WO2018016584A1 - 移動ロボット及び制御方法 - Google Patents

移動ロボット及び制御方法 Download PDF

Info

Publication number
WO2018016584A1
WO2018016584A1 PCT/JP2017/026274 JP2017026274W WO2018016584A1 WO 2018016584 A1 WO2018016584 A1 WO 2018016584A1 JP 2017026274 W JP2017026274 W JP 2017026274W WO 2018016584 A1 WO2018016584 A1 WO 2018016584A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacon
distance
detected
mobile robot
traveling direction
Prior art date
Application number
PCT/JP2017/026274
Other languages
English (en)
French (fr)
Inventor
北野 斉
隆 内藤
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to CN201780044165.0A priority Critical patent/CN109478066B/zh
Priority to US16/317,992 priority patent/US11112803B2/en
Priority to DE112017003648.8T priority patent/DE112017003648T5/de
Publication of WO2018016584A1 publication Critical patent/WO2018016584A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the present invention relates to a mobile robot and a control method.
  • This application claims priority in Japanese Patent Application No. 2016-143228 for which it applied to Japan on July 21, 2016, and uses the content here.
  • a transmitter such as a beacon is used to guide a mobile robot that moves autonomously.
  • a cleaning robot as a mobile robot performs an operation of moving toward the charger and receiving power supply from the charger based on a signal emitted from a beacon provided in the charger.
  • the mobile work robot described in the cited document 1 detects a reference position based on a signal emitted from a beacon and controls movement.
  • the main control is to move toward the target beacon and stop the movement when approaching or touching the beacon.
  • a mobile robot that performs such control is guided to a destination using a plurality of beacons, when the mobile robot moves toward a target beacon and approaches a predetermined distance, the next target beacon The control of moving toward is repeated. In this case, the movement of the mobile robot until it reaches the destination due to being too close to the target beacon may be wasted.
  • the present invention provides a mobile robot and a control method capable of reducing the moving distance when moving based on a plurality of transmitters.
  • a driving unit that changes a moving speed and a traveling direction
  • a detecting unit that detects a plurality of detected objects arranged along a moving path to a target point, and the detecting unit detect The distance and direction to the detected object are acquired, the traveling direction satisfying a predetermined relationship between the distance to the detected object and the direction of the detected object is calculated, and based on the calculated traveling direction
  • a control unit that controls the drive unit.
  • One embodiment of the present invention is a mobile robot including a drive unit that changes a moving speed and a traveling direction, and a detection unit that detects a plurality of detection objects arranged along a movement path to a target point.
  • a first step of obtaining a distance and direction to the detected object detected by the detection unit, and a distance to the detected object and a direction of the detected object in advance It is a control method including a second step of calculating a traveling direction that satisfies a defined relationship, and a third step of controlling the drive unit based on the calculated traveling direction.
  • the moving distance when moving based on a plurality of beacons can be reduced.
  • the figure which shows the example of a movement of the mobile robot in this embodiment The block diagram which shows the structural example of the mobile robot in 1st Embodiment.
  • the block diagram which shows the structural example of the mobile robot in 2nd Embodiment.
  • the block diagram which shows the structural example of the control part in 2nd Embodiment.
  • the block diagram which shows the structural example which concerns on the control based on the beacon information in the drive control part in 2nd Embodiment.
  • the flowchart which shows a part of movement control process in 2nd Embodiment.
  • FIG. 1 is a diagram illustrating an example of movement of the mobile robot 1 in the present embodiment.
  • the mobile robot 1 detects the beacon 2 (2-1, 2-2) arranged along the boundary 3 (3-1, 3-2) that defines the passage, and based on the detected position of the beacon 2, It moves toward the destination point while maintaining a certain distance from the boundary 3.
  • a beacon ID that uniquely identifies each beacon 2 is assigned to the beacon 2 as a transmitter.
  • the beacon 2 transmits an infrared signal including a signal indicating the beacon ID.
  • the beacon ID is represented by a periodic change in an infrared signal, for example.
  • the boundary 3 that defines the passage is, for example, a wall or a partition.
  • the mobile robot 1 moves with a certain distance from the left boundary 3-1 with respect to the traveling direction of the mobile robot 1.
  • the mobile robot 1 acquires the detected distance Z to the beacon 2-1 and the direction ⁇ in order to maintain a certain distance Xref from the boundary 3-1, and the distance Z and the direction ⁇ are set in a predetermined condition. Calculate the direction of travel to be satisfied.
  • the mobile robot 1 moves in the calculated traveling direction.
  • the direction ⁇ is an angle formed by the traveling direction of the mobile robot 1 and the detected direction of the beacon 2-1.
  • the traveling direction satisfying the predetermined condition is a traveling direction in which the direction ⁇ is arcsin (Xref / Z).
  • the mobile robot 1 switches the target to the beacon 2-2 and moves.
  • a range in which the distance from the mobile robot 1 is closer than the switching threshold is referred to as a switching range.
  • the movement route by the conventional method is represented by a broken line.
  • the movement route according to the conventional method is a route when the mobile robot moves toward the target beacon and moves toward the next beacon when the mobile robot approaches the beacon to a certain distance.
  • the target beacon 2 is temporarily separated and the target beacon 2 is switched, so the movement route becomes zigzag in the vicinity of the beacon 2.
  • the moving distance is long.
  • the movement path of the mobile robot 1 of the present embodiment moves at a constant distance Xref from the boundary 3-1, so that the movement distance is reduced without redundant movement.
  • FIG. 2 is a block diagram illustrating a configuration example of the mobile robot 1 according to the first embodiment.
  • the mobile robot 1 includes a drive unit 11, a beacon detection unit 12, and a control unit 13.
  • the drive unit 11 includes drive wheels 111 and 112, motors 113 and 114, and a motor control unit 115.
  • the drive wheel 111 is provided on the left side with respect to the traveling direction of the mobile robot 1.
  • the drive wheel 112 is provided on the right side with respect to the traveling direction of the mobile robot 1.
  • the motor 113 rotates the driving wheel 111 according to the control of the motor control unit 115.
  • the motor 114 rotates the drive wheels 112 according to the control of the motor control unit 115.
  • the motor control unit 115 supplies power to the motors 113 and 114 based on the angular velocity command values for the motors 113 and 114 input from the control unit 13.
  • the mobile robot 1 moves forward or backward. Further, by causing a difference in the angular velocities of the motors 113 and 114, the traveling direction of the mobile robot 1 is changed. For example, by making the angular velocity of the left driving wheel 111 larger than the angular velocity of the right driving wheel 112 during forward movement, the mobile robot 1 moves while turning right. Further, by rotating the driving wheels 111 and 112 in opposite directions, the mobile robot 1 turns without changing its position.
  • the mobile robot 1 may have wheels other than the drive wheels 111 and 112 in order to stabilize the posture of the mobile robot 1.
  • the beacon detection unit 12 includes infrared sensors 121 and 122 and a calculation unit 123.
  • the infrared sensor 121 is attached to the left side of the front surface of the mobile robot 1 and detects an infrared signal transmitted from the beacon 2 located on the front side of the mobile robot 1.
  • the infrared sensor 122 is attached to the right side of the front surface of the mobile robot 1 and detects an infrared signal transmitted from the beacon 2 located on the front side of the mobile robot 1.
  • the infrared sensors 121 and 122 are attached to the casing of the mobile robot 1 symmetrically with respect to a straight line in the front direction passing through the center of the mobile robot 1.
  • an image sensor combined with an infrared filter is used for the infrared sensors 121 and 122.
  • the beacon 2 is detected by detecting a change in luminance in the images captured by the infrared sensors 121 and 122.
  • the calculation unit 123 Based on the difference between the position of the target beacon 2 in the image captured by the infrared sensor 121 and the position of the target beacon 2 in the image captured by the infrared sensor 122, the calculation unit 123 transmits the beacon 2 from the mobile robot 1. Distance Z and direction ⁇ are calculated. The calculation unit 123 detects the beacon ID of the target beacon 2 and includes the distance to the target beacon 2 when the images captured by the infrared sensors 121 and 122 include signals transmitted from the plurality of beacons 2. Z and direction ⁇ are calculated. The detection of the beacon ID is performed, for example, by detecting a periodic change in a signal corresponding to the beacon ID in an image continuous in time series.
  • the calculation unit 123 outputs beacon information including the calculated distance Z, direction ⁇ , and beacon ID to the control unit 13.
  • the calculated distance Z is a distance from the center on the line segment connecting the infrared sensor 121 and the infrared sensor 122. If the infrared sensors 121 and 122 are attached so that the line segment connecting the infrared sensor 121 and the infrared sensor 122 is orthogonal to the traveling direction of the mobile robot 1, the calculation load in the calculation unit 123 can be reduced.
  • FIG. 3 is a block diagram illustrating a configuration example of the control unit 13.
  • the control unit 13 includes a movement path storage unit 131, a beacon selection unit 132, and a drive control unit 133.
  • the movement path storage unit 131 stores in advance a table including attribute information related to a plurality of beacons 2 arranged along the movement path of the mobile robot 1.
  • the beacon selection unit 132 outputs the beacon ID of the target beacon 2 to the beacon detection unit 12 based on the table stored in the movement path storage unit 131.
  • the beacon selection unit 132 determines whether to switch the target beacon 2 based on the beacon information input from the beacon detection unit 12. When switching the target beacon 2, the beacon selecting unit 132 selects the beacon 2 next to the current target beacon 2 from the table.
  • the drive control unit 133 reads the attribute information and the control information from the table stored in the movement path storage unit 131 based on the beacon information output from the beacon detection unit 12.
  • the attribute information is information regarding the target beacon 2.
  • the control information is information indicating control associated with the target beacon 2.
  • the control linked to the beacon 2 includes, for example, control that stops in the vicinity of the beacon 2 that indicates the target point, control that turns in the vicinity of the beacon 2 that indicates a change in the traveling direction, and the like.
  • the drive control unit 133 controls the drive unit 11 based on beacon information, attribute information, and control information.
  • FIG. 4 is a diagram illustrating an example of a table stored in the movement route storage unit 131.
  • the table includes columns of items of “beacon ID”, “passage distance”, “installation side”, “direction change”, and “final beacon”. Each row is attribute information that exists for each beacon. Each row in the table is arranged in the order of the beacons 2 that pass when the mobile robot 1 moves along the movement path.
