WO2018150947A1 - 光ファイバケーブル - Google Patents

光ファイバケーブル Download PDF

Info

Publication number
WO2018150947A1
WO2018150947A1 PCT/JP2018/003976 JP2018003976W WO2018150947A1 WO 2018150947 A1 WO2018150947 A1 WO 2018150947A1 JP 2018003976 W JP2018003976 W JP 2018003976W WO 2018150947 A1 WO2018150947 A1 WO 2018150947A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
inclusion
cross
sheath
fiber cable
Prior art date
Application number
PCT/JP2018/003976
Other languages
English (en)
French (fr)
Inventor
智晃 梶
富川 浩二
大里 健
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US16/481,768 priority Critical patent/US10884208B2/en
Priority to KR1020197022086A priority patent/KR102050361B1/ko
Priority to CA3051607A priority patent/CA3051607C/en
Priority to EP18753890.5A priority patent/EP3584617B1/en
Priority to AU2018222025A priority patent/AU2018222025B2/en
Priority to ES18753890T priority patent/ES2937932T3/es
Priority to CN201880010916.1A priority patent/CN110268297B/zh
Priority to SG11201906136SA priority patent/SG11201906136SA/en
Publication of WO2018150947A1 publication Critical patent/WO2018150947A1/ja
Priority to SA519402454A priority patent/SA519402454B1/ar

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4411Matrix structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element

