WO2017179401A1 - 曲面形状を有する結晶化ガラス部材の製造方法 - Google Patents

曲面形状を有する結晶化ガラス部材の製造方法 Download PDF

Info

Publication number
WO2017179401A1
WO2017179401A1 PCT/JP2017/012076 JP2017012076W WO2017179401A1 WO 2017179401 A1 WO2017179401 A1 WO 2017179401A1 JP 2017012076 W JP2017012076 W JP 2017012076W WO 2017179401 A1 WO2017179401 A1 WO 2017179401A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
component
plate
curved shape
crystallized
Prior art date
Application number
PCT/JP2017/012076
Other languages
English (en)
French (fr)
Inventor
野崎守二
八木俊剛
山下豊
後藤直雪
Original Assignee
株式会社 オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オハラ filed Critical 株式会社 オハラ
Priority to CN201780023744.7A priority Critical patent/CN109071303B/zh
Priority to DE112017001306.2T priority patent/DE112017001306T5/de
Priority to KR1020187029333A priority patent/KR102291897B1/ko
Priority to US16/092,313 priority patent/US20210206684A1/en
Publication of WO2017179401A1 publication Critical patent/WO2017179401A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0305Press-bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0256Gravity bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0307Press-bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to a method for producing a crystallized glass member having a curved shape.
  • a glass member having a curved surface shape has begun to be used for its cover glass and casing.
  • these glass members need to be hard to break even when subjected to an impact due to external factors.
  • casing requires high mechanical strength and the outstanding heat workability, and many chemically strengthened glass is selected.
  • the mechanical strength of chemically strengthened glass cannot be said to be sufficiently high.
  • sapphire is a material that is being considered for use in cover glass.
  • Patent Document 1 discloses a method for manufacturing a cover glass for a mobile display.
  • Crystallized glass is a material that can provide higher mechanical strength than chemically strengthened glass. Crystallized glass is a material in which an infinite number of crystals are precipitated inside glass by heating amorphous glass. Crystallized glass can have physical properties superior to those of the original glass before precipitating crystals by precipitating crystals. Crystallized glass used for various purposes is manufactured by controlling the precipitation of crystals in accordance with the intended use. An excellent glass member can be obtained as a cover glass or a case for a smartphone if it can be made into a curved shape by thermally processing the plate-like crystallized glass.
  • the crystallized glass on which crystals are deposited has poor thermal processability and is difficult to process into a curved surface shape, or even if thermal processing is possible, crystallization proceeds due to heating during thermal processing. In some cases, it becomes milky and loses transparency, making it difficult to achieve both the desired shape and the amount of precipitated crystals.
  • An object of the present invention is to provide a crystallized glass member having high mechanical strength, having both a shape corresponding to an application and a crystal precipitation amount, and having a curved shape at a low production cost.
  • it is to provide a crystallized glass member having a curved surface shape suitable for use as a cover glass or a housing of a smartphone at a low manufacturing cost.
  • the inventor has solved the above problem by using a crystallized glass that can be deformed into a curved shape while precipitating crystals from a sheet glass while controlling the rate of crystallization with respect to heat treatment.
  • the present invention has been completed by finding out that it can be solved, and its specific configuration is as follows.
  • (Configuration 1) Maintaining the temperature of the sheet glass so as to be within the first temperature range, and by precipitating crystals from the sheet glass, at least a part of the sheet glass is curved by an external force acting on the sheet glass
  • a method for producing a crystallized glass member having a curved shape wherein the method comprises a step of deforming into a curved shape.
  • the first temperature range is a crystal having a curved surface shape according to Configuration 1, which is in a range of [At ⁇ 40] ° C. or more and [At + 40] ° C. or less when the deformation point of the sheet glass is At (° C.).
  • a method for producing a vitrified glass member A method for producing a vitrified glass member.
  • the plate-like glass is mol% in terms of oxide, 30.0% to 70.0% of SiO 2 component, Al 2 O 3 component is 8.0% to 25.0%, Na 2 O component from 0% to 25.0%, MgO component from 0% to 25.0%, ZnO component from 0% to 30.0%, And a method for producing a crystallized glass member having a curved shape according to Configuration 1 or 2, comprising a composition containing a total of 0% to 10.0% of a TiO 2 component and a ZrO 2 component.
  • the plate-like glass is mol% in terms of oxide
  • the plate-like glass is mol% in terms of oxide, 5.
  • Tg ° C.
  • the method for producing a crystallized glass member having a curved shape according to any one of Structures 1 to 5, wherein crystals are precipitated under a temperature condition in a range of [Tg] ° C. to [At + 50] ° C. (Configuration 7)
  • a molding die is arranged in a direction in which an external force acts on the plate glass, and the plate glass is along the molding die, so that at least a part of the plate glass is deformed into a curved shape.
  • the manufacturing method of the crystallized glass member which has the curved surface shape in any one of the structures 1-6 which is the process to make.
  • Configurations 1 to 11 including a crystallization step of maintaining the temperature of the deformed sheet glass so as to be within the second temperature range after the deformation step and further precipitating crystals from the deformed sheet glass.
  • the shape according to a use and the amount of crystal precipitation are compatible, and the crystallized glass member which has a curved-surface shape can be provided at low manufacturing cost.
  • the crystallized glass member having a curved shape obtained in the present invention has high mechanical strength.
  • the crystallized glass member having a curved shape obtained by the production method of the present invention can obtain a high light transmittance in the visible light range.
  • the crystallized glass member having a curved shape obtained by the production method of the present invention includes a cover glass for smartphones, a housing for smartphones, a cover glass for watches, a substrate for HUD (head-up display) used for in-vehicle use, and a near infrared ray. It can be suitably used as a part of a sensor cover glass, other electronic devices, mechanical instruments and the like.
  • (A) is a figure before a deformation
  • (b) is a figure after a deformation
  • (A) is a figure before a deformation
  • (b) is a figure after a deformation
  • (A) is a figure before a deformation
  • (b) is a figure after a deformation
  • FIG. 1 It is a figure which shows an example of the aspect of the deformation
  • (A) is a figure before a deformation
  • (b) is a figure after a deformation
  • the line crossing the cross is an auxiliary line for facilitating understanding of the shape.
  • the temperature of the plate glass is maintained so as to be within the first temperature range, and crystals are precipitated from the plate glass, while the crystal is deposited on the plate glass. It has a deformation step of deforming at least a part of the sheet glass into a curved surface shape by an external force acting.
  • an amorphous plate glass is prepared.
  • the plate-like glass is preferably in a shape that becomes a desired shape after deformation or a shape that is close to the desired shape.
  • the surface of the plate glass may be polished to give a mirror surface or may be a surface after grinding.
  • the material of the plate-like glass may be a glass in which crystals are precipitated by heating, that is, an original glass of crystallized glass.
  • the composition of the original glass is not particularly limited, but in mol% in terms of oxide, 30.0% to 70.0% of SiO 2 component, Al 2 O 3 component is 8.0% to 25.0%, Na 2 O component from 0% to 25.0%, MgO component from 0% to 25.0%, ZnO component from 0% to 30.0%,
  • a glass comprising a composition containing 0% to 10.0% of TiO 2 component and ZrO 2 component in total gives a crystallized glass member having high mechanical strength and high visible light transmittance It is preferable because it can be easily deformed into a curved shape by thermal processing.
  • the raw glass having the above composition is crystallized to produce RAl 2 O 4 , RTi 2 O 5 , R 2 TiO 4 , R 2 SiO 4 , RAl 2 Si 2 O 8 and R 2 Al 4 Si 5 O 18 (where R is A crystallized glass having one or more crystal phases selected from one or more selected from Zn, Mg, and Fe.
  • the lower limit of the SiO 2 component is more preferably 50%, and the upper limit is more preferably 65%.
  • the lower limit of the Al 2 O 3 component is more preferably 8%, and the upper limit is more preferably 16%.
  • the Na 2 O component, its lower limit is more preferably 3%, and its upper limit is more preferably 17%.
  • the upper limit of the MgO component is more preferably 15%.
  • the upper limit of the ZnO component is more preferably 16%.
  • the lower limit of the total content of the TiO 2 component and the ZrO 2 component is more preferably 0.5%, the upper limit is more preferably 10%, and most preferably 6%.
  • the original glass is easy to be deformed into a curved shape by heat processing, and the crystallized glass member has high mechanical strength and high light transmittance in the visible range.
  • the following configuration may be used.
  • the composition of the original glass may contain 1% to 10.0% TiO 2 component.
  • composition of the original glass may contain 1% to 10.0% of ZrO 2 component.
  • the composition of the raw glass may be such that the molar ratio [Al 2 O 3 / (MgO + ZnO)] of the components expressed on the oxide basis is 0.5 or more and 2.0 or less.
  • the composition of the raw glass may be such that the molar ratio [TiO 2 / Na 2 O] of the components expressed on the oxide basis is 0 or more and 0.41 or less.
  • the composition of the raw glass may be such that the value of the molar ratio [MgO / Na 2 O] of the components expressed on the oxide basis is 0 or more and 1.60 or less.
  • the composition of the raw glass may be such that the value of the molar ratio [ZnO / MgO] of the components contained on the oxide basis is 0 or more and 1.50 or less.
  • the composition of the original glass may be an oxide conversion mol%, and the total value of the MgO component and the ZnO component may be 1.0% or more and 30.0% or less.