  • the column “beacon ID” includes the beacon ID of beacon 2 corresponding to the row.
  • the column “path distance” includes a distance indicating how far the beacon 2 corresponding to the row is arranged from the boundary 3 of the path. When the beacon 2 is arranged on the boundary 3, the passage distance is 0 (zero).
  • the distance from the beacon 2 to the boundary 3 is the passage distance.
  • the positive / negative of the passage distance is, for example, a direction approaching the moving route is a negative passage distance, and a direction away from the moving route is a positive passage distance.
  • the column “installation side” includes information indicating whether the beacon 2 corresponding to the row is arranged on the right side or the left side of the mobile robot 1 when the mobile robot 1 moves along the movement path.
  • the “direction change” column includes rotation information indicating a change in the traveling direction of the mobile robot 1 when the mobile robot 1 approaches a predetermined distance or switching threshold with respect to the beacon 2 corresponding to the row. .
  • the rotation information is 0 degree, it indicates that there is no change in the traveling direction of the mobile robot 1.
  • the rotation information is other than 0 degrees, the traveling direction of the mobile robot 1 is changed clockwise or counterclockwise by the angle indicated by the rotation information.
  • the column of “final beacon” includes information indicating whether or not the beacon 2 corresponding to the row is the beacon 2 indicating the target point on the movement route.
  • the beacon 2 having the beacon ID “M” indicates the target point.
  • FIG. 5 is a block diagram illustrating a configuration example relating to control based on beacon information in the drive control unit 133.
  • the drive control unit 133 includes a passing position calculation unit 136, a correction angle calculation unit 137, and a command value calculation unit 138.
  • the passing position calculation unit 136 inputs the distance Z to the beacon 2 and the direction ⁇ included in the beacon information. Based on the distance Z and the direction ⁇ , the passing position calculation unit 136 moves in the current traveling direction of the mobile robot 1 and is closest to the beacon 2 and the distance x to the beacon 2 when closest to the beacon 2. The movement distance y is calculated.
  • the position when the mobile robot 1 is closest to the beacon 2 is a straight line that is orthogonal to the movement straight line extending from the position of the mobile robot 1 in the traveling direction and passes through the position of the beacon 2, and the movement straight line. Is the intersection of The distance x is obtained as (Z ⁇ sin ⁇ ).
  • the movement distance y is obtained as (Z ⁇ cos ⁇ ).
  • the distance x is also referred to as a beacon passage distance.
  • the moving distance y is also referred to as the distance to the side of the beacon.
  • the correction angle calculation unit 137 inputs the difference ⁇ X obtained by subtracting the distance x from the distance Xref from the boundary of the passage to the moving route, and the moving distance y.
  • the correction angle calculation unit 137 calculates a correction angle ⁇ with respect to the traveling direction of the mobile robot 1 based on the difference ⁇ X and the movement distance y. Specifically, the correction angle calculation unit 137 sets the value obtained by arctan ( ⁇ X / y) as the correction angle ⁇ .
  • the command value calculation unit 138 receives the translation speed command value Vref, the angular speed command value ⁇ ref, the measured angular speed values ⁇ l ′ and ⁇ r ′, and the correction angle ⁇ .
  • the translation speed command value Vref is a command value (target value) for the translation speed of the mobile robot 1.
  • the angular velocity command value ⁇ ref is an angular velocity when the traveling direction is changed in the clockwise direction or the counterclockwise direction on the basis of the traveling direction.
  • the amount of change in the clockwise direction may be set as a positive value, or the amount of change in the counterclockwise direction may be set as a positive value.
  • the angular velocity measured values ⁇ l ′ and ⁇ r ′ are the respective velocities measured by the encoders provided in the motors 113 and 114, respectively.
  • the command value calculation unit 138 sends the mobile robot 1 the translation speed command value Vref and the angular speed command value ⁇ ref based on the translation speed command value Vref, the angular speed command value ⁇ ref, the measured values ⁇ l ′ and ⁇ r ′ of the angular speed, and the correction angle ⁇ .
  • the angular velocity command values ⁇ l and ⁇ r for changing the traveling direction by the correction angle ⁇ are calculated while being moved by.
  • the command value calculation unit 138 outputs the calculated angular velocity command values ⁇ l and ⁇ r to the drive unit 11.
  • FIG. 6 is a diagram illustrating the correction angle ⁇ calculated by the drive control unit 133.
  • the direction in which the beacon 2 is located on the basis of the distance Z from the mobile robot 1 to the beacon 2 and the traveling direction of the mobile robot 1 by detecting the beacon 2 arranged on the boundary 3-1. ⁇ is obtained.
  • the passing position calculation unit 136 calculates the distance x and the movement distance y from the distance Z and the direction ⁇ .
  • the mobile robot 1 needs to change the direction of travel in order to pass a position P pass that is a certain distance Xref away from the beacon 2 arranged along the movement path.
  • the position P pass is determined based on information indicating “installation side” among the attribute information of the beacon 2.
  • FIG. 6 shows a case where the beacon 2 is set on the left side of the movement route.
  • the correction angle calculation unit 137 calculates the correction angle ⁇ with respect to the traveling direction based on the difference ⁇ X and the movement distance y.
  • the command value calculation unit 138 calculates angular velocity command values ⁇ l and ⁇ r for changing the traveling direction counterclockwise by the correction angle ⁇ while moving the mobile robot 1 with the translation velocity command value Vref and the angular velocity command value ⁇ ref.
  • the drive unit 11 is controlled. As described above, when the drive control unit 133 controls the drive unit 11, the mobile robot 1 can move on a moving path determined at a position separated from the passage boundary 3-1 by a certain distance Xref. .
  • the correction angle calculation unit 137 corrects either the distance Xref or the difference ⁇ X using the passage distance when calculating the correction angle ⁇ .
  • FIG. 7 is a flowchart showing the movement control process by the control unit 13.
  • the beacon selection unit 132 When the movement of the mobile robot 1 is started, the beacon selection unit 132 outputs the beacon ID of the target beacon 2 to the beacon detection unit 12. In the initial state, the beacon selecting unit 132 selects the beacon ID stored in the first row of the table as the target beacon ID of the beacon 2. The beacon detector 12 determines whether or not the target beacon 2 can be detected (step S101).
  • the beacon detection unit 12 If the beacon 2 cannot be detected (NO in step S101), the beacon detection unit 12 outputs an error signal indicating that the beacon 2 cannot be detected.
  • the drive control unit 133 causes the drive unit 11 to stop the drive wheels in response to the error signal (step S121).
  • beacon selector 132 In response to the error signal, beacon selector 132 outputs error information indicating that beacon 2 cannot be detected to the outside (step S122), and ends the movement control process.
  • the error information is output using an output device provided in the mobile robot 1, for example, a speaker or a display.
  • step S101 when the beacon 2 can be detected (YES in step S101), the beacon selection unit 132 and the drive control unit 133 acquire beacon information from the beacon detection unit 12 (step S102). The beacon selector 132 determines whether or not the beacon 2 indicated by the beacon information is the final beacon based on the table (step S103).
  • the drive control unit 133 determines whether the distance Z to the beacon 2 indicated by the beacon information is within the switching range (step S131). When the distance Z to the beacon 2 is within the switching range (YES in step S131), the drive control unit 133 causes the drive unit 11 to stop the drive wheels (step S132) and ends the movement control process.
  • step S131 when the distance Z to the beacon 2 is not within the switching range (NO in step S131), the drive control unit 133 advances the process to step S108.
  • step S104 the drive control unit 133 determines whether the distance Z to the beacon 2 indicated by the beacon information is within the switching range. ). If the distance Z to the beacon 2 is not within the switching range (NO in step S104), the drive control unit 133 advances the process to step S108.
  • step S104 when the distance Z to the beacon 2 is within the switching range (YES in step S104), the drive control unit 133 determines whether there is a direction change instruction in the attribute information of the beacon 2 based on the table. Determination is made (step S105). If there is no direction change instruction (NO in step S105), the drive control unit 133 advances the process to step S107.
  • the drive control unit 133 acquires the rotation information of the beacon 2 from the table, and controls the drive unit to change the traveling direction of the mobile robot 1 by the angle indicated by the rotation information. 11 (step S106).
  • the beacon selection unit 132 acquires the beacon ID of the beacon 2 that is the target after the beacon 2 that is the current target from the table.
  • the beacon selection unit 132 outputs the beacon 2 with the acquired beacon ID to the beacon detection unit 12, thereby selecting the beacon 2 with the acquired beacon ID as a new target (step S107), and returns the process to step S101.
  • the correction angle calculation unit 137 determines whether or not the difference ⁇ X calculated based on the beacon information acquired from the beacon detection unit 12 is within an allowable range (step S108).
  • the allowable range for the difference ⁇ X is determined in advance based on the accuracy of movement required for the mobile robot 1, the accuracy of detection of the beacon 2 by the beacon detection unit 12, the accuracy of control of the motors 113 and 114, and the like.
  • the correction angle calculation unit 137 calculates the correction angle ⁇ based on the difference ⁇ X (step S109).
  • the correction angle calculation unit 137 sets the correction angle ⁇ to 0 (step S110).
  • the command value calculation unit 138 acquires the measured values ⁇ l ′ and ⁇ r ′ of the angular velocities of the motors 113 and 114 that drive the drive wheels 111 and 112 (step S111).
  • the command value calculation unit 138 uses the angular velocity command values ⁇ l and ⁇ r for the motors 113 and 114 based on the translation velocity command value Vref, the angular velocity command value ⁇ ref, the measured angular velocity values ⁇ l ′ and ⁇ r ′, and the correction angle ⁇ . Is calculated (step S112).
  • the command value calculation unit 138 outputs the angular velocity command values ⁇ l and ⁇ r to the drive unit 11 (step S113), and returns the process to step S101.
  • the movement control process including each process from step S101 to step S132 is performed, so that the distance Z to the beacon 2 and the direction ⁇ can be sequentially acquired and the traveling direction can be corrected.
  • the traveling direction is corrected by the movement control process, the mobile robot 1 can move along a movement path separated by a certain distance Xref from the boundary 3, and the movement distance when moving based on a plurality of beacons can be set. Can be reduced.
  • FIG. 8 and 9 are diagrams showing an example of the arrangement of the beacons 2 when there is an intersection in the path along which the mobile robot 1 moves.
  • FIG. 8 shows an example in which beacons 2-m and 2- (m + 1) are installed at two corners on the far side of the intersection as viewed from the mobile robot 1.