Definitions

  • the present invention relates to an optical fiber cable.
  • the present application claims priority based on Japanese Patent Application No. 2017-029056 filed in Japan on February 20, 2017, the contents of which are incorporated herein by reference.
  • an optical fiber cable as shown in Patent Document 1 is known.
  • the optical fiber cable includes a buffer material disposed in the center, a plurality of optical fibers disposed around the buffer material, and a sheath that accommodates the buffer material and the plurality of optical fibers therein.
  • a buffer material absorbs the external force applied to the optical fiber cable, thereby preventing the optical fiber from being influenced by the external force.
  • a plurality of optical fibers may be bundled to form an optical fiber unit, and the plurality of optical fiber units may be accommodated in a sheath in a twisted state.
  • a force tilting back force
  • the optical fiber unit moves in the sheath by the twisting force, the optical fiber unit cannot be kept twisted.
  • the twisting force is increased, and the movement of the optical fiber unit as described above is more likely to occur.
  • an optical fiber cable includes a plurality of optical fiber units each having a plurality of optical fibers, and a fibrous shape extending along a longitudinal direction in which the optical fiber unit extends.
  • a cross-sectional view comprising: a core configured by wrapping inclusions in a press roll; a sheath that accommodates the core therein; and a pair of strength members embedded in the sheath with the core interposed therebetween.
  • the total value of the cross-sectional areas of the plurality of optical fibers is Sf
  • the total value of the cross-sectional areas of the inclusions is Sb
  • the cross-sectional area of the inner space of the sheath is Sc
  • the cross-sectional area of the presser winding is Sw
  • 0.16 ⁇ Sb / Sf 0.25
  • the movement of the optical fiber unit in the optical fiber cable can be suppressed.
  • an optical fiber cable 100 includes a core 20 having a plurality of optical fiber units 10, a sheath 55 that accommodates the core 20 therein, and a pair of strength members 56 (tension members) embedded in the sheath 55. ) And a pair of filaments 57.
  • the optical fiber unit 10 extends along the central axis O.
  • the direction along the central axis O is called the longitudinal direction.
  • a cross section of the optical fiber cable 100 orthogonal to the central axis O is referred to as a cross section.
  • a direction intersecting with the central axis O is referred to as a radial direction, and a direction around the central axis O is referred to as a circumferential direction.
  • the sheath 55 is formed in a cylindrical shape centered on the central axis O.
  • the material of the sheath 55 is a polyolefin (PO) such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), ethylene propylene copolymer (EP). ) Resin, polyvinyl chloride (PVC), etc. can be used.
  • PO polyolefin
  • PE polyethylene
  • PP polypropylene
  • EOA ethylene ethyl acrylate copolymer
  • EVA ethylene vinyl acetate copolymer
  • EP ethylene propylene copolymer
  • PVC polyvinyl chloride
  • the filament 57 As a material of the filament 57, a cylindrical rod made of PP or nylon can be used. Alternatively, the filament 57 may be formed by a yarn (yarn) obtained by twisting fibers such as PP and polyester, and the filament 57 may be provided with water absorption. The pair of filaments 57 are arranged with the core 20 sandwiched in the radial direction. In addition, the number of the line bodies 57 embedded in the sheath 55 may be 1 or 3 or more.
  • a metal wire such as a steel wire
  • a tensile fiber such as an aramid fiber
  • FRP tensile fiber
  • the pair of strength members 56 are disposed with the core 20 sandwiched in the radial direction. Further, the pair of strength members 56 are arranged at equal intervals from the core 20 in the radial direction.
  • the number of strength members 56 embedded in the sheath 55 may be 1 or 3 or more.
  • a pair of protrusions 58 extending along the longitudinal direction are formed on the outer peripheral surface of the sheath 55.
  • the protrusion 58 and the linear body 57 are arrange
  • the protrusion 58 serves as a mark when the sheath 55 is incised to take out the filament 57.
  • the plurality of optical fiber units 10 are divided into two layers, ie, a radially inner layer and a radially outer layer.
  • the optical fiber unit 10 located on the radially inner side is formed in a fan shape
  • the optical fiber unit 10 located on the radially outer side is formed in a quadrangle.
  • the binding material 2 is formed in a thin and long string shape by using a resin having high flexibility. For this reason, even if the optical fiber 1 is in a state of being bundled with the binding material 2, the optical fiber 1 is appropriately moved to an empty space in the sheath 55 while deforming the binding material 2. Therefore, the cross-sectional shape of the optical fiber unit 10 in an actual product may not be as shown in FIG. Moreover, the cross-sectional shape of the inclusion 3a is not limited to the illustrated elliptical shape. The inclusion 3a is appropriately moved to a vacant space between the plurality of optical fiber units 10 while changing the cross-sectional shape. Therefore, the cross-sectional shape of the inclusion 3a is not arranged as shown in FIG. 1, and for example, the inclusions 3a adjacent to each other may be integrated.
  • the presser winding 54 may be formed of a material having water absorption, such as a water absorbing tape.
  • the optical fiber unit 10 is a so-called intermittent adhesive tape core.
  • the intermittently bonded tape core has a plurality of optical fibers 1.
  • the plurality of optical fibers 1 are bonded to each other so as to spread in a mesh shape (spider web shape) when pulled in a direction orthogonal to the longitudinal direction.
  • one optical fiber 1 is bonded to the optical fiber 1 adjacent on one side and the other optical fiber 1 adjacent on the other side at different positions in the longitudinal direction.
  • the adjacent optical fibers 1 are bonded to each other at a certain interval in the longitudinal direction.
  • the aspect of the optical fiber unit 10 is not limited to the intermittently bonded tape core wire, and may be changed as appropriate.
  • the optical fiber unit 10 may be one in which a plurality of optical fibers 1 are simply bundled with a binding material 2.
  • the inclusion 3a is formed of a fibrous material made of polyester fiber, aramid fiber, glass fiber or the like.
  • the plurality of optical fiber units 10 and the inclusions 3a are wrapped by the presser winding 54 in a state of being twisted in an SZ shape.
  • the optical fiber unit 10 and the inclusion 3a may be spirally twisted together without being limited to the SZ shape.
  • the inclusion 3a may be a yarn having water absorbency. In this case, the waterproof performance inside the optical fiber cable 100 can be enhanced.
  • the inclusion 3 a is sandwiched between two optical fiber units 10 in the circumferential direction in a cross-sectional view. Thereby, the inclusion 3a is in contact with the plurality of optical fiber units 10.
  • the binding material 2 has an elongated string shape, and is wound around the bundle of optical fibers 1 in a spiral shape, for example. For this reason, the part of the optical fiber 1 that is not covered with the string-like binding material 2 partially contacts the inclusion 3a.
  • the optical fiber 1 usually has a structure in which a coating material such as a resin is coated around a bare optical fiber formed of glass. For this reason, the surface of the optical fiber 1 is smooth, and the friction coefficient when the optical fibers 1 are in contact with each other is relatively small.
  • the inclusion 3a is formed of a fibrous material, and the surface thereof is less smooth than the optical fiber 1. For this reason, the friction coefficient when the inclusion 3a contacts the optical fiber 1 is larger than the friction coefficient when the optical fibers 1 contact each other.
