硬碳粉体,粘结剂PAA,导电乙炔黑,按照质量比例9:0.3:0.7分散于水中制成混合浆料,将所述混合浆料涂覆于铜箔集流体表面,烘干、压实、切片,制得硬碳负极片,以本发明实施例7制得的电池正极极片作为锂离子电池正极,电解液为1mol/L LiPF 6/PC+EC+DEC(体积比为1:4:5),隔膜为PP/PE/PP三层隔膜,制作成3.5Ah左右的软包电池,用于测试全电池性能。

Claims (20)

  1. 一种电池电极,包括集流体和设置在所述集流体上的电极材料层,其特征在于,所述电极材料层包括电极活性材料和片状结构石墨烯,所述石墨烯的表面修饰有磁响应纳米点,所述石墨烯中,大于50%质量占比的所述石墨烯与所述集流体上设置所述电极材料层的表面呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
  2. 如权利要求1所述的电池电极,其特征在于,所述磁响应纳米点间隔分布在所述片状结构石墨烯表面上,使所述片状结构石墨烯在磁场作用下相对于所述集流体上设置所述电极材料层的表面同向排列。
  3. 如权利要求1所述的电池电极,其特征在于,所述石墨烯中,与所述集流体表面呈45°-90°角度排列的质量占比为70%-100%。
  4. 如权利要求1所述的电池电极,其特征在于,所述电极材料层中,所述石墨烯均与所述集流体表面呈80°-90°角度排列。
  5. 如权利要求1所述的电池电极,其特征在于,所述片状结构石墨烯为单层或多层石墨烯,厚度尺寸为0.3nm-50nm,所述电极材料层中,石墨烯的质量含量为0.1%-20%。
  6. 如权利要求1所述的电池电极,其特征在于,所述集流体表面设有导热修饰层,所述电极材料层设置在所述导热修饰层表面,所述导热修饰层与所述电极材料层中的石墨烯构成互联的导热网络,所述导热修饰层的厚度为0.5nm-500nm。
  7. 如权利要求6所述的电池电极,其特征在于,所述导热修饰层的材料包括碳材料、导热金属材料中的至少一种,所述碳材料包括碳黑、乙炔黑、晶态石墨烯、还原石墨烯和含掺杂元素的石墨烯中的一种或多种,所述掺杂元素包括氮、磷、硫、硼、氟和氯中的一种或多种。
  8. 如权利要求7所述的电池电极,其特征在于,所述导热修饰层的碳材料与所述电极材料层中的石墨烯通过π-π相互作用紧密结合在一起,使所述石墨烯与所述导热修饰层形成互联贯穿的三维导热网络。
  9. 如权利要求1所述的电池电极,其特征在于,所述集流体包括金属箔材或合金箔材,所述金属箔材包括铜、钛、铝、铂、铱、钌、镍、钨、钽、金或银箔材,所述合金箔材包括不锈钢、或含铜、钛、铝、铂、铱、钌、镍、钨、钽、金和银中至少一种元素的合金。
  10. 如权利要求6所述的电池电极,其特征在于,所述集流体的表面设置有次级结构,所述导热修饰层的材料部分沉积在所述次级结构表面。
  11. 如权利要求10所述的电池电极,其特征在于,所述次级结构包括垂直阵列凸起,所述凸起的高度为所述集流体厚度的1%-50%。
  12. 如权利要求1所述的电池电极,其特征在于,所述磁响应纳米点包括含有磁性元素的氧化物、合金、复合材料中的一种或多种,所述磁性元素包括铁、钴、镍中的至少一种,所述磁响应纳米点的粒径小于等于50nm。
  13. 如权利要求1所述的电池电极,其特征在于,所述电极活性材料为可通过脱嵌离子进行能量存储的材料,所述电极活性材料的粒径为3nm-30μm,所述电极材料层的厚度为5μm-150μm。
  14. 如权利要求13所述的电池电极,其特征在于,所述离子包括锂离子、钠离子、钾离子、镁离子和铝离子中的一种。
  15. 一种电池电极的制备方法,其特征在于,包括以下步骤:
    在片状结构石墨烯表面修饰磁响应纳米点,得到表面修饰有磁响应纳米点的石墨烯;
    将所述表面修饰有磁响应纳米点的石墨烯与电极活性材料、粘结剂混合得到浆料,在外加磁场的作用下,将所述浆料涂布在集流体上,并在外加磁场作用下烘干,使石墨烯取向排列,得到电极材料层,即得到电池电极,所述石墨烯中,大于50%质量占比的所述石墨烯与所述集流体上设置所述电极材料层的表面呈45°-90°角度取向排列,以形成具有特定取向的导热路径。
  16. 如权利要求15所述的电池电极的制备方法,其特征在于,在所述涂布和烘干过程中,对所述集流体施加所述外加磁场,所述外加磁场的方向与所述集流体上设置所述电极材料层的表面垂直,使得悬浮于所述浆料中的表面修饰有磁响应纳米点的石墨烯趋向于与所述外加磁场方向相同的方向排列,所述磁响应纳米点具有铁磁性。
  17. 如权利要求15所述的电池电极的制备方法,其特征在于,所述表面修饰有磁响应纳米点的石墨烯采用微波合成法、或水热法、或磁控溅射法、或蒸镀沉积法、或化学气相沉积法制备得到。
  18. 如权利要求15所述的电池电极的制备方法,其特征在于,进一步包括,先采用物理涂覆法、化学气相沉积法、蒸镀沉积法或溅射法在所述集流体上制备导热修饰层;然后再将所述浆料涂布在所述导热修饰层表面,并在磁场作用下烘干,使石墨烯取向排列,得到电极材料层。
  19. 一种电池,其特征在于,所述电池包括如权利要求1-14任一项所述的电池电极。
  20. 如权利要求19所述的电池,其特征在于,所述电池包括金属锂电池、锂离子电池、钠离子电池、镁离子电池、铝离子电池、空气电池或燃料电池。
PCT/CN2018/079820 2017-03-25 2018-03-21 一种电池电极及其制备方法和电池 WO2018177175A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18776082.2A EP3595048B1 (en) 2017-03-25 2018-03-21 Battery electrode, preparation method thereof and battery
US16/582,557 US11349163B2 (en) 2017-03-25 2019-09-25 Battery electrode, method for producing battery electrode, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710185230.3A CN108630945B (zh) 2017-03-25 2017-03-25 一种电池电极及其制备方法和电池
CN201710185230.3 2017-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/582,557 Continuation US11349163B2 (en) 2017-03-25 2019-09-25 Battery electrode, method for producing battery electrode, and battery

