WO2018030170A1 - 弾性波装置及びラダー型フィルタ - Google Patents

弾性波装置及びラダー型フィルタ Download PDF

Info

Publication number
WO2018030170A1
WO2018030170A1 PCT/JP2017/027312 JP2017027312W WO2018030170A1 WO 2018030170 A1 WO2018030170 A1 WO 2018030170A1 JP 2017027312 W JP2017027312 W JP 2017027312W WO 2018030170 A1 WO2018030170 A1 WO 2018030170A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
resonator
bus bar
idt electrode
propagation direction
Prior art date
Application number
PCT/JP2017/027312
Other languages
English (en)
French (fr)
Inventor
保昭 新
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018532932A priority Critical patent/JP6729702B2/ja
Priority to CN201780046304.3A priority patent/CN109478875B/zh
Publication of WO2018030170A1 publication Critical patent/WO2018030170A1/ja
Priority to US16/258,712 priority patent/US10862458B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14591Vertically-split transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to an acoustic wave device and a ladder type filter having a plurality of 1-port acoustic wave resonators.
  • Patent Document 1 Japanese Patent Document 1
  • three 1-port acoustic wave resonators are connected in series on a piezoelectric substrate. More specifically, the IDT electrodes of three acoustic wave resonators are connected in series. Further, reflectors arranged on one side in the elastic wave propagation direction of the three elastic wave resonators are electrically connected. In the elastic wave propagation direction, the three reflectors of the three elastic wave resonators are electrically connected also on the other side.
  • each acoustic wave resonator the IDT electrode and the reflectors on both sides of the IDT electrode are separated by a space.
  • the reflector of the first elastic wave resonator is electrically connected to one bus bar of the first elastic wave resonator.
  • the IDT electrode of the elastic wave resonator located in the center is electrically connected to the IDT electrodes of the elastic wave resonators on both sides. It has only been done.
  • the temperature easily rises at the IDT electrode.
  • the IDT electrodes of the central acoustic wave resonator are surrounded by the IDT electrodes of the acoustic wave resonators on both sides, it is difficult for heat to dissipate. Therefore, in the IDT electrode of the central acoustic wave resonator, the temperature is likely to rise and migration is likely to occur. For this reason, there is a problem that the power durability of the entire acoustic wave device is lowered.
  • An object of the present invention is to provide an elastic wave device capable of improving power durability and a ladder filter using the elastic wave device.
  • An elastic wave device includes a first elastic wave resonator having a first IDT electrode and a pair of reflectors arranged on both sides in the elastic wave propagation direction of the first IDT electrode, A second elastic member connected in series to the first elastic wave resonator and having a second IDT electrode and a pair of reflectors disposed on both sides in the elastic wave propagation direction of the second IDT electrode.
  • the first to third IDT electrodes each have a pair of bus bars facing each other in the direction intersecting the elastic wave propagation direction, and the second elastic wave resonance In the direction crossing the elastic wave propagation direction of the child
  • the first elastic wave resonator is disposed on the other side of the first IDT electrode in the direction intersecting the elastic wave propagation direction.
  • Bus bar and one bus bar of the second IDT electrode are shared as a first common bus bar, and the other bus bar of the second IDT electrode and one bus bar of the third IDT electrode are The second common bus bar is shared, the first common bus bar is connected to a reflector of either the first or second acoustic wave resonator, and the second common bus bar is The reflector is connected to one of the second and third acoustic wave resonators.
  • the reflectors adjacent in the direction intersecting the elastic wave propagation direction are connected by a conductive pattern along the elastic wave propagation direction of each reflector. .
  • the first common bus bar is connected to the reflector disposed on one side in the elastic wave propagation direction
  • the second common bus bar is elastic. It is connected to the reflector disposed on the other side in the wave propagation direction.
  • the bus bars alternately oppose each other in the elastic wave propagation direction in a direction crossing the elastic wave propagation direction. Connected to the reflector.
  • At least one fourth elastic wave resonator is connected in series to the third elastic wave resonator, and the at least one fourth elastic wave device is connected.
  • the elastic wave resonator includes a fourth IDT electrode and a pair of reflectors disposed on both sides in the elastic wave propagation direction of the fourth IDT electrode, and the fourth IDT electrode is a pair of bus bars.
  • the third elastic wave resonator and the fourth elastic wave resonator are connected in series, the reflector of the third elastic wave resonator and the fourth elastic wave A resonator reflector is connected.
  • the bus bar of the first to fourth elastic wave resonators intersects the elastic wave propagation direction.
  • the elastic wave propagation direction is alternately connected to the reflector on one side or the reflector on the other side.
  • the direction intersecting the elastic wave propagation direction is a direction orthogonal to the elastic wave propagation direction.
  • a ladder type filter according to the present invention is a ladder type filter having a series arm resonator and a parallel arm resonator made of an acoustic wave resonator, and at least one of the series arm resonator or the parallel arm resonator is the present invention. It is the elastic wave apparatus comprised according to.
  • the power durability can be improved.
  • FIG. 1 is a plan view showing an electrode structure of a series arm resonator closest to the transmission terminal in the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a relationship between input power and output power in the elastic wave devices of the first embodiment and the comparative example.
  • FIG. 5 is a plan view showing the electrode structure of the series arm resonator closest to the transmission terminal in the acoustic wave device according to the modification of the first embodiment.
  • FIG. 1 is a plan view showing an electrode structure of a series arm resonator closest to the transmission terminal in the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the acoustic wave device according to the first embodiment
  • FIG. 6 is a plan view showing the electrode structure of the series arm resonator closest to the transmission terminal in the acoustic wave device according to the second embodiment of the present invention.
