WO2018032744A1 - 一种超高分子量超细粒径聚乙烯及其制备方法和应用 - Google Patents

一种超高分子量超细粒径聚乙烯及其制备方法和应用 Download PDF

Info

Publication number
WO2018032744A1
WO2018032744A1 PCT/CN2017/075495 CN2017075495W WO2018032744A1 WO 2018032744 A1 WO2018032744 A1 WO 2018032744A1 CN 2017075495 W CN2017075495 W CN 2017075495W WO 2018032744 A1 WO2018032744 A1 WO 2018032744A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
molecular weight
particle size
ultrahigh molecular
ultrafine particle
Prior art date
Application number
PCT/CN2017/075495
Other languages
English (en)
French (fr)
Inventor
李化毅
李倩
孙同兵
朱才镇
刘瑞刚
赵宁
徐坚
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610695051.XA external-priority patent/CN106279474B/zh
Priority claimed from CN201610695124.5A external-priority patent/CN106317273B/zh
Priority claimed from CN201610695013.4A external-priority patent/CN106188785B/zh
Priority claimed from CN201610694953.1A external-priority patent/CN106317562B/zh
Priority claimed from CN201610695066.6A external-priority patent/CN106188405B/zh
Priority claimed from CN201610695021.9A external-priority patent/CN106319667B/zh
Priority to KR1020207029878A priority Critical patent/KR102292650B1/ko
Priority to EP17840722.7A priority patent/EP3489265A4/en
Priority to KR1020197006903A priority patent/KR102185631B1/ko
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to JP2019510358A priority patent/JP7466306B2/ja
Priority to KR1020217006485A priority patent/KR102317083B1/ko
Publication of WO2018032744A1 publication Critical patent/WO2018032744A1/zh
Priority to US16/279,677 priority patent/US11530281B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6543Pretreating with metals or metal-containing compounds with magnesium or compounds thereof halides of magnesium
    • C08F4/6545Pretreating with metals or metal-containing compounds with magnesium or compounds thereof halides of magnesium and metals of C08F4/64 or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/658Pretreating with metals or metal-containing compounds with metals or metal-containing compounds, not provided for in a single group of groups C08F4/653 - C08F4/657
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/24Polymer with special particle form or size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/26Use as polymer for film forming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement

Definitions

  • the invention belongs to the field of polyolefin polymer materials, and particularly relates to an ultrahigh molecular weight ultrafine particle size polyethylene and a preparation method and application thereof.
  • Ultra-high molecular weight polyethylene is a thermoplastic engineering with an average molecular weight of more than 1.5 million, which is composed of ethylene and butadiene monomer under the action of Ziegler catalyst, and has a comprehensive molecular weight of linear structure. plastic.
  • UHMWPE's extremely high molecular weight high-density polyethylene HDPE usually has a molecular weight of only 20,000-300,000
  • abrasion resistance, chemical resistance, low temperature resistance, stress crack resistance, anti-adhesion and self-lubricating, etc. known as "surprise plastic”.
  • the material has superior comprehensive performance, low density, low friction coefficient, abrasion resistance, low temperature resistance, corrosion resistance, self-lubrication and impact resistance. It is the highest value among all plastics, and its wear resistance is better than that of polytetrafluoroethylene and nylon. Carbon steel and other materials can work at -169 ° C ⁇ +80 ° C for a long time, physical and mechanical properties far exceed ordinary polyethylene. Can be widely used in metallurgy, electric power, petroleum, textile, paper, food, chemical, machinery, electrical and other industries.
  • UHMWPE as a thermoplastic engineering plastic has excellent comprehensive properties in solid state, its melt characteristics are quite different from ordinary thermoplastics such as ordinary polyethylene, mainly in the following aspects: 1) high melt viscosity; 2) The friction coefficient is small; 3) the critical shear rate is low; 4) the molding temperature range is narrow, and it is easy to be oxidatively degraded.
  • the processing technology of UHMWPE has developed over the past decades, it has evolved from extrusion-sintering to extrusion, blow molding and injection, solution spinning and other forming methods. However, due to the above problems of UHMWPE, the processing method is given. This has caused difficulties, resulting in performance degradation when applied to profiles, films, fibers, filter materials, and the like.
  • the viscosity of the system also rises sharply.
  • the traditional wet process is difficult to handle high viscosity stock solution, which limits the application of UHMWPE.
  • the polyolefin is first heated and dissolved in paraffin or other solvent to form a homogeneous solution, which is pressed into a sheet by a vulcanizer to be cooled, and liquid-liquid phase separation, re-extraction-stretching occurs. Or stretch-extraction to obtain a porous membrane.
  • the polyolefin crystallizes during the cooling process, and liquid-liquid separation occurs, which makes the film difficult to perform high-rate drawing, which limits the improvement of the overall performance of the separator. Therefore, the conventional wet process is difficult to prepare a separator using a solution containing ultrahigh molecular weight polyethylene, mainly because the liquid phase separation or liquid-liquid phase separation occurs in the homogeneous solution during the cooling process, and the polyolefin will be separated during the phase separation process. Crystallization causes the film to be difficult to perform high-rate drawing, which limits the improvement of the overall performance of the separator.
  • the catalysts used in the preparation of UHMWPE are mainly metallocene catalysts and Ziegler-Natta catalysts.
  • metallocene catalysts are extremely sensitive to temperature. When ethylene polymerization is catalyzed by Cp 2 ZrCl 2 , the molecular weight of the polymer is reduced from 600,000 to 120,000 when the temperature is raised from 20 ° C to 70 ° C.
  • the metallocene catalyst is to achieve a sufficiently high catalytic activity, a large amount of expensive methylaluminoxane (MAO) is required as a cocatalyst, thereby increasing the production cost of the product; on the other hand, the promoter MAO is not a single compound.
  • the production process is likely to cause unstable product performance.
  • Ziegler-Natta catalysts are industrial catalysts for the preparation of UHMWPE. For example, Zhang H.X. et al. [Polym. Bull., 2011, 66, 627] reported the preparation of UHMWPE using a Ziegler-Natta catalyst containing an internal electron donor. The method, however, however, the internal electron donor in the Ziegler-Natta catalyst reduces the activity of the catalyst.
  • Polyethylene is a general-purpose plastic, which is famous for its large output, wide application and low cost.
  • polyethylene has poor cold resistance, weather resistance, light resistance, dyeability, adhesion, antistatic property and hydrophilicity. And the compatibility with other polar polymers, inorganic fillers and reinforcing materials is also very poor.
  • graft modification is one of the most important ones.
  • chemical grafting includes solution grafting, solid phase grafting, melt grafting, gas phase grafting, and suspension grafting. Wait. Solid phase grafted polyethylene started late. In the late 1980s, Rengarajan et al first reported the preparation of maleic anhydride functionalized polypropylene by solid phase grafting, followed by solid phase grafting modification.
  • the monomer of polyethylene includes styrene, glycidyl methacrylate, 4-vinylpyridine, vinyl nitrile, methyl 2-hydroxyethyl acrylate, and the like.
  • the solid phase grafting method can not only introduce polar functional groups while maintaining the original properties of polyethylene, but also has low temperature, low pressure, low cost, high grafting rate and no solvent recovery. advantage.
  • Polyethylene fibers include long fibers, short fibers, nonwoven fabrics, and the like. Among them, polyethylene long fiber has good gloss, soft handfeel, good drape and low density. It is suitable for the knitting industry. When it is interwoven with cotton, viscose, silk, spandex, etc. into cotton cover C, silk cover C and other products, it is made.
  • Polyethylene staple fiber and cotton blend can be made into cotton fine cloth, bed sheets, blended with viscose can be used as felt, polyethylene pure and blended wool, carpet, cotton wool and cigarette filter
  • Polyethylene non-woven fabrics are used in disposable medical and hygiene products, disposable anti-fouling clothes, agricultural cloths, furniture fabrics or linings for footwear, or in the fields of medical hygiene, thermal insulation materials, filter materials, etc.
  • the conventional polyethylene fiber has many advantages such as light weight, high strength, good elasticity, wear resistance, corrosion resistance, good insulation, and good warmth retention, it also has defects of heat resistance, low temperature resistance and poor aging resistance. Moreover, its hygroscopicity and dyeing properties are also poor.
  • the processing of chemical fibers includes wet spinning, dry-wet spinning, melt spinning, and the like. Drafting is an important process in chemical fiber forming processes.
  • the drawing can make the polymer in the chemical fiber produce anisotropy in mechanics, optics, heat, etc., and effectively increase the strength of the chemical fiber.
  • the drafting process mainly adopts hot roll drafting, hot plate drafting and hot box drawing; for wet or dry-wet spinning, in addition to the above drafting mode, pressurized steam can also be used. draft. It is also a research direction to improve the above-mentioned many disadvantages of polyethylene through the adjustment of processing methods.
  • Polyethylene film especially biaxially stretched polyethylene film, has excellent resistance to bending fatigue, high heat resistance, good chemical properties, purity and non-toxicity, good transparency, etc., and is mainly used in the field of packaging films.
  • its low temperature resistance is low and the low temperature impact strength is low.
  • copolymerization with propylene addition of a blending modifier (such as the addition of ethylene propylene rubber, EPDM, POE, EVA or SBS, etc.) to improve its low temperature resistance, but these methods are used to improve the low temperature resistance.
  • a blending modifier such as the addition of ethylene propylene rubber, EPDM, POE, EVA or SBS, etc.
  • polyethylene microporous membranes are also widely used in battery separators, electrolytic capacitor separators, various filters, waterproof and moisture permeable fabrics, reverse osmosis filtration membranes, ultrafiltration membranes, microfiltration membranes, and the like.
  • the film When used for a battery separator, the film is required to have excellent permeability, mechanical properties, heat shrinkage resistance, melting characteristics, etc. How to obtain a polyethylene microporous film having excellent properties has been pursued by researchers. The goal.
  • Polyethylene is one of the most widely used general-purpose plastics. It has a relatively balanced overall performance and is therefore widely used in the fields of automobiles, electrical appliances, and building materials. Although polyethylene has good wear resistance, chemical corrosion resistance, stress crack resistance, anti-adhesion and self-lubricating properties, it is resistant to low temperature, poor impact resistance and easy to age.
  • Glass fiber reinforced polyethylene has attracted more and more researchers' attention in recent years due to its advantages of improved rigidity, impact strength, creep resistance, low warpage, dynamic fatigue resistance and dimensional stability. Although glass fiber reinforced polyethylene can improve its low temperature resistance, there are still problems such as poor compatibility of glass fiber and polyethylene, low impact resistance and low creep resistance, and a new type of glass fiber reinforced polyethylene composite material is to be developed.
  • One of the objects of the present invention is to provide an ultrahigh molecular weight ultrafine particle size polyethylene powder and a process for preparing the same, which powder has excellent processability.
  • a second object of the present invention is to provide a graft-modified ultrahigh molecular weight ultrafine particle size polyethylene and a solid phase grafting method thereof, which can prepare a grafting polymer having a higher grafting rate simply and efficiently.
  • Ethylene is more effective in modifying polyethylene.
  • a third object of the present invention is to provide a glass fiber reinforced polyethylene composition and a sheet and a tube thereof prepared, and the sheet or tube prepared from the composition has excellent low temperature resistance and various mechanical properties (especially Excellent impact resistance and creep resistance) and thermal properties.
  • a fourth object of the present invention is to provide a solubilized ultrahigh molecular weight ultrafine particle size polyethylene and a process for producing the same, which are more excellent in processability and easier to process.
  • a fifth object of the present invention is to provide a fiber prepared by solubilizing ultrahigh molecular weight ultrafine particle size polyethylene which is excellent in low temperature resistance, excellent in various mechanical properties and thermal properties, and a preparation method thereof.
  • a sixth object of the present invention is to provide a film prepared by solubilizing ultrahigh molecular weight ultrafine particle size polyethylene which is excellent in low temperature resistance, excellent in various mechanical properties and thermal properties, and a preparation method thereof. Further, the film of the present invention is particularly suitable for use in a battery separator because of its excellent mechanical properties, thermal properties, permeability, melting properties and the like.
  • a first aspect of the present invention provides a method for preparing an ultrahigh molecular weight ultrafine particle size polyethylene powder, comprising the steps of:
  • the polymerization of ethylene is carried out under the action of a catalyst; wherein the temperature of the polymerization reaction is -20 to 100 ° C; in ethylene, the carbon monoxide content is not higher than (for example, less than) 5 ppm, and the carbon dioxide is not higher than (for example, less than) 15 ppm.
  • the conjugated diene content is not higher than (less than) 10 ppm;
  • the catalyst is prepared by a process comprising the following steps:
  • reaction system is heated to 90 ° C to 130 ° C over 0.5 to 3 hours, and the remaining internal electron donor is added to continue the reaction;
  • the polyethylene powder obtained has a viscosity average molecular weight (Mv) of more than 1 ⁇ 10 6 , and the polyethylene powder is spherical or spheroidal particles having an average particle diameter of 10 to 100 ⁇ m and a standard deviation of 2 ⁇ m to 15 ⁇ m.
  • the density is from 0.1 g/mL to 0.3 g/mL.
  • the particle size distribution of the polyethylene powder approximates a normal distribution.
  • the temperature of the polymerization reaction is preferably from 30 to 80 ° C, more preferably from 50 to 80 ° C.
  • a second aspect of the present invention provides an ultrahigh molecular weight ultrafine particle diameter polyethylene powder obtained by the above production method, wherein the polyethylene powder has a viscosity average molecular weight (Mv) of more than 1 ⁇ 10 6 , the polyethylene
  • the powder is spherical or spheroidal particles having an average particle diameter of 10 to 100 ⁇ m, a standard deviation of 2 ⁇ m to 15 ⁇ m, and a bulk density of 0.1 g/mL to 0.3/mL.
  • the powder of the present invention has excellent processability.
  • the particle size distribution of the polyethylene powder approximates a normal distribution.
  • the polyethylene has a viscosity average molecular weight (Mv) of 1.5 ⁇ 10 6 or more , preferably 1.5 ⁇ 10 6 to 4.0 ⁇ 10 6 ; and a molecular weight distribution Mw / Mn of the polyethylene of 2 to 15, It is preferably 2 to 10.
  • the polyethylene powder preferably has an average particle diameter of from 20 ⁇ m to 80 ⁇ m, more preferably from 50 ⁇ m to 80 ⁇ m; the standard deviation is preferably from 5 ⁇ m to 15 ⁇ m, more preferably from 6 ⁇ m to 12 ⁇ m, still more preferably from 8 ⁇ m to 10 ⁇ m.
  • the bulk density of the polyethylene powder is preferably from 0.15 to 0.25 g/mL.
  • a third aspect of the present invention provides a method for preparing an ultra-high molecular weight ultra-fine particle size grafted polyethylene by a solid phase grafting method, comprising the steps of:
  • the polyethylene is a powder, spherical or spheroidal granular, having an average particle diameter of 10 ⁇ m to 100 ⁇ m; a standard deviation of 2 ⁇ m to 15 ⁇ m, and a bulk density of 0.1 g/mL to 0.3 g/mL;
  • the average molecular weight (Mv) is greater than 1 ⁇ 10 6 .
  • the particle size distribution of the polyethylene powder approximates a normal distribution.
  • the polyethylene powder preferably has an average particle diameter of from 20 ⁇ m to 80 ⁇ m, more preferably from 50 ⁇ m to 80 ⁇ m; the standard deviation is preferably from 5 ⁇ m to 15 ⁇ m, more preferably from 6 ⁇ m to 12 ⁇ m, still more preferably from 8 ⁇ m to 10 ⁇ m. .
  • the polyethylene powder preferably has a bulk density of from 0.15 g/mL to 0.25 g/mL.
  • the polyethylene has a viscosity average molecular weight (Mv) of 1.5 ⁇ 10 6 or more . More preferably, it is 1.5 ⁇ 10 6 - 4.0 ⁇ 10 6 .
  • the polyethylene has a molecular weight distribution Mw/Mn of from 2 to 15; more preferably from 2 to 10.
  • the agitation mixing time is from 0.5 to 5 hours.
  • the purpose of the agitation is to enable the reactants to be thoroughly mixed uniformly. In principle, the longer the agitation time is, the more favorable the reaction is.
  • the mixing and mixing time is preferably from 1 to 5 hours.
  • the temperature of the solid phase grafting reaction is from 60 to 120 ° C for a period of from 0.5 to 5 hours.
  • the reaction is preferably carried out at 70 to 110 ° C for 0.5 to 3.5 hours. More preferably, it is reacted at 80 to 110 ° C for 2 to 3 hours.
  • the polyethylene is an ethylene homopolymer.
  • the grafting monomer is a siloxane-based compound or a vinyl-based unsaturated compound.
  • the vinyl-based unsaturated compound is, for example, a styrene compound, a vinyl-based unsaturated organic acid, a vinyl-based unsaturated organic ester, a vinyl-based unsaturated organic acid anhydride, or a mixture thereof.
  • C Acrylic acid AA
  • methacrylic acid MAA
  • methyl acrylate MA
  • methyl methacrylate MMA
  • ethyl acrylate EA
  • ethyl methacrylate MEA
  • butyl acrylate BA
  • BMA butyl methacrylate
  • MAH maleic anhydride
  • St maleic acid
  • St styrene
  • PETA pentaerythritol triacrylate
  • the siloxane-based compound is, for example, vinyltrimethylsilane, vinyltriethylsilane, divinyldimethylsilane, (triethylsilyl)acetylene, allyltrimethyl Silane or the like is preferably one or both of vinyltrimethylsilane and vinyltriethylsilane.
  • the graft monomer is added in an amount of from 0.2 to 15% by weight, preferably from 0.5 to 12% by weight, more preferably from 1 to 9% by weight, based on the mass of the polyethylene powder.
  • the initiator is an azo initiator or a peroxide initiator, preferably one or more of azobisisobutyronitrile, benzoyl peroxide or cumene peroxide.
  • the initiator is added in an amount of 0.1 to 10% by weight, preferably 2 to 9% by weight, more preferably 3 to 8% by weight based on the mass of the polyethylene powder.
  • the interface agent is an organic solvent which has a swelling effect on polyethylene. It is preferably an organic solvent having a swelling action on polyethylene: an ether solvent, a ketone solvent, an aromatic hydrocarbon solvent or an alkane solvent; more preferably a chlorobenzene, a polychlorinated benzene, a C6 or higher alkane or a cycloalkane, Benzene, alkyl-substituted benzene, fatty ether, fatty ketone, or decahydronaphthalene; still more preferably benzene, toluene, xylene, chlorobenzene, tetrahydrofuran, diethyl ether, acetone, hexane, cyclohexane, decalin, g
  • One or more of the alkane For example, it may be xylene or a mixture of xylene and tetrahydrofuran.
  • the interface agent is added in an organic
  • a fourth aspect of the present invention provides a grafted polyethylene prepared by the above method for preparing an ultrahigh molecular weight ultrafine particle grafted polyethylene by a solid phase grafting method, wherein the grafting monomer is grafted efficiently
  • the rate is ⁇ 0.5%
  • the base polymer is polyethylene
  • the polyethylene is powder, spherical or spheroidal granular
  • the average particle diameter is 10 ⁇ m ⁇ 100 ⁇ m
  • the standard deviation is 2 ⁇ m-15 ⁇ m
  • the bulk density is 0.1g/mL ⁇ 0.3 g/mL
  • the polyethylene has a viscosity average molecular weight (Mv) of more than 1 ⁇ 10 6 .
  • the particle size distribution of the polyethylene powder approximates a normal distribution.
  • the effective graft ratio is from 0.5% to 5.5%; more preferably from 1.0% to 3.0%; for example, the effective graft ratio of the grafted polyethylene may be 1.33%, 1.65%, 2.14% or 2.04%.
  • the polyethylene powder preferably has an average particle diameter of from 20 ⁇ m to 80 ⁇ m, more preferably from 50 ⁇ m to 80 ⁇ m; the standard deviation is preferably from 5 ⁇ m to 15 ⁇ m, more preferably from 6 ⁇ m to 12 ⁇ m, still more preferably from 8 ⁇ m to 10 ⁇ m. .
  • the grafted polyethylene has a water contact angle of from 80 to 88; more preferably from 81 to 84.
  • the polyethylene has a bulk density of preferably from 0.15 g/mL to 0.25 g/mL.
  • the polyethylene has a viscosity average molecular weight (Mv) of 1.5 ⁇ 10 6 or more . More preferably, it is 1.5 ⁇ 10 6 - 4.0 ⁇ 10 6 .
  • the polyethylene has a molecular weight distribution Mw/Mn of from 2 to 15; preferably from 2 to 10.
  • the polyethylene is an ethylene homopolymer.
  • the grafting monomer is a siloxane-based compound or a vinyl-based unsaturated compound.
  • the vinyl-based unsaturated compound is, for example, a styrene compound, a vinyl-based unsaturated organic acid, a vinyl-based unsaturated organic ester, a vinyl-based unsaturated organic acid anhydride, or a mixture thereof.
  • acrylic acid AA
  • methacrylic acid MAA
  • methyl acrylate MA
  • methyl methacrylate MMA
  • ethyl acrylate EA
  • ethyl methacrylate MEA
  • butyl acrylate One or more of BA
  • butyl methacrylate BMA
  • maleic anhydride MAH
  • maleic acid St
  • PETA pentaerythritol triacrylate
  • the siloxane-based compound is, for example, vinyltrimethylsilane, vinyltriethylsilane, divinyldimethylsilane, (triethylsilyl)acetylene, allyltrimethyl Silane or the like is preferably one or both of vinyltrimethylsilane and vinyltriethylsilane.
  • the grafted polyethylene has a water contact angle of less than or equal to 88°.
  • the grafted polyethylene has a water contact angle of from 80 to 88.
  • the grafted polyethylene has a crystallization temperature that is at least 8 ° C higher than the base polymer.
  • a fifth aspect of the invention provides a glass fiber reinforced polyethylene composition comprising ultrahigh molecular weight ultrafine particle size polyethylene and glass fibers;
  • the ultrahigh molecular weight ultrafine particle diameter polyethylene has a viscosity average molecular weight (Mv) of more than 1 ⁇ 10 6 , and the ultrahigh molecular weight ultrafine particle diameter polyethylene is spherical or spheroidal particles, and the average particle diameter is 10 to 100 ⁇ m.
  • the standard deviation is 2 ⁇ m to 15 ⁇ m, and the bulk density is 0.1 g/mL to 0.3/mL.
  • the particle size distribution of the ultrahigh molecular weight ultrafine particle size polyethylene approximates a normal distribution.
  • the ultrahigh molecular weight ultrafine particle diameter polyethylene has a viscosity average molecular weight (Mv) of 1.5 ⁇ 10 6 or more , preferably 1.5 ⁇ 10 6 to 4.0 ⁇ 10 6 ;
  • the molecular weight distribution Mw/Mn of the diameter polyethylene is 2 to 15, preferably 3 to 10, and more preferably 4 to 8.
  • the ultrahigh molecular weight ultrafine particle diameter polyethylene preferably has an average particle diameter of 20 to 90 ⁇ m, more preferably 30 to 85 ⁇ m, still more preferably 50 to 80 ⁇ m; the standard deviation is preferably 5 to 15 ⁇ m, more It is preferably 6 to 12 ⁇ m, and more preferably 8 to 10 ⁇ m; the bulk density of the ultrahigh molecular weight ultrafine particle diameter polyethylene is preferably 0.15 to 0.25 g/mL, for example, 0.2 g/mL.
  • the glass fibers are glass fibers treated with a coupling agent.
  • the coupling agent is, for example, a silane coupling agent (such as ⁇ -aminopropyltriethoxysilane KH550, ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane KH560, ⁇ -methyl propylene.
  • the coupling agent is selected from a silane coupling agent, and particularly preferably ⁇ -aminopropyltriethoxysilane KH550, vinyltrimethoxysilane A-171, vinyltriethoxysilane A-151 Wait.
  • the coupling agent is used in an amount of from 0.5 to 4 parts by weight based on 100 parts by weight of the glass fibers.
  • a diluent may be added to the system of the glass fibers and the coupling agent, for example selected from white oil or liquid paraffin.
  • the weight ratio of the diluent to the coupling agent is, for example, (1 to 10): 1, preferably (3 to 6): 1.
  • the glass fibers have a length of from 0.5 mm to 10 mm, for example from 1 mm to 3 mm, or from 3 mm to 5 mm, or from 5 mm to 7 mm, and the like.
  • the weight percentage of each component in the composition is 10 to 95% by weight of ultrahigh molecular weight ultrafine particle size polyethylene and 5 to 90% by weight of glass fiber.
  • the glass fiber is contained in an amount of 10 to 80% by weight, more preferably 40 to 70% by weight.
  • a sixth aspect of the invention provides a sheet or tube prepared from the above composition.
  • a seventh aspect of the present invention provides a method for producing the above-mentioned sheet, comprising the steps of: uniformly mixing the ultrahigh molecular weight ultrafine particle diameter polyethylene and the glass fiber in a high speed mixer, and adding the extruder
  • the sheet of the present invention is obtained by extrusion through a sheet die, cooling, and stretching.
  • An eighth aspect of the present invention provides a method for producing the above tube, comprising the steps of: uniformly mixing the ultrahigh molecular weight ultrafine particle diameter polyethylene and the glass fiber in a high speed mixer, and adding the mixture to an extruder.
  • the tube of the present invention is obtained by extrusion through a pipe mold, cooling, and stretching.
  • the tube has a wall thickness of between 0.1 and 10 mm, preferably between 0.5 and 5 mm.
  • a ninth aspect of the present invention provides a use of the above sheet, which can be used in many fields such as automobiles, electronic devices, and the like.
  • a tenth aspect of the present invention provides a use of the above pipe for use in water supply drainage, oil drilling, and the like, for example, as a water supply drain pipe or a mine wear pipe.
  • An eleventh aspect of the present invention provides a method for preparing a solubilized ultrahigh molecular weight ultrafine particle size polyethylene, which is selected from one of the method (1) or the method (2); and the method (1) Includes the following steps:
  • the method (2) comprises the following steps:
  • the dispersion medium is removed by fractional distillation to obtain the solubilized ultrahigh molecular weight ultrafine particle size polyethylene;
  • the boiling point of the dispersion medium is lower than the boiling point of the solvent and at least 5 ° C lower; the temperature difference is set in order to effectively separate the system by fractional distillation. Dispersing medium.
  • the catalyst is prepared by the method for preparing the above catalyst.
  • the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene obtained has a viscosity average molecular weight (Mv) of more than 1 ⁇ 10 6 ;
  • the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene is spherical or Spherical-like particles having an average particle diameter of 10 to 100 ⁇ m, a standard deviation of 2 ⁇ m to 15 ⁇ m, a bulk density of 0.1 g/mL to 0.3 g/mL, and a weight of the solvent in the solubilized ultrahigh molecular weight ultrafine particle size polyethylene
  • the percentage is greater than 0 and less than or equal to 98% by weight.
  • the weight percentage of the solvent in the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene is more than 0 and less than or equal to 80% by weight, preferably more than 0 and less than or equal to 50% by weight, more preferably from 10 to 50% by weight. Still more preferably 20-40% by weight.
  • the particle size distribution of the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene approximates a normal distribution.
  • the polymerization reaction is carried out by a slurry method.
  • the dispersion medium may be at least one of n-pentane, cyclohexane, benzene, toluene, xylene, n-hexane, n-heptane, petroleum ether and the like.
  • the solvent may be cyclohexane, n-hexane, n-heptane, benzene, toluene, xylene, dichlorobenzene, trichlorobenzene, 1,1,1-trichloroethane, white oil. At least one of paraffin, kerosene, olefin mineral oil and decalin.
  • the temperature of the polymerization reaction is preferably from 0 to 90 ° C, preferably from 10 to 85 ° C, more preferably from 30 to 80 ° C, still more preferably from 50 to 80 ° C.
  • a solubilized ultrahigh molecular weight ultrafine particle size polyethylene obtained by the above method for preparing a solubilized ultrahigh molecular weight ultrafine particle size polyethylene, wherein the polyethylene is viscous
  • the average molecular weight (Mv) is greater than 1 ⁇ 10 6 ; the polyethylene is spherical or spheroidal particles having an average particle diameter of 10 to 100 ⁇ m, a standard deviation of 2 ⁇ m to 15 ⁇ m, and a bulk density of 0.1 g/mL to 0.3/mL;
  • the weight percentage of the solvent in the polyethylene is greater than 0 and less than or equal to 98% by weight.
  • the weight percentage of the solvent in the polyethylene is more than 0 and less than or equal to 80% by weight, preferably more than 0 and less than or equal to 50% by weight, more preferably from 10 to 50% by weight, still more preferably from 20 to 40% by weight.
  • the particle size distribution of the polyethylene approximates a normal distribution.
  • the polyethylene has a viscosity average molecular weight (Mv) of 1.5 ⁇ 10 6 or more , preferably 1.5 ⁇ 10 6 to 4.0 ⁇ 10 6 ; and a molecular weight distribution Mw / Mn of the polyethylene of 2 to 15, It is preferably 3 to 10, and more preferably 4 to 8.
  • the polyethylene preferably has an average particle diameter of from 20 ⁇ m to 90 ⁇ m, further preferably from 30 to 85 ⁇ m, more preferably from 50 ⁇ m to 80 ⁇ m; the standard deviation is preferably from 5 ⁇ m to 15 ⁇ m, more preferably from 6 ⁇ m to 12 ⁇ m, further It is preferably from 8 ⁇ m to 10 ⁇ m; the bulk density of the polyethylene is preferably from 0.15 g/mL to 0.25 g/mL, for example, 0.2 g/mL.
  • a fiber comprising a solubilized ultrahigh molecular weight ultrafine particle size polyethylene as described above.
  • the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene is produced by a production method selected from one of the above methods (1) or (2).
  • the raw material in addition to the solubilized ultrahigh molecular weight ultrafine particle size polyethylene, the raw material further includes an antioxidant.
  • the antioxidant is added in an amount of 0.01 to 1 part by weight, more preferably 0.02 to 0.5 part by weight, per 100 parts by weight of the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene.
  • the fiber is obtained from the solubilized ultrahigh molecular weight ultrafine particle size polyethylene containing an antioxidant.
  • a fourteenth aspect of the present invention provides a method of producing the above fiber, comprising the steps of:
  • step 1) in order to avoid degradation of the ultrahigh molecular weight polyethylene during dissolution and use, an antioxidant is added during the dissolution process.
  • the amount of the antioxidant added is 0.01 to 1 part by weight, more preferably 0.02 to 0.5 part by weight, per 100 parts by weight of the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene.
  • the step of extracting the solvent by a coagulant or an extractant is included.
  • the coagulant or extractant is selected from a low boiling organic solvent such as one or more of the following low boiling organic solvents: petroleum ether, dichloromethane, cyclohexane, and the like.
  • the drafting in the step 3) is carried out by a hot box or a hot roll, or a hot bath drawing method may be employed.
  • the hot bath medium used is selected from the group consisting of a polyol (preferably having a boiling point of 120-220 ° C) and a polyoxyethylene oligomer (preferably, a relative molecular weight of 88-5000 g/mol). a polyoxypropylene oligomer (preferably, having a relative molecular weight of 116 to 1200 g/mol), one or more components of mineral oil and silicone oil.
  • the hot bath medium temperature T L is set between the glass transition temperature T g of the polymer matrix and the decomposition temperature T d of the polymer matrix.
  • the step 3) is specifically: the gel fiber is subjected to gel wire drawing, solvent extraction, drying, first hot box dry heat drawing, and second hot box dry heat drawing.
  • the fiber of the present invention is obtained by a process such as heat setting and winding.
  • the drawing temperature in the gel yarn drawing step is 10 to 70 ° C, preferably 25 to 50 ° C; and the draw ratio is 2 to 20 times, preferably 3 to 15 times.
  • the extractant in the solvent extraction step is selected from a low boiling organic solvent, for example, one or more of the following low boiling organic solvents: petroleum ether, dichloromethane, cyclohexane, and the like.
  • the drying in the drying step is dried by hot air, and the hot air temperature is 30 to 90 ° C, preferably 40 to 80 ° C.
  • the temperature in the first hot box dry heat drawing process is 100-160 ° C, preferably 130-145 ° C;
  • the number is 1-20 times, preferably 1.5-15 times.
  • the temperature in the dry heat drawing step of the second hot box is 110-160 ° C, preferably 130-145 ° C; the draw ratio is 1-5 times, preferably 1.1-3 times.
  • the temperature in the heat setting step is 100 to 150 ° C, preferably 120 to 135 ° C.
  • a film comprising, in the raw material, a solubilized ultrahigh molecular weight ultrafine particle size polyethylene as described above.
  • the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene is produced by a production method selected from one of the above methods (1) or (2).
  • the raw material in addition to the solubilized ultrahigh molecular weight ultrafine particle size polyethylene, the raw material further includes an antioxidant.
  • the antioxidant is added in an amount of 0.01 to 1 part by weight, more preferably 0.02 to 0.5 part by weight, per 100 parts by weight of the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene.
  • the film is obtained from the solubilized ultrahigh molecular weight ultrafine particle size polyethylene containing an antioxidant.
  • the film is biaxially stretched.
  • a sixteenth aspect of the invention provides a method for producing the above film, comprising the steps of:
  • step 1) in order to avoid degradation of the ultrahigh molecular weight propylene polymer during dissolution and use, an antioxidant is added during the dissolution process.
  • the amount of the antioxidant added is 0.01 to 1 part by weight, more preferably 0.02 to 0.5 part by weight, per 100 parts by weight of the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene.
  • the raw material is composed of the solubilized ultrahigh molecular weight ultrafine particle size polyethylene and an antioxidant.
  • a seventeenth aspect of the invention provides the use of the film for use as a battery separator.
  • the present invention provides a novel method for preparing ultrahigh molecular weight ultrafine particle size polyethylene powder, which is synthesized by controlling the polymerization temperature of ethylene, the purity of monomeric ethylene, and the preparation steps of adjusting the catalyst.
  • the invention discloses an ultra-high molecular weight ultra-fine particle size polyethylene powder, and the method has the advantages of simple steps, easy control, high repeatability and industrialization.
  • the present invention synthesizes a polyethylene powder having both an ultrahigh molecular weight and an ultrafine particle size range for the first time. It has been found that a polyethylene powder having the above characteristics is particularly suitable for processing applications, and is easy to realize graft modification. , greatly expand the application field and scope of application of ultra high molecular weight polyethylene.
  • the polyethylene powder also has the following excellent properties: firstly, the wear resistance is excellent, and the wear resistance index of the metals such as carbon steel and copper is several times higher; secondly, due to the high molecular weight, the molecular chain Ultra-long, the impact strength of the material is high; again, the chemical resistance of the polyethylene powder is stronger than that of the general polyolefin; finally, the temperature range of the material is wider, Good toughness and strength are maintained at lower or higher temperatures.
  • the polyethylene powder prepared by the method of the invention has excellent processing performance, and is expected to not only save energy in the process of forming, film forming and fiber forming in the later stage, but also can speed up the process and prepare higher performance. material.
  • the present invention provides a graft-modified ultrahigh molecular weight ultrafine particle size polyethylene and a solid phase grafting method thereof.
  • the selected reaction substrate is an ultrahigh molecular weight ultrafine particle size.
  • Ethylene powder in the form of spherical or spheroidal particles, having an average particle diameter of 10 to 100 ⁇ m; a standard deviation of 2 ⁇ m to 15 ⁇ m, a bulk density of 0.1 to 0.3 g/mL; and a viscosity average molecular weight (Mv) of the polyethylene of more than 1 ⁇ 10 6 , compared with ordinary polyethylene particles (greater than 400 microns), the particle size is smaller, the molecular weight is higher, the specific surface area is greatly improved, and the graft monomer has more reaction sites, so the prepared The effective grafting rate of the branched polyethylene is higher.
  • the method provided by the present invention does not require complicated pretreatment of the raw materials, nor design specific ones, compared to other methods for preparing high grafting ratio grafted polyethylene.
  • the reaction device The reaction device.
  • the method for preparing a high graft ratio grafted polyethylene by solid phase grafting provided by the invention has the advantages of simple process, low cost, simple operation and easy industrialized production.
  • the experimental results show that the grafted ultrahigh molecular weight ultrafine particle size polyethylene particles prepared by the method provided by the invention have obvious improvement in thermal properties, mechanical properties and polarity, and maintain the original polyethylene. Excellent performance.
  • the crystallization temperature of the grafted polyethylene is increased by at least 8 ° C compared to the base polymer, the effective graft ratio is 0.5% or more (for example, 5.5%), and the water contact angle of the grafted polyethylene is 88 or less (for example, 80 °). 88°), while the water contact angle of the base polymer is generally 95° or more, it can be seen that the hydrophilicity and polarity of the grafted polyethylene of the present invention are remarkably improved.
  • the present invention provides a glass fiber reinforced polyethylene composition, a sheet or tube prepared from the composition, which has excellent low temperature resistance (for long-term use at a temperature of minus 30 ° C to minus 135 ° C), and resistance Impact properties (such as simply supported beam notched impact strength (7.5J) above 10.0KJ/m 2 ) and creep resistance (eg creep less than or equal to 2%).
  • resistance Impact properties such as simply supported beam notched impact strength (7.5J) above 10.0KJ/m 2
  • creep resistance eg creep less than or equal to 2%
  • the mechanical properties (such as bending strength, flexural modulus, tensile strength, heat distortion temperature, etc.) of the sheet or tube are also excellent due to the reinforcing effect of the glass fibers. Therefore, the sheet of the present invention is particularly suitable for use in many fields such as automobiles, electronic devices, and the like, and the tube is particularly suitable for the fields of water supply and drainage, oil drilling, and the like.
  • the present invention proposes a novel process for preparing solubilized ultrahigh molecular weight ultrafine particle size polyethylene by controlling the polymerization temperature of ethylene, the purity of monomeric ethylene, adjusting the preparation steps of the catalyst, and polymerizing A dispersion medium is introduced into the system to synthesize a solubilized ultrahigh molecular weight ultrafine particle size polyethylene.
  • the method is simple, easy to control, and highly reproducible, and can be industrialized.
  • the present invention synthesizes a polyethylene having both a solubilizing, ultrahigh molecular weight and ultrafine particle size range for the first time. It has been found that polyethylene having the above characteristics is particularly suitable for processing applications, and is easy to realize graft modification. The processing properties of UHMWPE and the application fields and application scope of the products are greatly expanded. At the same time, the polyethylene also has the following excellent properties: Firstly, the wear resistance is excellent, and the wear resistance index of the metals such as carbon steel and copper is several times higher; secondly, the molecular chain is extremely long due to the high molecular weight.
  • the polyethylene is more resistant to chemicals than general polyolefins; finally, the material has a wide temperature range and maintains good toughness and strength at lower or higher temperatures;
  • the material has low energy consumption in the process of post-forming, film formation, fiber-forming, and short process time (for example, complete dissolution at a lower temperature, or rapid dissolution at a relatively high temperature for a short period of time, thereby shortening dissolution) The process effectively reduces or reduces polymer degradation).
  • the polyethylene prepared by the method of the invention has excellent processing properties, and is expected to not only save energy in the later molding, film forming and fiber forming processes, but also accelerate the process and prepare higher performance materials.
  • the fiber of the present invention uses a solubilized ultrahigh molecular weight ultrafine particle size polyethylene as a raw material, and the polyethylene is particularly suitable for processing applications because it is easy to dissolve and has a low dissolution temperature, and is particularly suitable for the fiber. Wet spinning process.
  • the fiber of the present invention has excellent creep resistance due to the use of the solubilized ultrahigh molecular weight ultrafine particle size polyethylene as a raw material, and has a wide temperature range (suitable for low temperature use and high temperature). usage of).
  • a solubilized ultra-high molecular weight ultra-fine particle size polyethylene is selected as a raw material, and the ultrahigh molecular weight of the raw material causes a great improvement in product properties, and the solvent limit contained in the raw material is also limited.
  • the degree of crystallization of polyethylene makes it easy to melt and dissolve at a lower temperature during processing, which inhibits the problem that conventional ultra-high molecular weight polyethylene is easily degraded during processing, and is particularly suitable for processing applications, especially for Hot pressing and drawing processing of the film.
  • the film of the present invention has excellent creep resistance by using the solubilized ultrahigh molecular weight ultrafine particle size polyethylene as a raw material, and has an extended temperature range (suitable for both low temperature use and high temperature). use).
  • Figure 1 is a scanning electron micrograph of polyethylene particles of Example 1.3.
  • Example 2 is an infrared spectrum of maleic anhydride grafted polyethylene of Example 2.1.