Publications (1)

Publication Number Publication Date
WO2018177175A1 true WO2018177175A1 (zh) 2018-10-04

Family

ID=63674264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079820 WO2018177175A1 (zh) 2017-03-25 2018-03-21 一种电池电极及其制备方法和电池

Country Status (4)

Country Link
US (1) US11349163B2 (zh)
EP (1) EP3595048B1 (zh)
CN (1) CN108630945B (zh)
WO (1) WO2018177175A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823767A (zh) * 2021-09-02 2021-12-21 南京航空航天大学 一种用于锂金属电池的改性负极及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817879B (zh) * 2019-03-19 2020-08-14 北京航空航天大学 一种阵列结构的锌金属复合电极及其制备方法
CN110311137B (zh) * 2019-07-02 2020-10-20 宁夏汉尧石墨烯储能材料科技有限公司 一种定向排列的包覆石墨烯的锂离子电池正极材料
CN110556510B (zh) * 2019-09-24 2021-05-25 珠海格力电器股份有限公司 一种锂离子电池极片及其制备方法和含有该极片的电池
EP4086985A4 (en) * 2020-04-09 2022-11-09 Ningde Amperex Technology Limited MAGNETIC CURRENT COLLECTOR AND NEGATIVE ELECTRODE PLATE, LITHIUM-METAL BATTERY AND ELECTRONIC DEVICE WITH THEM
CN111525181B (zh) * 2020-05-08 2022-01-18 上海空间电源研究所 一种低界面电阻的全固态电池及其制备方法
CN112209448B (zh) * 2020-08-27 2023-04-07 南京邮电大学 一种超小尺寸FeS纳米点及其制备方法和用途
KR20220085014A (ko) * 2020-12-14 2022-06-21 도요타 지도샤(주) 전고체 전지
CN112976438B (zh) * 2021-01-28 2022-07-12 华中科技大学 一种定向互连的高导热界面材料的制备方法及产品
CN114447267A (zh) * 2021-10-19 2022-05-06 湖南立方新能源科技有限责任公司 一种复合极片及其制备方法以及锂离子电池
CN114204023B (zh) * 2021-11-17 2022-12-13 合肥国轩高科动力能源有限公司 一种低温型磷酸铁锂正极材料的制备方法
CN114430023A (zh) * 2022-01-21 2022-05-03 湖南立方新能源科技有限责任公司 一种复合负极片及其制备方法、锂金属二次电池
WO2023185743A1 (zh) * 2022-03-30 2023-10-05 华为技术有限公司 电极极片、二次电池与终端设备
CN114744160B (zh) * 2022-06-13 2022-09-02 新乡市中天新能源科技股份有限公司 一种锂离子电池正极片的制备方法
CN115810760A (zh) * 2022-11-30 2023-03-17 宁德时代新能源科技股份有限公司 集流体及其制备方法、电极片、二次电池及用电装置
CN116259929B (zh) * 2023-05-09 2023-07-18 广州纳诺新材料技术有限公司 一种高性能锂电池集流体、导电浆料及其制备方法
CN116732482B (zh) * 2023-05-16 2024-01-26 河南固锂电技术有限公司 一种复合多层镁离子电池正极材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119595A (zh) * 2014-06-30 2014-10-29 上海工程技术大学 含有取向排列的磁性氧化石墨烯片的聚合物及其制备方法
CN104600320A (zh) * 2013-10-30 2015-05-06 上海悦达墨特瑞新材料科技有限公司 一种基于石墨烯的功能铜箔及其制备方法
WO2016025532A1 (en) * 2014-08-11 2016-02-18 The Arizona Board Of Regents On Behalf Of The University Of Arizona Aligned graphene-carbon nanotube porous carbon composite
CN105355847A (zh) * 2015-10-16 2016-02-24 广东烛光新能源科技有限公司 一种电化学电池电极、含有该电极的电化学电池及其制备方法
CN105826512A (zh) * 2015-01-08 2016-08-03 中信国安盟固利动力科技有限公司 一种基于导热性提高锂离子电池循环寿命的方法