  • FIG. 7 is a plan view showing the electrode structure of the series arm resonator closest to the transmission terminal in the acoustic wave device according to the third embodiment of the present invention.
  • FIG. 1 is a plan view showing an electrode structure of a series arm resonator closest to the transmission terminal in the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the acoustic wave device according to the first embodiment, and
  • FIG. 3 is a plan view thereof.
  • the acoustic wave device 1 is a duplexer having a transmission filter 2 and a reception filter 3.
  • the elastic wave device 1 has a piezoelectric substrate 1A.
  • a piezoelectric single crystal such as LiTaO 3 or LiNbO 3 or a piezoelectric ceramic can be used.
  • the elastic wave device 1 has an antenna terminal 4.
  • the antenna terminal 4 is a terminal connected to the antenna ANT.
  • a transmission filter 2 is connected between the antenna terminal 4 and the transmission terminal 5.
  • a reception filter 3 is connected between the antenna terminal 4 and the reception terminal 6. In the transmission filter 2, transmission power is input from the transmission terminal 5, and transmission power is output from the antenna ANT via the antenna terminal 4. In the reception filter 3, a signal input from the antenna ANT is extracted from the reception terminal 6.
  • the transmission filter 2 is a ladder type filter. That is, it has a plurality of series arm resonators S1 to S3 and a plurality of parallel arm resonators P1 to P3.
  • An inductor L1 is connected between the parallel arm resonator P1 and the ground potential. Also, the ground potential side ends of the parallel arm resonators P2 and P3 are connected in common and connected to the ground potential via the inductor L2.
  • the series arm resonator S1 and the series arm resonator S3 are divided into a plurality of series arm resonators S1-1 to S1-3 and S3-1 to S3-3, as schematically shown in FIG.
  • FIG. 1 shows a portion where series arm resonators S1-1 to S1-3 are connected in series.
  • the series arm resonator S1 is an elastic wave device according to an embodiment of the present invention.
  • the series arm resonators S1-1 to S1-3 are first to third series arm resonators S1-1 to S1-3 as the first to third elastic wave resonators in the present invention. .
  • the first to third series arm resonators S1-1 to S1-3 have first to third IDT electrodes 11 to 13, respectively.
  • reflectors 14 and 15 are provided on both sides in the elastic wave propagation direction of the first IDT electrode 11.
  • reflectors 16 and 17 are provided on both sides in the elastic wave propagation direction of the second IDT electrode 12.
  • reflectors 18 and 19 are provided on both sides in the elastic wave propagation direction of the third IDT electrode 13.
  • the first IDT electrode 11 has a first bus bar 21 and a first common bus bar 22.
  • a plurality of first electrode fingers 23 are connected to the first bus bar 21.
  • a plurality of second electrode fingers 24 are connected to the first common bus bar 22.
  • the first common bus bar 22 is shared by the first and second IDT electrodes 11 and 12.
  • the second IDT electrode 12 has a second common bus bar 25 facing the first common bus bar 22.
  • a plurality of electrode fingers 26 are connected to the first common bus bar 22, and a plurality of electrode fingers 27 are connected to the second common bus bar 25.
  • the second common bus bar 25 is shared between the second series arm resonator S1-2 and the third series arm resonator S1-3.
  • a second bus bar 28 is provided so as to face the second common bus bar 25.
  • a plurality of electrode fingers 29 are connected to the second common bus bar 25, and a plurality of electrode fingers 30 are connected to the second bus bar 28.
  • the first to third series arm resonators S1-1 to S1-3 as the first to third elastic wave resonators are arranged along a direction orthogonal to the elastic wave propagation direction. That is, the first series arm resonator S1-1 is arranged on one side in the direction orthogonal to the elastic wave propagation direction of the second series arm resonator S1-2, and the third series arm resonator is on the other side.
  • a resonator S1-3 is arranged.
  • the direction is not limited to the direction orthogonal to the elastic wave propagation direction. That is, the first to third elastic wave resonators may be sequentially arranged at an angle other than 90 ° and in a direction crossing the elastic wave propagation direction.
  • the first to third series arm resonators S1-1 to S1-3 are connected in series. Therefore, the first IDT electrode 11 to the third IDT electrode 13 are connected in series. Specifically, the first IDT electrode 11 and the second IDT electrode 12 are connected by a first common bus bar 22 made of a strip-like conductive pattern. The second IDT electrode 12 and the third IDT electrode 13 are connected by a second common bus bar 25 made of a strip-like conductive pattern.
  • the reflectors 14 and 16 are electrically connected to the first common bus bar 22.
  • the reflector 15 and the reflector 17 are also electrically connected by a strip-shaped conductive pattern 31. That is, the reflectors adjacent to each other in the direction orthogonal to the elastic wave propagation direction of the first series arm resonator S1-1 and the second series arm resonator S1-2 are the first common bus bar 22 or the conductive conductors. They are connected by the pattern 31.
  • adjacent reflectors in the direction orthogonal to the elastic wave propagation direction are electrically conductive patterns 32 or
  • the second common bus bar 25 is electrically and physically connected.
  • the first IDT electrode 11 to the third IDT electrode 13 generate heat.
  • heat tends to be accumulated in the IDT electrode located in the center.
  • the second IDT electrode 12 is connected to the reflectors 14 and 16 by the first common bus bar 22. Further, the second IDT electrode 12 is connected to the reflectors 17 and 19 by the second common bus bar 25. Therefore, even if the temperature rises at the second IDT electrode 12, heat is released to the outside through the first common bus bar 22 and the second common bus bar 25. Therefore, the temperature rise of the second IDT electrode 12 can be effectively suppressed. Therefore, migration hardly occurs and power durability can be improved.
  • the structure of the present embodiment is employed in the series arm resonator S ⁇ b> 1 closest to the transmission terminal 5.
  • the series arm resonator S3 shown in FIG. 2 is similarly divided into three series arm resonators S3-1, S3-2, and S3-3.
  • the same structure as that of the series arm resonator S1 may be adopted. Thereby, the temperature rise can be further suppressed.
  • the transmission filter 2 the largest power is applied to the series arm resonator S1 closest to the transmission terminal 5. Therefore, by using the elastic wave device of the present invention for the series arm resonator S1 as in the present embodiment, the power durability can be effectively enhanced.