  • the catalyst used in the preparation method of the present invention can be prepared by the method disclosed in the applicant's already filed patent application (Application No. 201510271254.1), which is incorporated herein by reference in its entirety.
  • the catalyst used is prepared by a method comprising the following steps:
  • reaction system is heated to 90 ° C to 130 ° C over a period of 30 minutes to 3 hours, and the remaining internal electron donor is added to continue the reaction;
  • step (b) is replaced by the following step (b'):
  • a titanium compound was added to the reactor, preheated to -30 ° C to 30 ° C, and a mixture of the above mixture I and mixture II was added dropwise.
  • the mixture I is preferably prepared by mixing a magnesium halide and an alcohol compound in an organic solvent, heating and maintaining the temperature, and then adding an auxiliary agent and a part of the internal electron donor to obtain a reaction at a certain temperature. Stable homogeneous mixture I.
  • the alcohol compound is selected from one or more of a C 1 -C 15 fatty alcohol compound, a C 3 -C 15 cycloalkanol compound, and a C 6 -C 15 aromatic alcohol compound, preferably Methanol, ethanol, ethylene glycol, n-propanol, isopropanol, 1,3-propanediol, butanol, isobutanol, hexanol, heptanol, n-octanol, isooctanol, decyl alcohol, decyl alcohol, sorbitol
  • the internal electron donor is at least one of a monoester, a diester, a monoether, and a diether compound, and more preferably a diester or a diether.
  • a monoester such as: aromatic carboxylic acid diesters, 1,3-diethers, malonic esters, succinates, glutarates, glycol esters, such as: diisobutyl phthalate, phthalic acid Di-n-butyl formate, 1,3-diether, 9,9-bis(methoxymethyl)anthracene, di-n-butyl 2-isopropylmalonate, 2-mercaptomalonate Ethyl ester, diethyl 2-methyl-2-isopropylmalonate, diisobutyl diisopropyl succinate, diethyl 2,3-diisopropylsuccinate, ⁇ -substituted pentyl Diester, 1,3-diol ester, and the like.
  • the solvent is selected from the group consisting of a linear alkane of 5-20 carbons, a branched alkane of 5-20 carbons, an aromatic hydrocarbon of 6-20 carbons or at least one of their halogenated hydrocarbons, preferably toluene, chlorobenzene At least one of dichlorobenzene or decane.
  • the magnesium halide has a carrier in the preparation of a catalyst capable of directly obtaining submicron-sized polyolefin particles.
  • the function of one of the components of the conventional Ziegler-Natta catalyst is to enable the prepared catalyst to have a suitable shape, size and mechanical strength, and at the same time, the carrier can disperse the active component on the surface of the carrier to obtain a higher The specific surface area increases the catalytic efficiency of the active component per unit mass.
  • the alcohol compound functions to dissolve a carrier, that is, a magnesium halide.
  • the temperature at which the mixed solution is obtained is preferably 110 to 130 ° C, more preferably 130 ° C, and the incubation time is preferably 1 to 3 hours, more preferably 2 to 3 hours.
  • the reaction time after the auxiliary or the like is 0.5 to 2 hours, and more preferably 1 hour. Therefore, the magnesium halide is dissolved by the alcohol compound at a high temperature to obtain a mixture I.
  • the mixture II is preferably prepared by adding nanoparticles, a dispersant and a solvent to a reaction vessel and sonicating to obtain a homogeneous mixture II.
  • the nanoparticles are preferably at least one of nano silica, nano titanium dioxide, nano zirconium dioxide, nano nickel oxide, nano magnesium chloride or nano carbon spheres, more preferably nano silica, nano titanium dioxide.
  • the particle size of the nanoparticles is preferably from 1 to 80 nm, more preferably from 10 to 50 nm.
  • the mass of the preferred nanoparticles added is from 0% to 200%, more preferably from 0% to 20%, based on the mass of the magnesium halide.
  • the time for sonication is preferably 2 hours.
  • nanoparticles are introduced as seed crystals for the purpose of accelerating the formation of the carrier and reducing the particle size of the catalyst particles; dispersants and solvents, including sonication, are all used to assist in the dispersion of the nanoparticles, thus promoting the ability of each of the nanoparticles. Play the role of seed crystals.
  • the nanoparticles are at least one selected from the group consisting of nano silica, nano titanium dioxide, nano zirconium dioxide, nano nickel oxide, nano magnesium chloride or nano carbon spheres. .
  • the nanoparticles have a particle size of from 1 to 80 nm, preferably from 2 to 60 nm, more preferably from 3 to 50 nm.
  • the addition mass of the nanoparticles is greater than 0% to 200% or less with respect to the mass of the magnesium halide added.
  • the amount of the nanoparticles added is in the range of more than 0% to less than or equal to 20%.
  • the solvent is selected from the group consisting of a linear alkane of 5-20 carbons, a branched alkane of 5-20 carbons, an aromatic hydrocarbon of 6-20 carbons or At least one of their halogenated hydrocarbons.
  • the dispersant is selected from the group consisting of titanium tetrachloride, silicon tetrachloride or a mixture of the two.
  • the mixing is carried out under heating and stirring to obtain a uniformly stable transparent mixture I.
  • the ultrasonic dispersion treatment is performed at the time of the arrangement.
  • the dropwise addition is a slow dropwise addition.
  • a preferred reaction preheating temperature is -20 ° C to 30 ° C, and more preferably -20 ° C to 20 ° C.
  • the reaction time of the step (c) is from 1 to 5 hours, preferably from 2 to 3 hours.
  • the reaction of the step (d) is continued for 1 to 5 hours, preferably 2 to 3 hours.
  • the post-treatment in the step (e) may be that the obtained product is washed with hexane and then dried; wherein the number of washings may be 1 to 10 times, preferably 3 to 6 times.
  • the magnesium halide is at least one selected from the group consisting of magnesium chloride, magnesium bromide or magnesium iodide.
  • the auxiliary agent may be a titanate compound.
  • R is a branched or linear alkyl group of C 1 -C 12
  • X is a halogen
  • n is 0, 1, 2 or 3.
  • the reaction system is heated to 90 to 130 ° C over a period of from 40 minutes to 3 hours, and more preferably, the reaction system is heated to a temperature of from 100 ° C to 120 ° C over a period of from 40 minutes to 2 hours.
  • the preparation method of the Ziegler-Natta catalyst according to the present invention is simple in process and easy to industrialize.
  • the Ziegler-Natta catalyst prepared by the invention can produce an average particle diameter of 10 to 100 ⁇ m, a high sphericity, a narrow particle size distribution and a low bulk density (0.1 to 0.3/mL) when ethylene is polymerized. Polyethylene pellets. It has been found through research that the catalyst prepared by the invention has a particle size of 20 to 30 times lower than that of other polyethylenes, and the particle size distribution is obviously narrowed and the bulk density can be as low as 0.1 g/mL.
  • the present invention provides a method for preparing an ultrahigh molecular weight ultrafine particle diameter polyethylene powder, which comprises the steps of: carrying out polymerization of ethylene under the action of a catalyst; wherein the polymerization temperature is -20 ⁇ 100°C; in ethylene, the carbon monoxide content is less than 5ppm, the carbon dioxide is less than 15ppm, and the conjugated diene content is less than 10ppm;
  • the catalyst is prepared by the above-described method for preparing a catalyst.
  • the invention has found through research that the control method of the catalyst can be controlled simply, and the particle size control of the powder can be well realized, but the molecular weight of the prepared polyethylene is not high, and the particle size is controlled to achieve the improvement.
  • the inventors have made many attempts to determine the molecular weight of the polymer. It has been found that controlling the temperature of the polymerization reaction and the purity of the monomer is a simple and effective method, and does not affect the effective particle size of the polymer. Control and even help to prepare polymers with a narrower particle size range and a lower bulk density range.
  • the temperature of the polymerization reaction is controlled at -20 to 100 ° C, and the purity of ethylene is controlled to be less than 5 ppm of carbon monoxide, less than 15 ppm of carbon dioxide, and less than 10 ppm of conjugated diene.
  • ultrahigh molecular weight polyethylene is prepared.
  • the temperature of the polymerization reaction is from 30 to 80 ° C, more preferably from 50 to 80 ° C.
  • the present invention provides an ultrahigh molecular weight ultrafine particle size polyethylene powder.
  • the ultrahigh molecular weight polyethylene having the particle size and the bulk density is particularly suitable for graft modification, and on the one hand, greatly expands the modification space of the polyethylene; on the other hand, the processing property of the polymer is remarkably improved. Suitable for the preparation of a wider range of articles; thus, the field of application of the polymers is effectively expanded.
  • the ultrahigh molecular weight ultrafine particle size polyethylene powder of the invention also has the following excellent properties: firstly, the wear resistance is excellent, and the wear resistance index of the metals such as carbon steel and copper is several times higher; secondly, High molecular weight, The molecular chain is extremely long, which makes the impact strength of the material high; again, the chemical resistance of the polyethylene powder is stronger than that of the general polyolefin; finally, the material has a wide temperature range of use, at a lower or higher temperature. Both maintain good toughness and strength.
  • the present invention provides a method for preparing ultrahigh molecular weight ultrafine particle size grafted polyethylene by solid phase grafting.
  • the grafted polyethylene is prepared by adding an average particle diameter of a viscosity average molecular weight (Mv) of more than 1 ⁇ 10 6 in a container of from 10 ⁇ m to 100 ⁇ m (preferably 20 ⁇ m - 80 ⁇ m, more preferably 50 ⁇ m to 80 ⁇ m), standard deviation is 2 ⁇ m to 15 ⁇ m (preferably 5 ⁇ m to 15 ⁇ m, more preferably 6 ⁇ m to 12 ⁇ m, still preferably 8 ⁇ m to 10 ⁇ m), and bulk density is between 0.1 g/mL and 0.3 g/ a polyethylene powder between mL (preferably between 0.15 g/mL and 0.25 g/mL); an azo initiator or a peroxy compound initiator (for example, benzoyl peroxide) is added in an amount of 0.1 to 10% by weight, preferably 2 to 9% by weight, more preferably 3 to 8% by weight based on the mass of the polyethylene powder; and a viscosity average molecular weight
  • the oxyalkyl compound is, for example, vinyltrimethylsilane, vinyltriethylsilane, divinyldimethylsilane, (triethylsilyl)acetylene, allyltrimethylsilane or the like, preferably vinyl One or two of trimethylsilane and vinyltriethylsilane.
  • the grafting monomer is added in an amount of 0.2 to 15% by weight, preferably 0.5 to 12% by weight, more preferably 1 to 9% by weight based on the mass of the polyethylene powder; and an interfacial agent, preferably benzene, toluene, xylene or tetrahydrofuran One or more of diethyl ether, acetone, hexane and heptane, more preferably one or more of toluene, xylene, tetrahydrofuran, diethyl ether and acetone, such as xylene or xylene and tetrahydrofuran.
  • the interface agent is added in an amount of 0.1 to 30% by weight, preferably 10 to 25% by weight based on the mass of the polyethylene powder.
  • the stirring time is related to the efficiency of the stirring paddle.
  • the purpose of the stirring is to uniformly mix the reactants, to make the grafting reaction more fully, and to reduce the occurrence of self-polymerization of the grafting monomer. Therefore, the stirring time is uncertain, and it is usually 0.5 to 5 hours, preferably 1 to 5 hours, more preferably 3 to 5 hours.
  • the solid phase grafting reaction is carried out by heating, and the grafting reaction conditions are carried out at 60 to 120 ° C for 0.5 to 5 hours, preferably at 70 to 110 ° C for 0.5 to 3.5 hours, more preferably at 85 to 110 ° C for 2 to 3 hours. Grafting reaction. At the end of the reaction, the product is a grafted polyethylene having a high graft ratio.
  • the present invention provides a process for preparing a solubilized ultrahigh molecular weight ultrafine particle size polyethylene.
  • the present inventors have found through research that the control of the preparation of the catalyst can be carried out in a simple manner, and the control of the particle size of the polyethylene can be achieved well, but the molecular weight of the prepared polyethylene is not high.
  • the inventors have made many attempts to control the polymerization reaction.
  • the temperature and purity of the monomer is a simple and effective method without affecting the effective control of the particle size of the polymer, and even helping to prepare polymers with a narrower particle size range and a lower bulk density range. .
  • the temperature of the polymerization reaction is controlled at -20 to 100 ° C, and the purity of ethylene is controlled to be less than 5 ppm of carbon monoxide, less than 15 ppm of carbon dioxide, and less than 10 ppm of conjugated diene.
  • ultrahigh molecular weight polyethylene is prepared.
  • the temperature of the polymerization reaction is from 0 to 90 ° C, preferably from 10 to 85 ° C, more preferably from 30 to 80 ° C, still more preferably from 50 to 80 ° C.
  • a means for solubilization is further introduced in the present invention, that is, the present invention introduces a dispersion medium in the process of preparing polyethylene, or is dispersed.
  • the present invention introduces a dispersion medium in the process of preparing polyethylene, or is dispersed.
  • Medium and solvent the presence of these small molecules makes the crystal size of the obtained polyethylene greatly reduced, the molecular chain is easier to move, and the heat is more easily transferred in the subsequent dissolution or melt processing of the product, so that the obtained polyethylene It can be rapidly dissolved or melted at a lower temperature, thereby shortening the process, and further reducing the dissolution or melting temperature can also significantly reduce the degradation of polyethylene, which is critical for ensuring its molecular weight and obtaining high performance polyethylene products.
  • the present invention provides a solubilized ultrahigh molecular weight ultrafine particle size polyethylene.
  • the ultrahigh molecular weight polyethylene having the particle size, bulk density and solvent content is particularly suitable for graft modification, and on the one hand greatly expands the modification space of the polyethylene; on the other hand, the processing property of the polymer Significantly improved, suitable for the preparation of a wider range of articles; thus, the field of application of the polymer is effectively expanded.
  • the polyethylene of the invention also has the following excellent properties: 1) excellent wear resistance, several times higher than the wear index of metals such as carbon steel and copper; 2) molecular chain super due to high molecular weight Long, the impact strength of the material is high; 3) the chemical resistance of the polyethylene is stronger than that of the general polyolefin; 4) the material has a wide temperature range and can be kept at a low or high temperature. The toughness and strength; 5) The material has low energy consumption in the process of forming, film forming and fiber forming, and the process time is short.
  • the present invention provides a fiber and a method of preparing the same.
  • a mixture containing the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene is mixed with a solvent to obtain the spinning solution or gel.
  • the solvent is an organic solvent capable of dissolving the polyethylene, and is, for example, decalin, white oil or the like.
  • the content of the polymer in the spinning solution or gel is from 3 to 20% by weight, preferably from 5 to 15% by weight.
  • the solution jelly spinning method is taken as an example, and the method specifically comprises the steps of: solubilizing ultrahigh molecular weight ultrafine particle size polyethylene and solvent Mixing to obtain a mixture; extruding the mixture by twin-screw dissolution (preferably, the temperature of the dissolution extrusion is 120-270 ° C, preferably 150-240 ° C) to obtain a spinning solution; the spinning solution is directly passed through a twin screw Extrusion, extrusion through a spinning assembly, spinneret, through a coagulation bath (eg, a cooling water bath; preferably, the water bath temperature is 0-15 ° C, preferably 2-10 ° C) Cooling to obtain a gel fiber; the gel fiber is subjected to gel wire drawing, solvent extraction, drying, first hot box dry heat drawing, second hot box dry heat drawing, heat setting and winding, etc.
  • solubilizing ultrahigh molecular weight ultrafine particle size polyethylene and solvent Mixing to obtain a mixture
  • the fiber of the present invention is obtained.
  • the raw material in addition to the solubilized ultrahigh molecular weight ultrafine particle size polyethylene, the raw material further includes an antioxidant.
  • the antioxidant is added in an amount of 0.01 to 1 part by weight, more preferably 0.02 to 0.5 part by weight, per 100 parts by weight of the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene.
  • the fiber is obtained from the solubilized ultrahigh molecular weight ultrafine particle size polyethylene containing an antioxidant.
  • the mixture includes an antioxidant in addition to the polyethylene.
  • the antioxidant is added in an amount of from 0.01 to 1 part by weight, more preferably from 0.02 to 0.5 part by weight, per 100 parts by weight of the polyethylene.
  • the mixture is composed of the solubilized ultrahigh molecular weight ultrafine particle size polyethylene and an antioxidant.
  • the antioxidant is an antioxidant for polyethylene known in the art, and the antioxidant is composed of a primary antioxidant and a secondary antioxidant, and the primary antioxidant is selected from the group consisting of a primary antioxidant and a secondary antioxidant.
  • a hindered phenolic antioxidant selected from the group consisting of thiodipropionate or phosphite.
  • the hindered phenolic antioxidants are some phenolic compounds with steric hindrance, and their anti-oxidation effects are remarkable, and they do not pollute the products; there are many varieties of such antioxidants, mainly: 2,6-di-tert-butyl 4-methylphenol, bis(3,5-di-tert-butyl-4-hydroxyphenyl) sulfide, tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid ⁇ pentaerythritol ester and the like.
  • the thiodipropionic acid diester is a kind of auxiliary antioxidant, and is often used together with a hindered phenolic antioxidant, and the effect is remarkable, such as: bisdithiolactyl thiodipropionate, thiodipropionic acid double Tetradecanol ester or bis-octadecyl thiodipropionate.
  • the phosphites are also auxiliary antioxidants, mainly including trioctyl phosphite, tridecyl phosphite, tris(dodecanol) phosphite, and tris(hexadecanol) phosphite.
  • the fiber of the invention has excellent mechanical properties and creep resistance, and also has a wide temperature range of use. Specifically, the fiber of the invention has the following properties: fineness (dtex) 1.5-3.0, breaking strength 2.0 or more. 3.5GPa, modulus 95-220GPa, elongation at break 3.0-4.5%, creep less than or equal to 2% (eg 1.0%-2.0%), crystallinity 95%, melting point 130°C-140°C, temperature range of use- 30 ° C ⁇ 135 ° C.
  • the present invention provides a film and a method of preparing the same.
  • the melt-kneading in the step (1) is carried out by a twin-screw extruder, and melt-kneading by a twin-screw extruder is well known and will not be described in detail herein.
  • the weight percentage of the polyethylene in the solution is from 20 to 50% by weight, preferably from 30 to 40% by weight.
  • the solvent for film formation may be cyclohexane, n-hexane, n-heptane, decane, decane, undecane, dodecane, benzene, toluene, xylene, dichlorobenzene, trichlorobenzene, 1, At least one of 1,1-trichloroethane, white oil, liquid paraffin, kerosene, olefin mineral oil, and decalin.
  • the temperature of the melt-kneading varies depending on the polymer and the solvent, and is generally in the range of 130 to 280 °C.
  • the step (2) is specifically: the solution of the step (1) is supplied to a mold through an extruder, and the solution is extruded from the mold to form a molded body (such as a sheet). After cooling by a cooling drum, a polymer sheet was obtained.
  • the surface temperature of the cooling drum is set to 20 to 40 ° C, and the cooling rate of the molded body through the cooling drum is 20 ° C / s or more.
  • the biaxial stretching in the step (3) means: the polymer sheet of the step (2), which is oriented in the transverse direction by a usual tenter method, a drum method or a combination thereof. Stretching is performed at a certain magnification (transverse stretching ratio and longitudinal stretching ratio) in both the direction (TD) and the machine direction (machine direction, MD).
  • the preferable transverse stretching ratio and longitudinal stretching ratio are 4 to 5 times, respectively, and preferably, the transverse stretching ratio is the same as the longitudinal stretching ratio.
  • the polymer content is from 3 to 20% by weight, preferably from 5 to 15% by weight.
  • an antioxidant is further added to the raw material.
  • the antioxidant is added in an amount of 0.01 to 1 part by weight, more preferably 0.02 to 0.5 part by weight, per 100 parts by weight of the polyethylene.
  • the antioxidants are antioxidants known in the art for polyethylene.
  • the antioxidant is composed of a primary antioxidant selected from a hindered phenolic antioxidant and a secondary antioxidant selected from the group consisting of thiodipropionic acid Ester or phosphite, etc.
  • the hindered phenolic antioxidants are some phenolic compounds with steric hindrance, and their anti-oxidation effects are remarkable, and they do not pollute the products; there are many varieties of such antioxidants, mainly: 2,6-di-tert-butyl 4-methylphenol, bis(3,5-di-tert-butyl-4-hydroxyphenyl) sulfide, tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid ⁇ pentaerythritol ester and the like.
  • the thiodipropionic acid diester is a kind of auxiliary antioxidant, and is often used together with a hindered phenolic antioxidant, and the effect is remarkable, such as: dicodipropionate, thiodipropionate, thiodipropionate Tetradecanol ester or bis-octadecyl thiodipropionate.
  • the phosphites are also auxiliary antioxidants, mainly including trioctyl phosphite, tridecyl phosphite, tris(dodecanol) phosphite, and tris(hexadecanol) phosphite.
  • the properties of the sheets and tubes of the present invention are determined by measurement methods in well-known standards.
  • the creep resistance is measured by the Chinese national standard GB11546-89 and ISO899-1981.
  • Impact resistance measured by GB/T1043.1-2008.
  • Flexural strength and flexural modulus were measured by GB/T9341-2008.
  • Tensile strength measured by GB/T1040-2006.
  • the heat distortion temperature was measured by GB/T1634.2-2004.
  • Infrared characterization of grafted polyethylene A small sample was taken and pressed into a film on a flat vulcanizer to obtain an infrared spectrum on a NICOLET 560 FTIR.
  • Determination of water contact angle A small sample was taken and pressed into a film on a flat vulcanizer. A drop of distilled water was dropped on the sample stage to allow the sample film to adhere tightly to the sample stage. 2 ⁇ L of deionized water droplets were extracted with a micro-injector and applied to the sample membrane, and the angle was measured 10 seconds later.
  • the fiber properties of the present invention and the properties of the film can be measured by a measurement method in a known standard.
  • the creep resistance of the present invention is measured by the measurement method in the National Standards of the People's Republic of China GB11546-89 and ISO899-1981.
  • reaction vessel 200 ml of titanium tetrachloride was added and stirred, and preheated to 0 ° C, and the mixture I was added dropwise to titanium tetrachloride in about 2 hours. After the addition was completed, the temperature was raised and the temperature was raised to 110 ° C in 2 hours. 1.23 g of an internal electron donor diisobutyl phthalate was added. After reacting at this temperature for 2 hours, the reaction liquid was removed, and 200 ml of titanium tetrachloride was again added thereto, and the reaction was carried out for 2 hours. Finally, the reaction liquid was removed, and the remaining solid matter was washed 10 times with hexane at 60 ° C, and dried to obtain a catalyst.
  • the 1L high pressure reaction kettle was dried and deaerated, and 150 mL of n-hexane, 20 mg of the catalyst of the above Preparation Example 1 and 12 ml of triethyl aluminum were sequentially added, and then ethylene gas was introduced to maintain 0.7 MPa; wherein, ethylene The carbon monoxide content is less than 5 ppm, the carbon dioxide is less than 15 ppm, the conjugated diene content is less than 10 ppm, the polymerization reaction is started, the system temperature is maintained at 80 ° C, and the reaction time is 30 minutes.
  • the catalyst activity and the properties of the polyethylene are shown in Table 1.
  • the 1L high pressure reaction kettle was dried and deaerated, and 150 mL of n-hexane, 20 mg of the catalyst of the above Preparation Example 1 and 12 ml of triethyl aluminum were sequentially added, and then ethylene gas was introduced to maintain 0.7 MPa; wherein, ethylene , carbon monoxide content less than 5ppm, carbon dioxide less than 15ppm, conjugated diene content less than 10 ppm; the polymerization reaction was started, the system temperature was maintained at 70 ° C, and the reaction time was 30 minutes.
  • Table 1 The activity of the obtained catalyst and the properties of the polyethylene are shown in Table 1.
  • the 1L high pressure reaction kettle was dried and deaerated, and 150 mL of n-hexane, 20 mg of the catalyst of the above Preparation Example 1 and 12 ml of triethyl aluminum were sequentially added, and then ethylene gas was introduced to maintain 0.7 MPa; wherein, ethylene The carbon monoxide content is less than 5 ppm, the carbon dioxide is less than 15 ppm, the conjugated diene content is less than 10 ppm, the polymerization reaction is started, the system temperature is maintained at 50 ° C, and the reaction time is 30 minutes.
  • the catalyst activity and the properties of the polyethylene are shown in Table 1.
  • Example 1 is a scanning electron micrograph of the polyethylene prepared in Example 1.3. It can be seen from FIG. 1 that all the polyethylene particles exhibit a good sphericity, are spherical or spheroidal, and have a uniform particle size distribution and an average particle diameter. Smaller.
  • the 1L high pressure reactor was dried and deaerated, 150 mL of n-hexane, 20 mg of the above catalyst and 12 ml of triethylaluminum were added in sequence, and then ethylene gas was introduced to maintain 0.7 MPa; wherein, ethylene, carbon monoxide content Above 10ppm, carbon dioxide is higher than 20ppm, conjugated diene content is higher than 20ppm; polymerization starts, system temperature is maintained at 110 ° C, reaction time is 30 minutes, the catalyst activity and properties of polyethylene are shown in Table 1.
  • Example 1.3 and Comparative Example 1.1 Further properties of the polyethylene of Example 1.3 and Comparative Example 1.1 were further examined in the present invention, and it was found that: (1) the abrasion resistance index of the polyethylene of Example 1.3 is higher than that of the general carbon steel or copper. The number of times is higher; while the wear index of Comparative Example 1.1 is slightly lower; (2) the impact strength of the polyethylene of Example 1.3 is greater than 10 KJ/m 2 , and the impact strength of Comparative Example 1.1 is about 3 KJ/m 2 (3) The polyethylene powder of Example 1.3 has stronger chemical resistance than the general polyolefin, and the polyethylene powder of Comparative Example 1.1 is highly degradable under acidic conditions; (4) The polyethylene powder of Example 1.3 The body has a wide temperature range and maintains good toughness and strength at low (eg, minus 30 ° C) or higher temperatures (eg, 110 ° C).
  • PE-g-MAH 40 g of polyethylene particles having an average particle diameter of 85 ⁇ m prepared in Example 1.1 (standard deviation of 8.21 ⁇ m, viscosity average molecular weight of 1.3 ⁇ ) were added to a reactor sufficiently substituted with high-purity nitrogen. 10 6 , molecular weight distribution is 9.2), adding 2.0 g of benzoyl peroxide, adding 2.8 g of maleic anhydride (MAH), adding 4 mL of tetrahydrofuran and 5 mL of xylene; then turning on mechanical stirring, stirring rapidly for 3 hours; finally, the reactor The mixture was placed in an oil bath at 100 ° C for 2 hours to obtain a crude graft of the product.
  • MAH maleic anhydride
  • PE-g-MAH Purification of PE-g-MAH: Weigh about 4g of crude graft, weigh it together with 200mL of xylene and add it to a 500mL distillation flask to dissolve it. It is refluxed for 4h. After cooling, add acetone (about 200mL) and shake it. Then, it was washed once with acetone, and the filtrate was dried in an oven at 50 ° C for 12 hours, and cooled to obtain a purified graft.
  • acetone about 200mL
  • Infrared characterization of PE-g-MAH The infrared spectrum of the refined graft was determined according to the method described above, and the results are shown in Fig. 2, wherein the upper polyethylene material (i.e., the base polymer) and the lower grafted polyethylene. 1862 cm -1 , 1785 cm -1 , and 1717 cm -1 are characteristic peaks of maleic anhydride, indicating that maleic anhydride was successfully grafted onto the polyethylene chain.
  • the water contact angle was measured in accordance with the aforementioned method, and the water contact angle of the polyethylene raw material (i.e., the base polymer) was 95°, and the water contact angle of the grafted polyethylene was 88°.
  • the effective graft ratio of the grafted polyethylene was determined to be 1.33% according to the method described above.
  • PE-g-MAH 40 g of polyethylene powder having an average particle diameter of 76 ⁇ m prepared in Example 1.1 was added to a reactor sufficiently substituted with high-purity nitrogen (standard deviation was 8.22 ⁇ m, and the viscosity average molecular weight was 1.7 ⁇ 10 6 ), 2.0 g of azobisisobutyronitrile was added, 2.8 g of maleic anhydride (MAH) was added, 3 mL of tetrahydrofuran and 6 mL of xylene were added; then mechanical stirring was started, and rapid stirring was carried out for 3 hours; finally, the reactor was placed. The product was obtained by reacting for 2 hours in an oil bath at 120 °C. The effective graft ratio of maleic anhydride of grafted polyethylene was measured to be 1.65%, and the water contact angle of grafted polyethylene was 84°.
  • PE-g-AA In a reactor sufficiently substituted with high-purity nitrogen, 40 g of a polyethylene powder having an average particle diameter of 45 ⁇ m prepared by the same method as in Example 1.1 (standard deviation of 8.18 ⁇ m, viscosity average) was added. The molecular weight was 2.7 ⁇ 10 6 , 2.0 g of benzoyl peroxide was added, 2.8 g of ethylene acid was added, 5 mL of xylene was added; then mechanical stirring was started, and rapid stirring was carried out for 3 hours; finally, the reactor was placed in an oil bath of 100 ° C, The reaction was carried out for 2 hours to obtain a product. The effective graft ratio of the ethylene acid of the grafted polyethylene was measured to be 2.14%, and the water contact angle of the grafted polyethylene was 80°.
  • PE-g-MMA 40 g of a polyethylene powder having an average particle diameter of 70 ⁇ m prepared by the same method as in Example 1.1 was added to a reactor sufficiently substituted with high-purity nitrogen (standard deviation: 8.21 ⁇ m, viscosity average molecular weight) 1.3 ⁇ 10 6 ), adding 2.0 g of benzoyl peroxide, adding 2.8 g of methyl methacrylate (MMA), adding 5 mL of xylene; then turning on mechanical stirring, stirring rapidly for 4 hours; finally adding the reactor to 100 The product was obtained by reacting for 2 hours in an oil bath of °C. The effective graft ratio of MMA of the grafted polyethylene was measured to be 2.04%, and the water contact angle of the grafted polyethylene was 81°.
  • the coupling agent is ⁇ -aminopropyltriethoxysilane KH550; the length of the glass fiber is 3-5 mm; and the diluent is white oil.
  • the weight ratio of the diluent to the coupling agent is 3:1; the amount of the coupling agent is 2 parts by weight relative to 100 parts by weight of the glass fiber.
  • the coupling agent is vinyltrimethoxysilane A-171; the length of the glass fiber is 3-5 mm; and the diluent is white oil.
  • the weight ratio of the diluent to the coupling agent is 4:1; the amount of the coupling agent is 1 part by weight relative to 100 parts by weight of the glass fiber.
  • the coupling agent is vinyl triethoxysilane A-151; the length of the glass fiber is 3-5 mm; and the diluent is liquid paraffin.
  • the weight ratio of the diluent to the coupling agent is 6:1; the amount of the coupling agent is 3 parts by weight relative to 100 parts by weight of the glass fiber.
  • compositions and contents of the compositions of Examples 3.1 to 3.9 of the present invention are shown in Table 2.
  • Sheets were prepared using the compositions of Examples 3.1 to 3.9, respectively.
  • Example 3.1a Taking the composition of Example 3.1a as an example, 6 kg of the ethylene homopolymer of Example 1.1 and 4 kg of the glass fiber of Preparation 3.1 were uniformly mixed by a high speed mixer, fed into an extruder, and extruded through a slit die.
  • the sheet of the present invention was obtained by cooling and stretching.
  • the processing temperature of the extruder is 180 to 240 °C.
  • Tubes were prepared using the compositions of Examples 3.1 to 3.9, respectively.
  • Example 3.1a 6 kg of the ethylene homopolymer of Example 1.1 and 4 kg of the glass fiber of Preparation Example 3.4 were uniformly mixed by a high speed mixer, fed into an extruder, extruded through a tube die, and cooled. And stretching to obtain the tube of the present invention.
  • the processing temperature of the extruder is 180 to 240 °C.
  • the tube has a wall thickness of between 0.5 mm and 5 mm.
  • the slurry polymerization process is firstly carried out.
  • the polymerization reactor is pretreated (the high-purity nitrogen gas is used to dry and deoxidize the 5L high pressure reactor), and 500 g of the dispersion medium cyclohexane is added, and then 150 mL of n-hexane is added in sequence, 20 mg of the above preparation.
  • Example 1 The catalyst of Example 1 and 12 ml of triethylaluminum were then fed with ethylene gas to maintain 0.7 MPa; wherein, in ethylene, the carbon monoxide content was less than 5 ppm, the carbon dioxide was less than 15 ppm, and the conjugated diene content was less than 10 ppm; the polymerization started, the system The temperature was maintained at 80 ° C and the reaction time was 30 minutes.
  • the temperature is cooled and cooled, the slurry material is directly discharged from the bottom valve, the required amount of white oil is added, and the dispersion medium is distilled off to obtain the solubilized ultrahigh molecular weight ultrafine particle size ethylene homopolymer of the present invention, wherein white
  • the oil has a mass percentage of 30% by weight.
  • the properties of the obtained polyethylene are shown in Table 4.
  • Comparative dissolution test 10 g of an ultrahigh molecular weight ultrafine particle size ethylene polymer containing white oil prepared in Example 4.1 was added to 60 g of white oil, dissolved at 140 ° C, and dissolved in 20 minutes.
  • the polymerization reactor is pretreated (under high-purity nitrogen protection, 5L high pressure reaction)
  • the kettle was dried and deaerated, and 500 g of the dispersion medium n-pentane was added, and then 150 mL of n-hexane, 20 mg of the catalyst of the above Preparation Example 1 and 12 ml of triethylaluminum were added, and then ethylene gas was introduced to maintain 0.7 MPa; wherein, ethylene,
  • the carbon monoxide content is less than 5 ppm, the carbon dioxide is less than 15 ppm, and the conjugated diene content is less than 10 ppm; the polymerization starts, the system temperature is maintained at 70 ° C, and the reaction time is 30 minutes.
  • the temperature is cooled and cooled, the slurry material is directly discharged from the bottom valve, the required amount of white oil is added, and the dispersion medium is distilled off to obtain the solubilized ultrahigh molecular weight ultrafine particle size ethylene homopolymer of the present invention, wherein white
  • the oil has a mass percentage of 40% by weight.
  • the properties of the obtained polyethylene are shown in Table 4.
  • the solubility was measured by a method similar to that in Example 4.1, and the dissolution time of the polymer having a solvent content of 0 was shortened by nearly 80%.
  • the slurry polymerization process is firstly carried out.
  • the polymerization vessel is pretreated (the high-purity nitrogen gas is used to dry and deoxidize the 5L high-pressure reactor), and 500 g of the dispersion medium cyclohexane and the required amount of white oil are added, and then sequentially added.
  • the temperature is cooled and cooled, the slurry material is directly discharged from the bottom valve, and the dispersion medium is distilled off to obtain the solubilized ultrahigh molecular weight ultrafine particle size ethylene homopolymer of the present invention, wherein the white oil has a mass percentage of 30 wt%. %.
  • the properties of the obtained polyethylene are shown in Table 4.
  • the solubility was measured by a method similar to that in Example 4.1, and the dissolution time of the polymer having a solvent content of 0 was shortened by nearly 80%.
  • the 1L high pressure reaction kettle was dried and deaerated, and 150 mL of n-hexane, 20 mg of the catalyst of the above Preparation Example 1 and 12 ml of triethyl aluminum were sequentially added, and then ethylene gas was introduced to maintain 0.7 MPa; wherein, ethylene The carbon monoxide content is less than 5 ppm, the carbon dioxide is less than 15 ppm, and the conjugated diene content is less than 10 ppm; the polymerization reaction is started, the system temperature is maintained at 80 ° C, and the reaction time is 30 minutes, and the ethylene homopolymer is obtained.
  • Example 4.1 Using a method similar to that of Example 4.1, except for the polymerization temperature and the purity of the monomer, wherein the purity of ethylene is: carbon monoxide content higher than 10 ppm, carbon dioxide higher than 20 ppm, conjugated diene content higher than 20 ppm; system temperature maintenance It is 110 °C.
  • the activity of the obtained catalyst and the properties of the polyethylene are shown in Table 4.
  • Example 4.1 Polyethylene powders of ⁇ 4.3 have a wide temperature range and maintain good toughness and strength at lower (eg, minus 30 ° C) or higher temperatures (eg, 110 ° C).
  • the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene of Example 4.1 was mixed with white oil to obtain a mixture in which the polymer content was 10% by weight; the mixture was subjected to twin screw dissolution extrusion, and the temperature of the dissolution extrusion was 200 ° C, a spinning solution is obtained; the spinning solution is directly extruded through a twin-screw, extruded through a spinning assembly, a spinneret, and cooled in a cooling water bath (water bath temperature of 5 ° C) to obtain a gel fiber; The gel fiber is subjected to gel filament drawing, solvent extraction, drying, first hot box dry heat drawing, second hot box dry heat drawing, heat setting and winding process to obtain the fiber of the present invention.
  • the drawing temperature of the gel filament drawing step is 40 ° C, the draw ratio is 10 times; the extractant in the solvent extraction step is selected from cyclohexane; in the drying step Drying is dried by hot air, the hot air temperature is 60 ° C; the temperature in the first hot box dry heat drawing process is 130 ° C, the drafting multiple is 10 times; the temperature in the second hot box dry heat drawing process is 135 ° C, The draw ratio was 2 times; the temperature in the heat setting process was 120 °C.
  • the antioxidant is composed of a primary antioxidant and a secondary antioxidant selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol.
  • the secondary antioxidant is selected from the group consisting of bisdidecanoic acid thiodipropionate.
  • the fiber of the present invention has excellent creep resistance and wide use temperature, and has great application prospects.
  • the polymer adopts the solubilized ultrahigh molecular weight ultrafine particle diameter polyethylene in the embodiment 4.1, and an antioxidant is added thereto, and the antioxidant is used in an amount of 0.1 part by weight relative to 100 parts by weight of the polymer, the antioxidant
  • the agent is composed of a primary antioxidant and a secondary antioxidant selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol.
  • the auxiliary antioxidant is selected from the group consisting of bisdidecanoic acid thiodipropionate; the solvent for film formation is liquid paraffin, and the weight percentage of the polymer in the solution is 30% by weight;
  • the melt-kneading is carried out by a known twin-screw extruder, wherein the temperature of the melt-kneading is from 180 to 250 °C.
  • the solution of the step (1) is supplied to a mold through an extruder, and the solution is extruded from the mold to form a molded body (eg, a sheet shape), after cooling by a cooling drum, a polymer sheet is obtained;
  • the surface temperature of the cooling drum is set to 20 to 40 ° C, and the cooling rate of the molded body through the cooling drum is 20 ° C / s or more;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Graft Or Block Polymers (AREA)
  • Cell Separators (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种超高分子量超细粒径聚乙烯及其制备方法和应用,所述聚乙烯的粘均分子量(Mv)大于1×106,所述聚乙烯为球形或类球形颗粒,平均粒径为10μm-100μm,标准差为2μm-15μm,堆密度为0.1g/mL-0.3g/mL。采用所述聚乙烯为基础聚乙烯,通过固相接枝法可以制备得到接枝聚乙烯;也可以获得一种包括所述聚乙烯和玻璃纤维的玻璃纤维增强聚乙烯组合物、由其制备的片材或管;一种增溶型超高分子量超细粒径聚乙烯;以及由该增溶型超高分子量超细粒径聚乙烯制备得到的纤维和膜。所述方法步骤简单、易于控制、成本较低、重复性高,可以实现工业化。本发明的聚乙烯同时兼具超高分子量和超细的粒径范围,特别适合于加工应用,极大地扩展了超高分子量聚乙烯的应用领域和适用范围。

