WO2018078788A1 - 裏面入射型受光素子及び光モジュール - Google Patents

裏面入射型受光素子及び光モジュール Download PDF

Info

Publication number
WO2018078788A1
WO2018078788A1 PCT/JP2016/082033 JP2016082033W WO2018078788A1 WO 2018078788 A1 WO2018078788 A1 WO 2018078788A1 JP 2016082033 W JP2016082033 W JP 2016082033W WO 2018078788 A1 WO2018078788 A1 WO 2018078788A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light receiving
substrate
receiving element
type
Prior art date
Application number
PCT/JP2016/082033
Other languages
English (en)
French (fr)
Inventor
亮太 竹村
伸夫 大畠
圭史 笹畑
和樹 山路
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680090354.7A priority Critical patent/CN109844963B/zh
Priority to US16/306,788 priority patent/US10553742B2/en
Priority to PCT/JP2016/082033 priority patent/WO2018078788A1/ja
Priority to JP2018547021A priority patent/JP6658910B2/ja
Publication of WO2018078788A1 publication Critical patent/WO2018078788A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Definitions

  • the present invention relates to a back-illuminated light receiving element and an optical module used for optical fiber communication and the like.
  • the structure of the semiconductor light receiving element is a front-illuminated type in which light is incident from the surface side of the epitaxial growth layer on the semiconductor substrate, an end-face incident type in which light is incident from the side surface of the epitaxial growth layer, and a back-side incident in which light is incident from the back side of the semiconductor substrate. Broadly divided into types.
  • a semiconductor light receiving element can obtain light receiving sensitivity only in a pn junction region, and the larger the size, the easier it is to align the light and the better the mountability.
  • the pn junction region is increased, the element capacitance is increased and the time constant is increased, which is disadvantageous in terms of high-speed response.
  • the back-illuminated type light receiving element can easily reduce the parasitic capacitance, the pn junction region can be increased correspondingly, and both easy mounting and high speed operation can be easily achieved by reducing the element capacitance. Therefore, it has a general structure especially for high-speed communication of 10 Gbps or more.
  • the back-illuminated light receiving element easily obtains high quantum efficiency because light incident from the back side of the substrate is reflected by the electrode metal mirror and returned to the absorption layer again to contribute to light absorption.
  • An optical module using such a back-illuminated type light receiving element is disclosed (for example, see Patent Documents 1 and 2).
  • the anode / cathode of the back-illuminated light receiving element was formed on the front side of the substrate. Therefore, the anode / cathode is die-bonded to the metal pattern formed on the submount using solder or Au bumps, and a wire is struck on each metal pattern. However, since it is necessary to form a pattern for hitting the wire on the submount, there is a problem that the size of the submount increases.
  • the wiring pattern on the submount having a different dielectric constant is passed from the Au wire. For this reason, there is a problem that the number of high-frequency reflection points increases, causing resonance and lowering the reception sensitivity.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a back-illuminated light receiving element and an optical module that can reduce the size and improve the receiving sensitivity.
  • a back-illuminated light receiving element includes a substrate having a front surface and a back surface facing the front surface, and an n-type layer, a multiplication layer, a p-type electric field control layer, a light absorption layer, And a window layer, a p-type region formed in a part of the window layer, an anode electrode formed on the p-type region and connected to the p-type region, and an anode pad formed on the back surface And a cathode pad, wherein the first and second connection holes penetrate the substrate, the third connection hole penetrates from the window layer to the n-type layer, and the cathode pad is the first connection hole.
  • the anode pad is electrically connected to the anode electrode through the second and third connection holes, and has a light receiving region on the back surface.
  • the anode pad and the cathode pad are formed on the back side of the substrate, a wire for connecting to other circuit components can be directly hit on the back side of the substrate of the back-illuminated type light receiving element. This eliminates the need for a pattern on the submount, thereby reducing the size of the submount. In addition, since the high frequency reflection point is eliminated and resonance or the like hardly occurs, the reception sensitivity can be improved.
  • a back-illuminated light receiving element and an optical module according to an embodiment of the present invention will be described with reference to the drawings.
  • the same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.
  • FIG. 1 is a cross-sectional view showing a back-illuminated light receiving element according to Embodiment 1 of the present invention.
  • the substrate 1 is a semi-insulating InP substrate having a front surface and a back surface facing the front surface.
  • An n-type layer 2, an AlInAs multiplication layer 3, an InP p-type electric field control layer 4, an InGaAs light absorption layer 5, and an InP window layer 6 are sequentially stacked on the surface of the substrate 1.
  • a p-type region 7 is formed in part of the window layer 6.
  • An anode electrode 8 is formed on the p-type region 7 and connected to the p-type region 7.