CN105906844A (zh) * 2016-05-16 2016-08-31 深圳大学 一种高导热石墨烯纳米复合材料及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9356281B2 (en) * 2008-05-20 2016-05-31 GM Global Technology Operations LLC Intercalation electrode based on ordered graphene planes
CN102482076B (zh) 2009-08-03 2014-12-24 仁济大学校产学协力团 新型结构的碳纳米复合体及其制造方法
KR101071537B1 (ko) 2009-09-17 2011-10-10 주식회사 엘지화학 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
CN102412065B (zh) 2010-09-20 2013-11-06 海洋王照明科技股份有限公司 基于石墨烯-碳纳米管复合材料超级电容器的制备方法
KR101924989B1 (ko) * 2011-01-07 2018-12-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치의 제작 방법
CN102208598B (zh) 2011-05-12 2014-03-12 中国科学院宁波材料技术与工程研究所 石墨烯涂层改性的锂二次电池的电极极片及其制作方法
CN103545529B (zh) 2012-07-13 2016-01-20 清华大学 薄膜锂离子电池
CN103545530B (zh) 2012-07-13 2016-04-27 清华大学 集流体、锂离子电池电极及锂离子电池
CN103545528B (zh) 2012-07-13 2016-03-09 清华大学 锂离子电池
CN103682368B (zh) 2012-09-20 2016-08-17 中国科学院金属研究所 一种快充的柔性锂离子电池及其电极的制备方法
EP2793300A1 (en) * 2013-04-16 2014-10-22 ETH Zurich Method for the production of electrodes and electrodes made using such a method
CN104347881A (zh) 2013-07-23 2015-02-11 中国科学院金属研究所 一种电池用石墨烯基集流体的制备方法和应用
CN103384007B (zh) 2013-07-23 2015-11-18 深圳清华大学研究院 碳纳米管/石墨烯复合负极材料及其制备方法、锂电池
EP2996189A4 (en) 2014-07-14 2016-11-30 Orange Power Ltd HOLLOW SECONDARY BATTERY
CN105449223A (zh) * 2015-11-18 2016-03-30 青岛领军节能与新材料研究院 一种高安全、高容量锂离子电池的制作方法
CN105542728A (zh) 2016-01-24 2016-05-04 北京大学 一种垂直取向石墨烯片/高聚物热界面材料的制备方法
KR101794735B1 (ko) * 2016-01-28 2017-12-01 포항공과대학교 산학협력단 금속 할라이드 페로브스카이트 발광 소자 및 이의 제조방법
CN105762366A (zh) 2016-05-04 2016-07-13 江苏深苏电子科技有限公司 一种锂离子电池复合集流体及其制造方法
CN105826571A (zh) 2016-05-26 2016-08-03 江苏深苏电子科技有限公司 一种柔性高电导率石墨烯碳纳米管复合集流体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600320A (zh) * 2013-10-30 2015-05-06 上海悦达墨特瑞新材料科技有限公司 一种基于石墨烯的功能铜箔及其制备方法
CN104119595A (zh) * 2014-06-30 2014-10-29 上海工程技术大学 含有取向排列的磁性氧化石墨烯片的聚合物及其制备方法
WO2016025532A1 (en) * 2014-08-11 2016-02-18 The Arizona Board Of Regents On Behalf Of The University Of Arizona Aligned graphene-carbon nanotube porous carbon composite
CN105826512A (zh) * 2015-01-08 2016-08-03 中信国安盟固利动力科技有限公司 一种基于导热性提高锂离子电池循环寿命的方法
CN105355847A (zh) * 2015-10-16 2016-02-24 广东烛光新能源科技有限公司 一种电化学电池电极、含有该电极的电化学电池及其制备方法
CN105906844A (zh) * 2016-05-16 2016-08-31 深圳大学 一种高导热石墨烯纳米复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823767A (zh) * 2021-09-02 2021-12-21 南京航空航天大学 一种用于锂金属电池的改性负极及其制备方法