  • the composition of the raw glass is B 2 O 3 component from 0% to 25.0%, 0 to 10.0% of P 2 O 5 component, 0% to 20.0% of K 2 O component, CaO component from 0% to 10.0%, BaO component from 0% to 10.0%, FeO component 0% -8%, ZrO 2 component from 0% to 10.0%, SnO 2 component 0%-5.0% Li 2 O component from 0% to 10.0%, SrO component from 0% to 10.0%, La 2 O 3 component from 0% to 3%, Y 2 O 3 component from 0% to 3%, Nb 2 O 5 component from 0% to 5%, Ta 2 O 5 component 0% -5%, It may contain 0 to 5% of WO 3 component.
  • the glass transition point of the plate glass is Tg (° C.) and the yield point is At (° C.)
  • crystals are precipitated under temperature conditions in the range of [Tg] ° C. to [At + 50] ° C.
  • the glass is such that crystals are precipitated in the temperature range, a crystallized glass member having a curved surface shape can be easily obtained by the production method of the present invention.
  • the plate glass is produced, for example, as follows. That is, the raw materials are uniformly mixed so that each of the above components is within a predetermined content range, and the mixed raw materials are put into a platinum or quartz crucible and heated at 1300 to 1540 ° C. in an electric furnace or a gas furnace. Melt in the temperature range for 5 to 24 hours to obtain molten glass, and homogenize with stirring. It may be melted in a refractory brick tank furnace to obtain molten glass. Thereafter, the molten glass is lowered to an appropriate temperature and then cast into a mold to form a block shape or a column shape. The glass formed into a block shape or a columnar shape is formed into a plate shape by slow cooling, followed by cutting and grinding. Alternatively, the molten glass after stirring and homogenizing may be directly formed into a plate shape using a method such as a float method or a slit down draw method, and then the plate glass may be produced by slow cooling. .
  • the temperature of the plate glass is maintained so as to be within the first temperature range, and at least one of the plate glasses is applied by an external force acting on the plate glass while precipitating crystals from the plate glass.
  • This is a step of deforming the portion into a curved surface, and is an essential step in the present invention.
  • the prepared glass sheet is placed in a furnace and heated so as to support or hold a part of the glass sheet.
  • the plate glass is softened by heating, and an external force acts on the plate glass, whereby the plate glass is deformed into a curved shape.
  • the glass sheet maintains its temperature so as to be in the first temperature range.
  • the first temperature range is [At ⁇ 40] ° C. or higher and [At + 40] ° C. or lower when the deformation point of the plate glass is At (° C.), while precipitating crystals from the plate glass, It is preferable because the plate glass can be deformed into a curved shape.
  • the lower limit of the first temperature range is preferably not less than [Tg] ° C. when the glass transition point of the sheet glass is Tg (° C.).
  • the lower limit of the first temperature range is more preferably [At-30] ° C, and most preferably [At-20] ° C.
  • the upper limit of the first temperature range is more preferably [At + 30] ° C., and most preferably [At + 20] ° C.
  • the composition of the raw glass is an oxide equivalent mol%, 30.0% to 70.0% of SiO 2 component, Al 2 O 3 component is 8.0% to 25.0%, Na 2 O component from 0% to 25.0%, MgO component from 0% to 25.0%, ZnO component from 0% to 30.0%,
  • the first temperature range is preferably 705 ° C. or higher and 790 ° C. or lower.
  • the first temperature range is more preferably 715 ° C, and most preferably 720 ° C.
  • the upper limit of the first temperature range is more preferably 780 ° C., and most preferably 770 ° C.
  • FIGS. 1-6 illustrates the aspect which supports or hold
  • an external force acts on the plate glass, so that the plate glass can be deformed to have a curved shape.
  • the end of the sheet glass is supported by the support 1.
  • the edge of the plate glass is held at the edge of the mold 2.
  • the edge of the sheet glass is supported on the edge of the mold 2 having a concave shape.
  • the end portion of the glass sheet is supported on the slope of the concave shape of the mold 2 having the concave shape.
  • This aspect is preferable in that the surface property of the edge of the glass sheet is not roughened by contact of the corners of the edge of the mold 2.
  • the central portion of the sheet glass is supported by the central portion of the mold 4 having a convex shape.
  • the external force acting on the sheet glass may be gravity, a force exerted on the sheet glass by the weight placed on the upper surface of the sheet glass, a force exerted by the pressing member on the sheet glass, or a resultant force of these forces. That is, at least a part of the external force may be gravity, may be a force exerted on the sheet glass by the weight placed on the upper surface of the sheet glass, or may be a force exerted by the pressing member on the sheet glass. . 1, FIG. 2, FIG. 5 and FIG. 6 show an aspect in which the plate glass is deformed by gravity acting on the plate glass.
  • FIG. 4 shows an aspect in which the force exerted on the plate glass by the weight 5 placed on the upper surface of the plate glass contributes to the deformation of the plate glass.
  • the weight 5 exerts a force on the sheet glass by the action of gravity.
  • the material of the weight can be selected from SiC, carbon, NiCrAl alloy, ductile cast iron, stainless steel, a sintered body mainly composed of tungsten, cemented carbide, and the like.
  • a carbon-containing film such as a diamond-like carbon film, a hydrogenated amorphous carbon film (aC: H film), a hard carbon film, a tetrahedral amorphous carbon film (taC film), It is preferable to provide a noble metal alloy film or the like because it becomes easy to obtain a crystallized glass member having a smooth surface property, and it is easy to prevent fusion between the weight and the crystallized glass member.
  • the shape of the weight it is preferable that the crystallized glass member has a desired shape by transferring the shape.
  • FIG. 3 shows an aspect in which the force exerted by the pressing member 6 contributes to the deformation of the sheet glass.
  • the pressing member 6 receives a force generated from a power source (not shown) and exerts a force on the sheet glass.
  • the material of the pressing member can be selected from SiC, carbon, NiCrAl alloy, ductile cast iron, stainless steel, a sintered body mainly composed of tungsten, cemented carbide, and the like.
  • the material of the pressing member is preferably high in heat resistance.
  • a carbon-containing film such as a diamond-like carbon film, a hydrogenated amorphous carbon film (aC: H film), a hard carbon film, or a tetrahedral amorphous carbon film (taC film) is formed on the surface where the pressing member is in contact with the plate glass. It is preferable to provide a noble metal alloy film or the like because it is easy to obtain a crystallized glass member having a smooth surface property and it is easy to prevent fusion between the pressing member and the crystallized glass member.
  • the shape of the pressing member is preferably such that the crystallized glass member has a desired shape by transferring the shape.
  • molding die is not essential, it is preferable to arrange
  • (B) of FIG. 2 to FIG. 6 shows an aspect in which at least a part of the sheet glass is changed to a curved shape by being along the mold.
  • the material of the mold can be selected from SiC, carbon, NiCrAl alloy, ductile cast iron, stainless steel, a sintered body mainly composed of tungsten, cemented carbide, and the like.
  • the material of the mold is preferably high in heat resistance.
  • a carbon-containing film such as a diamond-like carbon film, a hydrogenated amorphous carbon film (aC: H film), a hard carbon film, a tetrahedral amorphous carbon film (taC film), or the like is formed on the surface where the mold is in contact with the plate glass. It is preferable to provide a noble metal alloy film or the like because it is easy to obtain a crystallized glass member having a smooth surface property, and it is easy to release it.
  • the shape of the molding die is preferably such that the crystallized glass member has a desired shape by transferring the shape.
  • the time for the deformation process that is, the time for keeping the temperature of the plate glass so as to be in the first temperature range varies depending on the composition of the original glass, and may be adjusted as appropriate.
  • the composition of the raw glass is an oxide equivalent mol%, 30.0% to 70.0% of SiO 2 component, Al 2 O 3 component is 8.0% to 25.0%, Na 2 O component from 0% to 25.0%, MgO component from 0% to 25.0%, ZnO component from 0% to 30.0%,
  • the deformation process time is preferably 10 minutes or more and 60 minutes or less.
  • the time for the deformation step is more preferably from 15 minutes to 50 minutes, and further preferably from 15 minutes to 45 minutes.
  • the crystallization process is an optional process.
  • the crystallization step is a step of maintaining the temperature of the plate glass after the deformation so as to be within the second temperature range after the deformation step, and further precipitating crystals from the plate glass after the deformation.
  • the crystallization step can be provided when the amount of crystal precipitation of the sheet glass in the deformation step does not reach the desired amount of crystal precipitation due to the design of the manufacturing process.
  • the deformation of the sheet glass is completed in the deformation process, and in the crystallization process, the sheet glass is not deformed and the amount of precipitated crystals increases.
  • the upper limit of the temperature of the second temperature range is lower than the upper limit of the temperature of the first temperature range.
  • the second temperature range is preferably [Tg] ° C. or more in order to promote crystallization when the glass transition point of the glass sheet is Tg (° C.) and the yield point is At (° C.). At] ° C. or lower is preferable because crystals can be precipitated from the plate-like glass without causing opacification of the material.
  • the composition of the raw glass is an oxide equivalent mol%, 30.0% to 70.0% of SiO 2 component, Al 2 O 3 component is 8.0% to 25.0%, Na 2 O component from 0% to 25.0%, MgO component from 0% to 25.0%, ZnO component from 0% to 30.0%,
  • the second temperature range is preferably [Tg] ° C. or higher and [At] ° C. or lower. By setting the second temperature range to the above range, crystals can be precipitated from the sheet glass without deformation.
  • the second temperature range is more preferably [Tg] ° C. or higher and [At ⁇ 20] ° C. or lower in order to promote uniform crystallization inside the material.
  • the slow cooling step is a step that is performed after the deformation step or the crystallization step and removes the distortion of the plate glass after the deformation.