  • An anode pad 9 and a cathode pad 10 are formed on the back surface of the substrate 1.
  • First and second connection holes 11 and 12 penetrating the substrate 1 are formed by etching.
  • a third connection hole 13 penetrating from the window layer 6 to the n-type layer 2 is formed by etching so as to be at least partially connected to the second connection hole 12.
  • the upper surface of the InP window layer 6 and the inner surface of the third connection hole 13 are covered with a passivation film 14 such as SiN.
  • the cathode pad 10 is electrically connected to the n-type layer 2 through the first connection hole 11.
  • the anode pad 9 is electrically connected to the anode electrode 8 through the anode wiring 15 in the second connection hole 12 and the third connection hole 13.
  • a light receiving region 16 is provided on the back surface of the substrate 1.
  • FIG. 2 is a plan view showing the optical module according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view showing the main part of the optical module according to Embodiment 1 of the present invention.
  • a submount 18, a TIA 19 (transimpedance amplifier), and a capacitor 20 are fixed on a carrier 17 of a can type package with solder.
  • the back-illuminated light receiving element 21 is fixed on the submount 18 with the light receiving region 16 facing upward.
  • the anode pad 9 is connected to the bonding pad 23 of the TIA 19 by the Au wire 22.
  • the cathode pad 10 is connected to the bonding pad 25 of the capacitor 20 by the Au wire 24.
  • the capacitor 20 is connected to the lead terminal 27 by the Au wire 26.
  • the TIA 19 is connected to a lead terminal 29 by an Au wire 28.
  • the present invention is not limited thereto, and the cathode pad 10 and the anode pad 9 of the back-illuminated light receiving element 21 may be connected to other circuit components such as a resistor or a lead terminal.
  • FIG. 4 is a perspective view showing an optical module using a back-illuminated light receiving element according to a comparative example.
  • the anode / cathode of the back-illuminated light receiving element 21 according to the comparative example is formed on the substrate surface side. Therefore, it is necessary to form metal patterns 30 and 31 for pulling out the anode / cathode and hitting a wire on the submount 18, so that the size of the submount 18 is increased. In addition, the number of high-frequency reflection points increases, causing resonance and lowering the reception sensitivity.
  • the anode pad 9 and the cathode pad 10 are formed on the back side of the substrate, so that wires for connecting to other circuit components are provided as the back-illuminated light receiving element. 21 can be directly hit on the back side of the substrate. Thereby, since the pattern on the submount 18 becomes unnecessary, the size of the submount 18 can be reduced. In addition, since the high frequency reflection point is eliminated and resonance or the like hardly occurs, the reception sensitivity can be improved.
  • the p-type electric field control layer 4 may be AlInAs.
  • the light absorption layer 5 may be InGaAsP instead of InGaAs as long as the material has a small band gap with respect to incident light.
  • the window layer 6 may be made of AlInAs, AlGaInAs, InGaAsP or the like as long as it has a large band gap with respect to incident light.
  • AlGaInAs, InGaAsP, InGaAs, or the like may be formed between the p-type region 7 and the anode electrode 8 to lower the contact resistance.
  • An AR coat may be formed partially on the light receiving region 16 with an insulating film or the like.
  • the manufacturing method of the p-type region 7 is not particularly limited, and may be formed by thermal diffusion, ion implantation, or the like.
  • FIG. FIG. 5 is a cross-sectional view showing a back-illuminated light receiving element according to Embodiment 2 of the present invention.
  • the light absorption layer to the n-type layer are etched and buried with a semi-insulating layer 32 containing Fe—InP or Ru—InP.
  • the third connection hole 13 is formed in the semi-insulating layer 32.
  • FIG. FIG. 6 is a cross-sectional view showing a back-illuminated light receiving element according to Embodiment 3 of the present invention.
  • An etching stopper layer 33 that is not InP is inserted between the n-type layer 2 and the multiplication layer 3. Selective etching is possible when the second connection hole 12 is formed by etching from the substrate side and when the third connection hole 13 is formed by etching from the epitaxial surface side. For this reason, the 2nd and 3rd connection holes 12 and 13 can be formed easily. Other configurations and effects are the same as those of the first embodiment.
  • FIG. 7 is a sectional view showing a back-illuminated light receiving element according to the fourth embodiment of the present invention.
  • An insulating film 34 is formed between the substrate 1 and the anode pad 9 and the cathode pad 10.
  • substrate can be used.
  • the anode pad 9 and the cathode pad 10 can be formed regardless of the polarity of the substrate, the fabrication becomes easy.
  • Other configurations and effects are the same as those of the third embodiment.
  • FIG. FIG. 8 is a sectional view showing a back-illuminated light receiving element according to the fifth embodiment of the present invention.
  • the second and third connection holes 12 and 13 penetrate from the substrate 1 to the window layer 6 in a continuous manner. This eliminates the need for etching from both sides of the substrate, thus facilitating production.
  • Other configurations and effects are the same as those of the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

