KR102617731B1 - 실리콘 함유 복합체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자 - Google Patents

실리콘 함유 복합체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자 Download PDF

Info

Publication number
KR102617731B1
KR102617731B1 KR1020180159039A KR20180159039A KR102617731B1 KR 102617731 B1 KR102617731 B1 KR 102617731B1 KR 1020180159039 A KR1020180159039 A KR 1020180159039A KR 20180159039 A KR20180159039 A KR 20180159039A KR 102617731 B1 KR102617731 B1 KR 102617731B1
Authority
KR
South Korea
Prior art keywords
silicon
carbon
containing composite
graphene
composite
Prior art date
Application number
KR1020180159039A
Other languages
English (en)
Other versions
KR20190083613A (ko
Inventor
손인혁
김미종
이주명
임민우
최정현
한성수
Original Assignee
삼성전자주식회사
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 삼성에스디아이 주식회사 filed Critical 삼성전자주식회사
Priority to EP18213922.0A priority Critical patent/EP3509136A1/en
Priority to US16/230,946 priority patent/US11824198B2/en
Priority to JP2018242869A priority patent/JP2019119669A/ja
Priority to CN201910001030.7A priority patent/CN109994717A/zh
Publication of KR20190083613A publication Critical patent/KR20190083613A/ko
Priority to JP2023093540A priority patent/JP2023130342A/ja
Priority to US18/480,090 priority patent/US20240113302A1/en
Priority to US18/480,078 priority patent/US20240030452A1/en
Priority to US18/480,106 priority patent/US20240047688A1/en
Application granted granted Critical
Publication of KR102617731B1 publication Critical patent/KR102617731B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

다공성 실리콘 이차입자를 포함하는 다공성 코어(core)와 상기 다공성 코어의 적어도 일 면상의 제2그래핀을 포함하는 쉘(shell)을 함유하는 실리콘 함유 복합체이며, 상기 다공성 실리콘 이차입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며, 상기 실리콘 복합체 일차 입자는 실리콘; 상기 실리콘의 적어도 일 면상의 실리콘 서브옥사이드(SiOx)(O<x<2) 및 상기 실리콘 서브옥사이드의 적어도 일면상의 제1그래핀을 포함하며, 상기 제1그래핀 및 제2그래핀 중에서 선택된 하나 이상은 질소(N), 인(P) 및 황(S) 중에서 선택된 하나 이상의 원소를 포함하는 실리콘 함유 복합체, 그 제조방법, 이를 포함한 전극, 리튬전지 및 전자소자를 제시한다.