  • the mobile robot 1 moves to a position where the distances Z and Z ′ to the two beacons are within the switching range.
  • the traveling direction may be changed by turning at an angle indicated by the rotation information.
  • FIG. 9 shows an example in which the beacon 2-m is installed at one corner on the destination side of the traveling direction among the two corners on the far side of the intersection as viewed from the mobile robot 1.
  • the beacon 2-m when the beacon 2-m is installed, the mobile robot 1 moves to a position where the distance Z to the two beacons is within the switching range, and turns by the angle indicated by the rotation information. You may change the advancing direction.
  • FIG. 10 is a block diagram illustrating a configuration example of the mobile robot 5 according to the second embodiment.
  • the mobile robot 5 includes a drive unit 11, a beacon detection unit 12, a control unit 53, and detection sensors 541 and 542.
  • the mobile robot 5 is different from the mobile robot 1 in the first embodiment in that the mobile robot 5 is provided with a control unit 53 instead of the control unit 13 and the detection sensors 541 and 542 are provided.
  • the same components as those of the mobile robot 1 are denoted by the same reference numerals, and redundant description is omitted.
  • the detection sensor 541 is attached to the left side surface of the housing with respect to the traveling direction of the mobile robot 5, and detects the distance to the object located on the left side surface in the traveling direction.
  • the detection sensor 542 is attached to the right side surface of the housing with respect to the traveling direction of the mobile robot 5 and detects the distance to the object located on the right side surface in the traveling direction.
  • an ultrasonic sensor or a laser range finder Laser Finder: LRF
  • the detection sensors 541 and 542 perform detection at a predetermined cycle and output the detected distance to the control unit 53.
  • FIG. 11 is a block diagram illustrating a configuration example of the control unit 53.
  • the control unit 53 includes a movement path storage unit 131, a beacon selection unit 132, and a drive control unit 533.
  • the drive control unit 533 controls the drive unit 11 based on the beacon information output from the beacon detection unit 12, the table stored in the movement path storage unit 131, and the distance output from the detection sensors 541 and 542. Control.
  • FIG. 12 is a block diagram illustrating a configuration example relating to control based on beacon information in the drive control unit 533.
  • the drive control unit 533 includes a main body correction angle calculation unit 539, a passage position calculation unit 136, a correction angle calculation unit 137, and a command value calculation unit 138.
  • the drive control unit 533 is different from the drive control unit 133 of the first embodiment in that a main body correction angle calculation unit 539 is provided.
  • the main body correction angle calculation unit 539 receives the detection distance change ⁇ L, the sampling interval ⁇ t, and the measured values ⁇ l ′ and ⁇ r ′ of the angular velocities of the motors 113 and 114.
  • the change amount ⁇ L of the detection distance is a change amount in the sampling interval ⁇ t of the distance detected by the detection sensor 541 or the detection sensor 542.
  • the main body correction angle calculation unit 539 may use both distance change amounts ⁇ L detected by the detection sensors 541 and 542, respectively. When both of the change amounts ⁇ L are used, the main body correction angle calculation unit 539 may use an average value of both the change amounts ⁇ L, or may use the larger change amount ⁇ L or the smaller change amount ⁇ L. . Further, when one change amount ⁇ L cannot be obtained due to missing measurement, the main body correction angle calculation unit 539 uses the other change amount ⁇ L.
  • the main body correction angle calculation unit 539 calculates the main body correction angle ⁇ ′ based on the change amount ⁇ L in the sampling interval ⁇ t and the measured values of the angular velocity ⁇ l ′ and ⁇ r ′.
  • the main body correction angle ⁇ ′ is an angle for correcting the traveling direction of the mobile robot 5 so that the mobile robot 5 maintains a constant distance Xref with respect to the boundary 3.
  • a value obtained by subtracting the main body correction angle ⁇ ′ from the direction ⁇ of the beacon 2 is input to the passing position calculation unit 136.
  • FIG. 13 is a diagram illustrating the main body correction angle ⁇ ′ calculated by the main body correction angle calculation unit 539.
  • the distance between the mobile robot 5 and the boundary 3-1 changes as the mobile robot 5 moves.
  • the distance between the mobile robot 5 and the boundary 3-1 at time t n ⁇ 1 is L n ⁇ 1
  • the distance between the mobile robot 5 and the boundary 3-1 at time tn is Is L n .
  • the inclination ⁇ ′ of the traveling direction of the mobile robot 5 with respect to the boundary 3-1 is obtained by arcsin ( ⁇ L / ⁇ y).
  • ⁇ L is the difference between the distance L n ⁇ 1 and the distance L n .
  • ⁇ y is a distance traveled by the mobile robot 5 during a period from time t n ⁇ 1 to time t n .
  • the movement distance ⁇ y is a product of the movement speed of the mobile robot 5 obtained from the measured values ⁇ l ′ and ⁇ r ′ of the angular velocity and the time ⁇ t.
  • the main body correction angle calculation unit 539 calculates the inclination of the moving direction of the mobile robot 5 as the main body correction angle ⁇ ′ based on the change amount ⁇ L of the distance to the boundary 3 obtained by the detection sensors 541 and 542.
  • FIG. 14 is a flowchart illustrating a part of the movement control process in the second embodiment.
  • the flowchart shown in FIG. 14 shows the difference between the movement control process in the first embodiment and the movement control process in the second embodiment.
  • the movement control process in the second embodiment is represented by a flowchart including the processes from step S501 to step S503 shown in FIG. 14 between step S104 and step S131 and step S108 in the flowchart shown in FIG. .
  • the main body correction angle calculation unit 539 determines whether or not the variation ⁇ L is within an allowable range (step S501).
  • the allowable range for the change amount ⁇ L is predetermined in the same manner as the allowable range for the difference ⁇ X.
  • the main body correction angle calculation unit 539 determines the main body correction angle ⁇ based on the change amount ⁇ L, the sampling interval ⁇ t, and the measured angular velocity values ⁇ l ′ and ⁇ r ′. 'Is calculated (step S502), and the process proceeds to step S108.
  • the main body correction angle calculation unit 539 sets the main body correction angle ⁇ ′ to 0 and advances the process to step S108.
  • the drive control unit 533 calculates the correction angle ⁇ based on the main body correction angle ⁇ ′ calculated by the main body correction angle calculation unit 539, the distance Z and direction ⁇ of the beacon 2, and the distance Xref.
  • the mobile robot 5 is obtained by the translation speed command value Vref, the angular speed command value ⁇ ref, the measured angular speed values ⁇ l ′ and ⁇ r ′, the distance Xref, the distance Z and direction ⁇ of the beacon 2, and the detection sensors 541 and 542.
  • the traveling direction is controlled so as to suppress the change in distance from the boundary 3. With this control, it is possible to move with high accuracy along the movement route, and it is possible to reduce the movement distance when moving based on a plurality of beacons.
  • the distance Z to the beacon 2 and the direction ⁇ detected by the beacon detection unit 12 are acquired, and the distance Z to the beacon 2 and the direction ⁇ of the beacon 2 are determined in advance.
  • the distance Z to the beacon 2 and the direction ⁇ of the beacon 2 are determined in advance.
  • detection sensors 541 and 542 for detecting an object located on the side surface of the mobile robot are provided, and the distance from the boundary 3 is calculated by the control unit calculating the traveling direction so that the distance from the detected object is constant. Change can be suppressed, and highly accurate movement along the movement path can be performed.
  • the table stored in the movement route storage unit 131 includes information indicating the installation side indicating whether the beacon 2 is arranged on the left or right side with respect to the movement route, thereby increasing the degree of freedom in the arrangement of the beacon 2.
  • the travel route can be easily set.
  • the movement route of the mobile robot can be easily set by including the action associated with the beacon 2 in the table stored in the movement route storage unit 131.
  • the mobile robot By instructing the turning of the mobile robot for each beacon 2, it is possible to easily set a complicated movement route. Further, when the mobile robot reaches the target point on the movement route, the mobile robot can be stopped, and useless movement of the mobile robot can be suppressed.
  • the mobile robot according to the present embodiment can be used, for example, in a transport device that transports luggage. Since the mobile robot according to the present embodiment has a high degree of freedom with respect to the arrangement of the beacon 2, it is possible to easily set and change the movement path of the mobile robot in a warehouse or a factory, and to enable use according to the use environment. .
  • the beacon 2 and the beacon detection unit 12 transmit and receive infrared signals.
  • a transmitter that transmits a visible light signal other than an infrared signal, a wireless signal, or a sound wave signal may be used.
  • the beacon detector 12 includes at least two sensors that detect signals transmitted from the transmitter, and detects the distance to the transmitter and the direction of the transmitter. To do.
  • the plurality of transmitters and the beacon detection unit 12 may be any unit as long as the beacon detection unit 12 can acquire the distance Z and the direction ⁇ to the transmitter with reference to the traveling direction of the mobile robot. Also good.
  • a marker detection unit is used instead of the beacon detection unit 12.
  • the marker detection unit may operate in the same manner as the beacon detection unit 12 by detecting a geometric figure or color combination provided for each marker.
  • An ID for identifying the marker may be included in the geometric figure or color combination.
  • a QR code registered trademark
  • a marker using an RFID element that transmits a response signal in response to a signal transmitted from the mobile robot, or an element that reflects a signal transmitted from the mobile robot is used.
  • the used marker may be arranged.
  • a transmitter that transmits a predetermined signal is provided in the mobile robot.
  • the detected object such as the beacon 2 or the marker may be any object that can detect the relative position of the mobile robot.
  • the beacon detection unit 12 has described the operation of detecting the beacon 2 with the beacon ID input from the beacon selection unit. However, the beacon detection unit 12 may calculate the beacon information of all the detected beacons 2 and output the calculated beacon information to the control unit. In this case, the beacon selection unit selects the beacon information of the target beacon 2 from the plurality of beacon information based on the instruction output from the beacon selection unit 132.
  • the above mobile robot may have a computer system inside.
  • the process performed by the control unit provided in the mobile robot is stored in a computer-readable recording medium in the form of a program, and the program is read and executed by the computer, whereby the process of each functional unit Will be done.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the present invention can also be applied to applications where it is indispensable to reduce the moving distance when moving based on a plurality of beacons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Evolutionary Computation (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