  • the inclusion 3a so as to be sandwiched between the plurality of optical fiber units 10, it is possible to increase the frictional resistance when the optical fiber units 10 move relative to each other. Thereby, the movement of the optical fiber unit 10 in the optical fiber cable 100 can be suppressed. Furthermore, by arranging the inclusion 3a so as to be sandwiched between the optical fiber units 10, when the external force acts on the optical fiber cable 100, the inclusion 3a functions as a buffer material, and the optical fiber 1 It is possible to suppress the local side pressure from acting.
  • vibration may be applied to the optical fiber cable 100 having such a configuration, or a temperature change may occur.
  • the optical fiber cable 100 is required to make it difficult for the optical fiber unit 10 to move within the sheath 55 and to increase the transmission loss of the optical fiber 1.
  • the amount of movement of the optical fiber unit 10 is required to be within a predetermined range even when a twisting-back force due to the optical fiber unit 10 and the inclusion 3a being twisted together in an SZ shape or a spiral shape acts. .
  • the inventors of the present application adjust the filling amount of the inclusions 3a in the space in the sheath 55 and the filling amount of the inclusions 3a with respect to the filling amount of the optical fiber 1, thereby achieving excellent light that satisfies the above requirements. It has been found that a fiber cable 100 can be obtained.
  • specific examples will be shown and described in detail.
  • an optical fiber unit 10 is formed by bundling intermittently bonded tape cores with a binding material 2.
  • the plurality of optical fiber units 10 were co-winded with water-absorbing yarns as inclusions 3a, and in a state where they were SZ twisted, the core 20 was formed by wrapping with a presser winding 54.
  • the optical fiber cable 100 as shown in FIG. 1 was created by accommodating this core 20 in the sheath 55.
  • the elastic modulus of the yarn which is the inclusion 3a was 1000 N / mm 2 .
  • a plurality of optical fiber units 10 were produced in which the amount of inclusions 3a included in the core 20 and the number of optical fibers 1 were changed.
  • the total value of the cross-sectional areas of the plurality of optical fibers 1 is Sw
  • the total value of the cross-sectional areas of the plurality of inclusions 3a is Sb
  • the sheath 55 is the cross-sectional area of the inner space.
  • the cross-sectional area of the inner space is Sc and the cross-sectional area of the presser winding 54 is Sw.
  • the number of optical fibers 1 and the amount of inclusions 3a included in the optical fiber cable 100 were changed so that the numerical value of Sb / Sf and the numerical value of Sb / (Sc-Sw) were changed.
  • the numerical value of Sb / Sf is referred to as “filling ratio ⁇ against fiber”
  • the numerical value of Sb / (Sc ⁇ Sw) is referred to as “filling ratio against space d”.
  • the fiber filling rate ⁇ indicates the filling rate of the inclusions 3 a in the core 20 compared to the optical fiber 1.
  • the space filling rate d indicates the filling rate of the inclusions 3 a into the internal space of the sheath 55 excluding the presser winding 54.
  • the column of “temperature characteristic” in Table 1 shows the result of the temperature characteristic test performed for each optical fiber cable 100. Specifically, the temperature of the optical fiber cable 100 under the conditions 1 to 7 was changed in the cycle of ⁇ 40 ° C. to + 70 ° C. for two cycles in accordance with the provision of “Temperature cycling” in “Telcordia Technologies Generic Requirements GR-20-CORE”. At this time, when the maximum loss fluctuation amount exceeds 0.15 dB / km, the evaluation result is NG (defective) because the evaluation result is insufficient, and the evaluation result is when the maximum loss fluctuation amount is within 0.15 dB / km. Was determined to be OK (good).
  • the temperature characteristics As shown in Table 1, with respect to the optical fiber cable 100 under the conditions 1 to 6 in which the filling ratio ⁇ to the fiber is 0.12 to 0.25 and the filling ratio d to the space is 0.08 to 0.15, the temperature characteristics The result of the test is OK (good). As a result of filling an appropriate amount of inclusions 3a in the optical fiber cable 100, the optical fiber 1 can move to some extent. As a result, even if the constituent members of the optical fiber cable 100 repeat thermal expansion or thermal contraction, it is possible to prevent the optical fiber 1 from meandering and local lateral pressure from acting on the optical fiber 1.
  • the optical fiber cable 100 vibrates by setting the filling ratio ⁇ to the fiber in the range of 0.16 to 0.25 and the filling ratio d to the space in the range of 0.10 to 0.15.
  • the temperature changes it is possible to suppress an increase in transmission loss of the optical fiber 1 while suppressing the movement of the optical fiber unit 10.
  • the core 20 may be covered with the sheath 55 by extruding a heated material that becomes the sheath 55 to the outside of the core 20 in the radial direction.
  • the constituent members in the core 20 are also heated and then cooled.
  • the thermal contraction rate of the inclusion 3a is too large, the optical fiber 1 meanders by winding the adjacent optical fiber 1 when the inclusion 3a, which has reached a high temperature, is subsequently cooled and thermally contracted greatly. May end up.
  • the thermal contraction rate of the inclusion 3a is too large, the extra length rate of the inclusion 3a becomes smaller than the extra length rate of the optical fiber 1 when the room temperature is reached, and the optical fiber unit 10 is twisted together.
  • the inclusion 3a may press the optical fiber 1 in some cases. In order to prevent such a phenomenon, it is desirable that the thermal contraction rate of the inclusion 3a is, for example, 5% or less.
  • the filling amount of the inclusion 3a within the above-described range, even if the constituent members of the optical fiber cable 100 are thermally expanded or contracted due to a temperature change, the optical fiber 1 meanders or the side pressure on the optical fiber 1 is increased. Can be suppressed.
  • the inclusion 3a has a too high thermal shrinkage rate, for example, when the inclusion 3a, which has become high temperature during the production of the optical fiber cable 100, is subsequently cooled and greatly contracted, the adjacent optical fiber 1 is involved.
  • the optical fiber 1 may meander.
  • the heat shrinkage rate of the inclusion 3a is set to 5% or less, the amount of heat shrinkage of the inclusion 3a can be reduced.
  • an increase in transmission loss due to the meandering of the optical fiber 1 or a side pressure acting on the optical fiber 1 can be suppressed.
  • the arrangement of the optical fiber unit 10 and the inclusion 3a in the sheath 55 is not limited to the illustrated example, and may be changed as appropriate.
  • a plurality of inclusions 3a may be arranged at the center (radial center) of the optical fiber cable 100.
  • the external force when an external force is applied to the optical fiber cable 100, the external force can be more reliably absorbed.
  • the inclusion 3a has water absorption, it becomes possible to improve the waterproof performance in the center.
  • the inclusion 3b disposed in the optical fiber unit 10 may be the same material as the inclusion 3a located between the optical fiber units 10 or may be a different material.
  • Sb is defined by the sum of the cross-sectional area of the inclusion 3a and the cross-sectional area of the inclusion 3b.
  • the same effect as that of the above embodiment is achieved by setting the fiber filling ratio ⁇ and the space filling ratio d including the value of Sb within the ranges shown in the above embodiment. Can be obtained.
  • the optical fiber cable 100 may include the inclusion 3b and the binding material 2. Further, the optical fiber cable 100 does not have the inclusion 3 a located between the optical fiber units 10, and may have the inclusion 3 b located in the optical fiber unit 10.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Communication Cables (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Compositions (AREA)