Description

실리콘 함유 복합체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자 {Silicon-containing structure, carbon composite using the same, electrode, lithium battery, and electronic device}
실리콘 함유 복합체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자를 제시한다.
종래 리튬 이온 전지용 음극 활물질 중 실리콘은 이론용량이 4200mAh/g으로 월등하게 높고 가격이 낮아 음극소재로 활용하려는 연구가 활발히 진행되고 있다. 그런데 실리콘은 방전시 Li4 . 4Si 합금이 생성되면서 부피 팽창을 수반하여, 전극내 전기적으로 고립되는 활물질을 발생시키며 활물질의 비표면적 증가에 따른 전해질 분해 반응을 심화시키는 등의 문제점을 안고 있다. 이를 극복하기 위해 실리콘의 부피 팽창을 감소시키고 부피 팽창시 분쇄현상이 적은 구조를 개발하거나 실리콘 표면에 탄소 등으로 된 코팅층을 형성하는 방법이 제안되었다.
그런데 지금까지 개발된 실리콘 재료를 이용하면 부피팽창 저감 효과 및 전지의 충방전 효율이 만족할만한 수준에 도달하지 못한 실정이다.
한 측면은 실리콘 함유 복합체 및 그 제조방법을 제공하는 것이다.
다른 측면은 상술한 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 제공하는 것이다.
또 다른 측면은 상술한 실리콘 함유 복합체; 또는 상기 탄소 복합체를 함유하는 전극을 제공하는 것이다.
또 다른 측면은 상기 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 전극을 포함하는 리튬 전지를 제공하는 것이다.
또 다른 측면은 상기 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 전계 방출 소자를 제공하는 것이다.
또 다른 측면에 의하면 상기 측면은 상기 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 바이오센서가 제공된다.
또 다른 측면에 의하면, 측면은 상기 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 반도체 소자가 제공된다.또 다른 측면에 의하면 측면은 상기 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 열전소자가 제공된다.
한 측면에 따라
다공성 실리콘 이차입자를 포함하는 다공성 코어(core)와 상기 다공성 코어의 적어도 일 면상의 제2그래핀을 포함하는 쉘(shell)을 함유하는 실리콘 함유 복합체며,
상기 다공성 실리콘 이차입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며,
상기 실리콘 복합체 일차 입자는 실리콘; 상기 실리콘의 적어도 일 면상의 실리콘 서브옥사이드(SiOx)(O<x<2) 및 상기 실리콘 서브옥사이드의 적어도 일면상의 제1그래핀을 포함하며,
상기 제1그래핀 및 제2그래핀 중에서 선택된 하나 이상은 질소(N), 인(P) 및 황(S) 중에서 선택된 하나 이상의 원소를 포함하는 실리콘 함유 복합체가 제공된다.
상기 실리콘 서브옥사이드는 막(film) 및 매트릭스(matrix) 중에서 선택된 하나 이상의 상태로 존재하고,
상기 제1그래핀 및 제2그래핀은 각각 막(film), 입자, 매트릭스(matrix) 중에서 선택된 하나 이상의 상태로 존재한다.
다른 한 측면에 따라 실리콘 및 실리콘 상에 형성된 실리콘 서브옥사이드(SiOx)(O<x<2)을 포함하는 구조체, 분산제 및 용매를 포함하는 조성물로부터 다공성 실리콘 이차 입자를 얻는 단계; 및
상기 다공성 실리콘 이차 입자에 탄소 공급원 기체를 공급하고 열처리하는 단계를 포함하는 실리콘 함유 복합체의 제조방법이 제공된다.
또 다른 측면에 따라
상술한 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체가 제공된다.
또 다른 측면에 따라 상술한 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 포함하는 전극이 제공된다.
또 다른 측면에 따라 상술한 전극을 포함하는 리튬 전지가 제공된다.
또 다른 측면은 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 전자소자를 제공하는 것이다.
상기 전자 소자는 전계방출소자, 바이오센서, 반도체소자 또는 열전소자이다.
또 다른 측면에 따라 다공성 실리콘 이차입자를 포함하는 코어(core)와 상기 코어의 상부에 배치된 제2그래핀을 포함하는 쉘(shell)을 함유하는 실리콘 함유 복합체이며, 상기 다공성 실리콘 이차입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며, 상기 실리콘 복합체 일차 입자는 i)SiOx(0<x<2) 및 ii)SiOx(0<x<2)의 열처리 생성물중에서 선택된 하나 이상의 산화실리콘과, 상기 산화실리콘 상부에 배치된 제1그래핀을 포함하며, 상기 제1그래핀과 제2그래핀 중에서 선택된 하나 이상은 각각 질소, 인 및 황 중에서 선택된 하나 이상을 포함하는 실리콘 함유 복합체가 제공된다.
일구현예에 따른 실리콘 함유 복합체를 이용하면 실리콘 입자간 네트워크 형성으로 인하여 충방전시 극판 팽창을 줄일 수 있고, 초기효율 및 부피에너지밀도가 개선될 뿐만 아니라 전도도 및 고내구성 실리콘 보호층을 형성하여 충방전 내구성을 향상시킬 수 있다.
도 1a은 일구현예에 따른 실리콘 함유 복합체의 구조를 개략적으로 나타낸 것이다.
도 1b는 일구현예에 따른 실리콘 함유 복합체의 구조를 개략적으로 나타낸 것이다.
도 1c는 일구현예에 따른 실리콘 함유 복합체에서 실리콘 서브옥사이드가 표면에 형성된 실리콘 상에 그래핀이 적층되는 형태를 설명하기 위한 것이다.
도 2는 일구현예에 따른 실리콘 함유 복합체에서 질소의 도핑을 설명하기 위한 것이다.
도 3은 일구현예 따른 실리콘 함유 복합체의 제조방법을 설명하기 위한 것이다.
도 4는 제조예 1의 실리콘 함유 복합체 대한 라만 분석 결과를 나타낸 것이다.
도 5는 각각 제조예 1 및 참조제조예 1의 실리콘 함유 복합체에 대한 열중량 분석 결과를 나타낸 것이다.
도 6 내지 도 8은 각각 제조예 1의 실리콘 함유 복합체에 대한 X선 광전자 분광 분석 결과를 나타낸 것이다.
도 9a 및 도 9b은 제조예 1에 따라 제조된 실리콘 함유 복합체의 전자주사현미경 사진이고, 도 10a 및 도 10b는 참조제조예 1에 따라 제조된 실리콘 함유 복합체의 전자주사현미경 사진이다.
도 11a 및 도 11b는 제조예 1에 따라 제조된 실리콘 함유 복합체의 투과전자현미경 사진이다.
도 12a는 일구현예에 따른 리튬 전지의 모식도를 나타낸 것이다.
도 12b는 일구현예에 따른 열전모듈의 개략도를 나타낸다.
도 12c는 펠티어 효과에 의한 열전냉각을 나타내는 개략도이다.
도 12d는 제벡효과에 의한 열전발전을 나타내는 개략도이다.
도 12e는 일구현예에 따른 바이오센서의 전극의 구조를 나타낸 것이다.
첨부된 도면들을 참조하면서 이하에서 예시적인 하나 이상의 실리콘 함유 복합체, 이를 포함하는 전극 활물질을 포함하는 전극, 이를 포함하는 리튬전지와 상기 복합체를 이용한 전계 방출 소자, 바이오센서, 반도체 소자에 관하여 더욱 설명하기로 한다.
다공성 실리콘 이차입자를 포함하는 다공성 코어(core)와 상기 다공성 코어의 적어도 일 면상의 제2그래핀을 포함하는 쉘(shell)을 함유하는 실리콘 함유 복합체이며,
상기 다공성 실리콘 이차입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며,
상기 실리콘 복합체 일차 입자는 실리콘; 상기 실리콘의 적어도 일 면상의 실리콘 서브옥사이드(SiOx)(O<x<2) 및 상기 실리콘 서브옥사이드의 적어도 일면상의 제1그래핀을 포함하며, 상기 제1그래핀 및 제2그래핀 중에서 선택된 하나 이상은 질소(N), 인(P) 및 황(S) 중에서 선택된 하나 이상의 원소를 포함하는 실리콘 함유 복합체가 제공된다.
상기 실리콘 서브옥사이드는 막(film) 및 매트릭스(matrix) 중에서 선택된 하나 이상의 상태로 존재하고, 상기 제1그래핀 및 제2그래핀은 각각 막(film), 입자, 매트릭스(matrix) 중에서 선택된 하나 이상의 상태로 존재한다.
제2그래핀은 다공성 실리콘 이차입자의 실리콘 서브옥사이드 상부에 직성장될 수 있다.
상기 제1그래핀은 상기 실리콘 서브옥사이드의 표면으로부터 직성장된 것이고, 상기 제2그래핀은 다공성 실리콘 이차입자의 표면으로부터 직성장된 것이다.
실리콘 함유 복합체는 다공성일 수 있다.
본 명세서에서 용어 “매트릭스”는 “막”이 2차원적인 공간을 나타내는 데 비하여 3차원적인 공간을 나타낼 수 있다. 다른 일구현예에 의하면, 매트릭스는 구성성분이 균일한 조성을 나타내는데 비하여 막은 조성 구배를 갖는 경우를 나타낼 수 있다.
본 명세서에서 용어 "클러스터"는 적어도 하나 이상의 일차 입자의 응집체를 말하며 실질적으로 "이차 입자"와 동일한 의미로 해석될 수 있다.
본 명세서에서 용어 "그래핀"은 플레이크(flake), 나노시트, 막(또는 필름) 등의 구조를 가질 수 있다. 여기에서 나노시트는 실리콘 서브옥사이드 상에 불규칙적인 상태로 형성된 경우를 나타내며 막은 실리콘 서브옥사이드 상부에 연속적으로 균일하게 형성된 필름 형태를 말한다. 이와 같이 그래핀은 층수를 가질 수도 있고 층 구분 없는 구조를 가질 수도 있다.
본 명세서에서 용어 “실리콘 서브옥사이드”은 SiOx(O<x<2)로 나타나는 단일 조성을 가질 수 있다. 또는 실리콘 서브옥사이드는 예를 들어 Si, SiO2 중에서 선택된 하나 이상을 포함하여 평균 조성이 SiOx(O<x<2)로 나타내는 경우를 지칭할 수 있다.
일구현예에 의한 실리콘 함유 복합체에서 코어의 사이즈는 3 내지 10㎛이고, 쉘의 두께는 10 내지 5,000nm, 예를 들어 10 내지 1,000nm일 수 있다. 여기에서 사이즈는 직경 또는 장축 길이를 의미한다.
도 1a는 일구현예에 따른 실리콘 함유 복합체를 나타낸 것이다.
이를 참조하면, 실리콘 함유 복합체 (11)는 다공성 실리콘 이차입자를 포함하는 코어 (1)와 상기 코어 (1)의 상부에 배치된 제2그래핀 (10b)을 포함하는 쉘 (2)을 함유한다.
다공성 실리콘 이차입자는 두 개 이상의 실리콘 복합체 일차 입자 (10)의 응집체를 포함하며, 상기 실리콘 복합체 일차 입자는 실리콘과, 상기 실리콘 상에 배치된 실리콘 서브옥사이드(SiOx)(O<x<2) 및 상기 실리콘 서브옥사이드 상에 배치된 제1 그래핀 (10a)을 포함한다. 실리콘 복합체 일차 입자에서 상기 제1 그래핀이 실리콘 서브옥사이드 표면에 쉘을 형성하고, 실리콘 복합체 이차 입자에서 제2그래핀이 코어의 상부에 쉘을 형성하여 실리콘 함유 복합체는 이중 코어/쉘 구조를 갖는다. 이러한 이중 코어/쉘 구조를 갖게 되면 부피 팽창이 억제되고 전해질과의 부반응이 감소된다.
코어(1)의 제1그래핀 (10a)는 쉘(2)의 제2그래핀 (10b)과 비교하여 층수가 동일하거나 또는 상이하다.
일구현예에 의하면, 쉘 (2)의 제2그래핀 (10b)은 상기 코어 (1)내의 제1그래핀 (10a)에 비하여 밀도가 높을 수 있다. 일구현예에 따르면, 상기 코어(1)내에서의 제1그래핀(10a) 층수는 1 내지 30층, 예를 들어 5 내지 15층, 구체적으로 10층, 상기 쉘 (2)에서의 제2그래핀 (10b)의 층수는 1 내지 50층, 예를 들어 20 내지 30층이다.
상기 제1그래핀(10a) 및 제2그래핀(10b)에는 질소, 인 및 황 중에서 선택된 하나 이상이 도핑될 수 있다.
상기 실리콘 함유 복합체에 대한 XPS 분석에서 구해지는 10 nm 이하의 표면 깊이에서 질소, 인 및 황 중에서 선택된 하나 이상의 함량은 0.2원자% 이하, 예를 들어 0.05 내지 0.2원자%이다. 표면깊이는 예를 들어 1 내지 10nm, 예를 들어 5 내지 10nm이다.
상기 질소, 인 및 황 중에서 선택된 하나 이상의 함량은 2000ppm 이하, 예를 들어 50 내지 2000ppm, 예를 들어 500 내지 2000ppm이다.
도 1b는 다른 일구현예에 따른 실리콘 함유 복합체를 나타낸 것이다.
도 1b의 실리콘 함유 복합체는 도 1a의 실리콘 함유 복합체의 표면에 탄소계 코팅막 (12)이 더 배치된 구조를 갖는다. 이 탄소계 코팅막은 비정질 탄소, 결정질 탄소, 또는 그 조합물을 포함할 수 있다. 그리고 탄소계 코팅막 (12)은 제1그래핀 및 제2그래핀과 마찬가지로 질소, 황 및 인 중에서 선택된 하나 이상을 포함할 수 있다.
또 다른 일구현예에 따른 실리콘 함유 복합체에서 질소, 인 및 황 중에서 선택된 하나이상이 제1그래핀 및 제2그래핀에는 포함되어 있지 않으나 탄소계 코팅막에만 포함되는 경우도 가능하다.
도 2를 참조하여, 실리콘 함유 복합체에 질소가 포함된 경우의 작용효과를 보다 상세하게 설명하기로 한다.
그래핀은 제조과정에서 일부 결함이 생성되고 이로 인하여 전도성이 떨어진다. 이러한 그래핀을 이용하여 전극 소재로 이용하면 SEI층이 보다 용이하게 형성된다. 도 2에 나타난 바와 같이 질소가 포함된 경우 그래핀의 결함 영역에 질소가 도입되면 그래핀의 안정성 및 품질 등을 더 개선할 수 있다. 질소는 피리딘 위치의 질소, 4급 질소 위치, 피롤 질소 위치등에 도입되어 그래핀의 품질을 더 향상시키는 효과를 얻을 수 있다.
또한 그래핀의 결함 사이트에 질소가 도입되면 이러한 구조체를 전극 소재로 이용하는 경우 SEI층의 형성이 효과적으로 억제될 수 있다.
일구현예에 따르면, 코어에 비하여 밀도가 높은 외각층이 존재할 수 있다. 이러한 외각층의 두께는 제한되는 것은 아니지만 예를 들어 20 내지 60nm일 수 있다.
상기 실리콘 함유 복합체의 라만 분석 스펙트럼에 의하여 구해지는 G 피크에 대한 D 피크의 세기비(Id/Ig)는 0.8 내지 1.5, 예를 들어 1 내지 1.4, 예를 들어 1.1 내지 1.3, 예를 들어 약 1.2이다.
상기 실리콘 함유 복합체의 열중량 분석에서 구해지는 20% 중량 손실 온도가, 질소, 인 및 황 중에서 선택된 하나 이상의 원소를 함유하지 않은 실리콘 함유 복합체에 대한 20% 중량 손실 온도를 기준으로 하여 7 내지 15℃ 보다 높다.
실리콘 함유 복합체가 질소를 함유하는 경우 20% 중량 손실 온도는 예를 들어 710 내지 730℃이다.
코어 및 쉘은 그래파이트를 더 포함할 수 있다.
상기 다공성 실리콘 이차입자와 실리콘 함유 복합체의 직경비는 1:1 내지 1:30, 예를 들어 1:1 내지 1:25 구체적으로 1:21이다. 다공성 실리콘 이차입자 및 다공성 실리콘 복합체의 클러스트의 직경비는 다공성 실리콘 이차입자 및 다공성 실리콘 복합체가 모두 구형 형상을 가질 때 사이즈비를 나타낸다. 만약 다공성 실리콘 이차입자 및 실리콘 함유 복합체가 비구형인 경우에는 장축 길이의 비일 수 있다.
다른 일구현예에 의하면, 실리콘 함유 복합체에서 코어의 직경은 3 내지 10㎛이고, 쉘의 두께는 10 내지 5,000nm(0.01 내지 5㎛), 예를 들어 10 내지 1,000nm이다. 실리콘 함유 복합체를 포함하는 코어의 직경과 쉘(탄소코팅막)의 두께는 1:0.001 내지 1:1.67, 예를 들어 1:001, 1:1.67, 1:0.0033, 또는 1:0.5이다.
실리콘 함유 복합체에서 제1그래핀과 제2그래핀의 총함량은 실리콘 100 중량부를 기준으로 하여 0.1 내지 2,000 중량부, 예를 들어 0.1 내지 300 중량부, 예를 들어 0.1 내지 90 중량부, 구체적으로 5 내지 30 중량부일 수 있다. 제1그래핀과 제2그래핀의 총함량이 상기 범위일 때 실리콘 함유 복합체의 실리콘의 부피 억제 효과가 우수하고 전도도 특성이 우수하다.
상기 복합체 일차 입자에서 제1그래핀은 실리콘 서브옥사이드(SiOx) (O<x<2)의 실리콘에서 10nm 이하의 거리, 예를 들어 1nm 이하, 예를 들어 0.00001 내지 1nm 만큼 연장되고, 적어도 1 내지 30개의 그래핀층을 포함하고 상기 제1그래핀의 총두께는 0.3 내지 1,000nm, 예를 들어 0.3 내지 50nm, 예를 들어 0.6 내지 50nm, 예를 들어 1 내지 30nm이고, 상기 제1그래핀은 상기 실리콘의 주축에 대하여 0 내지 90° 사이의 각으로 배향된다. 본 명세서에서 주축은 Y축을 의미한다.
제1그래핀 및 제2그래핀 (2)은 도 1c에 나타난 바와 같이 실리콘 서브옥사이드(SiOx)(o<x<2)막표면에 형성된 판상 및 침상형 실리콘 입자(10)의 주축(Y축)을 기준으로 하여 90°의 각으로 배향될 수 있다.
상기 실리콘 함유 복합체에서 제2그래핀은 다공성 실리콘 이차입자의 실리콘 서브옥사이드(SiOx) (O<x<2)의 실리콘에서 1,000nm 이하의 거리, 예를 들어 500nm 이하의 거리, 예를 들어 10nm 이하의 거리, 예를 들어 5nm 이하, 1nm 이하, 예를 들어 0.00001 내지 1nm 만큼 연장되고, 적어도 1 내지 30개의 그래핀층을 포함하고 상기 제2그래핀의 총두께는 0.6 내지 50nm, 예를 들어 1 내지 50nm이고, 상기 제2그래핀은 상기 실리콘의 주축에 대하여 0 내지 90° 사이의 각으로 배향된다.
상기 실리콘 서브옥사이드(SiOx)(O<x<2)의 두께는 30㎛ 이하, 예를 들어 10nm이다.
상기 실리콘은 형상이 제한되지 않으며, 예를 들어 스피어, 나노와이어, 침상, 막대형 중에서 선택된 하나 이상이다. 그리고 실리콘의 평균입경은 10nm 내지 30㎛이고, 예를 들어 100nm이다.
상기 다공성 실리콘 이차입자의 평균입경(D50)은 200nm 내지 50 ㎛, 예를 들어 1 내지 30㎛, 예를 들어 1 내지 10㎛, 구체적으로 3 내지 5㎛이다. 그리고 다공성 실리콘 이차입자의 비표면적은 0.1 내지 100m2/g, 예를 들어 1 내지 30 m2/g이다. 그리고 다공성 실리콘 이차입자의 밀도는 0.1 내지 2.8g/CC, 예를 들어 0.5 내지 2g/CC이다.
실리콘 함유 복합체구조체의 표면에는 비정질 탄소를 포함하는 탄소계 코팅막이 더 포함될 수 있다. 이와 같이 탄소 코팅막이 더 형성되면 초기효율은 저하되지만 수명 특성이 개선된 리튬전지를 제조할 수 있다.
탄소계 코팅막에는 제1그래핀 및 제2그래핀과 마찬가지로, 질소, 인 및 황 중에서 선택된 하나 이상이 더 포함될 수 있다. 탄소계 코팅막에 질소, 인 및 황 중에서 선택된 하나 이상을 포함하는 방법은 다양하게 적용가능하다.
탄소계 코팅막의 두께는 예를 들어 10 내지 5000nm이다.비정질 탄소는 예를 들어 피치카본, 소프트카본, 하드카본, 메조페이스 피치 탄화물, 소성된 코크스 및 탄소섬유로 이루어진 군으로부터 선택된 하나 이상이다.
비정질 탄소를 포함하는 탄소계 코팅막은 결정질 탄소를 더 포함할 수 있다. 결정질 탄소는 풀러렌, 천연흑연 및 인조흑연, 그래핀 및 카본나노튜브로 이루어진 군으로부터 선택된 하나 이상이다.
탄소계 코팅막은 비다공성 연속적인 코팅막이며, 탄소계 코팅막의 두께는 1 내지 5000nm이다. 상기 탄소계 코팅막은 예를 들어 비정질 탄소를 포함하는 제1탄소계 코팅막 및 결정질 탄소를 포함하는 제2탄소계 코팅막을 포함할 수 있다.
실리콘 함유 복합체의 입도 분포 특성이 좁다. 예를 들어 다공성 실리콘 클러스터의 D50은 1 내지 30㎛이고, D10은 0.001 내지 10㎛이고, D90은 10 내지 30㎛이다. 다공성 실리콘 클러스터는 이차 입자로 볼 수 있다.