  • the electrode structure of the present invention may be adopted only for the series arm resonator S3 instead of the series arm resonator S1.
  • the reception filter 3 has a longitudinally coupled resonator type elastic wave filter 41.
  • Series arm resonators 42 and 43 are connected between the antenna terminal 4 and the longitudinally coupled resonator type acoustic wave filter 41.
  • a parallel arm resonator 44 is connected between a connection point between the longitudinally coupled resonator type elastic wave filter 41 and the receiving terminal 6 and the ground potential.
  • the circuit configuration of the reception filter 3 is not particularly limited.
  • the electrode structure of the elastic wave device of the present invention is employed for the series arm resonator S1, but the elastic wave device of the present invention has the first to third elastic wave resonators connected in series. Can be applied to any part.
  • the series arm resonator S2 and the series arm resonators S3-1 and S3-2 are connected in series and connected on the piezoelectric substrate.
  • the electrode structure as shown in FIG. 1 may be adopted by using the series arm resonator S3-1 as the second elastic wave resonator.
  • FIG. 4 is a diagram illustrating a relationship between input power and output power in the elastic wave devices of the first embodiment and the comparative example. Note that the input power in the elastic wave device of the first embodiment is the input power from the transmission terminal 5, and the output power is the power output from the antenna terminal 4.
  • the embodiment has the electrode structure shown in FIG.
  • the reflectors of the first to third elastic wave resonators are connected to each other as in the case of the elastic wave device described in Patent Document 1.
  • the IDT electrode is separated from the reflectors on both sides.
  • the elastic wave device of the comparative example is the same as the elastic wave device of the first embodiment.
  • the design parameters of the first to third series arm resonators S-1 to S1-3 were as follows.
  • Piezoelectric substrate LiTaO 3 substrate with a cut angle of 42 °. Use leaky waves.
  • Table 1 shows the result of the comparative example
  • Table 2 shows the result of the embodiment.
  • the input power peaks in a region where the input power is lower than 28.0 dBm, and the output power rapidly decreases when the input power exceeds 28.0 dBm. .
  • FIG. 5 is a plan view showing the electrode structure of the series arm resonator closest to the transmission terminal in the acoustic wave device according to the modification of the first embodiment.
  • the first common bus bar 22 is connected to the reflector 14 of the series arm resonator S ⁇ b> 1-1 as the first elastic wave resonator and is connected to the reflector 16. Absent.
  • the second common bus bar 25 is connected to the reflector 19 of the series arm resonator S1-3 as the third elastic wave resonator, and is not connected to the reflector 17.
  • the 1st common bus bar 22 and the 2nd common bus bar 25 do not need to be connected to the reflector of the 2nd elastic wave resonator.
  • This modification is the same as the elastic wave device of the first embodiment except for the above points.
  • the first common bus bar 22 may be connected to the reflector 16 without being connected to the reflector 14.
  • the second common bus bar 25 may not be connected to the reflector 19 but may be connected to the reflector 17. That is, in the present invention, the first common bus bar only needs to be connected to one of the reflectors of the first and second acoustic wave resonators, and the second common bus bar is the second common bus bar. It is only necessary to be connected to any one of the three acoustic wave resonators.
  • the first to third acoustic wave resonators 51 to 53 are connected to each other.
  • the fourth acoustic wave resonator 54 may be connected in series.
  • at least one fourth elastic wave resonator 54 may be further connected in series.
  • the fourth elastic wave resonator 54 includes a fourth IDT electrode 55 and reflectors 56 and 57 disposed on both sides in the elastic wave propagation direction of the fourth IDT electrode 55.
  • the fourth IDT electrode 55 has a third common bus bar 58 and a bus bar 59.
  • the third common bus bar 58 is shared by the third IDT electrode 13 and the fourth IDT electrode 55.
  • the first IDT electrode 11 is connected to the reflector 14 by the bus bar 21A.
  • the first IDT electrode 11 is connected to the reflector 15 by the first common bus bar 22A.
  • the second IDT electrode 12 and the reflector 17 are connected by the first common bus bar 22A.
  • the second IDT electrode 12 and the reflector 16 are connected by the second common bus bar 25A.
  • the third IDT electrode 13 and the reflector 18 are connected by a second common bus bar 25A.
  • the third IDT electrode 13 and the reflector 19 are connected by a third common bus bar 58.
  • the second IDT electrode 12 and the third IDT electrode 13 which are located inside in the direction orthogonal to the elastic wave propagation direction and easily collect heat are respectively connected to the first and second common bus bars 22A, 22A, It is connected to reflectors 15, 16, 17 or reflectors 18, 19, 57 via 25A or second and third common bus bars 25A, 58. Accordingly, also in the second embodiment, since the temperatures of the second IDT electrode 12 and the third IDT electrode 13 are unlikely to rise, the power durability can be effectively increased as in the first embodiment. .
  • the bus bar 21A, the first, second, and third common bus bars 22A, 25A, 58, and The bus bar 59 is alternately connected to the reflectors 14, 16, 18, 56 on one side and the reflectors 15, 17, 19, 57 on the other side in the elastic wave propagation direction in a direction orthogonal to the elastic wave propagation direction.
  • FIG. 7 is a plan view showing the electrode structure of the series arm resonator closest to the transmission terminal in the acoustic wave device according to the third embodiment of the present invention.
  • another fourth elastic wave resonator 61 is connected in series to the fourth elastic wave resonator 54 of the elastic wave device of the second embodiment.
  • the fourth acoustic wave resonator 61 includes an IDT electrode 62 and reflectors 63 and 64.
  • a fourth common bus bar 59 ⁇ / b> A is shared between the fourth elastic wave resonator 54 and the fourth elastic wave resonator 61.
  • the fourth IDT electrode 55 is connected to the reflectors 19 and 57 by a third common bus bar 58. Further, the IDT electrode 55 is connected to the reflector 63 by the fourth common bus bar 59A. Therefore, the temperature rise in the fourth IDT electrode 55 can be suppressed.
  • the IDT electrode 62 and the reflector 64 of the fourth elastic wave resonator 61 are connected by a bus bar 65.
  • a plurality of fourth elastic wave resonators 54 and 61 may be connected in series like a series arm resonator shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