基板(1)は表面と表面に対向する裏面とを有する。基板(1)の表面にn型層(2)、増倍層(3)、p型電界制御層(4)、光吸収層(5)、及び窓層(6)が順に積層されている。窓層(6)の一部にp型領域(7)が形成されている。アノード電極(8)がp型領域(7)の上に形成され、p型領域(7)に接続されている。アノードパッド(9及びカソードパッド(10)が基板(1)の裏面に形成されている。第1及び第2の接続孔(11,12)が基板(1)を貫通する。第3の接続孔(13)が窓層(6)からn型層(2)まで貫通する。カソードパッド(10)は第1の接続孔(11)を介してn型層(2)に電気的に接続されている。アノードパッド(9)は第2及び第3の接続孔(12,13)を介してアノード電極8に電気的に接続されている。基板(1)の裏面に受光領域(16)を有する。

Description

裏面入射型受光素子及び光モジュール
 本発明は、光ファイバ通信等に用いられる裏面入射型受光素子及び光モジュールに関する。
 半導体受光素子の構造は、半導体基板上のエピタキシャル成長層の表面側から光を入射する表面入射型、エピタキシャル成長層の側面から光を入射する端面入射型、半導体基板の裏面側から光を入射する裏面入射型に大別される。
 一般的に、半導体受光素子はpn接合領域でのみ受光感度を得ることができ、そのサイズが大きい方が光を調芯しやすく、実装性に優れている。一方、pn接合領域が大きくなると素子容量が増加し時定数が大きくなるため、高速応答性の面では不利である。
 裏面入射型受光素子は寄生容量を低減しやすいため、その分pn接合領域を大きくすることができ、実装の容易性と素子容量低減による高速動作化を両立しやすい。そのため、特に10Gbps以上の高速通信用では一般的な構造となっている。また、裏面入射型受光素子は、基板裏面側から入射した光を、電極メタルミラーで反射させ再度吸収層に戻し光吸収に寄与させるため、高い量子効率を得やすい。このような裏面入射型受光素子を用いた光モジュールが開示されている(例えば、特許文献1,2参照)。
日本特開2014-192510号公報 日本特開2011-253904号公報
 裏面入射型受光素子のアノード・カソードは基板の表面側に形成されていた。従って、アノード・カソードはサブマウントに形成されたメタルパターンに半田又はAuバンプ等を用いてダイボンドされ、それぞれのメタルパターンにワイヤが打たれる。しかし、ワイヤを打つためのパターンをサブマウント上に形成する必要があるため、サブマウントのサイズが大きくなるという問題があった。
 また、TIA又はキャパシタなどの他の回路部品と裏面入射型受光素子との接続経路において、Auワイヤから誘電率の異なるサブマウント上の配線パターンを通る。このため、高周波的な反射点が増え、共振の原因になり受信感度を低下させるという問題があった。
 本発明は、上述のような課題を解決するためになされたもので、その目的はサイズを低減し、受信感度を向上させることができる裏面入射型受光素子及び光モジュールを得るものである。
 本発明に係る裏面入射型受光素子は、表面と前記表面に対向する裏面とを有する基板と、前記表面に順に積層されたn型層、増倍層、p型電界制御層、光吸収層、及び窓層と、前記窓層の一部に形成されたp型領域と、前記p型領域の上に形成され、前記p型領域に接続されたアノード電極と、前記裏面に形成されたアノードパッド及びカソードパッドとを備え、第1及び第2の接続孔が前記基板を貫通し、第3の接続孔が前記窓層から前記n型層まで貫通し、前記カソードパッドは前記第1の接続孔を介して前記n型層に電気的に接続され、前記アノードパッドは前記第2及び第3の接続孔を介して前記アノード電極に電気的に接続され、前記裏面に受光領域を有することを特徴とする。