Description

一种超高分子量超细粒径聚乙烯及其制备方法和应用 技术领域
本发明属于聚烯烃高分子材料领域,具体涉及一种超高分子量超细粒径聚乙烯及其制备方法和应用。
背景技术
超高分子量聚乙烯(UHMWPE)是由乙烯、丁二烯单体在齐格勒催化剂的作用下,低压聚合而成的平均分子量大于150万,且分子具有线型结构的综合性能优异的热塑性工程塑料。UHMWPE极高的分子量(高密度聚乙烯HDPE的分子量通常只有2~30万)赋予其优异的使用性能,从而使得UHMWPE具有普通HDPE及其它一些工程塑料所没有的独特性能,如优异的抗冲击性、耐磨损性、耐化学腐蚀性、耐低温性、耐应力开裂性、抗粘附和自身润滑性等,具有“惊异塑料”之称。该材料综合性能优越,密度小,摩擦系数很低,耐磨损、耐低温、耐腐蚀、自身润滑、抗冲击性能在所有塑料中为最高值,耐磨性能优于聚四氟乙烯、尼龙、碳钢等材料,可长期在-169℃~+80℃条件下工作,物理机械性能远远超过了普通聚乙烯。可广泛应用于冶金、电力、石油、纺织、造纸、食品、化工、机械、电气等行业。
虽然作为热塑性工程塑料的UHMWPE在固态时有优良的综合性能,但其熔体特性和普通聚乙烯等一般热塑性塑料又截然不同,主要表现在以下几个方面:1)熔体粘度高;2)摩擦系数小;3)临界剪切速率低;4)成型温度范围窄,易氧化降解。虽然UHMWPE的加工技术经过几十年的发展,已由最初的压制-烧结成型发展为挤出、吹塑和注射、溶液纺丝成型等多种成型方法,但是由于UHMWPE存在以上问题,给加工方法带来了困难,使得其应用于型材、薄膜、纤维、过滤材料等方面时导致性能下降。
比如随着UHMWPE含量的增加,体系的粘度也大幅上升,传统湿法工艺难以处理高粘度原液,限制了UHMWPE的应用。例如在常规的湿法制备工艺过程中,先将聚烯烃加热溶解在石蜡或其它溶剂中,形成均相溶液,采用硫化机压制成薄片后降温,发生液-液相分离,再萃取-拉伸或者拉伸-萃取,得到多孔隔膜。聚烯烃在降温过程中会结晶,发生液-液分离,导致了薄膜难以进行高倍率牵伸,限制了隔膜综合性能的提升。因此,传统湿法工艺难以利用含有超高分子量聚乙烯的溶液制备隔膜,这主要是因为均相溶液在降温过程中发生液-固相分离或液-液相分离,相分离过程中聚烯烃会结晶,导致薄膜难以进行高倍率牵伸,限制了隔膜综合性能的提升。
因此,目前的研究主要围绕如何制备加工性能优异的UHMWPE展开。部分研究人员对UHMWPE的制备方法中所采用的催化剂进行了广泛研究,以期望在制备高优异性能的UHMWPE方面取得突破。在制备UHMWPE时所采用的催化剂主要为茂金属催化剂和齐格勒纳塔催化剂。但是,茂金属催化剂对温度极其敏感,当以Cp2ZrCl2催化乙烯聚合,当温度从20℃升到70℃时,聚合物分子量从60万降到12万。同时,茂金属催化剂若要达到足够高的催化活性,需要大量价格昂贵的甲基铝氧烷(MAO)作为助催化剂,从而增加了产品制备成本;另一方面,助催化剂MAO并非成分单一的化合物,生产过程容易造成产品性能不稳定。齐格勒纳塔催化剂是制备UHMWPE的工业化催化剂,例如,ZhangH.X.等[Polym.Bull.,2011,66,627]报道了利用含有内给电子体的齐格勒纳塔催化剂制备UHMWPE的方法,然而,该齐格勒纳塔催化剂中的内给电子体降低了催化剂的活性。
因此,目前迫切需要出现一种新的UHMWPE的制备方法,使得该方法能够制备出性能优异的UHMWPE,并保证其在加工为型材、薄膜、纤维或者过滤材料时不会降低其性能,具有更好的加工性能和更广泛的应用前景。
聚乙烯作为通用塑料,以产量大、应用面广以及物美价廉而著称,但是聚乙烯的耐寒性、耐候性、耐光性、染色性、粘接性、抗静电性、亲水性均很差,而且与其它极性聚合物、无机填充及增强材料等相容性也很差,这些缺点制约了聚乙烯在包装材料领域、汽车工业、电子工业以及医疗器械等方面的应用。
为了改进聚乙烯的性能,并扩大其应用范围,需要对聚乙烯进行改性。聚乙烯改性的方法有很多,接枝改性就是其中非常重要的一种。接枝改性的工艺有很多种,如化学接枝、机械接枝、光接枝等,其中化学接枝又包括溶液接枝、固相接枝、熔融接枝、气相接枝、悬浮接枝等。固相接枝聚乙烯起步较晚,在20世纪80年代末,Rengarajan等首次报道了用固相接枝法制备马来酸酐官能化聚丙烯,随后陆续报道的用于固相接枝法改性聚乙烯的单体包括苯乙烯、甲基丙烯酸缩水甘油酯、4-乙烯基吡啶、乙烯腈、2-羟乙基丙烯酸甲酯等。与其它接枝工艺相比较,固相接枝法不仅可以在保持聚乙烯原有性能的情况下引入极性官能团,而且具有低温、低压、低成本、较高的接枝率和无需溶剂回收等优点。
然而,固相接枝法改性聚乙烯目前所面临的一个较大的困难在于常规的工艺或技术制备出的改性聚乙烯的有效接枝率很低,目前文献中的报道一般只能达到1%,显然这样低接枝率的改性对于聚乙烯的性能的改善是有限的。近年来,研究者们为了提高接枝率研发了一系列的固相接枝反应工艺,例如:超临界二氧化碳协助固相接枝、磨盘形力化学反应器接枝改性聚乙烯、超声波辅助的固相接枝法、共单体熔融接枝法、辐射接枝法等方法。虽然这些方法都能在一定程度上降低接枝温度和接枝时间并提高接枝率,但是整个反应工艺操作过于复杂,而且引入了新的介质或设备,这些都极大 地提高了生产成本,难以实现大规模低成本生产。所以研究采用常规方法低成本制备高接枝率接枝聚乙烯就非常具有意义。
聚乙烯纤维包括长纤维、短纤维、无纺布等。其中,聚乙烯长纤维光泽好、手感柔软、悬垂性良好、密度小,适用于针织行业,与棉、黏胶丝、真丝、氨纶等交织成棉盖丙、丝盖丙等产品时,是制作高档运动服、T恤等的理想材料;聚乙烯短纤维与棉花混纺可做成棉细布、床单,与黏胶混纺可做毛毯、聚乙烯纯纺和混纺毛线、地毯,棉絮及烟用滤咀;聚乙烯无纺布用于一次性医疗卫生用品、一次性防污服、农业用布、家具用布或制鞋业的衬里等,或者用于医疗卫生、保暖材料、过滤材料等领域。常规的聚乙烯纤维虽然具有质轻、强度高、弹性好、耐磨、耐腐蚀、绝缘性好、保暖性好等诸多优点,但其也存在耐热、耐低温、耐老化性能差的缺陷,而且其吸湿性和染色性能也很差。
化学纤维的成型加工包括湿法纺丝、干-湿法纺丝和熔融纺丝等。在化学纤维成型加工过程中,牵伸是一个重要的工艺过程。牵伸可以使化学纤维中的高分子产生力学、光学、热学等方面的各向异性,有效地提高化学纤维的强度。对于熔融纺丝,其中的牵伸工序主要采用热辊牵伸、热板牵伸和热箱牵伸;对于湿法或干-湿法纺丝,除了上述牵伸方式外,还可以采用加压蒸汽牵伸。通过加工方式的调整来改善聚乙烯的上述诸多不利之处,也是目前研究较多的一个方向。
聚乙烯膜、尤其是双向拉伸聚乙烯膜,具有优异的抗弯曲疲劳性、较高的耐热性、化学性能好、质地纯净无毒性、透明性好等,主要用于包装用薄膜领域。但其耐低温性能较差、低温冲击强度低。现有技术中有采用与丙烯共聚、添加共混改性剂(如添加乙丙橡胶、EPDM、POE、EVA或SBS等)等方式来改进其耐低温性能,但这些方法在提高耐低温性能的同时,会影响聚乙烯的其他的优异性能,如强度和模量等。
另外,聚乙烯微孔膜还广泛用于电池隔膜、电解电容器隔膜、各种过滤器、防水透湿面料、反渗透过滤膜、超滤膜、微滤膜等。当用于电池用隔膜时,需要所述膜具有优异的透过性、机械特性、耐热收缩性、熔化特性等,如何获得各项性能均优的聚乙烯微孔膜一直是研究人员努力追求的目标。
聚乙烯是目前用量最大的通用塑料品种之一,其具有较为均衡的综合性能,因而在汽车、电器、建材等领域得以大量使用。虽然聚乙烯具有较好的耐磨损性、耐化学腐蚀性、耐应力开裂性、抗粘附和自身润滑性等,但同时耐低温、抗冲击性差,较易老化。
玻璃纤维增强聚乙烯(GFPE)因其具有改善的刚性、抗冲击强度、抗蠕变性能、低翘曲、抗动态疲劳和尺寸稳定性等优点,近年来受到越来越多研究人员的关注,虽然玻璃纤维增强聚乙烯可以改善其耐低温性能,但仍存在玻璃纤维与聚乙烯的相容性差、抗冲击性和抗蠕变性能低等问题,有待开发新型的玻璃纤维增强聚乙烯复合材料。
发明内容
本发明的目的之一是提供一种超高分子量超细粒径聚乙烯粉体及其制备方法,所述粉体具有优异的加工性能。
本发明的目的之二是提供一种接枝改性超高分子量超细粒径聚乙烯及其固相接枝方法,所述方法能够简便且高效地制备出接枝率较高的接枝聚乙烯,更为有效的对聚乙烯进行改性。
本发明的目的之三是提供一种玻璃纤维增强聚乙烯组合物及其制备的片材和管,由所述组合物制备的片材或管的耐低温性能优异、各项力学性能(尤其是抗冲击性能和抗蠕变性能)和热学性能均十分优异。
本发明的目的之四是提供一种增溶型超高分子量超细粒径聚乙烯及其制备方法,所述聚乙烯具有加工性能更加优异、更加易于加工等特性。
本发明的目的之五是提供一种耐低温性能优异、各项力学性能和热学性能均十分优异的增溶型超高分子量超细粒径聚乙烯制备的纤维及其制备方法。
本发明的目的之六是提供一种耐低温性能优异、各项力学性能和热学性能均十分优异的增溶型超高分子量超细粒径聚乙烯制备的膜及其制备方法。另外,本发明的膜因具有优异的力学性能、热学性能、透过性、熔化特性等,还特别适合用于电池隔膜。
本发明的第一方面是提供一种超高分子量超细粒径聚乙烯粉体的制备方法,其包括以下步骤:
在催化剂的作用下,将乙烯进行聚合反应;其中,聚合反应的温度为-20~100℃;乙烯中,一氧化碳含量不高于(例如小于)5ppm,二氧化碳不高于(例如少于)15ppm,共轭二烯烃含量不高于(少于)10ppm;
所述催化剂通过包括以下步骤的方法制备得到:
(a)将卤化镁、醇类化合物、助剂、部分的内给电子体和溶剂混合,制得混合物I;
(b)在反应器中加入上述的混合物I,预热到-30℃~30℃,滴加钛化合物;或者,在反应器中加入钛化合物,预热到-30℃~30℃,滴加上述的混合物I;
(c)滴加完成后,反应体系经过0.5~3小时升温至90℃~130℃,加入剩余的内给电子体继续反应;
(d)滤除反应体系的液体,加入剩余的钛化合物,继续反应;
(e)反应完成后,后处理得到所述的催化剂;
其中制得的聚乙烯粉体的粘均分子量(Mv)大于1×106,所述聚乙烯粉体为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3g/mL。
根据本发明,所述聚乙烯粉体的粒径分布近似于正态分布。
根据本发明,所述聚合反应的温度优选为30~80℃,更优选为50~80℃。
本发明的第二方面是提供由上述制备方法制得的超高分子量超细粒径聚乙烯粉体,所述聚乙烯粉体的粘均分子量(Mv)大于1×106,所述聚乙烯粉体为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3/mL。本发明的粉体具有优异的加工性能。
根据本发明,所述聚乙烯粉体的粒径分布近似于正态分布。
根据本发明,所述聚乙烯的粘均分子量(Mv)大于等于1.5×106,优选地为1.5×106~4.0×106;所述聚乙烯的分子量分布Mw/Mn为2~15,优选为2~10。
根据本发明,所述聚乙烯粉体的平均粒径优选为20μm-80μm,更优选为50μm-80μm;所述标准差优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm;所述聚乙烯粉体的堆密度优选为0.15-0.25g/mL。
本发明的第三方面是提供一种采用固相接枝法制备超高分子超细粒径接枝聚乙烯的方法,包括以下步骤:
在容器中,加入聚乙烯、接枝单体、引发剂和界面剂,搅拌混合均匀;加热进行固相接枝反应;获得所述的接枝聚乙烯;
所述聚乙烯为粉体,呈球形或类球形颗粒状,平均粒径为10μm~100μm;标准差为2μm-15μm,堆密度为0.1g/mL~0.3g/mL;所述聚乙烯的粘均分子量(Mv)大于1×106
根据本发明,所述聚乙烯粉体的粒径分布近似于正态分布。
根据本发明,所述聚乙烯粉体的平均粒径优选为20μm-80μm,更优选为50μm-80μm;所述标准差优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm。
根据本发明,所述聚乙烯粉体的堆密度优选为0.15g/mL-0.25g/mL。
根据本发明,所述聚乙烯的粘均分子量(Mv)大于等于1.5×106。更优选为1.5×106~4.0×106。所述聚乙烯的分子量分布Mw/Mn为2~15;更优选为2~10。
根据本发明,所述搅拌混合的时间为0.5~5小时。搅拌的目的在于使反应物能够充分混合均匀,原则上搅拌时间越长对反应越有利,优选所述搅拌混合的时间为1~5小时。
根据本发明,固相接枝反应的温度为60~120℃,时间为0.5~5小时。优选为70~110℃下反应0.5~3.5小时。更优选为80~110℃下反应2~3小时。
根据本发明,所述的聚乙烯为乙烯均聚物。
根据本发明,所述的接枝单体为硅氧烷类化合物或乙烯基类不饱和化合物。
根据本发明,所述乙烯基类不饱和化合物例如为苯乙烯类化合物、乙烯基类不饱和有机酸、乙烯基类不饱和有机酯、乙烯基类不饱和有机酸酐或其混合物。优选为丙 烯酸(AA)、甲基丙烯酸(MAA)、丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)、丙烯酸乙酯(EA)、甲基丙烯酸乙酯(MEA)、丙烯酸丁酯(BA)、甲基丙烯酸丁酯(BMA)、马来酸酐(MAH)、马来酸、苯乙烯(St)和季戊四醇三丙烯酸甘油酯(PETA)中的一种或多种。
根据本发明,所述硅氧烷类化合物例如为乙烯基三甲基硅烷、乙烯基三乙基硅烷、二乙烯基二甲基硅烷、(三乙基硅烷基)乙炔、烯丙基三甲基硅烷等,优选为乙烯基三甲基硅烷和乙烯基三乙基硅烷中的一种或两种。
根据本发明,所述接枝单体的加入量为聚乙烯粉体质量的0.2~15wt%,优选为0.5~12wt%,更优选为1~9wt%。
根据本发明,所述引发剂为偶氮类引发剂或过氧化物类引发剂,优选为偶氮二异丁腈、过氧化苯甲酰或过氧化异丙苯中的一种或多种。所述引发剂的加入量为聚乙烯粉体质量的0.1~10wt%,优选为2~9wt%,更优选为3~8wt%。
根据本发明,所述界面剂为对聚乙烯具有溶胀作用的有机溶剂。优选为对聚乙烯具有溶胀作用的下述有机溶剂:醚类溶剂、酮类溶剂、芳烃类溶剂或烷烃类溶剂;更优选为氯代苯、多氯代苯、C6以上的烷烃或环烷烃、苯、烷基取代苯、脂肪醚、脂肪酮、或十氢萘;还更优选为苯、甲苯、二甲苯、氯苯、四氢呋喃、***、丙酮、己烷、环己烷、十氢萘、庚烷中的一种或多种。例如可以为二甲苯,或者二甲苯与四氢呋喃的混合物。所述界面剂的加入量为聚乙烯粉体质量的0.1~30wt%,优选为10~25wt%。
本发明的第四方面是提供一种由上述采用固相接枝法制备超高分子超细粒径接枝聚乙烯的方法制备得到的接枝聚乙烯,其中,接枝单体的有效接枝率≥0.5%,基础聚合物为聚乙烯,所述聚乙烯为粉体,呈球形或类球形颗粒状,平均粒径为10μm~100μm;标准差为2μm-15μm,堆密度为0.1g/mL~0.3g/mL;所述聚乙烯的粘均分子量(Mv)大于1×106
根据本发明,所述聚乙烯粉体的粒径分布近似于正态分布。
根据本发明,所述有效接枝率为0.5%~5.5%;更优选为1.0~3.0%;例如接枝聚乙烯的有效接枝率可以是1.33%,1.65%,2.14%或2.04%。
根据本发明,所述聚乙烯粉体的平均粒径优选为20μm-80μm,更优选为50μm-80μm;所述标准差优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm。
根据本发明,所述接枝聚乙烯的水接触角为80°~88°;更优选为81°~84°。
根据本发明,所述聚乙烯的堆密度优选为0.15g/mL-0.25g/mL。
根据本发明,所述聚乙烯的粘均分子量(Mv)大于等于1.5×106。更优选为1.5×106~4.0×106。所述聚乙烯的分子量分布Mw/Mn为2~15;优选为2~10。
根据本发明,所述的聚乙烯为乙烯均聚物。
根据本发明,所述的接枝单体为硅氧烷类化合物或乙烯基类不饱和化合物。
根据本发明,所述乙烯基类不饱和化合物例如为苯乙烯类化合物、乙烯基类不饱和有机酸、乙烯基类不饱和有机酯、乙烯基类不饱和有机酸酐或其混合物。优选为丙烯酸(AA)、甲基丙烯酸(MAA)、丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)、丙烯酸乙酯(EA)、甲基丙烯酸乙酯(MEA)、丙烯酸丁酯(BA)、甲基丙烯酸丁酯(BMA)、马来酸酐(MAH)、马来酸、苯乙烯(St)和季戊四醇三丙烯酸甘油酯(PETA)中的一种或多种。
根据本发明,所述硅氧烷类化合物例如为乙烯基三甲基硅烷、乙烯基三乙基硅烷、二乙烯基二甲基硅烷、(三乙基硅烷基)乙炔、烯丙基三甲基硅烷等,优选为乙烯基三甲基硅烷和乙烯基三乙基硅烷中的一种或两种。
根据本发明,所述接枝聚乙烯的水接触角小于等于88°。例如,所述接枝聚乙烯的水接触角为80°~88°。所述接枝聚乙烯的结晶温度较基础聚合物提高了至少8℃。
本发明的第五方面是提供一种玻璃纤维增强聚乙烯组合物,其包括超高分子量超细粒径聚乙烯和玻璃纤维;
所述超高分子量超细粒径聚乙烯的粘均分子量(Mv)大于1×106,所述超高分子量超细粒径聚乙烯为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3/mL。
根据本发明,所述超高分子量超细粒径聚乙烯的粒径分布近似于正态分布。
根据本发明,所述超高分子量超细粒径聚乙烯的粘均分子量(Mv)大于等于1.5×106,优选地为1.5×106~4.0×106;所述超高分子量超细粒径聚乙烯的分子量分布Mw/Mn为2~15,优选为3~10,还优选为4~8。
根据本发明,所述超高分子量超细粒径聚乙烯的平均粒径优选为20-90μm,还优选为30-85μm,更优选为50-80μm;所述标准差优选为5-15μm,更优选为6-12μm,还优选为8-10μm;所述超高分子量超细粒径聚乙烯的堆密度优选为0.15-0.25g/mL,例如0.2g/mL。
根据本发明,所述玻璃纤维为经偶联剂处理的玻璃纤维。所述偶联剂例如为硅烷偶联剂(如γ-氨丙基三乙氧基硅烷KH550,γ-(2,3-环氧丙氧)丙基三甲氧基硅烷KH560,γ-甲基丙烯酰氧基丙基三甲氧基硅烷KH570,N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷KH792,N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷DL602,乙烯基三甲氧基硅烷A-171,乙烯基三乙氧基硅烷A-151等)、钛酸酯偶联剂(如三(二辛基焦磷酰氧基)钛酸异丙酯、二(二辛基磷酰氧基)钛酸乙二酯、二异硬脂酰基钛酸乙二酯)或铝酸酯偶联剂中的一种或多种。优选地,所述偶联剂选自硅烷偶联剂,特别优选γ-氨丙基三乙氧基硅烷KH550、乙烯基三甲氧基硅烷A-171、乙烯基三乙氧基硅烷A-151 等。所述偶联剂的用量,相对于100重量份玻璃纤维,为0.5-4重量份。
根据本发明,为了使得玻璃纤维更好分散在所述偶联剂中,可在所述玻璃纤维与偶联剂的体系中加入稀释剂,所述稀释剂例如选自白油或液体石蜡。所述稀释剂与偶联剂的重量比例如为(1~10):1,优选(3~6):1。
根据本发明,所述玻璃纤维的长度为0.5mm-10mm,例如为1mm-3mm,或3mm-5mm,或5mm-7mm等。
根据本发明,所述组合物中各组分的重量百分含量为:超高分子量超细粒径聚乙烯10-95wt%,玻璃纤维5-90wt%。优选地,所述玻璃纤维的含量为10-80wt%,更优选为40-70wt%。
本发明的第六方面是提供一种片材或管,其由上述组合物制备得到。
本发明的第七方面是提供一种上述片材的制备方法,其包括以下步骤:将所述超高分子量超细粒径聚乙烯和所述玻璃纤维在高速搅拌机中混合均匀,加入挤出机中,通过片材模具挤出,经冷却、拉伸,制得本发明的片材。
本发明的第八方面是提供一种上述管的制备方法,其包括以下步骤:将所述超高分子量超细粒径聚乙烯和所述玻璃纤维在高速搅拌机中混合均匀,加入挤出机中,通过管材模具挤出,经冷却、拉伸,制得本发明的管。
优选地,所述管的壁厚介于0.1-10mm之间,优选0.5-5mm之间。
本发明的第九方面是提供一种上述片材的用途,其可用于汽车、电子器件等诸多领域。
本发明的第十方面是提供一种上述管的用途,其用于给水排水、石油钻探等领域,例如作为给水排水管或矿用耐磨管等。
本发明的第十一方面是提供一种增溶型超高分子量超细粒径聚乙烯的制备方法,其选自方法(1)或方法(2)中的一种;所述方法(1)包括以下步骤:
(1a)在催化剂和分散介质的作用下,乙烯进行聚合反应;其中,聚合反应的温度为-20~100℃;其中,乙烯中的一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;
(1b)步骤(1a)的聚合结束后,加入溶剂,然后通过分馏的方法去除所述分散介质,得到所述增溶型超高分子量超细粒径聚乙烯;
所述方法(2)包括以下步骤:
(2a)在催化剂、分散介质和溶剂的作用下,乙烯进行聚合反应;其中,聚合反应的温度为-20~100℃;其中,乙烯中的一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;
(2b)步骤(2a)的聚合结束后,通过分馏的方法去除所述分散介质,得到所述增溶型超高分子量超细粒径聚乙烯;
上述方法(1)或方法(2)中,所述分散介质的沸点低于所述溶剂的沸点且至少低5℃;设定这样的温度差,是为了通过分馏的方法有效的分离出体系中的分散介质。
上述方法(1)或方法(2)中,所述催化剂采用上述催化剂的制备方法制备得到。
根据本发明,其中制得的增溶型超高分子量超细粒径聚乙烯的粘均分子量(Mv)大于1×106;所述增溶型超高分子量超细粒径聚乙烯为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3g/mL;所述增溶型超高分子量超细粒径聚乙烯中溶剂的重量百分含量为大于0且小于等于98wt%。
根据本发明,所述增溶型超高分子量超细粒径聚乙烯中溶剂的重量百分含量大于0且小于等于80wt%,优选为大于0且小于等于50wt%,更优选为10-50wt%,还更优选为20-40wt%。
根据本发明,所述增溶型超高分子量超细粒径聚乙烯的粒径分布近似于正态分布。
上述的制备方法中,所述聚合反应采用淤浆法。
上述的制备方法中,所述分散介质可为正戊烷、环己烷、苯、甲苯、二甲苯、正己烷、正庚烷、石油醚等中至少一种。
上述的制备方法中,所述溶剂可为环己烷、正己烷、正庚烷、苯、甲苯、二甲苯、二氯苯、三氯苯、1,1,1-三氯乙烷、白油、石蜡、煤油、烯烃矿物油和十氢萘中至少一种。
根据本发明,所述聚合反应的温度优选为0~90℃,优选为10~85℃,还优选为30~80℃,更优选为50~80℃。
本发明的第十二方面是提供一种由上述增溶型超高分子量超细粒径聚乙烯的制备方法制得的增溶型超高分子量超细粒径聚乙烯,所述聚乙烯的粘均分子量(Mv)大于1×106;所述聚乙烯为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3/mL;所述聚乙烯中溶剂的重量百分含量为大于0且小于等于98wt%。
根据本发明,所述聚乙烯中溶剂的重量百分含量大于0且小于等于80wt%,优选为大于0且小于等于50wt%,更优选为10-50wt%,还更优选为20-40wt%。
根据本发明,所述聚乙烯的粒径分布近似于正态分布。
根据本发明,所述聚乙烯的粘均分子量(Mv)大于等于1.5×106,优选地为1.5×106~4.0×106;所述聚乙烯的分子量分布Mw/Mn为2~15,优选为3~10,还优选为4~8。
根据本发明,所述聚乙烯的平均粒径优选为20μm-90μm,还优选为30-85μm,更优选为50μm-80μm;所述标准差优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm;所述聚乙烯的堆密度优选为0.15g/mL-0.25g/mL,例如0.2g/mL。
本发明的第十三方面是提供一种纤维,其原料中主要包括上述的增溶型超高分子量超细粒径聚乙烯。
根据本发明,所述的增溶型超高分子量超细粒径聚乙烯采用选自上述方法(1)或方法(2)中的一种的制备方法制得。
根据本发明,所述原料中除所述增溶型超高分子量超细粒径聚乙烯外,还包括抗氧剂。优选地,抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。具体的,所述纤维由含有抗氧剂的所述增溶型超高分子量超细粒径聚乙烯制得。
本发明的第十四方面是提供一种上述纤维的制备方法,其包括以下步骤:
1)将包含所述增溶型超高分子量超细粒径聚乙烯的原料溶解在溶剂中得到纺丝溶液或凝胶;
2)通过冻胶纺丝方法纺丝,得到凝胶纤维;
3)牵伸;制得所述纤维。
根据本发明,步骤1)中,为了避免超高分子量聚乙烯在溶解和使用中的降解,在溶解过程中需加入抗氧剂。抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。
在一种实施方式中,步骤3)的牵伸步骤前,包括通过凝固剂或萃取剂将溶剂萃取的步骤。优选地,所述凝固剂或萃取剂选用低沸点的有机溶剂,例如是下述低沸点的有机溶剂中的一种或多种:石油醚、二氯甲烷、环己烷等。
其中,所述步骤3)中的牵伸采用热箱或热辊牵伸,也可以采用热浴牵伸方式。
对于其中的热浴牵伸方式,优选的,采用的热浴介质包括选自多元醇(优选沸点为120-220℃)、聚氧乙烯齐聚物(优选的,相对分子量为88-5000g/mol)、聚氧丙烯齐聚物(优选的,相对分子量为116-1200g/mol)、矿物油和硅油中的一种或多种组分。优选地,所述热浴介质温度TL设定为介于聚合物基体的玻璃化温度Tg与聚合物基体的分解温度Td之间。
在另一种实施方式中,所述步骤3)具体为:所述凝胶纤维经过凝胶丝牵伸、溶剂萃取、干燥、第一热箱干热牵伸、第二热箱干热牵伸、热定型和卷绕等工序,得到本发明的纤维。
其中,凝胶丝牵伸工序中的牵伸温度为10-70℃,优选25-50℃;牵伸倍数为2-20倍,优选3-15倍。
其中,溶剂萃取工序中的萃取剂选用低沸点的有机溶剂,例如是下述低沸点的有机溶剂中的一种或多种:石油醚、二氯甲烷、环己烷等。
其中,干燥工序中的干燥通过热风干燥,热风温度为30-90℃,优选40-80℃。
其中,第一热箱干热牵伸工序中的温度为100-160℃,优选130-145℃;牵伸倍 数为1-20倍,优选1.5-15倍。
其中,第二热箱干热牵伸工序中的温度为110-160℃,优选130-145℃;牵伸倍数为1-5倍,优选1.1-3倍。
其中,热定型工序中的温度为100-150℃,优选120-135℃。
本发明的第十五方面是提供一种膜,其原料中主要包括上述的增溶型超高分子量超细粒径聚乙烯。
根据本发明,所述的增溶型超高分子量超细粒径聚乙烯采用选自上述方法(1)或方法(2)中的一种的制备方法制得。
根据本发明,所述原料中除所述增溶型超高分子量超细粒径聚乙烯外,还包括抗氧剂。优选地,抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。具体的,所述膜由含有抗氧剂的所述增溶型超高分子量超细粒径聚乙烯制得。
根据本发明,所述膜为双向拉伸的。
本发明的第十六方面是提供一种上述膜的制备方法,其包括以下步骤:
1)将包含所述增溶型超高分子量超细粒径聚乙烯的原料和成膜用溶剂进行熔融混炼,得到溶液;
2)挤出溶液,形成成型体,冷却,得到聚合物片材;
3)双向拉伸,制得薄膜。
根据本发明,步骤1)中,为了避免超高分子量丙烯聚合物在溶解和使用中的降解,在溶解过程中需加入抗氧剂。抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。具体的,所述原料由所述增溶型超高分子量超细粒径聚乙烯和抗氧剂组成。
本发明的第十七方面是提供所述膜的用途,用做电池隔膜。
本发明的有益效果:
1.本发明提出一种全新的制备超高分子量超细粒径聚乙烯粉体的方法,所述方法中通过控制乙烯的聚合温度、单体乙烯的纯度和调整催化剂的制备步骤,合成出了一种超高分子量超细粒径聚乙烯粉体,该方法步骤简单、易于控制、重复性高,可以实现工业化。
本发明首次合成出一种同时兼具超高分子量和超细的粒径范围的聚乙烯粉体,研究发现,具备上述特性的聚乙烯粉体特别适合于加工应用,而且易于实现接枝改性,极大地扩展了超高分子量聚乙烯的应用领域和适用范围。同时,所述聚乙烯粉体还具备下述优异性能:首先,耐磨损性能非常卓越,比一般碳钢和铜等金属的耐磨指数还高数倍;其次,由于分子量超高,分子链超长,使得材料的冲击强度高;再次,该聚乙烯粉体的耐化学腐蚀能力强于一般聚烯烃;最后,该材料的使用温度范围较宽,在 较低或较高的温度下均能保持很好的韧性和强度。
因此,采用本发明的方法制备出的聚乙烯粉体具有优异的加工性能,有望在后期成型、成膜、成纤过程中不仅更加节约能耗,而且能够加快工艺流程、制备出更高性能的材料。
2.本发明提供一种接枝改性超高分子量超细粒径聚乙烯及其固相接枝方法,与现有技术相比,首先由于选取的反应基体为超高分子量超细粒径聚乙烯粉体(呈球形或类球形颗粒状,平均粒径为10~100μm;标准差为2μm-15μm,堆密度为0.1~0.3g/mL;所述聚乙烯的粘均分子量(Mv)大于1×106,相比于普通的聚乙烯颗粒(大于400微米)粒径更小,分子量更高,比表面积大大提升,使得接枝单体具有了更多的反应位点,因而制备出的接枝聚乙烯有效接枝率较高。其次,相比于其它制备高接枝率接枝聚乙烯的方法,本发明所提供的方法不需要对原料进行复杂的预处理,也不需要设计特定的反应设备。最后,本发明提供的固相接枝制备高接枝率接枝聚乙烯的方法,工艺简单,成本较低,操作简单,易于实现工业化生产。
实验结果表明,采用本发明提供的方法制备出的接枝超高分子量超细粒径聚乙烯颗粒在热性能、力学性能和极性等方面均有明显的改善,并保持了聚乙烯原有的优良性能。接枝聚乙烯的结晶温度较基础聚合物提高了至少8℃,有效接枝率大于等于0.5%(例如可以达到5.5%),接枝聚乙烯的水接触角小于等于88°(例如为80~88°),而基础聚合物的水接触角一般为95°以上,可见本发明的接枝聚乙烯的亲水性和极性明显改善。
3.本发明提出一种玻璃纤维增强聚乙烯组合物,由所述组合物制备的片材或管,具有优异的耐低温性能(如在零下30℃到零下135℃下可以长期使用)、抗冲击性能(如简支梁缺口冲击强度(7.5J)高于10.0KJ/m2)和耐蠕变性能(如蠕变小于等于2%)。另外,由于玻璃纤维的增强作用,所述片材或管的机械性能(如弯曲强度、弯曲模量、拉伸强度和热变形温度等)也十分优异。因此,本发明的片材特别适用于汽车、电子器件等诸多领域,所述管特别适合于给水排水、石油钻探等领域。
4.本发明提出一种全新的制备增溶型超高分子量超细粒径聚乙烯的方法,所述方法中通过控制乙烯的聚合温度、单体乙烯的纯度、调整催化剂的制备步骤和在聚合体系中引入分散介质,合成出了一种增溶型超高分子量超细粒径聚乙烯,该方法步骤简单、易于控制、重复性高,可以实现工业化。
本发明首次合成出一种同时兼具增溶性、超高分子量和超细的粒径范围的聚乙烯,研究发现,具备上述特性的聚乙烯特别适合于加工应用,而且易于实现接枝改性,极大地扩展了超高分子量聚乙烯的加工性能及其制品的应用领域和适用范围。同时,所述聚乙烯还具备下述优异性能:首先,耐磨损性能非常卓越,比一般碳钢和铜等金属的耐磨指数还高数倍;其次,由于分子量超高,分子链超长,使得材料的冲击强度 高;再次,该聚乙烯的耐化学腐蚀能力强于一般聚烯烃;最后,该材料的使用温度范围较宽,在较低或较高的温度下均能保持很好的韧性和强度;最后,该材料在后期成型、成膜、成纤过程中的能耗低、工艺流程的时间短(例如,在较低温度下完全溶解,或在较高温度较短时间下快速溶解,从而在缩短溶解过程的同时有效地降低或减少了聚合物降解)。