이와 같이 일구현예에 따른 실리콘 함유 복합체는 입도 분포가 좁다. 이에 비하여 종래의 실리콘 복합체 일차 입자로부터 얻어진 실리콘 복합체 이차 입자는 이차 입자의 사이즈 분포가 불규칙하고 최적의 셀 성능을 나타내는 음극 활물질의 입자 사이즈로 제어하기가 어렵다. 실리콘 함유 복합체에서 산소의 함량은 0.01 내지 15 원자%, 예를 들어 3.5 내지 5원자%, 구체적으로 3.5 내지 3.8원자%이다. 이와 같이 산소의 함량이 종래의 실리콘계 물질에 비하여 작은 이유는 실리콘 함유 복합체 제조시 스테아르산과 같은 분산제를 이용함으로 실리콘의 산화가 억제되었기 때문이다. 이러한 산소의 함량이 최소화됨으로써 실리콘 용량이 극대화될 수 있고 초기효율이 개선된다.
종래의 그래핀 직성장 실리콘 1차 입자 및 이를 이용한 경우의 충방전 후 음극의 상태를 살펴보면 다음과 같다. 그래핀 직성장 실리콘 일차 입자는 침상형 실리콘 입자 상부에 제1그래핀이 배치된 구조를 갖는다. 이를 그래파이트와 혼합하여 혼합물로 된 음극 활물질층을 구리 집전체상부에 형성하여 음극이 제조된다.
음극은 충방전후 실리콘의 부피 팽창 및 수축에 의하여 활물질인 그래핀 직성장 실리콘 일차 입자의 탈리가 일어나고 실리콘의 고립에 의하여 용량이 저하된다. 그리고 실리콘 일차 입자의 표면에 불안정한 SEI 층이 연속적으로 성장하고 이로 인하여 리튬 소모가 커서 충방전 내구성이 저하될 수 있다.
본 발명자들은 많은 연구 끝에 상술한 문제점을 해결하기 위하여 이중 코어/쉘 구조를 갖는 실리콘 함유 복합체를 이용하여 균일한 충방전 네크워크를 형성함으로써 충방전시 실리콘의 부피팽창 및 수축에 의한 파쇄 현상을 줄일 수 있고 실리콘 함유 복합체 표면에 안정한 SEI 형성을 통해 충방전시 내구성이 개선된 음극을 제조할 수 있다.
또한 실리콘으로서 100nm 이상, 예를 들어 150nm 이상, 예를 들어 100 내지 200nm의 사이즈를 갖는 실리콘을 이용하여 하나의 제조공정으로 실리콘/실리콘 서브옥사이드 상부에 질소가 포함된 그래핀을 포함한 실리콘 함유 복합체를 제조할 수 있다.
일구현예에 따른 실리콘 함유 복합체는 용량이 600 내지 2,000mAh/cc으로 매우 우수한 용량 특성을 갖는다.
또 다른 측면에 따라 다공성 실리콘 이차입자를 포함하는 코어(core)와 상기 코어의 상부에 배치된 제2그래핀을 포함하는 쉘(shell)을 함유하는 실리콘 함유 복합체이며, 상기 다공성 실리콘 이차입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며, 상기 실리콘 복합체 일차 입자는 i)SiOx(0<x<2) 및 ii)SiOx(0<x<2)의 열처리 생성물중에서 선택된 하나 이상의 산화실리콘과 상기 산화실리콘 상부에 배치된 제1그래핀을 포함하며, 상기 제1그래핀과 제2그래핀 중 적어도 하나 이상은 질소, 인 및 황 중에서 선택된 하나 이상을 포함하는 실리콘 함유 복합체가 제공된다.
본 명세서에서 "SiOx(0<x<2)의 열처리 생성물"은 SiOx(0<x<2)를 열처리를 실시하여 얻은 생성물을 나타낸다. 여기에서 열처리는 SiOx(0<x<2)상에 그래핀을 성장하기 위한 기상 침적 반응을 위한 열처리를 의미할 수 있다. 기상 침적 반응시 그래핀 소스로서 탄소 공급원 기체 또는 탄소 공급원 기체와 환원성 기체를 포함하는 기체 혼합물을 이용할 수 있다. 환원성 기체는 예로서 수소를 들 수 있다.
상기 SiOx(0<x<2)의 열처리 생성물은, i)탄소공급원 기체 또는 ii)탄소공급원 기체와 환원성 기체를 포함하는 기체 혼합물 분위기에서, SiOx( 0<x<2)를 열처리하여 얻은 생성물일 수 있다.
상기 SiOx(0<x<2)의 열처리 생성물은 예를 들어 실리콘 서브옥사이드(SiOy)(0<y≤2) 매트릭스에 실리콘(Si)이 배치된 구조체일 수 있다.
일구현예에 따른 SiOx(0<x<2)의 열처리 생성물은 예를 들어 i)실리콘 산화물(SiO2) 매트릭스에 실리콘(Si)이 배치된 구조체, ii)SiO2와 SiOy(0<y<2)를 함유한 매트릭스에 실리콘(Si)이 배치된 구조체 또는 iii)SiOy(0<y<2) 매트릭스에 실리콘(Si)이 배치된 구조체이다.
상기 i)SiOx(0<x<2) 및 ii)SiOx(0<x<2)의 열처리 생성물중에서 선택된 하나 이상의 산화실리콘과 제1그래핀 사이에 비정질 탄소층(amorphous carbon layer)이 배치될 수 있다. 상기 다공성 실리콘 이차입자를 포함하는 코어(core)와 제2그래핀 사이에 비정질 탄소층(amorphous carbon layer)이 배치될 수 있다. 상기 비정질 탄소층은 그래핀 성장핵으로 작용하여 산화실리콘 및 코어 상부에 그래핀 성장이 잘 이루어질 수 있도록 도와준다.
다른 일구현예에 따르면 실리콘과 실리콘 서브옥사이드 사이, 및/또는 실리콘 서브옥사이드와 그래핀 사이에 탄화규소(SiC)와 같은 탄화물이 존재하지 않는다. 이러한 탄화물이 존재하는 경우에는 SiC가 리튬과 반응하지 않아 전극 물질로 이용되는 경우 용량이 저하되고 SiC 상부에 그래핀을 형성하기 위해서 고온이 요구되어 실리콘의 결정성이 높아져서 리튬 충방전시 분쇄 현상이 가속화될 수 있다.
도 3을 참조하여, 일구현예에 따른 실리콘 함유 복합체의 제조방법을 살펴 보기로 한다.
먼저 실리콘 및 실리콘 상에 형성된 실리콘 서브옥사이드(SiOx)(O<x<2)을 포함하는 구조체를 파쇄하여 파쇄된 실리콘 일차 입자를 얻는다.
파쇄된 실리콘 일차 입자, 분산제 및 용매를 혼합하여 조성물(30)을 얻는다. 상기 조성물 (30)로부터 다공성 실리콘 이차입자 (31)를 얻는다.
다공성 복합체 이차 입자에서 기공도는 예를 들어 0.1 내지 50%이고, 기공의 사이즈는 10 내지 500nm이다.
상술한 조성물로부터 다공성 실리콘 이차 입자를 제조하는 방법은 공침법, 분무건조법, 고상법 등을 이용하여 다양하게 이용될 수 있고 일구현예에 따르면 분무 건조법을 이용할 수 있다. 분무 건조법에 따라 입자를 제조하는 경우 입자 직경은 분무 형식, 가압 기체류 공급 속도, 조성물 공급 속도, 건조 온도 등을 선정하여 제어할 수 있다.
분무 건조시 분위기 온도가 상온(25℃) 내지 500℃, 예를 들어 50 내지 300℃의 온도에서 실시한다. 분무 건조시 입자의 출구 부분에서의 수분 결로에 의한 입자 고착·폐색 등의 문제가 발생할 가능성을 미연에 예방하면서 상술한 온도 범위에 실시할 때실리콘 복합체 이차 입자의 기공도가 적절하다.
상기 분무 건조시 상기 분무 건조의 분무압력이 1~5 bar 일 수 있다.
분무 건조 전에 출발 원료를 분쇄하는 등의 수단에 의해 가능한 표면적을 크게 증가시킨다. 이를 위하여 파쇄된 실리콘 일차 입자를 출발물질로 이용한다.
예를 들어 분무건조(spray drying)를 이용하는 경우 구형의 다공성 실리콘 이차 입자 (31)를 얻을 수 있다. 다공성 실리콘 이차 입자 (31)의 표면에는 스테아르산과 같은 분산제가 일부 존재할 수 있다. 분무건조시 노즐의 크기는 50 내지 1,000㎛이고, 예를 들어 150㎛이다.
그 후, 상기 다공성 실리콘 이차 입자 (31)에 탄소 공급원 기체와 질소, 인 및 황 중에서 선택된 하나 이상의 전구체를 공급하고 열처리하는 단계를 포함하는 실리콘 함유 복합체 (21)를 제조할 수 있다. 도 3에서 참조번호 (10a)는 제1그래핀, 참조번호 (10b)는 제2그래핀, 참조번호 (1)은 코어, 참조번호 (2)는 쉘이고, 참조번호 (20)은 실리콘 복합체 일차 입자를 나타낸다. 이와 같이 질소, 인 및 황 중에서 선택된 하나 이상의 전구체는 기존의 탄소 공급원 기체를 이용한 제조과정에 더 부가하는 과정만 통하여 목적물을 얻을 수 있다. 그러므로 목적물의 제조공정이 단순화되고 용이하다. 질소, 인 및 황 중에서 선택된 하나 이상의 전구체와 탄소 공급원 기체의 혼합비는 이들 각 전구체와 탄소 공급원 기체의 부피를 제어하여 목적하는 바대로 제어할 수 있다.
일구현예에 의하면, 탄소 공급원과, 질소, 인 및 황중에서 선택된 하나 이상의 전구체에서 질소, 인 및 황중에서 선택된 하나 이상의 전구체의 함량은 반응가스 총함량을 기준으로 하여 20 부피% 이하, 예를 들어 5 내지 20부피%이다. 질소, 인 및 황중에서 선택된 하나 이상의 전구체의 함량이 상기 범위일 때 그래핀의 결정성 및 품질이 우수하다.
탄소 공급원은 먼저 다공성 실리콘 이차 입자의 기공을 채운 후 이차 입자의 외부에서 성장한다.
상기 용매는 에탄올, 메탄올, 이소프로필 알코올 등을 이용한다. 이러한 알코올계 용매를 사용하고 열처리하는 단계를 거치면 용매의 제거와 함께 분산제가 제거되어 실리콘 함유 복합체에 잔류하는 함량이 최소화된다. 그 결과 산소 함량이 최소화된 실리콘 함유 복합체를 얻을 수 있게 된다.
상기 분산제는 실리콘 일차 입자를 골고루 분산시키는 역할을 수행한다. 분산제는 비제한적인 예로서, 스테아르산, 레조르시놀, 폴리비닐알콜 및 피치(pitch) 중에서 선택된 하나 이상이다. 분산제의 함량은 조성물 총중량 100 중량부를 기준으로 하여 1 내지 15 중량부, 예를 들어 5 내지 10 중량부이다. 분산제의 함량이 상기 범위일 때 실리콘과 그래핀이 응집됨이 없이 골고루 분산된다.
탄소 공급원은 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 하기 화학식 3으로 표시되는 산소 함유 기체로 이루어진 군으로부터 선택된 하나 이상이다.
[화학식 1]
CnH(2n+2-a)[OH]a
상기 화학식 1 중, n은 1 내지 20의 정수이고, a는 0 또는 1이고,
[화학식 2]
CnH(2n)
상기 화학식 2 중, n 은 2 내지 6의 정수이고,
[화학식 3]
CxHyOz
상기 화학식 3 중, x는 0 또는 1 내지 20의 정수이고, y는 0 또는 1 내지 20의 정수이고, z은 1 또는 2이다.
상기 탄소 공급원은 예를 들어 메탄, 에틸렌, 프로필렌, 메탄올, 에탄올 및 프로판올로 이루어진 군으로부터 선택된 하나 이상이다.
상기 열처리는 600 내지 1100℃, 예를 들어 700 내지 1,000℃에서 실시된다. 이러한 열처리 온도에서 실시될 때 그래핀이 코어 및 쉘에서 고밀도로 형성된다.
실리콘 복합체 일차 입자는 상술한 바와 같이 입자는 실리콘; 상기 실리콘 상에 배치된 실리콘 서브옥사이드(SiOx)(O<x<2) 및 상기 실리콘 서브옥사이드 상에 배치된 그래핀을 포함한다. 실리콘 서브옥사이드(SiOx)(O<x<2)은 실리카(SiO2)와 비교하여 산소가 결핍된 불안정한 물질로서, 탄소 공급원 가스와 같은 다른 반응성 물질과 반응하여 안정적인 물질을 형성하려는 경향을 갖고 있다. 이러한 점을 활용하여 실리콘 서브옥사이드(SiOx) (O<x<2)막을 그래핀을 형성하는 씨드층 물질로 이용한다.
실리콘 상부에 형성된 실리콘 서브옥사이드(SiOx)(O<x<2)은 막 형태를 갖는다 실리콘 서브옥사이드막의 두께는 그래핀의 형태, 구조 등에 매우 중요한 영향을 미친다.
실리콘 서브옥사이드(SiOx)(O<x<2)막의 두께는 그래핀 형성시 이용되는 제조공정 예를 들어 그래핀을 형성하는데 필요한 탄소 공급원의 조성 등을 이용하여 변화시킬 수 있다. 이러한 실리콘 서브옥사이드(SiOx)(O<x<2)막의 두께는 300㎛ 이하일 수 있다.
일구현예에 따르면, 상기 복합체가 전지에 이용되는 실리콘 서브옥사이드(SiOx)(O<x<2)막의 두께는 10nm 이하, 0.1 내지 10nm, 구체적으로 0.1 내지 5nm이다. 이러한 두께 범위를 갖는 실리콘 서브옥사이드(SiOx)(O<x<2)막을 갖는 복합체를 이용하면 전지의 용량 특성이 우수하다.
일구현예에 따라 실리콘의 실리콘 서브옥사이드(SiOx)(O<x<2)막 상부에 그래핀을 형성하는 과정은 촉매를 사용하지 않는 기상 탄소 침적 반응을 이용한다.
기상 탄소 침적 반응은 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 하기 화학식 3으로 표시되는 산소 함유 기체로 이루어진 군으로부터 선택된 하나 이상과, 질소, 인 및 황 중에서 선택된 하나 이상의 전구체를 포함하는 혼합 기체 분위기내에서 실리콘 서브옥사이드(SiOx)로 피복된 실리콘을 열처리하는 단계를 거쳐 진행된다.
[화학식 1]
CnH(2n+2-a)[OH]a
상기 화학식 1 중, n은 1 내지 20의 정수, a는 0 또는 1이고,
[화학식 2]
CnH(2n)
상기 화학식 2 중, n 은 2 내지 6의 정수이고,
[화학식 3]
CxHyOz
상기 화학식 3 중, x는 0 또는 1 내지 20의 정수이고, y는 0 또는 1 내지 20의 정수이고, z은 1 또는 2이다.
상술한 기상 탄소 침적 반응은 후술하는 이론에 구속되려 함은 아니나, 이러한 코팅은, 상기 기체 혼합물 내에 포함된 실리콘 서브옥사이드(SiOx)로 피복된 실리콘을 CO2를 이용한 개질(reforming) 등과 관련된다.
상술한 기상 탄소 침적 반응에 따르면, 실리콘 서브옥사이드(SiOx)로 피복된 실리콘 상에 그래핀을 직접 성장하여 실리콘과 그래핀의 밀착도가 높다.
다른 일구현예에 의하면, Si층 상부에 SiOx층이 존재 하지 않아도 탄소 혼합가스와 산소 혼합 가스를 반응시키는 과정을 거치면 산소 함유 혼합 가스의 반응으로 실리콘층 상부에 SiOx층을 먼저 형성하고 그 위에 탄소 혼합가스가 반응하면서 그래핀을 형성할 수 있다. 실리콘과 그래핀의 밀착도는 SiOx의 실리콘과 그래핀의 거리를 전자주사현미경을 통하여 평가할 수 있다.
실리콘 함유 복합체를 구성하는 실리콘 복합체 일차 입자의 제1그래핀은 실리콘에서 10nm 이하, 예를 들어 0.5 내지 10nm의 거리만큼 연장된다. 다른 일구현예에 의하면, 제1그래핀은 실리콘에서 1nm 이하, 예를 들어 0.5 내지 1nm 거리만큼 연장된다. 그리고 제1그래핀은 상기 실리콘의 주축에 대하여 0 내지 90° 사이의 각으로 배향된다. 적어도 1 내지 20개의 그래핀층을 포함하고 상기 제1그래핀의 총 두께는 0.6 내지 12nm이다. 그리고 제1그래핀은 상기 실리콘의 Y축에 대하여 0 내지 90° 사이의 각으로 배향된다.
실리콘은 그 형태는 비제한적이며, 예를 들어 상기 실리콘은 스피어, 나노와이어, 침상, 막대형, 입자, 나노튜브, 나노로드, 웨이퍼(wafer), 및 나노리본 중에서 선택된 하나 이상일 수 있다.
일구현예에 의하면, 실리콘은 침상 입자 타입일 수 있다. 이 때 침상형 실리콘 입자의 길이는 길이가 약 100 내지 160nm, 예를 들어 108 내지 125nm, 두께가 약 10 내지 100nm, 예를 들어 20 내지 50nm, 구체적으로 40nm이다.
일구현예에 의하면, 침상형 실리콘 상에 실리콘 서브옥사이드(SiOx) (O<x<2)막이 형성되고 그 상부에 그래핀이 형성될 수 있다.
다른 일구현예에 의하면 실리콘 입자 상에 실리콘 서브옥사이드(SiOx) (O<x<2)막이 형성되고 그 상부에 그래핀이 형성될 수 있다. 여기에서 상기 실리콘 입자의 평균입경은 40nm 내지 40㎛, 예를 들어 40nm 내지 100nm이다.
실리콘이 웨이퍼 타입인 경우, 실리콘 웨이퍼의 두께는 2mm 이하이고, 예를 들어 0.001 내지 2mm이다.
상기 그래핀은 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성한 것으로서, 상기 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 6원환을 형성하나, 5원환 및/또는 7원환을 더 포함하는 것도 가능하다. 그 결과 상기 그래핀은 서로 공유결합된 탄소원자들(통상 sp2 결합)의 단일층으로서 보이게 된다. 상기 그래핀은 단일층으로 이루어질 수 있으나, 이들이 여러개 서로 적층되어 복수층을 형성하는 것도 가능하며, 예를 들어 1층 내지 100층 또는 혹은 2층 내지 100층, 혹은 3층 내지 50층의 겹수를 가질 수 있다.
그래핀은 나노시트, 막(또는 필름), 그래핀 나노쉬트, 플레이크(flake) 등의 구조를 가질 수 있다. 용어 "나노시트”는 실리콘 서브옥사이드 상에 불규칙적인 상태로 형성된 경우를 나타내며 "막"은 실리콘 서브옥사이드 상부에 연속적으로 균일하게 형성된 필름 형태를 말한다.
일구현예에 따른 실리콘 함유 복합체는 금속 산화물을 더 포함할 수 있다. 이와 같이 금속 산화물을 더 포함하면 부반응 억제에 의한 SEI 층 형성을 방지하는 이점이 있다.
상기 금속 산화물은 산화마그네슘, 산화망간, 산화알루미늄, 산화티탄, 산화지르코늄, 산화탄탈륨, 산화주석, 산화하프늄, 플루오르화알루미늄(AlF3)으로 이루어진 군으로부터 선택된 하나 이상을 포함한다.
일구현예에 따른 실리콘 함유 복합체에서 그래핀은 SEI 안정화 클램핍층(clamping layer) 역할을 수행할 수 있다. 그리고 실리콘 함유 복합체는 높은 비표면적을 갖고 있어 이를 이용한 전지에서 초기효율 및 부피 에너지 밀도가 저하되는 것을 막을 수 있다.
실리콘 함유 복합체에서 그래핀은 실리콘과 같은 활물질의 파쇄 및 분쇄를 억제할 수 있고 복합체의 전도도를 개선할 수 있다. 그래핀은 실리콘 입자에서 일어나는 입자의 파쇄 및 분쇄를 억제하는 역할을 한다. 그래핀은 실리콘 입자의 분해(disintegration)를 막는 클램핑층 역할을 하고 리튬 이온과 Si의 합금화 반응(alloying reaction)이 진행되어 비용량(specific capacity)이 매우 우수하고 입자들간에 연속적인 도전성 경로를 제공한다.
실리콘 입자가 스웰링되면 그래핀층이 서로 슬라이딩하고 탈리튬화 공정(delitihiation) 중에는 이완된 위치(relaxed position)로 슬라이드하여 돌아간다. 이러한 움직임은 반데바알스힘이 층간의 마찰력에 비하여 크기 때문이다.
상술한 그래핀층의 클램핑 효과는 약 200회 정도의 리튬화/탈리튬화 사이클 을 반복적으로 실시한 후에도 그래핀층이 그대로 유지되는 것읕 통하여 그래핀층은 실리콘 입자의 분해를 막는 클램핑층 역할을 수행하는 것을 확인할 수 있다.
일구현예에 따른 실리콘 함유 복합체는 실리콘 복합체 일차 입자 표면에 조밀한 그래핀이 형성되어 입자들간에 나노 크기의 기공을 형성하여 일차 입자 및 이차 입자의 부피 팽창시 버퍼역할을 수행할 수 있다. 그리고 열처리를 통하여 SEI층을 안정적으로 형성할 수 있다. 그리고 이차 입자 표면에 존재하는 여러층의 그래핀은 실리콘의 부피 팽창 및 수축시의 그래핀 층간 슬라이딩에 의하여 일차 입자가 이차 입자 밖으로 드러나지 않도록 부피가 팽창되어 실리콘 복합체 일차 입자가 전해질과 접촉하는 것을 저감시킨다.
다른 측면에 따라 상술한 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 제공한다. 일구현예에 따른 실리콘 함유 복합체는 실리콘 복합체 일차 입자에 비하여 비표면적이 감소되고 부피밀도(비용량)가 증가되어 이를 탄소계 재료와 혼합시 부피 에너지 밀도를 향상시킬 수 있고 전극의 부피 팽창을 더욱 더 줄일 수 있다.
상술한 탄소 복합체는 복합체와 비교하여 초기 효율, 비용량 특성이 우수하고 율속 성능 및 내구성이 더욱 향상된다.
탄소계 재료의 함량은 탄소 복합체 100 중량부를 기준으로 하여 0.001 내지 99 중량부, 예를 들어 10 내지 97 중량부, 예를 들어 50 내지 97 중량부이다. 탄소계 재료의 함량이 상기 범위일 때 용량 및 전도도가 우수한 탄소 복합체를 얻을 수 있다.
상기 탄소계 재료는 그래핀, 흑연, 풀러렌, 탄소섬유 및 카본나노튜브로 이루어진 군으로부터 선택된 하나 이상을 포함한다. 상기 탄소 복합체는 예를 들어 흑연 및 상기 흑연 상부에 형성된 실리콘 함유 복합체를 함유할 수 있다.