移動ロボットは、移動速度と進行方向とを変更する駆動部と、目標地点までの移動経路に沿って配置された複数の被検出体を検出する検出部と、検出部により検出された被検出体までの距離と方向とを取得し、被検出体までの距離と被検出体の方向とが予め定められた関係を満たす進行方向を算出し、算出した進行方向に基づいて駆動部を制御する制御部と、を備える。

Description

移動ロボット及び制御方法
 本発明は、移動ロボット及び制御方法に関する。
 本願は、2016年7月21日に日本に出願された特願2016-143228号について優先権を主張し、その内容をここに援用する。
 自律移動する移動ロボットを誘導するために、ビーコンなどの発信器が用いられている。例えば、移動ロボットとしての掃除ロボットは、充電器に設けられたビーコンから発せられる信号に基づいて、充電器へ向けて移動して充電器から電力の供給を受ける動作を行っている。また、引用文献1に記載の移動作業ロボットは、ビーコンから発せられる信号に基づいて、基準となる位置を検出し、移動を制御している。
 自律移動する移動ロボットのビーコンを用いた移動制御では、目標とするビーコンに向かって移動し、ビーコンに近づく又は接触すると移動を停止する制御が主である。このような制御を行う移動ロボットを、複数のビーコンを用いて目的地まで誘導する場合、移動ロボットは、目標とするビーコンに向かって移動して所定の距離まで近づくと、次の目標となるビーコンに向かって移動するという制御を繰り返すことになる。この場合、移動ロボットが目標とするビーコンに近づきすぎたりして目的地へ到達するまでの移動に無駄が生じることがあった。
特開2002-073170号公報
 本発明は、複数の発信器に基づいて移動する際の移動距離を削減できる移動ロボット及び制御方法を提供する。
 本発明の一態様は、移動速度と進行方向とを変更する駆動部と、目標地点までの移動経路に沿って配置された複数の被検出体を検出する検出部と、前記検出部により検出された前記被検出体までの距離と方向とを取得し、前記被検出体までの距離と前記被検出体の方向とが予め定められた関係を満たす進行方向を算出し、算出した進行方向に基づいて前記駆動部を制御する制御部と、を備える移動ロボットである。
 また、本発明の一態様は、移動速度と進行方向とを変更する駆動部と、目標地点までの移動経路に沿って配置された複数の被検出体を検出する検出部と、を備える移動ロボットの制御方法であって、前記検出部により検出された前記被検出体までの距離と方向とを取得する第1のステップと、前記被検出体までの距離と前記被検出体の方向とが予め定められた関係を満たす進行方向を算出する第2のステップと、算出した進行方向に基づいて前記駆動部を制御する第3のステップと、を有する制御方法である。
 上述の態様によれば、複数のビーコンに基づいて移動する際の移動距離の削減ができる。
本実施形態における移動ロボットの移動例を示す図。 第1の実施形態における移動ロボットの構成例を示すブロック図。 第1の実施形態における制御部の構成例を示すブロック図。 第1の実施形態における移動経路記憶部に記憶されているテーブルの一例を示す図。 駆動制御部におけるビーコン情報に基づいた制御に係る構成例を示すブロック図。 駆動制御部において算出される補正角Δθを示す図。 制御部による移動制御処理を示すフローチャート。 移動ロボットが移動する通路に交差点が存在する場合のビーコンの配置例を示す図。 移動ロボットが移動する通路に交差点が存在する場合のビーコンの配置例を示す図。 第2の実施形態における移動ロボットの構成例を示すブロック図。 第2の実施形態における制御部の構成例を示すブロック図。 第2の実施形態における駆動制御部におけるビーコン情報に基づいた制御に係る構成例を示すブロック図。 第2の実施形態における本体補正角算出部において算出される本体補正角Δθ’を示す図。 第2の実施形態における移動制御処理の一部を示すフローチャート。
 以下、図面を参照して、本発明の実施形態における移動ロボット及び制御方法を説明する。図1は、本実施形態における移動ロボット1の移動例を示す図である。移動ロボット1は、通路を定める境界3(3-1、3-2)に沿って配置されるビーコン2(2-1、2-2)を検出し、検出したビーコン2の位置に基づいて、境界3から一定の距離を保ちながら目的地点に向かって移動する。発信器としてのビーコン2には、それぞれを一意に識別するビーコンIDが割り当てられている。ビーコン2は、ビーコンIDを示す信号を含む赤外線の信号を発信する。ビーコンIDは、例えば赤外線の信号における周期的な変化により表される。通路を定める境界3は、例えば壁や間仕切りである。
 図1に示す移動例では、移動ロボット1の進行方向に対して左側の境界3-1から一定の距離保って移動ロボット1が移動する。移動ロボット1は、境界3-1から一定の距離Xrefを保つために、検出したビーコン2-1までの距離Zと方向θとを取得し、距離Zと方向θとが予め定められた条件を満たす進行方向を算出する。移動ロボット1は、算出した進行方向に移動する。方向θは、移動ロボット1の進行方向と、検出されたビーコン2-1の方向とがなす角である。予め定められた条件を満たす進行方向は、方向θがarcsin(Xref/Z)となる進行方向である。移動ロボット1は、ビーコン2-1までの距離Zが予め定められた切替閾値より近くなると、目標をビーコン2-2に切り替えて移動する。移動ロボット1からの距離が切替閾値より近い範囲を切替範囲という。
 図1には、比較例として、従来手法による移動経路が破線にて表されている。従来手法による移動経路は、移動ロボットが目標とするビーコンに向かって移動し、移動ロボットがビーコンに一定距離まで近づくと次のビーコンを目標として移動したときの経路である。従来の移動経路では、一定距離までビーコン2-1、2-2へ近づいたときに目標とするビーコン2から一旦離れ、目標とするビーコン2を切り替えるため、ビーコン2近傍において移動経路がジクザグになり、移動距離が長くなっている。これに対して、本実施形態の移動ロボット1の移動経路は、境界3-1から一定の距離Xrefを保って移動するため、冗長な移動なく、移動距離の削減が図られている。
<第1の実施形態>
 図2は、第1の実施形態における移動ロボット1の構成例を示すブロック図である。移動ロボット1は、駆動部11と、ビーコン検出部12と、制御部13とを備える。
 駆動部11は、駆動輪111、112と、モータ113、114と、モータ制御部115とを備える。駆動輪111は、移動ロボット1の進行方向に対して左側に備えられる。
駆動輪112は、移動ロボット1の進行方向に対して右側に備えられる。モータ113は、モータ制御部115の制御に応じて、駆動輪111を回転させる。モータ114は、モータ制御部115の制御に応じて、駆動輪112を回転させる。モータ制御部115は、制御部13から入力されるモータ113、114それぞれに対する角速度指令値に基づいて、モータ113、114に対して電力を供給する。
 モータ113、114がモータ制御部115から供給される電力に応じた角速度で回転することにより、移動ロボット1が前進又は後進する。また、モータ113、114の角速度に差を生じさせることにより、移動ロボット1の進行方向が変更される。例えば、前進の際に左側の駆動輪111の角速度を右側の駆動輪112の角速度より大きくすることにより、移動ロボット1は右旋回しながら移動する。また、駆動輪111、112それぞれを逆向きに回転させることにより、移動ロボット1は位置を変えずに旋回する。なお、移動ロボット1は、移動ロボット1の姿勢を安定させるために、駆動輪111、112以外の車輪を有していてもよい。
 ビーコン検出部12は、赤外線センサ121、122と、算出部123とを備える。赤外線センサ121は、移動ロボット1の前面の左側に取り付けられ、移動ロボット1の前面側に位置するビーコン2から発信される赤外線の信号を検出する。赤外線センサ122は、移動ロボット1の前面の右側に取り付けられ、移動ロボット1の前面側に位置するビーコン2から発信される赤外線の信号を検出する。赤外線センサ121、122は、移動ロボット1の中心を通る正面方向の直線に対して対称に、移動ロボット1の筐体に取り付けられる。赤外線センサ121、122には、例えば赤外線フィルタを組み合わせた撮像素子が用いられる。赤外線センサ121、122により撮像される画像における輝度の変化を検出することにより、ビーコン2が検出される。
 算出部123は、赤外線センサ121により撮像された画像における目標のビーコン2の位置と、赤外線センサ122により撮像された画像における目標のビーコン2の位置との差に基づいて、移動ロボット1からビーコン2までの距離Zと方向θとを算出する。算出部123は、赤外線センサ121、122により撮像される画像に複数のビーコン2から発信される信号が含まれる場合、目標とするビーコン2のビーコンIDを検出し、目標とするビーコン2までの距離Zと方向θとを算出する。ビーコンIDの検出は、例えば、時系列に連続する画像においてビーコンIDに対応する信号の周期的な変化を検出することにより行われる。算出部123は、算出した距離Z及び方向θとビーコンIDとを含むビーコン情報を制御部13へ出力する。算出される距離Zは、赤外線センサ121と赤外線センサ122とを結ぶ線分上の中心からの距離である。赤外線センサ121と赤外線センサ122とを結ぶ線分が移動ロボット1の進行方向に対して直交するように、赤外線センサ121、122が取り付けられていると、算出部123における演算負荷を軽減できる。
 制御部13は、ビーコン検出部12から取得するビーコン情報に基づいて、駆動部11を制御する。図3は、制御部13の構成例を示すブロック図である。制御部13は、移動経路記憶部131と、ビーコン選択部132と、駆動制御部133とを備える。移動経路記憶部131には、移動ロボット1の移動経路に沿って配置された複数のビーコン2に関する属性情報を含むテーブルが予め記憶されている。ビーコン選択部132は、移動経路記憶部131に記憶されているテーブルに基づいて、目標とするビーコン2のビーコンIDをビーコン検出部12へ出力する。ビーコン選択部132は、ビーコン検出部12から入力するビーコン情報に基づいて、目標とするビーコン2を切り替えるか否かを判定する。ビーコン選択部132は、目標とするビーコン2を切り替える場合、現在の目標とするビーコン2の次のビーコン2をテーブルから選択する。
 駆動制御部133は、ビーコン検出部12から出力されるビーコン情報に基づいて、移動経路記憶部131に記憶されているテーブルから属性情報及び制御情報を読み出す。属性情報は、目標とするビーコン2に関する情報である。制御情報は、目標とするビーコン2に紐付けられた制御を示す情報である。ビーコン2に紐付けられた制御は、例えば目標地点を示すビーコン2の近傍において停止する制御や、進行方向の変更を示すビーコン2の近傍において旋回する制御などである。駆動制御部133は、ビーコン情報、属性情報及び制御情報に基づいて、駆動部11を制御する。