因此,采用本发明的方法制备出的聚乙烯具有优异的加工性能,有望在后期成型、成膜、成纤过程中不仅更加节约能耗,而且能够加快工艺流程、制备出更高性能的材料。
5.本发明的纤维中选用一种增溶型超高分子量超细粒径聚乙烯作为原料,由于所述聚乙烯易于溶解、溶解温度低,特别适合于加工应用,尤其适用于所述纤维的湿法纺丝加工。
本发明的纤维由于使用了所述增溶型超高分子量超细粒径聚乙烯作为原料,具有优异的耐蠕变性能,使用温度范围极宽(既适合于低温使用,也适合于较高温度的使用)。
6.本发明的膜中选用一种增溶型超高分子量超细粒径聚乙烯作为原料,由于所述原料的超高分子量带来制品性能的极大提升,同时原料中所含的溶剂限制了聚乙烯的结晶程度,使得聚乙烯在加工过程中易于在较低温度下熔融、溶解,抑制了常规超高分子量聚乙烯在加工过程中易降解的问题,特别适合于加工应用,尤其适用于所述膜的热压和拉伸加工。
本发明的膜由于使用了所述增溶型超高分子量超细粒径聚乙烯作为原料,具有优异的抗蠕变性能,使用温度范围扩大(既适合于低温使用,也适合于较高温度的使用)。
附图说明
图1为实施例1.3的聚乙烯颗粒的扫描电镜图。
图2为实施例2.1的马来酸酐接枝聚乙烯的红外谱图。
具体实施方式
[催化剂的制备方法]
本发明的制备方法中采用的催化剂可以采用申请人已提交的发明专利申请(申请号201510271254.1)中公开的方法制备,其全文引入本申请中作为参考。
如前所述,本发明中所述超高分子量超细粒径聚乙烯粉体、增溶型超高分子量超细粒径聚乙烯的制备方法中,采用的催化剂通过包括以下步骤的方法制备:
(a)将卤化镁、醇类化合物、助剂、部分的内给电子体和溶剂混合,制得混合物I;
(b)在反应器中加入上述的混合物I,预热到-30℃~30℃,滴加钛化合物;或者,在反应器中加入钛化合物,预热到-30℃~30℃,滴加上述的混合物I;
(c)滴加完成后,反应体系经过30分钟~3小时升温至90℃~130℃,加入剩余的内给电子体继续反应;
(d)滤除反应体系的液体,加入剩余的钛化合物,继续反应;
(e)反应完成后,后处理得到所述的催化剂。
根据本发明,所述步骤(b)由下述步骤(b’)替换:
(b’)配置包括纳米粒子、分散剂和溶剂的混合物II;
在反应器中加入上述的混合物I和混合物II得到二者的混合物,预热到-30℃~30℃,滴加钛化合物;或者,
在反应器中加入钛化合物,预热到-30℃~30℃,滴加上述的混合物I和混合物II的混合物。
本发明中,所述的混合物I优选按照如下方法制备:将卤化镁和醇类化合物在有机溶剂中混合,升温并保温后,加入助剂和部分的内给电子体,在一定温度反应后得到稳定均一的混合物I。
所述醇类化合物选自C1-C15的脂肪醇类化合物、C3-C15的环烷醇类化合物和C6-C15的芳香醇类化合物中的一种或几种,优选为甲醇、乙醇、乙二醇、正丙醇、异丙醇、1,3-丙二醇、丁醇、异丁醇、己醇、庚醇、正辛醇、异辛醇、壬醇、癸醇、山梨醇、环己醇和苄醇中的一种或几种,更优选为乙醇、丁醇、己醇及异辛醇。
所述内给电子体为单酯、二酯、单醚、二醚类化合物中的至少一种,更优选的选自二酯或二醚。具体地选自:芳香羧酸二酯、1,3-二醚、丙二酸酯、琥珀酸酯、戊二酸酯、二醇酯,如:邻苯二甲酸二异丁酯、邻苯二甲酸二正丁酯、1,3-二醚类化合物、9,9-双(甲氧基甲基)芴、2-异丙基丙二酸二正丁酯、2-癸基丙二酸二乙酯、2-甲基-2-异丙基丙二酸二乙酯、二异丙基琥珀酸二异丁酯、2,3-二异丙基琥珀酸二乙基酯、β-取代戊二酸酯、1,3-二醇酯等。上述的内给电子体在如下专利或申请中予以披露:CN1453298,CN1690039,EP1840138,CN101423566,CN101423570,CN101423571,CN101423572,CN1986576,CN1986576,CN101125898,CN1891722,WO2007147864,CN1831017,CN101560273,EP 2029637,EP2029642,CN1330086,CN1463990,CN1397568,CN1528793,CN1732671,CN1563112,CN1034548,CN1047302,CN1091748,CN1109067,CN94103454,CN1199056,EP03614941990,EP03614931990,WO002617等专利。
所述溶剂选自5-20个碳的直链烷烃、5-20个碳的支链烷烃、6-20个碳的芳香烃或它们的卤代烃中的至少一种,优选甲苯、氯苯、二氯苯或癸烷中的至少一种。
在本发明中,卤化镁在制备可直接获得亚微米级聚烯烃颗粒的催化剂中具有载体 的作用,为传统齐格勒-纳塔催化剂的组成之一,能使制备的催化剂具有合适的形状、尺寸和机械强度,同时,载体可使活性组分分散在载体表面上,获得较高的比表面积,提高单位质量活性组分的催化效率。另外,所述醇类化合物的作用在于将载体即卤化镁溶解。在混合物I的制备过程中,所述得到混合溶液的温度优选为110~130℃,更优选为130℃,所述保温时间优选为1~3小时,更优选为2~3小时,所述加入助剂等后的反应时间为0.5~2小时,更优选为1小时。因此,卤化镁在高温下被醇类化合物溶解,得到了混合物I。
按照本发明,所述的混合物II优选按照如下方法制备:将纳米粒子、分散剂和溶剂加入到反应容器中,超声处理,得到均匀的混合物Ⅱ。所述的纳米粒子优选为纳米二氧化硅、纳米二氧化钛、纳米二氧化锆、纳米氧化镍、纳米氯化镁或纳米碳球中的至少一种,更优选为纳米二氧化硅、纳米二氧化钛。纳米粒子的粒度优选为1~80nm,更优选为10~50nm。优选的纳米粒子的加入质量相对于卤化镁的加入质量为0%~200%,更优选为0%~20%。超声处理的时间优选为2小时。在本发明中纳米粒子作为晶种引入,目的是为了加速载体的成型和降低催化剂颗粒的粒径;分散剂和溶剂,包括超声处理都是为了帮助纳米粒子分散,这样促使每个纳米颗粒都能发挥晶种的作用。
根据本发明,所述步骤(b’)的混合物II中,所述纳米粒子选自纳米二氧化硅、纳米二氧化钛、纳米二氧化锆、纳米氧化镍、纳米氯化镁或纳米碳球中的至少一种。
优选地,所述纳米粒子的粒度为1~80纳米,优选为2~60纳米,更优选3~50纳米。
所述纳米粒子的加入质量相对于卤化镁的加入质量为大于0%至小于等于200%,优选地,所述的纳米粒子加入量的范围为大于0%至小于等于20%。
本发明中,所述步骤(b’)的混合物II中,所述溶剂选自5-20个碳的直链烷烃、5-20个碳的支链烷烃、6-20个碳的芳香烃或它们的卤代烃中的至少一种。
所述分散剂选自四氯化钛、四氯化硅或者两者的混合物。
步骤(a)中,所述混合在加热搅拌下进行,获得均一稳定的透明混合物I。
步骤(b’)中,配置时进行超声分散处理。
步骤(b)或(b’)中,滴加为缓慢滴加。
步骤(b)或(b’)中,优选的反应预热温度为-20℃~30℃,更优选为-20℃~20℃。
步骤(c)的反应时间为1~5小时,优选2~3小时。
步骤(d)的继续反应的时间为1~5小时,优选2~3小时。
步骤(e)中的后处理可以是用己烷对所得产物进行清洗,然后烘干;其中,清洗的次数可以是1~10次,优选3~6次。
步骤(a)中,所述卤化镁选自氯化镁、溴化镁或碘化镁中的至少一种。
步骤(a)中,所述助剂可以为钛酸酯类化合物。
步骤(b)或(b’)中,所述钛化合物的通式如式I所示:
Ti(R)nX(4-n)    式I
其中,R为C1-C12的支链或直链烷基,X为卤素,n为0、1、2或3。
步骤(d)中,优选的,反应体系经过40分钟~3小时升温至90℃~130℃,更优选反应体系经过40分钟~2小时升温至100℃~120℃。
从上述方案可以看出,本发明所涉及的齐格勒-纳塔催化剂的制备方法工艺简单,易于工业化生产。并且,本发明制备的齐格勒-纳塔催化剂在乙烯聚合时能够制得平均粒径为10~100μm,球形度较高,粒度分布较窄,堆密度低(为0.1~0.3/mL)的聚乙烯颗粒。通过研究发现,本发明制备的催化剂用于乙烯聚合得到的聚乙烯颗粒相比与其他聚乙烯,粒度有20~30倍的降低,粒度分布明显变窄而且堆密度能低至0.1g/mL。
[超高分子量超细粒径聚乙烯粉体的制备方法]
如前所述,本发明提供了一种超高分子量超细粒径聚乙烯粉体的制备方法,其包括以下步骤:在催化剂作用下,乙烯进行聚合反应;其中,聚合反应的温度为-20~100℃;乙烯中,一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;
所述催化剂通过上述的催化剂的制备方法制备得到。
本发明通过研究发现,简单的控制所述催化剂的制备方法,确实可以很好实现所述粉体的粒径的控制,但是制备的聚乙烯的分子量不高,为了实现控制粒径的同时提高所述聚合物的分子量,发明人进行了诸多的尝试,经研究发现,控制聚合反应的温度和单体的纯度是一种简单而又有效的方法,而且不会影响所述聚合物粒径的有效控制,甚至有助于制备更窄粒径范围和更低堆密度范围的聚合物。
通过研究发现,所述聚合反应的温度控制在-20~100℃,乙烯中纯度控制为一氧化碳含量少于5ppm、二氧化碳少于15ppm以及共轭二烯烃含量少于10ppm,就可以实现粒径控制的同时制备超高分子量的聚乙烯。优选地,所述聚合反应的温度为30-80℃,更优选为50-80℃。
[超高分子量超细粒径聚乙烯粉体]
如前所述,本发明提供了一种超高分子量超细粒径聚乙烯粉体。
具备所述粒径和堆密度的超高分子量聚乙烯,特别适用于接枝改性,一方面极大地扩展了聚乙烯的改性空间;另一方面,所述聚合物的加工性能显著提高,适用于更大范围的制品的制备;这样,就有效扩展了所述聚合物的应用领域。
本发明的超高分子量超细粒径聚乙烯粉体还具备下述优异性能:首先,耐磨损性能非常卓越,比一般碳钢和铜等金属的耐磨指数还高数倍;其次,由于分子量超高, 分子链超长,使得材料的冲击强度高;再次,该聚乙烯粉体的耐化学腐蚀能力强于一般聚烯烃;最后,该材料的使用温度范围较宽,在较低或较高的温度下均能保持很好的韧性和强度。
[采用固相接枝方法制备高接枝率接枝聚乙烯]
如前所述,本发明提供了一种采用固相接枝法制备超高分子量超细粒径接枝聚乙烯的方法。
在本发明的一个优选的实施方式中,所述接枝聚乙烯按照如下方法制备:在容器中,加入粘均分子量(Mv)大于1×106的平均粒径为10μm~100μm(优选20μm-80μm,更优选为50μm~80μm)、标准差为2μm-15μm(优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm)、堆密度介于0.1g/mL~0.3g/mL之间(优选介于0.15g/mL~0.25g/mL之间)的聚乙烯粉体;加入偶氮类引发剂或过氧化合物类引发剂(例如过氧化苯甲酰),加入量为聚乙烯粉体质量的0.1~10wt%,优选为2~9wt%,更优选为3~8wt%;加入接枝单体,选自硅氧烷类化合物或乙烯基类不饱和化合物,所述乙烯基类不饱和化合物例如为苯乙烯类化合物、乙烯基类不饱和有机酸、乙烯基类不饱和有机酯、乙烯基类不饱和有机酸酐或其混合物,更优选为丙烯酸(AA)、马来酸酐(MAH)、甲基丙烯酸甲酯(MMA)、苯乙烯(St)中的一种或多种;所述硅氧烷类化合物例如为乙烯基三甲基硅烷、乙烯基三乙基硅烷、二乙烯基二甲基硅烷、(三乙基硅烷基)乙炔、烯丙基三甲基硅烷等,优选为乙烯基三甲基硅烷和乙烯基三乙基硅烷中的一种或两种。所述接枝单体的加入量为聚乙烯粉体质量的0.2~15wt%,优选为0.5~12wt%,更优选为1~9wt%;加入界面剂,优选为苯、甲苯、二甲苯、四氢呋喃、***、丙酮、己烷和庚烷中的一种或多种,更优选为甲苯、二甲苯、四氢呋喃、***和丙酮中的一种或多种,例如为二甲苯,或者二甲苯与四氢呋喃的混合物;所述界面剂的加入量为聚乙烯粉体质量的0.1~30wt%,优选为10~25wt%。
原料加入完毕后,进行高速机械搅拌,搅拌的时间与搅拌桨的效率有关,搅拌的目的在于使反应物混合均匀,使接枝反应进行更为充分,降低接枝单体自聚反应的发生,所以搅拌的时间不确定,一般为0.5~5小时,优选1~5小时,更优选为3~5小时。加热进行固相接枝反应,接枝反应条件为60~120℃下进行0.5~5小时,优选为70~110℃下进行0.5~3.5小时,更优选为85~110℃下进行2~3小时的接枝反应。反应结束,产物即为具有高接枝率的接枝聚乙烯。
[增溶型超高分子量超细粒径聚乙烯的制备方法]
如前所述,本发明提供了一种增溶型超高分子量超细粒径聚乙烯的制备方法。
本发明通过研究发现,简单的控制所述催化剂的制备方法,确实可以很好地实现所述聚乙烯的粒径的控制,但是制备的聚乙烯的分子量不高。为了实现控制粒径的同时提高所述聚合物的分子量,发明人进行了诸多的尝试,经研究发现,控制聚合反应 的温度和单体的纯度是一种简单而又有效的方法,而且不会影响所述聚合物粒径的有效控制,甚至有助于制备更窄粒径范围和更低堆密度范围的聚合物。
通过研究发现,所述聚合反应的温度控制在-20~100℃,乙烯中纯度控制为一氧化碳含量少于5ppm、二氧化碳少于15ppm以及共轭二烯烃含量少于10ppm,就可以实现粒径控制的同时制备超高分子量的聚乙烯。优选地,所述聚合反应的温度为0~90℃,优选为10~85℃,还优选为30-80℃,更优选为50-80℃。
另外,为了进一步提高所述超高分子量超细粒径聚乙烯的加工性能,本发明中进一步引入了增溶的手段,也就是说,本发明在制备聚乙烯的过程中引入分散介质,或分散介质和溶剂,这些小分子的存在使得所得到的聚乙烯的晶区尺寸大大减小,分子链更易于运动,在后续的溶解或熔融加工制品时,热量更易于传递,使得所得到的聚乙烯可以在较低温度下快速溶解或熔融,从而缩短了工艺流程,此外降低溶解或熔融温度还可以显著减少聚乙烯的降解,这对于保证其分子量、获得高性能的聚乙烯制品非常关键。
[增溶型超高分子量超细粒径聚乙烯]
如前所述,本发明提供了一种增溶型超高分子量超细粒径聚乙烯。
具备所述粒径、堆密度和溶剂含量的超高分子量聚乙烯,特别适用于接枝改性,一方面极大地扩展了聚乙烯的改性空间;另一方面,所述聚合物的加工性能显著提高,适用于更大范围的制品的制备;这样,就有效扩展了所述聚合物的应用领域。
同时,本发明的聚乙烯还具备下述优异性能:1)耐磨损性能非常卓越,比一般碳钢和铜等金属的耐磨指数还高数倍;2)由于分子量超高,分子链超长,使得材料的冲击强度高;3)该聚乙烯的耐化学腐蚀能力强于一般聚烯烃;4)该材料的使用温度范围较宽,在较低或较高的温度下均能保持很好的韧性和强度;5)该材料在后期成型、成膜、成纤过程中的能耗低、工艺流程的时间短。
[纤维及其制备方法]
如前所述,本发明提供了一种纤维及其制备方法。
在本发明的一个优选实施方式中,在步骤(1)中,将包含所述增溶型超高分子量超细粒径聚乙烯的混合物与溶剂混合溶解,得到所述纺丝溶液或凝胶。本发明中,所述溶剂为能溶解所述聚乙烯的有机溶剂,例如为十氢萘、白油等。所述纺丝溶液或凝胶中聚合物含量为3-20wt%,优选5-15wt%。
在本发明的一个优选实施方式中,在步骤(2)中,以溶液冻胶纺丝方法为例,所述方法具体包括以下步骤:将增溶型超高分子量超细粒径聚乙烯与溶剂混合得到混合物;将混合物经双螺杆溶解挤出(优选地,所述溶解挤出的温度为120-270℃,优选150-240℃)得到纺丝溶液;将所述纺丝溶液直接经双螺杆挤出,通过纺丝组件、喷丝板挤出,经凝固浴(例如,冷却水浴;优选地,水浴温度为0-15℃,优选2-10℃) 冷却,得到凝胶纤维;将上述凝胶纤维经过凝胶丝牵伸、溶剂萃取、干燥、第一热箱干热牵伸、第二热箱干热牵伸、热定型和卷绕等工序,得到本发明的纤维。根据本发明,所述原料中除所述增溶型超高分子量超细粒径聚乙烯外,还包括抗氧剂。优选地,抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。具体的,所述纤维由含有抗氧剂的所述增溶型超高分子量超细粒径聚乙烯制得。
本发明中,所述混合物中除所述聚乙烯外,还包括抗氧剂。优选地,抗氧剂的添加量相对于100重量份聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。具体的,所述混合物由所述增溶型超高分子量超细粒径聚乙烯和抗氧剂组成。所述抗氧剂为本领域中已知的用于聚乙烯的抗氧剂,非限制的,所述抗氧剂由主抗氧剂和辅助抗氧剂构成,所述主抗氧剂选自受阻酚类抗氧剂,所述辅助抗氧剂选自硫代二丙酸双酯或亚磷酸酯等。所述受阻酚类抗氧剂是一些具有空间阻碍的酚类化合物,它们的抗热氧化效果显著,不会污染制品;这类抗氧剂的品种很多,主要有:2,6-二叔丁基-4-甲基苯酚、双(3,5-二叔丁基-4-羟基苯基)硫醚、四〔β-(3,5-二叔丁基-4-羟基苯基)丙酸〕季戊四醇酯等。所述硫代二丙酸双酯是一类辅助抗氧剂,常与受阻酚类抗氧剂并用,效果显著,如:硫代二丙酸双双十二碳醇酯、硫代二丙酸双十四碳醇酯或硫代二丙酸双十八碳醇酯。所述亚磷酸酯也是辅助抗氧剂,主要有:亚磷酸三辛酯、亚磷酸三癸酯、亚磷酸三(十二碳醇)酯和亚磷酸三(十六碳醇)酯等。
本发明的纤维具有优异的力学性能和抗蠕变性能,也具有较宽的温度使用范围,具体而言,本发明的纤维具有以下性能:纤度(dtex)1.5-3.0,断裂强度大于等于2.0-3.5GPa,模量95-220GPa,断裂伸长率3.0-4.5%,蠕变小于等于2%(例如1.0%-2.0%),结晶度95%,熔点130℃-140℃,使用温度范围为-30℃~135℃。
[膜及其制备]
如前所述,本发明提供了一种膜及其制备方法。
在本发明的一个优选实施方式中,步骤(1)中的熔融混炼通过双螺杆挤出机实现,通过双螺杆挤出机进行熔融混炼属于公知的,此处不详细说明。所述溶液中,聚乙烯的重量百分比为20~50wt%,优选为30~40wt%。所述成膜用溶剂可为环己烷、正己烷、正庚烷、壬烷、癸烷、十一烷、十二烷、苯、甲苯、二甲苯、二氯苯、三氯苯、1,1,1-三氯乙烷、白油、液体石蜡、煤油、烯烃矿物油和十氢萘中至少一种。其中,所述熔融混炼的温度因聚合物及溶剂而异,一般在130~280℃的范围。
在本发明的一个优选实施方式中,步骤(2)具体为:步骤(1)的溶液经挤出机供应到一个模具中,所述溶液从模具中挤出形成成型体(如片状),经冷却滚筒冷却后,得到聚合物片材。所述冷却滚筒的表面温度设定为20~40℃,成型体经冷却滚筒的冷却速度在20℃/s以上。
在本发明的一个优选实施方式中,步骤(3)中的双向拉伸是指:步骤(2)的聚合物片材,利用通常的拉幅机法、滚筒法或者其组合,向横向(宽度方向,TD)和纵向(机械方向,MD)两个方向按一定倍率(横向拉伸倍率和纵向拉伸倍率)来实施拉伸。本发明中,优选的横向拉伸倍率和纵向拉伸倍率分别4~5倍,优选地,横向拉伸倍率与纵向拉伸倍率相同。
进一步的,原料中,聚合物含量为3-20wt%,优选5-15wt%。更进一步地,原料中还加入抗氧剂,优选地,抗氧剂的添加量相对于100重量份聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。所述抗氧剂为本领域中已知的用于聚乙烯的抗氧剂。非限制的,所述抗氧剂由主抗氧剂和辅助抗氧剂构成,所述主抗氧剂选自受阻酚类抗氧剂,所述辅助抗氧剂选自硫代二丙酸双酯或亚磷酸酯等。所述受阻酚类抗氧剂是一些具有空间阻碍的酚类化合物,它们的抗热氧化效果显著,不会污染制品;这类抗氧剂的品种很多,主要有:2,6-二叔丁基-4-甲基苯酚、双(3,5-二叔丁基-4-羟基苯基)硫醚、四〔β-(3,5-二叔丁基-4-羟基苯基)丙酸〕季戊四醇酯等。所述硫代二丙酸双酯是一类辅助抗氧剂,常与受阻酚类抗氧剂并用,效果显著,如:硫代二丙酸双十二碳醇酯、硫代二丙酸双十四碳醇酯或硫代二丙酸双十八碳醇酯。所述亚磷酸酯也是辅助抗氧剂,主要有:亚磷酸三辛酯、亚磷酸三癸酯、亚磷酸三(十二碳醇)酯和亚磷酸三(十六碳醇)酯等。
[性能和参数的测定]
本发明的片材和管的性能通过公知的标准中的测定方法测定。
如,耐蠕变性能,采用中国国家标准GB11546-89、ISO899-1981的方法测定。抗冲击性能,采用GB/T1043.1-2008测定。弯曲强度和弯曲模量,采用GB/T9341-2008测定。拉伸强度,采用GB/T1040-2006测定。热变形温度,采用GB/T1634.2-2004测定。
本发明的接枝聚乙烯的表征方法:
接枝聚乙烯的红外表征:取少许样品,在平板硫化机上压制成薄膜,在NICOLET 560型FTIR上得到红外谱图。
水接触角的测定:取少许样品,在平板硫化机上压制成薄膜。在样品台上滴一滴蒸馏水,使样品膜紧紧地沾附在样品台上。用微量进样器抽取2μL去离子水滴加到样品膜上,10秒后测量角度。
接枝聚乙烯的有效接枝率的测定方法:准确称取1g干燥好的精制接枝物样品,置于250mL烧瓶中,加入80mL二甲苯,加热回流至溶解。冷却后加入过量的0.1mol/L KOH-乙醇溶液,再加热回流2h,冷却后以酚酞作为指示剂,用0.1mol/L的HCl-异丙醇溶液进行滴定。记录加入的碱量和中和所消耗的酸量,按下式计算出固相接枝反应产物的有效接枝率。
Figure PCTCN2017075495-appb-000001
式中:G为产物的有效接枝率;c1为KOH-乙醇溶液浓度,mol/L;V1为过量加入的KOH-乙醇溶液的体积,mL;c2为HCl-异丙醇溶液浓度,mol/L;V2为滴定中和碱消耗HCl-异丙醇溶液的体积,mL;a为接枝单体的参与中和反应的官能度;m为精制样品的质量,g,M为单体的相对分子质量。
本发明的纤维性能和膜的性能可以通过公知的标准中的测定方法测定。
如,本发明的耐蠕变性能通过中华人民共和国国家标准GB11546-89、ISO899-1981中的测定方法测定。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于附图和以下实施例。
制备例1[催化剂的制备]
在经过高纯氮气充分置换的反应器中,依次加入无水氯化镁4.94g,异辛醇18.9g,癸烷30ml,搅拌下升温至130℃,并维持2小时,然后加入2.65g钛酸四丁酯和2.05g邻苯二甲酸二异丁酯,在130℃下再反应1小时,最后冷却至室温,形成均匀透明溶液,即为混合物I。
向反应釜中加入200ml四氯化钛搅拌并预热至0℃,2小时左右将混合物Ⅰ滴加到四氯化钛中。滴加完毕,开始升温,2小时内升温至110℃。加入内给电子体邻苯二甲酸二异丁酯1.23g。在此温度下反应2小时后,移除反应液体,再次加入200ml四氯化钛,反应2小时。最后移除反应液体,将剩下的固体物质用60℃的己烷冲洗10次,干燥即得催化剂。
实施例1.1[乙烯的淤浆聚合]
在高纯氮气保护下,对1L高压反应釜进行干燥除氧,依次加入150mL正己烷,20mg上述制备例1的催化剂和三乙基铝12ml,然后通入乙烯气体维持0.7MPa;其中,乙烯中,一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;聚合反应开始,体系温度维持为80℃、反应时间为30分钟,所得催化剂活性及聚乙烯的性质见表1。
实施例1.2[乙烯的淤浆聚合]
在高纯氮气保护下,对1L高压反应釜进行干燥除氧,依次加入150mL正己烷,20mg上述制备例1的催化剂和三乙基铝12ml,然后通入乙烯气体维持0.7MPa;其中,乙烯中,一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于 10ppm;聚合反应开始,体系温度维持为70℃、反应时间为30分钟,所得催化剂活性及聚乙烯的性质见表1。
实施例1.3[乙烯的淤浆聚合]
在高纯氮气保护下,对1L高压反应釜进行干燥除氧,依次加入150mL正己烷,20mg上述制备例1的催化剂和三乙基铝12ml,然后通入乙烯气体维持0.7MPa;其中,乙烯中,一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;聚合反应开始,体系温度维持为50℃、反应时间为30分钟,所得催化剂活性及聚乙烯的性质见表1。
图1为实施例1.3制备的聚乙烯的扫描电镜图,从图1中可以看到所有的聚乙烯颗粒呈现较好的球形度,为球形或类球形,而且粒径分布较为均匀,平均粒径较小。
对比例1.1[乙烯的本体聚合]
在高纯氮气保护下,对1L高压反应釜进行干燥除氧,依次加入150mL正己烷,20mg上述的催化剂和三乙基铝12ml,然后通入乙烯气体维持0.7MPa;其中,乙烯中,一氧化碳含量高于10ppm,二氧化碳高于20ppm,共轭二烯烃含量高于20ppm;聚合反应开始,体系温度维持为110℃、反应时间为30分钟,所得催化剂活性及聚乙烯的性质见表1。
表1制备例1的齐格勒-纳塔催化剂的催化活性及实施例1.1~1.3的聚乙烯的性质
Figure PCTCN2017075495-appb-000002
本发明中还进一步检测了实施例1.3和对比例1.1的聚乙烯的其他一些性能,经检测发现:(1)实施例1.3的聚乙烯的耐磨指数均比一般碳钢或铜的耐磨指数高数倍;而对比例1.1的耐磨指数却略有降低;(2)实施例1.3的聚乙烯的冲击强度大于10KJ/m2,而对比例1.1中的冲击强度则在3KJ/m2左右;(3)实施例1.3的聚乙烯粉体的耐化学腐蚀能力强于一般聚烯烃,对比例1.1中的聚乙烯粉体在酸性条件下极易降解;(4)实施例1.3的聚乙烯粉体的使用温度范围较宽,在较低(如零下30℃)或较高的温度(如110℃)下均能保持很好的韧性和强度。
实施例2.1[接枝聚乙烯制备]
PE-g-MAH的制备:在经过高纯氮气充分置换的反应器中,加入40g实施例1.1 制备的平均粒径为85微米的聚乙烯颗粒(标准差为8.21微米,粘均分子量为1.3×106,分子量分布为9.2),加入2.0g过氧化苯甲酰,加入2.8g马来酸酐(MAH),加入4mL四氢呋喃和5mL二甲苯;然后开启机械搅拌,快速搅拌3小时;最后将反应器放入100℃的油浴中,反应2小时,即得到产物粗接枝物。
PE-g-MAH的精制:称取约4g粗接枝物,与200mL二甲苯一并加入500mL蒸馏瓶中加热溶解,回流4h,冷却后加入丙酮(约200mL)摇匀,静置沉淀后过滤,再用丙酮洗涤一次,将过滤物放入50℃烘箱中干燥12h,冷却得精制接枝物。
PE-g-MAH的红外表征:按照前述方法测定该精制接枝物的红外谱图,结果见图2,其中上为聚乙烯原料(即基础聚合物);下为接枝聚乙烯。1862cm-1、1785cm-1、1717cm-1为马来酸酐的特征峰,表明马来酸酐成功接枝到聚乙烯链上。
水接触角的测定:按照前述方法测定水接触角,聚乙烯原料(即基础聚合物)的水接触角为95°,而接枝聚乙烯的水接触角为88°。
PE-g-MAH的有效接枝率的测定:按照前述方法测定所述接枝聚乙烯的有效接枝率为1.33%。
实施例2.2[接枝聚乙烯制备]
PE-g-MAH的制备:在经过高纯氮气充分置换的反应器中,加入40g实施例1.1中制备的平均粒径为76微米的聚乙烯粉体(标准差为8.22微米,粘均分子量为1.7×106),加入2.0g偶氮二异丁腈,加入2.8g马来酸酐(MAH),加入3mL四氢呋喃和6mL二甲苯;然后开启机械搅拌,快速搅拌3小时;最后将反应器放入120℃的油浴中,反应2小时,即得到产物。测得接枝聚乙烯的马来酸酐的有效接枝率为1.65%,接枝聚乙烯的水接触角为84°。
实施例2.3[接枝聚乙烯制备]
PE-g-AA的制备:在经过高纯氮气充分置换的反应器中,加入40g实施例1.1中同样方法制备的平均粒径为45微米的聚乙烯粉体(标准差为8.18微米,粘均分子量为2.7×106,加入2.0g过氧化苯甲酰,加入2.8g乙烯酸,加入5mL二甲苯;然后开启机械搅拌,快速搅拌3小时;最后加反应器放入100℃的油浴中,反应2小时,即得到产物。测得接枝聚乙烯的乙烯酸的有效接枝率为2.14%,接枝聚乙烯的水接触角为80°。
实施例2.4[接枝聚乙烯制备]
PE-g-MMA的制备:在经过高纯氮气充分置换的反应器中,加入40g实施例1.1同样方法制备的平均粒径为70微米的聚乙烯粉体(标准差为8.21微米,粘均分子量 为1.3×106),加入2.0g过氧化苯甲酰,加入2.8g甲基丙烯酸甲酯(MMA),加入5mL二甲苯;然后开启机械搅拌,快速搅拌4小时;最后加反应器放入100℃的油浴中,反应2小时,即得到产物。测得接枝聚乙烯的MMA的有效接枝率为2.04%,接枝聚乙烯的水接触角为81°。
制备例3.1[玻璃纤维]
在混料机中,加入玻璃纤维和偶联剂,搅拌30min;再加入稀释剂,搅拌30min;得到本发明的处理后的玻璃纤维。其中,偶联剂为γ-氨丙基三乙氧基硅烷KH550;玻璃纤维的长度为3-5mm;稀释剂为白油。稀释剂与偶联剂的重量比为3:1;偶联剂的用量,相对于100重量份玻璃纤维,为2重量份。
制备例3.2[玻璃纤维]
在混料机中,加入玻璃纤维和偶联剂,搅拌30min;再加入稀释剂,搅拌30min;得到本发明的处理后的玻璃纤维。其中,偶联剂为乙烯基三甲氧基硅烷A-171;玻璃纤维的长度为3-5mm;稀释剂为白油。稀释剂与偶联剂的重量比为4:1;偶联剂的用量,相对于100重量份玻璃纤维,为1重量份。
制备例3.3[玻璃纤维]
在混料机中,加入玻璃纤维和偶联剂,搅拌30min;再加入稀释剂,搅拌30min;得到本发明的处理后的玻璃纤维。其中,偶联剂为乙烯基三乙氧基硅烷A-151;玻璃纤维的长度为3-5mm;稀释剂为液体石蜡。稀释剂与偶联剂的重量比为6:1;偶联剂的用量,相对于100重量份玻璃纤维,为3重量份。
实施例3.1~3.9[玻璃纤维增强聚乙烯组合物]
本发明实施例3.1~3.9的组合物的组成和含量列于表2中。
表2玻璃纤维增强聚乙烯组合物的不同配比
实施例 聚乙烯 重量百分比 玻璃纤维 重量百分比
3.1a 实施例1.1的乙烯均聚物 60 制备例3.1的玻璃纤维 40
3.1b 实施例1.1的乙烯均聚物 50 制备例3.1的玻璃纤维 50
3.1c 实施例1.1的乙烯均聚物 40 制备例3.1的玻璃纤维 60
3.2a 实施例1.2的乙烯均聚物 60 制备例3.1的玻璃纤维 40
3.2b 实施例1.2的乙烯均聚物 50 制备例3.1的玻璃纤维 50
3.2c 实施例1.2的乙烯均聚物 40 制备例3.1的玻璃纤维 60
3.3a 实施例1.3的乙烯均聚物 60 制备例3.1的玻璃纤维 40
3.3b 实施例1.3的乙烯均聚物 50 制备例3.1的玻璃纤维 50
3.3c 实施例1.3的乙烯均聚物 40 制备例3.1的玻璃纤维 60
3.4a 实施例1.1的乙烯均聚物 60 制备例3.2的玻璃纤维 40
3.4b 实施例1.1的乙烯均聚物 50 制备例3.2的玻璃纤维 50
3.4c 实施例1.1的乙烯均聚物 40 制备例3.2的玻璃纤维 60
3.5a 实施例1.2的乙烯均聚物 60 制备例3.2的玻璃纤维 40
3.5b 实施例1.2的乙烯均聚物 50 制备例3.2的玻璃纤维 50
3.5c 实施例1.2的乙烯均聚物 40 制备例3.2的玻璃纤维 60
3.6a 实施例1.3的乙烯均聚物 60 制备例3.2的玻璃纤维 40
3.6b 实施例1.3的乙烯均聚物 50 制备例3.2的玻璃纤维 50
3.6c 实施例1.3的乙烯均聚物 40 制备例3.2的玻璃纤维 60
3.7a 实施例1.1的乙烯均聚物 60 制备例3.3的玻璃纤维 40
3.7b 实施例1.1的乙烯均聚物 50 制备例3.3的玻璃纤维 50