 本発明では、アノードパッド及びカソードパッドが基板裏面側に形成されているため、他の回路部品に接続するためのワイヤを裏面入射型受光素子の基板裏面に直接的に打つことができる。これにより、サブマウント上のパターンが不要となるため、サブマウントのサイズを小さくすることができる。また、高周波的な反射点が無くなり、共振等が起き難くなるため、受信感度を向上させることができる。
本発明の実施の形態1に係る裏面入射型受光素子を示す断面図である。 本発明の実施の形態1に係る光モジュールを示す平面図である。 本発明の実施の形態1に係る光モジュールの主要部を示す斜視図である。 比較例に係る裏面入射型受光素子を使用した光モジュールを示す斜視図である。 本発明の実施の形態2に係る裏面入射型受光素子を示す断面図である。 本発明の実施の形態3に係る裏面入射型受光素子を示す断面図である。 本発明の実施の形態4に係る裏面入射型受光素子を示す断面図である。 本発明の実施の形態5に係る裏面入射型受光素子を示す断面図である。
 本発明の実施の形態に係る裏面入射型受光素子及び光モジュールについて図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係る裏面入射型受光素子を示す断面図である。基板1は表面と表面に対向する裏面とを有する半絶縁性InP基板である。基板1の表面にn型層2、AlInAsの増倍層3、InPのp型電界制御層4、InGaAsの光吸収層5、及びInPの窓層6が順に積層されている。窓層6の一部にp型領域7が形成されている。アノード電極8がp型領域7の上に形成され、p型領域7に接続されている。
 アノードパッド9及びカソードパッド10が基板1の裏面に形成されている。基板1を貫通する第1及び第2の接続孔11,12がエッチングにより形成されている。窓層6からn型層2まで貫通する第3の接続孔13が、第2の接続孔12と少なくとも一部が繋がるようにエッチングにより形成されている。InPの窓層6の上面と第3の接続孔13の内側面は、SiNなどのパッシベーション膜14で覆われている。
 カソードパッド10は第1の接続孔11を介してn型層2に電気的に接続されている。アノードパッド9は第2の接続孔12及び第3の接続孔13内のアノード配線15を介してアノード電極8に電気的に接続されている。アノードパッド9及びカソードパッド10以外の領域において基板1の裏面に受光領域16を有する。
 図2は、本発明の実施の形態1に係る光モジュールを示す平面図である。図3は、本発明の実施の形態1に係る光モジュールの主要部を示す斜視図である。キャン型パッケージのキャリア17上にサブマウント18、TIA19(トランスインピーダンス・アンプ)及びキャパシタ20が半田で固定されている。裏面入射型受光素子21が受光領域16を上にしてサブマウント18上に固定されている。アノードパッド9がAuワイヤ22によりTIA19のボンディングパッド23に接続されている。カソードパッド10がAuワイヤ24によりキャパシタ20のボンディングパッド25に接続されている。キャパシタ20はAuワイヤ26によりリード端子27に接続されている。TIA19はAuワイヤ28によりリード端子29に接続されている。なお、これに限らず、裏面入射型受光素子21のカソードパッド10及びアノードパッド9が抵抗又はリード端子などの他の回路部品と接続してもよい。
 続いて、本実施の形態の効果を比較例と比較して説明する。図4は、比較例に係る裏面入射型受光素子を使用した光モジュールを示す斜視図である。比較例に係る裏面入射型受光素子21のアノード・カソードは基板表面側に形成されている。従って、アノード・カソードを引き出してワイヤを打つためのメタルパターン30,31をサブマウント18上に形成する必要があるため、サブマウント18のサイズが大きくなる。また、高周波的な反射点が増え、共振の原因になり受信感度を低下させる。