 図4は、移動経路記憶部131に記憶されているテーブルの一例を示す図である。テーブルは、「ビーコンID」と、「通路距離」と、「設置側」と、「方向転換」と、「最終ビーコン」との項目の列を備える。各行は、ビーコンごとに存在する属性情報である。テーブルにおける各行は、移動ロボット1が移動経路に沿って移動する際に通過するビーコン2の順序に並んでいる。「ビーコンID」の列には、行に対応するビーコン2のビーコンIDが含まれる。「通路距離」の列には、行に対応するビーコン2が通路の境界3からどれだけ離れて配置されているかを示す距離が含まれる。ビーコン2が境界3上に配置されている場合、通路距離は0(ゼロ)になる。ビーコン2が、移動経路から離れた位置に配置されている場合、ビーコン2から境界3までの距離が通路距離になる。通路距離の正負は、例えば、移動経路に近づく方向を負の通路距離とし、移動経路から遠ざかる方向を正の通路距離とする。
 「設置側」の列は、移動ロボット1が移動経路に沿って移動する場合において、行に対応するビーコン2が移動ロボット1の右側又は左側のいずれに配置されているかを示す情報が含まれる。「方向転換」の列は、行に対応するビーコン2に対して移動ロボット1が予め定められた距離又は切替閾値まで近づいたときに、移動ロボット1の進行方向の変更を示す回転情報が含まれる。回転情報が0度である場合、移動ロボット1の進行方向の変更がないことを示す。回転情報が0度以外である場合、回転情報が示す角度分、移動ロボット1の進行方向を時計回り又は反時計回りに変更する。「最終ビーコン」の列は、行に対応するビーコン2が、移動経路における目標地点を示すビーコン2であるか否かを示す情報が含まれる。図4に示すテーブルでは、ビーコンID「M」を有するビーコン2が目標地点を示す。目標地点を示すビーコン2は1つである。
 図5は、駆動制御部133におけるビーコン情報に基づいた制御に係る構成例を示すブロック図である。駆動制御部133は、通過位置算出部136と、補正角算出部137と、指令値算出部138とを備える。通過位置算出部136は、ビーコン情報に含まれるビーコン2までの距離Z及び方向θを入力する。通過位置算出部136は、距離Z及び方向θに基づいて、現在の移動ロボット1の進行方向で移動してビーコン2に最接近したときのビーコン2までの距離xと、ビーコン2に最接近するまでの移動距離yとを算出する。
移動ロボット1がビーコン2に最接近したときの位置は、移動ロボット1の位置から進行方向に伸ばした移動直線に対して直交する直線であってビーコン2の位置を通過する直線と、移動直線との交点である。距離xは、(Z・sinθ)として得られる。移動距離yは、(Z・cosθ)として得られる。距離xは、ビーコン通過距離ともいう。また、移動距離yは、ビーコン横までの距離ともいう。
 補正角算出部137は、通路の境界から移動経路までの距離Xrefから距離xを減算して得られる差分ΔXと、移動距離yとを入力する。補正角算出部137は、差分ΔXと移動距離yとに基づいて、移動ロボット1の進行方向に対する補正角Δθを算出する。具体的には、補正角算出部137は、arctan(ΔX/y)で得られる値を補正角Δθとする。
 指令値算出部138は、並進速度指令値Vrefと、角速度指令値ωrefと、角速度の測定値ωl’、ωr’と、補正角Δθとを入力する。並進速度指令値Vrefは、移動ロボット1の並進速度に対する指令値(目標値)である。角速度指令値ωrefは、進行方向を基準として時計回り方向又は反時計回り方向へ進行方向を変更する際の角速度である。角速度指令値ωrefは、時計回り方向の変化量を正の値として定めてもよいし、反時計回りの方向の変化量を正の値として定めてもよい。角速度の測定値ωl’、ωr’は、モータ113、114それぞれに設けられているエンコーダにより測定された各速度である。指令値算出部138は、並進速度指令値Vrefと角速度指令値ωrefと角速度の測定値ωl’、ωr’と補正角Δθとに基づいて、移動ロボット1を並進速度指令値Vref及び角速度指令値ωrefで移動させつつ、進行方向を補正角Δθ変更させる角速度指令値ωl、ωrを算出する。指令値算出部138は、算出した角速度指令値ωl、ωrを駆動部11へ出力する。
 図6は、駆動制御部133において算出される補正角Δθを示す図である。ビーコン検出部12が、境界3-1上に配置されたビーコン2を検出することにより、移動ロボット1からビーコン2までの距離Zと、移動ロボット1の進行方向を基準としてビーコン2が位置する方向θとが得られる。通過位置算出部136が距離Z及び方向θから距離x及び移動距離yを算出する。移動ロボット1は、移動経路に沿って配置されたビーコン2から一定の距離Xref離れた位置Ppassを通過するために、進行方向を変更する必要がある。位置Ppassは、ビーコン2の属性情報のうち「設置側」を示す情報に基づいて定まる。図6は、ビーコン2が移動経路の左側に設定されている場合を示している。
 図6に示す例において、現在の進行方向を維持したまま移動ロボット1が移動すると、移動ロボット1は、位置Ppassより差分ΔX離れた位置を通過する。そこで、補正角算出部137が、差分ΔXと移動距離yとに基づいて、進行方向に対する補正角Δθを算出する。指令値算出部138は、移動ロボット1を並進速度指令値Vref及び角速度指令値ωrefで移動させつつ、進行方向を反時計回りに補正角Δθ変更させるための角速度指令値ωl、ωrを算出して駆動部11を制御する。このように、駆動制御部133が駆動部11を制御することにより、通路の境界3-1から一定の距離Xrefを隔てた位置に定められた移動経路上を移動ロボット1が移動することができる。
 なお、図6に示した例では、ビーコン2が境界3-1上に配置される場合を説明した。
しかし、境界3上にビーコン2を配置できない場合には、ビーコン2が配置された位置と境界3との差分が通路距離(D,D,…,D)としてテーブルに記憶される。この場合、補正角算出部137は、補正角Δθを算出する際に、通路距離を用いて距離Xref又は差分ΔXのいずれかを補正する。
 図7は、制御部13による移動制御処理を示すフローチャートである。移動ロボット1の移動が開始されると、ビーコン選択部132は、目標とするビーコン2のビーコンIDをビーコン検出部12へ出力する。初期状態において、ビーコン選択部132は、テーブルの最初の行に記憶されているビーコンIDを、目標とするビーコン2のビーコンIDに選択する。ビーコン検出部12は、目標とするビーコン2を検出できるか否かを判定する(ステップS101)。
 ビーコン2を検出できない場合(ステップS101のNO)、ビーコン検出部12は、ビーコン2を検出できなかったことを示すエラー信号を出力する。駆動制御部133は、エラー信号に応じて、駆動部11に駆動輪を停止させる(ステップS121)。ビーコン選択部132は、エラー信号に応じて、ビーコン2が検出できないことを示すエラー情報を外部へ出力し(ステップS122)、移動制御処理を終了させる。なお、エラー情報の出力は、移動ロボット1に備えられる出力装置、例えばスピーカやディスプレイを用いて行われる。
 ステップS101において、ビーコン2を検出できた場合(ステップS101のYES)、ビーコン選択部132及び駆動制御部133は、ビーコン検出部12からビーコン情報を取得する(ステップS102)。ビーコン選択部132は、ビーコン情報により示されるビーコン2が最終ビーコンであるか否かをテーブルに基づいて判定する(ステップS103)。
 ビーコン2が最終ビーコンである場合(ステップS103のYES)、駆動制御部133は、ビーコン情報により示されるビーコン2までの距離Zが切替範囲内であるか否かを判定する(ステップS131)。ビーコン2までの距離Zが切替範囲内である場合(ステップS131のYES)、駆動制御部133は、駆動部11に駆動輪を停止させ(ステップS132)、移動制御処理を終了させる。
 ステップS131において、ビーコン2までの距離Zが切替範囲内でない場合(ステップS131のNO)、駆動制御部133は、処理をステップS108へ進める。
 ステップS103において、ビーコン2が最終ビーコンでない場合(ステップS103のNO)、駆動制御部133は、ビーコン情報により示されるビーコン2までの距離Zが切替範囲内であるか否かを判定する(ステップS104)。ビーコン2までの距離Zが切替範囲内でない場合(ステップS104のNO)、駆動制御部133は、処理をステップS108へ進める。
 ステップS104において、ビーコン2までの距離Zが切替範囲内である場合(ステップS104のYES)、駆動制御部133は、ビーコン2の属性情報に方向転換の指示があるか否かをテーブルに基づいて判定する(ステップS105)。方向転換の指示がない場合(ステップS105のNO)、駆動制御部133は、処理をステップS107へ進める。
 方向転換の指示がある場合(ステップS105のYES)、駆動制御部133は、ビーコン2の回転情報をテーブルから取得し、移動ロボット1の進行方向を回転情報の示す角度変更する制御を、駆動部11に対して行う(ステップS106)。ビーコン選択部132は、現在目標としているビーコン2の次に目標にするビーコン2のビーコンIDをテーブルから取得する。ビーコン選択部132は、取得したビーコンIDのビーコン2をビーコン検出部12へ出力することにより、取得したビーコンIDのビーコン2を新たな目標に選択し(ステップS107)、処理をステップS101へ戻す。
 補正角算出部137は、ビーコン検出部12から取得したビーコン情報に基づいて算出された差分ΔXが許容範囲内であるか否かを判定する(ステップS108)。差分ΔXに対する許容範囲は、移動ロボット1に対して要求される移動の精度、ビーコン検出部12におけるビーコン2の検出の精度、モータ113、114の制御における精度などに基づいて予め定められる。差分ΔXが許容範囲内でない場合(ステップS108のNO)、補正角算出部137は、差分ΔXに基づいて補正角Δθを算出する(ステップS109)。
差分ΔXが許容範囲内である場合(ステップS108のYES)、補正角算出部137は、補正角Δθを0とする(ステップS110)。
 指令値算出部138は、駆動輪111、112を駆動するモータ113、114それぞれの角速度の測定値ωl’、ωr’を取得する(ステップS111)。指令値算出部138は、並進速度指令値Vrefと、角速度指令値ωrefと、角速度の測定値ωl’、ωr’と、補正角Δθとに基づいて、モータ113、114に対する角速度指令値ωl、ωrを算出する(ステップS112)。指令値算出部138は、角速度指令値ωl、ωrを駆動部11へ出力し(ステップS113)、処理をステップS101へ戻す。
 制御部13において、ステップS101からステップS132までの各処理を含む移動制御処理が行われることにより、ビーコン2までの距離Z及び方向θを逐次取得し、進行方向を補正できる。移動制御処理で進行方向が補正されることにより、移動ロボット1は、境界3から一定の距離Xrefを隔てた移動経路を移動することができ、複数のビーコンに基づいて移動する際の移動距離を削減できる。