3.7c 实施例1.1的乙烯均聚物 40 制备例3.3的玻璃纤维 60
3.8a 实施例1.2的乙烯均聚物 60 制备例3.3的玻璃纤维 40
3.8b 实施例1.2的乙烯均聚物 50 制备例3.3的玻璃纤维 50
3.8c 实施例1.2的乙烯均聚物 40 制备例3.3的玻璃纤维 60
3.9a 实施例1.3的乙烯均聚物 60 制备例3.3的玻璃纤维 40
3.9b 实施例1.3的乙烯均聚物 50 制备例3.3的玻璃纤维 50
3.9c 实施例1.3的乙烯均聚物 40 制备例3.3的玻璃纤维 60
实施例3.10~3.18
分别采用实施例3.1~3.9的组合物制备片材。
以实施例3.1a的组合物为例,将实施例1.1的乙烯均聚物6kg和制备例3.1的玻璃纤维4kg通过高速搅拌机混合均匀,加入挤出机,通过一个狭缝模头挤出,经冷却、拉伸,制得本发明的片材。其中,所述挤出机的加工温度为180~240℃。
实施例3.10~3.18制备的片材的性能测试结果见表3。
表3实施例3.10~3.18制备的片材的性能测试结果
Figure PCTCN2017075495-appb-000003
Figure PCTCN2017075495-appb-000004
实施例3.19~3.27
分别采用实施例3.1~3.9的组合物制备管。
以实施例3.1a的组合物为例,将实施例1.1的乙烯均聚物6kg和制备例3.4的玻璃纤维4kg通过高速搅拌机混合均匀,加入挤出机,通过一个管材模头挤出,经冷却、拉伸,制得本发明的管。其中,所述挤出机的加工温度为180~240℃。所述管的壁厚介于0.5mm-5mm之间。
实施例3.19~3.27制备的管的性能测试结果与相应的片材的性能相近。
实施例4.1[增溶型乙烯的淤浆聚合]
采用淤浆法聚合工艺,先将聚合釜预处理(在高纯氮气保护下,对5L高压反应釜进行干燥除氧),加入分散介质环己烷500g,再依次加入150mL正己烷,20mg上述制备例1的催化剂和三乙基铝12ml,然后通入乙烯气体维持0.7MPa;其中,乙烯中,一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;聚合反应开始,体系温度维持为80℃、反应时间为30分钟。聚合反应结束后冷却降温,从底阀直接排出淤浆物料,加入所需量的白油,蒸馏去除分散介质,得到本发明的增溶型超高分子量超细粒径乙烯均聚物,其中白油的质量百分含量为30wt%。所得聚乙烯性质见表4所示。
对比溶解实验:将实施例4.1制备的含有白油的超高分子量超细粒径乙烯聚合物10g,加入60g白油,在140℃下溶解,20min溶解完成。
将对比例4.1制备的超高分子量超细粒径乙烯聚合物7g,加入63g白油,在140℃下溶解,90min溶解完成。
实施例4.2[增溶型乙烯的淤浆聚合]
采用淤浆法聚合工艺,先将聚合釜预处理(在高纯氮气保护下,对5L高压反应 釜进行干燥除氧),加入分散介质正戊烷500g,再依次加入150mL正己烷,20mg上述制备例1的催化剂和三乙基铝12ml,然后通入乙烯气体维持0.7MPa;其中,乙烯中,一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;聚合反应开始,体系温度维持为70℃、反应时间为30分钟。聚合反应结束后冷却降温,从底阀直接排出淤浆物料,加入所需量的白油,蒸馏去除分散介质,得到本发明的增溶型超高分子量超细粒径乙烯均聚物,其中白油的质量百分含量为40wt%。所得聚乙烯的性质见表4。
采用与实施例4.1类似的方法测定溶解性,较溶剂含量为0的聚合物的溶解时间缩短近80%。
实施例4.3[增溶型乙烯的淤浆聚合]
采用淤浆法聚合工艺,先将聚合釜预处理(在高纯氮气保护下,对5L高压反应釜进行干燥除氧),加入分散介质环己烷500g和所需量的白油,再依次加入20mg上述制备例1的催化剂和三乙基铝12ml,然后通入乙烯气体维持0.7MPa;其中,乙烯中,一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;聚合反应开始,体系温度维持为50℃、反应时间为30分钟。聚合反应结束后冷却降温,从底阀直接排出淤浆物料,蒸馏去除分散介质,得到本发明的增溶型超高分子量超细粒径乙烯均聚物,其中白油的质量百分含量为30wt%。所得聚乙烯性质见表4。
采用与实施例4.1类似的方法测定溶解性,较溶剂含量为0的聚合物的溶解时间缩短近80%。
经扫描电镜图检测可知,实施例4.1-4.3制备的聚乙烯颗粒呈现较好的球形度,为球形或类球形,而且粒径分布较为均匀,平均粒径较小。
对比例4.1[乙烯均聚物及其制备]
在高纯氮气保护下,对1L高压反应釜进行干燥除氧,依次加入150mL正己烷,20mg上述制备例1的催化剂和三乙基铝12ml,然后通入乙烯气体维持0.7MPa;其中,乙烯中,一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;聚合反应开始,体系温度维持为80℃、反应时间为30分钟,制得所述乙烯均聚物。
对比例4.2[乙烯的本体聚合]
采用与实施例4.1类似的方法,不同仅在于聚合温度和单体的纯度,其中,乙烯的纯度为:一氧化碳含量高于10ppm,二氧化碳高于20ppm,共轭二烯烃含量高于20ppm;体系温度维持为110℃。所得催化剂活性及聚乙烯的性质见表4。
表4制备例1制备的齐格勒-纳塔催化剂的催化活性及实施例4.1~4.3制备的聚乙烯的性质
Figure PCTCN2017075495-appb-000005
本发明中还进一步检测了实施例4.1~4.3的聚乙烯的其他一些性能,经检测发现:(1)实施例4.1~4.3的聚乙烯的耐磨指数均比一般碳钢或铜的耐磨指数高数倍;而对比例4.1的耐磨指数却略有降低;(2)实施例4.1~4.3的聚乙烯的冲击强度大于10KJ/m2,而对比例4.1中的冲击强度则在3KJ/m2左右;(3)实施例4.1~4.3的聚乙烯粉体的耐化学腐蚀能力强于一般聚烯烃,对比例4.1中的聚乙烯粉体在酸性条件下极易降解;(4)实施例4.1~4.3的聚乙烯粉体的使用温度范围较宽,在较低(如零下30℃)或较高的温度(如110℃)下均能保持很好的韧性和强度。
实施例5.1[纤维的制备]
将实施例4.1的增溶型超高分子量超细粒径聚乙烯与白油混合得到混合物,其中,聚合物含量为10wt%;将混合物经双螺杆溶解挤出,所述溶解挤出的温度为200℃,得到纺丝溶液;将所述纺丝溶液直接经双螺杆挤出,通过纺丝组件、喷丝板挤出,经冷却水浴(水浴温度为5℃)冷却,得到凝胶纤维;将上述凝胶纤维经过凝胶丝牵伸、溶剂萃取、干燥、第一热箱干热牵伸、第二热箱干热牵伸、热定型和卷绕工序,得到本发明的纤维。
上述凝胶纤维加工为纤维的工艺步骤中,凝胶丝牵伸工序的牵伸温度为40℃,牵伸倍数为10倍;溶剂萃取工序中的萃取剂选自环己烷;干燥工序中的干燥通过热风干燥,热风温度为60℃;第一热箱干热牵伸工序中的温度为130℃,牵伸倍数为10倍;第二热箱干热牵伸工序中的温度为135℃,牵伸倍数为2倍;热定型工序中的温度为120℃。
实施例5.2[纤维的制备]
其他同实施例5.1,只是在步骤(1)中与溶剂混合过程中还加入了抗氧剂,抗氧剂的添加量相对于100重量份聚乙烯,为0.05重量份。所述抗氧剂由主抗氧剂和辅助抗氧剂构成,所述主抗氧剂选自2,6-二叔丁基-4-甲基苯酚。所述辅助抗氧剂选自硫代二丙酸双双十二碳醇酯。
实施例5.1和5.2制备的纤维的性能列于表5中。
表5本发明实施例5.1和5.2制备的纤维的性能测试结果
Figure PCTCN2017075495-appb-000006
从表5的数据可见,本发明的纤维具有优异的耐蠕变性能和较宽的使用温度,具有极大的应用前景。
实施例6.1[膜的制备]
1)将包含所述增溶型超高分子量超细粒径聚乙烯的原料和成膜用溶剂进行熔融混炼,得到溶液;
所述聚合物采用实施例4.1中的增溶型超高分子量超细粒径聚乙烯,同时加入抗氧化剂,相对于100重量份的聚合物,抗氧化剂的用量为0.1重量份,所述抗氧剂由主抗氧剂和辅助抗氧剂构成,所述主抗氧剂选自2,6-二叔丁基-4-甲基苯酚。所述辅助抗氧剂选自硫代二丙酸双双十二碳醇酯;成膜用溶剂为液体石蜡,溶液中聚合物的重量百分比为30wt%;
所述熔融混炼通过已知的双螺杆挤出机实现,其中,所述熔融混炼的温度为180~250℃。
2)挤出溶液,形成成型体,冷却,得到聚合物片材;具体为:步骤(1)的溶液经挤出机供应到一个模具中,所述溶液从模具中挤出形成成型体(如片状),经冷却滚筒冷却后,得到聚合物片材;所述冷却滚筒的表面温度设定为20~40℃,成型体经冷却滚筒的冷却速度在20℃/s以上;
3)双向拉伸,制得薄膜;所述拉伸通过滚筒法实现,其中,纵向拉伸倍率为5倍,横向拉伸倍率为5倍。
实施例6.2~6.6[膜的制备]
其他与实施例6.1相同,不同之处列于表6中。
表6实施例6.2~6.6的具体条件或参数
  聚合物 拉伸方式 横向拉伸倍率 纵向拉伸倍率
实施例6.2 实施例4.1 双向拉伸 4 4
实施例6.3 制备例4.1 双向拉伸 4 5
实施例6.4 制备例4.1 双向拉伸 4 5
实施例6.5 制备例4.1 单向拉伸 5 4
实施例6.6 制备例4.1 单向拉伸 5 4
实施例6.1~6.6的膜的性能测试结果列于表7中。
表7实施例6.1~6.6的膜的性能测试结果
Figure PCTCN2017075495-appb-000007
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种超高分子量超细粒径聚乙烯粉体的制备方法,其特征在于,所述方法包括以下步骤:
    在催化剂的作用下,将乙烯进行聚合反应;其中,聚合反应的温度为-20~100℃;乙烯中,一氧化碳含量不高于(例如小于)5ppm,二氧化碳不高于(例如少于)15ppm,共轭二烯烃含量不高于(少于)10ppm;
    所述催化剂通过包括以下步骤的方法制备得到:
    (a)将卤化镁、醇类化合物、助剂、部分的内给电子体和溶剂混合,制得混合物I;
    (b)在反应器中加入上述的混合物I,预热到-30℃~30℃,滴加钛化合物;或者,在反应器中加入钛化合物,预热到-30℃~30℃,滴加上述的混合物I;
    (c)滴加完成后,反应体系经过0.5~3小时升温至90℃~130℃,加入剩余的内给电子体继续反应;
    (d)滤除反应体系的液体,加入剩余的钛化合物,继续反应;
    (e)反应完成后,后处理得到所述的催化剂;
    其中制得的聚乙烯粉体的粘均分子量(Mv)大于1×106,所述聚乙烯粉体为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3g/mL。
  2. 根据权利要求1所述的制备方法,其特征在于,所述聚乙烯粉体的粒径分布近似于正态分布。
    优选地,所述聚合反应的温度优选为30~80℃,更优选为50~80℃。
  3. 权利要求1或2所述的制备方法制得的超高分子量超细粒径聚乙烯粉体,其特征在于,所述聚乙烯粉体的粘均分子量(Mv)大于1×106,所述聚乙烯粉体为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3/mL。
  4. 根据权利要求3所述的超高分子量超细粒径聚乙烯粉体,其特征在于,所述聚乙烯粉体的粒径分布近似于正态分布。
    优选地,所述聚乙烯的粘均分子量(Mv)大于等于1.5×106,优选地为1.5×106~4.0×106;所述聚乙烯的分子量分布Mw/Mn为2~15,优选为2~10。
    优选地,所述聚乙烯粉体的平均粒径优选为20μm-80μm,更优选为50μm-80μm;所述标准差优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm;所述聚乙烯粉体的堆密度优选为0.15-0.25g/mL。
  5. 一种采用固相接枝法制备超高分子超细粒径接枝聚乙烯的方法,其特征在于,所述方法包括以下步骤:
    在容器中,加入聚乙烯、接枝单体、引发剂和界面剂,搅拌混合均匀;加热进行固相接枝 反应;获得所述的接枝聚乙烯;
    所述聚乙烯为粉体,呈球形或类球形颗粒状,平均粒径为10μm~100μm;标准差为2μm-15μm,堆密度为0.1g/mL~0.3g/mL;所述聚乙烯的粘均分子量(Mv)大于1×106
  6. 根据权利要求5所述的方法,其特征在于,所述聚乙烯粉体的粒径分布近似于正态分布。
    优选地,所述聚乙烯粉体的平均粒径优选为20μm-80μm,更优选为50μm-80μm;所述标准差优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm。
    优选地,所述聚乙烯粉体的堆密度优选为0.15g/mL-0.25g/mL。
    优选地,所述聚乙烯的粘均分子量(Mv)大于等于1.5×106。更优选为1.5×106~4.0×106。所述聚乙烯的分子量分布Mw/Mn为2~15;更优选为2~10。
    优选地,所述搅拌混合的时间为0.5~5小时。搅拌的目的在于使反应物能够充分混合均匀,原则上搅拌时间越长对反应越有利,优选所述搅拌混合的时间为1~5小时。
    优选地,固相接枝反应的温度为60~120℃,时间为0.5~5小时。优选为70~110℃下反应0.5~3.5小时。更优选为80~110℃下反应2~3小时。
    优选地,所述的聚乙烯为乙烯均聚物。
    优选地,所述的接枝单体为硅氧烷类化合物或乙烯基类不饱和化合物。
    优选地,所述乙烯基类不饱和化合物例如为苯乙烯类化合物、乙烯基类不饱和有机酸、乙烯基类不饱和有机酯、乙烯基类不饱和有机酸酐或其混合物。优选为丙烯酸(AA)、甲基丙烯酸(MAA)、丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)、丙烯酸乙酯(EA)、甲基丙烯酸乙酯(MEA)、丙烯酸丁酯(BA)、甲基丙烯酸丁酯(BMA)、马来酸酐(MAH)、马来酸、苯乙烯(St)和季戊四醇三丙烯酸甘油酯(PETA)中的一种或多种。
    优选地,所述硅氧烷类化合物例如为乙烯基三甲基硅烷、乙烯基三乙基硅烷、二乙烯基二甲基硅烷、(三乙基硅烷基)乙炔、烯丙基三甲基硅烷等,优选为乙烯基三甲基硅烷和乙烯基三乙基硅烷中的一种或两种。
    优选地,所述接枝单体的加入量为聚乙烯粉体质量的0.2~15wt%,优选为0.5~12wt%,更优选为1~9wt%。
    优选地,所述引发剂为偶氮类引发剂或过氧化物类引发剂,优选为偶氮二异丁腈、过氧化苯甲酰或过氧化异丙苯中的一种或多种。所述引发剂的加入量为聚乙烯粉体质量的0.1~10wt%,优选为2~9wt%,更优选为3~8wt%。
    优选地,所述界面剂为对聚乙烯具有溶胀作用的有机溶剂。优选为对聚乙烯具有溶胀作用的下述有机溶剂:醚类溶剂、酮类溶剂、芳烃类溶剂或烷烃类溶剂;更优选为氯代苯、多氯代苯、C6以上的烷烃或环烷烃、苯、烷基取代苯、脂肪醚、脂肪酮、或十氢萘;还更优选为苯、甲苯、二甲苯、氯苯、四氢呋喃、***、丙酮、己烷、环己烷、十氢萘、庚烷中的一种或多种。例如可以为二甲苯,或者二甲苯与四氢呋喃的混合物。所述界面剂的加入量为聚乙烯粉体质量 的0.1~30wt%,优选为10~25wt%。
  7. 权利要求5或6所述方法制备得到的超高分子超细粒径接枝聚乙烯,其特征在于,接枝单体的有效接枝率≥0.5%,基础聚合物为聚乙烯,所述聚乙烯为粉体,呈球形或类球形颗粒状,平均粒径为10μm~100μm;标准差为2μm-15μm,堆密度为0.1g/mL~0.3g/mL;所述聚乙烯的粘均分子量(Mv)大于1×106
  8. 根据权利要求7所述的超高分子超细粒径接枝聚乙烯,其特征在于,所述聚乙烯粉体的粒径分布近似于正态分布。
    优选地,所述有效接枝率为0.5%~5.5%;更优选为1.0~3.0%;例如接枝聚乙烯的有效接枝率可以是1.33%,1.65%,2.14%或2.04%。
    优选地,所述聚乙烯粉体的平均粒径优选为20μm-80μm,更优选为50μm-80μm;所述标准差优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm。
    优选地,所述接枝聚乙烯的水接触角为80°~88°;更优选为81°~84°。
    优选地,所述聚乙烯的堆密度优选为0.15g/mL-0.25g/mL。
    优选地,所述聚乙烯的粘均分子量(Mv)大于等于1.5×106。更优选为1.5×106~4.0×106。所述聚乙烯的分子量分布Mw/Mn为2~15;优选为2~10。
    优选地,所述的聚乙烯为乙烯均聚物。
    优选地,所述的接枝单体为硅氧烷类化合物或乙烯基类不饱和化合物。
    优选地,所述乙烯基类不饱和化合物例如为苯乙烯类化合物、乙烯基类不饱和有机酸、乙烯基类不饱和有机酯、乙烯基类不饱和有机酸酐或其混合物。优选为丙烯酸(AA)、甲基丙烯酸(MAA)、丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)、丙烯酸乙酯(EA)、甲基丙烯酸乙酯(MEA)、丙烯酸丁酯(BA)、甲基丙烯酸丁酯(BMA)、马来酸酐(MAH)、马来酸、苯乙烯(St)和季戊四醇三丙烯酸甘油酯(PETA)中的一种或多种。
    优选地,所述硅氧烷类化合物例如为乙烯基三甲基硅烷、乙烯基三乙基硅烷、二乙烯基二甲基硅烷、(三乙基硅烷基)乙炔、烯丙基三甲基硅烷等,优选为乙烯基三甲基硅烷和乙烯基三乙基硅烷中的一种或两种。
    优选地,所述接枝聚乙烯的水接触角小于等于88°。例如,所述接枝聚乙烯的水接触角为80°~88°。所述接枝聚乙烯的结晶温度较基础聚合物提高了至少8℃。
  9. 一种玻璃纤维增强聚乙烯组合物,其特征在于,所述组合物包括权利要求3或4所述的超高分子量超细粒径聚乙烯粉体和玻璃纤维;
    所述超高分子量超细粒径聚乙烯的粘均分子量(Mv)大于1×106,所述超高分子量超细粒径聚乙烯为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3/mL。
  10. 根据权利要求9所述的组合物,其特征在于,所述超高分子量超细粒径聚乙烯的粒径分布近似于正态分布。
    优选地,所述超高分子量超细粒径聚乙烯的粘均分子量(Mv)大于等于1.5×106,优选地为1.5×106~4.0×106;所述超高分子量超细粒径聚乙烯的分子量分布Mw/Mn为2~15,优选为3~10,还优选为4~8。
    优选地,所述超高分子量超细粒径聚乙烯的平均粒径优选为20-90μm,还优选为30-85μm,更优选为50-80μm;所述标准差优选为5-15μm,更优选为6-12μm,还优选为8-10μm;所述超高分子量超细粒径聚乙烯的堆密度优选为0.15-0.25g/mL,例如0.2g/mL。
    优选地,所述玻璃纤维为经偶联剂处理的玻璃纤维。所述偶联剂例如为硅烷偶联剂(如γ-氨丙基三乙氧基硅烷KH550,γ-(2,3-环氧丙氧)丙基三甲氧基硅烷KH560,γ-甲基丙烯酰氧基丙基三甲氧基硅烷KH570,N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷KH792,N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷DL602,乙烯基三甲氧基硅烷A-171,乙烯基三乙氧基硅烷A-151等)、钛酸酯偶联剂(如三(二辛基焦磷酰氧基)钛酸异丙酯、二(二辛基磷酰氧基)钛酸乙二酯、二异硬脂酰基钛酸乙二酯)或铝酸酯偶联剂中的一种或多种。优选地,所述偶联剂选自硅烷偶联剂,特别优选γ-氨丙基三乙氧基硅烷KH550、乙烯基三甲氧基硅烷A-171、乙烯基三乙氧基硅烷A-151等。所述偶联剂的用量,相对于100重量份玻璃纤维,为0.5-4重量份。
    优选地,为了使得玻璃纤维更好分散在所述偶联剂中,可在所述玻璃纤维与偶联剂的体系中加入稀释剂,所述稀释剂例如选自白油或液体石蜡。所述稀释剂与偶联剂的重量比例如为(1~10):1,优选(3~6):1。
    优选地,所述玻璃纤维的长度为0.5mm-10mm,例如为1mm-3mm,或3mm-5mm,或5mm-7mm等。
    优选地,所述组合物中各组分的重量百分含量为:超高分子量超细粒径聚乙烯10-95wt%,玻璃纤维5-90wt%。优选地,所述玻璃纤维的含量为10-80wt%,更优选为40-70wt%。
  11. 一种片材,其特征在于,所述片材是由权利要求9或10所述的组合物制备得到。
  12. 一种管,其特征在于,所述管是由权利要求9或10所述的组合物制备得到。
  13. 权利要求11所述片材的制备方法,其特征在于,所述方法包括以下步骤:将所述超高分子量超细粒径聚乙烯和所述玻璃纤维在高速搅拌机中混合均匀,加入挤出机中,通过片材模具挤出,经冷却、拉伸,制得本发明的片材。
  14. 权利要求12所述管的制备方法,其特征在于,所述方法包括以下步骤:将所述超高分子量超细粒径聚乙烯和所述玻璃纤维在高速搅拌机中混合均匀,加入挤出机中,通过管材模具挤出,经冷却、拉伸,制得本发明的管。
    优选地,所述管的壁厚介于0.1-10mm之间,优选0.5-5mm之间。
  15. 权利要求11所述片材的用途,其可用于汽车、电子器件等诸多领域。
  16. 权利要求12所述管的用途,其用于给水排水、石油钻探等领域,例如作为给水排水管或矿用耐磨管等。
  17. 一种增溶型超高分子量超细粒径聚乙烯的制备方法,其特征在于,所述方法选自方法 (1)或方法(2)中的一种;所述方法(1)包括以下步骤:
    (1a)在催化剂和分散介质的作用下,乙烯进行聚合反应;其中,聚合反应的温度为-20~100℃;其中,乙烯中的一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;
    (1b)步骤(1a)的聚合结束后,加入溶剂,然后通过分馏的方法去除所述分散介质,得到所述增溶型超高分子量超细粒径聚乙烯;
    所述方法(2)包括以下步骤:
    (2a)在催化剂、分散介质和溶剂的作用下,乙烯进行聚合反应;其中,聚合反应的温度为-20~100℃;其中,乙烯中的一氧化碳含量少于5ppm,二氧化碳少于15ppm,共轭二烯烃含量少于10ppm;
    (2b)步骤(2a)的聚合结束后,通过分馏的方法去除所述分散介质,得到所述增溶型超高分子量超细粒径聚乙烯;
    上述方法(1)或方法(2)中,所述分散介质的沸点低于所述溶剂的沸点且至少低5℃;设定这样的温度差,是为了通过分馏的方法有效的分离出体系中的分散介质。
  18. 根据权利要求17所述的制备方法,其特征在于,上述方法(1)或方法(2)中,所述催化剂采用权利要求1所述的催化剂的制备方法制备得到。
    优选地,其中制得的增溶型超高分子量超细粒径聚乙烯的粘均分子量(Mv)大于1×106;所述增溶型超高分子量超细粒径聚乙烯为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3g/mL;所述增溶型超高分子量超细粒径聚乙烯中溶剂的重量百分含量为大于0且小于等于98wt%。
    优选地,所述增溶型超高分子量超细粒径聚乙烯中溶剂的重量百分含量大于0且小于等于80wt%,优选为大于0且小于等于50wt%,更优选为10-50wt%,还更优选为20-40wt%。
    优选地,所述增溶型超高分子量超细粒径聚乙烯的粒径分布近似于正态分布。
    优选地,所述聚合反应采用淤浆法。
    优选地,所述分散介质可为正戊烷、环己烷、苯、甲苯、二甲苯、正己烷、正庚烷、石油醚等中至少一种。
    优选地,所述溶剂可为环己烷、正己烷、正庚烷、苯、甲苯、二甲苯、二氯苯、三氯苯、1,1,1-三氯乙烷、白油、石蜡、煤油、烯烃矿物油和十氢萘中至少一种。
    优选地,所述聚合反应的温度优选为0~90℃,优选为10~85℃,还优选为30~80℃,更优选为50~80℃。
  19. 权利要求17或18所述制备方法制得的增溶型超高分子量超细粒径聚乙烯,其特征在于,所述聚乙烯的粘均分子量(Mv)大于1×106;所述聚乙烯为球形或类球形颗粒,平均粒径为10~100μm,标准差为2μm-15μm,堆密度为0.1g/mL~0.3/mL;所述聚乙烯中溶剂的重量百分含量为大于0且小于等于98wt%。
  20. 根据权利要求19所述的增溶型超高分子量超细粒径聚乙烯,其特征在于,所述聚乙烯中溶剂的重量百分含量大于0且小于等于80wt%,优选为大于0且小于等于50wt%,更优选为10-50wt%,还更优选为20-40wt%。
    优选地,所述聚乙烯的粒径分布近似于正态分布。
    优选地,所述聚乙烯的粘均分子量(Mv)大于等于1.5×106,优选地为1.5×106~4.0×106;所述聚乙烯的分子量分布Mw/Mn为2~15,优选为3~10,还优选为4~8。
    优选地,所述聚乙烯的平均粒径优选为20μm-90μm,还优选为30-85μm,更优选为50μm-80μm;所述标准差优选为5μm-15μm,更优选为6μm-12μm,还优选为8μm-10μm;所述聚乙烯的堆密度优选为0.15g/mL-0.25g/mL,例如0.2g/mL。
  21. 一种纤维,其特征在于,所述纤维原料中主要包括权利要求19或20所述的增溶型超高分子量超细粒径聚乙烯。
    优选地,所述的增溶型超高分子量超细粒径聚乙烯采用权利要求17或18所述的方法(1)或方法(2)中的一种的制备方法制得。
    优选地,所述原料中除所述增溶型超高分子量超细粒径聚乙烯外,还包括抗氧剂。优选地,抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。具体的,所述纤维由含有抗氧剂的所述增溶型超高分子量超细粒径聚乙烯制得。
  22. 权利要求21所述纤维的制备方法,其特征在于,包括以下步骤:
    1)将包含权利要求19或20所述的增溶型超高分子量超细粒径聚乙烯的原料溶解在溶剂中得到纺丝溶液或凝胶;
    2)通过冻胶纺丝方法纺丝,得到凝胶纤维;
    3)牵伸;制得所述纤维。
  23. 根据权利要求22所述的制备方法,其特征在于,步骤1)中,为了避免超高分子量聚乙烯在溶解和使用中的降解,在溶解过程中需加入抗氧剂。抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。
    优选地,步骤3)的牵伸步骤前,包括通过凝固剂或萃取剂将溶剂萃取的步骤。优选地,所述凝固剂或萃取剂选用低沸点的有机溶剂,例如是下述低沸点的有机溶剂中的一种或多种:石油醚、二氯甲烷、环己烷等。
    优选地,所述步骤3)中的牵伸采用热箱或热辊牵伸,也可以采用热浴牵伸方式。
    对于其中的热浴牵伸方式,优选的,采用的热浴介质包括选自多元醇(优选沸点为120-220℃)、聚氧乙烯齐聚物(优选的,相对分子量为88-5000g/mol)、聚氧丙烯齐聚物(优选的,相对分子量为116-1200g/mol)、矿物油和硅油中的一种或多种组分。优选地,所述热浴介质温度TL设定为介于聚合物基体的玻璃化温度Tg与聚合物基体的分解温度Td之间。
    优选地,所述步骤3)具体为:所述凝胶纤维经过凝胶丝牵伸、溶剂萃取、干燥、第一热 箱干热牵伸、第二热箱干热牵伸、热定型和卷绕等工序,得到本发明的纤维。
    优选地,凝胶丝牵伸工序中的牵伸温度为10-70℃,优选25-50℃;牵伸倍数为2-20倍,优选3-15倍。
    优选地,溶剂萃取工序中的萃取剂选用低沸点的有机溶剂,例如是下述低沸点的有机溶剂中的一种或多种:石油醚、二氯甲烷、环己烷等。
    优选地,干燥工序中的干燥通过热风干燥,热风温度为30-90℃,优选40-80℃。
    优选地,第一热箱干热牵伸工序中的温度为100-160℃,优选130-145℃;牵伸倍数为1-20倍,优选1.5-15倍。
    优选地,第二热箱干热牵伸工序中的温度为110-160℃,优选130-145℃;牵伸倍数为1-5倍,优选1.1-3倍。
    优选地,热定型工序中的温度为100-150℃,优选120-135℃。
  24. 一种膜,其特征在于,原料中主要包括权利要求19或20所述的增溶型超高分子量超细粒径聚乙烯。
    优选地,所述的增溶型超高分子量超细粒径聚乙烯采用选自权利要求17或18所述方法(1)或方法(2)中的一种的制备方法制得。
    优选地,所述原料中除所述增溶型超高分子量超细粒径聚乙烯外,还包括抗氧剂。优选地,抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。具体的,所述膜由含有抗氧剂的所述增溶型超高分子量超细粒径聚乙烯制得。
    优选地,所述膜为双向拉伸的。
  25. 权利要求24所述膜的制备方法,其特征在于,所述制备方法包括以下步骤:
    1)将包含所述增溶型超高分子量超细粒径聚乙烯的原料和成膜用溶剂进行熔融混炼,得到溶液;
    2)挤出溶液,形成成型体,冷却,得到聚合物片材;
    3)双向拉伸,制得薄膜。
    优选地,步骤1)中,为了避免超高分子量丙烯聚合物在溶解和使用中的降解,在溶解过程中需加入抗氧剂。抗氧剂的添加量相对于100重量份增溶型超高分子量超细粒径聚乙烯,为0.01-1重量份,还优选为0.02-0.5重量份。具体的,所述原料由所述增溶型超高分子量超细粒径聚乙烯和抗氧剂组成。
  26. 权利要求24所述膜的用途,用做电池隔膜。
PCT/CN2017/075495 2016-08-19 2017-03-02 一种超高分子量超细粒径聚乙烯及其制备方法和应用 WO2018032744A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217006485A KR102317083B1 (ko) 2016-08-19 2017-03-02 초고분자량, 초미세입경을 갖는 폴리에틸렌 및 그 제조방법과 응용
JP2019510358A JP7466306B2 (ja) 2016-08-19 2017-03-02 超高分子量超微粒子径ポリエチレン及びその製造方法と応用
KR1020207029878A KR102292650B1 (ko) 2016-08-19 2017-03-02 초고분자량, 초미세입경을 갖는 폴리에틸렌 및 그 제조방법과 응용
KR1020197006903A KR102185631B1 (ko) 2016-08-19 2017-03-02 초고분자량, 초미세입경을 갖는 폴리에틸렌 및 그 제조방법과 응용
EP17840722.7A EP3489265A4 (en) 2016-08-19 2017-03-02 POLYETHYLENE WITH ULTRA-HIGH MOLECULAR WEIGHT AND ULTRA-FINE PARTICLE SIZE, MANUFACTURING METHODS THEREFOR AND USE THEREOF
US16/279,677 US11530281B2 (en) 2016-08-19 2019-02-19 Ultra-high molecular weight, ultra-fine particle size polyethylene, preparation method therefor and use thereof