 一方、本実施の形態に係る裏面入射型受光素子21では、アノードパッド9及びカソードパッド10が基板裏面側に形成されているため、他の回路部品に接続するためのワイヤを裏面入射型受光素子21の基板裏面に直接的に打つことができる。これにより、サブマウント18上のパターンが不要となるため、サブマウント18のサイズを小さくすることができる。また、高周波的な反射点が無くなり、共振等が起き難くなるため、受信感度を向上させることができる。
 なお、p型電界制御層4はAlInAsでもよい。光吸収層5は、入射光に対してバンドギャップの小さい材料であればInGaAsではなくInGaAsPなどでもよい。窓層6は、入射光に対してバンドギャップの大きい材料であればAlInAs、AlGaInAs、InGaAsPなどでもよい。p型領域7とアノード電極8との間に、コンタクト抵抗を下げるためのAlGaInAs、InGaAsP、InGaAsなどを形成してもよい。受光領域16に部分的に絶縁膜などでARコートを形成してもよい。動作に必要な特性が得られるなら各層にどの材料を使用してもよく、上記の材料は本発明の範囲を限定するものではない。また、p型領域7の製法も特に限定されず、熱拡散、イオン注入などにより形成すればよい。
実施の形態2.
 図5は、本発明の実施の形態2に係る裏面入射型受光素子を示す断面図である。光吸収層からn型層までエッチングされてFe-InP又はRu-InPを含む半絶縁性層32で埋め込まれている。第3の接続孔13は半絶縁性層32に形成されている。これにより、アノード配線15と半導体層との距離が拡がるため、信頼が向上する。その他の構成及び効果は実施の形態1と同様である。
実施の形態3.
 図6は、本発明の実施の形態3に係る裏面入射型受光素子を示す断面図である。n型層2と増倍層3との間にInPでないエッチングストッパ層33が挿入されている。基板側からエッチングして第2の接続孔12を形成する時、及びエピ面側からエッチングして第3の接続孔13を形成する時に選択エッチングが可能となる。このため、第2及び第3の接続孔12,13を容易に形成することができる。その他の構成及び効果は実施の形態1と同様である。
実施の形態4.
 図7は、本発明の実施の形態4に係る裏面入射型受光素子を示す断面図である。基板1とアノードパッド9及びカソードパッド10との間に絶縁膜34が形成されている。これにより、基板1の極性が不問となるため、導電性基板を用いることができる。また、基板の極性に依らずにアノードパッド9及びカソードパッド10を形成できるため、作製が容易になる。その他の構成及び効果は実施の形態3と同様である。
実施の形態5.
 図8は、本発明の実施の形態5に係る裏面入射型受光素子を示す断面図である。第2及び第3の接続孔12,13は基板1から窓層6まで一続きに貫通する。これにより、基板両側からエッチングせずに済むため、作製が容易になる。その他の構成及び効果は実施の形態1と同様である。
1 基板、2 n型層、3 増倍層、4 p型電界制御層、5 光吸収層、6 窓層、7 p型領域、8 アノード電極、9 アノードパッド、10 カソードパッド、11 第1の接続孔、12 第2の接続孔、13 第3の接続孔、16 受光領域、18 サブマウント、19 TIA(第2の回路部品)、20 キャパシタ(第1の回路部品)、21 裏面入射型受光素子、22 Auワイヤ(第2のワイヤ)、24 Auワイヤ(第1のワイヤ)、32 半絶縁性層、33 エッチングストッパ層、34 絶縁膜