 図8及び図9は、移動ロボット1が移動する通路に交差点が存在する場合のビーコン2の配置例を示す図である。図8は、移動ロボット1からみて交差点の遠方側の2つの角にビーコン2-m、2-(m+1)を設置する例を示す。図8に示すように2つのビーコン2-m、2-(m+1)が配置されている場合、移動ロボット1は、2つのビーコンまでの距離Z、Z’それぞれが切替範囲内になる位置まで移動し、回転情報で示される角度の旋回により進行方向の変更を行ってもよい。図9は、移動ロボット1からみて交差点の遠方側の2つの角のうち進行方向の変更先側の1つの角にビーコン2-mを設置する例を示す。図9に示すように、ビーコン2-mが設置されている場合、移動ロボット1は、2つのビーコンまでの距離Zが切替範囲内になる位置まで移動し、回転情報で示される角度の旋回により進行方向の変更を行ってもよい。
<第2の実施形態>
 図10は、第2の実施形態における移動ロボット5の構成例を示すブロック図である。
移動ロボット5は、駆動部11と、ビーコン検出部12と、制御部53と、検出センサ541、542とを備える。移動ロボット5は、制御部13に代えて制御部53を備える点と、検出センサ541、542を備える点とが第1の実施形態における移動ロボット1と異なる。移動ロボット5において、移動ロボット1の構成要素と同じ構成要素には同じ符号を付して、重複する説明を省略する。
 検出センサ541は、移動ロボット5の進行方向に対して筐体の左側面に取り付けられ、進行方向の左側面に位置する物体までの距離を検出する。検出センサ542は、移動ロボット5の進行方向に対して筐体の右側面に取り付けられ、進行方向の右側面に位置する物体までの距離を検出する。検出センサ541、542として、例えば超音波センサやレーザレンジファインダ(Laser Range Finder: LRF)が用いられてもよい。検出センサ541、542は、予め定められた周期で検出を行い、検出した距離を制御部53へ出力する。
 図11は、制御部53の構成例を示すブロック図である。制御部53は、移動経路記憶部131と、ビーコン選択部132と、駆動制御部533とを備える。駆動制御部533は、ビーコン検出部12から出力されるビーコン情報と、移動経路記憶部131に記憶されているテーブルと、検出センサ541、542から出力される距離とに基づいて、駆動部11を制御する。
 図12は、駆動制御部533におけるビーコン情報に基づいた制御に係る構成例を示すブロック図である。駆動制御部533は、本体補正角算出部539と、通過位置算出部136と、補正角算出部137と、指令値算出部138とを備える。駆動制御部533は、本体補正角算出部539を備える点が、第1の実施形態の駆動制御部133と異なる。本体補正角算出部539は、検出距離の変化量ΔLと、サンプリング間隔Δtと、モータ113、114の角速度の測定値ωl’、ωr’とを入力する。検出距離の変化量ΔLは、検出センサ541又は検出センサ542により検出される距離のサンプリング間隔Δtにおける変化量である。
 移動ロボット5が左右いずれの境界3に沿って移動するかに応じて、検出センサ541により検出される距離の変化量ΔL又は検出センサ542により検出される距離の変化量ΔLの一方が本体補正角算出部539へ入力されるようにしてもよい。あるいは、本体補正角算出部539は、検出センサ541、542それぞれで検出される距離の変化量ΔLの両方を用いてもよい。両方の変化量ΔLを用いる場合、本体補正角算出部539は、両方の変化量ΔLの平均値を用いてもよいし、大きい方の変化量ΔL又は小さい方の変化量ΔLを用いてもよい。また、本体補正角算出部539は、欠測により一方の変化量ΔLが得られない場合、他方の変化量ΔLを用いる。
 本体補正角算出部539は、サンプリング間隔Δtにおける変化量ΔLと、角速度の測定値ωl’、ωr’とに基づいて、本体補正角Δθ’を算出する。本体補正角Δθ’は、移動ロボット5が境界3に対して一定の距離Xrefを保つように移動ロボット5の進行方向を補正する角度である。通過位置算出部136には、ビーコン2の方向θに代えて、ビーコン2の方向θから本体補正角Δθ’を減算した値が入力される。
 図13は、本体補正角算出部539において算出される本体補正角Δθ’を示す図である。移動ロボット5の進行方向が境界3-1と並行でない場合、移動ロボット5の移動に伴い移動ロボット5と境界3-1との距離に変化が生じる。図13において、時刻tn-1における移動ロボット5と境界3-1との距離をLn-1とし、時刻tn(=tn-1+Δt)における移動ロボット5と境界3-1との距離をLとしている。境界3-1に対する移動ロボット5の進行方向の傾きΔθ’は、arcsin(ΔL/Δy)で得られる。ΔLは、距離Ln-1と距離Lとの差である。Δyは、時刻tn-1から時刻tまでの期間において移動ロボット5が移動した距離である。移動距離Δyは、角速度の測定値ωl’、ωr’から得られる移動ロボット5の移動速度と時間Δtとの積である。本体補正角算出部539は、検出センサ541、542により得られる境界3までの距離の変化量ΔLに基づいて、移動ロボット5の進行方向の傾きを本体補正角Δθ’として算出する。
 図14は、第2の実施形態における移動制御処理の一部を示すフローチャートである。
図14に示すフローチャートは、第1の実施形態における移動制御処理と、第2の実施形態における移動制御処理との差分を示している。第2の実施形態における移動制御処理は、図14に示すステップS501からステップS503までの処理を、図7に示すフローチャートにおけるステップS104及びステップS131とステップS108との間に含めたフローチャートで表される。
 ステップS104又はステップS131から処理が移ると、本体補正角算出部539は、変化量ΔLが許容範囲であるか否かを判定する(ステップS501)。変化量ΔLに対する許容範囲は、差分ΔXに対する許容範囲と同様に予め定められる。変化量ΔLが許容範囲でない場合(ステップS501のNO)、本体補正角算出部539は、変化量ΔLと、サンプリング間隔Δtと、角速度の測定値ωl’、ωr’とに基づいて本体補正角Δθ’を算出し(ステップS502)、処理をステップS108へ進める。変化量ΔLが許容範囲である場合(ステップS501のYES)、本体補正角算出部539は、本体補正角Δθ’を0とし、処理をステップS108へ進める。
 駆動制御部533は、本体補正角算出部539により算出される本体補正角Δθ’とビーコン2の距離Z及び方向θと、距離Xrefとに基づいて、補正角Δθを算出する。移動ロボット5は、並進速度指令値Vrefと、角速度指令値ωrefと、角速度の測定値ωl’、ωr’と、距離Xrefと、ビーコン2の距離Z及び方向θと、検出センサ541、542により得られる変化量ΔLとに基づいて、境界3から距離の変化を抑えるように進行方向を制御する。この制御により、移動経路に沿った精度の高い移動を行うことができ、複数のビーコンに基づいて移動する際の移動距離を削減できる。
 以上説明した各実施形態の移動ロボットによれば、ビーコン検出部12により検出されたビーコン2までの距離Zと方向θとを取得し、ビーコン2までの距離Zとビーコン2の方向θとが予め定められた関係を満たす進行方向を算出し、算出した進行方向に基づいて駆動部11を制御する制御部を備えることにより、複数のビーコンに基づいて移動する際の移動距離を削減できる。
 また、移動ロボットの側面に位置する物体を検出する検出センサ541、542を備え、制御部が検出された物体との距離を一定にするように進行方向を算出することにより、境界3との距離の変化を抑えることができ、移動経路に沿った精度の高い移動を行うことができる。
 また、移動経路記憶部131に記憶されるテーブルに、ビーコン2が移動経路に対して左右のいずれに配置されているかを示す設置側を示す情報を含めることにより、ビーコン2の配置における自由度を高めることができ、移動経路の設定を容易にすることができる。
 また、移動経路記憶部131に記憶されるテーブルに、ビーコン2に紐付けられた動作を含めることにより、移動ロボットの移動経路の設定を容易にすることができる。ビーコン2ごとに移動ロボットの旋回を指示することにより、複雑な移動経路の設定を容易にすることができる。また、移動経路における目標地点に移動ロボットが到達したときに、移動ロボットを停止させることができ、移動ロボットの無駄な移動を抑えることができる。
 本実施形態の移動ロボットは、例えば荷物を運搬する搬送装置に用いることができる。
本実施形態の移動ロボットは、ビーコン2の配置に関して自由度が高いため、倉庫や工場などにおいて移動ロボットの移動経路を容易に設定及び変更することができ、利用環境に応じた利用を可能とする。
 なお、本実施形態の移動ロボットでは、ビーコン2及びビーコン検出部12が赤外線の信号を送受信する構成を説明した。しかし、ビーコン2に代えて、赤外線の信号以外の可視光線の信号、無線の信号又は音波の信号を発信する発信器が用いられてもよい。発信器が赤外線の信号以外の信号を発信する場合、ビーコン検出部12は、発信器から発信される信号を検出するセンサを少なくとも2つ備え、発信器までの距離と発信器の方向とを検出する。複数の発信器とビーコン検出部12とは、ビーコン検出部12が移動ロボットの進行方向を基準にして発信器までの距離Z及び方向θを取得できる手段であれば、どのような手段を用いてもよい。
 また、信号を発信する複数のビーコン2などの発信器に代えて、信号を発信しない複数のマーカを用いてもよい。マーカを用いる場合、ビーコン検出部12に代えてマーカ検出部が用いられる。マーカ検出部は、各マーカに設けられた幾何学的な図形又は色の組み合わせを検出することにより、ビーコン検出部12と同様に動作してもよい。幾何学的な図形又は色の組み合わせにマーカを識別するIDを含めてもよい。幾何学的な図形として、例えばQRコード(登録商標)を用いてもよい。
 また、能動的に信号を発信するビーコン2に代えて、移動ロボットから発信される信号に応じて応答信号を発信するRFID素子を用いたマーカや、移動ロボットから発信される信号を反射する素子を用いたマーカが配置されてもよい。受動的な動作を行うマーカを用いる場合には、所定の信号を発信する発信器が移動ロボットに設けられる。このように、ビーコン2やマーカなどの被検出体は、移動ロボットの相対的な位置を検出できるものであればよい。
 また、本実施形態では、ビーコン検出部12は、ビーコン選択部から入力されるビーコンIDのビーコン2を検出する動作を説明した。しかし、ビーコン検出部12は、検出した全てのビーコン2のビーコン情報をそれぞれ算出し、算出した各ビーコン情報を制御部へ出力してもよい。この場合、ビーコン選択部は、ビーコン選択部132から出力される指示に基づいて、複数のビーコン情報から目標とするビーコン2のビーコン情報を選択する。
 また、上述の移動ロボットは内部に、コンピュータシステムを有していてもよい。その場合、移動ロボットに備えられる制御部が行う処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、各機能部の処理が行われることになる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 なお、上記の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 本発明は、複数のビーコンに基づいて移動する際の移動距離を削減することが不可欠な用途にも適用できる。
 1,5…移動ロボット
 2…ビーコン(被検出体)
 11…駆動部
 12…ビーコン検出部(検出部)
 13…制御部
 541,542…検出センサ

Claims (7)

  1.  移動速度と進行方向とを変更する駆動部と、
     目標地点までの移動経路に沿って配置された複数の被検出体を検出する検出部と、
     前記検出部により検出された前記被検出体までの距離と方向とを取得し、前記被検出体までの距離と前記被検出体の方向とが予め定められた関係を満たす進行方向を算出し、算出した進行方向に基づいて前記駆動部を制御する制御部と、
     を備える移動ロボット。
  2.  進行方向を正面としたときの側面に存在する物体を検出する検出センサを備え、
     前記制御部は、前記検出センサにより検出された物体との距離を一定する進行方向を算出する、
     請求項1に記載の移動ロボット。
  3.  前記被検出体それぞれの前記移動経路までの距離を予め記憶するテーブルを備え、
     前記制御部は、前記検出部により検出された前記被検出体と前記移動経路との距離を取得し、取得した距離をXとし、検出された前記被検出体までの距離をZとしたときに、arcsin(X/Z)で得られる角度に基づいて進行方向を算出する、
     請求項1又は請求項2に記載の移動ロボット。
  4.  前記テーブルには、目標地点までの前記移動経路において前記被検出体それぞれが右側と左側とのいずれに配置されているかが記憶され、
     前記制御部は、検出された前記被検出体の前記移動経路に対する位置に基づいて、進行方向を算出する、
     請求項3に記載の移動ロボット。
  5.  前記テーブルには、前記被検出体ごとに進行方向の変更の有無を示す回転情報が記憶され、
     前記制御部は、検出された前記被検出体に対して進行方向の変更が前記テーブルに記憶されている場合、検出された前記被検出体までの距離が所定の距離になると、進行方向を変更する、
     請求項3又は請求項4に記載の移動ロボット。
  6.  前記テーブルには、目標地点に最も近い前記被検出体を示す情報が記憶され、
     前記制御部は、検出された前記被検出体が目標地点に最も近い前記被検出体である場合、検出された前記被検出体までの距離が所定の距離になると、前記駆動部を制御して停止させる、
     請求項3から請求項5のいずれか一項に記載の移動ロボット。
  7.  移動速度と進行方向とを変更する駆動部と、目標地点までの移動経路に沿って配置された複数の被検出体を検出する検出部と、を備える移動ロボットの制御方法であって、
     前記検出部により検出された前記被検出体までの距離と方向とを取得する第1のステップと、
     前記被検出体までの距離と前記被検出体の方向とが予め定められた関係を満たす進行方向を算出する第2のステップと、
     算出した進行方向に基づいて前記駆動部を制御する第3のステップと、
     を有する制御方法。
PCT/JP2017/026274 2016-07-21 2017-07-20 移動ロボット及び制御方法 WO2018016584A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780044165.0A CN109478066B (zh) 2016-07-21 2017-07-20 移动机器人以及控制方法
US16/317,992 US11112803B2 (en) 2016-07-21 2017-07-20 Mobile robot and control method
DE112017003648.8T DE112017003648T5 (de) 2016-07-21 2017-07-20 Mobiler roboter und steuerungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-143228 2016-07-21
JP2016143228A JP6760786B2 (ja) 2016-07-21 2016-07-21 移動ロボット及び制御方法

Publications (1)

Publication Number Publication Date
WO2018016584A1 true WO2018016584A1 (ja) 2018-01-25

Family

ID=60993073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026274 WO2018016584A1 (ja) 2016-07-21 2017-07-20 移動ロボット及び制御方法

Country Status (6)

Country Link
US (1) US11112803B2 (ja)
JP (1) JP6760786B2 (ja)
CN (1) CN109478066B (ja)
DE (1) DE112017003648T5 (ja)
TW (1) TWI732906B (ja)
WO (1) WO2018016584A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189102A1 (ja) * 2019-03-20 2020-09-24 Thk株式会社 移動ロボット、移動ロボットの制御システム、移動ロボットの制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859475A4 (en) * 2018-09-25 2022-05-04 Chiba Institute of Technology INFORMATION PROCESSING DEVICE AND MOBILE ROBOT
US11537137B2 (en) * 2019-06-18 2022-12-27 Lg Electronics Inc. Marker for space recognition, method of moving and lining up robot based on space recognition and robot of implementing thereof
CN112462747A (zh) * 2019-08-19 2021-03-09 苏州宝时得电动工具有限公司 自动行走设备、控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005018248A (ja) * 2003-06-24 2005-01-20 Symtec Hozumi:Kk 無人搬送車の自律走行システム
JP2006004204A (ja) * 2004-06-18 2006-01-05 ▲吉▼川 英之 自動走行システム
JP2014125201A (ja) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd 水中機

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347456A (en) 1991-05-22 1994-09-13 The Regents Of The University Of California Intelligent roadway reference system for vehicle lateral guidance and control
JP3470453B2 (ja) * 1995-04-06 2003-11-25 株式会社デンソー 車間距離制御装置
JP2002073170A (ja) 2000-08-25 2002-03-12 Matsushita Electric Ind Co Ltd 移動作業ロボット
US6772062B2 (en) 2001-05-31 2004-08-03 The Regents Of The University Of California Intelligent ultra high speed distributed sensing system and method for sensing roadway markers for intelligent vehicle guidance and control
KR20030080436A (ko) * 2002-04-08 2003-10-17 삼성전자주식회사 이동로봇의 위치측정 장치 및 방법
KR100565227B1 (ko) * 2003-12-22 2006-03-30 엘지전자 주식회사 이동로봇의 위치인식장치 및 방법
EP1828862A2 (en) 2004-12-14 2007-09-05 Sky-Trax Incorporated Method and apparatus for determining position and rotational orientation of an object
JP4699426B2 (ja) * 2006-08-08 2011-06-08 パナソニック株式会社 障害物回避方法と障害物回避移動装置
GB2447672B (en) * 2007-03-21 2011-12-14 Ford Global Tech Llc Vehicle manoeuvring aids
JP4445038B2 (ja) 2008-02-06 2010-04-07 パナソニック株式会社 ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム
CN102822880B (zh) 2010-04-15 2015-07-15 三菱电机株式会社 行驶辅助装置
US20170242443A1 (en) * 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10520581B2 (en) * 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
EP2879009A1 (en) 2012-06-29 2015-06-03 Kabushiki Kaisha Yaskawa Denki Moving body and moving body system
EP2918467A4 (en) 2012-11-08 2016-06-08 Toyota Motor Co Ltd DRIVING ASSIST DEVICE AND METHOD, COLLISION PREDICTION DEVICE AND METHOD, AND ALERT DEVICE AND METHOD
US9568075B2 (en) 2013-10-28 2017-02-14 Seiko Epson Corporation Robot, robot control device, and robot system
CN104298234B (zh) 2013-11-13 2017-02-08 沈阳新松机器人自动化股份有限公司 一种双引导式机器人自主充电方法
JP2016143228A (ja) 2015-02-02 2016-08-08 ローム株式会社 演算処理装置
JP2019102047A (ja) 2017-11-28 2019-06-24 Thk株式会社 画像処理装置、移動ロボットの制御システム、移動ロボットの制御方法
US11093759B2 (en) * 2018-03-06 2021-08-17 Here Global B.V. Automatic identification of roadside objects for localization
JP6894595B2 (ja) 2018-03-28 2021-06-30 株式会社エクォス・リサーチ 移動体
EP3859475A4 (en) 2018-09-25 2022-05-04 Chiba Institute of Technology INFORMATION PROCESSING DEVICE AND MOBILE ROBOT
US11153721B2 (en) * 2018-12-27 2021-10-19 Intel Corporation Sensor network enhancement mechanisms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005018248A (ja) * 2003-06-24 2005-01-20 Symtec Hozumi:Kk 無人搬送車の自律走行システム
JP2006004204A (ja) * 2004-06-18 2006-01-05 ▲吉▼川 英之 自動走行システム
JP2014125201A (ja) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd 水中機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189102A1 (ja) * 2019-03-20 2020-09-24 Thk株式会社 移動ロボット、移動ロボットの制御システム、移動ロボットの制御方法
JP2020154733A (ja) * 2019-03-20 2020-09-24 Thk株式会社 移動ロボット、移動ロボットの制御システム、移動ロボットの制御方法
CN113424125A (zh) * 2019-03-20 2021-09-21 Thk株式会社 移动机器人、移动机器人的控制***、移动机器人的控制方法
US11797012B2 (en) 2019-03-20 2023-10-24 Thk Co., Ltd. Mobile robot, mobile robot control system, and mobile robot control method
TWI834828B (zh) * 2019-03-20 2024-03-11 日商Thk股份有限公司 移動機器人、移動機器人之控制系統及移動機器人之控制方法
JP7460328B2 (ja) 2019-03-20 2024-04-02 Thk株式会社 移動ロボット、移動ロボットの制御システム、移動ロボットの制御方法

Also Published As

Publication number Publication date
DE112017003648T5 (de) 2019-04-04
US20210089045A1 (en) 2021-03-25
TWI732906B (zh) 2021-07-11
TW201805749A (zh) 2018-02-16
JP6760786B2 (ja) 2020-09-23
CN109478066B (zh) 2022-01-04
CN109478066A (zh) 2019-03-15
US11112803B2 (en) 2021-09-07
JP2018013962A (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
WO2018016584A1 (ja) 移動ロボット及び制御方法
JP6340824B2 (ja) 自律走行台車
JP2001515237A (ja) 誘導ビームを使用した自律型運動ユニットのドッキング方法
JP6771588B2 (ja) 移動体および移動体の制御方法
EP3620885A1 (en) Autonomous mobile apparatus
US12011938B2 (en) Printing systems
JP2009237851A (ja) 移動体制御システム
JP2018194937A (ja) 無人搬送車の走行制御装置および走行制御方法
JP2009080527A (ja) 自律移動装置
JP7369626B2 (ja) ビークルの制御システム、ビークルの制御方法及びプログラム
JP5869303B2 (ja) 自動搬送システム
JP2007213356A (ja) 無人搬送設備
JP5476887B2 (ja) 群走行制御装置及び群走行制御方法
JP5314788B2 (ja) 自律移動装置
JP2019079171A (ja) 移動体
WO2016072186A1 (ja) 位置検出装置、制御方法及び自動走行車
JP7045829B2 (ja) 移動ロボットの制御システム、移動ロボットの制御方法
JP2010262461A (ja) 移動体
JP7460328B2 (ja) 移動ロボット、移動ロボットの制御システム、移動ロボットの制御方法
WO2019230557A1 (ja) 出力装置、駆動装置、移動装置、移動体システム、出力方法及びコンピュータ可読媒体
JP2000132229A (ja) 移動体の走行制御方法
WO2023054213A1 (ja) 制御方法及び制御システム
CN114295123A (zh) 导航定位方法以及自动驾驶装置
KR20210141017A (ko) 사방향 센서를 이용한 메카넘 휠 대차 주행 제어방법
JP2010039664A (ja) 無人搬送車の経路の補正システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831100

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17831100

Country of ref document: EP

Kind code of ref document: A1