Abstract

複数の光ファイバを各別に有する複数の光ファイバユニットと、前記光ファイバユニットが延びる長手方向に沿って延びる繊維状の介在物と、を押さえ巻きで包んで構成されたコアと、前記コアを内部に収容するシースと、前記コアを挟んで前記シースに埋設された一対の抗張力体と、を備え、横断面視において、複数の前記光ファイバの断面積の合計値をSfとし、前記介在物の断面積の合計値をSbとし、前記シースの内部空間の断面積をScとし、前記押さえ巻きの断面積をSwとするとき、0.16≦Sb/Sf≦0.25かつ0.10≦Sb/(Sc-Sw)≦0.15である、光ファイバケーブル。

Description

光ファイバケーブル
 本発明は、光ファイバケーブルに関する。
 本願は、2017年2月20日に、日本に出願された特願2017-029056号に基づき優先権を主張し、その内容をここに援用する。
 従来から、特許文献1に示されるような光ファイバケーブルが知られている。この光ファイバケーブルは、中心部に配置された緩衝材と、緩衝材の周囲に配置された複数の光ファイバと、これら緩衝材および複数の光ファイバを内部に収容するシースと、を備えている。そしてこの構成により、光ファイバケーブルに加えられた外力を緩衝材が吸収することで、光ファイバが外力の影響を受けるのを防止することが開示されている。
日本国特開2005-10651号公報
 ところで、この種の光ファイバケーブルでは、複数の光ファイバを束ねて光ファイバユニットとし、複数の光ファイバユニットを撚り合わせた状態でシース内に収容する場合がある。この場合、光ファイバユニットの剛性によって、撚り合わされた状態を解く方向の力(撚り戻し力)が、光ファイバユニット自体に作用する。そしてこの撚り戻し力によって光ファイバユニットがシース内で移動すると、光ファイバユニットが撚り合わされた状態を保てなくなる。また、複数の光ファイバユニットをSZ状に撚り合わせた状態でシース内に収容すると、撚り戻し力も大きくなり、上記のような光ファイバユニットの移動がさらに生じやすい。
 本発明はこのような事情を考慮してなされたもので、光ファイバケーブル内での光ファイバユニットの移動を抑えることを目的とする。
 上記課題を解決するために、本発明の一態様に係る光ファイバケーブルは、複数の光ファイバを各別に有する複数の光ファイバユニットと、前記光ファイバユニットが延びる長手方向に沿って延びる繊維状の介在物と、を押さえ巻きで包んで構成されたコアと、前記コアを内部に収容するシースと、前記コアを挟んで前記シースに埋設された一対の抗張力体と、を備え、横断面視において、複数の前記光ファイバの断面積の合計値をSfとし、前記介在物の断面積の合計値をSbとし、前記シースの内部空間の断面積をScとし、前記押さえ巻きの断面積をSwとするとき、0.16≦Sb/Sf≦0.25かつ0.10≦Sb/(Sc-Sw)≦0.15となっている。
 本発明の上記態様によれば、光ファイバケーブル内における光ファイバユニットの移動を抑えることができる。
本実施形態に係る光ファイバケーブルの横断面図である。 変形例に係る光ファイバケーブルの横断面図である。
 以下、本実施形態に係る光ファイバケーブルの構成を、図1を参照しながら説明する。
 なお、図1では、各構成部材の形状を認識可能とするために、実際の製品から縮尺を適宜変更している。
 図1に示すように、光ファイバケーブル100は、複数の光ファイバユニット10を有するコア20と、コア20を内部に収容するシース55と、シース55に埋設された一対の抗張力体56(テンションメンバ)および一対の線条体57と、を備えている。
<方向定義>
 ここで本実施形態では、光ファイバユニット10は中心軸線Oに沿って延びている。この中心軸線Oに沿う方向を長手方向という。中心軸線Oに直交する光ファイバケーブル100の断面を、横断面という。
 また、横断面視(図1)において、中心軸線Oに交差する方向を径方向といい、中心軸線O周りに周回する方向を周方向という。
 シース55は、中心軸線Oを中心とした円筒状に形成されている。シース55の材質としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンエチルアクリレート共重合体(EEA)、エチレン酢酸ビニル共重合体(EVA)、エチレンプロピレン共重合体(EP)などのポリオレフィン(PO)樹脂、ポリ塩化ビニル(PVC)などを用いることができる。
 線条体57の材質としては、PPやナイロン製の円柱状ロッドなどを用いることができる。また、PPやポリエステルなどの繊維を撚り合わせた糸(ヤーン)により線条体57を形成し、線条体57に吸水性を持たせてもよい。
 一対の線条体57は、コア20を径方向で挟んで配設されている。なお、シース55に埋設される線条体57の数は、1または3以上であってもよい。
 抗張力体56の材質としては、例えば金属線(鋼線など)、抗張力繊維(アラミド繊維など)、およびFRPなどを用いることができる。
 一対の抗張力体56は、コア20を径方向で挟んで配設されている。また、一対の抗張力体56は、コア20から径方向に等間隔をあけて配設されている。なお、シース55に埋設される抗張力体56の数は、1または3以上であってもよい。
 シース55の外周面には、長手方向に沿って延びる一対の突起58が形成されている。
 突起58と線条体57とは、周方向において同等の位置に配設されている。なお、突起58は、線条体57を取り出すためにシース55を切開する際の目印となる。
 コア20は、複数の光ファイバユニット10と、繊維状の介在物3aと、を押さえ巻き(ラッピングチューブ)54で包んで構成されている。光ファイバユニット10は、複数の光ファイバ心線若しくは光ファイバ素線(以下、単に光ファイバ1という)を各別に有する。光ファイバユニット10は、複数の光ファイバ1を結束材2で束ねて構成されている。繊維状の介在物3aは、長手方向に沿って延びている。
 図1に示すように、複数の光ファイバユニット10は、径方向内側の層および径方向外側の層の二層に分けられて配置されている。横断面視において、径方向内側に位置する光ファイバユニット10は扇形に形成され、径方向外側に位置する光ファイバユニット10は四角形に形成されている。なお、図示の例に限られず、断面が円形、楕円形、若しくは多角形の光ファイバユニット10を用いても良い。
 なお、結束材2は、可撓性に富む樹脂などにより、薄く細長い紐状に形成されている。このため、光ファイバ1は、結束材2で束ねられた状態であっても、この結束材2を変形させながらシース55内の空いている空間に適宜移動する。従って、実際の製品における光ファイバユニット10の断面形状は、図1のように整っていない場合がある。
 また、介在物3aの断面形状は図示の楕円形に限られない。介在物3aは、断面形状を変化させながら複数の光ファイバユニット10の間の空いている空間に適宜移動する。従って、介在物3aの断面形状は、図1のように整っておらず、例えば近接している介在物3a同士が一体となることもある。
 押さえ巻き54は、例えば吸水テープなどの吸水性を有する材質により形成されていてもよい。
 光ファイバユニット10は、いわゆる間欠接着型テープ心線である。間欠接着型テープ心線は、複数の光ファイバ1を有する。これらの複数の光ファイバ1は、長手方向に直交する方向に引っ張られると、網目状(蜘蛛の巣状)に広がるように互いに接着されている。詳しくは、ある一つの光ファイバ1が、一方で隣り合う光ファイバ1と他方で隣り合う他の光ファイバ1とに対して、長手方向で異なる位置においてそれぞれ接着されている。さらに、隣接する光ファイバ1同士は、長手方向で一定の間隔をあけて互いに接着されている。
 なお、光ファイバユニット10の態様は間欠接着型テープ心線に限られず、適宜変更してもよい。例えば、光ファイバユニット10は、複数の光ファイバ1を単に結束材2で束ねたものであってもよい。
 介在物3aは、ポリエステル繊維、アラミド繊維、ガラス繊維などからなる繊維状の材質により形成されている。複数の光ファイバユニット10および介在物3aは、SZ状に撚り合わされた状態で、押さえ巻き54により包まれている。なお、SZ状に限らず、例えば光ファイバユニット10および介在物3aは螺旋状に撚り合わされていてもよい。