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201610695051.XA CN106279474B (zh) 2016-08-19 2016-08-19 增溶型超高分子量超细聚乙烯及其制备方法
CN201610695021.9A CN106319667B (zh) 2016-08-19 2016-08-19 一种增溶型超高分子量超细聚乙烯制备的纤维及其制备方法
CN201610694953.1 2016-08-19
CN201610695066.6 2016-08-19
CN201610695021.9 2016-08-19
CN201610695066.6A CN106188405B (zh) 2016-08-19 2016-08-19 接枝改性超高分子量超细聚乙烯及其固相接枝方法
CN201610694953.1A CN106317562B (zh) 2016-08-19 2016-08-19 一种增溶型超高分子量超细聚乙烯制备的膜及其制备方法
CN201610695051.X 2016-08-19
CN201610695013.4 2016-08-19
CN201610695124.5 2016-08-19
CN201610695013.4A CN106188785B (zh) 2016-08-19 2016-08-19 玻璃纤维增强聚乙烯组合物、由其制备的片材或管及其应用
CN201610695124.5A CN106317273B (zh) 2016-08-19 2016-08-19 超高分子量超细聚乙烯粉体及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/279,677 Continuation-In-Part US11530281B2 (en) 2016-08-19 2019-02-19 Ultra-high molecular weight, ultra-fine particle size polyethylene, preparation method therefor and use thereof