耐電力性を高めることができる弾性波装置を提供する。 第1~第3の弾性波共振子S1-1~S1-3が直列に接続されており、第2の弾性波共振子S1-2の一方側に第1の弾性波共振子S1-1が、他方側に第3の弾性波共振子S1-3が配置されている弾性波装置1。第1~第3の弾性波共振子S1-1~S1-3において、第1の共通バスバー22が、第1及び第2の弾性波共振子S1-1,S1-2のいずれかの反射器14,16に接続されており、第2の共通バスバー25が、第2,第3の弾性波共振子S1-2,S1-3のいずれかの反射器17,19に接続されている。

Description

弾性波装置及びラダー型フィルタ
 本発明は、複数の1ポート型弾性波共振子を有する弾性波装置及びラダー型フィルタに関する。
 従来、複数の1ポート型弾性波共振子を直列接続してなる弾性波装置が種々提案されている。例えば下記の特許文献1では、3個の1ポート型弾性波共振子が、圧電基板上において、直列に接続されている。より具体的には、3個の弾性波共振子のIDT電極同士が直列に接続されている。また、3個の弾性波共振子の弾性波伝搬方向において一方側に配置されている反射器同士が電気的に接続されている。弾性波伝搬方向において、他方側においても、3個の弾性波共振子の3個の反射器が電気的に接続されている。
 他方、各弾性波共振子において、IDT電極と、IDT電極の両側の反射器とはスペースをおいて隔てられている。1番目の弾性波共振子の反射器が、1番目の弾性波共振子の一方のバスバーに電気的に接続されている。
特許第5562063号公報
 特許文献1に記載の弾性波装置では、3個の弾性波共振子のうち、中央に位置している弾性波共振子のIDT電極は、両側の弾性波共振子のIDT電極に電気的に接続されているだけである。他方、弾性波共振子では、電力が印加されると、IDT電極において温度が上昇しやすい。特に、中央の弾性波共振子のIDT電極は、両側の弾性波共振子のIDT電極で囲まれているため、熱が放散し難い。従って、中央の弾性波共振子のIDT電極において、温度が上昇しやすく、マイグレーションが生じやすかった。そのため、弾性波装置全体としての耐電力性が低下するという問題があった。
 本発明の目的は、耐電力性を高めることができる弾性波装置及び該弾性波装置を用いたラダー型フィルタを提供することにある。
 本発明に係る弾性波装置は、第1のIDT電極と、前記第1のIDT電極の弾性波伝搬方向において両側に配置された一対の反射器とを有する第1の弾性波共振子と、前記第1の弾性波共振子に直列に接続されており、第2のIDT電極と、前記第2のIDT電極の弾性波伝搬方向において両側に配置された一対の反射器とを有する第2の弾性波共振子と、前記第2の弾性波共振子に直列に接続されており、第3のIDT電極と、前記第3のIDT電極の弾性波伝搬方向において両側に配置された一対の反射器とを有する第3の弾性波共振子とを備え、前記第1~第3のIDT電極がそれぞれ、弾性波伝搬方向と交差する方向において対向する一対のバスバーを有し、前記第2の弾性波共振子の弾性波伝搬方向と交差する方向において一方側に前記第1の弾性波共振子が配置されており、該弾性波伝搬方向と交差する方向において他方側に前記第3の弾性波共振子が配置されており、前記第1のIDT電極の他方のバスバーと前記第2のIDT電極の一方のバスバーとが第1の共通バスバーとして共有化されており、前記第2のIDT電極の他方のバスバーと前記第3のIDT電極の一方のバスバーとが第2の共通バスバーとして共有化されており、前記第1の共通バスバーが前記第1及び前記第2の弾性波共振子のいずれかの反射器に接続されており、前記第2の共通バスバーが前記第2及び前記第3の弾性波共振子のいずれかの反射器に接続されている。
 本発明に係る弾性波装置のある特定の局面では、弾性波伝搬方向と交差する方向において隣り合っている前記反射器同士が、各反射器の弾性波伝搬方向に沿う導電パターンにより接続されている。
 本発明に係る弾性波装置の他の特定の局面では、前記第1の共通バスバーが弾性波伝搬方向において一方側に配置された前記反射器に接続されており、前記第2の共通バスバーが弾性波伝搬方向において他方側に配置された前記反射器に接続されている。
 本発明に係る弾性波装置の別の特定の局面では、前記第1~第3の弾性波共振子において、弾性波伝搬方向と交差する方向において、交互に前記各バスバーが弾性波伝搬方向において対向する反射器に接続されている。
 本発明に係る弾性波装置のさらに他の特定の局面では、少なくとも1つの第4の弾性波共振子が、前記第3の弾性波共振子に直列に接続されており、前記少なくとも1つの第4の弾性波共振子が、第4のIDT電極と、前記第4のIDT電極の弾性波伝搬方向において両側に配置された一対の反射器とを有し、前記第4のIDT電極が一対のバスバーを有し、前記第3の弾性波共振子と前記第4の弾性波共振子とが直列接続されている部分において、前記第3の弾性波共振子の前記反射器と前記第4の弾性波共振子の反射器とが接続されている。
 本発明に係る弾性波装置の他の特定の局面では、前記第1~第4の弾性波共振子において、前記第1~第4の弾性波共振子の前記バスバーが、弾性波伝搬方向と交差する方向において、弾性波伝搬方向において一方側の前記反射器または他方側の前記反射器に交互に接続されている。
 本発明に係る弾性波装置の別の特定の局面では、前記弾性波伝搬方向と交差する方向が、弾性波伝搬方向と直交する方向である。
 本発明に係るラダー型フィルタは、弾性波共振子からなる直列腕共振子及び並列腕共振子を有するラダー型フィルタであって、前記直列腕共振子または並列腕共振子の少なくとも1つが、本発明に従って構成されている弾性波装置である。
 本発明に係る弾性波装置及びラダー型フィルタによれば、耐電力性を高めることができる。
図1は、本発明の第1の実施形態に係る弾性波装置における最も送信端子側の直列腕共振子の電極構造を示す平面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の回路図である。 図3は、本発明の第1の実施形態の弾性波装置の平面図である。 図4は、第1の実施形態及び比較例の弾性波装置における、入力電力と出力電力との関係を示す図である。 図5は、第1の実施形態の変形例に係る弾性波装置における最も送信端子側の直列腕共振子の電極構造を示す平面図である。 図6は、本発明の第2の実施形態に係る弾性波装置における最も送信端子側の直列腕共振子の電極構造を示す平面図である。 図7は、本発明の第3の実施形態に係る弾性波装置における最も送信端子側の直列腕共振子の電極構造を示す平面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置における最も送信端子側の直列腕共振子の電極構造を示す平面図である。図2は、第1の実施形態の弾性波装置の回路図であり、図3はその平面図である。
 図2及び図3に示すように、弾性波装置1は、送信フィルタ2と受信フィルタ3とを有するデュプレクサである。図3に示すように、弾性波装置1は、圧電基板1Aを有する。圧電基板1Aの材料としては、LiTaOやLiNbOなどの圧電単結晶、または圧電セラミックスが用いられ得る。