Claims (6)

  1.  表面と前記表面に対向する裏面とを有する基板と、
     前記表面に順に積層されたn型層、増倍層、p型電界制御層、光吸収層、及び窓層と、
     前記窓層の一部に形成されたp型領域と、
     前記p型領域の上に形成され、前記p型領域に接続されたアノード電極と、
     前記裏面に形成されたアノードパッド及びカソードパッドとを備え、
     第1及び第2の接続孔が前記基板を貫通し、
     第3の接続孔が前記窓層から前記n型層まで貫通し、
     前記カソードパッドは前記第1の接続孔を介して前記n型層に電気的に接続され、
     前記アノードパッドは前記第2及び第3の接続孔を介して前記アノード電極に電気的に接続され、
     前記裏面に受光領域を有することを特徴とする裏面入射型受光素子。
  2.  前記窓層から前記n型層までエッチングされて半絶縁性層で埋め込まれ、
     前記第3の接続孔は前記半絶縁性層に形成されていることを特徴とする請求項1に記載の裏面入射型受光素子。
  3.  前記n型層と前記増倍層との間に挿入されたエッチングストッパ層を更に備えることを特徴とする請求項1又は2に記載の裏面入射型受光素子。
  4.  前記第2及び第3の接続孔は前記基板から前記窓層まで一続きに貫通することを特徴とする請求項1に記載の裏面入射型受光素子。
  5.  前記基板と前記アノードパッド及び前記カソードパッドとの間に形成された絶縁膜を更に備え、
     前記基板は導電性基板であることを特徴とする請求項1~4の何れか1項に記載の裏面入射型受光素子。
  6.  サブマウントと、
     前記サブマウントの上に前記受光領域を上にして固定された請求項1~5の何れか1項に記載の裏面入射型受光素子と、
     第1及び第2の回路部品と、
     前記カソードパッドを第1の回路部品に接続する第1のワイヤと、
     前記アノードパッドを第2の回路部品に接続する第2のワイヤとを備えることを特徴とする光モジュール。
PCT/JP2016/082033 2016-10-28 2016-10-28 裏面入射型受光素子及び光モジュール WO2018078788A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680090354.7A CN109844963B (zh) 2016-10-28 2016-10-28 背面入射型受光元件及光模块
US16/306,788 US10553742B2 (en) 2016-10-28 2016-10-28 Back-surface-incident type light-receiving device and optical module
PCT/JP2016/082033 WO2018078788A1 (ja) 2016-10-28 2016-10-28 裏面入射型受光素子及び光モジュール
JP2018547021A JP6658910B2 (ja) 2016-10-28 2016-10-28 裏面入射型受光素子及び光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082033 WO2018078788A1 (ja) 2016-10-28 2016-10-28 裏面入射型受光素子及び光モジュール

Publications (1)

Publication Number Publication Date
WO2018078788A1 true WO2018078788A1 (ja) 2018-05-03

Family

ID=62024625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082033 WO2018078788A1 (ja) 2016-10-28 2016-10-28 裏面入射型受光素子及び光モジュール

Country Status (4)

Country Link
US (1) US10553742B2 (ja)
JP (1) JP6658910B2 (ja)
CN (1) CN109844963B (ja)
WO (1) WO2018078788A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027277A (ja) * 2019-08-08 2021-02-22 キヤノン株式会社 光電変換装置、光電変換システム
WO2022163391A1 (ja) * 2021-01-26 2022-08-04 住友電気工業株式会社 光受信機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098225A1 (ja) * 2009-02-24 2010-09-02 浜松ホトニクス株式会社 フォトダイオード及びフォトダイオードアレイ
JP2013122989A (ja) * 2011-12-12 2013-06-20 Nippon Telegr & Teleph Corp <Ntt> 受光素子
JP2016039315A (ja) * 2014-08-08 2016-03-22 株式会社東芝 固体撮像素子