상기 흑연으로는 예를 들어 SFG6 흑연을 이용하며, 예를 들어 평균 입경이 약 6 ㎛이다. 상기 탄소 복합체를 이용하여 전극을 형성하는 경우, 전극에서 탄소 복합체의 함량은 예를 들어 68 내지 87 중량부이고 바인더의 함량은 예를 들어 13 내지 32 중량부이다. 상기 탄소 복합체에서 흑연의 함량은 예를 들어 탄소 복합체 100 중량부를 기준으로 하여 1 내지 20 중량부이다.
상기 바인더로는 예를 들어 리튬 폴리아크릴레이트를 사용한다.
상기 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물이 메탄, 에틸렌, 프로필렌, 메탄올, 에탄올, 프로판올로 이루어진 군으로부터 선택된 하나 이상이다.
화학식 3으로 표시되는 산소 함유 기체는 예를 들어 이산화탄소(CO2) 및 일산화탄소(CO), 수증기(H2O) 또는 그 혼합물을 포함한다.
질소 전구체는 예를 들어 암모니아를 들 수 있다.
황 전구체는 예를 들어 황 분말, (NH4)2S04, Li2S04, CoSO4 또는 그 조합물일 수 있다. 그리고 인 전구체는 인 분말, (NH4)2HPO4, NH4H2PO4, Li3PO4, P2O5 또는 이들의 조합물일 수 있다.
탄소 공급원 이외에 질소, 헬륨, 아르곤으로 이루어진 군으로부터 선택된 하나 이상의 불활성 기체를 더 포함할 수 있다.
상기 산소 함유 기체는 일산화탄소, 이산화탄소, 수증기로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
탄소 공급원으로서 산소 함유 기체를 사용하는 경우, 실리콘 산화막의 두께를 자연산화막인 실리콘 산화막의 두께와 비교하여 두껍게 형성할 수 있다. 예를 들어 실리콘 산화막의 두께를 10nm 이하, 예를 들어 0.5 내지 5nm로 제어할 수 있게 된다. 이러한 두께 범위를 갖는 실리콘 산화막을 이용하면, 그래핀의 형태와 두께를 조절할 수 있다. 이를 보다 구체적으로 설명하면 실리콘 산화막의 두께를 상술한 두께 범위로 자연산화막의 경우보다 두껍게 형성하면 그 상부에 형성된 그래핀 나노시트 보다는 이보다 치밀한 구조를 갖는 그래핀층을 얻을 수 있다. 여기에서 그래핀층은 예를 들어 5 내지 10층 구조를 갖는다.
상기 기체 혼합물이 수증기를 포함하는 경우, 결과로서 수득한 복합체는 더 높은 전도도를 나타낼 수 있다. 특정 이론에 구속되려 함은 아니지만, 수증기 존재 하에 상기 기체 혼합물 간의 반응에 의해 실리콘 서브옥사이드로 피복된 실리콘 상에 높은 결정성의 탄소가 퇴적되기 때문에 보다 적은 양의 탄소가 코팅되는 경우에도 높은 전도도를 나타낼 수 있다고 생각된다. 상기 기체 혼합물 내의 수증기의 함량은, 제한되지 않으며, 예를 들어, 탄소 공급원 전체 100 부피%를 기준으로 하여 0.01 내지 10 부피%를 사용한다.
상기 탄소 공급원은 예를 들어 메탄; 메탄과 불활성 기체를 포함하는 혼합기체; 산소 함유 기체; 또는 메탄과 산소 함유 기체를 포함하는 혼합기체일 수 있다.
일구현예에 따른 탄소 공급원은 CH4: CO2 혼합 기체 또는 CH4: CO2: H2O 혼합기체일 수 있다. 일구현예에 따르면 탄소 공급원의 종류에 따라 그래핀의 모폴로지가 달라질 수 있다.
CH4: CO2 혼합기체는 약 1: 0.20 ~ 0.50의 몰비로 제공될 수 있고, 구체적으로 약 1: 0.25 ~ 0.45의 몰비로 제공될 수 있으며, 더 구체적으로는 약 1 : 0.30 ~ 0.40의 몰비로 제공될 수 있다.
CH4: CO2: H2O 혼합기체는 약 1 : 0.20 ~ 0.50 : 0.01 ~ 1.45의 몰비로 제공될 수 있고, 구체적으로 약 1 : 0.25 ~ 0.45 : 0.10 ~ 1.35의 몰비로 제공될 수 있으며, 더 구체적으로는 약 1 : 0.30 ~ 0.40 : 0.50 ~ 1.0 의 몰비로 제공될 수 있다.
다른 일구현예에 따른 탄소 공급원은 일산화탄소(C0) 또는 이산화탄소 (CO2 )일 수 있다.
또 다른 일구현예에 따른 탄소 공급원은 CH4와 N2의 혼합기체이다.
CH4: N2 혼합 기체는 약 1 : 0.20 ~ 0.50의 몰비로 제공될 수 있고, 구체적으로 약 1 : 0.25 ~ 0.45의 몰비로 제공될 수 있으며, 더 구체적으로는 약 1 : 0.30 ~ 0.40의 몰비로 제공될 수 있다. 일구현예에 따른 탄소 공급원은 질소와 같은 불활성 기체를 포함하지 않을 수도 있다.
상기 열처리는 750 내지 1100℃, 예를 들어 800 내지 1000℃에서 실시될 수 있다.
열처리 단계에서 압력도 제한되지 않으며, 열처리 온도, 기체 혼합물의 조성 및 소망하는 탄소 코팅의 양 등을 고려하여 선택할 수 있다. 열 처리 시 압력은, 유입되는 기체혼합물의 양과 유출되는 기체 혼합물의 양을 조정하여 제어할 수 있다. 예를 들어, 열처리 시 압력은, 1atm 이상, 예컨대, 2 atm 이상, 3 atm 이상, 4 atm 이상, 5 atm 이상일 수 있으나, 이에 제한되는 것은 아니다.
열처리 시간은 특별히 제한되지 않으며, 열처리 온도, 열처리시 압력, 기체 혼합물의 조성 및 소망하는 탄소 코팅의 양에 따라 적절히 조절할 수 있다. 예를 들어, 상기 반응 시간은 10분 내지 100시간, 구체적으로 30분 내지 90시간, 더 구체적으로 50분 내지 40 시간일 수 있으나 이에 제한되지 않는다. 특정 이론에 구속되려 함은 아니나, 시간이 길어질수록 침적되는 그래핀(탄소)량이 많아지고, 이에 따라 복합체의 전기적 물성이 향상될 수 있다. 다만, 이러한 경향이 시간에 반드시 정비례되는 것은 아닐 수 있다. 예컨대. 소정의 시간 경과 후에는 더 이상 그래핀 침적이 일어나지 않거나 침적율이 낮아질 수 있다.
상술한 실리콘 함유 복합체의 제조방법은 상술한 탄소 공급원의 기상 반응을 통하여 비교적 낮은 온도에서도 실리콘 서브옥사이드(SiOx)로 피복된 실리콘상에 그래핀에 균일한 코팅을 제공할 수 있다. 그리고 실리콘 서브옥사이드(SiOx)막으로 피복된 실리콘상에 형성된 그래핀의 탈리 반응이 실질적으로 일어나지 않는다. 상기 실리콘 산화막의 두께를 제어하면 그래핀의 탈리 반응을 더욱 더 억제할 수 있다. 이와 같이 그래핀의 탈리 반응을 효율적으로 억제할 수 있는 실리콘 산화막의 두께는 10nm 이하, 0.1 내지 10nm, 구체적으로 0.1 내지 5nm이다.
또한 기상 반응을 통하여 실리콘 상에 그래핀을 코팅하므로 높은 결정성을 갖는 코팅막을 형성할 수 있어 이러한 실리콘 함유 복합체를 음극 활물질로 이용한 경우 구조변화없이 음극 활물질의 전도도를 높일 수 있다.
일구현예에 따른 실리콘 함유 복합체를 제조하기 위한 기상 탄소 침적 반응시, 탄소 혼합가스와 수소와 같은 환원성 가스를 함유한 기체 혼합물 분위기하에서 실시할 수 있다.
실리콘 함유 복합체를 구성하는 실리콘 복합체 일차 입자가 i)SiOx(0<x<2) 및 ii)SiOx( 0<x<2)의 열처리 생성물중에서 선택된 하나 이상의 산화실리콘과 상기 산화실리콘 상부에 배치된 제1그래핀을 포함하는 경우, 제1그래핀은 메탄과 같은 탄소공급원 기체와 수소의 기체 혼합물 분위기하에서 열처리를 실시하여 형성할 수 있다. 탄소공급원 기체와 수소의 혼합비는 예를 들어 1:1 내지 1:7, 예를 들어 1:1 내지 1:5의 비(ratio)일 수 있다 비의 기준은 몰 또는 유량(flow rate)비일 수 있다.
일구현예에 따른 실리콘 함유 복합체를 이용한 탄소 복합체의 제조과정은 다음과 같다.
일구현예에 따른 실리콘 함유 복합체와 탄소계 재료를 혼합하고 이를 열처리한다.
상기 열처리는 600 내지 1100℃, 예를 들어 700 내지 1,000℃에서 실시한다. 열처리 온도가 상기 범위일 때 용량 특성이 우수한 탄소 복합체를 얻을 수 있다.
일구현예에 따른 실리콘 함유 복합체의 XPS(X_ray photoelectron spectrometry analysis) 분석에 의하여 구해지는 실리콘(Si) 대 탄소(C)의 원소비(C/Si)는 100 내지 200, 예를 들어 140 내지 180이다. 그리고 상기 실리콘 함유 복합체의 XPS(X_ray photoelectron spectrometry analysis) 분석에 의하여 구해지는 실리콘(Si) 대 탄소(C)의 원소비(C/Si)는 질소, 인 및 황 중에서 선택된 하나 이상을 함유하지 않는 실리콘 함유 복합체의 C/Si 대비 증가된다. 이 때 증가율은 예를 들어 300% 이상, 예를 들어 490% 이상 증가된다. 여기에서 실리콘(Si) 대 탄소(C)의 원소비(C/Si)가 증가된다는 것은 그래핀의 실리콘/실리콘 서브옥사이드의 덮임율이 높아지는 것을 의미한다.
일구현예에 따른 실리콘 함유 복합체 또는 탄소 복합체는 전지, 디스플레이용 발광체, 디스플레이용 전계방출물질, 열전소자, 바이오센서 등에 유용하게 사용될 수 있다.
또 다른 측면에 따르면 상술한 실리콘 함유 복합체 또는 탄소 복합체를 포함한 전극이 제공된다. 상기 전극은 리튬 전지용 전극일 수 있다.
상기 전극은 음극일 수 있다.
상기 실리콘 함유 복합체 복합체 또는 탄소 복합체는 전극 활물질, 예를 들어 음극 활물질로 사용될 수 있다. 이와 같이 음극 활물질로 사용하는 경우 실리콘 부피팽창이 감소되고 분쇄가 줄어들게 된다. 그리고 전도도가 향상되어 고율 특성이 개선될 수 있다. 또한 실리콘 서브옥사이드가 피복된 실리콘상에 그래핀을 최소한의 양으로 코팅할 수 있어 부피당 에너지밀도가 향상된 음극 활물질을 얻을 수 있다. 상기 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 리튬 전지를 제공한다.
상기 음극은 다음과 같은 방법으로 제조될 수 있다.
상기 음극은 예를 들어 음극 활물질인 실리콘 함유 복합체 또는 탄소 복합체, 도전제 및
결착제를 포함하는 음극 활물질 조성물이 일정한 형상으로 성형되거나, 상기의 음극 활물질 조성물이 동박(copper foil) 등의 집전체에 도포되는 방법으로 제조될 수 있다. 상기 조성물에서 도전제는 사용하지 않아도 무방하다.
또한, 상기 집전체 없이 상기 음극 활물질 조성물이 세퍼레이터 상에 필름 형태로 형성될 수 있다.
구체적으로, 상기 음극 활물질, 도전제, 결합제 및 용매가 혼합된 음극활
물질 조성물이 준비된다. 상기 음극 활물질 조성물이 금속 집전체 위에 직접 코팅되어 음극판이 제조된다. 다르게는, 상기 음극 활물질 조성물이 별도의 지지체 상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 음극판이 제조될 수 있다. 상기 음극은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
상기 음극 활물질 조성물은 상술한 음극 활물질이외에 다른 탄소계 음극 활물질을 추가적으로 포함할 수 있다. 예를 들어, 상기 탄소계 음극 활물질은 예를 들어, 천연흑연, 인조흑연, 팽창흑연, 그래핀, 카본블랙, 플러렌 수트(fullerene soot), 탄소나노튜브, 및 탄소섬유로 이루어진 군에서 선택된 하나 이상일 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 것이라면 모두 가능하다.
또한, 상기 도전제로는 아세틸렌 블랙, 케첸블랙, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유, 등을 사용할 수 있고, 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 혼합하여 사용할 수 있으나, 이들로 한정되지 않으며, 당해 기술분야에서 도전제로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 결합제로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌, 스티렌 부타디엔 고무계 폴리머, 폴리아크릴산, 폴리아미드이미드, 폴리이미드, 또는 그 혼합물이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 결합제로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 용매로는 N-메틸피롤리돈, 아세톤 또는 물 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기, 음극 활물질, 도전제, 결합제 및 용매의 함량은 리튬 전지에서 통상적으로 사용되는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 결합제 및 용매 중 하나 이상이 생략될 수 있다.
또 다른 구현예에 따르는 리튬 전지는 상기 음극을 채용한다. 상기 리튬 전지는 다음과 같은 방법으로 제조될 수 있다.
먼저, 상기 음극 제조방법에 따라 음극이 준비된다.
다음으로, 양극 활물질, 도전제, 결합재 및 용매가 혼합된 양극 활물질 조성물이 준비된다. 상기 양극활물질 조성물이 금속 집전체상에 직접 코팅 및 건조되어 양극이 제조된다. 다르게는, 상기 양극활물질 조성물이 별도의 지지체상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 양극이 제조될 수 있다.
상기 양극 활물질로서 리튬코발트산화물, 리튬니켈코발트망간산화물, 리튬니켈코발트알루미늄산화물, 리튬철인산화물, 및 리튬망간산화물로 이루어진 군에서 선택된 하나 이상을 포함할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 이용 가능한 모든 양극 활물질이 사용될 수 있다.
예를 들어, 상기 양극 활물질은 리튬 함유 금속산화물로서, 당업계에서 통상적으로 사용되는 것이면 제한 없이 모두 사용될 수 있다. 예를 들어, 코발트, 망간, 니켈, 및 이들의 조합에서 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는, LiaA1 - bBbD2(상기 식에서, 0.90 ≤ a ≤ 1, 및 0 ≤ b ≤ 0.5이다); LiaE1 - bBbO2 - cDc(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2 - bBbO4 - cDc(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1 -b- cCobBcDα(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1 -b- cCobBcO2 - αFα(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b- cCobBcO2 - αF2(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b- cMnbBcDα(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1 -b- cMnbBcO2 - αFα(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b- cMnbBcO2 - αF2(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiIO2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); LiFePO4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다.
상기 화학식에 있어서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다.
물론 이 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
예를 들어, LiNiO2, LiCoO2, LiMnxO2x(x=1, 2), LiNi1 - xMnxO2(0<x<1), LiNi1 -x-yCoxMnyO2 (0≤x≤0.5, 0≤y≤0.5), LiFeO2, V2O5, TiS, MoS 등이 사용될 수 있다.
양극 활물질 조성물에서 도전제, 결합제 및 용매는 상기 음극 활물질 조성물의 경우와 동일한 것을 사용할 수 있다. 한편, 상기 양극활물질 조성물 및/또는 음극 활물질 조성물에 가소제를 더 부가하여 전극판 내부에 기공을 형성하는 것도 가능하다.
상기 양극활물질, 도전제, 결합제 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전제, 결합제 및 용매 중 하나 이상이 생략될 수 있다.
다음으로, 상기 양극과 음극 사이에 삽입될 세퍼레이터가 준비된다. 상기 세퍼레이터는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용될 수 있다. 전해질의 이온 이동에 대하여 낮은 저항이면서 전해액 함습 능력이 우수한 것이 사용될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 권취 가능한 세퍼레이터가 사용되며, 리튬이온폴리머전지에는 유기전해액 함침 능력이 우수한 세퍼레이터가 사용될 수 있다. 예를 들어, 상기 세퍼레이터는 하기 방법에 따라 제조될 수 있다.
고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물이 준비된다. 상기 세퍼레이터 조성물이 전극 상부에 직접 코팅 및 건조되어 세퍼레이터가 형성될 수 있다. 또는, 상기 세퍼레이터 조성물이 지지체상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름이 전극 상부에 라미네이션되어 세퍼레이터가 형성될 수 있다.
상기 세퍼레이터 제조에 사용되는 고분자 수지는 특별히 한정되지 않으며, 전극판의 결합제에 사용되는 물질들이 모두 사용될 수 있다. 예를 들어, 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 또는 이들의 혼합물 등이 사용될 수 있다.
상기 세퍼레이터는 막의 성능을 향상시키기 위해 세라믹 성분을 포함할 수 있다. 예를 들어 세퍼레이터에 산화물을 코팅하거나 세퍼레이터 제조시 세라믹 입자를 포함하여 제조할 수 있다.
다음으로 전해질이 준비된다.
예를 들어, 상기 전해질은 유기전해액일 수 있다. 또한, 상기 전해질은 고체일 수 있다. 예를 들어, 보론산화물, 리튬옥시나이트라이드 등일 수 있으나 이들로 한정되지 않으며 당해 기술분야에서 고체전해질로 사용될 수 있은 것이라면 모두 사용 가능하다. 상기 고체 전해질은 스퍼터링 등의 방법으로 상기 음극상에 형성될 수 있다.
예를 들어, 유기전해액이 준비될 수 있다. 유기전해액은 유기용매에 리튬염이 용해되어 제조될 수 있다.
상기 유기용매는 당해 기술분야에서 유기 용매로 사용될 수 있는 것이라면 모두 사용될 수 있다. 예를 들어, 프로필렌카보네이트, 에틸렌카보네이트, 플루오로에틸렌카보네이트, 부틸렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 메틸이소프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 플루오로에틸렌카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, γ-부티로락톤, 디옥소란, 4-메틸디옥소란, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N,N-디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디에틸렌글리콜, 디메틸에테르 또는 이들의 혼합물 등이다.