 また、介在物3aは、吸水性を有するヤーンなどであってもよい。この場合、光ファイバケーブル100の内部の防水性能を高めることができる。
 図1に示すように、横断面視において、介在物3aは2つの光ファイバユニット10に周方向で挟まれている。これにより、介在物3aは複数の光ファイバユニット10に接している。また、結束材2は細長い紐状であり、例えば螺旋状に光ファイバ1の束に巻かれている。このため、光ファイバ1のうち、紐状の結束材2に覆われていない部分は、部分的に介在物3aに接触する。
 光ファイバ1は通常、ガラスにより形成された光ファイバ裸線の周囲に、樹脂などの被覆材がコーティングされた構造となっている。このため、光ファイバ1の表面は平滑であり、光ファイバ1同士が接触した際の摩擦係数は比較的小さい。これに対して、介在物3aは繊維状の材質により形成されており、その表面は光ファイバ1と比較すると平滑性が低い。このため、介在物3aと光ファイバ1とが接触した際の摩擦係数は、光ファイバ1同士が接触した際の摩擦係数よりも大きい。
 以上のことから、介在物3aが複数の光ファイバユニット10に挟まれるように配置することで、これら光ファイバユニット10同士が相対移動する際の摩擦抵抗を大きくすることができる。これにより、光ファイバケーブル100内における光ファイバユニット10の移動を抑制することが可能となる。さらに、光ファイバユニット10同士の間に挟まれるように介在物3aを配置することで、光ファイバケーブル100に外力が作用した際に、介在物3aを緩衝材として機能させて、光ファイバ1に局所的な側圧が作用するのを抑えることができる。
 ところで、このような構成の光ファイバケーブル100に、例えば振動が加えられたり、温度変化が生じたりする場合がある。この時、光ファイバケーブル100には、光ファイバユニット10がシース55内で移動しにくく、光ファイバ1の伝送損失が増大しにくいことが求められる。特に、光ファイバユニット10および介在物3aがSZ状または螺旋状に撚り合されたことによる撚り戻し力が作用しても、光ファイバユニット10の移動量が所定の範囲内となることが求められる。ここで、本願発明者らは、シース55内の空間に対する介在物3aの充填量や、光ファイバ1の充填量に対する介在物3aの充填量を調整することにより、上記要求を満足する優れた光ファイバケーブル100が得られることを見出した。以下、具体的な実施例を示して、詳細に説明する。
(実施例)
 以下に示す実施例では、間欠接着型テープ心線を結束材2で束ねたものを光ファイバユニット10として用いた。この複数の光ファイバユニット10に、吸水性を有するヤーンを介在物3aとして縦添え(co-winding)し、これらがSZ撚りされた状態で、押さえ巻き54によって包んでコア20を作成した。そして、このコア20をシース55内に収容することで、図1に示すような光ファイバケーブル100を作成した。なお、介在物3aであるヤーンの弾性率は1000N/mmとした。
 本実施例では、コア20に含まれる介在物3aの量および光ファイバ1の数を変化させた複数の光ファイバユニット10を作成した。具体的には、光ファイバケーブル100の横断面視(図1参照)において、複数の光ファイバ1の断面積の合計値をSw、複数の介在物3aの断面積の合計値をSb、シース55の内部空間の断面積をSc、押さえ巻き54の断面積をSwとする。そして、Sb/Sfの数値およびSb/(Sc-Sw)の数値が変化するように、光ファイバケーブル100に含まれる光ファイバ1の数および介在物3aの量を変更させた。以下、Sb/Sfの数値を「対ファイバ充填率ρ」、Sb/(Sc-Sw)の数値を「対空間充填率d」という。
 なお、対ファイバ充填率ρは、コア20内における、光ファイバ1と比較した介在物3aの充填率を示している。また、対空間充填率dは、押さえ巻き54を除くシース55の内部空間に対する介在物3aの充填率を示している。
 本実施例では、対ファイバ充填率ρを0.12~0.30の範囲で変化させ、対空間充填率dを0.08~0.17の範囲で変化させた光ファイバケーブル100(条件1~7)を作成した。条件1~7の光ファイバケーブル100について、心線移動試験および温度特性試験を実施した結果を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
(心線移動試験)
 表1の「心線移動」の欄には、条件1~7の光ファイバケーブル100について行った心線移動試験の結果が示されている。具体的には、各光ファイバケーブル100を30m敷設し、振動数1.3Hz、振幅430mmで10000回振動させた。シース55内での光ファイバユニット10の移動量が20mmを超えた場合を評価結果が不充分であるとしてNG(不良)とし、光ファイバユニット10の移動量が20mm以内であった場合を評価結果が良好であるとしてOK(良好)とした。
 表1に示す通り、対ファイバ充填率ρが0.12であり、対空間充填率dが0.08である条件1については、心線移動試験の結果がNG(不良)となっている。これは、光ファイバ1に対する介在物3aの充填量およびシース55内の空間に対する介在物の充填量が少なすぎることで、介在物3aによる光ファイバユニット10の移動を抑制する作用が不充分となったためであると考えられる。また、このように介在物3aの充填量が不足している場合は、例えば光ファイバケーブル100に外力が加わった際に、介在物3aによる緩衝作用も不充分となり、光ファイバ1に局所的な側圧が作用して伝送損失の増大につながる可能性もある。
 一方、対ファイバ充填率ρが0.16~0.30の範囲であり、対空間充填率dが0.10~0.17の範囲である条件2~7については、心線移動試験の結果がOK(良好)となっている。これは、対ファイバ充填率ρおよび対空間充填率dの上記範囲が、介在物3aによって光ファイバユニット10の移動を抑制できる、好ましい範囲であることを示している。
(温度特性試験)
 表1の「温度特性」の欄には、各光ファイバケーブル100について行った温度特性試験の結果を示している。具体的には、”Telcordia Technologies Generic RequirementsGR-20-CORE”における”Temperature cycling”の規定に従って、条件1~7の光ファイバケーブル100を-40℃~+70℃の範囲で2サイクル温度変化させた。このとき、最大損失変動量が0.15dB/kmを超えた場合を評価結果が不充分であるとしてNG(不良)とし、最大損失変動量が0.15dB/km以内であった場合を評価結果が良好であるとしてOK(良好)とした。
 表1に示す通り、対ファイバ充填率ρが0.12~0.25であり対空間充填率dが0.08~0.15である条件1~6の光ファイバケーブル100については、温度特性試験の結果がOK(良好)となっている。光ファイバケーブル100内に適当な量の介在物3aを充填した結果、光ファイバ1がある程度移動することが可能となった。これにより、光ファイバケーブル100の構成部材が熱膨張若しくは熱収縮を繰り返したとしても、光ファイバ1が蛇行したり光ファイバ1に局所的な側圧が作用したりするのが抑えられた。
 一方、対ファイバ充填率ρが0.30であり対空間充填率dが0.17である条件7については、温度特性試験結果がNG(不良)となっている。光ファイバケーブル100内に介在物3aを過剰に充填した結果、光ファイバ1の移動が過度に抑制されたためである。これにより、光ファイバケーブル100の構成部材が熱膨張および熱収縮を繰り返した際、光ファイバ1が蛇行したり、光ファイバ1に局所的な側圧が作用したりして、伝送損失が増大した。
 また、光ファイバケーブル100内に介在物3aを過剰に充填すると、介在物3aが光ファイバ1に及ぼす側圧によって、光ファイバ1の伝送損失が増大することも考えられる。
 以上のことから、対ファイバ充填率ρを0.16~0.25の範囲内とし、対空間充填率dを0.10~0.15の範囲内とすることで、光ファイバケーブル100が振動したり、温度変化したりしても、光ファイバユニット10の移動を抑えつつ、光ファイバ1の伝送損失が増大するのを抑えることが可能となる。