 弾性波装置1は、アンテナ端子4を有する。アンテナ端子4は、アンテナANTに接続される端子である。アンテナ端子4と送信端子5との間に送信フィルタ2が接続されている。アンテナ端子4と受信端子6との間に受信フィルタ3が接続されている。送信フィルタ2では、送信端子5から送信電力が入力され、アンテナ端子4を介してアンテナANTから送信電力が出力される。受信フィルタ3では、アンテナANTから入力された信号が、受信端子6から取り出される。
 送信フィルタ2はラダー型フィルタである。すなわち、複数の直列腕共振子S1~S3及び複数の並列腕共振子P1~P3を有する。なお、並列腕共振子P1とグラウンド電位との間に、インダクタL1が接続されている。また、並列腕共振子P2,P3のグラウンド電位側端部が共通接続され、インダクタL2を介してグラウンド電位に接続されている。
 直列腕共振子S1及び直列腕共振子S3は、図2で略図的に示すように、複数の直列腕共振子S1-1~S1-3,S3-1~S3-3に分割されている。
 図1は、直列腕共振子S1-1~S1-3が直列接続されている部分を示す。直列腕共振子S1は、本発明の一実施形態に係る弾性波装置である。ここで、直列腕共振子S1-1~S1-3を、本発明における第1~第3の弾性波共振子としての第1~第3の直列腕共振子S1-1~S1-3とする。
 第1~第3の直列腕共振子S1-1~S1-3は、それぞれ、第1~第3のIDT電極11~13を有する。第1の直列腕共振子S1-1では、第1のIDT電極11の弾性波伝搬方向において両側に反射器14,15が設けられている。第2の直列腕共振子S1-2では、第2のIDT電極12の弾性波伝搬方向において両側に反射器16,17が設けられている。第3の直列腕共振子S1-3では、第3のIDT電極13の弾性波伝搬方向において両側に反射器18,19が設けられている。
 他方、第1のIDT電極11は、第1のバスバー21と第1の共通バスバー22とを有する。第1のバスバー21に、複数本の第1の電極指23が接続されている。第1の共通バスバー22に、複数本の第2の電極指24が接続されている。第1の共通バスバー22は、第1,第2のIDT電極11,12において共有化されている。第2のIDT電極12は、第1の共通バスバー22と対向する第2の共通バスバー25を有している。第1の共通バスバー22に、複数本の電極指26が接続されており、第2の共通バスバー25に複数本の電極指27が接続されている。
 第2の共通バスバー25は、第2の直列腕共振子S1-2と、第3の直列腕共振子S1-3との間で共有化されている。第3のIDT電極13では、第2の共通バスバー25と対向するように、第2のバスバー28が設けられている。第2の共通バスバー25に複数本の電極指29が、第2のバスバー28に複数本の電極指30が接続されている。
 第1~第3の弾性波共振子としての第1~第3の直列腕共振子S1-1~S1-3は、弾性波伝搬方向と直交する方向に沿って配置されている。すなわち、第2の直列腕共振子S1-2の弾性波伝搬方向と直交する方向において一方側に、第1の直列腕共振子S1-1が配置されており、他方側に第3の直列腕共振子S1-3が配置されている。なお、この場合、弾性波伝搬方向と直交する方向に限定されない。すなわち、90°以外の角度で、弾性波伝搬方向と交差する方向において、第1~第3の弾性波共振子が順に配置されていてもよい。
 ところで、第1~第3の直列腕共振子S1-1~S1-3は直列に接続されている。従って、第1のIDT電極11~第3のIDT電極13が直列に接続されている。具体的には、第1のIDT電極11と、第2のIDT電極12とは、ストリップ状の導電パターンからなる第1の共通バスバー22により接続されている。第2のIDT電極12と第3のIDT電極13は、ストリップ状の導電パターンからなる第2の共通バスバー25により接続されている。
 加えて、第1の共通バスバー22には、反射器14,16が電気的に接続されている。反射器15と反射器17も、ストリップ状の導電パターン31により電気的に接続されている。すなわち、第1の直列腕共振子S1-1と、第2の直列腕共振子S1-2の弾性波伝搬方向と直交する方向において隣り合っている反射器同士が第1の共通バスバー22または導電パターン31により接続されている。
 同様に、第2の直列腕共振子S1-2と、第3の直列腕共振子S1-3との間においても、弾性波伝搬方向と直交する方向において隣り合う反射器同士が導電パターン32または第2の共通バスバー25により電気的にかつ物理的に接続されている。
 直列腕共振子S1に、例えば図2の送信端子5から送信電力が印加された場合、第1のIDT電極11~第3のIDT電極13が発熱する。従来、この種の弾性波装置では、中央に位置しているIDT電極に熱がこもりがちであった。
 これに対して、本実施形態では、第2のIDT電極12は、第1の共通バスバー22により反射器14,16と接続されている。また、第2の共通バスバー25により、第2のIDT電極12は、反射器17,19に接続されている。従って、第2のIDT電極12で温度が上昇したとしても、熱が第1の共通バスバー22及び第2の共通バスバー25を介して外側に逃がされる。よって、第2のIDT電極12の温度上昇を効果的に抑制することができる。従って、マイグレーションが生じ難く、耐電力性を高めることができる。
 図2に示すように、弾性波装置1では、送信端子5に最も近い直列腕共振子S1において、本実施形態の構造が採用されていた。図2に示す直列腕共振子S3は、図3に示すように、同様に、3個の直列腕共振子S3-1,S3-2,S3-3に分割されている。この直列腕共振子S3においても、直列腕共振子S1の場合と同様の構造を採用してもよい。それによって、温度上昇をより一層抑制することができる。
 もっとも、送信フィルタ2では、最も大きな電力が加わるのは、送信端子5に最も近い直列腕共振子S1である。従って、本実施形態のように、直列腕共振子S1に本発明の弾性波装置を用いることにより、耐電力性を効果的に高めることができる。
 なお、直列腕共振子S1に代えて、直列腕共振子S3のみに本発明の電極構造を採用してもよい。
 受信フィルタ3は、縦結合共振子型弾性波フィルタ41を有する。アンテナ端子4と縦結合共振子型弾性波フィルタ41との間に直列腕共振子42,43が接続されている。また、縦結合共振子型弾性波フィルタ41と受信端子6との間の接続点とグラウンド電位との間に並列腕共振子44が接続されている。受信フィルタ3の回路構成は特に限定されるものではない。
 なお、上記実施形態では、直列腕共振子S1に本発明の弾性波装置の電極構造を採用したが、本発明の弾性波装置は、第1~第3の弾性波共振子が直列に接続されている任意の部分に適用することができる。例えば、図3において、直列腕共振子S2と、直列腕共振子S3-1,S3-2が直列に接続され、かつ圧電基板上において連ねられている。この部分において、直列腕共振子S3-1を第2の弾性波共振子として、図1に示すような電極構造を採用してもよい。
 次に、具体的な実験例につき説明する。
 図4は、第1の実施形態及び比較例の弾性波装置における、入力電力と出力電力との関係を示す図である。なお、第1の実施形態の弾性波装置における入力電力とは、送信端子5からの入力電力であり、出力電力とは、アンテナ端子4から出力される電力である。