Publications (1)

Publication Number Publication Date
WO2018032744A1 true WO2018032744A1 (zh) 2018-02-22

Family

ID=61196310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075495 WO2018032744A1 (zh) 2016-08-19 2017-03-02 一种超高分子量超细粒径聚乙烯及其制备方法和应用

Country Status (5)

Country Link
US (1) US11530281B2 (zh)
EP (1) EP3489265A4 (zh)
JP (1) JP7466306B2 (zh)
KR (3) KR102292650B1 (zh)
WO (1) WO2018032744A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147722A (ja) * 2019-03-15 2020-09-17 三井化学株式会社 多孔質フィルムの製造方法
CN114249851A (zh) * 2020-09-24 2022-03-29 中国科学院上海有机化学研究所 一类低堆密度超高分子量聚乙烯微粉
WO2022197491A1 (en) * 2021-03-16 2022-09-22 W.R. Grace & Co.-Conn. Spherical catalyst components for olefin polymerization
CN116499310A (zh) * 2023-05-16 2023-07-28 吴江市兴业纺织有限公司 一种多功能防刺服

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610027B (zh) * 2018-01-08 2021-01-19 江苏恒辉安防股份有限公司 石墨烯复合超高分子量聚乙烯纤维及其制备方法
CN112724290B (zh) * 2019-10-28 2022-09-20 中国石油化工股份有限公司 一种超高分子量聚乙烯粉料及其制备方法
KR20210057441A (ko) 2019-11-12 2021-05-21 롯데케미칼 주식회사 폴리에틸렌 합성용 촉매의 제조방법, 이에 의해 제조된 촉매 및 폴리에틸렌 합성방법
JP7299949B2 (ja) 2020-09-22 2023-06-28 崔相弼 システムエアコンの熱交換器の洗浄及び殺菌モジュール
KR20230075842A (ko) * 2021-11-23 2023-05-31 (주)비지에프에코머티리얼즈 폴리프로필렌 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
CN114907526B (zh) * 2022-05-09 2024-04-05 宁波能之光新材料科技股份有限公司 一种高性能马来酸酐接枝poe的制备方法
CN115029946B (zh) * 2022-06-29 2024-03-22 界首市宏利塑料股份有限公司 一种耐磨pe塑料绳及其生产工艺
CN115501762B (zh) * 2022-10-27 2023-08-08 上海恩捷新材料科技有限公司 孔径小、孔径集中度高的滤膜及制备方法
CN116373193B (zh) * 2023-02-24 2024-02-09 无锡恩捷新材料科技有限公司 隔离膜的生产工艺
CN118063873A (zh) * 2024-04-24 2024-05-24 泉州兴源新材料科技有限公司 一种复合抗老化剂改性聚乙烯材料及其制备方法
CN118147823A (zh) * 2024-05-11 2024-06-07 张家港市宏裕新材料有限公司 一种纳米pu纤维防水透气膜的生产工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283642A (zh) * 2000-08-30 2001-02-14 华南理工大学 聚烯烃与三单体固相接枝共聚物的制备方法及其应用
CN102015792A (zh) * 2008-04-17 2011-04-13 沙特基础工业公司 生产超高分子量聚乙烯的方法
CN103772560A (zh) * 2012-10-22 2014-05-07 中国石油化工股份有限公司 一种纤维用超高分子量聚乙烯树脂及其制备方法
CN103772537A (zh) * 2012-10-19 2014-05-07 中国石油化工股份有限公司 一种超高分子量聚乙烯的制备方法
JP2015093929A (ja) * 2013-11-12 2015-05-18 東ソー株式会社 超高分子量ポリエチレンパウダー
JP2015131880A (ja) * 2014-01-09 2015-07-23 東ソー株式会社 超高分子量ポリエチレン粒子及びそれよりなる成形体
CN106188405A (zh) * 2016-08-19 2016-12-07 中国科学院化学研究所 接枝改性超高分子量超细聚乙烯及其固相接枝方法
CN106188785A (zh) * 2016-08-19 2016-12-07 中国科学院化学研究所 玻璃纤维增强聚乙烯组合物、由其制备的片材或管及其应用
CN106279474A (zh) * 2016-08-19 2017-01-04 中国科学院化学研究所 增溶型超高分子量超细聚乙烯及其制备方法
CN106317562A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 一种增溶型超高分子量超细聚乙烯制备的膜及其制备方法
CN106317273A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 超高分子量超细聚乙烯粉体及其制备方法
CN106319667A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 一种增溶型超高分子量超细聚乙烯制备的纤维及其制备方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240734A (ja) * 1984-05-16 1985-11-29 Mitsui Petrochem Ind Ltd 変性超高分子量ポリオレフインの粉末
JPS60163935A (ja) * 1984-02-03 1985-08-26 Mitsui Petrochem Ind Ltd プレス成型用超高分子量ポリオレフィン組成物
CN1005716B (zh) 1987-11-20 1989-11-08 中国石油化工总公司 烯烃聚合的载体催化剂体系的制法
JPH0284452A (ja) * 1988-06-22 1990-03-26 Mitsui Petrochem Ind Ltd 超高分子量ポリオレフィン系分子配向成形体
IT1227260B (it) 1988-09-30 1991-03-28 Himont Inc Dieteri utilizzabili nella preparazione di catalizzatori ziegler-natta
IT1227258B (it) 1988-09-30 1991-03-28 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine
IT1230134B (it) 1989-04-28 1991-10-14 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine.
NL9001069A (nl) 1990-05-03 1991-12-02 Stamicarbon Voorwerpen uit vernet geoerienteerd hoog-moleculair polyetheen.
CN1036011C (zh) 1993-03-29 1997-10-01 中国石油化工总公司 烯烃聚合用的球形催化剂组分、制备方法和应用以及球形催化剂
CN1039234C (zh) 1994-03-22 1998-07-22 中国石油化工总公司 聚丙烯球形催化剂及其制备
CN1034736C (zh) 1994-04-08 1997-04-30 中国科学院化学研究所 烯烃聚合载体催化剂体系及制备法
JP2674953B2 (ja) * 1994-08-26 1997-11-12 三井石油化学工業株式会社 成形用超高分子量ポリオレフィン組成物
DE19645939A1 (de) * 1996-11-07 1998-05-14 Buna Sow Leuna Olefinverb Gmbh Verfahren zur Herstellung von ultrahochmolekularem Polyethylen und Methode zur Aktivierung des Katalysatorträgers
CN1067691C (zh) 1997-05-13 2001-06-27 中国石油化工总公司 一种负载型聚丙烯催化剂
US6329476B1 (en) 1997-10-14 2001-12-11 Phillips Petroleum Company Olefin polymerization processes and products thereof
JPH11207870A (ja) * 1998-01-27 1999-08-03 Nitto Denko Corp 金属箔張回路用基板およびこれを用いてなる回路板ならびに金属箔張回路板
KR100351386B1 (ko) 2000-04-24 2002-09-05 삼성종합화학주식회사 초고분자량 폴리에틸렌 제조용 촉매 및 이를 이용한초고분자량 폴리에틸렌 제조방법
CN1151183C (zh) 2000-06-15 2004-05-26 中国石油化工股份有限公司 用于烯烃聚合或共聚合的球形催化剂组分及其催化剂
BR0205691A (pt) 2001-06-26 2003-07-15 Basell Poliolefine Spa Componentes e catalisadores para a polimerização de olefinas
CN1463990A (zh) 2002-06-10 2003-12-31 营口市向阳催化剂有限责任公司 一种烯烃聚合球型催化剂组分及载体的制备方法
CN1169840C (zh) 2002-08-15 2004-10-06 浙江大学 球形催化剂载体MgCl2-醇-有机络合剂复合物的制备方法
FI20021951A (fi) 2002-11-01 2004-05-02 Meridea Financial Software Oy Palvelun, erityisesti finanssipalvelun, toteuttaminen verkossa, jossa on kannettavia päätelaitteita
CN1213080C (zh) 2003-04-21 2005-08-03 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分及其催化剂
CN1268652C (zh) 2003-10-20 2006-08-09 上海金海雅宝聚合物添加剂有限公司 一种α烯烃聚合用球型载体催化剂
CN1286863C (zh) 2004-03-25 2006-11-29 浙江大学 球形MgCl2-醇-有机络合剂载体负载的烯烃聚合催化剂及制备方法
CN1690039A (zh) 2004-04-30 2005-11-02 中国石油化工股份有限公司 用于制备烯烃聚合催化剂的二酯化合物
ES2537554T3 (es) 2005-01-19 2015-06-09 Mitsui Chemicals, Inc. Componente catalizador de titanio sólido, catalizador para la polimerización de olefina y proceso para producir polímeros de olefina
KR100637631B1 (ko) * 2005-02-05 2006-10-23 도레이새한 주식회사 이차전지 세퍼레이터용 폴리에틸렌 미다공막의 제조방법 및 그로 제조된 폴리에틸렌 미다공막
CN100491415C (zh) 2005-03-07 2009-05-27 营口市向阳催化剂有限责任公司 烯烃聚合用催化剂及其制备和聚合方法
CN100429243C (zh) 2005-07-07 2008-10-29 中国石油化工股份有限公司 一种烯烃聚合反应催化剂组分的制备方法
PL2029637T3 (pl) 2006-06-21 2010-08-31 Total Res & Technology Feluy Mieszanka katalizatorów (ko)polimeryzacji propylenu
CN1986576A (zh) 2006-12-15 2007-06-27 中国科学院长春应用化学研究所 聚醚二芳香酯类化合物的应用
CN101096389B (zh) 2007-06-22 2010-05-19 上海化工研究院 一种超高分子量聚乙烯催化剂及其制备方法
CN101125898A (zh) 2007-07-19 2008-02-20 中国科学院长春应用化学研究所 一种用于合成宽分子量分布聚丙烯的催化剂
CN101423571B (zh) 2007-11-01 2010-09-01 中国石油天然气股份有限公司 烯烃聚合催化组分及其催化剂
CN101423572B (zh) 2007-11-01 2011-09-07 中国石油天然气股份有限公司 用于烯烃聚合的催化组分及其催化剂
CN101423566B (zh) 2007-11-01 2010-11-03 中国石油天然气股份有限公司 一种固体催化组分及其催化剂
CN101423570B (zh) 2007-11-01 2010-11-24 中国石油天然气股份有限公司 一种烯烃聚合球形催化组分及其催化剂
WO2009080281A1 (en) * 2007-12-21 2009-07-02 Saudi Basic Industries Corporation Process for producing long glass fibre-reinforced thermoplastic compositions
CN101357968A (zh) 2008-09-16 2009-02-04 中国科学院化学研究所 一种马来酸酐接枝聚丙烯材料及其制备方法
CN101768809A (zh) 2008-12-31 2010-07-07 中国科学院宁波材料技术与工程研究所 一种抗蠕变超高分子量聚乙烯纤维混杂织物及其制备方法
JP2010241885A (ja) * 2009-04-02 2010-10-28 Mitsui Chemicals Inc コアシェル型粒子、その製造方法および用途
CN101560273B (zh) 2009-04-24 2011-03-23 营口市向阳催化剂有限责任公司 烯烃聚合催化剂、制备方法及聚合方法
JP2011111559A (ja) * 2009-11-27 2011-06-09 Mitsui Chemicals Inc 多孔質フィルムおよびその製造方法
CN102181089B (zh) 2011-04-08 2013-05-22 中国矿业大学 玄武岩纤维填充超高分子量聚乙烯复合材料及其制备方法
KR20140012121A (ko) * 2011-04-08 2014-01-29 티코나 엘엘씨 폴리에틸렌 분말 및 이로부터 제조된 다공성 제품
CN102505158A (zh) * 2011-10-25 2012-06-20 中国科学院宁波材料技术与工程研究所 一种超高分子量聚乙烯纤维的高浓度制备方法
CN102690397A (zh) 2012-06-08 2012-09-26 上海大学 纤维素类材料增强的复合材料用的相容剂及其制备方法
CN103524763B (zh) * 2013-10-08 2015-10-28 中国科学院化学研究所 一种易溶型聚烯烃树脂及其制备方法
JP2015081335A (ja) * 2013-10-24 2015-04-27 東ソー株式会社 超高分子量ポリエチレン粒子及びそれよりなる成形体
US9771440B2 (en) * 2013-10-25 2017-09-26 Dsm Ip Assets B.V. Preparation of ultra high molecular weight polyethylene
CN104829762B (zh) * 2015-05-25 2017-07-21 中国科学院化学研究所 一种用于制备高球形度低粒度聚烯烃颗粒的催化剂的制备方法及其用途

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283642A (zh) * 2000-08-30 2001-02-14 华南理工大学 聚烯烃与三单体固相接枝共聚物的制备方法及其应用
CN102015792A (zh) * 2008-04-17 2011-04-13 沙特基础工业公司 生产超高分子量聚乙烯的方法
CN103772537A (zh) * 2012-10-19 2014-05-07 中国石油化工股份有限公司 一种超高分子量聚乙烯的制备方法
CN103772560A (zh) * 2012-10-22 2014-05-07 中国石油化工股份有限公司 一种纤维用超高分子量聚乙烯树脂及其制备方法
JP2015093929A (ja) * 2013-11-12 2015-05-18 東ソー株式会社 超高分子量ポリエチレンパウダー
JP2015131880A (ja) * 2014-01-09 2015-07-23 東ソー株式会社 超高分子量ポリエチレン粒子及びそれよりなる成形体
CN106188405A (zh) * 2016-08-19 2016-12-07 中国科学院化学研究所 接枝改性超高分子量超细聚乙烯及其固相接枝方法
CN106188785A (zh) * 2016-08-19 2016-12-07 中国科学院化学研究所 玻璃纤维增强聚乙烯组合物、由其制备的片材或管及其应用
CN106279474A (zh) * 2016-08-19 2017-01-04 中国科学院化学研究所 增溶型超高分子量超细聚乙烯及其制备方法
CN106317562A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 一种增溶型超高分子量超细聚乙烯制备的膜及其制备方法
CN106317273A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 超高分子量超细聚乙烯粉体及其制备方法
CN106319667A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 一种增溶型超高分子量超细聚乙烯制备的纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489265A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147722A (ja) * 2019-03-15 2020-09-17 三井化学株式会社 多孔質フィルムの製造方法
JP7280071B2 (ja) 2019-03-15 2023-05-23 三井化学株式会社 多孔質フィルムの製造方法
CN114249851A (zh) * 2020-09-24 2022-03-29 中国科学院上海有机化学研究所 一类低堆密度超高分子量聚乙烯微粉
CN114249851B (zh) * 2020-09-24 2023-03-14 中国科学院上海有机化学研究所 一类低堆密度超高分子量聚乙烯微粉
WO2022197491A1 (en) * 2021-03-16 2022-09-22 W.R. Grace & Co.-Conn. Spherical catalyst components for olefin polymerization
CN116499310A (zh) * 2023-05-16 2023-07-28 吴江市兴业纺织有限公司 一种多功能防刺服
CN116499310B (zh) * 2023-05-16 2023-10-27 吴江市兴业纺织有限公司 一种多功能防刺服

Also Published As

Publication number Publication date
KR20190039984A (ko) 2019-04-16
EP3489265A4 (en) 2020-04-22
EP3489265A1 (en) 2019-05-29
JP2019528356A (ja) 2019-10-10
KR102185631B1 (ko) 2020-12-04
KR20210028286A (ko) 2021-03-11
JP7466306B2 (ja) 2024-04-12
KR102292650B1 (ko) 2021-08-23
US11530281B2 (en) 2022-12-20
KR102317083B1 (ko) 2021-10-25
US20190185596A1 (en) 2019-06-20
KR20200122414A (ko) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2018032744A1 (zh) 一种超高分子量超细粒径聚乙烯及其制备方法和应用
WO2018032745A1 (zh) 超高分子量超细粒径丙烯聚合物及其制备方法和应用
CN105906748B (zh) 功能性超高分子量聚乙烯树脂制备方法
Kaminsky et al. Nanocomposites by in situ polymerization of olefins with metallocene catalysts
Kaminsky Polyolefin-nanocomposites with special properties by in-situ polymerization
CN101910225A (zh) 改性丙烯树脂
CN102179920A (zh) 一种高强度聚合物复合材料的制备方法
CN1884319A (zh) 含有α-甲基苯乙烯结构单元的共聚物、制备方法及应用
JPH0330605B2 (zh)
WO1999007747A1 (fr) Procede de preparation de (co)polymeres d'olefines, copolymeres d'olefines, et utilisation de ceux-ci
CN110437539A (zh) 一种改性氯化石墨烯及高熔体强度聚丙烯材料
KR950013728B1 (ko) 분자배향 및 실란가교 초고분자량 폴리에틸렌 성형체 및 그 제법
CN104292391A (zh) 一种不饱和酸酐接枝氯化聚乙烯熔融生产法
CN1256378C (zh) 聚乙烯/蒙脱土纳米复合材料的制备方法
CN106317562B (zh) 一种增溶型超高分子量超细聚乙烯制备的膜及其制备方法
CN116218165A (zh) 一种纳米颗粒-可生物降解聚酯薄膜及其制备方法
CN106317620B (zh) 一种增溶型超高分子量超细丙烯聚合物制备的膜及其制备方法
Zhao et al. Chemical modification of cotton by methyl methacrylate via emulsion polymerization
JP7130819B2 (ja) 二次電池セパレータ用ポリエチレン樹脂、その製造方法、及びそれを適用したセパレータ
CN113912937B (zh) 一种聚丙烯纳米复合材料及其制备方法和应用
Rong et al. Polyethylene‐Palygorskite nanocomposite prepared via in situ coordinated polymerization
EP1697425A1 (en) Polyolefin composition having dispersed nanophase and method of preparation
Simitzis Polyacrylonitrile
CN108641021A (zh) 一种提高高分子量聚乙烯加工性能的方法及应用
CN113881134B (zh) 一种用于亲水无纺布的组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017840722

Country of ref document: EP

Effective date: 20190225

ENP Entry into the national phase

Ref document number: 20197006903

Country of ref document: KR

Kind code of ref document: A