(介在物の弾性率)
 次に、介在物3aの好ましい弾性率の範囲について検討した結果を説明する。
 本実施例では、上記した条件4において、介在物3aの弾性率を300~3000N/mmの範囲で変化させ、前記温度特性試験を行った。この試験の結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、介在物3aの弾性率が300N/mmである場合、温度特性試験の結果がNG(不良)となっている。介在物3aが柔らかすぎることで充分な緩衝作用が得られず、光ファイバ1の伝送損失が増大したためである。また、介在物3aの弾性率が2500N/mm以上である場合も、温度特性試験の結果がNG(不良)となっている。介在物3aが硬すぎることで、この介在物3aが光ファイバ1に側圧を及ぼした結果、光ファイバ1の伝送損失が増大したためである。
 一方で、介在物3aの弾性率が500~2000N/mmの範囲内では、温度特性試験の結果がOK(良好)となっている。介在物3aが充分な緩衝機能を発揮できる程度の弾性率を有しているためである。これにより、光ファイバケーブル100の構成部材が熱膨張および熱収縮を繰り返した際に、光ファイバ1が蛇行したり光ファイバ1に局所的な側圧が作用したりするのを抑えることができる。従って、介在物3aの弾性率は500N/mm以上2000N/mm以下であることが好ましい。
(介在物の熱収縮率)
 光ファイバケーブル100の製造工程では、コア20の径方向外側に、シース55となる加熱された材料を押し出すことで、シース55でコア20を被覆する場合がある。この場合、コア20内の構成部材も加熱され、その後冷却される。このとき、介在物3aの熱収縮率が大きすぎると、高温となった介在物3aがその後冷却されて大きく熱収縮する際に、隣接する光ファイバ1を巻き込むことで、この光ファイバ1が蛇行してしまう場合がある。
 また、介在物3aの熱収縮率が大きすぎると、常温となった際に介在物3aの余長率が光ファイバ1の余長率よりも小さくなり、光ファイバユニット10を撚り合わせた際に、介在物3aが光ファイバ1を圧迫してしまう場合がある。
 このような現象を防ぐため、介在物3aの熱収縮率は、例えば5%以下とすることが望ましい。
 以上説明したように、0.16≦Sb/Sfおよび0.10≦Sb/(Sc-Sw)を満たすように介在物3aの充填量を調整することで、光ファイバケーブル100が振動した場合であっても、介在物3aによって光ファイバユニット10の移動を抑制することができる。また、Sb/Sf≦0.25およびSb/(Sc-Sw)≦0.15を満たすように介在物3aの充填量を調整することで、シース55内に介在物3aを過剰に充填することで光ファイバ1に側圧が作用し、伝送損失が増大してしまうのを抑えることができる。
 さらに、介在物3aの充填量を上記した範囲内とすることで、温度変化によって光ファイバケーブル100の構成部材が熱膨張若しくは熱収縮したとしても、光ファイバ1が蛇行したり光ファイバ1に側圧が作用したりするのを抑えることができる。
 また、介在物3aの弾性率を2000N/mm以下とすることにより、介在物3aが硬すぎることで光ファイバ1に作用する側圧が増大するのが抑えられる。さらに、介在物3aの弾性率を500N/mm以上とすることにより、介在物3aが柔らかすぎることで介在物3aによる緩衝作用が不充分となるのを防ぐことができる。
 また、介在物3aの熱収縮率が大きすぎると、例えば光ファイバケーブル100の製造中に高温となった介在物3aがその後冷却されて大きく熱収縮する際に、隣接する光ファイバ1を巻き込むことで、この光ファイバ1が蛇行してしまう場合がある。介在物3aの熱収縮率を5%以下とすることで、介在物3aの熱収縮量を小さくすることができる。これにより、光ファイバケーブル100の製造時に介在物3aが大きく熱収縮して、光ファイバ1が蛇行したり、介在物3aが光ファイバ1を圧迫したりするのを抑えることができる。また、光ファイバ1が蛇行したり光ファイバ1に側圧が作用することによる、伝送損失の増加を抑えることができる。
 また、横断面視において、繊維状の介在物3aが複数の光ファイバユニット10に挟まれていることで、例えば介在物3aを挟まずに光ファイバユニット10同士が接触している場合と比較して、これら光ファイバユニット10同士が相対移動する際の摩擦抵抗を大きくすることができる。これにより、シース55内で光ファイバユニット10が移動するのを、より確実に抑制することができる。
 さらに、光ファイバユニット10同士の間に介在物3aを配置することで、介在物3aを緩衝材としてより確実に機能させることができる。これにより、例えば光ファイバケーブル100に外力が加わった場合に、光ファイバユニット10同士が圧接されて光ファイバ1に局所的な側圧が作用するのを抑えることができる。
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、シース55内における光ファイバユニット10および介在物3aの配置は図示の例に限られず、適宜変更してもよい。例えば、光ファイバケーブル100の中心部(径方向の中央部)に、複数の介在物3aを配置してもよい。この場合、光ファイバケーブル100に外力が加えられた際に、より確実にこの外力を吸収することができる。さらに、介在物3aが吸水性を有する場合は、中心部における防水性能を高めることが可能となる。
 また、光ファイバケーブル100は、例えば図2に示すように、光ファイバユニット10内に配置された介在物3bを備えていてもよい。このような光ファイバユニット10は、介在物3bを光ファイバ1とともに結束材2で束ねることで形成することができる。介在物3bは、横断面視において光ファイバユニット10の中心部に位置していてもよい。
 この場合、例えば光ファイバユニット10に、圧縮するような外力が作用した場合に、光ファイバユニット10内に配置された介在物3bによってこの外力を吸収することができる。なお、介在物3bは、光ファイバユニット10の中心部に位置していなくてもよい。
 光ファイバユニット10内に配置された介在物3bは、光ファイバユニット10同士の間に位置する介在物3aと同じ材質であってもよく、異なる材質であってもよい。なお、光ファイバユニット10内に介在物3bが配置される場合には、介在物3aの断面積および介在物3bの断面積の和によってSbが定義される。図2の光ファイバケーブル100においても、このSbの値を含む対ファイバ充填率ρと対空間充填率dとを前記実施形態で示した範囲内とすることで、前記実施形態と同様の作用効果を得ることができる。
 また、光ファイバケーブル100が備える複数の光ファイバユニット10のうち少なくとも一部が介在物3bおよび結束材2を有していても良い。
 また、光ファイバケーブル100は、光ファイバユニット10同士の間に位置する介在物3aを有さず、光ファイバユニット10内に位置する介在物3bを有していても良い。
 本実施形態の光ファイバケーブル100によれば、光ファイバユニット10が、介在物3bおよび複数の光ファイバ1を束ねる結束材2を備えている。
 この構成により、例えば複数の光ファイバユニット10を押さえ巻き54で包む際に、介在物3bが光ファイバ1とともに結束材2によって束ねられているため、介在物3bが他の光ファイバユニット10や製造装置などに絡まるのを防いで、光ファイバケーブル100をより安定して製造することが可能となる。
 さらに、それぞれの光ファイバユニット10内に介在物3bが位置することとなるため、シース55内で介在物3bが偏って配置されるのを防ぎ、介在物3bによるシース55内での防水効果をより確実に奏功させることができる。これにより、シース55内に収容する介在物3bの本数を減らしたり、介在物3bとして吸水性のグレードが低い材質を用いたりすることで、コストの低減を図ることも可能となる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
 1…光ファイバ 2…結束材 3a、3b…介在物 10…光ファイバユニット 20…コア 54…押さえ巻き 55…シース 56…抗張力体 57…線条体 100…光ファイバケーブル