상기 리튬염도 당해 기술분야에서 리튬염으로 사용될 수 있는 것이라면 모두사용될 수 있다. 예를 들어, LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, Li(FSO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(단 x,y는 자연수), LiCl, LiI 또는 이들의 혼합물 등이다.
도 12a에서 보여지는 바와 같이, 상기 리튬전지(121)는 양극(123), 음극(122) 및 세퍼레이터(124)를 포함한다. 상술한 양극(123), 음극(122) 및 세퍼레이터(124)가 와인딩되거나 접혀서 전지케이스(125)에 수용된다. 이어서, 상기 전지케이스(125)에 유기전해액이 주입되고 캡(cap) 어셈블리(126)로 밀봉되어 리튬전지(121)가 완성된다. 상기 전지케이스는 원통형, 각형, 박막형 등일 수 있다. 예를 들어, 상기 리튬전지는 박막형전지일 수 있다. 상기 리튬전지는 리튬이온전지일 수 있다.
상기 양극 및 음극 사이에 세퍼레이터가 배치되어 전지구조체가 형성될 수 있다. 상기 전지구조체가 바이셀 구조로 적층된 다음, 유기 전해액에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬이온폴리머전지가 완성된다.
또한, 상기 전지구조체는 복수개 적층되어 전지팩을 형성하고, 이러한 전지팩이 고용량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트폰, 전기차량 등에 사용될 수 있다.
상기 리튬 전지는 고율특성 및 수명특성이 우수하므로 전기차량(electric vehicle, EV)에 적합하다. 예를 들어, 플러그인하이브리드차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드 차량에 적합하다.
또 다른 측면은 상기 복합체 또는 상기 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 전계 방출 소자를 제공하는 것이다.
전계 방출 소자는 전자의 이동을 이용하는 장치이다. 통상의 전계 방출 소자는 적어도 환원극과, 에미터 팁과, 환원극에서 이격된 산화극을 포함한다. (각각의 내용이 본 출원에서 원용되는 미국 특허 제7,009,331호, 제6,976,897호, 제6,911,767호 및 미국 특허 출원 제2006/0066217호 참조) 환원극과 산화극 사이에 전압이 인가되어 전자를 에미터 팁에서 방출시킨다. 전자는 환원극에서 산화극 방향으로 진행된다. 본 장치는 다음에 제한되지는 않지만 초음파 진공관 장치(예컨대 X선 튜브,), 전력 증폭기, 이온 건, 고에너지 가속기, 자유전자 레이저 및 전자 현미경, 특히 평판 디스플레이와 같은 다양한 용도에 사용될 수 있다. 평판 디스플레이는 종래의 음극관 대체용으로 사용될 수 있다. 따라서 이들 평판 디스플레이는 텔레비전과 컴퓨터 모니터에 적용된다.
상기 에미터 팁으로 일구현예에 따른 복합체 또는 이를 이용한 탄소 복합체가 이용될 수 있다.
종래의 에미터 팁은 몰리브덴과 같은 금속이나 실리콘과 같은 반도체로 제조된다. 금속 에미터 팁을 이용하는 것과 관련된 관심 사항 중 하나는 방출에 요구되는 제어 전압이 예컨대 대략 100 V 정도로 비교적 높다는 것이다. 또한, 이들 에미터 팁이 균일성을 갖지 않음으로 인해, 픽셀 사이의 전류밀도가 불균일하게 된다.
상술한 실리콘 함유 복합체 또는 탄소 복합체를 이용한 에미터 팁을 이용하면 전계 방출 특성이 우수하다.
상술한 실리콘 함유 복합체 또는 탄소 복합체는 전자발광소자 제조시 이용 가능하다.
또 다른 측면에 의하면 일구현예에 따른 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 바이오센서가 제공된다.
일구현예에 따른 실리콘 함유 복합체 또는 탄소 복합체는 바이오센서용 전극 형성시 이용 가능하다.
도 12e는 일구현예에 따른 바이오센서의 전극 구조를 나타낸 단면도이다.
이를 참조하면, 일구현예에 따른 바이오센서 전극은 기판(310), 상기 기판(310) 상에 형성되는 실리콘 함유 복합체 또는 탄소 복합체를 포함하는 제1층(320) 및 상기 제1층 상에 형성되는 제2층(330)을 구비한다. 상기 제2층(330)에는 바이오물질(340)이 다양한 방식으로 담지되거나 고정된다.
기판(310)은 그 상부에 그래핀이 증착 또는 형성될 수 있는 모든 종류의 판을 의미하는 것으로서, 구체적으로는 유리, 플라스틱, 금속, 세라믹 및 실리콘으로 이루어진 그룹으로부터 선택될 수 있으나, 기판의 종류는 그 상부에 그래핀이 증착 또는 형성될 수 있는 한 특별히 제한되지 않음을 유의한다.
바이오물질(340)로서 효소, 압타머, 단백질, 핵산, 미생물, 세포, 지질, 호르몬, DNA, PNA, RNA 및 이의 혼합물로 구성된 군에서 선택되는 바이오 물질들이 사용될 수 있으며, 본 명세서에서 언급되지 않은 다양한 바이오물질들이 사용될 수 있음을 유의한다.
도 12e를 참조하면, 바이오물질(340)로서 특정 효소가 사용되며 제2층(330)은 이러한 특정 효소가 담지되거나 고정된 막이 사용되는 바이오센서용 전극을 개시한다. 한편, 도 12e에서는 특정 효소가 막내부에 담지되거나 고정된 것으로 도시하였으나, 특정 효소의 위치는 이에 제한되지 않으며 일부 또는 전부가 막 상부에 돌출되어 있을 수도 있음을 유의한다. 이러한 구성에 의하는 경우, 효소는 기질 특이성이 뛰어나 혼합물 속에서도 특정 분자하고만 선택적으로 반응하는 특성을 가지기 때문에, 특정 효소에 반응하는 분석 물질(예를 들면, 혈당 등)을 선택적으로 감지할 수 있게 된다.
또한 다른 측면에 의하면, 상기 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 반도체 소자가 제공된다.
상기 실리콘 함유 복합체 또는 탄소 복합체는 반도체 소자의 전극으로 이용 가능하다.
또 다른 측면에 의하면 상기 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 열전재료와 이를 포함하는 열전소자가 제공된다.
상기 열전재료는 우수한 전기적 특성으로 인하여 열전 성능이 향상된다. 이러한 열전재료는 열전소자, 열전모듈 또는 열전 장치에 유용하게 사용될 수 있다.
열전재료의 성능은 무차원 성능지수(dimensionless figure of merit)로 통칭되는 하기 수학식 1의 ZT값을 사용한다.
[수학식 1]
ZT = (S2σT) / k
상기 수학식 1중, ZT는 figure of merit, S는 제벡계수, σ는 전기전도도, T는 절대온도, κ는 열전도도를 나타낸다.
상기 수학식 1에 나타낸 바와 같이, 열전재료의 ZT값을 증가시키기 위해서
는 제벡계수와 전기전도도, 즉 파워팩터(S2σ)는 증가시키고 열전도도는 감소시켜야 한다.
일구현예에 따른 실리콘 함유 복합체 또는 탄소 복합체는 그래핀을 함유하고 있어 그래핀의 특성을 열전재료에 적용할 경우 높은 전기전도도와 낮은 열전도도를 구현하게 되므로 열전재료의 성능을 개선하게 될 수 있다.
일구현예를 갖는 실리콘 함유 복합체 또는 탄소 복합체는 금속 성질을 갖는 그래핀과 반도체 성질을 갖는 실리콘의 계면에서의 결정성 및 전자구조가 변화되어 제벡계수가 증가되며, 전하입자의 전송이 가속화되어 전기전도도 및 전하이동도의 증가를 유도할 수 있게 된다. 또한 상기 그래핀과 실리콘 계면에서의 포논 산란이 증가하여 열전도도의 제어가 가능해진다.
상기와 같이 실리콘 함유 복합체 또는 탄소 복합체는 열전재료로서 유용하게 사용할 수 있다. 따라서 상기 열전재료를 절단 가공 등의 방법으로 성형하여 열전소자를 제조할 수 있다. 상기 열전 소자는 p형 열전소자일 수 있다. 이와 같은 열전소자는 상기 열전재료를 소정 형상, 예를 들어 직육면체의 형상으로 형성한 것을 의미한다.
한편, 상기 열전소자는 전극과 결합되어, 전류 인가에 의해 냉각 효과를 나타낼 수 있으며, 온도 차이에 의해 발전 효과를 나타낼 수 있는 성분일 수 있다.
도 12b는 상기 열전소자를 채용한 열전 모듈의 일구현예를 나타낸다. 도 12b에 도시된 바와 같이, 상부 절연기판(211)과 하부 절연기판(221)에는 상부 전극(212, 제1 전극) 및 하부 전극(22, 제2 전극)이 패턴화되어 형성되어 있고, 상기 상부 전극(212)과 하부 전극(222)을 p형 열전성분(215) 및 n형 열전성분(16)이 상호 접촉하고 있다. 이들 전극(212, 222)은 리드 전극(24)에 의해 열전소자의 외부와 연결된다. 상기 p형 열전성분(215)으로서 상술한 열전소자를 사용할 수 있다. 상기 n형 열전성분(216)으로서는 당업계에 알려져 있는 것이라면 제한 없이 사용할 수 있다.
상기 절연기판(211, 221)으로 갈륨비소 (GaAs), 사파이어, 실리콘, 파이렉스, 석영 기판 등을 이용할 수 있다. 상기 전극(212, 222)의 재질은 구리, 알루미늄, 니켈, 금, 티타늄 등 다양하게 선택될 수 있으며, 그 크기 또한 다양하게 선택될 수 있다. 이들 전극(12, 22)이 패터닝되는 방법은 종래 알려져 있는 패터닝 방법을 제한 없이 사용할 수 있으며, 예를 들어 리프트 오프 반도체 공정, 증착 방법, 포토리소그래피법 등을 사용할 수 있다.
열전모듈의 일구현예에서 도 12c 및 도 12d에 도시한 바와 같이 상기 제1 전극 및 제2 전극 중 하나는 열 공급원에 노출될 수 있다. 열전소자의 일구현예에서, 상기 제1 전극 및 제2 전극 중 하나는 전력 공급원에 전기적으로 연결되거나, 또는 열전모듈의 외부, 예를 들어 전력을 소비하거나 저장하는 전기소자(예를 들어 전지)에 전기적으로 연결될 수 있다.
상기 열전모듈의 일구현예로서, 상기 제1 전극 및 제2 전극 중 하나는 전력 공급원에 전기적으로 연결될 수 있다.
이하의 실시예 및 비교예를 통하여 더욱 상세하게 설명된다. 단, 실시예는 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
제조예 1
침상형 실리콘을 분쇄하여 실리콘 서브옥사이드(SiOx)(o<x<2)막(두께: 약 0.1nm)이 표면에 형성된 길이(D90)가 약 150nm, 두께가 약 40nm인 판상 및 침상형 실리콘 입자를 얻었다.
상기 판상 및 침상형 실리콘 입자 25 중량부, 스테아르산 10 중량부 및 이소프로필 알코올 65 중량부를 함유하는 조성물을 분무건조하고 이를 건조하여 약 3-6㎛의 평균입경을 갖는 다공성 실리콘 이차입자를 얻었다.
분무건조는 분무건조기 (모델명: MMSD Micro Mist Spray Dryers, Fujisaki electric)를 이용하였다. N2 조건하에서 분무노즐 사이즈를 약 150㎛으로 제어하고 압력을 약 0.6 MPa로 조절하고 파우더 분사 분위기 온도(약 200℃)를 조절하여 이소프로필 알코올을 건조함으로써 다공성 실리콘 복합 입자 이차 입자를 제조하였다.
상기 다공성 실리콘 이차입자를 반응기 내에 위치시켰다. 상기 반응기 내에 질소 가스를 퍼지한 다음, 반응기내로 반응가스로서 하기 표 1의 조성을 갖는 기체 혼합물을 흐르게 하여 반응기 내에 상기 기체로 이루어진 분위기를 조성하였다. 반응기 내에 기체의 흐름에 의해 발생한 압력은 1 atm이다. 상기 기체 분위기 하에서, 반응기 내부 온도를 1000℃(승온속도: 약 23℃/min)로 올리고, 상기 기체를 계속하여 반응기로 흐르게 하면서 상기 온도에서 1시간 동안 유지하여 열처리를 수행하였다. 이어서 상기 결과물을 3시간 정도 방치하였다. 이 후, 상기 기체의 공급을 중단하고, 반응기를 실온(25℃)으로 냉각하고 반응기내에 질소를 퍼지하여 실리콘 함유 복합체를 얻었다.
상기 실리콘 함유 복합체에서 제1그래핀과 제2그래핀의 함량은 실리콘 함유 복합체 총중량 100 중량부를 기준으로 하여 약 25중량부이다.
제조예 2-6
반응가스로서 하기 표 1의 조성을 갖는 기체 혼합물을 각각 이용한 것을 제외하고는, 제조예 1과 동일하게 실시하여 실리콘 함유 복합체를 얻었다.
제조예 7
실리콘 서브옥사이드(SiOx)(o<x<2)막(두께: 약 0.1nm)이 표면에 형성된 길이(D90)가 약 150nm, 두께가 약 40nm인 판상 및 침상형 실리콘 입자 대신 실리콘 서브옥사이드(SiOx)(o<x<2)막(두께: 약 0.1nm)이 표면에 형성된 길이(D90)가 약 200nm, 두께가 약 40nm인 판상 및 침상형 실리콘 입자를 이용한 것을 제외하고는, 제조예 1과 동일한 방법에 따라 실시하여 실리콘 함유 복합체를 얻었다.
제조예 8
실리콘 서브옥사이드(SiOx)(o<x<2)막(두께: 약 0.1nm)이 표면에 형성된 길이(D90)가 약 150nm, 두께가 약 40nm인 판상 및 침상형 실리콘 입자 대신 실리콘 서브옥사이드(SiOx)(o<x<2)막(두께: 약 0.1nm)이 표면에 형성된 길이(D90)가 약 100nm, 두께가 약 40nm인 판상 및 침상형 실리콘 입자를 이용한 것을 제외하고는, 제조예 1과 동일한 방법에 따라 실시하여 실리콘 함유 복합체를 얻었다.
참조제조예 1
실리콘 서브옥사이드(SiOx)(o<x<2)막(두께: 약 0.1nm)이 표면에 형성된 길이(D90)가 약 150nm, 두께가 약 40nm인 판상 및 침상형 실리콘 입자 대신 실리콘 서브옥사이드(SiOx)(o<x<2)막(두께: 약 0.1nm)이 표면에 형성된 길이(D90)가 약 100nm, 두께가 약 40nm인 판상 및 침상형 실리콘 입자를 이용하고 반응가스로서 하기 표 1의 조성을 갖는 기체 혼합물을 이용한 것을 제외하고는, 제조예 1과 동일한 방법에 따라 실시하여 실리콘 함유 복합체를 얻었다.
하기 표 1에 나타난 바와 같이 제조예 1-8에 따라 제조된 실리콘 함유 복합체내에 함유된 제1그래핀과 제2그래핀은 막 형태 및 플레이트 형태를 모두 나타냈다. 제1그래핀과 제2그래핀은 실리콘 서브옥사이드에 인접된 영역에서는 주로 막 형태를 갖고 인접된 영역에서 멀어진 영역에서 플레이크 형태를 갖는 것으로 나타났다. 제조예 5에 따라 제조된 실리콘 함유 복합체는 제조예 1-4, 제조예 6-8에 따라 제조된 실리콘 함유 복합체와 비교하여 제1그래핀과 제2그래핀이 막 형태로 존재하는 비율이 상대적으로 더 높게 나타났다.
구분 실리콘 입자의 사이즈
(판상 및 침상형 실리콘 입자의 장축길이)(nm)
반응가스(부피%) 제1그래핀과 제2그래핀의 형태
CH4 CO2 NH3
제조예 1 150 80 10 10 막(film)+ 플레이크(flake)
제조예 2 150 95 - 5 막(film)+ 플레이크(flake)
제조예 3 150 90 - 10 막(film)+ 플레이크(flake)
제조예 4 150 80 - 20 막(film)+ 플레이크(flake)
제조예 5 150 60 20 20 막(film)+ 플레이크(flake)
제조예 6 150 90 5 5 막(film)+플레이크(flake)
제조예 7 200 80 10 10 막(film)+ 플레이크(flake)
제조예 8 100 80 10 10 막(film)+플레이크(flake)
참조제조예 1 200 100 0 0 막(film)
비교제조예 1
그래뉼 형태의 10 ㎛ 크기의 실리콘 20 중량부, 스테아르산 10 중량부, 이소프로필 알코올 70 중량부를 함유하는 조성물을 파쇄공정을 통해 침상형 실리콘 입자가 함유된 슬러리를 제조하여 분무과정을 거치지 않고 건조하였다.
상기 결과물을 분쇄하여 실리콘 서브옥사이드(SiOx)(o<x<2)막(두께: 약 0.1nm)이 표면에 형성된 길이가 약 125nm인 침상형 실리콘 입자를 얻었다.
상기 침상형 실리콘 일차 입자를 반응기 내에 위치시켰다. 상기 반응기 내로 질소(N2) 300sccm의 기체를 흐르게 하여 반응기 내에 상기 기체로 이루어진 분위기를 조성하였다. 반응기 내에 기체의 흐름에 의해 발생한 압력은 1 atm이다. 상기 기체 분위기 하에서, 반응기 내부 온도를 950℃(승온속도: 약 23℃/min)로 올리고, 상기 기체를 계속하여 반응기로 흐르게 하면서 상기 온도에서 3시간 동안 유지하여 열처리를 수행하였다. 이어서 상기 결과물을 4시간 정도 방치하여 다공성 실리콘 일차 입자를 얻었다. 실리콘 일차 입자의 구조는 침상 형상을 갖고 있다.
비교제조예 2
반응가스로서 CH4를 사용하고 질소 전구체로서 피리딘을 사용한 것을 제외하고는, 제조예 1과 동일한 방법에 따라 실시하여 실리콘 함유 복합체를 제조하였다.
비교제조예 2에 따라 실시하면, 실리콘/실리콘 서브옥사이드와 제1그래핀 및/또는다공성 실리콘 이차입자와 제2그래핀의 밀착성이 매우 불량하였다.
실시예 1: 음극 및 풀셀의 제조
제조예 1에 따라 제조된 실리콘 함유 복합체, 그래파이트, 리튬 폴리아크릴레이트(Li-PAA) 및 탈이온수를 혼합하여 슬러리를 제조하였다. 상기 슬러리에서 제조예 1에 따라 제조된 실리콘 함유 복합체와 그래파이트의 혼합물, 리튬 폴리아크릴레이트의 고형분 혼합비는 92:8 중량비이다. 제조예 1에 따라 제조된 실리콘 함유 복합체와 그래파이트의 혼합물에서 실리콘 함유 복합체와 그래파이트의 중량비는 7:84(1:12) 중량비이었다.
상기 슬러리를 구리 호일(Cufoil)에 도포한 후 닥터 블레이드를 사용하여 도포 두께가 40㎛이 되도록 제막한 후 120℃에서 2시간 동안 진공 건조한 다음 이를 압연하여 음극을 제조하였다.
양극은 LiNi0 . 6Co0 . 2Mn0 .2, 덴카블랙(Denka Black) 및 바인더인 폴리비닐리덴플루오라이드(PVdF) 및 용매인 NMP를 혼합하여 슬러리를 제조하였다. 슬러리에서 LiNi0.6Co0.2Mn0.2, 덴카블랙(Denka Black) 및 바인더인 폴리비닐리덴플루오라이드(PVdF)의 혼합중량비는 93:5:2이었다.
상기 음극과, 양극을 이용하여 코인풀셀을 제조하였다. 상기 슬러리를 알루미늄 호일에 도포한 후 닥터 블레이드를 사용하여 도포 두께가 40㎛이 되도록 제막한 후 120℃에서 2시간 동안 진공 건조한 다음 이를 압연하여 양극을 제조하였다.
세퍼레이터로는 폴리프로필렌막(Cellgard 3510)을 사용하였으며, 전해질로는 1.3M LiPF6 EC:DEC:FEC(50:25:25 부피비)을 사용하였다. EC는 에틸렌 카보네이트, DEC는 디에틸 카보네이트, FEC는 플루오로에틸렌 카보네이트를 각각 나타낸다.
실시예 1a: 음극 및 풀셀의 제조
전해질로서 1.3M LiPF6 EC:DEC:FEC(68:25:7 부피비)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 풀셀을 제작하였다.
실시예 2-8: 음극 및 풀셀의 제조
제조예 1에 따른 실리콘 함유 복합체 대신 제조예 2-8에 따른 실리콘 함유 복합체를 이용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 음극 및 풀셀을 제조하였다.
실시예 7a
전해질로서 1.3M LiPF6 EC:DEC:FEC(68:25 :7 부피비)을 사용한 것을 제외하고는, 실시예 7과 동일한 방법에 따라 실시하여 풀셀을 제작하였다.
실시예 7b
전해질로서 1.3M LiPF6 EC:DEC (75:25부피비)을 사용한 것을 제외하고는, 실시예 7과 동일한 방법에 따라 실시하여 풀셀을 제작하였다.
실시예 8a
전해질로서 1.3M LiPF6 EC:DEC:FEC(68:25 :7 부피비)을 사용한 것을 제외하고는, 실시예 8과 동일한 방법에 따라 실시하여 풀셀을 제작하였다.
실시예 9: 음극 및 코인하프셀의 제조
제조예 1에 따라 제조된 실리콘함유 복합체, 카본블랙(KB600JD), AST9005(애경) 및 용매인 탈이온수를 혼합하여 슬러리를 제조하였다. 상기 슬러리에서 제조예 1에 따라 제조된 실리콘 함유 복합체, 카본블랙(KB600JD), AST9005(애경)의 고형분 혼합비는 79:1:20 중량비이다.