Also Published As

Publication number Publication date
EP3595048A4 (en) 2020-03-25
EP3595048B1 (en) 2021-05-12
US11349163B2 (en) 2022-05-31
CN108630945A (zh) 2018-10-09
CN108630945B (zh) 2020-12-08
US20200020996A1 (en) 2020-01-16
EP3595048A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2018177175A1 (zh) 一种电池电极及其制备方法和电池
JP4160436B2 (ja) リチウムイオン二次電池
KR102617731B1 (ko) 실리콘 함유 복합체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자
Huang et al. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes
CN108649190A (zh) 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用
CN103000906B (zh) 泡沫铜/碳纳米相复合锂离子电池负极材料的制备方法
KR20180031585A (ko) 다공성 실리콘 복합체 클러스터, 그 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
CN109616630B (zh) 一种均匀碳膜和垂直石墨烯双重包覆的硅-碳复合材料及其制备方法与锂离子电池应用
JP2020504433A (ja) リチウムイオン電池に使用するためのグラフェン/三元系材料複合体を調製する方法およびその製造物
CN104103821B (zh) 硅碳负极材料的制备方法
CN111653737B (zh) 一种具有梯度预锂化结构的氧化硅复合材料及其制备方法、应用
US11362327B2 (en) Double layer-coated nano-silicon negative electrode material, a method for preparing the same and use thereof
CN112875680B (zh) 一种片状Fe基合金催化生长碳纳米管阵列的制备方法
CN113451580A (zh) 一种界面层及包括该界面层的锂离子电池
Wang et al. Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates
JP2018113187A (ja) リチウムイオン二次電池用負極材料及びこれを用いたリチウムイオン二次電池
Lu et al. Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook
TWI551545B (zh) 氧化矽-碳複合材料及其製法
CN110759379A (zh) 一种0d/2d异质结构复合负极材料的制备方法及其应用
Kim et al. Nanoporous silicon flakes as anode active material for lithium-ion batteries
TWI331817B (en) Cathode of lithium ion battery, method for manufacturing the same and lithium ion battery using the cathode
CN111725492B (zh) 一种碳/钛酸锂复合材料及其制备方法
CN111883761A (zh) 一种硅石墨烯复合物锂电池负极材料及其制备方法
CN105990566B (zh) 氧化镍复合负极材料及其制备方法
Chen et al. Cu 2 O nanowires as anode materials for Li-ion rechargeable batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018776082

Country of ref document: EP

Effective date: 20191007