Claims (5)

  1.  複数の光ファイバを各別に有する複数の光ファイバユニットと、前記光ファイバユニットが延びる長手方向に沿って延びる繊維状の介在物と、を押さえ巻きで包んで構成されたコアと、
     前記コアを内部に収容するシースと、
     前記コアを挟んで前記シースに埋設された一対の抗張力体と、を備え、
     横断面視において、複数の前記光ファイバの断面積の合計値をSfとし、前記介在物の断面積の合計値をSbとし、前記シースの内部空間の断面積をScとし、前記押さえ巻きの断面積をSwとするとき、
     0.16≦Sb/Sf≦0.25かつ0.10≦Sb/(Sc-Sw)≦0.15である、光ファイバケーブル。
  2.  前記介在物の弾性率が500N/mm以上2000N/mm以下である、請求項1に記載の光ファイバケーブル。
  3.  前記介在物の熱収縮率が5%以下である、請求項1または2に記載の光ファイバケーブル。
  4.  横断面視において、前記介在物が複数の前記光ファイバユニットに挟まれている、請求項1から3のいずれか1項に記載の光ファイバケーブル。
  5.  複数の前記光ファイバユニットのうち少なくとも一部が、前記介在物および前記複数の光ファイバを束ねる結束材を備えている、請求項1から4のいずれか1項に記載の光ファイバケーブル。
PCT/JP2018/003976 2017-02-20 2018-02-06 光ファイバケーブル WO2018150947A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/481,768 US10884208B2 (en) 2017-02-20 2018-02-06 Optical fiber cable
KR1020197022086A KR102050361B1 (ko) 2017-02-20 2018-02-06 광섬유 케이블
CA3051607A CA3051607C (en) 2017-02-20 2018-02-06 Optical fiber cable
EP18753890.5A EP3584617B1 (en) 2017-02-20 2018-02-06 Optical fiber cable
AU2018222025A AU2018222025B2 (en) 2017-02-20 2018-02-06 Optical fiber cable
ES18753890T ES2937932T3 (es) 2017-02-20 2018-02-06 Cable de fibra óptica
CN201880010916.1A CN110268297B (zh) 2017-02-20 2018-02-06 光纤缆线
SG11201906136SA SG11201906136SA (en) 2017-02-20 2018-02-06 Optical fiber cable
SA519402454A SA519402454B1 (ar) 2017-02-20 2019-08-18 كبل ألياف ضوئية

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-029056 2017-02-20
JP2017029056A JP6255120B1 (ja) 2017-02-20 2017-02-20 光ファイバケーブル

Publications (1)

Publication Number Publication Date
WO2018150947A1 true WO2018150947A1 (ja) 2018-08-23

Family

ID=60860193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003976 WO2018150947A1 (ja) 2017-02-20 2018-02-06 光ファイバケーブル

Country Status (11)

Country Link
US (1) US10884208B2 (ja)
EP (1) EP3584617B1 (ja)
JP (1) JP6255120B1 (ja)
KR (1) KR102050361B1 (ja)
CN (1) CN110268297B (ja)
AU (1) AU2018222025B2 (ja)
CA (1) CA3051607C (ja)
ES (1) ES2937932T3 (ja)
SA (1) SA519402454B1 (ja)
SG (1) SG11201906136SA (ja)
WO (1) WO2018150947A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400130A (zh) * 2018-09-11 2021-02-23 株式会社藤仓 光纤电缆
WO2021117843A1 (en) * 2019-12-11 2021-06-17 Fujikura Ltd. Optical fiber cable
WO2022074816A1 (ja) * 2020-10-09 2022-04-14 日本電信電話株式会社 光ケーブル