상기 슬러리를 구리 호일(Cufoil)에 도포한 후 닥터 블레이드를 사용하여 도포 두께가 40㎛이 되도록 제막한 후 120℃에서 2시간 동안 진공 건조한 다음 이를 압연하여 음극을 제조하였다.
상기 음극과, 리튬메탈을 대극으로 이용하여 코인하프셀을 제조하였다.
세퍼레이터로는 폴리프로필렌막(Cellgard 3510)을 사용하였으며, 전해질로는 1.3M LiPF6 EC(에틸렌 카보네이트):DEC(디에틸 카보네이트):FEC(플루오로에틸렌 카보네이트)(2:6:2 부피비)을 사용하였다.
실시예 10-16: 음극 및 코인하프셀의 제조
제조예 1에 따른 실리콘 함유 복합체 대신 제조예 2-8에 따른 실리콘 함유 복합체를 이용한 것을 제외하고는, 실시예 9과 동일한 방법에 따라 실시하여 음극 및 코인하프셀을 제조하였다.
실시예 17: 음극 및 코인풀셀의 제조
음극 제조시 그래파이트 대신 카본블랙(KB600JD)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 음극 및 코인풀셀을 제조하였다.
실시예 18: 음극 및 코인풀셀의 제조
제조예 1에 따라 제조된 실리콘 함유 복합체와 그래파이트의 혼합물에서 혼합비가 1:12 중량비 대신 1:99 중량비로 변화된 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 음극 및 코인풀셀을 제조하였다.
실시예 19: 음극 및 코인풀셀의 제조
제조예 1에 따라 제조된 실리콘 함유 복합체와 그래파이트의 혼합물에서 혼합비가 1:12 중량비 대신 3:97 중량비로 변화된 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 음극 및 코인풀셀을 제조하였다.
실시예 20: 음극 및 풀셀의 제조
제조예 1에 따라 제조된 실리콘 함유 복합체와 그래파이트의 혼합물에서 혼합비가 1:12 중량비 대신 1:1 중량비로 변화된 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 음극 및 풀셀을 제조하였다.
비교예 1: 음극 및 풀셀의 제조
제조예 1에 따라 제조된 실리콘 함유 복합체 대신 비교제조예 1에 따라 제조된 물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 음극 및 코인풀셀을 제조하였다.
비교예 1a: 음극 및 코인하프셀의 제조
제조예 1에 따라 제조된 실리콘 함유 복합체 대신 비교제조예 1에 따라 제조된 물질을사용한 것을 제외하고는, 실시예 9와 동일한 방법에 따라 실시하여 음극 및 코인하프셀을 제조하였다.
비교예 2: 음극 및 코인풀셀의 제조
제조예 1에 따라 제조된 실리콘 함유 복합체 대신 비교제조예 2에 따라 제조된 물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 음극 및 코인풀셀을 제조하였다.
비교예 2b: 음극 및 코인하프셀의 제조
제조예 1에 따라 제조된 실리콘 함유 복합체 대신 비교제조예 2에 따라 제조된 물질을 사용한 것을 제외하고는, 실시예 9와 동일한 방법에 따라 실시하여 음극 및 코인하프셀을 제조하였다.
평가예 1: 충방전 특성
(1)초기효율, 율속 성능, 쿠울롱 효율 및 방전용량 측정
1) 실시예 1-8 및 비교예 1
실시예 1-8 및 비교예 1에 따라 제조된 풀셀을 이용하여 각각의 코인셀에 대하여 하기 방법에 따라 충방전 특성 평가를 실시하였다.
(Charge: 1.0C /Cutoff : 4.2V-0.01C, Discharge : 1.0C / Cutoff : 2.8V)
상기 충방전 특성 평가 결과는 하기 표 2에 나타난 바와 같다.
구분 초기효율(%) 수명
(@100회)(%)
수명
(@300회)(%)
실시예 1 87.0 95.1 77.3
실시예 2 89.1 90.5 -
실시예 3 87.8 91.2 -
실시예 4 88 90.8 -
실시예 5 86.3 93.1 -
실시예 6 88.1 91.4 -
실시예 7 87 - -
실시예 8 86.7 - -
비교예 1 67 - 45.1
2) 실시예 7a, 실시예 7b, 실시예 8a 및 비교예 1
실시예 7a, 7b, 8a 및 비교예 1에 따라 제조된 코인셀을 이용하여 각각의 코인셀에 대하여 하기 방법에 따라 45℃에서 충방전 특성 평가를 실시하였다.
(Charge: 1.0C /Cutoff: 4.2V-0.01C, Discharge : 1.0C / Cutoff : 2.8V)
상기 충방전 특성 평가 결과는 하기 표 3에 나타난 바와 같다.
구분 수명(@300회)(%)
실시예 7a 79.6
실시예 7b 88.3 (@150회)
실시예 8a 79.1
비교예 1 45.1
평가예 2: 라만분석
제조예 1의 실리콘 함유 복합체 대한 라만 분석을 실시하였다. 라만 분석은 Raman 2010 Spectra (NT-MDT Development Co.) (Laser system: 473, 633, 785 nm, Lowest Raman shift: ~ 50 cm-1, 공간해상도(Spatial resolution): 약 500 nm)을 이용하여 실시하였다. 제조예 1의 실리콘 함유 복합체 대한 라만 분석 결과는 도 4에 나타난 바와 같고 상기 라만 분석 결과에 기초하여 G 피크의 세기에 대한 D 피크의 세기의 비를 측정하여 하기 표 4에 나타내었다.
그래핀은 라만 분석 스펙트럼에서 1350cm-1, 1580cm-1, 2700 cm-1에서 피크를 나타나는데 이 피크는 그래핀의 두께, 결정성 및 전하 도핑 상태에 대한 정보를 준다. 1580cm-1에서 나타나는 피크는 G 모드라는 피크로서 이는 탄소-탄소 결합의 스트레칭에 해당하는 진동모드에서 기인하며, G-모드의 에너지는 그래핀에 도핑된 잉여 전하의 밀도에 결정된다. 그리고 2700cm-1에서 나타나는 피크는 2D-모드라는 피크로서 그래핀의 두께를 평가할 때 유용하다. 상기 1350cm-1에서 나오는 피크는 D 모드라는 피크로서 SP2 결정 구조에 결함이 있을 때 나타나는 피크이다. 그리고 상기 D/G 세기비(Id/Ig)는 그래핀의 결정의 무질서도에 대한 정보를 준다.
구분 Id/Ig
제조예 1 1.20
표 4를 참조하여, 제조예 1에 따라 제조된 실리콘 함유 복합체는 그래핀의 결정성과 품질(quality)이 개선되었다.
평가예 3: XPS 분석( 그래핀의 산소 및 탄소 함량)
1)제조예 1-8에 따라 제조된 실리콘 함유 복합체에 대하여 XPS 분석을 실시하여 산소 및 탄소의 함량을 분석하였고, 그 분석 결과를 하기 표 5에 나타내었다.
XPS 분석은 Quantum 2000 (Physical Electronics. Inc.) (가속전압:0.5~15keV, 300W, 에너지분해능:약 1.0eV, Sputter rate : 0.1nm/min)을 이용하였다.
구 분 탄소(%) 산소(%)
제조예 1 22.0 6.9
제조예 2 23.0 5.5
제조예 3 22.0 6.5
제조예 4 20 7.3
제조예 5 22 7.4
제조예 6 23 6.3
제조예 7 22 6.9
제조예 8 29 7.12
상기 표 5에서 탄소의 함량은 C1s 피크에 해당하는 탄소의 함량을 나타낸 것이고, 산소의 함량은 O1s 피크에 해당하는 산소의 함량을 나타낸 것이다.
평가예 4: 전자주사현미경
제조예 1에 따라 제조된 실리콘 함유 복합체에 대한 SEM 분석을 실시하였다. 제조예 1에 따라 제조된 실리콘 함유 복합체의 SEM 분석 결과를 도 9a 및 도 9b에 나타내었고 참조제조예 1에 따라 얻어진 생성물의 SEM 분석 결과를 도 10a 및 도 10b에 나타내었다.
이를 참조하면, 제조예 1에 따라 제조된 실리콘 함유 복합체는 참조제조예 1의 생성물과 비교하여 코어에 대한 쉘의 밀착성이 우수하고 작은 사이즈의 그래핀층이 균일하게 형성된다는 것을 알 수 있었다.
평가예 5: 열중량분석
제조예 1 및 참조제조예 1에 따라 제조된 실리콘 함유 복합체의 열중량분석을 실시하였다. 열중량 분석 결과를 도 5에 나타내었다.
도 5를 참조하며 제조예 1의 실리콘 함유 복합체는 20중량% 손실온도가 약 720℃로서 참조제조예 1의 경우(20중량% 손실온도: 708℃)에 감소되어 열적 안정성이 개선되고 TGA derivative 피크 위치가 높은 온도쪽으로 시프트되는 것을 알 수 있었다.
평가예 6: DCIR (Direct-current internal resistance) 특성
1)실시예 1-8 및 비교예 1
실시예 1 및 비교예 1에 따라 제조된 풀셀의 1 사이클후 및 100사이클후의 저항 특성을 하기 방법에 따라 측정하였다.
각 풀셀을 25℃에서 0.1C rate의 전류로 전압이 4.30V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.30V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8V(vs. Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다(화성단계, 1st 사이클). 이러한 충방전 과정을 2회 더 실시하여 화성 과정을 완료하였다.
각 풀셀에 대하여 25℃에서 0.1C rate(0.38mA/cm2)의 전류로 전압이 4.40V(vs. Li)에 이를 때까지 정전류 충전을 실시한 후 이어서 정전압 모드에서 4.40V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다(2nd 사이클).
2nd 사이클을 거친 풀셀을 25℃에서 1.0C rate의 전류로 전압이 4.3V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3V를 유지하면서 0.01C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8V(vs. Li)에 이를 때까지 1.0C rate의 정전류로 방전하였다(3rd 사이클), 이러한 사이클을 동일한 조건으로 반복적으로 실시하였다(100th 사이클).
상술한 바와 같이 충방전을 실시한 후, 리튬금속전지의 임피던스는 임피던스 분석기(Solartron 1260A Impedance/Gain-Phase Analyzer)를 사용하여 2-프로브(probe)법에 따라 25℃, 106 내지 0.1 MHz 주파수 범위에서 10 mV의 전압 바이어스를 주고 저항을 측정함으로써 1 사이클후 직류내부저항(direct current internal resistance: DCIR)를 평가하였다. DCIR 증가율은 하기 식 1에 따라 계산하였고, 그 평가 결과를 표 6에 나타내었다.
[식 1]
DCIR 증가율={(100차 사이클후 DCIR)/(1차 사이클후 DCIR)}X100
이를 참조하여, 실시예 1의 풀셀은 비교예 1의 경우와 비교하여 DCIR 증가율이 감소되었다.
구 분 DCIR 증가율(%)
실시예 1 9.7
실시예 7 20.0
실시예 8 20.5
비교예 1 21.1
표 6을 참조하여, 실시예 1, 7 및 8에 따라 제조된 풀셀에서 DCIR 증가율은 비교예 1의 풀셀에 비하여 감소되는 것을 알 수 있었다.
2) 실시예 7a, 7b, 8a 및 비교예 1
실시예 7a, 7b, 8a 및 비교예 1에 따라 제조된 풀셀의 1 사이클후 및 100사이클후의 저항 특성을 하기 방법에 따라 측정하였다.
각 풀셀을 25℃에서 0.1C rate의 전류로 전압이 4.30V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.30V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8V(vs. Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다(화성단계, 1st 사이클). 이러한 충방전 과정을 2회 더 실시하여 화성 과정을 완료하였다.
각 풀셀에 대하여 25℃에서 0.1C rate(0.38mA/cm2)의 전류로 전압이 4.40V(vs. Li)에 이를 때까지 정전류 충전을 실시한 후 이어서 정전압 모드에서 4.40V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다(2nd 사이클).
2nd 사이클을 거친 리튬전지를 25℃에서 1.0C rate의 전류로 전압이 4.3V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3V를 유지하면서 0.01C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8V(vs. Li)에 이를 때까지 1.0C rate의 정전류로 방전하였다(3rd 사이클), 이러한 사이클을 동일한 조건으로 반복적으로 실시하였다(100th 사이클).
이와 같이 충방전을 실시한 후, 리튬금속전지의 임피던스는 임피던스 분석기(Solartron 1260A Impedance/Gain-Phase Analyzer)를 사용하여 2-프로브(probe)법에 따라 25℃, 106 내지 0.1 MHz 주파수 범위에서 10 mV의 전압 바이어스를 주고 저항을 측정함으로써 1 사이클후 직류내부저항(direct current internal resistance: DCIR)를 평가하였다. DCIR 증가율은 하기 식 2에 따라 계산하였고, 그 평가 결과를 하기 표 7에 나타내었다.
[식 2]
DCIR 증가율={(100차 사이클후 DCIR)/(1차 사이클후 DCIR)}X100
이를 참조하여, 실시예 7a, 7b, 8a의 풀셀은 비교예 1의 경우와 비교하여 DCIR 증가율이 감소되었다.
구 분 DCIR 증가율(%)
실시예 7a 10.5
실시예 7b 1.5
실시예 8a 5
비교예 1 21
평가예 7: 율속 성능
실시예 1, 7, 8 및 비교예 1에 따라 제작된 풀셀을 25℃에서 0.1C rate의 전류로 전압이 4.30V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.30V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다 (1st 사이클, 화성(formation) 사이클).
1st 사이클을 거친 리튬전지를 25℃에서 0.2C rate의 전류로 전압이 4.3V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3V를 유지하면서 0.01C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 0.2C rate의 정전류로 방전하였다(2nd 사이클).
2nd 사이클을 거친 리튬전지를 25℃에서 0.5C rate의 전류로 전압이 4.3V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3V를 유지하면서 0.01C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 0.5C rate의 정전류로 방전하였다(3rd 사이클).
3rd 사이클을 거친 리튬전지를 25℃에서 1.0C rate의 전류로 전압이 4.3V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3V를 유지하면서 0.01C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 1.0C rate의 정전류로 방전하였다(4st 사이클).
상기 모든 충방전 사이클에서 하나의 충전/방전 사이클 후 10분간의 정지 시간을 두었다.
각 풀셀의 율속 성능(rate capability)은 하기 식 3으로 정의된다.
<식 3>
율속 특성[%] = (셀을 3차 사이클에서 1C의 속도로 방전시킬 때의 방전 용량)/(셀을 2차 사이클에서 0.2C의 속도로 방전시킬 때의 방전 용량) X 100
각 평가 결과를 표 8에 나타내었다.
구 분 율속 성능(1C/0.2C)
실시예 1 95.3
실시예 7 98.9
실시예 8 96.3
비교예 1 93.9
이를 참조하여, 실시예 1, 7 및 8의 풀셀은 비교예 1의 풀셀과 비교하여 율속 성능이 개선되었다.
평가예 8: XPS 분석(C/ Si 함량)
제조예 1 및 참조제조예 1에 따라 제조된 실리콘 함유 복합체에 대하여 XPS 분석을 실시하였다.
X-선 광전자 분광법 (X-ray photoelectron spectroscopy)을 이용하여 각 시료의 탄소와 실리콘 원자의 정량분석을 실시하였다. 일정한 에너지를 지니는 광자 (X-선)를 시료에 조사하면 시료로부터 광전자들이 방출되는데 이 광전자들의 운동에너지를 측정하면 광전자를 시료로부터 방출하기 위해 필요한 결합에너지 (binding energy)를 알 수 있다. 이 결합에너지는 원자고유의 성질이기 때문에 이를 통해 원소 분석 및 원소의 표면 농도의 측정이 가능하였다. 이로부터 정량 분석된 탄소와 실리콘 원자의 양으로부터 C/Si 함량을 계산하는 것이다.
XPS 분석은 Quantum 2000 (Physical Electronics. Inc.) (가속전압:0.5~15keV, 300W, 에너지분해능:약 1.0eV, 최소분석영역:10micro, Sputter rate : 0.1nm/min)을 이용하였다.
각 시료를 110에서 12 시간 진공 건조한 후, XPS의 예비 챔버로 실온, 10-4~10-5torr의 진공 중에서1~8시간동안 탈가스 처리를 하고, 분석 챔버에 시료를 도입 후, 백그라운드의 진공이 10- 10torr 오더가 된 후 측정을 했다.
결합 에너지가 98 내지 105eV의 피크를 Si2p에 속하는 것이고, 결합에너지가 282 내지 297eV의 피크를 C1s에 속하는 것이다. 이들 피크의 적분치의 비로서 C/Si 함량을 계산한다. XPS 분석 결과 중, C1s, Si2p, N1s에 대한 것은 도 6, 도 7 및 도 8에 각각 나타내었고 하기 표 9에는 C/Si 함량 및 각 원소의 함량을 나타내었다.
구 분 C/Si
(원자비)
원자%
C1s Si2p N1s O1s
제조예 1 161.34 98.42 0.61 0.15 0.82
참조제조예 1 29.9 94.48 3.15 0 2.37
표 9를 참조하여, 제조예 1의 실리콘 함유 복합체는 참조제조예 1의 실리콘 함유 복합체와 비교하여 C/Si 함량이 약 490% 크게 증가되었다. 이러한 결과로부터 제조예 1의 실리콘 함유 복합체는 참조제조예 1의 실리콘 함유 복합체와 비교하여 실리콘/실리콘 옥사이드와 그래핀의 밀착성이 더 우수하고, 그래핀의 코팅 균일성이 더 우수하다는 것을 알 수 있었다.
평가예 9: TEM 분석
제조예 1의 실리콘 함유 복합체를 투과전자현미경을 이용하여 분석하였다. 상기 TEM 분석시 분석기로서 FEI 사의 Titan cubed G2 60-300을 이용하였다.
제조예 1의 실리콘 함유 복합체에 대한 TEM 분석 사진은 도 11a 및 도 11b에 나타난 바와 같다.
이를 참조하면, 제조예 1의 실리콘 함유 복합체가 실리콘/실리콘 옥사이드와 그래핀의 밀착성과 실리콘/실리콘 옥사이드상에 대한 그래핀의 코팅 균일성이 우수하다는 것을 알 수 있었다.
제1그래핀 및 제2그래핀은 도 11a에 나타난 바와 같이 실리콘 서브옥사이드(SiOx)(o<x<2)막 표면에 형성된 판상 및 침상형 실리콘 입자(10)의 주축(Y축)을 기준으로 하여 90°의 각으로 배향된다는 것을 확인할 수 있었다.
이상에서는 도면 및 실시예를 참조하여 일구현예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 구현예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 발명의 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.
10: 실리콘 일차 입자 10a, 10b: 제1그래핀, 제2그래핀
121: 리튬전지
122: 음극 123: 양극
124: 세퍼레이터 125: 전지케이스
126: 캡 어셈블리