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611066B2 (ja) * 2004-04-13 2011-01-12 三菱電機株式会社 アバランシェフォトダイオード
JP2006237186A (ja) * 2005-02-24 2006-09-07 Mitsubishi Electric Corp 半導体受光素子およびその製造方法
JP2006253548A (ja) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp 半導体受光素子
JP5050925B2 (ja) * 2008-02-28 2012-10-17 三菱電機株式会社 半導体受光素子
JP5262293B2 (ja) * 2008-05-26 2013-08-14 三菱電機株式会社 光半導体装置
JP2009290161A (ja) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp 光半導体装置
US20100108893A1 (en) * 2008-11-04 2010-05-06 Array Optronix, Inc. Devices and Methods for Ultra Thin Photodiode Arrays on Bonded Supports
JP5444994B2 (ja) * 2009-09-25 2014-03-19 三菱電機株式会社 半導体受光素子
JP2011253904A (ja) 2010-06-01 2011-12-15 Mitsubishi Electric Corp 光受信モジュール
GB201014843D0 (en) * 2010-09-08 2010-10-20 Univ Edinburgh Single photon avalanche diode for CMOS circuits
US20190013430A1 (en) * 2010-10-28 2019-01-10 Solar Junction Corporation Optoelectronic devices including dilute nitride
JP2013058656A (ja) * 2011-09-09 2013-03-28 Mitsubishi Electric Corp 裏面入射型半導体受光素子
SG193092A1 (en) * 2012-02-06 2013-09-30 Agency Science Tech & Res Semiconductor photomultiplier device
US20140167200A1 (en) * 2012-12-19 2014-06-19 Agency For Science, Technology And Research Photodetector and method for forming the same
JP6104669B2 (ja) 2013-03-28 2017-03-29 日本オクラロ株式会社 光受信モジュール
US10700225B2 (en) * 2013-05-22 2020-06-30 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices
US10468543B2 (en) * 2013-05-22 2019-11-05 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices
WO2014190189A2 (en) * 2013-05-22 2014-11-27 Shih-Yuan Wang Microstructure enhanced absorption photosensitive devices
JP6398409B2 (ja) 2014-07-16 2018-10-03 三菱電機株式会社 受光素子
JP6332096B2 (ja) * 2015-03-23 2018-05-30 三菱電機株式会社 半導体受光素子
CN107819515B (zh) * 2017-11-20 2023-08-04 苏州卓昱光子科技有限公司 一种硅光子芯片高度集成多通道光收发模块和有源光缆
JP6790004B2 (ja) * 2018-02-20 2020-11-25 株式会社東芝 半導体受光素子およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098225A1 (ja) * 2009-02-24 2010-09-02 浜松ホトニクス株式会社 フォトダイオード及びフォトダイオードアレイ
JP2013122989A (ja) * 2011-12-12 2013-06-20 Nippon Telegr & Teleph Corp <Ntt> 受光素子
JP2016039315A (ja) * 2014-08-08 2016-03-22 株式会社東芝 固体撮像素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027277A (ja) * 2019-08-08 2021-02-22 キヤノン株式会社 光電変換装置、光電変換システム
WO2022163391A1 (ja) * 2021-01-26 2022-08-04 住友電気工業株式会社 光受信機

Also Published As

Publication number Publication date
US20190296175A1 (en) 2019-09-26
US10553742B2 (en) 2020-02-04
CN109844963A (zh) 2019-06-04
CN109844963B (zh) 2022-06-07
JPWO2018078788A1 (ja) 2019-03-28
JP6658910B2 (ja) 2020-03-04

Similar Documents

Publication Publication Date Title
US7164193B2 (en) Optical semiconductor apparatus
US10495831B2 (en) Communication receiver
WO2011083657A1 (ja) アバランシェフォトダイオード及びそれを用いた受信機
JP5842393B2 (ja) 受光デバイス、これを用いた光受信機、及び受光デバイスの製造方法
JP5034952B2 (ja) 半導体光素子
JP4291521B2 (ja) 半導体受光素子、半導体受光装置、半導体装置、光モジュール及び光伝送装置
US7105798B2 (en) Semiconductor light-receiving device with multiple potentials applied to layers of multiple conductivities
WO2018078788A1 (ja) 裏面入射型受光素子及び光モジュール
JP6450318B2 (ja) 光受信回路及びその製造方法
JP4828103B2 (ja) 光送受信モジュール
JPH05129638A (ja) 光半導体装置
US9419411B2 (en) Semiconductor laser diode
US6589848B1 (en) Photodetector device and method for manufacturing the same
US20180131156A1 (en) Photoelectric conversion element and optical communication module
JP2945438B2 (ja) 光半導体装置及びそれを用いた受光器
WO2024127552A1 (ja) 半導体受光素子
US8575714B2 (en) Backside illuminated semiconductor light-receiving device, optical receiver module, and optical transceiver
JP2012234958A (ja) 半導体受光装置
JP2014212228A (ja) 光受信モジュール
JP2005277057A (ja) 半導体受光素子及び半導体受光装置
US20240162355A1 (en) Chip level package photodiode
JP2847561B2 (ja) 半導体受光素子
JP2007300133A (ja) 半導体受光装置
JP6502697B2 (ja) 半導体受光素子、受信モジュール及びそれらの製造方法
KR100876741B1 (ko) 플립칩 본딩 소자 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018547021

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919650

Country of ref document: EP

Kind code of ref document: A1