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068114B2 (ja) * 2018-09-11 2022-05-16 株式会社フジクラ 光ファイバケーブル
JP7068131B2 (ja) * 2018-10-15 2022-05-16 株式会社フジクラ 光ファイバケーブル
JP7068142B2 (ja) * 2018-11-09 2022-05-16 株式会社フジクラ 光ファイバケーブル
EP3796060B1 (en) * 2018-10-11 2022-12-28 Fujikura Ltd. Optical fiber cable
US20230251445A1 (en) * 2020-10-30 2023-08-10 Sumitomo Electric Industries, Ltd. Optical fiber cable and optical fiber unit
CN117970584A (zh) * 2024-02-21 2024-05-03 杭州金龙光电股份有限公司 一种抢险光缆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177304A (ja) * 1990-11-13 1992-06-24 Fukuoka Cloth Kogyo Kk 走水防止光ケーブル
JPH11203955A (ja) * 1998-01-16 1999-07-30 Sumitomo Electric Ind Ltd 光複合架空地線
JP2004069939A (ja) * 2002-08-05 2004-03-04 Furukawa Electric Co Ltd:The 光ファイバケーブル
JP2004139068A (ja) * 2002-09-26 2004-05-13 Fujikura Ltd 光ファイバケーブル及びその構造
JP2005010651A (ja) 2003-06-20 2005-01-13 Fujikura Ltd 光ファイバケーブル
JP2015215447A (ja) * 2014-05-09 2015-12-03 株式会社フジクラ 光ファイバケーブル
US20150370026A1 (en) * 2014-06-23 2015-12-24 Corning Optical Communications LLC Optical fiber cable
JP2017029056A (ja) 2015-07-31 2017-02-09 日清製粉株式会社 即席麺の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0169647B1 (en) 1984-06-19 1988-08-17 Telephone Cables Limited Optical fibre cables
US5671441A (en) 1994-11-29 1997-09-23 International Business Machines Corporation Method and apparatus for automatic generation of I/O configuration descriptions
DE69943330D1 (de) * 1998-02-23 2011-05-19 Draka Comteq Bv Verbundbauelemente mit thermotropem flüssigkristallinem Polymer Verstärkung für faseroptische Kabel
JP2001194567A (ja) 2000-01-11 2001-07-19 Sumitomo Electric Ind Ltd 光ファイバケーブル
US6671441B1 (en) * 2000-08-22 2003-12-30 Fitel Usa Corp. Optical cabling apparatus having improved dry filling compound and method for making
US6749446B2 (en) 2001-10-10 2004-06-15 Alcatel Optical fiber cable with cushion members protecting optical fiber ribbon stack
JP2004184546A (ja) 2002-11-29 2004-07-02 Fujikura Ltd 光ケーブル
US7421169B2 (en) 2003-06-20 2008-09-02 Fujikura Ltd. Optical fiber cable
JP2005068617A (ja) 2003-08-28 2005-03-17 Toray Monofilament Co Ltd ケーブル部材用ポリエステルモノフィラメント
JP4728132B2 (ja) 2006-02-01 2011-07-20 日本電信電話株式会社 光コード
KR100872229B1 (ko) * 2006-12-06 2008-12-05 엘에스전선 주식회사 중심멤버 구조가 개선된 루즈튜브형 광케이블
US7724998B2 (en) 2007-06-28 2010-05-25 Draka Comteq B.V. Coupling composition for optical fiber cables
WO2009034667A1 (en) 2007-09-12 2009-03-19 Fujikura Ltd. Loose tube optical fiber cable
CA2769324A1 (en) * 2009-07-31 2011-02-03 Corning Cable Systems Llc Optical fiber cables
US8818153B2 (en) 2010-06-22 2014-08-26 Sumitomo Electric Industries, Ltd. Opto-electro hybrid cable having electronic wires and optical fibers
JP5581841B2 (ja) 2010-06-22 2014-09-03 住友電気工業株式会社 光電気複合ケーブル
US8953916B2 (en) * 2011-06-22 2015-02-10 Corning Cable Systems Llc Multi-fiber, fiber optic cable assemblies providing constrained optical fibers within an optical fiber sub-unit, and related fiber optic components, cables, and methods
JP5840902B2 (ja) 2011-09-05 2016-01-06 株式会社フジクラ ルースチューブ型光ファイバケーブル
FR2998176B1 (fr) * 2012-11-16 2015-01-16 Univ Blaise Pascal Clermont Ii Composition de polysaccharide sulfate
JP6015542B2 (ja) 2013-04-25 2016-10-26 日立金属株式会社 光電気複合ケーブル
JP6586925B2 (ja) * 2016-06-13 2019-10-09 住友電気工業株式会社 光ファイバケーブル

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177304A (ja) * 1990-11-13 1992-06-24 Fukuoka Cloth Kogyo Kk 走水防止光ケーブル
JPH11203955A (ja) * 1998-01-16 1999-07-30 Sumitomo Electric Ind Ltd 光複合架空地線
JP2004069939A (ja) * 2002-08-05 2004-03-04 Furukawa Electric Co Ltd:The 光ファイバケーブル
JP2004139068A (ja) * 2002-09-26 2004-05-13 Fujikura Ltd 光ファイバケーブル及びその構造
JP2005010651A (ja) 2003-06-20 2005-01-13 Fujikura Ltd 光ファイバケーブル
JP2015215447A (ja) * 2014-05-09 2015-12-03 株式会社フジクラ 光ファイバケーブル
US20150370026A1 (en) * 2014-06-23 2015-12-24 Corning Optical Communications LLC Optical fiber cable
JP2017029056A (ja) 2015-07-31 2017-02-09 日清製粉株式会社 即席麺の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584617A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400130A (zh) * 2018-09-11 2021-02-23 株式会社藤仓 光纤电缆
US11592634B2 (en) 2018-09-11 2023-02-28 Fujikura Ltd. Optical fiber cable
CN112400130B (zh) * 2018-09-11 2023-04-11 株式会社藤仓 光纤电缆
WO2021117843A1 (en) * 2019-12-11 2021-06-17 Fujikura Ltd. Optical fiber cable
TWI759001B (zh) * 2019-12-11 2022-03-21 日商藤倉股份有限公司 光纖電纜
JP2022544424A (ja) * 2019-12-11 2022-10-18 株式会社フジクラ 光ファイバケーブル
JP7307859B2 (ja) 2019-12-11 2023-07-12 株式会社フジクラ 光ファイバケーブル
US11782228B2 (en) 2019-12-11 2023-10-10 Fujikura Ltd. Optical fiber cable
WO2022074816A1 (ja) * 2020-10-09 2022-04-14 日本電信電話株式会社 光ケーブル

Also Published As

Publication number Publication date
JP6255120B1 (ja) 2017-12-27
CN110268297B (zh) 2020-02-21
AU2018222025B2 (en) 2020-01-16
EP3584617A1 (en) 2019-12-25
JP2018136376A (ja) 2018-08-30
US10884208B2 (en) 2021-01-05
CA3051607C (en) 2020-06-30
AU2018222025A1 (en) 2019-09-05
CN110268297A (zh) 2019-09-20
US20190391353A1 (en) 2019-12-26
EP3584617B1 (en) 2023-01-11
EP3584617A4 (en) 2020-12-02
SG11201906136SA (en) 2019-08-27
KR102050361B1 (ko) 2019-11-29
ES2937932T3 (es) 2023-04-03
CA3051607A1 (en) 2018-08-23
KR20190095485A (ko) 2019-08-14
SA519402454B1 (ar) 2022-06-06

Similar Documents

Publication Publication Date Title
WO2018150947A1 (ja) 光ファイバケーブル
EP2761350A1 (en) Fiber optic ribbon cable having enhanced ribbon stack coupling and methods thereof
AU2022202391B2 (en) Optical fiber cable
AU2018277435A1 (en) Optical fiber cable and method of manufacturing optical fiber cable
JP2022100376A (ja) 光ファイバケーブル
JP7184526B2 (ja) 光ファイバケーブル
JP6719175B2 (ja) 光ファイバケーブル
JP7068114B2 (ja) 光ファイバケーブル
JP7068131B2 (ja) 光ファイバケーブル
JP7516241B2 (ja) 光ファイバケーブル
EP4288818A1 (en) Annealed subunits in bundled drop assembly and process of annealing subunits in bundled drop assembly
CA3220819A1 (en) Optical fiber cable and method of manufacturing optical fiber cable
JP2005010651A (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3051607

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197022086

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018222025

Country of ref document: AU

Date of ref document: 20180206

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018753890

Country of ref document: EP