Claims (45)

  1. 다공성 실리콘 이차입자를 포함하는 다공성 코어(core)와 상기 다공성 코어의 적어도 일 면상의 제2그래핀을 포함하는 쉘(shell)을 함유하는 실리콘 함유 복합체이며,
    상기 다공성 실리콘 이차입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며,
    상기 실리콘 복합체 일차 입자는 실리콘; 상기 실리콘의 적어도 일 면상의 실리콘 서브옥사이드(SiOx)(O<x<2) 및 상기 실리콘 서브옥사이드의 적어도 일면상의 제1그래핀을 포함하며,
    상기 제1그래핀 및 제2그래핀 중에서 선택된 하나 이상은 질소(N), 인(P) 및 황(S) 중에서 선택된 하나 이상의 원소를 포함하며,
    상기 실리콘 서브옥사이드(SiOx)(O<x<2)의 두께는 30㎛ 이하인, 실리콘 함유 복합체.
  2. 제1항에 있어서,
    상기 실리콘 서브옥사이드는 막(film) 및 매트릭스(matrix) 중에서 선택된 하나 이상의 상태로 존재하고,
    상기 제1그래핀 및 제2그래핀은 각각 막(film), 입자, 매트릭스(matrix) 중에서 선택된 하나 이상의 상태로 존재하는 실리콘 함유 복합체.
  3. 제1항에 있어서,
    상기 제1그래핀은 실리콘 서브옥사이드의 표면상에 직접적으로 배치되며, 상기 제2그래핀은 다공성 실리콘 이차입자의 표면상에 직접적으로 배치된 실리콘 함유 복합체.
  4. 제1항에 있어서,
    상기 실리콘 함유 복합체에 대한 XPS 분석에서 구해지는 10nm 이하의 표면 깊이에서 질소, 인 및 황 중에서 선택된 하나 이상의 함량은 0.2원자% 이하인 실리콘 함유 복합체.
  5. 제1항에 있어서,
    상기 다공성 실리콘 복합체 구조체의 XPS(X_ray photoelectron spectrometry analysis) 분석에 의하여 구해지는 실리콘(Si) 대 탄소(C)의 원소비(C/Si)는 100 내지 200이고,
    상기 다공성 실리콘 복합체 구조체의 XPS(X_ray photoelectron spectrometry analysis) 분석에 의하여 구해지는 실리콘(Si)에 대한 탄소(C)의 원소비(C/Si)는 질소, 인 및 황 중에서 선택된 하나 이상을 함유하지 않는 실리콘 함유 복합체의 C/Si 대비 증가된 실리콘 함유 복합체.
  6. 제1항에 있어서,
    상기 실리콘 함유 복합체의 라만 분석 스펙트럼에 의하여 구해지는 G 피크에 대한 D 피크의 세기비(Id/Ig)는 0.8 내지 1.5인 실리콘 함유 복합체.
  7. 제1항에 있어서,
    상기 실리콘 함유 복합체의 열중량 분석에서 구해지는 20% 중량 손실 온도가, 질소, 인 및 황 중에서 선택된 하나 이상의 원소를 함유하지 않은 실리콘 함유 복합체에 대한 20% 중량 손실 온도를 기준으로 하여 7 내지 15℃ 보다 높은 실리콘 함유 복합체.
  8. 제1항에 있어서, 상기 코어내의 제1그래핀은 쉘의 제2그래핀과 비교하여 층수가 상이하거나 동일하며 쉘의 제2그래핀이 코어의 제1그래핀에 비하여 밀도가 높은 실리콘 함유 복합체.
  9. 제1항에 있어서,
    상기 실리콘 함유 복합체는 이중 코어/쉘 구조를 갖는 실리콘 함유 복합체.
  10. 제1항에 있어서,
    상기 실리콘 함유 복합체는 상기 다공성 코어에 비하여 밀도가 높은 외각층이 더 포함하는 실리콘 함유 복합체.
  11. 제1항에 있어서,
    상기 제1그래핀과 제2그래핀의 총함량은 실리콘 100 중량부를 기준으로 하여 0.1 내지 2,000 중량부인 실리콘 함유 복합체.
  12. 제1항에 있어서,
    상기 실리콘 복합체 일차 입자에서 제1그래핀은 실리콘 서브옥사이드(SiOx) (O<x<2)에서 10nm 이하의 거리만큼 연장되고, 1 내지 30개의 그래핀층을 포함하고 상기 제1그래핀의 총두께는 0.3 내지 1,000nm이고,
    상기 제1그래핀은 상기 실리콘의 주축에 대하여 0 내지 90°사이의 각으로 배향되는 실리콘 함유 복합체.
  13. 제1항에 있어서,
    상기 다공성 실리콘 이차입자에서 제2그래핀은 실리콘 서브옥사이드(SiOx) (O<x<2)에서 1000nm 이하의 거리만큼 연장되고, 1 내지 30개의 그래핀층을 포함하고 상기 그래핀의 총두께는 0.6 내지 50nm이고,
    상기 그래핀은 상기 실리콘의 주축에 대하여 0 내지 90°사이의 각으로 배향되는 실리콘 함유 복합체.
  14. 삭제
  15. 제1항에 있어서,
    상기 실리콘은 스피어(sphere), 나노와이어, 침상, 막대형, 입자, 나노튜브, 나노로드, 웨이퍼(wafer), 및 나노리본 중에서 선택된 하나 이상인 실리콘 함유 복합체.
  16. 제1항에 있어서,
    상기 다공성 실리콘 이차입자의 평균입경은 1 내지 30㎛이고, 비표면적은 0.1 내지 100m2/g이고 밀도는 0.1 내지 2.57g/CC인 실리콘 함유 복합체.
  17. 제1항에 있어서,
    상기 실리콘은 평균 입경이 10nm 내지 30㎛인 입자인 실리콘 함유 복합체.
  18. 제1항에 있어서,
    상기 실리콘 함유 복합체에서 산소의 함량이 실리콘 함유 복합체에서 산소, 탄소 및 실리콘 원자들의 총함량을 기준으로 하여 0.01 내지 15원자%인 실리콘 함유 복합체.
  19. 제1항에 있어서,
    상기 실리콘 함유 복합체의 적어도 일 면상에 비정질 탄소를 포함하는 탄소계 코팅막을 포함하는 실리콘 함유 복합체.
  20. 제19항에 있어서,
    상기 탄소계 코팅막이 질소, 인 및 황 중에서 선택된 하나 이상의 원소를 포함하는 실리콘 함유 복합체.
  21. 제19항에 있어서,
    상기 탄소계 코팅막은 결정질 탄소를 더 포함하는 실리콘 함유 복합체.
  22. 제21항에 있어서,
    상기 결정질 탄소는 풀러렌, 천연흑연 및 인조흑연, 그래핀 및 카본나노튜브로 이루어진 군으로부터 선택된 하나 이상이고,
    비정질 탄소는 피치카본, 소프트카본, 하드카본, 메조페이스 피치 탄화물, 소성된 코크스 및 탄소섬유로 이루어진 군으로부터 선택된 하나 이상인 실리콘 함유 복합체.
  23. 제19항에 있어서,
    상기 탄소계 코팅막은 비다공성 연속적인 코팅막이며, 탄소계 코팅막의 두께는 1 내지 5000nm인 실리콘 함유 복합체.
  24. 실리콘 및 상기 실리콘 상에 형성된 실리콘 서브옥사이드(SiOx)(O<x<2)을 포함하는 구조체, 분산제 및 용매를 포함하는 조성물로부터 다공성 실리콘 이차 입자를 얻는 단계; 및
    상기 다공성 실리콘 이차 입자에 탄소 공급원탄소 공급원 를 공급하고 열처리하는 단계를 포함하며,
    i)질소 전구체, 인 전구체 및 황 전구체 중에서 선택된 하나
    이상을 상기 탄소 공급원 공급시 동시에 공급하거나 또는
    ii)실리콘 함유 복합체를 질소 전구체, 인 전구체 및 황 전구체 중에서 선택된 하나 이상과 반응하여 제1항 내지 제13항, 제15항 내지 제23항 중 어느 한 항의 실리콘 함유 복합체를 제조하는 실리콘 함유 복합체의 제조방법.
  25. 제24항에 있어서,
    상기 용매는 알코올계 용매이며, 상기 조성물로부터 다공성 실리콘 이차 입자를 얻는 단계는 조성물을 분무건조하여 실시되는 실리콘 함유 복합체의 제조방법.
  26. 제24항에 있어서,
    상기 분산제는 스테아르산, 레조르시놀, 폴리비닐알콜 및 카본피치(pitch) 중에서 선택된 하나 이상인 실리콘 함유 복합체의 제조방법.
  27. 제24항에 있어서,
    상기 질소 전구체가 암모니아인 실리콘 함유 복합체의 제조방법.
  28. 제24항에 있어서,
    상기 탄소 공급원이 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물 및 하기 화학식 3으로 표시되는 산소 함유 화합물로 이루어진 군으로부터 선택된 하나 이상을 포함하는 실리콘 함유 복합체의 제조방법.
    [화학식 1]
    CnH(2n+2-a)[OH]a
    상기 화학식 1 중, n은 1 내지 20의 정수이고, a는 0 또는 1이고,
    [화학식 2]
    CnH(2n)
    상기 화학식 2 중, n 은 2 내지 6의 정수이고,
    [화학식 3]
    CxHyOz
    상기 화학식 3 중, x는 1 내지 20의 정수이고, y는 0 또는 1 내지 20의 정수이고, z은 1 또는 2이다.
  29. 제24항에 있어서
    상기 탄소 공급원이 하기 화학식 3a로 표시되는 제1산소 함유 화합물을 더 포함하며, 하기 화학식 3a로 표시되는 제1산소 함유 화합물은 상기 화학식 3으로 표시되는 산소 함유 화합물과 다른 실리콘 함유 복합체의 제조방법.
    [화학식 3a]
    CxHyOz
    상기 화학식 3a 중, x는 0 또는 1 내지 20의 정수이고, y는 0 또는 1 내지 20의 정수이고, z은 1 또는 2이다.
  30. 제24항에 있어서,
    상기 탄소 공급원이 메탄, 에틸렌, 프로필렌, 아세틸렌, 메탄올, 에탄올 및 프로판올로 이루어진 군으로부터 선택된 하나 이상을 포함하는 실리콘 함유 복합체의 제조방법.
  31. 제24항에 있어서,
    상기 질소 전구체, 황 전구체 및 인 전구체 중에서 선택된 하나 이상의 함량은 탄소 공급원 가스와, 질소 전구체, 황 전구체 및 인 전구체 중에서 선택된 하나 이상의 총부피를 기준으로 하여 20부피% 이하인 실리콘 함유 복합체의 제조방법.
  32. 제24항에 있어서,
    상기 열처리가 750 내지 1100℃에서 실시되는 실리콘 함유 복합체의 제조방법.
  33. 제24항에 있어서,
    상기 실리콘 함유 복합체, 탄소계 물질 및 용매를 포함하는 조성물을 건식 혼합하는 단계를 더 포함하여 탄소계 코팅막이 형성된 실리콘 함유 복합체를 얻는 실리콘 함유 복합체의 제조방법.
  34. 제33항에 있어서,
    상기 상기 실리콘 함유 복합체, 탄소계 물질 및 용매를 포함하는 조성물을 건식 혼합하는 단계에서 질소 전구체, 황 전구체 및 인 전구체 중에서 선택된 하나 이상을 더 포함하거나 또는
    탄소계 코팅막이 형성된 실리콘 함유 복합체를 질소 전구체, 황 전구체 및 인 전구체 중에서 선택된 하나 이상과 반응하는 실리콘 함유 복합체의 제조방법.
  35. 제1항 내지 제13항, 제15항 내지 제23항 중 어느 한 항의 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체.
  36. 제35항에 있어서, 상기 탄소계 재료의 함량은 탄소 복합체 100 중량부를 기준으로 하여 0.001 내지 99중량부인 탄소 복합체.
  37. 제1항 내지 제13항, 제15항 내지 제23항 중 어느 한 항의 실리콘 함유 복합체; 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 전극.
  38. 제37항에 있어서,
    상기 탄소계 재료가 그래핀, 흑연, 풀러렌, 탄소섬유 및 카본나노튜브로 이루어진 군으로부터 선택된 하나 이상이고, 상기 탄소계 재료의 함량은 탄소 복합체 100 중량부를 기준으로 하여 0.001 내지 99.999 중량부인 전극.
  39. 제37항의 전극을 포함하는 리튬 전지.
  40. 제1항 내지 제13항, 제15항 내지 제23항 중 어느 한 항의 실리콘 함유 복합체 또는 상기 실리콘 함유 복합체와 탄소계 재료를 포함하는 탄소 복합체를 함유하는 소자(device).
  41. 제40항에 있어서,
    상기 소자가 전계방출소자, 바이오센서, 반도체소자 또는 열전소자인 소자.
  42. 다공성 실리콘 이차입자를 포함하는 코어(core)와 상기 코어의 상부에 배치된 제2그래핀을 포함하는 쉘(shell)을 함유하는 실리콘 함유 복합체이며,
    상기 다공성 실리콘 이차입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며,
    상기 실리콘 복합체 일차 입자는 i)SiOx(0<x<2) 및 ii)SiOx(0<x<2)의 열처리 생성물중에서 선택된 하나 이상의 산화실리콘과, 상기 산화실리콘 상부에 배치된 제1그래핀을 포함하며, 상기 제1그래핀과 제2그래핀 중에서 선택된 하나 이상은 각각 질소, 인 및 황 중에서 선택된 하나 이상을 포함하며,
    상기 실리콘 서브옥사이드(SiOx)(O<x<2)의 두께는 30㎛ 이하인, 실리콘 함유 복합체.
  43. 제42항에 있어서,
    상기 SiOx(0<x<2)의 열처리 생성물은, i)탄소공급원 기체 또는 ii)탄소공급원 기체와 환원성 기체를 포함하는 기체 혼합물 분위기에서 SiOx(0<x<2)를 열처리하여 얻은 생성물인 실리콘 함유 복합체.
  44. 제42항에 있어서,
    상기 SiOx(0<x<2)의 열처리 생성물은 실리콘 서브옥사이드(SiOy)(0<y≤≤2) 매트릭스에 실리콘(Si)이 배치된 구조체인 실리콘 함유 복합체.
  45. 제42항에 있어서, 상기 SiOx(0<x<2)의 열처리 생성물은 i)실리콘 산화물(SiO2) 매트릭스에 실리콘(Si)이 배치된 구조체, ii)SiO2와 SiOy(0<y<2)를 함유한 매트릭스에 실리콘(Si)이 배치된 구조체 또는 iii)SiOy(0<y<2) 매트릭스에 실리콘(Si)이 배치된 구조체인 실리콘 함유 복합체.
KR1020180159039A 2018-01-03 2018-12-11 실리콘 함유 복합체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자 KR102617731B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18213922.0A EP3509136A1 (en) 2018-01-03 2018-12-19 Silicon composite cluster and carbon composite thereof, and electrode, lithium battery, and electronic device each including the same
US16/230,946 US11824198B2 (en) 2018-01-03 2018-12-21 Silicon composite cluster and carbon composite thereof, and electrode, lithium battery, and electronic device each including the same
JP2018242869A JP2019119669A (ja) 2018-01-03 2018-12-26 シリコン含有複合体、その製造方法、それを利用した炭素複合体、それを含んだ電極、該リチウム電池及び該電子素子
CN201910001030.7A CN109994717A (zh) 2018-01-03 2019-01-02 含硅复合物及其制备方法、各自包括其的碳复合物、电极、锂电池和设备
JP2023093540A JP2023130342A (ja) 2018-01-03 2023-06-06 シリコン含有複合体、その製造方法、それを利用した炭素複合体、それを含んだ電極、該リチウム電池及び該電子素子
US18/480,090 US20240113302A1 (en) 2018-01-03 2023-10-03 Silicon composite cluster and carbon composite thereof, and electrode, lithium battery, and electronic device each including the same
US18/480,078 US20240030452A1 (en) 2018-01-03 2023-10-03 Silicon composite cluster and carbon composite thereof, and electrode, lithium battery, and electronic device each including the same
US18/480,106 US20240047688A1 (en) 2018-01-03 2023-10-03 Silicon composite cluster and carbon composite thereof, and electrode, lithium battery, and electronic device each including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180000905 2018-01-03
KR20180000905 2018-01-03