  • the slow cooling step is performed by lowering the temperature of the sheet glass after the deformation step or the crystallization step to a predetermined target temperature at a predetermined temperature decrease rate.
  • the temperature lowering rate is preferably 50 ° C./hr or more and 200 ° C./hr or less because distortion inside the sheet glass can be sufficiently removed, and the time for the step does not become longer than necessary.
  • the temperature lowering rate is more preferably 15 ° C./hr or more and 80 ° C./hr or less.
  • the target temperature is preferably [Tg ⁇ 200] ° C.
  • the lower limit of the annealing temperature is preferably [Tg-300] ° C., more preferably [Tg-250] ° C., and still more preferably [Tg-200] ° C.
  • the specific gravity corresponding to the crystal precipitation amount of the desired crystallized glass member is measured in advance to obtain the target specific gravity, and the process of the manufacturing method of the present invention is completed. What is necessary is just to design the temperature conditions and time conditions of the deformation step and the crystallization step so that the specific gravity of the later plate glass becomes the target specific gravity.
  • a compressive stress layer may be formed in order to further increase the mechanical strength.
  • the crystallized glass member having a curved shape obtained by the production method of the present invention can obtain higher strength by forming a compressive stress layer in addition to having high mechanical properties in advance by precipitated crystals.
  • a method for forming the compressive stress layer for example, a chemical strengthening method in which an alkali component present in the surface layer of the crystallized glass member is exchanged with an alkali component having a larger ionic radius to form a compressive stress layer on the surface layer.
  • a heat strengthening method in which the crystallized glass member is heated and then rapidly cooled, and an ion implantation method in which ions are implanted into the surface layer of the crystallized glass member.
  • the chemical strengthening method can be performed, for example, in the following steps.
  • a salt containing potassium or sodium for example, potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ) or a complex salt thereof heated to 350 to 500 ° C. for 0.1 to 12 hours. Or soak.
  • a lithium component (Li + ion) or a sodium component (Na + ion) existing in the glass phase near the surface and a sodium component (Na + ion) or a potassium component (an alkali component having an ionic radius larger than these)
  • the ion exchange reaction with (K + ion) proceeds.
  • a compressive stress layer is formed on the surface portion of the crystallized glass member.
  • the crystallized glass member obtained by the production method of the present invention has a light transmittance such that the light transmittance at a wavelength of 410 mm including reflection loss is 86% or more when the thickness is 0.5 mm.
  • a crystallized glass member having a curved surface shape was manufactured using the manufacturing method of the present invention.
  • a plate-like glass serving as a raw glass of a crystallized glass member was manufactured.
  • raw materials for each component raw materials such as oxides, hydroxides, carbonates, nitrates, fluorides, chlorides, hydroxides, metaphosphoric acid compounds, etc. are selected, and these raw materials are shown in Tables 1 to 3.
  • Each composition was weighed so as to have a composition ratio of each example shown and mixed uniformly.
  • the mixed raw materials were put into a platinum crucible and melted in an electric furnace at a temperature range of 1300 to 1550 ° C. for 5 to 24 hours depending on the melting difficulty of the glass composition. Thereafter, the molten glass was agitated and homogenized, cast into a mold or the like, and slowly cooled to prepare an original glass ingot.
  • the glass transition point of the original glass is described in the table as “glass transition point Tg (° C.)”, the yield point as “deflection point At (° C.)”, and the specific gravity of the original glass as “specific gravity of the original glass”.
  • the produced ingot was cut and ground to obtain a rectangular plate-like glass having a thickness of 0.55 mm and 150 mm ⁇ 70 mm. Then, the surface of the plate glass was made into a mirror surface by polishing this plate glass. The thickness of the plate glass after polishing is 0.50 mm.
  • the deformation process was performed on the plate-like glass in the manner shown in FIG.
  • Stainless steel (SUS304) was used as the material for the mold and the pressing member.
  • the shape of the mold is a concave shape for molding the crystallized glass member as shown in FIG. 7, and the shape in plan view is a rectangle.
  • the bottom surface of the recess of the mold is a flat surface of 58 mm ⁇ 160 mm.
  • the depth of the concave portion of the mold is 5 mm.
  • a cylindrical inner surface having a radius of 5 mm is connected from the long side portion of the bottom surface of the mold to form a side wall portion of the mold.
  • the shape of the pressing member is a convex shape that is paired with the shape of the molding die.
  • the edge of the long side portion of the sheet glass was supported by the edge of the long side portion of the mold, and was placed in the furnace together with the mold. In the furnace, a force of 330 gf was exerted on the upper surface of the sheet glass with a pressing member. The temperature of the furnace was adjusted so that the temperature of the sheet glass was within the first temperature range.
  • the temperature of the furnace of the deformation process is “temperature of the deformation process (° C.)”, the time of the deformation process is “time of the deformation process (minutes)”, and the temperature of the glass glass furnace of the crystallization process is “temperature of the crystallization process” (° C.) ”, the time of the crystallization step is“ time of the crystallization step (minutes) ”, the rate of temperature decrease of the furnace temperature of the slow cooling step is“ temperature decrease rate (° C./hr) ”, and the final furnace of the slow cooling step
  • the temperature (target temperature) is “target temperature (° C.)”, the crystal phase deposited on the plate glass is “crystal phase”, the specific gravity of crystallized glass is “specific gravity of crystallized glass”, and the crystallized glass member (thickness 0) .50 mm) including light loss at wavelengths of 410 nm, 500 nm, and 700 nm are referred to as “transmittance (410 nm) (%)”, “trans
  • the glass transition point (Tg) and yield point (At) of the plate glass were measured as follows.
  • a round bar-like sample having a length of 50 mm and a diameter of 4 ⁇ 0.5 mm having the same composition as that of the plate glass was prepared. Measure the temperature and elongation of this sample according to the Japan Optical Glass Industry Association Standard JOGIS08-2003 "Measurement Method of Thermal Expansion of Optical Glass” using a TD5000SA thermal expansion meter pyrometer from Bruker Ax Co., Ltd. did. A measurement load of 10 gf is applied to the sample in the length direction.
  • the glass transition point (Tg) was determined from the thermal expansion curve obtained by measuring the temperature and the elongation of the sample based on the above-mentioned JOGIS08-2003.
  • the yield point was defined as the temperature at which the sample softened and began to shrink after the sample expanded due to the measured load.
  • the furnace temperature is the temperature measured by a thermocouple installed on the inner wall of the furnace. According to a prior experiment, the temperature of the furnace was read, and immediately after that, the temperature of the sheet glass in the furnace was measured with a radiation thermometer, and it was found that the temperature difference was ⁇ 3 ° C. In this example, since there is a mold and a pressing member, the temperature of the sheet glass cannot be measured directly with a radiation thermometer, so the temperature of the furnace was measured.
  • the crystal phase is determined from the angle of the peak appearing in the X-ray diffraction pattern using an X-ray diffraction analyzer (X'PERT-MPD manufactured by Philips) for the plate-like glass after completion of the manufacturing process, and if necessary, TEMDX (Japan The deposited crystal phase was discriminated using JEM2100F).
  • the transmittance was measured by separately preparing a sample corresponding to each example. Specifically, a raw glass having the same composition as each example was prepared, and a parallel plate having a thickness of 0.5 mm polished to a mirror surface, the same temperature as the deformation process, crystallization process, and slow cooling process of each example. The sample was heat-treated under the same conditions for the same time. With respect to the prepared sample, the spectral transmittance was measured in accordance with Japanese Optical Glass Industry Association Standard JOGIS02-2003 “Measurement Method of Coloring Degree of Optical Glass” to determine transmittance at wavelengths of 410 nm, 500 nm, and 700 nm.
  • the glass sheet was deformed so as to all follow the mold, and a crystallized glass member having a curved surface shape could be obtained in a short time.
  • a desired crystal phase was precipitated with a desired crystal amount and had a high light transmittance.
  • the crystallized glass member obtained in Example 5 was immersed in KNO 3 molten salt at 450 ° C. for 15 minutes, and a compressive stress layer was formed on the surface of the crystallized glass member by a chemical strengthening method.
  • the thickness of the compressive stress layer was measured using a glass surface stress meter FSM-6000LE manufactured by Luceo Co., Ltd.
  • the thickness of the compressive stress layer was 7 ⁇ m, and the surface stress was 1010 MPa.
  • the crystallized glass member obtained in Example 6 was immersed in KNO 3 molten salt at 450 ° C. for 5 minutes, and a compressive stress layer was formed on the surface of the crystallized glass member by a chemical strengthening method.
  • the thickness of the compressive stress layer was measured using a glass surface stress meter FSM-6000LE manufactured by Luceo Co., Ltd.
  • the thickness of the compressive stress layer was 4 ⁇ m, and the surface stress was 950 MPa.
  • the crystallized glass member obtained in Example 4 was immersed in KNO 3 molten salt at 450 ° C. for 6 hours, and a compressive stress layer was formed on the surface of the crystallized glass member by a chemical strengthening method.
  • the thickness of the compressive stress layer was measured using a glass surface stress meter FSM-6000LE manufactured by Luceo Co., Ltd.
  • the thickness of the compressive stress layer was 58 ⁇ m, and the surface stress was 1050 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

第一の温度域内となるように板状ガラスの温度を保持し、前記板状ガラスから結晶を析出させながら、前記板状ガラスに作用する外力によって、前記板状ガラスの少なくとも一部を曲面形状へ変形させる変形工程を有する、曲面形状を有する結晶化ガラス部材の製造方法。前記第一の温度域は、板状ガラスの屈伏点をAt(℃)とするとき、[At-40]℃以上[At+40]℃以下の範囲である、請求項1に記載の曲面形状を有する結晶化ガラス部材の製造方法。

Description

曲面形状を有する結晶化ガラス部材の製造方法
 本発明は曲面形状を有する結晶化ガラス部材の製造方法に関する。
 近年、スマートフォンの意匠の自由度を高めるため、そのカバーガラスや筐体に、曲面形状を有するガラス部材が使用されはじめている。これらのガラス部材の製造においては、板状ガラスを熱加工することにより曲面形状を得ることが、製造コストの面で有利となる。また、これらのガラス部材は、外的要因による衝撃を受けても割れにくいことが必要である。このため、スマートフォンのカバーガラスや筐体のガラス部材に使用されるガラスは、高い機械的強度と優れた熱加工性が求められ、化学強化ガラスが多く選ばれている。しかし、化学強化ガラスの機械的強度は、十分に高いものとは言えない。
 化学強化ガラスのほか、カバーガラスへの使用が検討されている素材としては、サファイアがある。サファイアは高い機械的強度を有するが、単結晶のため、熱加工によって曲面形状とすることは困難であり、研削、研磨等の機械的加工によらなければ、曲面形状が得られない。サファイアの機械加工性はガラスと比較して極度に悪いため、サファイアを用いたカバーガラスは製造コストが高くなってしまう。
 特許文献1には、モバイルディスプレイ用カバーガラスの製造方法が開示されている。
特開2014-94885号公報
 化学強化ガラスより高い機械的強度が得られる材料として、結晶化ガラスがある。結晶化ガラスは、非晶質のガラスを加熱することで、ガラス内部に無数の結晶を析出させた材料である。結晶化ガラスは、結晶を析出させることにより、結晶を析出させる前の原ガラスの物性値より優れた物性値とすることができる。種々の用途に使用する結晶化ガラスは、その使用する用途に合わせ、結晶の析出を制御して製造されている。
 板状の結晶化ガラスを熱加工することにより、曲面形状とすることができれば、スマートフォンのカバーガラスや筐体用途として、優れたガラス部材を得ることができる。
 しかし、結晶が析出した結晶化ガラスは、熱加工性が悪く、曲面形状への加工が困難であるか、熱加工が可能であったとしても、熱加工時の加熱により結晶化が進んでしまい、場合によっては乳白化して透明性を失うことになり、所望の形状と結晶の析出量を両立することが困難であった。
 本発明の課題は、機械的強度が高く、用途に応じた形状と結晶析出量が両立しており、曲面形状を有する結晶化ガラス部材を、低い製造コストで提供することである。特に、スマートフォンのカバーガラスや筐体用途として適した、曲面形状を有する結晶化ガラス部材を、低い製造コストで提供することである。
 本発明者は、鋭意研究を重ねた結果、熱処理に対し結晶化の速度を制御しつつ、板状ガラスから結晶を析出させながら曲面形状へも変形させることができる結晶化ガラスにより、上記課題を解決できることを見いだし、この発明を完成したものであり、その具体的な構成は以下の通りである。
(構成1)
 第一の温度域内となるように板状ガラスの温度を保持し、前記板状ガラスから結晶を析出させながら、前記板状ガラスに作用する外力によって、前記板状ガラスの少なくとも一部を曲面形状へ変形させる変形工程を有する、曲面形状を有する結晶化ガラス部材の製造方法。
(構成2)
 前記第一の温度域は、板状ガラスの屈伏点をAt(℃)とするとき、[At-40]℃以上[At+40]℃以下の範囲である、構成1に記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成3)
 前記板状ガラスは、酸化物換算のモル%で、
SiO成分を30.0%~70.0%、
Al成分を8.0%~25.0%、
NaO成分を0%~25.0%、
MgO成分を0%~25.0%、
ZnO成分を0%~30.0%、
ならびにTiO成分およびZrO成分を合計で0%~10.0%含有する組成からなる、構成1または2に記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成4)
 前記板状ガラスは、酸化物換算のモル%で、
TiO成分を1%~10.0%含有する組成からなる、構成3に記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成5)
 前記板状ガラスは、酸化物換算のモル%で、
ZrO成分を1%~10.0%含有する組成からなる、構成3または4に記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成6)
 前記板状ガラスのガラス転移点をTg(℃)とするとき、前記板状ガラスは、
[Tg]℃以上[At+50]℃以下の範囲の温度条件下において結晶が析出することを特徴とする、構成1から5のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成7)
 前記変形工程は、前記板状ガラスに対して外力が作用する方向に成形型を配置し、前記成形型に前記板状ガラスが沿うことで、前記板状ガラスの少なくとも一部を曲面形状へ変形させる工程である、構成1から6のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成8)
 前記外力の少なくとも一部は、前記板状ガラスに作用する重力である、構成1から7のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成9)
 前記外力の少なくとも一部は、前記板状ガラスの上面に載せたウエイトが前記板状ガラスに及ぼす力である構成1から8のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成10)
 前記外力の少なくとも一部は、押圧部材が前記板状ガラスに及ぼす力である、構成1から9のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成11)
 前記変形工程の後、変形後の板状ガラスの温度を低下させる徐冷工程を有する、構成1から10のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成12)
 前記変形工程の後、第二の温度域内となるように変形後の板状ガラスの温度を保持し、前記変形後の板状ガラスからさらに結晶を析出させる結晶化工程を有する、構成1から11のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成13)
 前記結晶化工程の後、変形後の板状ガラスの温度を低下させる徐冷工程を有する、構成12に記載の曲面形状を有する結晶化ガラス部材の製造方法。
(構成14)
 曲面形状を有し、厚さ0.5mmにおける、波長410nmの光線透過率が86%以上であることを特徴とする、結晶化ガラス部材。
 本発明によれば、用途に応じた形状と結晶析出量が両立しており、曲面形状を有する結晶化ガラス部材を、低い製造コストで提供することができる。本発明で得られる曲面形状を有する結晶化ガラス部材は、機械的強度が高い。また、本発明の製造方法で得られる曲面形状を有する結晶化ガラス部材は、高い可視光域の光線透過率を得ることが可能である。
 本発明の製造方法により得られた曲面形状を有する結晶化ガラス部材は、スマートフォンのカバーガラス、スマートフォンの筐体、時計のカバーガラス、車載用途に使われるHUD(ヘッドアップディスプレイ)用基板や近赤外線センサー用カバーガラス、その他電子機器、機械器具等の部品として、好適に使用することができる。
本発明の変形工程の態様の一例を示す図であり、板状ガラスの断面が現れる方向から見た図である。(a)は変形前、(b)は変形後の図である。 本発明の変形工程の態様一例を示す図であり、板状ガラスの断面が現れる方向から見た図である。(a)は変形前、(b)は変形後の図である。 本発明の変形工程の態様一例を示す図であり、板状ガラスの断面が現れる方向から見た図である。(a)は変形前、(b)は変形後の図である。 本発明の変形工程の態様一例を示す図であり、板状ガラスの断面が現れる方向から見た図である。(a)は変形前、(b)は変形後の図である。 本発明の変形工程の態様一例を示す図であり、板状ガラスの断面が現れる方向から見た図である。(a)は変形前、(b)は変形後の図である。 本発明の変形工程の態様一例を示す図であり、板状ガラスの断面が現れる方向から見た図である。(a)は変形前、(b)は変形後の図である。 本発明の製造方法によって得られる、曲面形状を有する結晶化ガラス部材の一例を示す斜視図である。 本発明の製造方法によって得られる、曲面形状を有する結晶化ガラス部材の一例を示す斜視図である。十字に交差する線は、形状の理解を容易にするための補助線である。 本発明の製造方法によって得られる、曲面形状を有する結晶化ガラス部材の一例を示す斜視図である。
G 板状ガラス
1 支持部材
2 成形型
3 成形型の縁部
4 成形型
5 ウエイト
6 押圧部材
 本発明の曲面形状を有する結晶化ガラス部材の製造方法は、第一の温度域内となるように板状ガラスの温度を保持し、前記板状ガラスから結晶を析出させながら、前記板状ガラスに作用する外力によって、前記板状ガラスの少なくとも一部を曲面形状へ変形させる変形工程を有することを特徴とする。以下、本発明の製造方法について、詳細に説明する。
 [板状ガラスを準備する工程]
 まず、非晶質の板状ガラスを準備する。板状ガラスは、変形後に所望の形状となるような、または所望の形状に近い形状となるような形状としておくことが好ましい。
 板状ガラスの表面は、研磨加工を施して、鏡面としておいても良く、研削後の表面としておいても良い。
 板状ガラスの材料は、加熱することにより結晶が析出するガラス、すなわち、結晶化ガラスの原ガラスであれば良い。
 原ガラスの組成は、特に限定されないが、酸化物換算のモル%で、
SiO成分を30.0%~70.0%、
Al成分を8.0%~25.0%、
NaO成分を0%~25.0%、
MgO成分を0%~25.0%、
ZnO成分を0%~30.0%、
およびTiO成分およびZrO成分を合計で0%~10.0%含有する組成からなるガラスであると、高い機械的強度を有し、可視域の光線透過率が高い結晶化ガラス部材を得ることができ、熱加工により曲面形状へ変形させやすいため、好ましい。
 上記組成の原ガラスは、結晶化により、RAl、RTi、RTiO、RSiO、RAlSiおよびRAlSi18(ただしRはZn、Mg、Feから選択される1種類以上)から選ばれる1種以上の結晶相を有する結晶化ガラスとなる。
 SiO成分は、その下限が50%であることがより好ましく、その上限が65%であることがより好ましい。
 Al成分は、その下限が8%であることがより好ましく、その上限が16%であることがより好ましい。
 NaO成分、その下限が3%であることがより好ましく、その上限が17%であることがより好ましい。
 MgO成分は、その上限が15%であることがより好ましい。
 ZnO成分は、その上限が16%であることがより好ましい。
 TiO成分およびZrO成分の合計の含有量は、その下限が0.5%であることがより好ましく、その上限が10%であることがより好ましく、6%であることが最も好ましい。
 また、原ガラスは、熱加工により曲面形状へ変形させやすく、結晶化ガラス部材が、高い機械的強度を有し、高い可視域の光線透過率を得るため、上記の組成であることに加え、以下の構成であって良い。
 原ガラスの組成は、TiO成分を1%~10.0%含有するものであって良い。
 原ガラスの組成は、ZrO成分を1%~10.0%含有するものであって良い。
 原ガラスの組成は、酸化物基準で表された含有成分のモル比[Al/(MgO+ZnO)]の値が0.5以上2.0以下であって良い。
 原ガラスの組成は、酸化物基準で表された含有成分のモル比[TiO/NaO]の値が0以上0.41以下であって良い。
 原ガラスの組成は、酸化物基準で表された含有成分のモル比[MgO/NaO]の値が0以上1.60以下であって良い。
 原ガラスの組成は、酸化物基準で表された含有成分のモル比[ZnO/MgO]の値が0以上1.50以下であって良い。
 原ガラスの組成は、酸化物換算のモル%で、MgO成分とZnO成分の含有量の合計の値が1.0%以上、30.0%以下であって良い。
 原ガラスの組成は、
成分を0%~25.0%、
成分を0%~10.0%、
O成分を0%~20.0%、
CaO成分を0%~10.0%、
BaO成分を0%~10.0%、
FeO成分を0%~8%、
ZrO成分を0%~10.0%、
SnO成分を0%~5.0%
LiO成分を0%~10.0%、
SrO成分を0%~10.0%、
La成分を0%~3%、
成分を0%~3%、
Nb成分を0%~5%、
Ta成分を0%~5%、
WO成分を0%~5%含有するものであって良い。
 板状ガラスは、板状ガラスのガラス転移点をTg(℃)と、屈伏点をAt(℃)とするとき、[Tg]℃以上[At+50]℃以下の範囲の温度条件下において結晶が析出するものであることが好ましい。前記温度範囲で結晶が析出するような板状ガラスであると、本発明の製造方法によって、曲面形状を有する結晶化ガラス部材を得やすくなる。本発明の製造方法によって、曲面形状を有する結晶化ガラス部材を得やすくするためには、少なくとも[At-20]℃以上[At+20]℃以下の温度範囲で結晶が析出するような板状ガラスであることが、より好ましい。
 板状ガラスは、例えば以下のように作製される。すなわち、上記各成分が所定の含有量の範囲内になるように原料を均一に混合し、混合した原料を白金製や石英製の坩堝に投入し、電気炉やガス炉で1300~1540℃の温度範囲で5~24時間溶融して、溶融ガラスとし、攪拌均質化する。耐火煉瓦製のタンク炉で溶融し、溶融ガラスとしても良い。その後、溶融ガラスを適当な温度に下げてから、金型に鋳込むことでブロック状または、柱状に成形する。ブロック状または柱状に成形したガラスは、徐冷した後、切断加工、研削加工をすることにより、板状に成形する。または、攪拌均質化した後の溶融ガラスを、フロート法、スリットダウンドロー法などの方法を用いて、直接、板状に成形し、その後徐冷をすることで板状ガラスを作製しても良い。
 [変形工程]
 変形工程は、第一の温度域内となるように板状ガラスの温度を保持し、前記板状ガラスから結晶を析出させながら、前記板状ガラスに作用する外力によって、前記板状ガラスの少なくとも一部を曲面形状へ変形させる工程であり、本発明に必須の工程である。
 準備した板状ガラスは、その一部を支持または保持するようにして、炉内に入れ、加熱する。板状ガラスの全面ではなく、一部を支持または保持することにより、板状ガラスが加熱により軟化し、板状ガラスに外力が作用することにより、板状ガラスが曲面形状に変形する。
 前記炉内で、板状ガラスは、第一の温度域内となるようにその温度を保持する。
 第一の温度域は、板状ガラスの屈伏点をAt(℃)とするとき、[At-40]℃以上[At+40]℃以下の範囲であると、板状ガラスから結晶を析出させながら、板状ガラスを曲面形状に変形させることができるため、好ましい。第一温度域の下限は、板状ガラスのガラス転移点をTg(℃)とするとき、[Tg]℃未満としないことが好ましい。第一の温度域の下限は、[At-30]℃がより好ましく、[At-20]℃が最も好ましい。第一の温度域の上限は、[At+30]℃がより好ましく、[At+20]℃が最も好ましい。
 原ガラスの組成が、酸化物換算のモル%で、
SiO成分を30.0%~70.0%、
Al成分を8.0%~25.0%、
NaO成分を0%~25.0%、
MgO成分を0%~25.0%、
ZnO成分を0%~30.0%、
ならびにTiO成分およびZrO成分を0%~10.0%含有するものである場合、第一の温度域は、705℃以上790℃以下であることが好ましい。第一の温度域を前記の範囲とすることで、板状ガラスを曲面形状を有する形状へ変形させることが容易となる。また、第一の温度域を前記の範囲とすることで、高い可視域の光線透過率を有しつつも、機械的強度が高くなる結晶析出量となりやすい。第一の温度域の下限は、715℃であることがより好ましく、720℃であることが最も好ましい。同様に、第一の温度域の上限は、780℃であることがより好ましく、770℃であることが最も好ましい。
 図1から図6の(a)は、前記炉内での、板状ガラスを変形させる前の、板状ガラスの一部を支持または保持する態様を例示したものである。例示の様に、板状ガラスの一部を支持することにより、板状ガラスに外力が作用することで、板状ガラスが曲面形状を有するように変形できる。
 図1の(a)に示した態様は、支持具1によって、板状ガラスの端部を支持している。
 図2の(a)に示した態様は、成形型2の縁部に板状ガラスの端部が保持されている。
 図3及び図4の(a)に示した態様は、凹形状を有する成形型2の縁部に板状ガラスの端部が支持されている。
 図5の(a)に示した態様は、凹形状を有する成形型2の、凹形状を構成する斜面に板状ガラスの端部が支持されている。この態様は、成形型2の縁部の角の接触によって、板状ガラス端部の表面性状が荒れてしまうことが無い点で好ましい。
 図6の(a)に示した態様は、凸形状を有する成形型4の中央部に板状ガラスの中央部が支持されている。
 板状ガラスに作用する外力は、重力、板状ガラスの上面に載せたウエイトが板状ガラスに及ぼす力、押圧部材が板状ガラスに及ぼす力、またはこれらの力の合力であって良い。すなわち、外力の少なくとも一部は、重力であって良く、板状ガラスの上面に載せたウエイトが板状ガラスに及ぼす力であって良く、または押圧部材が板状ガラスに及ぼす力であって良い。
 図1、図2、図5および図6は、板状ガラスに作用する重力によって、板状ガラスが変形する態様を示したものである。
 図4は、板状ガラスの上面に載せたウエイト5が板状ガラスに及ぼす力が、板状ガラスの変形に寄与する態様を示したものである。ウエイト5は重力の作用によって、板状ガラスに力を及ぼしている。
 ウエイトの材料は、SiC、カーボン、NiCrAl合金、ダクタイル鋳鉄、ステンレス鋼、タングステンを主成分とする焼結体、超硬合金等から選択することができる。ウエイトが板状ガラスと接する表面には、ダイヤモンド状炭素膜、水素化アモルファスカーボン膜(a-C:H膜)、硬質炭素膜、テトラヘドラルアモルファスカーボン膜(taC膜)等の炭素含有膜、貴金属合金膜等を設けることが、平滑な表面性状の結晶化ガラス部材が得やすくなり、ウエイトと結晶化ガラス部材の融着を防ぐことが容易となりやすいため、好ましい。
 ウエイトの形状は、その形状を転写することで、結晶化ガラス部材が所望の形状となるものであることが好ましい。
 図3は、押圧部材6が及ぼす力が、板状ガラスの変形に寄与する態様を示したものである。押圧部材6は、図示しない動力源から発生した力が伝達され、板状ガラスに力を及ぼしている。
 押圧部材の材料は、SiC、カーボン、NiCrAl合金、ダクタイル鋳鉄、ステンレス鋼、タングステンを主成分とする焼結体、超硬合金等から選択することができる。押圧部材の材料は、耐熱性が高いことが好ましい。押圧部材が板状ガラスと接する表面には、ダイヤモンド状炭素膜、水素化アモルファスカーボン膜(a-C:H膜)、硬質炭素膜、テトラヘドラルアモルファスカーボン膜(taC膜)等の炭素含有膜、貴金属合金膜等を設けることが、平滑な表面性状の結晶化ガラス部材が得やすくなり、押圧部材と結晶化ガラス部材の融着を防ぐことが容易となりやすいため、好ましい。
 押圧部材の形状は、その形状を転写することで、結晶化ガラス部材が所望の形状となるものであることが好ましい。
 成形型は必須ではないが、板状ガラスに対して外力が作用する方向に成形型を配置し、板状ガラスの少なくとも一部を曲面形状へ変化させることが好ましい。板状ガラスの温度が第一の温度域内の温度となり、板状ガラスが軟化し、成形型に沿うことで、所望の形状が得やすくなるからである。図2から図6の(b)は、成形型に沿うことで、板状ガラスの少なくとも一部が曲面形状へ変化した態様を示している。
 成形型の材料は、SiC、カーボン、NiCrAl合金、ダクタイル鋳鉄、ステンレス鋼、タングステンを主成分とする焼結体、超硬合金等から選択することができる。成形型の材料は、耐熱性が高いことが好ましい。成形型が板状ガラスと接する表面には、ダイヤモンド状炭素膜、水素化アモルファスカーボン膜(a-C:H膜)、硬質炭素膜、テトラヘドラルアモルファスカーボン膜(taC膜)等の炭素含有膜、貴金属合金膜等を設けることが、平滑な表面性状の結晶化ガラス部材が得やすくなり、離型も容易となりやすいため、好ましい。
 成形型の形状は、その形状を転写することで、結晶化ガラス部材が所望の形状となるものであることが好ましい。
 変形工程の時間、すなわち板状ガラスの温度を第一の温度域内となるように保持する時間は、原ガラスの組成により異なるため、適宜調節して良い。
 原ガラスの組成が、酸化物換算のモル%で、
SiO成分を30.0%~70.0%、
Al成分を8.0%~25.0%、
NaO成分を0%~25.0%、
MgO成分を0%~25.0%、
ZnO成分を0%~30.0%、
ならびにTiO成分およびZrO成分を合計で0%~10.0%含有するものである場合、変形工程の時間は、10分以上60分以下であることが好ましい。変形工程の時間を前記の範囲とすることで、板状ガラスを曲面形状を有する形状への変形が容易となる。 変形工程の時間を前記の範囲とすることで、高い可視域の光線透過率を有しつつも、機械的強度が高くなる結晶析出量となりやすい。変形工程の時間は、15分以上50分以下がより好ましく、15分以上45分以下がさらに好ましい。
[結晶化工程]
 結晶化工程は任意の工程である。結晶化工程は、前記変形工程の後、第二の温度域内となるように変形後の板状ガラスの温度を保持し、前記変形後の板状ガラスからさらに結晶を析出させる工程である。結晶化工程は、製造工程の設計上、変形工程における板状ガラスの結晶析出量が所望の結晶析出量に至らない場合に、設けることができる。変形工程で板状ガラスの変形は終了しており、結晶化工程では、板状ガラスは変形することはなく、結晶の析出量が増加する。
 第二の温度域は、その温度の上限が、第一の温度域の温度の上限よりも低い。
 第二の温度域は、板状ガラスのガラス転移点をTg(℃)、屈伏点をAt(℃)とするとき、[Tg]℃以上であることが結晶化を促進するために好ましく、[At]℃以下の範囲であると、材料の乳白化が生じずに板状ガラスから結晶を析出させることができるため、好ましい。
 原ガラスの組成が、酸化物換算のモル%で、
SiO成分を30.0%~70.0%、
Al成分を8.0%~25.0%、
NaO成分を0%~25.0%、
MgO成分を0%~25.0%、
ZnO成分を0%~30.0%、
ならびにTiO成分を0%~10.0%含有するものである場合、第二の温度域は、[Tg]℃以上[At]℃以下であることが好ましい。第二の温度域を前記の範囲とすることで、変形が生じずに板状ガラスから結晶を析出させることができる。第二の温度域は、[Tg]℃以上[At-20]℃以下が材料内部の結晶化を均一に進行させる上でもより好ましい。
[徐冷工程]
 徐冷工程は、変形工程または結晶化工程の後に行われ、変形後の板状ガラスの歪を除去する工程である。徐冷工程は、変形工程または結晶化工程を終えた板状ガラスの温度を、所定の降温速度で所定の目標温度まで下げることにより行う。降温速度は、50℃/hr以上200℃/hr以下であると、板状ガラス内部の歪を十分に除去でき、当該工程に係る時間が必要以上に長時間とならないため好ましい。降温速度は、15℃/hr以上80℃/hr以下であることが、より好ましい。目標温度は、[Tg-200]℃が好ましい。徐冷温度の下限は、[Tg-300]℃が好ましく、より好ましくは[Tg-250]℃であり、さらに好ましくは[Tg-200]℃である。
 徐冷工程が終了した後は、炉から板状ガラスを出し、室温まで自然放冷する。
 変形工程および結晶化工程の温度条件・時間条件を設計するためには、所望の結晶化ガラス部材の結晶析出量に対応する比重をあらかじめ測定して目標比重とし、本発明の製造方法の工程終了後の板状ガラスの比重が、目標比重となるように、変形工程および結晶化工程の温度条件・時間条件を設計すれば良い。
[化学強化]
 本発明の製造方法により得られた曲面形状を有する結晶化ガラス部材は、機械的強度を更に高めるために圧縮応力層を形成させても良い。本発明の製造方法により得られた曲面形状を有する結晶化ガラス部材は、析出結晶によりあらかじめ機械的特性が高いことに加え、圧縮応力層を形成することにより、より高い強度を得ることができる。
 圧縮応力層の形成方法としては、例えば結晶化ガラス部材の表面層に存在するアルカリ成分を、それよりもイオン半径の大きなアルカリ成分と交換反応させ、表面層に圧縮応力層を形成する化学強化法がある。また、結晶化ガラス部材を加熱し、その後急冷する熱強化法、結晶化ガラス部材の表面層にイオンを注入するイオン注入法がある。
 化学強化法は、例えば次の様な工程で実施することができる。結晶化ガラス部材を、カリウムまたはナトリウムを含有する塩、例えば硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)またはその複合塩を350~500℃に加熱した溶融塩に、0.1~12時間接触または浸漬させる。これにより、表面付近のガラス相に存在するリチウム成分(Liイオン)またはナトリウム成分(Naイオン)と、これらよりもイオン半径の大きなアルカリ成分であるナトリウム成分(Naイオン)またはカリウム成分(Kイオン)とのイオン交換反応が進行する。この結果、結晶化ガラス部材の表面部に圧縮応力層が形成される。
[結晶化ガラス部材]
 本発明の製造方法により得られる結晶化ガラス部材は、その厚さが0.5mmであるとき、反射損失を含む波長410mmの光線透過率が86%以上である様な、光線透過率を有する。
 本発明の製造方法を用いて、曲面形状を有する結晶化ガラス部材を製造した。
 まず、結晶化ガラス部材の原ガラスとなる板状のガラスを製造した。各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、塩化物、水酸化物、メタ燐酸化合物等の原料を選定し、これらの原料を表1から表3に示した各実施例の組成の割合になるように秤量して均一に混合した。次に、混合した原料を白金坩堝に投入し、ガラス組成の溶融難易度に応じて電気炉で1300~1550℃の温度範囲で5~24時間溶融した。その後、溶融したガラスを攪拌して均質化してから金型等に鋳込み、徐冷して原ガラスのインゴットを作製した。
 原ガラスのガラス転移点を「ガラス転移点Tg(℃)」、屈伏点を「屈伏点At(℃)」、原ガラスの比重を「原ガラスの比重」として表に記載する。
 作製したインゴットを切断し、研削を行うことにより、厚さ0.55mm、150mm×70mmの長方形の板状ガラスとした。その後、この板状ガラスを研磨加工することにより、板状ガラスの表面を鏡面とした。研磨加工後の板状ガラスの厚さは0.50mmである。
 板状ガラスに対し、図3の態様で変形工程を施した。成形型と押圧部材の材料はステンレス材(SUS304)を用いた。
 成形型の形状は、図7の様な結晶化ガラス部材を成形するための凹形状となっており、平面視の形状が長方形である。成形型の凹部の底面は58mm×160mmの平面である。成形型の凹部の深さは5mmである。成形型の底面の長辺部から半径5mmの円筒内面が接続され、成形型の側壁部を形成している。
 押圧部材の形状は、成形型の形状と対となる凸形状である。
 板状ガラスの長辺部の縁を、成形型の長辺部の縁で支持し、成形型と共に炉内に入れた。炉内では、板状ガラスの上面を押圧部材で330gfの力を及ぼすようにした。炉の温度は、板状ガラスの温度が第一の温度域内となるように調節した。
 変形工程の炉の温度を「変形工程の温度(℃)」、変形工程の時間を「変形工程の時間(分)」、結晶化工程の板状ガラスの炉の温度を「結晶化工程の温度(℃)」、結晶化工程の時間を「結晶化工程の時間(分)」、徐冷工程の炉温の降温速度を「降温速度(℃/hr)」、徐冷工程の最終の炉の温度(目標温度)を「目標温度(℃)」、板状ガラスに析出した結晶相を「結晶相」、結晶化ガラスの比重を「結晶化ガラスの比重」、結晶化ガラス部材(厚さ0.50mm)の波長410nm、500nm、700nmの反射損失を含む光線透過率をそれぞれ「透過率(410nm)(%)」、「透過率(500nm)(%)」、「透過率(700nm)(%)」として、表1に示す。表中の「結晶化工程の温度」の欄に温度の値の記載がない場合は、結晶化工程を施していないことを示す。
 板状ガラスのガラス転移点(Tg)、屈伏点(At)の測定は、以下のように行った。板状ガラスと同じ組成からなる長さ50mm、直径4±0.5mmの丸棒状の試料を作製した。この試料について、ブルカー・エイエックス株式会社のTD5000SA熱膨張計高温測定機を用い、日本光学硝子工業会規格JOGIS08-2003「光学ガラスの熱膨張の測定方法」に準じて温度と試料の伸びを測定した。試料には、長さ方向に10gfの測定荷重が付加されている。ガラス転移点(Tg)は前記JOGIS08-2003に基づき、温度と試料の伸びを測定して得られた熱膨張曲線から決定した。屈伏点は、測定荷重によって、試料が膨張した後、試料が軟化して収縮に転じたときの温度とした。
 なお、炉の温度は炉の内壁に設置した熱電対で計測した温度である。事前の実験により、炉の温度を読み取り、その直後に炉内の板状ガラスの温度を放射温度計で測定したところ、その温度差は±3℃であることが判明している。今回の実施例では、成形型や押圧部材があるために放射温度計によって板状ガラスの温度を直接測定できないため、炉の温度を測定した。
結晶相は、製造工程終了後の板状ガラスについて、X線回折分析装置(Philips製X’PERT-MPD)を用いてX線回折図形において現れるピークの角度から、および必要に応じてTEMEDX(日本電子製JEM2100F)を用いて、析出した結晶相を判別した。
 透過率は、各実施例に相当するサンプルを別途用意して測定した。具体的には、各実施例と同じ組成を有する原ガラスを作製し、鏡面に研磨した厚さ0.5mmの平行平板として、各実施例の変形工程、結晶化工程、徐冷工程と同じ温度条件、同じ時間条件下で熱処理したものをサンプルとした。
 作製したサンプルについて、日本光学硝子工業会規格JOGIS02-2003「光学ガラスの着色度の測定方法」に準じて、分光透過率を測定し、波長410nm、500nm、700nmの透過率を求めた。







Figure JPOXMLDOC01-appb-T000001




Figure JPOXMLDOC01-appb-T000002





Figure JPOXMLDOC01-appb-T000003
 実施例1から11においては、全て成形型に沿うように板状ガラスが変形し、短時間で曲面形状を有する結晶化ガラス部材を得ることができた。得られた結晶化ガラス部材は、所望の結晶相が所望の結晶量で析出しており、高い光線透過率を有していた。
 実施例5で得られた結晶化ガラス部材を450℃のKNO溶融塩中に15分浸漬し、化学強化法によって、結晶化ガラス部材の表面に圧縮応力層を形成した。圧縮応力層の厚みを、株式会社ルケオ製のガラス表面応力計FSM-6000LEを用いて測定した。圧縮応力層の厚みは7μmであり、表面応力は1010MPaであった。
 実施例6で得られた結晶化ガラス部材を450℃のKNO溶融塩中に5分間浸漬し、化学強化法によって、結晶化ガラス部材の表面に圧縮応力層を形成した。圧縮応力層の厚みを、株式会社ルケオ製のガラス表面応力計FSM-6000LEを用いて測定した。圧縮応力層の厚みは4μmであり、表面応力は950MPaであった。
 実施例4で得られた結晶化ガラス部材を450℃のKNO溶融塩中に6時間浸漬し、化学強化法によって、結晶化ガラス部材の表面に圧縮応力層を形成した。圧縮応力層の厚みを、株式会社ルケオ製のガラス表面応力計FSM-6000LEを用いて測定した。圧縮応力層の厚みは58μmであり、表面応力は1050MPaであった。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献および本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (14)

  1.  第一の温度域内となるように板状ガラスの温度を保持し、前記板状ガラスから結晶を析出させながら、前記板状ガラスに作用する外力によって、前記板状ガラスの少なくとも一部を曲面形状へ変形させる変形工程を有する、曲面形状を有する結晶化ガラス部材の製造方法。
  2.  前記第一の温度域は、板状ガラスの屈伏点をAt(℃)とするとき、[At-40]℃以上[At+40]℃以下の範囲である、請求項1に記載の曲面形状を有する結晶化ガラス部材の製造方法。
  3.  前記板状ガラスは、酸化物換算のモル%で、
    SiO成分を30.0%~70.0%、
    Al成分を8.0%~25.0%、
    NaO成分を0%~25.0%、
    MgO成分を0%~25.0%、
    ZnO成分を0%~30.0%、
    ならびにTiO成分およびZrO成分を合計で0%~10.0%含有する組成からなる、請求項1または2に記載の曲面形状を有する結晶化ガラス部材の製造方法。
  4.  前記板状ガラスは、酸化物換算のモル%で、
    TiO成分を1%~10.0%含有する組成からなる、請求項3に記載の曲面形状を有する結晶化ガラス部材の製造方法。
  5.  前記板状ガラスは、酸化物換算のモル%で、
    ZrO成分を1%~10.0%含有する組成からなる、請求項3または4に記載の曲面形状を有する結晶化ガラス部材の製造方法。
  6.  前記板状ガラスのガラス転移点をTg(℃)とするとき、前記板状ガラスは、
    [Tg]℃以上[At+50]℃以下の範囲の温度条件下において結晶が析出することを特徴とする、請求項1から5のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
  7.  前記変形工程は、前記板状ガラスに対して外力が作用する方向に成形型を配置し、前記成形型に前記板状ガラスが沿うことで、前記板状ガラスの少なくとも一部を曲面形状へ変形させる工程である、請求項1から6のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
  8.  前記外力の少なくとも一部は、前記板状ガラスに作用する重力である、請求項1から7のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
  9.  前記外力の少なくとも一部は、前記板状ガラスの上面に載せたウエイトが前記板状ガラスに及ぼす力である請求項1から8のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
  10.  前記外力の少なくとも一部は、押圧部材が前記板状ガラスに及ぼす力である、請求項1から9のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
  11.  前記変形工程の後、変形後の板状ガラスの温度を低下させる徐冷工程を有する、請求項1から10のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
  12.  前記変形工程の後、第二の温度域内となるように変形後の板状ガラスの温度を保持し、前記変形後の板状ガラスからさらに結晶を析出させる結晶化工程を有する、請求項1から11のいずれかに記載の曲面形状を有する結晶化ガラス部材の製造方法。
  13.  前記結晶化工程の後、変形後の板状ガラスの温度を低下させる徐冷工程を有する、請求項12に記載の曲面形状を有する結晶化ガラス部材の製造方法。
  14.  曲面形状を有し、厚さ0.5mmにおける、波長410nmの光線透過率が86%以上であることを特徴とする、結晶化ガラス部材。
PCT/JP2017/012076 2016-04-14 2017-03-24 曲面形状を有する結晶化ガラス部材の製造方法 WO2017179401A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780023744.7A CN109071303B (zh) 2016-04-14 2017-03-24 具有曲面形状的结晶化玻璃部件的制造方法
DE112017001306.2T DE112017001306T5 (de) 2016-04-14 2017-03-24 Verfahren zum Herstellen eines kristallisierten Glaselements mit gekrümmter Form
KR1020187029333A KR102291897B1 (ko) 2016-04-14 2017-03-24 곡면 형상을 갖는 결정화 유리 부재의 제조 방법
US16/092,313 US20210206684A1 (en) 2016-04-14 2017-03-24 Method for manufacturing crystallized glass member having curved shape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-081167 2016-04-14
JP2016081167A JP6685597B2 (ja) 2016-04-14 2016-04-14 曲面形状を有する結晶化ガラス部材の製造方法

Publications (1)

Publication Number Publication Date
WO2017179401A1 true WO2017179401A1 (ja) 2017-10-19

Family

ID=60041518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012076 WO2017179401A1 (ja) 2016-04-14 2017-03-24 曲面形状を有する結晶化ガラス部材の製造方法

Country Status (7)

Country Link
US (1) US20210206684A1 (ja)
JP (1) JP6685597B2 (ja)
KR (1) KR102291897B1 (ja)
CN (1) CN109071303B (ja)
DE (1) DE112017001306T5 (ja)
TW (3) TW202216619A (ja)
WO (1) WO2017179401A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200346969A1 (en) * 2018-02-27 2020-11-05 AGC Inc. Crystallized glass of three-dimensional shape, chemically strengthened glass of three-dimensional shape, and method for producing crystallized glass of three-dimensional shape and chemically strengthened glass of three-dimensional shape
TWI821271B (zh) * 2018-04-20 2023-11-11 日商小原股份有限公司 具有曲面形狀之結晶化玻璃構件的製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055690B1 (ko) * 2017-12-21 2019-12-16 삼성디스플레이 주식회사 글래스 성형 장치, 글래스 성형 장치의 동작 방법, 및 글래스 성형 방법
CN112512984B (zh) 2018-08-09 2022-11-15 株式会社小原 结晶化玻璃基板
US11926561B2 (en) 2018-08-09 2024-03-12 Ohara Inc. Crystallized glass substrate
KR20210040965A (ko) 2018-08-09 2021-04-14 가부시키가이샤 오하라 결정화 유리 기판
WO2020031338A1 (ja) 2018-08-09 2020-02-13 株式会社 オハラ 結晶化ガラス基板
EP3877345A1 (en) 2018-11-05 2021-09-15 Corning Incorporated Methods of making three dimensional glass ceramic articles
KR20220060582A (ko) * 2020-11-04 2022-05-12 삼성디스플레이 주식회사 윈도우 성형 장치 및 이를 이용한 윈도우 성형 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049145B2 (ja) * 1980-01-26 1985-10-31 日本電気硝子株式会社 結晶化ガラスの製造方法
JPH06508097A (ja) * 1992-01-08 1994-09-14 リビー−オーウェンズ−フォード・カンパニー 板ガラスの曲げ加工方法及び装置
JPH08104539A (ja) * 1994-09-30 1996-04-23 Central Glass Co Ltd 透明非膨張性結晶化ガラス
JP2003054965A (ja) * 2001-08-08 2003-02-26 Minolta Co Ltd ガラスのプレス成形方法および該方法を用いたハードディスク用ガラス基板の製造方法
JP2004309021A (ja) * 2003-04-08 2004-11-04 Nippon Electric Glass Co Ltd ストーブ用透明ガラス板およびその製造方法
JP2012091995A (ja) * 2010-09-28 2012-05-17 Nippon Electric Glass Co Ltd ガラス曲板の製造方法
JP2016037424A (ja) * 2014-08-08 2016-03-22 日本電気硝子株式会社 ガラス板の熱処理方法及び成形方法
JP2016169116A (ja) * 2015-03-11 2016-09-23 日本電気硝子株式会社 板状物の成形方法、及び成形型

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065368A1 (en) * 2008-11-25 2010-06-10 Corning Incorporated Progressive pressing to form a glass article
DE102009012018B4 (de) * 2009-03-10 2018-11-22 Schott Ag Verfahren zur Herstellung von abgewinkelten Glaskeramikbauteilen und nach einem solchen Verfahren hergestelltes Glaskeramikbauteil
DE102009017547B4 (de) 2009-03-31 2022-06-09 Schott Ag Infrarot-Strahlung reflektierende Glas- oder Glaskeramikscheibe und Verfahren zu deren Herstellung
JP4815002B2 (ja) * 2009-06-04 2011-11-16 株式会社オハラ 情報記録媒体用結晶化ガラス基板およびその製造方法
JP4774466B1 (ja) 2009-06-04 2011-09-14 株式会社オハラ 情報記録媒体用結晶化ガラス基板およびその製造方法
JP2014094885A (ja) 2012-10-10 2014-05-22 Nippon Electric Glass Co Ltd モバイルディスプレイ用カバーガラスの製造方法
US9604871B2 (en) * 2012-11-08 2017-03-28 Corning Incorporated Durable glass ceramic cover glass for electronic devices
US9409815B2 (en) * 2014-04-04 2016-08-09 Corning Incorporated Opaque colored glass-ceramics comprising nepheline crystal phases
JP6049145B2 (ja) 2014-07-23 2016-12-21 日本特殊陶業株式会社 タッチセンサ用配線基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049145B2 (ja) * 1980-01-26 1985-10-31 日本電気硝子株式会社 結晶化ガラスの製造方法
JPH06508097A (ja) * 1992-01-08 1994-09-14 リビー−オーウェンズ−フォード・カンパニー 板ガラスの曲げ加工方法及び装置
JPH08104539A (ja) * 1994-09-30 1996-04-23 Central Glass Co Ltd 透明非膨張性結晶化ガラス
JP2003054965A (ja) * 2001-08-08 2003-02-26 Minolta Co Ltd ガラスのプレス成形方法および該方法を用いたハードディスク用ガラス基板の製造方法
JP2004309021A (ja) * 2003-04-08 2004-11-04 Nippon Electric Glass Co Ltd ストーブ用透明ガラス板およびその製造方法
JP2012091995A (ja) * 2010-09-28 2012-05-17 Nippon Electric Glass Co Ltd ガラス曲板の製造方法
JP2016037424A (ja) * 2014-08-08 2016-03-22 日本電気硝子株式会社 ガラス板の熱処理方法及び成形方法
JP2016169116A (ja) * 2015-03-11 2016-09-23 日本電気硝子株式会社 板状物の成形方法、及び成形型

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200346969A1 (en) * 2018-02-27 2020-11-05 AGC Inc. Crystallized glass of three-dimensional shape, chemically strengthened glass of three-dimensional shape, and method for producing crystallized glass of three-dimensional shape and chemically strengthened glass of three-dimensional shape
TWI821271B (zh) * 2018-04-20 2023-11-11 日商小原股份有限公司 具有曲面形狀之結晶化玻璃構件的製造方法

Also Published As

Publication number Publication date
DE112017001306T5 (de) 2018-12-20
TW202124302A (zh) 2021-07-01
US20210206684A1 (en) 2021-07-08
TW202216619A (zh) 2022-05-01
CN109071303B (zh) 2022-02-25
KR102291897B1 (ko) 2021-08-20
JP2017190265A (ja) 2017-10-19
TWI724153B (zh) 2021-04-11
CN109071303A (zh) 2018-12-21
TWI818239B (zh) 2023-10-11
JP6685597B2 (ja) 2020-04-22
TW201806889A (zh) 2018-03-01
KR20180130516A (ko) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2017179401A1 (ja) 曲面形状を有する結晶化ガラス部材の製造方法
US20220064054A1 (en) Crystallized glass of three-dimensional shape, chemically strengthened glass of three-dimensional shape, and method for producing crystallized glass of three-dimensional shape and chemically strengthened glass of three-dimensional shape
JP5918148B2 (ja) 3次元精密成形用薄リチウムアルミノケイ酸ガラス
JP7351334B2 (ja) 結晶化ガラス及び化学強化ガラス並びにそれらの製造方法
JP4350016B2 (ja) 光学ガラス、精密プレス成形用プリフォームとその製造方法、ならびに光学素子とその製造方法
EP1900696A1 (en) Crystallized glass, and method for producing crystallized glass
TW567174B (en) Transparent gallate glass-ceramics
TWI821271B (zh) 具有曲面形狀之結晶化玻璃構件的製造方法
CN106029594A (zh) 高均匀性玻璃陶瓷部件
JP2005298262A (ja) 光学素子の量産方法
US20160090324A1 (en) Pore-free ceramic component
JP4367019B2 (ja) 無鉛光学ガラスおよび光ファイバ
JP7149595B2 (ja) ガラス及び結晶化ガラス
JP2019196296A (ja) 光学ガラス、光学素子、光学機器、光学ガラスの製造方法および光学レンズの製造方法
WO2023113041A1 (ja) 結晶化ガラス、3次元形状の結晶化ガラスおよびその製造方法
WO2024130985A1 (zh) 一种具有高耐划伤性的强化微晶玻璃
WO2024131064A1 (zh) 一种微晶玻璃、曲面微晶玻璃及其应用
JP2023534353A (ja) 曲げガラスおよびその作製方法、ならびに電子デバイス
CN110002742A (zh) 一种电子设备面板及包含其的电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187029333

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782219

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782219

Country of ref document: EP

Kind code of ref document: A1