 なお、実施形態は、図1に示した電極構造を有する。これに対して、比較例の弾性波装置では、特許文献1に記載の弾性波装置と同様に、1番目~3番目の弾性波共振子の反射器同士は接続しているものの、第2のIDT電極については、両側の反射器から分離されている。その他の構成は、比較例の弾性波装置は第1の実施形態の弾性波装置と同様とした。
 なお、第1~第3の直列腕共振子S-1~S1-3の設計パラメータは以下の通りとした。
 圧電基板:カット角42°のLiTaO基板。リーキー波を利用。
 第1~第3のIDT電極11~13の電極指の対数=100対、電極指ピッチ=2.634μm、電極指材料及び膜厚=Ti(6nm)/Al(244nm)。
 反射器14,16,18,15,17,19の電極指の本数=6.5対、電極指ピッチ=2.634nm。
 また、上記比較例及び実施形態の入力電力と出力電力との関係を下記の表1及び表2に示す。表1が比較例の結果を示し、表2が実施形態の結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び図4に示されているように、比較例では、入力電力が28.0dBmよりも低い領域で入力電力がピークとなり、28.0dBmを超えると、出力電力が急激に低下している。
 これに比べて、表2及び図4に示されているように、実施形態の結果では、入力電力を高めていった場合、28.0dBmを超えても、出力電力が高くなっていることがわかる。さらに、入力電力が28.0dBmを超える領域で、出力電力が24.0dBmを超えている。従って、比較例に比べて、実施形態によれば、放熱性が高められているか、入力電力印加による特性の劣化が少なくなり、かつ送信電力を高め得ることがわかる。
 また、表1及び図4において、比較例では、入力電力が29.0dBmよりも高い領域が示されていないのは、29.0dBmを超えると、破損し、出力電力を取り出すことができなかったことによる。従って、比較例に比べ、実施形態によれば耐電力性を効果的に高め得ることがわかる。
 図5は、第1の実施形態の変形例に係る弾性波装置における最も送信端子側の直列腕共振子の電極構造を示す平面図である。図5に示す変形例では、第1の共通バスバー22は、第1の弾性波共振子としての直列腕共振子S1-1の反射器14に接続されており、反射器16には接続されていない。また、第2の共通バスバー25は、第3の弾性波共振子としての直列腕共振子S1-3の反射器19に接続されており、反射器17には接続されていない。このように、第1の共通バスバー22及び第2の共通バスバー25は、第2の弾性波共振子の反射器に接続されておらずともよい。
 本変形例は、上記の点を除いては、第1の実施形態の弾性波装置と同様である。
 なお、上記変形例とは逆に、第1の共通バスバー22は、反射器14に接続されず、反射器16に接続されていてもよい。同様に、第2の共通バスバー25は、反射器19に接続されず、反射器17に接続されていてもよい。すなわち、本発明では、第1の共通バスバーは、第1,第2の弾性波共振子の内のいずれかの反射器に接続されておればよく、第2の共通バスバーは、第2,第3の弾性波共振子の内のいずれかの反射器に接続されておればよい。
 第1の実施形態では、3個の弾性波共振子が直列に接続されていたが、図6に示す第2の実施形態のように、第1~第3の弾性波共振子51~53に加えて、第4の弾性波共振子54が直列に接続されていてもよい。このように、本発明では、少なくとも1つの第4の弾性波共振子54がさらに直列に接続されていてもよい。
 第2の実施形態では、第4の弾性波共振子54は、第4のIDT電極55と、第4のIDT電極55の弾性波伝搬方向において両側に配置された反射器56,57とを有する。第4のIDT電極55は、第3の共通バスバー58と、バスバー59とを有する。第3の共通バスバー58は、第3のIDT電極13と、第4のIDT電極55とで共有化されている。
 第2の実施形態では、バスバー21Aにより、第1のIDT電極11が、反射器14に接続されている。第1の共通バスバー22Aにより、第1のIDT電極11が反射器15に接続されている。この第1の共通バスバー22Aにより、第2のIDT電極12と反射器17とが接続されている。他方、第2の共通バスバー25Aにより第2のIDT電極12と反射器16とが接続されている。第3のIDT電極13と反射器18とが第2の共通バスバー25Aにより接続されている。第3のIDT電極13と反射器19とが、第3の共通バスバー58により接続されている。
 従って、弾性波伝搬方向と直交する方向において、内側に位置しており、熱がこもりやすい第2のIDT電極12及び第3のIDT電極13は、それぞれ、第1,第2の共通バスバー22A,25Aまたは第2,第3の共通バスバー25A,58を介して反射器15,16,17または反射器18,19,57に接続されている。従って、第2の実施形態においても、第2のIDT電極12及び第3のIDT電極13の温度が上昇し難いため、第1の実施形態と同様に耐電力性を効果的に高めることができる。
 第2の実施形態では、第1~第4の弾性波共振子51~54が直列に接続されている構成において、バスバー21A、第1,第2,第3の共通バスバー22A,25A,58及びバスバー59が、弾性波伝搬方向と直交する方向において、弾性波伝搬方向において一方側の反射器14,16,18,56と、他方側の反射器15,17,19,57とに交互に接続されている。従って、上記のように、第2,第3のIDT電極12,13の温度上昇を効果的に抑制することができる。
 図7は、本発明の第3の実施形態に係る弾性波装置における最も送信端子側の直列腕共振子の電極構造を示す平面図である。第3の実施形態の弾性波装置では、第2の実施形態の弾性波装置の第4の弾性波共振子54に、さらにもう1つの第4の弾性波共振子61が直列に接続されている。第4の弾性波共振子61は、IDT電極62と、反射器63,64とを有する。第4の弾性波共振子54と、第4の弾性波共振子61との間で、第4の共通バスバー59Aが共有化されている。第4のIDT電極55は、第3の共通バスバー58により、反射器19,57に接続されている。また、第4の共通バスバー59Aにより、IDT電極55は反射器63に接続されている。従って、第4のIDT電極55において、温度上昇を抑制することができる。
 なお、第4の弾性波共振子61のIDT電極62及び反射器64は、バスバー65により接続されている。
 図7に示す直列腕共振子のように、複数の第4の弾性波共振子54,61が直列に接続されていてもよい。
1…弾性波装置
1A…圧電基板
2…送信フィルタ
3…受信フィルタ
4…アンテナ端子
5…送信端子
6…受信端子
11~13…第1~第3のIDT電極
14~19…反射器
21,21A…バスバー
22,22A…第1の共通ハスバー
23,24,26,27,29,30…電極指
25,25A…第2の共通バスバー
28…第2のバスバー
31,32…導電パターン
41…縦結合共振子型弾性波フィルタ
42,43…直列腕共振子
44…並列腕共振子
51~54…第1~第4の弾性波共振子
55…第4のIDT電極
56,57…反射器
58,59A…第3,第4の共通バスバー
59…バスバー
61…第4の弾性波共振子
62…IDT電極
63,64…反射器
65…バスバー
L1,L2…インダクタ
S1~S3…直列腕共振子
S1-1~S1-3,S3-1~S3-3…第1~第3の直列腕共振子
P1~P3…並列腕共振子

Claims (8)

  1.  第1のIDT電極と、前記第1のIDT電極の弾性波伝搬方向において両側に配置された一対の反射器とを有する第1の弾性波共振子と、
     前記第1の弾性波共振子に直列に接続されており、第2のIDT電極と、前記第2のIDT電極の弾性波伝搬方向において両側に配置された一対の反射器とを有する第2の弾性波共振子と、
     前記第2の弾性波共振子に直列に接続されており、第3のIDT電極と、前記第3のIDT電極の弾性波伝搬方向において両側に配置された一対の反射器とを有する第3の弾性波共振子とを備え、
     前記第1~第3のIDT電極がそれぞれ、弾性波伝搬方向と交差する方向において対向する一対のバスバーを有し、
     前記第2の弾性波共振子の弾性波伝搬方向と交差する方向において一方側に前記第1の弾性波共振子が配置されており、該弾性波伝搬方向と交差する方向において他方側に前記第3の弾性波共振子が配置されており、
     前記第1のIDT電極の他方のバスバーと前記第2のIDT電極の一方のバスバーとが第1の共通バスバーとして共有化されており、
     前記第2のIDT電極の他方のバスバーと前記第3のIDT電極の一方のバスバーとが第2の共通バスバーとして共有化されており、
     前記第1の共通バスバーが前記第1及び前記第2の弾性波共振子のいずれかの反射器に接続されており,前記第2の共通バスバーが前記第2及び前記第3の弾性波共振子のいずれかの反射器に接続されている、弾性波装置。
  2.  弾性波伝搬方向と交差する方向において隣り合っている前記反射器同士が、各反射器の弾性波伝搬方向に沿う導電パターンにより接続されている、請求項1に記載の弾性波装置。
  3.  前記第1の共通バスバーが弾性波伝搬方向において一方側に配置された前記反射器に接続されており、前記第2の共通バスバーが弾性波伝搬方向において他方側に配置された前記反射器に接続されている、請求項1または2に記載の弾性波装置。
  4.  前記第1~第3の弾性波共振子において、弾性波伝搬方向と交差する方向において、交互に前記各バスバーが弾性波伝搬方向において対向する反射器に接続されている、請求項1または2に記載の弾性波装置。
  5.  少なくとも1つの第4の弾性波共振子が、前記第3の弾性波共振子に直列に接続されており、前記少なくとも1つの第4の弾性波共振子が、第4のIDT電極と、前記第4のIDT電極の弾性波伝搬方向において両側に配置された一対の反射器とを有し、前記第4のIDT電極が一対のバスバーを有し、前記第3の弾性波共振子と前記第4の弾性波共振子とが直列接続されている部分において、前記第3の弾性波共振子の前記反射器と前記第4の弾性波共振子の反射器とが接続されている、請求項1に記載の弾性波装置。
  6.  前記第1~第4の弾性波共振子において、前記第1~第4の弾性波共振子の前記バスバーが、弾性波伝搬方向と交差する方向において、弾性波伝搬方向において一方側の前記反射器または他方側の前記反射器に交互に接続されている、請求項5に記載の弾性波装置。
  7.  前記弾性波伝搬方向と交差する方向が、弾性波伝搬方向と直交する方向である、請求項1~6のいずれか一項に記載の弾性波装置。
  8.  弾性波共振子からなる直列腕共振子及び並列腕共振子を有するラダー型フィルタであって、前記直列腕共振子または並列腕共振子の少なくとも1つが、請求項1~7のいずれか一項に記載の弾性波装置である、ラダー型フィルタ。
PCT/JP2017/027312 2016-08-10 2017-07-27 弾性波装置及びラダー型フィルタ WO2018030170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018532932A JP6729702B2 (ja) 2016-08-10 2017-07-27 弾性波装置及びラダー型フィルタ
CN201780046304.3A CN109478875B (zh) 2016-08-10 2017-07-27 弹性波装置以及梯型滤波器
US16/258,712 US10862458B2 (en) 2016-08-10 2019-01-28 Acoustic wave device and ladder filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-157683 2016-08-10
JP2016157683 2016-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/258,712 Continuation US10862458B2 (en) 2016-08-10 2019-01-28 Acoustic wave device and ladder filter

Publications (1)

Publication Number Publication Date
WO2018030170A1 true WO2018030170A1 (ja) 2018-02-15

Family

ID=61162451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027312 WO2018030170A1 (ja) 2016-08-10 2017-07-27 弾性波装置及びラダー型フィルタ

Country Status (4)

Country Link
US (1) US10862458B2 (ja)
JP (1) JP6729702B2 (ja)
CN (1) CN109478875B (ja)
WO (1) WO2018030170A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058579A1 (ja) * 2021-10-07 2023-04-13 株式会社村田製作所 弾性波装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102518B (zh) * 2022-05-16 2023-07-14 武汉敏声新技术有限公司 一种横向激励体声波谐振器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209459A (ja) * 2001-11-09 2003-07-25 Toyo Commun Equip Co Ltd 共振子型弾性表面波フィルタ
JP2004320412A (ja) * 2003-04-16 2004-11-11 Toyo Commun Equip Co Ltd 弾性表面波フィルタ
WO2009016906A1 (ja) * 2007-07-30 2009-02-05 Murata Manufacturing Co., Ltd. 弾性波装置及びその製造方法
WO2010004686A1 (ja) * 2008-07-10 2010-01-14 株式会社村田製作所 弾性波装置及びラダー型フィルタ装置
JP2011172191A (ja) * 2010-02-22 2011-09-01 Kyocera Corp 弾性表面波装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69614463T2 (de) * 1995-07-25 2002-05-29 Murata Manufacturing Co Akustische Oberflächenwellenanordnung
US6348845B2 (en) * 1996-05-23 2002-02-19 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and multistage surface acoustic wave filter
JP2001007680A (ja) * 1999-06-22 2001-01-12 Toyo Commun Equip Co Ltd 平衡型弾性表面波フィルタ
TW498614B (en) * 1999-12-09 2002-08-11 Matsushita Electric Ind Co Ltd Elastic surface wave device and communications equipment using the elastic surface wave device
CN100452650C (zh) * 2003-07-02 2009-01-14 京瓷株式会社 弹性表面波装置及使用该装置的通信装置
CN105531926B (zh) * 2013-09-06 2018-03-16 株式会社村田制作所 弹性波谐振器、弹性波滤波器装置以及双工器
WO2015033891A1 (ja) * 2013-09-06 2015-03-12 株式会社村田製作所 弾性波共振子、弾性波フィルタ装置及びデュプレクサ
WO2016063718A1 (ja) * 2014-10-21 2016-04-28 株式会社村田製作所 弾性波共振子及びラダー型フィルタ
JP6465047B2 (ja) * 2016-02-19 2019-02-06 株式会社村田製作所 弾性波共振子、帯域通過型フィルタ及びデュプレクサ
WO2018117059A1 (ja) * 2016-12-19 2018-06-28 株式会社村田製作所 弾性波共振器、フィルタ装置およびマルチプレクサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209459A (ja) * 2001-11-09 2003-07-25 Toyo Commun Equip Co Ltd 共振子型弾性表面波フィルタ
JP2004320412A (ja) * 2003-04-16 2004-11-11 Toyo Commun Equip Co Ltd 弾性表面波フィルタ
WO2009016906A1 (ja) * 2007-07-30 2009-02-05 Murata Manufacturing Co., Ltd. 弾性波装置及びその製造方法
WO2010004686A1 (ja) * 2008-07-10 2010-01-14 株式会社村田製作所 弾性波装置及びラダー型フィルタ装置
JP2011172191A (ja) * 2010-02-22 2011-09-01 Kyocera Corp 弾性表面波装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058579A1 (ja) * 2021-10-07 2023-04-13 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US10862458B2 (en) 2020-12-08
JPWO2018030170A1 (ja) 2019-03-28
JP6729702B2 (ja) 2020-07-22
CN109478875B (zh) 2022-10-04
CN109478875A (zh) 2019-03-15
US20190158063A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP6477721B2 (ja) 弾性波装置
JP6107947B2 (ja) 弾性波フィルタ装置
JP6380558B2 (ja) 弾性波装置
JP5105026B2 (ja) 弾性波共振子及びラダー型フィルタ
JP5333654B2 (ja) ラダー型フィルタ及びデュプレクサ
JP6284800B2 (ja) 弾性表面波デバイス及びフィルタ
JP6835222B2 (ja) 弾性波装置及び複合フィルタ装置
JP5141766B2 (ja) 弾性波装置及びラダー型フィルタ装置
CN110114973B (zh) 弹性波装置
JP5397477B2 (ja) ラダー型弾性波フィルタ装置及び分波器
WO2022107699A1 (ja) 弾性波フィルタ及び複合フィルタ装置
JP6886331B2 (ja) 弾性波共振器、フィルタおよびマルチプレクサ
WO2018030170A1 (ja) 弾性波装置及びラダー型フィルタ
US10090823B2 (en) Elastic wave resonator and ladder filter
US10505515B2 (en) Ladder filter
US20160380617A1 (en) Elastic wave device
WO2023002948A1 (ja) 受信フィルタ及び複合フィルタ装置
WO2023100670A1 (ja) フィルタ装置
JP2016171544A (ja) 弾性波装置
JP2012109671A (ja) 弾性波素子及びラダー型フィルタ
JPH10145174A (ja) 弾性表面波装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018532932

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839243

Country of ref document: EP

Kind code of ref document: A1