Publications (2)

Publication Number Publication Date
KR20190083613A KR20190083613A (ko) 2019-07-12
KR102617731B1 true KR102617731B1 (ko) 2024-01-05

Family

ID=67254249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180159039A KR102617731B1 (ko) 2018-01-03 2018-12-11 실리콘 함유 복합체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자

Country Status (3)

Country Link
US (3) US20240113302A1 (ko)
JP (2) JP2019119669A (ko)
KR (1) KR102617731B1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102446292B1 (ko) * 2018-01-09 2022-09-21 사우스 다코타 보드 오브 리젠츠 층상화된 고용량 전극
CN110085856A (zh) 2018-01-26 2019-08-02 三星电子株式会社 含硅结构体、其制备方法、使用其的碳复合物及各自包括其的电极、锂电池和设备
KR20200047879A (ko) 2018-10-25 2020-05-08 삼성전자주식회사 다공성 실리콘 함유 복합체, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자
KR102640843B1 (ko) 2018-11-19 2024-02-28 삼성전자주식회사 리튬전지용 전극 복합도전제, 이를 포함한 리튬전지용 전극, 그 제조방법 및 리튬 전지
KR20210012801A (ko) * 2019-07-26 2021-02-03 주식회사 엘지화학 복합 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
CN112310359B (zh) * 2019-07-29 2024-01-12 宁德时代新能源科技股份有限公司 负极活性材料及二次电池
CN112310352B (zh) 2019-07-29 2021-11-02 宁德时代新能源科技股份有限公司 负极活性材料及二次电池
CN110676446A (zh) * 2019-09-23 2020-01-10 深圳市汇鑫利电子科技有限公司 一种锂磷氧氮改性的硅碳复合材料及其制备方法
CN111162268B (zh) * 2019-09-26 2021-06-18 贝特瑞新材料集团股份有限公司 一种复合负极材料及其制备方法和锂离子电池
JP2022157506A (ja) * 2021-03-31 2022-10-14 戸田工業株式会社 ケイ素含有非晶質炭素材料及びその製造方法、リチウムイオン二次電池
KR102452560B1 (ko) * 2022-04-27 2022-10-11 주식회사 이큐브머티리얼즈 리튬이온이차전지용 실리콘 음극재 제조방법
KR102454487B1 (ko) * 2022-04-27 2022-10-14 주식회사 이큐브머티리얼즈 산화붕소가 적용된 리튬이온이차전지용 실리콘 음극재
KR102452519B1 (ko) * 2022-04-27 2022-10-07 주식회사 이큐브머티리얼즈 리튬이온이차전지용 실리콘 음극재
KR102454488B1 (ko) * 2022-04-27 2022-10-14 주식회사 이큐브머티리얼즈 산화붕소가 적용된 리튬이온이차전지용 실리콘 음극재 제조방법
CN115101741B (zh) * 2022-08-10 2023-04-07 胜华新能源科技(东营)有限公司 氮掺杂石墨烯包覆硅碳复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532024A (ja) 2012-07-20 2014-12-04 エルジー・ケム・リミテッド カーボン−シリコン複合体、その製造方法及びこれを含む負極活物質
US20170047584A1 (en) 2014-05-09 2017-02-16 Lg Chem, Ltd. Graphene-coated porous silicon-carbon composite and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210431B (zh) * 2015-02-06 2021-07-30 陈忠伟 制备锂离子电池的阳极的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532024A (ja) 2012-07-20 2014-12-04 エルジー・ケム・リミテッド カーボン−シリコン複合体、その製造方法及びこれを含む負極活物質
KR101476043B1 (ko) * 2012-07-20 2014-12-24 주식회사 엘지화학 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
US20170047584A1 (en) 2014-05-09 2017-02-16 Lg Chem, Ltd. Graphene-coated porous silicon-carbon composite and method of manufacturing the same
KR101724196B1 (ko) * 2014-05-09 2017-04-06 주식회사 엘지화학 그래핀 피복된 다공성 실리콘-탄소 복합체 및 이의 제조방법

Also Published As

Publication number Publication date
KR20190083613A (ko) 2019-07-12
US20240047688A1 (en) 2024-02-08
JP2019119669A (ja) 2019-07-22
US20240030452A1 (en) 2024-01-25
US20240113302A1 (en) 2024-04-04
JP2023130342A (ja) 2023-09-20

Similar Documents

Publication Publication Date Title
KR102409818B1 (ko) 다공성 실리콘 복합체 클러스터, 그 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
KR102617731B1 (ko) 실리콘 함유 복합체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지 및 전자소자
KR102513253B1 (ko) 다공성 실리콘 복합체 클러스터 구조체, 이를 포함한 탄소 복합체, 그 제조방법, 이를 포함한 전극, 및 리튬 전지, 소자
US11824198B2 (en) Silicon composite cluster and carbon composite thereof, and electrode, lithium battery, and electronic device each including the same
KR102409817B1 (ko) 다공성 실리콘 복합체 클러스터 구조체, 이를 포함한 탄소 복합체, 그 제조방법, 이를 포함한 전극, 및 리튬 전지, 소자
KR102357975B1 (ko) 다공성 실리콘 복합체 클러스터, 그 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
US10692622B2 (en) Composite, carbon composite including the composite, electrode, lithium battery, electroluminescent device, biosensor, semiconductor device, and thermoelectric device including the composite and/or the carbon composite
KR102192089B1 (ko) 복합체, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
US9917298B2 (en) Composite, method of preparing the same, electrode including the composite, and lithium battery including the electrode
US10974965B2 (en) Silicon-containing structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same
KR102609866B1 (ko) 실리콘 함유 구조체, 그 제조방법, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지, 및 소자
JP2024045509A (ja) 多孔性シリコン含有複合体、それを利用した炭素複合体、それを含んだ、電極、リチウム電池及び電子素子
KR20180031566A (ko) 다공성 실리콘 복합체 클러스터, 이를 이용한 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant