WO2017163743A1 - 有機インターポーザ及び有機インターポーザの製造方法 - Google Patents

有機インターポーザ及び有機インターポーザの製造方法 Download PDF

Info

Publication number
WO2017163743A1
WO2017163743A1 PCT/JP2017/006840 JP2017006840W WO2017163743A1 WO 2017163743 A1 WO2017163743 A1 WO 2017163743A1 JP 2017006840 W JP2017006840 W JP 2017006840W WO 2017163743 A1 WO2017163743 A1 WO 2017163743A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic insulating
wiring
barrier metal
metal film
organic
Prior art date
Application number
PCT/JP2017/006840
Other languages
English (en)
French (fr)
Inventor
一行 満倉
正也 鳥羽
芳則 江尻
蔵渕 和彦
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020217038954A priority Critical patent/KR20210150593A/ko
Priority to US16/087,269 priority patent/US10756008B2/en
Priority to JP2018507153A priority patent/JP6741063B2/ja
Priority to CN202311570231.1A priority patent/CN117577592A/zh
Priority to KR1020187026837A priority patent/KR102334181B1/ko
Priority to CN201780019216.4A priority patent/CN108886028A/zh
Publication of WO2017163743A1 publication Critical patent/WO2017163743A1/ja
Priority to US16/983,012 priority patent/US11562951B2/en
Priority to US18/068,032 priority patent/US11990396B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06506Wire or wire-like electrical connections between devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present disclosure relates to an organic interposer and a method for manufacturing the organic interposer.
  • Non-Patent Document 1 and Non-Patent Document 2 describe a package-on-package (PoP) mode in which different packages are stacked on each other by flip-chip mounting. This PoP is an aspect widely adopted in smartphones, tablet terminals and the like.
  • a package technology (organic interposer) using an organic substrate having high-density wiring, a fan-out type having a through mold via (TMV: Through Mold Via) Package technology (FO-WLP: Fun Out-Wafer Level Package), packaging technology using silicon or glass interposer, packaging technology using through silicon vias (TSV: Through Silicon Via), chip embedded in substrate between chips
  • TSV Through Mold Via
  • An organic interposer having a laminated body (organic insulating laminated body) in which a plurality of organic insulating layers are laminated is used for a build-up substrate, a wafer level package (WLP), a fan-out PoP bottom package, or the like. is there.
  • a plurality of fine wirings having a line width and a space width of 10 ⁇ m or less are arranged in the organic insulating laminate, the wirings are formed using a trench method.
  • the trench method is a method in which a metal layer to be a wiring is formed by plating or the like in a trench (groove) formed on the surface of an organic insulating layer. For this reason, the shape of the wiring formed on the organic insulating layer is along the shape of the groove.
  • a metal material having high conductivity such as copper may be used in order to reduce the cost and suppress the increase in wiring resistance.
  • the metal material may diffuse into the organic insulating laminate. In this case, wirings may be short-circuited via the diffused metal material, and there is a problem in the insulation reliability of the organic interposer.
  • An object of the present invention is to provide an organic interposer capable of improving insulation reliability and a method for manufacturing the same.
  • An organic interposer includes an organic insulating stacked body including a plurality of organic insulating layers, and a plurality of wirings arranged in the organic insulating stacked body. Is partitioned by a barrier metal film.
  • the wiring and the organic insulating layer are partitioned by a barrier metal film. For this reason, the diffusion of the metal material into the organic insulating laminate in the wiring is suppressed by the barrier metal film. Therefore, since the short circuit between the plurality of wirings via the diffused metal material can be suppressed, the insulation reliability of the organic interposer can be improved.
  • the organic insulating laminate includes a first organic insulating layer having a plurality of grooves in which wirings are arranged, and a second organic insulating layer stacked on the first organic insulating layer so as to embed the wirings.
  • each of the plurality of wirings has a shape along the groove portion of the first organic insulating layer. For this reason, a fine wiring can be easily formed by forming a plurality of grooves having a fine width and interval.
  • the barrier metal film includes a first barrier metal film provided between the wiring and the inner surface of the groove, and a second barrier metal film provided between the wiring and the second organic insulating layer. But you can. In this case, the diffusion of the metal material into the first organic insulating layer in the wiring is favorably suppressed by the first barrier metal film. Further, the diffusion of the metal material into the second organic insulating layer is satisfactorily suppressed by the second barrier metal film.
  • the first barrier metal film may include at least one of titanium, nickel, palladium, chromium, tantalum, tungsten, and gold. Since titanium, nickel, palladium, chromium, tantalum, tungsten, and gold are all difficult to diffuse into the first and second organic insulating layers, the insulation reliability of the organic interposer can be further improved.
  • the second barrier metal film may be a plating film.
  • the second barrier metal film can be selectively formed on the wiring in the trench, the manufacturing process of the organic interposer can be simplified.
  • the second barrier metal film may be a nickel plating film.
  • the second barrier metal film having good flatness can be easily formed.
  • nickel since nickel hardly diffuses into the first and second organic insulating layers, the insulation reliability of the organic interposer can be preferably improved.
  • the second barrier metal film may be a palladium plating film.
  • the second barrier metal film can be easily thinned.
  • palladium hardly diffuses into the first and second organic insulating layers, the insulation reliability of the organic interposer can be preferably improved.
  • the thickness of the second barrier metal film may be 0.001 ⁇ m or more and 1 ⁇ m or less. In this case, the diffusion of the metal material into the second organic insulating layer in the wiring is favorably suppressed by the second barrier metal film.
  • the surface roughness of the second barrier metal film may be 0.01 ⁇ m or more and 1 ⁇ m or less. In this case, the second barrier metal film can be satisfactorily adhered to the second organic insulating layer. Further, disconnection or the like in the organic interposer due to the surface roughness of the second barrier metal film can be suppressed.
  • the thickness of the first organic insulating layer may be 1 ⁇ m or more and 10 ⁇ m or less. In this case, a plurality of groove portions having a width and an interval of 10 ⁇ m or less can be formed using the first organic insulating layer.
  • the first organic insulating layer may be a cured film obtained by curing a photosensitive organic insulating resin including a photoacid generator, a compound having a phenolic hydroxyl group, and a thermosetting resin.
  • a groove having a fine width and interval can be easily formed in the first organic insulating layer.
  • the moisture contained in the first organic insulating layer can be reduced, it is difficult for the metal material to diffuse into the first organic insulating layer. Therefore, the insulation reliability of the organic interposer can be improved.
  • the method for manufacturing an organic interposer includes a first step of forming a plurality of grooves in the first organic insulating layer, and a method on the first organic insulating layer so as to cover the inner surface of the grooves.
  • a sixth step of forming an organic insulating layer includes a first step of forming a plurality of grooves in the first organic insulating layer, and a method on the first organic insulating layer so as to cover the inner surface of the grooves.
  • the first barrier metal film can be formed between the inner surface of each groove and the wiring layer through the first to third steps. Further, through the fourth to sixth steps, the second barrier metal film can be formed between the wiring layer and the second organic insulating layer in the stacking direction of the organic insulating layers. For this reason, the diffusion of the metal material into the first and second organic insulating layers in the wiring layer is suppressed by the first and second barrier metal films. Therefore, since the short circuit between the plurality of wirings via the diffused metal material can be suppressed, the insulation reliability of the organic interposer can be improved.
  • the wiring layer may be formed by a plating method using the first barrier metal film as a seed layer.
  • the wiring layer can be formed such that the first barrier metal film is sandwiched between the first organic insulating layer and the wiring layer. Thereby, the spreading
  • the second barrier metal film may be formed by a plating method using the wiring layer as a seed layer. In this case, since the second barrier metal film can be selectively formed on the wiring layer, the manufacturing process of the organic interposer can be simplified.
  • the second barrier metal film may be formed so as to fill the trench.
  • the second barrier metal film is formed so as to be buried in the groove, it is possible to suppress formation of a step due to the second barrier metal film in the organic interposer. Thereby, a semiconductor element etc. can be favorably mounted in an organic interposer.
  • an organic interposer having good insulation reliability and a method for manufacturing the same can be provided.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor package having an organic interposer according to this embodiment.
  • FIG. 2 is a schematic cross-sectional view of the organic interposer according to this embodiment.
  • 3A to 3C are views for explaining a method for manufacturing an organic interposer.
  • 4A and 4B are views for explaining a method for manufacturing an organic interposer.
  • 5A and 5B are views for explaining a method for manufacturing an organic interposer.
  • 6A and 6B are views for explaining a method for manufacturing an organic interposer.
  • 7A and 7B are views for explaining a method for manufacturing an organic interposer.
  • FIGS. 8A and 8B are diagrams for explaining a method of manufacturing an organic interposer.
  • FIGS. 8A and 8B are diagrams for explaining a method of manufacturing an organic interposer.
  • FIGS. 10A and 10B are views for explaining a method for manufacturing an organic interposer.
  • FIGS. 10A and 10B are views for explaining a method for manufacturing an organic interposer.
  • FIG. 11A is a plan view showing a measurement evaluation sample of the example, and FIG. 11B is a cross-sectional view taken along line XIb-XIb in FIG. 11A.
  • 12A is a plan view showing a measurement evaluation sample of a comparative example, and FIG. 12B is a cross-sectional view taken along line XIIb-XIIb in FIG. 12A.
  • 13A is a graph showing the results of the high acceleration life test of Example 2 and Comparative Example 2
  • FIG. 13B is the result of the high acceleration life test of Example 3 and Comparative Example 3.
  • FIG. 14A shows the EDX analysis result of Cu in the cross-sectional sample of the measurement evaluation sample of Example 3, and FIG. 14B shows the EDX analysis result of Ti in the cross-sectional sample.
  • FIG. 14B shows the EDX analysis result of Ti in the cross-sectional sample.
  • FIG. These are the EDX analysis results of Ni in the cross-sectional sample.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor package having an organic interposer according to this embodiment.
  • the organic interposer of the present disclosure is preferably used in a package form that requires an interposer in which different types of chips are mixedly mounted.
  • a semiconductor package 100 is a device in which semiconductor chips 2A and 2B are mounted on an organic interposer 10 provided on a substrate 1.
  • the semiconductor chips 2A and 2B are respectively fixed on the organic interposer 10 by corresponding underfills 3A and 3B, and are electrically connected to each other via surface wiring 16 (details will be described later) provided in the organic interposer 10.
  • the substrate 1 is a sealing body formed by sealing the semiconductor chips 2C and 2D and the electrodes 5A and 5B with an insulating material 4.
  • the semiconductor chips 2C and 2D in the substrate 1 can be connected to an external device through electrodes exposed from the insulating material 4.
  • the electrodes 5A and 5B function as a conductive path for electrically connecting the organic interposer 10 and an external device, for example.
  • Each of the semiconductor chips 2A to 2D is, for example, a volatile memory such as a graphic processing unit (GPU), a dynamic random access memory (DRAM) or a static random access memory (SRAM), or a nonvolatile memory such as a flash memory.
  • RF chip silicon photonics chip, MEMS (Micro Electro Mechanical Systems), sensor chip, etc.
  • the semiconductor chips 2A to 2D may have a TSV.
  • a semiconductor element stacked with semiconductor elements can be used. In this case, a semiconductor element stacked using TSV can be used.
  • the thickness of the semiconductor chips 2A and 2B is, for example, 200 ⁇ m or less.
  • the thickness of the semiconductor chips 2A and 2B is preferably 100 ⁇ m or less. Further, from the viewpoint of handleability, the thickness of the semiconductor chips 2A and 2B is more preferably 30 ⁇ m or more.
  • the underfills 3A and 3B are, for example, capillary underfill (CUF), mold underfill (MUF), paste underfill (NCP), film underfill (NCF), or photosensitive underfill.
  • the underfills 3A and 3B are each composed mainly of a liquid curable resin (for example, epoxy resin).
  • the insulating material 4 is a curable resin having insulating properties, for example.
  • the organic interposer 10 in the present embodiment is an organic substrate that supports a semiconductor element or the like.
  • a build-up substrate in which a material (prepreg) in which a resin is impregnated with glass cloth or carbon fiber is laminated a wafer level package substrate, A coreless substrate, a substrate manufactured by thermosetting a sealing material, and a substrate in which a chip is sealed or embedded.
  • the shape of the organic interposer 10 depends on the shape of the substrate 11 to be described later, and may be a wafer shape (substantially circular shape in plan view) or a panel shape (substantially rectangular shape in plan view).
  • the thermal expansion coefficient of the organic interposer 10 is 40 ppm / degrees C or less from a viewpoint of curvature suppression, for example. From the viewpoint of the insulation reliability of the organic interposer 10, the thermal expansion coefficient is preferably 20 ppm / ° C. or less.
  • the organic interposer 10 provided on the substrate 11 shown in FIG. 2 includes an organic insulating laminated body 12 including a plurality of organic insulating layers, a plurality of wirings 13 arranged in the organic insulating laminated body 12, and a wiring 13 A barrier metal film 14 covering the organic insulating laminated body 12, and a surface wiring 16 formed on and near the surface of the organic insulating laminated body 12.
  • the substrate 11 is a support that supports the organic interposer 10.
  • the shape of the substrate 11 in plan view is, for example, a circular shape or a rectangular shape.
  • the substrate 11 has a diameter of 200 mm to 450 mm, for example.
  • one side of the substrate 11 is, for example, 300 mm to 700 mm.
  • the substrate 11 is, for example, a silicon substrate, a glass substrate, or a peelable copper foil.
  • the substrate 11 may be, for example, a build-up substrate, a wafer level package substrate, a coreless substrate, a substrate manufactured by thermosetting a sealing material, or a substrate in which a chip is sealed or embedded.
  • a temporary fixing layer (not shown) that temporarily fixes the organic interposer 10 and the substrate 11 may be provided. In this case, the substrate 11 can be easily peeled from the organic interposer 10 by removing the temporary fixing layer.
  • peelable copper foil is a laminated body in which a support body, a peeling layer, and copper foil overlapped in order. In the peelable copper foil, the support corresponds to the substrate 11, and the copper foil corresponds to the material of a part of the copper wiring included in the through wiring 15.
  • the organic insulating laminated body 12 includes a first organic insulating layer 21 having a plurality of groove portions 21a in which corresponding wirings 13 are arranged, and a second organic laminated layer 21 stacked on the first organic insulating layer 21 so as to embed the wirings 13. And an organic insulating layer 22.
  • the organic insulating laminate 12 is provided with a plurality of openings 12a in which through wirings 15 are provided.
  • the plurality of grooves 21 a are provided on the surface of the first organic insulating layer 21 opposite to the substrate 11. In the cross section along the direction orthogonal to the extending direction of the groove 21a, each of the grooves 21a has a substantially rectangular shape. For this reason, the inner surface of the groove 21a has a side surface and a bottom surface.
  • the plurality of groove portions 21a have a predetermined line width L and space width S. Each of the line width L and the space width S is, for example, 0.5 ⁇ m to 10 ⁇ m, preferably 0.5 ⁇ m to 5 ⁇ m, and more preferably 2 ⁇ m to 5 ⁇ m.
  • the line width L is preferably 1 ⁇ m to 5 ⁇ m.
  • the line width L and the space width S may be set to be the same as each other or may be set to be different from each other.
  • the line width L corresponds to the width of the groove 21a in a direction orthogonal to the extending direction of the groove 21a in plan view.
  • the space width S corresponds to the distance between adjacent groove portions 21a.
  • the depth of the groove 21a corresponds to, for example, the thickness of a fourth organic insulating layer 24 described later.
  • the surface roughness of the inner surface of the groove 21a is preferably 0.01 ⁇ m to 0.1 ⁇ m.
  • the surface roughness is 0.01 ⁇ m or more, the adhesion of the object that is in close contact with the first organic insulating layer 21 in the groove 21a and the temperature cycle resistance are improved.
  • the surface roughness is 0.1 ⁇ m or less, a short circuit of the wiring 13 is suppressed, and the high frequency characteristics of the wiring 13 tend to be improved.
  • the surface roughness of the inner surface of the groove 21a is calculated, for example, by observing the cross section of the groove 21a with an electron microscope.
  • the said surface roughness is arithmetic mean roughness (Ra) prescribed
  • the temperature cycle resistance is resistance to volume change, performance deterioration, breakage and the like accompanying temperature change.
  • the first organic insulating layer 21 is provided between the substrate 11 and the second organic insulating layer 22.
  • the storage elastic modulus of the first organic insulating layer 21 at room temperature is, for example, 500 MPa to 1000 GPa.
  • the storage elastic modulus is 500 MPa or more, stretching during grinding of the first organic insulating layer 21 can be suppressed. Thereby, it can prevent that the extended resin material covers the wiring 13 in the groove part 21a, for example.
  • the storage elastic modulus is 10 GPa or less, for example, breakage of the grinding blade can be prevented, and as a result, the increase in the surface roughness of the first organic insulating layer 21 and the like can be suppressed.
  • Room temperature refers to about 25 ° C.
  • the first organic insulating layer 21 includes a third organic insulating layer 23 located on the substrate 11 side and a fourth organic insulating layer 24 located on the second organic insulating layer 22 side.
  • a part of the fourth organic insulating layer 24 is provided with a plurality of openings corresponding to the grooves 21a.
  • the surface of the third organic insulating layer 23 exposed through these openings constitutes the bottom surface on the inner surface of the groove 21a.
  • each side surface of the inner surface of the groove portion 21 a is configured by the fourth organic insulating layer 24.
  • the thicknesses of the third organic insulating layer 23 and the fourth organic insulating layer 24 are, for example, 0.5 ⁇ m to 10 ⁇ m, respectively. For this reason, the thickness of the first organic insulating layer 21 is, for example, 1 ⁇ m to 20 ⁇ m. When the thickness of the first organic insulating layer 21 is 1 ⁇ m or more, the first organic insulating layer 21 contributes to stress relaxation of the organic insulating stacked body 12 and the temperature cycle resistance of the organic insulating stacked body 12 is improved. Can do.
  • the thickness of the first organic insulating layer 21 is 20 ⁇ m or less, warpage of the organic insulating laminated body 12 is suppressed, and for example, when the organic insulating laminated body 12 is ground, wirings and the like can be easily exposed. From the viewpoint of forming the wiring 13 having a width of 3 ⁇ m or less by performing exposure and development, the thickness of the first organic insulating layer 21 is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • Each of the first organic insulating layer 21 and the second organic insulating layer 22 in the organic insulating laminate 12 is, for example, a liquid or a film and includes a curable insulating material.
  • a film-like material organic insulating material
  • the film-like organic insulating material is preferably laminateable at 40 ° C. to 120 ° C. By setting the temperature at which lamination is possible to 40 ° C.
  • the thermal expansion coefficient of the organic insulating material after curing is, for example, 80 ppm / ° C. or less from the viewpoint of suppressing warpage of the organic insulating layer (and the organic insulating laminate 12). From the viewpoint of insulation reliability of the organic interposer 10, the thermal expansion coefficient is preferably 70 ppm / ° C. or less. Moreover, it is more preferable that the said thermal expansion coefficient is 20 ppm / degrees C or more from a viewpoint of the stress relaxation property of an organic insulating material, and processing precision.
  • the organic insulating material is preferably a photosensitive organic insulating material (photosensitive insulating resin) from the viewpoint of processability and processing accuracy.
  • This photosensitive insulating resin is more preferably a negative photosensitive insulating resin from the viewpoint of heat resistance and ease of handling.
  • the photocuring insulating resin may contain a photo radical initiator or a photo acid generator, it is preferable that a photo acid generator is contained from the viewpoint of ease of microfabrication.
  • the organic insulating layer is most preferably a negative photosensitive insulating resin film containing a photoacid generator.
  • the photoacid generator is not particularly limited as long as it is a compound that generates an acid by light irradiation. From the viewpoint of efficiently generating an acid, the photoacid generator is preferably, for example, an onium salt compound or a sulfonimide compound. As an onium salt compound, an iodonium salt or a sulfonium salt is mentioned, for example.
  • diaryl iodonium salts such as diphenyliodonium trifluoromethanesulfonate, diphenyliodonium p-toluenesulfonate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium tetrafluoroborate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, Triarylsulfonium salts such as phenylsulfonium p-toluenesulfonate, triphenylsulfonium hexafluoroantimonate, 4-tert-butylphenyl-diphenylsulfonium p-toluenesulfonate, 4,7-di-n-butoxynaph
  • sulfonimide compound examples include N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (trifluoromethylsulfonyl).
  • a compound having a trifluoromethanesulfonate group, a hexafluoroantimonate group, a hexafluorophosphate group, or a tetrafluoroborate group may be used as a photoacid generator.
  • the photosensitive insulating resin is preferably soluble in a 2.38% by mass tetramethylammonium aqueous solution. From the viewpoints of resolution, storage stability, and insulation reliability of the photosensitive insulating resin, the photosensitive insulating resin preferably contains a compound having a phenolic hydroxyl group.
  • Examples of the compound having a phenolic hydroxyl group include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, phenol-naphthol / formaldehyde condensed novolak resin, polyhydroxystyrene and its polymer, phenol-xylylene glycol condensed resin, cresol- Examples thereof include a xylylene glycol condensation resin and a phenol-dicyclopentadiene condensation resin.
  • the photosensitive insulating resin preferably contains a thermosetting resin.
  • thermosetting resins include acrylate resins, epoxy resins, cyanate ester resins, maleimide resins, allyl nadiimide resins, phenol resins, urea resins, melamine resins, alkyd resins, unsaturated polyester resins, diallyl phthalate resins, silicone resins.
  • thermosetting resin is more preferably a compound having any of a methylol group, an alkoxyalkyl group, and a glycidyl group.
  • each of the first organic insulating layer 21 and the second organic insulating layer 22 is made of a photosensitive organic insulating resin containing a photoacid generator, a compound having a phenolic hydroxyl group, and a thermosetting resin.
  • the cured film is most preferably a cured film.
  • each of the first organic insulating layer 21 and the second organic insulating layer 22 may include a filler. From the viewpoint of ease of processing and processing accuracy, the average particle size of the filler is, for example, 500 nm or less.
  • the filler content in the first organic insulating layer 21 (or the second organic insulating layer 22) is preferably less than 1% by mass. Moreover, it is more preferable that the first organic insulating layer 21 and the second organic insulating layer 22 do not contain a filler.
  • the plurality of wirings 13 are provided in the corresponding groove portions 21a as described above, and function as conductive paths inside the organic interposer 10. For this reason, the width of the wiring 13 is substantially the same as the line width L of the groove 21a, and the interval between the adjacent wirings 13 is substantially the same as the space width S of the groove 21a. From the viewpoint of satisfactorily functioning as a conductive path, the wiring 13 preferably contains a metal material having high conductivity.
  • the metal material having high conductivity is, for example, copper, aluminum, or silver. These metal materials tend to diffuse into the organic insulating laminate 12 by heating. From the viewpoint of conductivity and cost, the metal material included in the wiring 13 is preferably copper.
  • the barrier metal film 14 is a metal film provided so as to partition the wiring 13 from the first organic insulating layer 21 and the second organic insulating layer 22.
  • the barrier metal film 14 includes a first barrier metal film 31 provided between the wiring 13 and the inner surface of the groove 21a, and a second barrier metal film provided between the wiring 13 and the second organic insulating layer 22. 32. Therefore, the first barrier metal film 31 is provided so as to partition the wiring 13 and the inner surface of the groove 21a (that is, the first organic insulating layer 21). Further, the second barrier metal film 32 is provided so as to partition the wiring 13 and the second organic insulating layer 22.
  • the first barrier metal film 31 is a conductive film for preventing the metal material in the wiring 13 from diffusing into the first organic insulating layer 21, and is formed along the inner surface of the groove 21a.
  • the first barrier metal film 31 includes, for example, at least one of titanium, nickel, palladium, chromium, tantalum, tungsten, and gold as a metal material that hardly diffuses into the organic insulating layer. From the viewpoint of adhesion to the inner surface of the groove 21a, the first barrier metal film 31 is preferably a titanium film or an alloy film containing titanium.
  • the first barrier metal film 31 may be a titanium film, a tantalum film, a tungsten film, a chromium film, or at least one of titanium, tantalum, tungsten, and chromium. An alloy film containing these is preferred.
  • the thickness of the first barrier metal film 31 is less than half the width of the groove 21a and less than the depth of the groove 21a, for example, 0.001 ⁇ m to 0.5 ⁇ m. From the viewpoint of preventing the diffusion of the metal material in the wiring 13, the thickness of the first barrier metal film 31 is preferably 0.01 ⁇ m to 0.5 ⁇ m. From the viewpoint of increasing the flatness of the first barrier metal film 31 and increasing the amount of current flowing through the wiring 13, the thickness of the first barrier metal film 31 is preferably 0.001 ⁇ m to 0.3 ⁇ m. . From the above, it is most preferable that the thickness of the first barrier metal film 31 is 0.01 ⁇ m to 0.3 ⁇ m.
  • the second barrier metal film 32 is a conductive film for preventing diffusion of the metal material into the second organic insulating layer 22 in the wiring 13 and is formed so as to cover the wiring 13.
  • the second barrier metal film 32 includes, for example, at least one of titanium, nickel, palladium, chromium, tantalum, tungsten, cobalt, and gold as a metal material that hardly diffuses into the organic insulating layer.
  • the second barrier metal film 32 may be a laminate of different metal films.
  • the second barrier metal film 32 is preferably a plating film (for example, an electroless plating film) using the wiring 13 as a seed layer.
  • the second barrier metal film 32 may be a nickel plating film, a palladium plating film, a cobalt plating film, a gold plating film, or an alloy plating film containing at least one of nickel, palladium, cobalt, and gold. preferable. From the viewpoint of adhesion to the wiring 13 and temperature cycle resistance, a nickel plating film or a palladium plating film is preferable.
  • the nickel plating film examples include an electroless nickel-phosphorus alloy plating film containing phosphorus, an electroless nickel-boron alloy plating film containing boron, or an electroless nickel-nitrogen alloy plating film containing nitrogen.
  • the nickel content of the nickel plating film is preferably 80% by mass or more. When the nickel content is 80% by mass or more, the effect of improving the insulation reliability of the organic interposer 10 by the second barrier metal film 32 is satisfactorily exhibited.
  • the nickel plating film is preferably an electroless nickel-phosphorus alloy plating film from the viewpoint of insulation reliability.
  • the second barrier metal film 32 is preferably an electroless palladium plating film from the viewpoint of obtaining good insulation reliability with a thickness of 0.1 ⁇ m or less.
  • the electroless palladium plating film include a substituted palladium plating film, an electroless palladium plating film using a formic acid compound as a reducing agent, and a palladium-phosphorus alloy plating film using hypophosphorous acid or phosphorous acid as a reducing agent. Or a palladium-boron alloy plating film using a boron compound.
  • the thickness of the second barrier metal film 32 is, for example, 0.001 ⁇ m to 1 ⁇ m. From the viewpoint of the yield of the second barrier metal film 32, the thickness of the second barrier metal film 32 is preferably 0.01 ⁇ m to 1 ⁇ m. Further, from the viewpoint of improving the production tact of the second barrier metal film 32, reducing the thickness, and temperature cycle resistance, it is more preferably 0.001 ⁇ m to 0.5 ⁇ m. From the viewpoint of reducing the thickness of the second barrier metal film 32 and the resolution of the photosensitive insulating resin, 0.001 ⁇ m to 0.3 ⁇ m is more preferable. From the above viewpoint, the thickness of the second barrier metal film 32 is most preferably 0.01 ⁇ m to 0.3 ⁇ m.
  • the surface roughness Ra of the second barrier metal film 32 is affected by the surface roughness of the wiring 13, and is, for example, 0.01 ⁇ m to 1 ⁇ m.
  • the surface roughness Ra of the second barrier metal film 32 is 0.01 ⁇ m or more, reliability such as adhesion between the second barrier metal film 32 and the second organic insulating layer 22 and temperature cycle resistance is obtained. It becomes possible to secure.
  • the surface roughness Ra of the second barrier metal film 32 is 1 ⁇ m or less, it is possible to suppress disconnection or the like in the organic interposer 10 due to irregularities generated when the second organic insulating layer 22 is formed, and an organic insulating laminate Thus, a decrease in resolution of 12 can be suppressed.
  • the surface roughness Ra of the second barrier metal film 32 is preferably 0.03 ⁇ m or more. From the viewpoint of temperature cycle resistance, the surface roughness Ra of the second barrier metal film 32 is preferably 0.5 ⁇ m or less. From the viewpoint of high frequency characteristics, the surface roughness Ra of the second barrier metal film 32 is more preferably 0.1 ⁇ m or less. From the above viewpoint, the surface roughness Ra of the second barrier metal film 32 is most preferably 0.03 ⁇ m to 0.1 ⁇ m.
  • the surface roughness Ra of the surface of the first organic insulating layer 21 (that is, the fourth organic insulating layer 24) and the second barrier metal film 32 is, for example, 0.01 ⁇ m to 1 ⁇ m.
  • the surface roughness Ra of the surface is 0.01 ⁇ m or more, the adhesion between the first organic insulating layer 21 (and the second barrier metal film 32) and the second organic insulating layer 22 is excellent.
  • the surface roughness of the said surface is 1 micrometer or less, the curvature of the organic insulating laminated body 12 is suppressed, for example, when the organic insulating laminated body 12 is ground, wiring etc. can be exposed easily.
  • the surface roughness Ra of the surface is 100 ⁇ including both the first organic insulating layer 21 and the second barrier metal film 32 using, for example, a laser microscope (manufactured by Olympus Corporation, “LEXT OLS3000”). Calculation is performed by scanning the range of 100 ⁇ m.
  • the surface roughness Ra of the surface including the first organic insulating layer 21 and the second barrier metal film 32 can be controlled by flattening the wiring 13 and the first organic insulating layer 21.
  • Examples of the planarization treatment for the surface include a chemical mechanical polishing method (CMP) or a fly-cut method. From the viewpoint of suppressing the occurrence of dishing on the wiring 13, it is preferable to use a fly-cut method.
  • the fly-cut method is a method of physically grinding an object using a grinding device such as a surface planar.
  • the through wiring 15 is a wiring embedded in the opening 12a of the organic insulating laminate 12, and functions as a connection terminal to an external device.
  • the through wiring 15 is composed of a plurality of wiring layers 15a to 15c stacked on each other.
  • the wiring layer 15 b includes a wiring layer formed simultaneously with the wiring 13 and a metal film formed simultaneously with the barrier metal film 14.
  • the surface wiring 16 is a wiring for electrically connecting semiconductor chips mounted on the organic interposer 10. For this reason, both ends of the surface wiring 16 are exposed from the organic interposer 10, and the surface wiring 16 other than the both ends is embedded in the organic interposer 10 (more specifically, the second organic insulating layer 22). It is. For this reason, the second organic insulating layer 22 includes at least two organic insulating layers.
  • FIG. 4B is an enlarged view of a part of FIG.
  • FIG. 5B, FIG. 6B, FIG. 7B, FIG. 8B, and FIG. 9B is an enlarged view of a part of the corresponding drawing.
  • a wiring layer 15a is formed on the substrate 11 as a first step.
  • the wiring layer 15a is formed by patterning a metal film formed on the substrate 11.
  • the metal film is formed by, for example, a coating method, a physical vapor deposition method (PVD method) such as vacuum deposition or sputtering, a printing method or a spray method using a metal paste, or various plating methods.
  • PVD method physical vapor deposition method
  • copper foil is used as the metal film.
  • the temporary fixing layer is a resin containing a nonpolar component such as polyimide, polybenzoxazole, silicon, or fluorine.
  • the method for forming the temporary fixing layer include spin coating, spray coating, and laminating. It is preferable that the temporary fixing layer is easily peeled off by an external stimulus such as light or heat from the viewpoint that the handleability and the carrier peelability can be highly compatible. From the viewpoint that the temporary fixing layer can be peeled off so that it does not remain in the organic interposer 10 to be manufactured later, the temporary fixing layer most preferably contains a resin that expands in volume by heat treatment.
  • the wiring layer 15a may be formed of a copper foil of peelable copper foil.
  • the substrate 11 corresponds to a peelable copper foil support
  • the temporary fixing layer corresponds to a peelable copper foil release layer.
  • a third organic insulating layer 23 is formed on the substrate 11 so as to cover the wiring layer 15a.
  • the wiring layer 15 a is covered by attaching a film-like third organic insulating layer 23 containing a negative photosensitive insulating resin to the substrate 11. Then, an exposure process, a development process, a curing process, or the like is performed on the third organic insulating layer 23 as necessary.
  • the first organic insulating layer 21 is formed by forming the fourth organic insulating layer 24 on the third organic insulating layer 23.
  • a film-like fourth organic insulating layer 24 containing a negative photosensitive insulating resin is attached to the third organic insulating layer 23.
  • the fourth organic insulating layer 24 is subjected to an exposure process, a development process, a curing process, or the like as necessary.
  • a plurality of groove portions 21a and openings 21b are formed in the first organic insulating layer 21 (also referred to as a first step).
  • a plurality of grooves 21a and openings 21b are formed by, for example, laser ablation, photolithography, or imprint. It is preferable to apply photolithography from the viewpoint of miniaturization of the groove 21a and formation cost. For this reason, the first organic insulating layer 21 is subjected to exposure processing and development processing, thereby forming a plurality of groove portions 21a.
  • the opening 21b is formed so as to expose the wiring layer 15a.
  • the pattern of the groove 21a can be formed smoothly in a short time. For this reason, the wiring mentioned later can be made excellent in the high frequency characteristic.
  • a known projection exposure method, contact exposure method, direct drawing exposure method, or the like can be used.
  • an alkaline aqueous solution such as sodium carbonate or TMAH may be used.
  • the first organic insulating layer 21 may be further heat-cured after forming the plurality of grooves 21a and the openings 21b.
  • the heating temperature is set to 100 to 200 ° C.
  • the heating time is set to 30 minutes to 3 hours, and the first organic insulating layer 21 is heated and cured.
  • a first barrier metal film 31 is formed on the first organic insulating layer 21 so as to cover the inner surface of the groove 21a (see FIG. Also referred to as the second step).
  • the first barrier metal film 31 is formed by, for example, a coating method, a PVD method, a printing method or a spray method using a metal paste, or various plating methods.
  • the first barrier metal film 31 is formed by applying a palladium or nickel complex on the first organic insulating layer 21 and then heating.
  • the first barrier metal film 31 is formed by applying a paste containing metal particles such as nickel or palladium on the first organic insulating layer 21 and then sintering the paste.
  • the first barrier metal film 31 is formed by sputtering, which is one of PVD methods.
  • the first barrier metal film 31 is formed so as to cover the inner surface of the opening 21b.
  • a wiring layer 13A is formed on the first barrier metal film 31 so as to fill the groove 21a (also referred to as a third step). ).
  • the wiring layer 13A is formed by, for example, a method using a metal paste or a plating method using the first barrier metal film 31 as a seed layer.
  • the thickness of the wiring layer 13A is preferably 0.5 to 3 times the thickness of the first organic insulating layer 21. When the thickness of the wiring layer 13A is 0.5 times or more, it tends to be able to suppress the increase in the surface roughness Ra of the wiring 13 formed in a subsequent process.
  • the thickness of the wiring layer 13 ⁇ / b> A is three times or less, the warpage of the wiring layer 13 ⁇ / b> A is suppressed and the first organic insulating layer 21 tends to adhere well.
  • the wiring layer 13A is formed to fill the opening 21b.
  • the wiring layer 13A is thinned so that the first organic insulating layer 21 is exposed (also referred to as a fourth step).
  • the first organic insulating layer is removed by removing the portion outside the groove 21a and the opening 21b in the wiring layer 13A and the portion of the first barrier metal film 31 that does not cover the groove 21a or the opening 21b.
  • the layer 21 is exposed and the wiring layer 13A is thinned.
  • the wiring 13 embedded in the groove 21a is formed.
  • This thinning treatment may be a flattening treatment of the surface where the first organic insulating layer 21 and the wiring 13 are combined.
  • the target portions of the wiring layer 13A and the first barrier metal film 31 are removed by CMP or fly-cut method, and the surface of the first organic insulating layer 21 is polished or ground to be planarized.
  • the slurry for example, a slurry in which alumina generally used for polishing a resin is mixed, and hydrogen peroxide and silica used in polishing the first barrier metal film 31 are mixed. And a slurry containing hydrogen peroxide and ammonium persulfate used for polishing the wiring layer 13A.
  • the first organic insulating layer 21, the first barrier metal film 31, and the wiring layer 13A are made using a slurry in which alumina is blended. It is preferable to grind (wiring 13).
  • the cost tends to be high.
  • the first organic insulating layer 21, the first barrier metal film 31, and the wiring layer 13A (wiring 13) are planarized at the same time, dishing occurs in the wiring 13 due to a difference in polishing rate, and as a result, the first There is a tendency that the flatness of the combined surface of the organic insulating layer 21 and the wiring 13 is greatly impaired. Therefore, from the viewpoint of setting the surface roughness Ra to 0.03 ⁇ m to 0.1 ⁇ m, the first organic insulating layer 21, the first barrier metal film 31, and the wiring are formed by a fly-cut method using a surface planar. It is more preferable to grind layer 13A (wiring 13).
  • a second barrier metal film 32 is formed so as to cover the wiring 13 which is the wiring layer 13A in the groove 21a (fifth step). Also referred to as a process).
  • the second barrier metal film 32 is formed by, for example, a PVD method, a method using a metal paste, or a plating method using the wiring 13 as a seed layer. From the viewpoint of forming the second barrier metal film 32 on the wiring 13 with good selectivity, it is preferable to form the second barrier metal film 32 by a plating method using the wiring 13 as a seed layer. Note that before the plating process, the exposed first organic insulating layer 21 may be cleaned with an acid or may be protected with benzotriazole or the like. Note that the wiring layer 15b provided on the wiring layer 15a is completed through the eighth step.
  • the second barrier metal film 32 is formed not only on the wiring 13 but also on a portion of the first barrier metal film 31 that is in contact with the side surface of the groove 21a.
  • the wiring 13 can be covered with the first barrier metal film 31 and the second barrier metal film 32 without a gap.
  • the second organic insulating layer 22 is formed on the first organic insulating layer 21 and the second barrier metal film 32 ( Also referred to as the sixth step).
  • a film-like second organic insulating layer 22 containing a negative photosensitive insulating resin is attached to the first organic insulating layer 21 and the second barrier metal film 32.
  • the second organic insulating layer 22 may be the same film as the first organic insulating layer 21 or may be formed using a different photosensitive insulating resin. From the viewpoint of preventing diffusion of the metal constituting the wiring 13, it is preferable that the second organic insulating layer 22 is not subjected to development processing.
  • an opening 22a is formed in the second organic insulating layer 22 as a tenth step.
  • the opening 22a is formed so as to expose the wiring layer 15b.
  • the opening 22a is formed by, for example, photolithography.
  • the through wiring 15 is formed by filling the opening 22a with a metal material to form a wiring layer 15c as an eleventh step.
  • the wiring layer 15c is formed by, for example, the PVD method or various plating methods. Examples of the metal material include copper, nickel, and tin.
  • the surface wiring 16 and the like are formed to manufacture the organic interposer 10 shown in FIG. When the temporary fixing layer is provided, the organic interposer 10 may be peeled from the substrate 11.
  • the wiring 13, the first organic insulating layer 21, and the second organic insulating layer 22 are partitioned by the barrier metal film 14. For this reason, diffusion of the metal material into the organic insulating laminate in the wiring 13 is suppressed by the barrier metal film 14. Therefore, since the short circuit of the some wiring 13 through the diffused metal material can be suppressed, the insulation reliability of the organic interposer 10 can be improved.
  • the organic insulating laminate 12 includes a first organic insulating layer 21 having a plurality of groove portions 21a in which wirings 13 are arranged, and a second organic insulating layer laminated on the first organic insulating layer 21 so as to embed the wirings 13. Layer 22.
  • each of the plurality of wirings 13 has a shape along the groove 21 a of the first organic insulating layer 21.
  • the fine wiring 13 can be easily formed by forming the plurality of groove portions 21a having fine widths and intervals.
  • the barrier metal film 14 includes a first barrier metal film 31 provided between the wiring 13 and the inner surface of the groove 21a, and a second barrier provided between the wiring 13 and the second organic insulating layer 22. And a metal film 32. For this reason, the diffusion of the metal material into the first organic insulating layer 21 in the wiring 13 is satisfactorily suppressed by the first barrier metal film 31. Further, the diffusion of the metal material into the second organic insulating layer 22 is satisfactorily suppressed by the second barrier metal film 32.
  • the first barrier metal film 31 contains at least one of titanium, nickel, palladium, chromium, tantalum, tungsten, and gold. Since titanium, nickel, palladium, chromium, tantalum, tungsten, and gold are all difficult to diffuse into the first organic insulating layer 21 and the second organic insulating layer 22, the insulation reliability of the organic interposer 10 can be further improved. .
  • the second barrier metal film 32 may be a plating film.
  • the manufacturing process of the organic interposer 10 can be simplified. For example, a resist coating process, a sputtering process, a resist removal process, and the like for forming the second barrier metal film 32 can be omitted.
  • the second barrier metal film 32 may be a nickel plating film. In this case, the second barrier metal film 32 having good flatness can be easily formed. In addition, since nickel hardly diffuses into the first organic insulating layer 21 and the second organic insulating layer 22, the insulation reliability of the organic interposer 10 can be preferably improved.
  • the second barrier metal film 32 may be a palladium plating film. In this case, the second barrier metal film 32 can be formed thin. In addition, since palladium hardly diffuses into the first organic insulating layer 21 and the second organic insulating layer 22, the insulation reliability of the organic interposer 10 can be preferably improved.
  • the thickness of the second barrier metal film 32 may be not less than 0.001 ⁇ m and not more than 1 ⁇ m. In this case, the diffusion of the metal material into the second organic insulating layer 22 in the wiring 13 is satisfactorily suppressed by the second barrier metal film 32.
  • the surface roughness Ra of the second barrier metal film 32 may be not less than 0.01 ⁇ m and not more than 1 ⁇ m. In this case, the second barrier metal film 32 can be satisfactorily adhered to the second organic insulating layer 22. Further, disconnection or the like in the organic interposer 10 due to the surface roughness of the second barrier metal film 32 can be suppressed.
  • the thickness of the first organic insulating layer 21 may be not less than 1 ⁇ m and not more than 10 ⁇ m. In this case, the first organic insulating layer 21 can be used to form a plurality of groove portions 21 a having a width and interval of 10 ⁇ m or less.
  • the first organic insulating layer 21 may be a cured film obtained by curing a photosensitive organic insulating resin including a photoacid generator, a compound having a phenolic hydroxyl group, and a thermosetting resin.
  • a photosensitive organic insulating resin including a photoacid generator, a compound having a phenolic hydroxyl group, and a thermosetting resin.
  • the groove 21 a having a fine width and interval can be easily formed in the first organic insulating layer 21.
  • the moisture contained in the first organic insulating layer 21 can be reduced, it is difficult for the metal material to diffuse into the first organic insulating layer 21. Therefore, the insulation reliability of the organic interposer 10 can be improved.
  • the first barrier metal film 31 can be formed between the inner surface of each groove 21a and the wiring layer 13A through the fourth to sixth steps.
  • the second barrier metal film 32 can be formed between the wiring 13 and the second organic insulating layer 22 in the stacking direction of the organic insulating layers. For this reason, the diffusion of the metal material in the wiring 13 to the first organic insulating layer 21 and the second organic insulating layer 22 is suppressed by the first barrier metal film 31 and the second barrier metal film 32. Therefore, since the short circuit of the some wiring 13 through the diffused metal material can be suppressed, the insulation reliability of the organic interposer 10 can be improved.
  • the wiring layer 13A may be formed by a plating method using the first barrier metal film 31 as a seed layer.
  • the wiring layer 13A can be formed such that the first barrier metal film 31 is sandwiched between the first organic insulating layer 21 and the wiring layer 13A. Thereby, the diffusion to the first organic insulating layer 21 of the metal material in the wiring layer 13A is satisfactorily suppressed.
  • the second barrier metal film 32 may be formed by a plating method using the wiring 13 as a seed layer.
  • the second barrier metal film 32 can be selectively formed on the wiring 13 without using a resist or the like. Thereby, steps such as a resist formation step and a resist removal step can be omitted when the second barrier metal film 32 is formed, so that the manufacturing process of the organic interposer 10 can be simplified.
  • the wiring 13 in the organic interposer 10 may be formed by, for example, a semi-additive method.
  • a seed layer is formed, a resist having a desired pattern is formed on the seed layer, the exposed portion of the seed layer is thickened by electrolytic plating or the like, and the resist is removed.
  • a desired wiring is obtained by etching a layer.
  • the damage applied to the wiring is large when the thin seed layer is etched.
  • the present disclosure is not limited to the above-described embodiment, and may be appropriately changed without departing from the spirit thereof.
  • the cross-sectional shape of the groove 21a formed in the first organic insulating layer 21 is not limited to a substantially rectangular shape, but may be another shape such as a substantially trapezoidal shape or a substantially semicircular shape.
  • each of the wiring 13, the wiring layers 15a to 15c, the first barrier metal film 31, the second barrier metal film 32, the surface wiring 16, and the like may have a single layer structure, You may have a multilayer structure which consists of an electroconductive layer.
  • the first organic insulating layer 21 includes both the third organic insulating layer 23 and the fourth organic insulating layer 24.
  • the present invention is not limited to this.
  • the first organic insulating layer 21 may have a single layer structure.
  • the second step and the third step in the manufacturing method can be combined into one step, and the manufacturing process of the organic interposer 10 can be simplified.
  • the second barrier metal film 32 is formed so as to fill the groove 21a. You may form.
  • the second barrier metal film 32 is formed so as to be buried in the groove portion 21a, the formation of a step due to the second barrier metal film 32 in the organic interposer 10 can be suppressed. That is, the surface roughness Ra of the surface where the second organic insulating layer 22 and the second barrier metal film 32 are combined can be reduced. Thereby, a semiconductor element etc. can be favorably mounted in the organic interposer 10.
  • a part of the wiring 13 in the groove 21a uses, for example, dishing that occurs when performing CMP. Further, a part of the wiring 13 in the groove 21a is, for example, at least a part of the wiring 13 located in the upper half of the groove 21a.
  • the organic insulating layer included in the organic insulating laminate 12 may include an adhesion assistant.
  • the adhesion assistant include silane coupling agents, triazole or tetrazole compounds.
  • a compound having a nitrogen atom is preferably used in order to improve adhesion to a metal.
  • the amount of the silane coupling agent used is from 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the compound having a phenolic hydroxyl group, from the viewpoint of the effect of addition, heat resistance, production cost, and the like. preferable.
  • triazole compounds examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-amylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2,2′-methylenebis [ 6- (2H-benzotriazol-2-yl) -4-tert-octylphenol], 6- (2-benzotriazolyl) -4-tert-octyl-6′-tert-butyl-4′-methyl-2 , 2'-methylenebisphenol, 1,2,3-benzotriazole, 1- [N, N-bis (2-ethylhexyl) aminomethyl] ben Zotriazole, carboxybenzotriazole, 1- [N, N-bis (2-ethy
  • tetrazole compounds include 1H-tetrazole, 5-amino-1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 1-methyl-5-ethyl-1H-tetrazole, 1-methyl-5 -Mercapto-1H-tetrazole, 1-phenyl-5-mercapto-1H-tetrazole, 1- (2-dimethylaminoethyl) -5-mercapto-1H-tetrazole, 2-methoxy-5- (5-trifluoromethyl- 1H-tetrazol-1-yl) -benzaldehyde, 4,5-di (5-tetrazolyl)-[1,2,3] triazole, 1-methyl-5-benzoyl-1H-tetrazole, and the like.
  • the amount of the triazole or tetrazole-based compound used is 0.1 to 20 parts by mass with respect to 100 parts by mass of the compound having a phenolic hydroxyl group from the viewpoint of the effect of addition, heat resistance and production cost. preferable.
  • silane coupling agent triazole compound, and tetrazole compound may be used alone or in combination.
  • an ion scavenger may be added to the organic insulating layer.
  • ion scavengers include compounds known as copper damage inhibitors for preventing copper from being ionized and dissolved, such as triazine thiol compounds and phenolic reducing agents, powdered bismuth, antimony Inorganic compounds such as those based on magnesium, magnesium, aluminum, zirconium, calcium, titanium and tin, and mixtures thereof.
  • Examples of the ion scavenger include inorganic ion scavengers manufactured by Toa Gosei Co., Ltd. (trade names: IXE-300 (antimony), IXE-500 (bismuth), IXE-600 (antimony, bismuth mixed)), IXE-700 (mixed magnesium and aluminum), IXE-800 (zirconium-based), and IXE-1100 (calcium-based)). These may be used individually by 1 type, and may mix and use 2 or more types.
  • the amount of the ion scavenger used is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the compound having a phenolic hydroxyl group from the viewpoint of the effect of addition, heat resistance and production cost. .
  • Example 1 Samples for measurement evaluation shown in FIGS. 11A and 11B were produced as follows. First, a photosensitive insulating resin film 52 having a thickness of 5 ⁇ m was attached to a silicon wafer 51 having a thickness of 150 mm. This photosensitive insulating resin film 52 was formed as follows.
  • cresol novolac resin (Asahi Organic Materials Co., Ltd., trade name: TR-4020G, 100 parts by mass), 1,3,4,6-tetrakis (methoxymethyl) glycoluril (30 parts by mass), tri A photosensitive insulating composition comprising methylolpropane triglycidyl ether (40 parts by mass), triarylsulfonium salt (manufactured by San Apro Co., Ltd., trade name: CPI-310B, 8 parts by mass) and methyl ethyl ketone (100 parts by mass). I got a thing.
  • the obtained photosensitive insulating composition was applied to a polyethylene terephthalate film (trade name: A-53, manufactured by Teijin DuPont Films Co., Ltd.) and dried in an oven at 90 ° C. for 10 minutes, thereby having a thickness of 5 ⁇ m.
  • a photosensitive insulating resin film 52 was obtained.
  • the photosensitive insulating resin film 52 attached to the silicon wafer 51 was subjected to an exposure process, a heating process, a developing process, and a thermosetting process in order.
  • a photosensitive insulating resin film 53 having a thickness of 5 ⁇ m formed in the same manner as the film 52 was attached to the photosensitive insulating resin film 52.
  • a heat treatment, a development treatment, and a thermosetting treatment were sequentially performed.
  • the photosensitive insulating resin film 53 is patterned, and the first groove portion 53a and the second groove portion 53b, which are comb-toothed so as to engage with each other, and the first connection portion 53c that connects the first groove portions 53a to each other. And a second connecting portion 53d that connects the second groove portions 53b to each other.
  • the width of the first groove 53a and the width of the second groove 53b were each set to 10 ⁇ m. These widths correspond to the line width L of the wiring described later.
  • the distance (space width S) between the adjacent first groove 53a and second groove 53b was set to 10 ⁇ m, and the length of each groove was set to 1 mm.
  • a barrier metal film 54 containing titanium having a thickness of 0.05 ⁇ m was formed on the photosensitive insulating resin film 53 by sputtering.
  • a copper layer is formed so as to fill the first groove portion 53a, the second groove portion 53b, the first connection portion 53c, and the second connection portion 53d by an electrolytic plating method using the barrier metal film 54 as a seed layer. Formed.
  • a part of the copper layer and the first groove portion 53a, the second groove portion 53b, the first connection portion 53c, and the second connection portion in the barrier metal film 54 are formed by a fly-cut method using a surface planar. The part which does not cover the inner surface of 53d was ground.
  • the first wiring 55a buried in the first groove 53a, the second wiring 55b buried in the second groove 53b, the first connection wiring 55c buried in the first connection 53c, A second connection wiring 55d buried in the second connection portion 53d was formed.
  • an automatic surface planar manufactured by DISCO Corporation, trade name “DAS8930” was used. In grinding by the fly-cut method, the feed rate was set to 1 mm / s, and the spindle rotation speed was set to 2000 min- 1 .
  • a thickness of 0.2 ⁇ m is obtained by electroless plating using each of the first wiring 55a, the second wiring 55b, the first connection wiring 55c, and the second connection wiring 55d as a seed layer.
  • a barrier metal film 56 containing a nickel-phosphorus alloy was formed.
  • a photosensitive insulation having a thickness of 5 ⁇ m formed in the same manner as the photosensitive insulating resin film 52 so as to expose at least a part of the first connection wiring 55c and a part of the second connection wiring 55d.
  • a resin film 57 was attached.
  • an exposure process, a heating process, a developing process, and a thermosetting process were sequentially performed on the attached photosensitive insulating resin film 57.
  • the first wiring 55 a and the first connection wiring 55 c are connected to each other and covered with the barrier metal films 54 and 56.
  • the second wiring 55b and the second connection wiring 55d are connected to each other and covered with the barrier metal films 54 and 56.
  • the first wiring 55a and the first connection wiring 55c, and the second wiring 55b and the second connection wiring 55d are insulated from each other by the photosensitive insulating resin films 52, 53, and 57.
  • a high acceleration life test (HAST) described below was performed.
  • HAST high acceleration life test
  • a voltage of 3.3 V was applied to the first connection wiring 55c and the second connection wiring 55d under conditions of a humidity of 85% and 130 ° C., and left for a predetermined time.
  • the change in insulation between the first wiring 55a and the second wiring 55b over time was measured.
  • the evaluation is A, and 200 hours before the start of the test. If it was less than 1 ⁇ 10 6 ⁇ , it was evaluated as B.
  • Table 1 The results of the high acceleration life test of Example 1 are shown in Table 1 below.
  • Example 2 A sample 50 for measurement evaluation was formed in the same manner as in Example 1 except that the line width L and the space width S were set to 5 ⁇ m, and the high acceleration life test described above was performed. The results of the high acceleration life test of Example 2 are shown in Table 1 below.
  • Example 3 A sample 50 for measurement evaluation was formed in the same manner as in Example 1 except that the line width L and space width S were set to 2 ⁇ m, and the high acceleration life test described above was performed. The results of the high acceleration life test of Example 3 are shown in Table 1 below.
  • Example 4 A sample 50 for measurement evaluation was formed in the same manner as in Example 2 except that a solder resist film (trade name: FZ-2700GA, thickness: 30 ⁇ m, manufactured by Hitachi Chemical Co., Ltd.) was used as the photosensitive insulating resin film 57.
  • the high acceleration life test described above was performed on the measurement evaluation sample 50.
  • the results of the high acceleration life test of Example 4 are shown in Table 1 below.
  • Example 5 A sample 50 for measurement evaluation was formed in the same manner as in Example 3 except that a solder resist film (trade name: FZ-2700GA, thickness 30 ⁇ m) was used as the photosensitive insulating resin film 57.
  • the high acceleration life test described above was performed on the measurement evaluation sample 50.
  • the results of the high acceleration life test of Example 5 are shown in Table 1 below.
  • Comparative Example 1 As shown in FIGS. 12A and 12B, the barrier metal film 56 is formed on the first wiring 55a, the second wiring 55b, the first connection wiring 55c, and the second connection wiring 55d.
  • a sample 50A for measurement evaluation was formed in the same manner as in Example 1 except that it was not provided. That is, the measurement evaluation sample 50A was formed so that the first wiring 55a, the second wiring 55b, the first connection wiring 55c, and the second connection wiring 55d were in contact with the photosensitive insulating resin film 57.
  • the high acceleration life test described above was performed on the measurement evaluation sample 50A.
  • the results of the high acceleration life test of Comparative Example 1 are shown in Table 1 below.
  • Comparative Example 2 Measurement was performed in the same manner as in Example 2 except that the barrier metal film 56 was not provided on the first wiring 55a, the second wiring 55b, the first connection wiring 55c, and the second connection wiring 55d. An evaluation sample 50A was formed. The high acceleration life test described above was performed on the measurement evaluation sample 50A. The results of the high acceleration life test of Comparative Example 2 are shown in Table 1 below.
  • Comparative Example 3 Measurement was performed in the same manner as in Example 3 except that the barrier metal film 56 was not provided on the first wiring 55a, the second wiring 55b, the first connection wiring 55c, and the second connection wiring 55d. An evaluation sample 50A was formed. The high acceleration life test described above was performed on the measurement evaluation sample 50A. The results of the high acceleration life test of Comparative Example 3 are shown in Table 1 below.
  • Comparative Example 4 Measurement was performed in the same manner as in Example 4 except that the barrier metal film 56 was not provided on the first wiring 55a, the second wiring 55b, the first connection wiring 55c, and the second connection wiring 55d. An evaluation sample 50A was formed. The high acceleration life test described above was performed on the measurement evaluation sample 50A. The results of the high acceleration life test of Comparative Example 4 are shown in Table 1 below.
  • Comparative Example 5 Measured in the same manner as in Example 5 except that the barrier metal film 56 was not provided on the first wiring 55a, the second wiring 55b, the first connection wiring 55c, and the second connection wiring 55d. An evaluation sample 50A was formed. The high acceleration life test described above was performed on the measurement evaluation sample 50A. The results of the high acceleration life test of Comparative Example 5 are shown in Table 1 below.
  • FIG. 13A is a graph showing the results of the high acceleration life test of Example 2 and Comparative Example 2
  • FIG. 13B is the result of the high acceleration life test of Example 3 and Comparative Example 3. It is a graph which shows. 13A and 13B, the horizontal axis represents time, and the vertical axis represents the resistance value between the first wiring 55a and the second wiring 55b.
  • data 61 is the test result of Example 2
  • data 62 is the test result of Comparative Example 2.
  • data 63 is the test result of Example 3
  • data 64 is the test result of Comparative Example 3.
  • Example 2 even when 300 hours have elapsed since the start of the test, the resistance value between the first wiring 55a and the second wiring 55b is 1 ⁇ 10 6 ⁇ . The above is shown. On the other hand, in Comparative Example 2, the resistance value suddenly decreased at about 20 hours from the start of the test and became less than 1 ⁇ 10 6 ⁇ . Similarly, as shown in FIG. 13B, in Example 3, even when 200 hours have elapsed from the start of the test, the resistance value between the first wiring 55a and the second wiring 55b is 1 ⁇ . While 10 6 ⁇ or more was exhibited, in Comparative Example 2, the resistance value suddenly decreased at a time several hours after the start of the test and became less than 1 ⁇ 10 6 ⁇ .
  • FIGS. 14A to 14C show a TEM (transmission electron microscope) / EDX (energy dispersive X-ray analysis) of a cross-sectional sample of the measurement evaluation sample 50 after 250 hours have passed through the curing rate life test of Example 3.
  • FIG. The result of analyzing the components of copper, titanium, and nickel in the apparatus) is shown.
  • 14A shows the analysis result of Cu (copper) in the cross-sectional sample of the measurement evaluation sample 50
  • FIG. 14B shows the analysis result of Ti (titanium) in the cross-sectional sample.
  • c) is an analysis result of Ni (nickel) in the cross-sectional sample.
  • JEM-2100F manufactured by JEOL Ltd. was used as TEM, JED-2300 manufactured by JEOL Ltd.
  • Example 3 the elution of the wiring and the barrier metal into the photosensitive insulating resin film was not observed after the EDX analysis test. Specifically, diffusion of copper constituting the copper layer surrounded by the barrier metal films 54 and 56 into the photosensitive insulating resin film, diffusion of titanium constituting the barrier metal film 54 into the photosensitive insulating resin film, and barrier None of the diffusion of nickel constituting the metal film 56 into the photosensitive insulating resin film was confirmed.
  • the sudden decrease in resistance value in Comparative Examples 2 and 3 is caused by the diffusion of the metal material in the first wiring 55a and the second wiring 55b into the photosensitive insulating resin film 57, and through the diffused metal material. It is assumed that this is because the first wiring 55a and the second wiring 55b are short-circuited.
  • Examples 2 and 3 diffusion of the metal material into the photosensitive insulating resin films 52, 53, and 57 in the first wiring 55a or the second wiring 55b is prevented by the barrier metal films 54 and 56, It is presumed that the first wiring 55a and the second wiring 55b were not short-circuited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

絶縁信頼性を向上できる有機インターポーザ及びその製造方法を提供する。有機インターポーザ10は、複数の有機絶縁層を含んでなる有機絶縁積層体12と、有機絶縁積層体12内に配列された複数の配線13と、を備え、配線13と有機絶縁層とがバリア金属膜14によって仕切られている。有機絶縁積層体12は、配線13が配置された複数の溝部21aを有する第1の有機絶縁層21と、配線13を埋め込むように第1の有機絶縁層21に積層された第2の有機絶縁層22とを含んでもよい。

Description

有機インターポーザ及び有機インターポーザの製造方法
 本開示は、有機インターポーザ及び有機インターポーザの製造方法に関する。
 半導体パッケージの高密度化及び高性能化を目的に、異なる性能のチップを一つのパッケージに混載する実装形態が提案されている。この場合、コスト面に優れた、チップ間の高密度インターコネクト技術が重要になっている(例えば、特許文献1参照)。
 非特許文献1及び非特許文献2には、パッケージ上に異なるパッケージをフリップチップ実装によって積層することで接続するパッケージ・オン・パッケージ(PoP:Package on Package)の態様が記載されている。このPoPは、スマートフォン、タブレット端末等に広く採用されている態様である。
 さらに複数のチップを高密度で実装するための他の形態として、高密度配線を有する有機基板を用いたパッケージ技術(有機インターポーザ)、スルーモールドビア(TMV:Through Mold Via)を有するファンアウト型のパッケージ技術(FO-WLP:Fun Out-Wafer Level Package)、シリコン又はガラスインターポーザを用いたパッケージ技術、シリコン貫通電極(TSV:Through Silicon Via)を用いたパッケージ技術、基板に埋め込まれたチップをチップ間伝送に用いるパッケージ技術等が提案されている。
 特に有機インターポーザ及びFO-WLPにおいて半導体チップ同士を搭載する場合、当該半導体チップ同士を高密度で導通させるための微細な配線層が必要となる(例えば、特許文献2参照)。
特表2012-529770号公報 米国特許出願公開第2011/0221071号明細書
Jinseong Kim et al., 「Application of Through Mold Via (TMV) as PoP Base Package」, Electronic Components and Technology Conference (ECTC), p.1089-1092 (2008) S.W. Yoon et al., 「Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB-PoP) Technology」, ECTC, p.1250-1254 (2012)
 ビルドアップ基板、ウェハレベルパッケージ(WLP)、ファンアウト型のPoPのボトムパッケージ等には、複数の有機絶縁層が積層されてなる積層体(有機絶縁積層体)を有する有機インターポーザが用いられることがある。例えば、この有機絶縁積層体内に10μm以下のライン幅とスペース幅とを有する複数の微細な配線が配置される場合、当該配線は、トレンチ法を用いて形成される。トレンチ法とは、有機絶縁層の表面に形成したトレンチ(溝)に配線となる金属層をめっき法等によって形成する方法である。このため、有機絶縁層上に形成される配線の形状は、溝の形状に沿ったものとなる。
 トレンチ法によって有機絶縁積層体内に微細な配線を形成する際には、低コスト化且つ配線抵抗の上昇抑制を図るために、例えば、銅等の高い導電性を有する金属材料を用いることがある。このような金属材料を用いて配線を形成した場合、当該金属材料が有機絶縁積層体内に拡散することがある。この場合、拡散した金属材料を介して配線同士が短絡するおそれがあり、有機インターポーザの絶縁信頼性に課題がある。
 本発明は、絶縁信頼性を向上できる有機インターポーザ及びその製造方法を提供することを目的とする。
 本発明の第1の態様に係る有機インターポーザは、複数の有機絶縁層を含んでなる有機絶縁積層体と、有機絶縁積層体内に配列された複数の配線と、を備え、配線と有機絶縁層とがバリア金属膜によって仕切られている。
 この有機インターポーザでは、配線と有機絶縁層とがバリア金属膜によって仕切られている。このため、配線内における金属材料の有機絶縁積層体への拡散は、バリア金属膜によって抑制される。したがって、拡散した金属材料を介した複数の配線同士の短絡を抑制できるので、有機インターポーザの絶縁信頼性を向上できる。
 有機絶縁積層体は、配線が配置された複数の溝部を有する第1の有機絶縁層と、配線を埋め込むように第1の有機絶縁層に積層された第2の有機絶縁層と、を含んでもよい。この場合、複数の配線のそれぞれは、第1の有機絶縁層の溝部に沿った形状を有する。このため、微細な幅及び間隔を有する複数の溝部を形成することによって、微細な配線を容易に形成できる。
 バリア金属膜は、配線と溝部の内面との間に設けられた第1のバリア金属膜と、配線と第2の有機絶縁層との間に設けられた第2のバリア金属膜と、を含んでもよい。この場合、配線内における金属材料の第1の有機絶縁層への拡散は、第1のバリア金属膜によって良好に抑制される。また、上記金属材料の第2の有機絶縁層への拡散は、第2のバリア金属膜によって良好に抑制される。
 第1のバリア金属膜は、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金の少なくとも一つを含んでもよい。チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金は、いずれも第1及び第2の有機絶縁層に拡散しにくいので、有機インターポーザの絶縁信頼性をさらに向上できる。
 第2のバリア金属膜は、めっき膜であってもよい。この場合、溝部内の配線上に選択的に第2のバリア金属膜を形成できるので、有機インターポーザの製造工程を簡略化できる。
 第2のバリア金属膜は、ニッケルめっき膜であってもよい。この場合、良好な平坦性を有する第2のバリア金属膜を容易に形成できる。加えて、ニッケルは第1及び第2の有機絶縁層に拡散しにくいので、有機インターポーザの絶縁信頼性を好適に向上できる。
 第2のバリア金属膜は、パラジウムめっき膜であってもよい。この場合、第2のバリア金属膜を、容易に薄くできる。加えて、パラジウムは第1及び第2の有機絶縁層に拡散しにくいので、有機インターポーザの絶縁信頼性を好適に向上できる。
 第2のバリア金属膜の厚さは、0.001μm以上1μm以下であってもよい。この場合、配線内における金属材料の第2の有機絶縁層への拡散は、第2のバリア金属膜によって良好に抑制される。
 第2のバリア金属膜の表面粗さは、0.01μm以上1μm以下であってもよい。この場合、第2のバリア金属膜が第2の有機絶縁層に良好に密着できる。また、第2のバリア金属膜の表面粗さに起因した有機インターポーザ内の断線等を抑制できる。
 第1の有機絶縁層の厚さは、1μm以上10μm以下であってもよい。この場合、第1の有機絶縁層を用いて10μm以下の幅及び間隔を有する複数の溝部を形成できる。
 第1の有機絶縁層は、光酸発生剤、フェノール性水酸基を有する化合物、及び熱硬化性樹脂を含む感光性の有機絶縁樹脂が硬化してなる硬化膜であってもよい。この場合、微細な幅及び間隔を有する溝部を第1の有機絶縁層に容易に形成できる。加えて、第1の有機絶縁層に含まれる水分を低減できるので、当該第1の有機絶縁層に金属材料が拡散しにくくなる。したがって、有機インターポーザの絶縁信頼性を向上できる。
 本発明の第2の態様に係る有機インターポーザの製造方法は、第1の有機絶縁層に複数の溝部を形成する第1工程と、溝部の内面を覆うように第1の有機絶縁層上に第1のバリア金属膜を形成する第2工程と、溝部を埋めるように第1のバリア金属膜上に配線層を形成する第3工程と、第1の有機絶縁層が露出するように配線層を薄化する第4工程と、溝部内の配線層を覆うように第2のバリア金属膜を形成する第5工程と、第1の有機絶縁層上及び第2のバリア金属膜上に第2の有機絶縁層を形成する第6工程と、を備える。
 この有機インターポーザの製造方法では、第1~第3工程を経ることにより、各溝部の内面と配線層との間に第1のバリア金属膜を形成できる。また、第4~第6工程を経ることにより、有機絶縁層の積層方向において、配線層と第2の有機絶縁層との間に第2のバリア金属膜を形成できる。このため、配線層内における金属材料の第1及び第2の有機絶縁層への拡散は、第1及び第2のバリア金属膜によって抑制される。したがって、拡散した金属材料を介した複数の配線同士の短絡を抑制できるので、有機インターポーザの絶縁信頼性を向上できる。
 第3工程では、第1のバリア金属膜をシード層としためっき法によって配線層を形成してもよい。この場合、第1の有機絶縁層と配線層との間に第1のバリア金属膜が挟持されるように当該配線層を形成できる。これにより、配線層内における金属材料の第1の有機絶縁層への拡散が良好に抑制される。
 第5工程では、配線層をシード層としためっき法によって第2のバリア金属膜を形成してもよい。この場合、配線層上に選択的に第2のバリア金属膜を形成できるので、有機インターポーザの製造工程を簡略化できる。
 第4工程では、溝部内の配線層の一部を除去し、第5工程では、溝部を埋めるように第2のバリア金属膜を形成してもよい。この場合、第2のバリア金属膜が溝部内に埋められて形成されるので、有機インターポーザにおいて第2のバリア金属膜に起因した段差の形成を抑制できる。これにより、有機インターポーザに半導体素子等を良好に搭載できる。
 本発明によれば、良好な絶縁信頼性を有する有機インターポーザ及びその製造方法を提供できる。
図1は、本実施形態に係る有機インターポーザを有する半導体パッケージの模式断面図である。 図2は、本実施形態に係る有機インターポーザの模式断面図である。 図3(a)~(c)は、有機インターポーザの製造方法を説明する図である。 図4(a),(b)は、有機インターポーザの製造方法を説明する図である。 図5(a),(b)は、有機インターポーザの製造方法を説明する図である。 図6(a),(b)は、有機インターポーザの製造方法を説明する図である。 図7(a),(b)は、有機インターポーザの製造方法を説明する図である。 図8(a),(b)は、有機インターポーザの製造方法を説明する図である。 図9(a),(b)は、有機インターポーザの製造方法を説明する図である。 図10(a),(b)は、有機インターポーザの製造方法を説明する図である。 図11(a)は、実施例の測定評価用試料を示す平面図であり、図11(b)は、図11(a)のXIb-XIb線に沿った断面図である。 図12(a)は、比較例の測定評価用試料を示す平面図であり、図12(b)は、図12(a)のXIIb-XIIb線に沿った断面図である。 図13(a)は、実施例2と比較例2との高加速度寿命試験の結果を示すグラフであり、図13(b)は、実施例3と比較例3との高加速度寿命試験の結果を示すグラフである。 図14(a)は、実施例3の測定評価試料の断面サンプルにおけるCuのEDX解析結果であり、図14(b)は、上記断面サンプルにおけるTiのEDX解析結果であり、図14(c)は、上記断面サンプルにおけるNiのEDX解析結果である。
 以下、図面を参照しながら本実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。
 本実施形態の記載及び請求項において「左」、「右」、「正面」、「裏面」、「上」、「下」、「上方」、「下方」、「第1」、「第2」等の用語が利用されている場合、これらは、説明を意図したものであり、必ずしも永久にこの相対位置である、という意味ではない。また、「層」及び「膜」は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。
 図1は、本実施形態に係る有機インターポーザを有する半導体パッケージの模式断面図である。本開示の有機インターポーザは、異種チップを混載するインターポーザが必要なパッケージ形態に用いられることが好適である。
 図1に示されるように、半導体パッケージ100は、基板1上に設けられる有機インターポーザ10上に半導体チップ2A,2Bが搭載されてなる装置である。半導体チップ2A,2Bは、対応するアンダーフィル3A,3Bによって有機インターポーザ10上にそれぞれ固定されており、有機インターポーザ10内に設けられる表面配線16(詳細は後述する)を介して互いに電気的接続されている。基板1は、半導体チップ2C,2Dと電極5A,5Bとを絶縁材料4で封止して形成された封止体である。基板1内の半導体チップ2C,2Dは、絶縁材料4から露出した電極を介して外部装置と接続可能になっている。電極5A,5Bは、例えば、有機インターポーザ10と外部装置とが互いに電気的接続するための導電路として機能する。
 半導体チップ2A~2Dのそれぞれは、例えば、グラフィック処理ユニット(GPU:Graphic Processing Unit)、DRAM(Dynamic Random Access Memory)若しくはSRAM(Static Random Access Memory)等の揮発性メモリ、フラッシュメモリ等の不揮発性メモリ、RFチップ、シリコンフォトニクスチップ、MEMS(Micro Electro Mechanical Systems)、センサーチップなどである。半導体チップ2A~2Dは、TSVを有してもよい。半導体チップ2A~2Dのそれぞれは、例えば、半導体素子が積層されたものも用いることができる、この場合、TSVを用いて積層した半導体素子を使用できる。半導体チップ2A,2Bの厚さは、例えば、200μm以下である。半導体パッケージ100を薄型化する観点から、半導体チップ2A,2Bの厚さは、100μm以下であることが好ましい。また、取り扱い性の観点から、半導体チップ2A,2Bの厚さは、30μm以上であることがより好ましい。
 アンダーフィル3A,3Bは、例えば、キャピラリーアンダーフィル(CUF)、モールドアンダーフィル(MUF)、ペーストアンダーフィル(NCP)、フィルムアンダーフィル(NCF)、又は感光性アンダーフィルである。アンダーフィル3A,3Bは、それぞれ液状硬化型樹脂(例えば、エポキシ樹脂)を主成分として構成される。また、絶縁材料4は、例えば、絶縁性を有する硬化性樹脂である。
 次に、図2を用いながら本実施形態に係る有機インターポーザ10について詳細に説明する。本実施形態における有機インターポーザ10は、半導体素子等を支持する有機基板であり、例えば、ガラスクロス若しくは炭素繊維に樹脂を含浸させた材料(プリプレグ)を積層したビルドアップ基板、ウェハレベルパッケージ用基板、コアレス基板、封止材料を熱硬化することによって作製される基板、チップが封止もしくは埋め込まれた基板である。有機インターポーザ10の形状は、後述する基板11の形状に応じており、ウェハ状(平面視にて略円形状)でもよいし、パネル状(平面視にて略矩形状)でもよい。なお、有機インターポーザ10の熱膨張係数は、反り抑制の観点から、例えば、40ppm/℃以下であることが好ましい。有機インターポーザ10の絶縁信頼性の観点から、当該熱膨張係数は、20ppm/℃以下であることが好ましい。
 図2に示される基板11上に設けられる有機インターポーザ10は、複数の有機絶縁層を含んでなる有機絶縁積層体12と、有機絶縁積層体12内に配列された複数の配線13と、配線13を覆うバリア金属膜14と、有機絶縁積層体12を貫通するスルー配線15と、有機絶縁積層体12の表面及びその近傍に形成される表面配線16とを備えている。
 基板11は、有機インターポーザ10を支持する支持体である。基板11の平面視における形状は、例えば、円形状又は矩形状である。円形状である場合、基板11は、例えば、200mm~450mmの直径を有する。矩形状である場合、基板11の一辺は、例えば、300mm~700mmである。
 基板11は、例えば、シリコン基板、ガラス基板、又はピーラブル銅箔である。基板11は、例えば、ビルドアップ基板、ウェハレベルパッケージ用基板、コアレス基板、封止材料を熱硬化することによって作製される基板、又はチップが封止もしくは埋め込まれた基板でもよい。基板11としてシリコン基板又はガラス基板等が用いられる場合、有機インターポーザ10と基板11とを仮固定する図示しない仮固定層が設けられてもよい。この場合、仮固定層を除去することによって、有機インターポーザ10から基板11を容易に剥離できる。なお、ピーラブル銅箔とは、支持体、剥離層、及び銅箔が順に重なった積層体である。ピーラブル銅箔においては、支持体が基板11に相当し、銅箔がスルー配線15に含まれる一部の銅配線の材料に相当する。
 有機絶縁積層体12は、対応する配線13が配置された複数の溝部21aを有する第1の有機絶縁層21と、配線13を埋め込むように第1の有機絶縁層21に積層された第2の有機絶縁層22とを備えている。また、有機絶縁積層体12には、スルー配線15が設けられる複数の開口部12aが設けられている。
 複数の溝部21aは、第1の有機絶縁層21において基板11と反対側の表面に設けられている。溝部21aの延在方向に直交する方向に沿った断面において、溝部21aのそれぞれは略矩形状を有している。このため、溝部21aの内面は、側面及び底面を有している。また、複数の溝部21aは、所定のライン幅L及びスペース幅Sを有している。ライン幅L及びスペース幅Sのそれぞれは、例えば、0.5μm~10μmであり、好ましくは0.5μm~5μmであり、より好ましくは2μm~5μmである。有機インターポーザ10の高密度伝送を実現する観点から、ライン幅Lは1μm~5μmであることが好ましい。ライン幅Lとスペース幅Sとは、互いに同一になるように設定されてもよいし、互いに異なるように設定されてもよい。ライン幅Lは、平面視にて溝部21aの延在方向に直交する方向における溝部21aの幅に相当する。スペース幅Sは、隣り合う溝部21a同士の距離に相当する。溝部21aの深さは、例えば、後述する第4の有機絶縁層24の厚さに相当する。
 溝部21aにおける内面の表面粗さは、0.01μm~0.1μmであることが好ましい。この表面粗さが0.01μm以上である場合、溝部21a内において第1の有機絶縁層21と密着する対象物の密着性、及び温度サイクル耐性が良好になる。上記表面粗さが0.1μm以下である場合、配線13の短絡を抑制し、当該配線13の高周波特性を向上できる傾向にある。溝部21aにおける内面の表面粗さは、例えば、溝部21aの断面を電子顕微鏡で観察することによって算出する。なお、上記表面粗さは、JIS B 0601 2001で規定される算術平均粗さ(Ra)であり、以下の「表面粗さ」は、全て「表面粗さRa」とする。温度サイクル耐性とは、温度変化に伴う体積変化、性能劣化、破損等に対する耐性である。
 第1の有機絶縁層21は、基板11と第2の有機絶縁層22との間に設けられている。第1の有機絶縁層21の室温における貯蔵弾性率は、例えば、500MPa~1000GPaである。当該貯蔵弾性率が500MPa以上であることにより、第1の有機絶縁層21の研削中の延伸を抑制できる。これにより、例えば、延伸した樹脂材料が溝部21a内の配線13を覆うことを防止できる。また、当該貯蔵弾性率が10GPa以下であることにより、例えば、研削用の刃の破損を防ぎ、結果として第1の有機絶縁層21等の表面粗さの拡大を抑制できる。なお、「室温」とは、25℃程度を示す。
 第1の有機絶縁層21は、基板11側に位置する第3の有機絶縁層23と、第2の有機絶縁層22側に位置する第4の有機絶縁層24とを含んでいる。第4の有機絶縁層24の一部には、溝部21aに対応する複数の開口部が設けられている。これらの開口部によって露出する第3の有機絶縁層23の表面が、溝部21aの内面における底面を構成している。また、溝部21aの内面における各側面は、第4の有機絶縁層24によって構成されている。
 第3の有機絶縁層23及び第4の有機絶縁層24の厚さは、例えば、それぞれ0.5μm~10μmである。このため、第1の有機絶縁層21の厚さは、例えば、1μm~20μmである。第1の有機絶縁層21の厚さが1μm以上であることにより、第1の有機絶縁層21が有機絶縁積層体12の応力緩和に寄与し、当該有機絶縁積層体12の温度サイクル耐性が向上し得る。第1の有機絶縁層21の厚さが20μm以下であることにより、有機絶縁積層体12の反りを抑制し、例えば、有機絶縁積層体12を研削した際に容易に配線等を露出できる。露光及び現像を行うことによって幅3μm以下の配線13を形成する観点から、第1の有機絶縁層21の厚さは、15μm以下であることが好ましく、10μm以下であることがより好ましい。
 有機絶縁積層体12における第1の有機絶縁層21及び第2の有機絶縁層22のそれぞれは、例えば、液状又はフィルム状であって、硬化性を有する絶縁材料を含んでいる。有機絶縁層の平坦性及び製造コストの観点から、フィルム状の材料(有機絶縁材料)が好ましい。この場合、例えば、基板11の表面粗さが300μm以上であっても、有機絶縁積層体12の表面粗さを低減できる。また、フィルム状の有機絶縁材料は、40℃~120℃でラミネート可能であることが好ましい。ラミネート可能な温度を40℃以上にすることで、室温における、有機絶縁材料のタック(粘着性)が強くなることを抑えると共に、良好な取り扱い性を維持することができる。ラミネート可能な温度を120℃以下にすることで、有機絶縁積層体12における反りの発生を抑制できる。
 硬化後の有機絶縁材料の熱膨張係数は、有機絶縁層(及び有機絶縁積層体12)の反り抑制の観点から、例えば、80ppm/℃以下である。有機インターポーザ10の絶縁信頼性の観点から、当該熱膨張係数は、70ppm/℃以下であることが好ましい。また、有機絶縁材料の応力緩和性、及び加工精度の観点から、当該熱膨張係数は、20ppm/℃以上であることがより好ましい。
 有機絶縁材料は、加工容易性及び加工精度の観点から、感光性の有機絶縁材料(感光性絶縁樹脂)であることが好ましい。この感光性絶縁樹脂は、耐熱性及び取り扱い容易性の観点から、ネガ型感光性絶縁樹脂であることがより好ましい。光硬化する絶縁樹脂には光ラジカル開始材又は光酸発生剤が含まれ得るが、微細加工容易性の観点から、光酸発生剤が含まれることが好ましい。以上の観点から、有機絶縁層は、光酸発生剤を含有するネガ型感光性絶縁樹脂フィルムであることが最も好ましい。
 光酸発生剤としては、光照射によって酸を発生する化合物であれば特に限定されない。効率的に酸が発生する観点から、光酸発生剤は、例えば、オニウム塩化合物又はスルホンイミド化合物であることが好ましい。オニウム塩化合物としては、例えば、ヨードニウム塩、又はスルホニウム塩が挙げられる。具体例としては、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムp-トルエンスルホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムテトラフルオロボレート等のジアリールヨードニウム塩、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムp-トルエンスルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート等のトリアリールスルホニウム塩、4-tert-ブチルフェニル-ジフェニルスルホニウムp-トルエンスルホネート、4,7-ジ-n-ブトキシナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート等が挙げられる。スルホンイミド化合物の具体例としては、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフタルイミド、N-(p-トルエンスルホニルオキシ)―1,8-ナフタルイミド、N-(10-カンファースルホニルオキシ)―1,8-ナフタルイミド等が挙げられる。
 解像性の観点から、光酸発生剤として、トリフルオロメタンスルホネート基、ヘキサフルオロアンチモネート基、ヘキサフルオロホスフェート基、又はテトラフルオロボレート基を有する化合物を用いてもよい。
 感光性絶縁樹脂は、2.38質量%のテトラメチルアンモニウム水溶液に可溶であることが好ましい。感光性絶縁樹脂の解像性、保存安定性、及び絶縁信頼性の観点から、感光性絶縁樹脂は、フェノール性水酸基を有する化合物を含有することが好ましい。フェノール性水酸基を有する化合物としては、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール-ナフトール/ホルムアルデヒド縮合ノボラック樹脂、ポリヒドロキシスチレン及びその重合体、フェノール-キシリレングリコール縮合樹脂、クレゾール-キシリレングリコール縮合樹脂、フェノール-ジシクロペンタジエン縮合樹脂等が挙げられる。
 感光性絶縁樹脂は、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、例えば、アクリレート樹脂、エポキシ樹脂、シアネートエステル樹脂、マレイミド樹脂、アリルナジイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、レゾルシノールホルムアルデヒド樹脂、トリアリルシアヌレート樹脂、ポリイソシアネート樹脂、トリス(2-ヒドロキシエチル)イソシアヌラートを含有する樹脂、トリアリルトリメリタートを含有する樹脂、シクロペンタジエンから合成された熱硬化性樹脂が挙げられる。感光性絶縁樹脂の解像性、絶縁信頼性、及び金属との密着性の観点から、熱硬化性樹脂は、メチロール基、アルコキシアルキル基、グリシジル基のいずれかを有する化合物であることがより好ましい。
 以上の観点から、第1の有機絶縁層21及び第2の有機絶縁層22のそれぞれは、光酸発生剤、フェノール性水酸基を有する化合物、及び熱硬化性樹脂を含む感光性の有機絶縁樹脂が硬化してなる硬化膜であることが最も好ましい。なお、第1の有機絶縁層21及び第2の有機絶縁層22のそれぞれは、フィラを含んでもよい。加工容易性及び加工精度の観点から、フィラの平均粒径は、例えば、500nm以下である。第1の有機絶縁層21(又は第2の有機絶縁層22)におけるフィラの含有量が1質量%未満であることが好ましい。また、第1の有機絶縁層21及び第2の有機絶縁層22は、フィラを含有しないことがより好ましい。
 複数の配線13は、上述したように対応する溝部21a内に設けられ、有機インターポーザ10内部における導電路として機能する。このため、配線13の幅は、溝部21aのライン幅Lと略一致しており、隣り合う配線13同士の間隔は、溝部21aのスペース幅Sと略一致している。導電路としての機能を良好に発揮する観点から、配線13は、高い導電性を有する金属材料を含有している事が好ましい。高い導電性を有する金属材料は、例えば、銅、アルミニウム、又は銀である。これらの金属材料は、加熱により有機絶縁積層体12内に拡散する傾向にある。導電性及びコストの観点から、配線13に含まれる金属材料は、銅であることが好ましい。
 バリア金属膜14は、配線13と第1の有機絶縁層21及び第2の有機絶縁層22とを仕切るように設けられる金属膜である。バリア金属膜14は、配線13と溝部21aの内面との間に設けられる第1のバリア金属膜31、及び配線13と第2の有機絶縁層22との間に設けられる第2のバリア金属膜32を含んでいる。このため、第1のバリア金属膜31は、配線13と溝部21aの内面(すなわち、第1の有機絶縁層21)とを仕切るように設けられている。また、第2のバリア金属膜32は、配線13と第2の有機絶縁層22とを仕切るように設けられている。
 第1のバリア金属膜31は、配線13内における金属材料の第1の有機絶縁層21への拡散を防止するための導電膜であり、溝部21aの内面に沿って形成されている。第1のバリア金属膜31は、有機絶縁層へ拡散しにくい金属材料として、例えば、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金の少なくとも一つを含んでいる。溝部21aの内面との密着性の観点から、第1のバリア金属膜31は、チタン膜又はチタンを含む合金膜であることが好ましい。また、第1のバリア金属膜31をスパッタリングで形成する観点から、第1のバリア金属膜31は、チタン膜、タンタル膜、タングステン膜、クロム膜、又はチタン、タンタル、タングステン、及びクロムの少なくとも何れかを含む合金膜であることが好ましい。
 第1のバリア金属膜31の厚さは、溝部21aの幅の半分未満且つ溝部21aの深さ未満であり、例えば、0.001μm~0.5μmである。配線13内における金属材料の拡散を防止する観点から、第1のバリア金属膜31の厚さは、0.01μm~0.5μmであることが好ましい。また、第1のバリア金属膜31の平坦性、及び配線13に流れる電流量を大きくする観点から、第1のバリア金属膜31の厚さは、0.001μm~0.3μmであることが好ましい。以上から、第1のバリア金属膜31の厚さは、0.01μm~0.3μmであることが最も好ましい。
 第2のバリア金属膜32は、配線13内における金属材料の第2の有機絶縁層22への拡散を防止するための導電膜であり、配線13を覆うように形成されている。第2のバリア金属膜32は、有機絶縁層へ拡散しにくい金属材料として、例えば、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、コバルト、及び金の少なくとも一つを含んでいる。なお、第2のバリア金属膜32は、異なる金属膜の積層体でもよい。
 第2のバリア金属膜32は、配線13をシード層としためっき膜(例えば、無電解めっき膜)であることが好ましい。このため、第2のバリア金属膜32は、ニッケルめっき膜、パラジウムめっき膜、コバルトめっき膜、金めっき膜、又はニッケル、パラジウム、コバルト、及び金の少なくとも一つを含む合金めっき膜であることが好ましい。配線13との密着性、及び温度サイクル耐性の観点から、ニッケルめっき膜もしくはパラジウムめっき膜であることが好ましい。
 ニッケルめっき膜としては、例えば、リンを含有した無電解ニッケル-リン合金めっき膜、ホウ素を含有した無電解ニッケル-ホウ素合金めっき膜、又は窒素を含有した無電解ニッケル-窒素合金めっき膜が挙げられる。ニッケルめっき膜のニッケル含有量は、80質量%以上であることが好ましい。ニッケル含有量が80質量%以上であることにより、第2のバリア金属膜32による有機インターポーザ10の絶縁信頼性向上の効果が良好に発揮される。ニッケルめっき膜は、絶縁信頼性の観点から、無電解ニッケル-リン合金めっき膜が好ましい。
 第2のバリア金属膜32は、0.1μm以下の厚さで良好な絶縁信頼性が得られる観点から、無電解パラジウムめっき膜であることが好ましい。無電解パラジウムめっき膜としては、例えば、置換パラジウムめっき膜、蟻酸化合物を還元剤として用いた無電解パラジウムめっき膜、次亜リン酸若しくは亜リン酸等を還元剤として用いたパラジウムーリン合金めっき膜、又はホウ素化合物を用いたパラジウムーホウ素合金めっき膜が挙げられる。
 第2のバリア金属膜32の厚さは、例えば、0.001μm~1μmである。第2のバリア金属膜32の歩留まりの観点から、第2のバリア金属膜32の厚さは、0.01μm~1μmであることが好ましい。また、第2のバリア金属膜32の生産タクト向上、薄型化、及び温度サイクル耐性の観点から、0.001μm~0.5μmであることがより好ましい。第2のバリア金属膜32の薄型化、及び感光性絶縁樹脂の解像度の観点から、0.001μm~0.3μmであることが更に好ましい。以上の観点から、第2のバリア金属膜32の厚さは、0.01μm~0.3μmであることが最も好ましい。
 第2のバリア金属膜32の表面粗さRaは、配線13の表面粗さの影響を受けており、例えば、0.01μm~1μmである。第2のバリア金属膜32の表面粗さRaが0.01μm以上である場合、第2のバリア金属膜32と第2の有機絶縁層22との密着性、及び温度サイクル耐性等の信頼性を確保可能になる。第2のバリア金属膜32の表面粗さRaが1μm以下である場合、第2の有機絶縁層22の形成時に生じる凹凸に起因した有機インターポーザ10内の断線等を抑制できると共に、有機絶縁積層体12の解像度の低下を抑制できる。第2の有機絶縁層22との密着性の観点から、第2のバリア金属膜32の表面粗さRaは、0.03μm以上であることが好ましい。温度サイクル耐性の観点から、第2のバリア金属膜32の表面粗さRaは、0.5μm以下であることが好ましい。高周波特性の観点から、第2のバリア金属膜32の表面粗さRaは、0.1μm以下であることがより好ましい。以上の観点から、第2のバリア金属膜32の表面粗さRaは、0.03μm~0.1μmであることが最も好ましい。
 有機インターポーザ10において、第1の有機絶縁層21(すなわち、第4の有機絶縁層24)と、第2のバリア金属膜32とを併せた面の表面粗さRaは、例えば、0.01μm~1μmである。上記面の表面粗さRaが0.01μm以上であることにより、第1の有機絶縁層21(及び第2のバリア金属膜32)と、第2の有機絶縁層22との密着性が良好になる。また、上記面の表面粗さが1μm以下であることにより、有機絶縁積層体12の反りを抑制し、例えば、有機絶縁積層体12を研削した際に容易に配線等を露出できる。上記面の表面粗さRaは、例えば、レーザー顕微鏡(オリンパス株式会社製、「LEXT OLS3000」)を用いて、第1の有機絶縁層21と第2のバリア金属膜32との両方を含む100×100μmの範囲をスキャンすることによって算出する。
 第1の有機絶縁層21と第2のバリア金属膜32とを併せた上記面の表面粗さRaは、配線13と第1の有機絶縁層21とを平坦化することによって制御できる。上記面に対する平坦化処理としては、例えば、化学機械研磨法(CMP:Chemical Mechanical Polishing)又はフライカット法が挙げられる。配線13に対するディッシングの発生を抑制する観点から、フライカット法を用いることが好ましい。なお、フライカット法とは、サーフェスプレーナー等の研削装置を用いて対象物を物理的に研削する方法である。
 スルー配線15は、有機絶縁積層体12の開口部12aに埋め込まれる配線であり、外部装置への接続端子として機能する。スルー配線15は、互いに積層された複数の配線層15a~15cから構成されている。配線層15bは、配線13と同時に形成された配線層と、バリア金属膜14と同時に形成された金属膜とを含んでいる。
 表面配線16は、有機インターポーザ10に搭載される半導体チップ同士を電気的接続させるための配線である。このため、表面配線16の両端部は、有機インターポーザ10から露出しており、当該両端部以外の表面配線16は、有機インターポーザ10(より具体的には、第2の有機絶縁層22)に埋め込まれている。このため、第2の有機絶縁層22は、少なくとも2つの有機絶縁層を含む。
 次に、図3~図10を参照しながら本実施形態に係る有機インターポーザ10の製造方法を説明する。下記製造方法によって形成される有機インターポーザ10は、例えば、微細化及び多ピン化が必要とされる形態において特に好適である。なお、図4(b)は、図4(a)の一部の拡大図である。同様に、図5(b)、図6(b)、図7(b)、図8(b)、及び図9(b)のそれぞれは、対応する図面の一部の拡大図である。
 まず、第1ステップとして図3(a)に示されるように、基板11上に配線層15aを形成する。配線層15aは、基板11上に形成された金属膜をパターニングすることによって形成される。第1ステップでは、例えば、塗布法、真空蒸着若しくはスパッタリング等の物理気相蒸着法(PVD法)、金属ペーストを用いた印刷法若しくはスプレー法、又は種々のめっき法によって、上記金属膜を形成する。本実施形態では、金属膜として銅箔が用いられる。
 なお、基板11と配線層15aとの間に仮固定層(図示しない)が設けられる場合、当該仮固定層は、例えば、ポリイミド、ポリベンゾオキサゾール、シリコン、フッ素等の非極性成分を含有した樹脂、加熱若しくはUV(紫外線)によって体積膨張若しくは発泡する成分を含有した樹脂、加熱若しくはUVによって架橋反応が進行する成分を含有した樹脂、又は、光照射によって発熱する樹脂を含んでいる。仮固定層の形成方法としては、例えば、スピンコート、スプレーコート、又はラミネート加工が挙げられる。取り扱い性及びキャリア剥離性を高度に両立できる観点から、仮固定層は、光又は熱等の外部刺激によって剥離しやすくなることが好ましい。仮固定層が後に製造される有機インターポーザ10に残存しないように剥離可能である観点から、仮固定層は、加熱処理によって体積膨張する樹脂を含有することが最も好ましい。
 基板11と配線層15aとの間に仮固定層が設けられる場合、配線層15aはピーラブル銅箔の銅箔から形成されてもよい。この場合、基板11がピーラブル銅箔の支持体に相当し、仮固定層がピーラブル銅箔の剥離層に相当する。
 次に、第2ステップとして図3(b)に示されるように、配線層15aを覆うように、基板11上に第3の有機絶縁層23を形成する。第2ステップでは、ネガ型感光性絶縁樹脂を含むフィルム状の第3の有機絶縁層23を基板11に貼り付けることによって、配線層15aを覆う。そして、必要に応じて第3の有機絶縁層23に露光処理、現像処理、又は硬化処理等を施す。
 次に、第3ステップとして図3(c)に示されるように、第3の有機絶縁層23上に第4の有機絶縁層24を形成することによって、第1の有機絶縁層21を形成する。第3ステップでは、第2ステップと同様に、ネガ型感光性絶縁樹脂を含むフィルム状の第4の有機絶縁層24を第3の有機絶縁層23に貼り付ける。そして、必要に応じて第4の有機絶縁層24に露光処理、現像処理、又は硬化処理等を施す。
 次に、第4ステップとして図4(a),(b)に示されるように、第1の有機絶縁層21に複数の溝部21a及び開口部21bを形成する(第1工程とも呼称する)。第4ステップでは、例えば、レーザアブレーション、フォトリソグラフィー、又はインプリントによって複数の溝部21a及び開口部21bを形成する。溝部21aの微細化及び形成コストの観点から、フォトリソグラフィーを適用することが好ましい。このため、第1の有機絶縁層21に露光処理及び現像処理を施すことによって、複数の溝部21aを形成する。また、開口部21bは、配線層15aを露出するように形成される。なお、第1の有機絶縁層21に感光性絶縁樹脂が用いられる場合、溝部21aのパターンを短時間且つ平滑に形成することができる。このため、後述する配線を高周波特性に優れたものとすることができる。
 上記フォトリソグラフィーにおいて感光性絶縁樹脂を露光する方法としては、公知の投影露光方式、コンタクト露光方式、又は直描露光方式等を用いることができる。また、感光性絶縁樹脂を現像するために、例えば、炭酸ナトリウム又はTMAH等のアルカリ性水溶液を用いてもよい。
 上記第4ステップにおいては、複数の溝部21a及び開口部21bを形成した後、第1の有機絶縁層21をさらに加熱硬化させてもよい。この場合、例えば、加熱温度を100~200℃と設定し、加熱時間を30分~3時間と設定し、第1の有機絶縁層21を加熱硬化する。
 次に、第5ステップとして図5(a),(b)に示されるように、溝部21aの内面を覆うように第1の有機絶縁層21上に第1のバリア金属膜31を形成する(第2工程とも呼称する)。第5ステップでは、例えば、塗布法、PVD法、金属ペーストを用いた印刷法若しくはスプレー法、又は種々のめっき法によって第1のバリア金属膜31を形成する。塗布法の場合、パラジウム又はニッケルの錯体を第1の有機絶縁層21上に塗布した後に加熱することによって、第1のバリア金属膜31を形成する。金属ペーストを用いる場合、ニッケル又はパラジウム等の金属粒子を含有するペーストを第1の有機絶縁層21上に塗布した後に焼結することによって、第1のバリア金属膜31を形成する。本実施形態では、PVD法の一つであるスパッタリングによって第1のバリア金属膜31を形成する。なお、第1のバリア金属膜31は、開口部21bの内面も覆うように形成される。
 次に、第6ステップとして図6(a),(b)に示されるように、溝部21aを埋めるように第1のバリア金属膜31上に配線層13Aを形成する(第3工程とも呼称する)。第6ステップでは、例えば、金属ペーストを用いた方法、又は第1のバリア金属膜31をシード層としためっき法によって配線層13Aを形成する。配線層13Aの厚さは、第1の有機絶縁層21の厚さの0.5倍~3倍であることが好ましい。配線層13Aの厚さが0.5倍以上である場合、後工程で形成される配線13の表面粗さRaの拡大を抑制できる傾向にある。また、配線層13Aの厚さが3倍以下である場合、配線層13Aの反りを抑え、第1の有機絶縁層21に対して良好に密着する傾向にある。なお、配線層13Aは、開口部21bも埋めるように形成される。
 次に、第7ステップとして図7(a),(b)に示されるように、第1の有機絶縁層21が露出するように配線層13Aを薄化する(第4工程とも呼称する)。第7ステップでは、配線層13Aにおいて溝部21a及び開口部21b外の部分と、第1のバリア金属膜31において溝部21a又は開口部21bを覆わない部分とを除去することによって、第1の有機絶縁層21を露出させると共に配線層13Aを薄化する。これにより、溝部21a内に埋め込まれる配線13を形成する。この薄化処理は、第1の有機絶縁層21と配線13とを併せた面の平坦化処理としてもよい。この場合、CMP又はフライカット法によって配線層13A及び第1のバリア金属膜31の対象部分を除去すると共に、第1の有機絶縁層21の表面を研磨又は研削して平坦化する。
 第7ステップにおいてCMPを用いる場合、スラリとして例えば、一般的に樹脂の研磨に用いられるアルミナが配合されたスラリと、第1のバリア金属膜31の研磨に用いられる過酸化水素及びシリカが配合されたスラリと、配線層13Aの研磨に用いられる過酸化水素及び過硫酸アンモニウムが配合されたスラリとを用いる。コストを低減すると共に表面粗さRaを0.01μm~1μmに制御する観点から、アルミナが配合されたスラリを用いて第1の有機絶縁層21、第1のバリア金属膜31、及び配線層13A(配線13)を研削することが好ましい。CMPを用いた場合、高コストになる傾向がある。また、第1の有機絶縁層21、第1のバリア金属膜31、及び配線層13A(配線13)を同時に平坦化する場合、研磨速度の違いによって配線13にディッシングが生じ、結果として第1の有機絶縁層21と配線13とを併せた面の平坦性が大きく損なわれる傾向がある。このため、上記面の表面粗さRaを0.03μm~0.1μmにする観点から、サーフェスプレーナーを用いたフライカット法によって第1の有機絶縁層21、第1のバリア金属膜31、及び配線層13A(配線13)を研削することがより好ましい。
 次に、第8ステップとして図8(a),(b)に示されるように、溝部21a内の配線層13Aである配線13を覆うように第2のバリア金属膜32を形成する(第5工程とも呼称する)。第8ステップでは、例えば、PVD法、金属ペーストを用いた方法、又は配線13をシード層としためっき法によって第2のバリア金属膜32を形成する。配線13上に選択性よく第2のバリア金属膜32を形成する観点から、配線13をシード層としためっき法によって第2のバリア金属膜32を形成することが好ましい。なお、めっき処理前に、露出した第1の有機絶縁層21の酸によるクリーニング、又はベンゾトリアゾールなどによる保護処理を実施してもよい。なお、第8ステップを経ることによって、配線層15a上に設けられる配線層15bが完成する。
 第8ステップにおいて、第2のバリア金属膜32は、配線13上に加え、第1のバリア金属膜31において溝部21aの側面に接する部分上に形成されることが好ましい。この場合、第1のバリア金属膜31及び第2のバリア金属膜32によって配線13を隙間なく覆うことができる。
 次に、第9ステップとして図9(a),(b)に示されるように、第1の有機絶縁層21及び第2のバリア金属膜32上に第2の有機絶縁層22を形成する(第6工程とも呼称する)。第9ステップでは、ネガ型感光性絶縁樹脂を含むフィルム状の第2の有機絶縁層22を第1の有機絶縁層21及び第2のバリア金属膜32に貼り付ける。第2の有機絶縁層22は、第1の有機絶縁層21と同一のフィルムでもよいし、異なる感光性絶縁樹脂を用いて形成されてもよい。配線13を構成する金属の拡散防止の観点から、第2の有機絶縁層22に対しては、現像処理を施さないことが好ましい。
 次に、第10ステップとして図10(a)に示されるように、第2の有機絶縁層22に開口部22aを形成する。第10ステップでは、配線層15bを露出するように開口部22aを形成する。開口部22aは、例えば、フォトリソグラフィー等によって形成される。
 次に、第11ステップとして図10(b)に示されるように、開口部22aに金属材料を充填して配線層15cを形成することによって、スルー配線15を形成する。第11ステップでは、例えば、PVD法又は種々のめっき法によって配線層15cを形成する。金属材料は、例えば、銅、ニッケル、スズなどが挙げられる。第11ステップ後、表面配線16等を形成することによって、図2に示される有機インターポーザ10を製造する。なお仮固定層が設けられている場合、基板11から有機インターポーザ10を剥離してもよい。
 以上に説明した構成を有する有機インターポーザ10によれば、配線13と第1の有機絶縁層21及び第2の有機絶縁層22とがバリア金属膜14によって仕切られている。このため、配線13内における金属材料の有機絶縁積層体への拡散は、バリア金属膜14によって抑制される。したがって、拡散した金属材料を介した複数の配線13同士の短絡を抑制できるので、有機インターポーザ10の絶縁信頼性を向上できる。
 有機絶縁積層体12は、配線13が配置された複数の溝部21aを有する第1の有機絶縁層21と、配線13を埋め込むように第1の有機絶縁層21に積層された第2の有機絶縁層22とを含んでいる。このため、複数の配線13のそれぞれは、第1の有機絶縁層21の溝部21aに沿った形状を有する。このため、微細な幅及び間隔を有する複数の溝部21aを形成することによって、微細な配線13を容易に形成できる。
 バリア金属膜14は、配線13と溝部21aの内面との間に設けられた第1のバリア金属膜31と、配線13と第2の有機絶縁層22との間に設けられた第2のバリア金属膜32とを含んでいる。このため、配線13内における金属材料の第1の有機絶縁層21への拡散は、第1のバリア金属膜31によって良好に抑制される。また、上記金属材料の第2の有機絶縁層22への拡散は、第2のバリア金属膜32によって良好に抑制される。
 第1のバリア金属膜31は、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金の少なくとも一つを含んでいる。チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金は、いずれも第1の有機絶縁層21及び第2の有機絶縁層22に拡散しにくいので、有機インターポーザ10の絶縁信頼性をさらに向上できる。
 第2のバリア金属膜32は、めっき膜であってもよい。この場合、溝部21a内の配線13上に選択的に第2のバリア金属膜32を形成できるので、有機インターポーザ10の製造工程を簡略化できる。例えば、第2のバリア金属膜32を形成するためのレジスト塗布工程、スパッタリング工程、及びレジスト除去工程等を省略できる。
 第2のバリア金属膜32は、ニッケルめっき膜であってもよい。この場合、良好な平坦性を有する第2のバリア金属膜32を容易に形成できる。加えて、ニッケルは第1の有機絶縁層21及び第2の有機絶縁層22に拡散しにくいので、有機インターポーザ10の絶縁信頼性を好適に向上できる。
 第2のバリア金属膜32は、パラジウムめっき膜であってもよい。この場合、第2のバリア金属膜32を、薄く形成できる。加えて、パラジウムは第1の有機絶縁層21及び第2の有機絶縁層22に拡散しにくいので、有機インターポーザ10の絶縁信頼性を好適に向上できる。
 第2のバリア金属膜32の厚さは、0.001μm以上1μm以下であってもよい。この場合、配線13内における金属材料の第2の有機絶縁層22への拡散は、第2のバリア金属膜32によって良好に抑制される。
 第2のバリア金属膜32の表面粗さRaは、0.01μm以上1μm以下であってもよい。この場合、第2のバリア金属膜32が第2の有機絶縁層22に良好に密着できる。また、第2のバリア金属膜32の表面粗さに起因した有機インターポーザ10内の断線等を抑制できる。
 第1の有機絶縁層21の厚さは、1μm以上10μm以下であってもよい。この場合、第1の有機絶縁層21を用いて10μm以下の幅及び間隔を有する複数の溝部21aを形成できる。
 第1の有機絶縁層21は、光酸発生剤、フェノール性水酸基を有する化合物、及び熱硬化性樹脂を含む感光性の有機絶縁樹脂が硬化してなる硬化膜でってもよい。この場合、微細な幅及び間隔を有する溝部21aを第1の有機絶縁層21に容易に形成できる。加えて、第1の有機絶縁層21に含まれる水分を低減できるので、当該第1の有機絶縁層21に金属材料が拡散しにくくなる。したがって、有機インターポーザ10の絶縁信頼性を向上できる。
 本実施形態に係る有機インターポーザ10の製造方法によれば、第4ステップ~第6ステップを経ることにより、各溝部21aの内面と配線層13Aとの間に第1のバリア金属膜31を形成できる。また、第7ステップ~第9ステップを経ることにより、有機絶縁層の積層方向において、配線13と第2の有機絶縁層22との間に第2のバリア金属膜32を形成できる。このため、配線13内における金属材料の第1の有機絶縁層21及び第2の有機絶縁層22への拡散は、第1のバリア金属膜31及び第2のバリア金属膜32によって抑制される。したがって、拡散した金属材料を介した複数の配線13同士の短絡を抑制できるので、有機インターポーザ10の絶縁信頼性を向上できる。
 第6ステップでは、第1のバリア金属膜31をシード層としためっき法によって配線層13Aを形成してもよい。この場合、第1の有機絶縁層21と配線層13Aとの間に第1のバリア金属膜31が挟持されるように配線層13Aを形成できる。これにより、配線層13A内における金属材料の第1の有機絶縁層21への拡散が良好に抑制される。
 第8ステップでは、配線13をシード層としためっき法によって第2のバリア金属膜32を形成してもよい。この場合、例えばレジスト等を用いずに配線13上に選択的に第2のバリア金属膜32を形成できる。これにより、第2のバリア金属膜32の形成時にレジスト形成工程及びレジスト除去工程等の工程を省略できるので、有機インターポーザ10の製造工程を簡略化できる。
 なお、有機インターポーザ10内の配線13は、例えば、セミアディティブ法によって形成されることも考えられる。セミアディティブ法とは、シード層を形成し、所望のパターンを有するレジストをシード層上に形成し、シード層における露出した部分を電解めっき法等により厚膜化し、レジストを除去した後、薄いシード層をエッチングして所望の配線を得る方法である。しかしながら、セミアディティブ法を適用した場合、薄いシード層をエッチングする際に配線に加わるダメージが大きい。加えて、配線の有機絶縁層に対する密着強度の確保が困難である。このため、セミアディティブ法を用いて例えば、5μm以下のライン幅とスペース幅とを有する微細な配線を形成する場合、有機インターポーザの歩留まりが大きく低下する傾向にある。したがって本実施形態では、この歩留まり低下を抑制するために、第4工程にて第1の有機絶縁層21に溝部21aを設け、当該溝部21a内に配線13を形成するトレンチ法が採用されている。
 以上、本開示の一実施形態に係る有機インターポーザ及びその製造方法について説明したが、本開示は上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。例えば、第1の有機絶縁層21に形成される溝部21aの断面形状は、略矩形状に限らず、略台形状、略半円状等の他の形状でもよい。
 上記実施形態において、配線13、配線層15a~15c、第1のバリア金属膜31、第2のバリア金属膜32、及び表面配線16等は、それぞれ単層構造を有してもよく、複数の導電層からなる多層構造を有してもよい。
 上記実施形態では、第1の有機絶縁層21は第3の有機絶縁層23及び第4の有機絶縁層24の両方を含んでいるが、これに限られない。例えば、第1の有機絶縁層21は、単層構造でもよい。この場合、上記製造方法における第2ステップ及び第3ステップをまとめた1ステップにでき、有機インターポーザ10の製造工程を簡略化できる。
 上記実施形態における製造方法の第7ステップでは溝部21a内の配線層13A(配線13)の一部を除去し、続く第8ステップにて、溝部21aを埋めるように第2のバリア金属膜32を形成してもよい。この場合、第2のバリア金属膜32が溝部21a内に埋められて形成されるので、有機インターポーザ10において第2のバリア金属膜32に起因した段差の形成を抑制できる。すなわち、第2の有機絶縁層22と第2のバリア金属膜32とを併せた面の表面粗さRaを低減できる。これにより、有機インターポーザ10に半導体素子等を良好に搭載できる。なお、溝部21a内の配線13の一部の除去は、例えば、CMPを行う際に発生するディッシングを利用する。また、溝部21a内の配線13の一部は、例えば、溝部21aにおける上半分に位置する配線13の少なくとも一部である。
 上記実施形態において、有機絶縁積層体12に含まれる有機絶縁層には、密着助剤が含まれてもよい。密着助剤としては、例えば、シランカップリング剤、トリアゾールもしくはテトラゾール系化合物が挙げられる。
 シランカップリング剤としては、金属との密着性を向上させるため、窒素原子を有する化合物が好ましく用いられる。具体的には、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリエトキシシラン、などが挙げられる。上記シランカップリング剤の使用量は、添加による効果、耐熱性及び製造コスト等の観点から、フェノール性水酸基を有する化合物100質量部に対して、0.1質量部~20質量部であることが好ましい。
 トリアゾール化合物としては、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-5'-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール]、6-(2-ベンゾトリアゾリル)-4-tert-オクチル-6'-tert-ブチル-4'-メチル-2,2'-メチレンビスフェノール、1,2,3-ベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール、カルボキシベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、2,2’-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、などが挙げられる。
 テトラゾール化合物としては、1H-テトラゾール、5-アミノ-1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、1-メチル-5-エチル-1H-テトラゾール、1-メチル-5-メルカプト-1H-テトラゾール、1-フェニル-5-メルカプト-1H-テトラゾール、1-(2-ジメチルアミノエチル)-5-メルカプト-1H-テトラゾール、2-メトキシ-5-(5-トリフルオロメチル-1H-テトラゾール-1-イル)-ベンズアルデヒド、4,5-ジ(5-テトラゾリル)-[1,2,3]トリアゾール、1-メチル-5-ベンゾイル-1H-テトラゾール、などが挙げられる。上記トリアゾールもしくはテトラゾール系化合物の使用量は、添加による効果、耐熱性及び製造コストの観点から、フェノール性水酸基を有する化合物100質量部に対して、0.1質量部~20質量部であることが好ましい。
 上記シランカップリング剤、トリアゾール系化合物、及びテトラゾール系化合物は、それぞれ単独で使用してもよいし、併用してもよい。
 更に、有機絶縁層にはイオン捕捉剤が添加されてもよい。上記イオン捕捉剤によって有機絶縁層中のイオン性不純物を吸着することにより、吸湿時の絶縁信頼性を向上できる。このようなイオン捕捉剤としては、例えば、トリアジンチオール化合物及びフェノール系還元剤等の銅がイオン化して溶け出すのを防止するための銅害防止剤として知られる化合物、粉末状のビスマス系、アンチモン系、マグネシウム系、アルミニウム系、ジルコニウム系、カルシウム系、チタン系、及びスズ系、並びに、これらの混合系等の無機化合物が挙げられる。
 上記イオン捕捉剤としては、例えば、東亜合成株式会社製の無機イオン捕捉剤(商品名:IXE-300(アンチモン系)、IXE-500(ビスマス系)、IXE-600(アンチモン、ビスマス混合系)、IXE-700(マグネシウム、アルミニウム混合系)、IXE-800(ジルコニウム系)、及びIXE-1100(カルシウム系))が挙げられる。これらは1種を単独で用いてもよいし、2種以上を混合して用いてもよい。上記イオン捕捉剤の使用量は、添加による効果、耐熱性及び製造コスト等の観点から、フェノール性水酸基を有する化合物100質量部に対して、0.01質量部~10質量部であることが好ましい。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
 (実施例1)
 図11(a),(b)に示される測定評価用試料を以下のようにして作製した。まず、厚さ150mmのシリコンウェハ51に厚さ5μmの感光性絶縁樹脂フィルム52を貼り付けた。この感光性絶縁樹脂フィルム52は、以下のようにして形成した。まず、クレゾールノボラック樹脂(旭有機材工業株式会社製、商品名:TR-4020G、100質量部)と、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(30質量部)と、トリメチロールプロパントリグリシジルエーテル(40質量部)と、トリアリールスルホニウム塩(サンアプロ株式会社製、商品名:CPI-310B、8質量部)と、メチルエチルケトン(100質量部)とを配合し、感光性絶縁組成物を得た。次に、得られた感光性絶縁組成物をポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、商品名:A-53)に塗布し、90℃のオーブンで10分間乾燥することによって、厚さ5μmの感光性絶縁樹脂フィルム52を得た。
 次に、シリコンウェハ51に貼り付けた感光性絶縁樹脂フィルム52を露光処理、加熱処理、現像処理及び熱硬化処理を順番に施した。次に、感光性絶縁樹脂フィルム52に、当該フィルム52と同様にして形成した厚さ5μmの感光性絶縁樹脂フィルム53を貼り付けた。次に、貼り付けた感光性絶縁樹脂フィルム53を、フォトマスクを介して露光処理した後、加熱処理、現像処理、及び熱硬化処理を順番に施した。これにより感光性絶縁樹脂フィルム53をパターニングし、互いにかみ合うように櫛歯状になっている第1の溝部53a及び第2の溝部53bと、第1の溝部53a同士を結ぶ第1の接続部53cと、第2の溝部53b同士を結ぶ第2の接続部53dとを形成した。第1の溝部53aの幅と第2の溝部53bの幅とをそれぞれ10μmに設定した。これらの幅は、後述する配線のライン幅Lに相当する。また、隣り合う第1の溝部53aと第2の溝部53bとの距離(スペース幅S)を10μmに設定し、それぞれの溝の長さを1mmに設定した。
 次に、スパッタリングによって、感光性絶縁樹脂フィルム53上に厚さ0.05μmのチタンを含むバリア金属膜54を形成した。次に、バリア金属膜54をシード層とした電解めっき法によって、第1の溝部53a、第2の溝部53b、第1の接続部53c、及び第2の接続部53dを埋めるように銅層を形成した。次に、サーフェスプレーナーを用いたフライカット法によって、銅層の一部と、バリア金属膜54において第1の溝部53a、第2の溝部53b、第1の接続部53c、及び第2の接続部53dの内面を覆わない部分を研削した。これにより、第1の溝部53aに埋められる第1の配線55aと、第2の溝部53bに埋められる第2の配線55bと、第1の接続部53cに埋められる第1の接続配線55cと、第2の接続部53dに埋められる第2の接続配線55dとを形成した。サーフェスプレーナーとして、オートマチックサーフェスプレーナー(株式会社ディスコ製、商品名「DAS8930」)を用いた。また、フライカット法による研削では、送り速度を1mm/sに設定し、スピンドル回転数を2000min-1に設定した。
 次に、第1の配線55aと、第2の配線55bと、第1の接続配線55cと、第2の接続配線55dとのそれぞれをシード層とした無電解めっき法によって、厚さ0.2μmのニッケル-リン合金を含むバリア金属膜56を形成した。次に、第1の接続配線55cの一部と、第2の接続配線55dの一部とを少なくとも露出させるように、感光性絶縁樹脂フィルム52と同様にして形成した厚さ5μmの感光性絶縁樹脂フィルム57を貼り付けた。次に、貼り付けた感光性絶縁樹脂フィルム57に対して露光処理、加熱処理、現像処理及び熱硬化処理を順番に施した。これにより、図11(a),(b)に示される測定評価用試料50を形成した。この測定評価用試料50においては、第1の配線55aと第1の接続配線55cとは、互いに接続されていると共にバリア金属膜54,56によって覆われている。同様に、第2の配線55bと第2の接続配線55dとは、互いに接続されていると共にバリア金属膜54,56によって覆われている。また、第1の配線55a及び第1の接続配線55cと、第2の配線55b及び第2の接続配線55dとは、互いに感光性絶縁樹脂フィルム52,53,57によって絶縁されている。
 上述した測定評価用試料50の絶縁信頼性を確認するため、以下に説明する高加速度寿命試験(HAST:Highly Accelerated Stress Test)を行った。この試験では、湿度85%、130℃の条件下において第1の接続配線55cと第2の接続配線55dとに3.3Vの電圧を印加し、所定の時間にわたって静置した。これにより、時間経過に伴う第1の配線55aと、第2の配線55bとの絶縁性の変化を測定した。この試験では、第1の配線55aと第2の配線55bとの間の抵抗値が、試験開始から200時間経過時に1×10Ω以上であれば評価Aとし、試験開始から200時間経過前に1×10Ω未満となれば評価Bとした。実施例1の高加速度寿命試験の結果を、下記表1に示す。
 (実施例2)
 ライン幅L及びスペース幅Sを5μmに設定したこと以外は実施例1と同様にして測定評価用試料50を形成し、上述した高加速度寿命試験を行った。実施例2の高加速度寿命試験の結果を、下記表1に示す。
 (実施例3)
 ライン幅L及びスペース幅Sを2μmに設定したこと以外は実施例1と同様にして測定評価用試料50を形成し、上述した高加速度寿命試験を行った。実施例3の高加速度寿命試験の結果を、下記表1に示す。
 (実施例4)
 感光性絶縁樹脂フィルム57として、ソルダーレジストフィルム(日立化成株式会社製、商品名:FZ-2700GA、厚さ30μm)としたこと以外は実施例2と同様にして測定評価用試料50を形成した。この測定評価用試料50に対して上述した高加速度寿命試験を行った。実施例4の高加速度寿命試験の結果を、下記表1に示す。
 (実施例5)
 感光性絶縁樹脂フィルム57として、ソルダーレジストフィルム(日立化成株式会社製、商品名:FZ-2700GA、厚さ30μm)としたこと以外は実施例3と同様にして測定評価用試料50を形成した。この測定評価用試料50に対して上述した高加速度寿命試験を行った。実施例5の高加速度寿命試験の結果を、下記表1に示す。
 (比較例1)
 図12(a),(b)に示されるように、バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例1と同様にして測定評価用試料50Aを形成した。すなわち、第1の配線55a、第2の配線55b、第1の接続配線55c、及び第2の接続配線55dが感光性絶縁樹脂フィルム57に接するように測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例1の高加速度寿命試験の結果を、下記表1に示す。
 (比較例2)
 バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例2と同様にして測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例2の高加速度寿命試験の結果を、下記表1に示す。
 (比較例3)
 バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例3と同様にして測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例3の高加速度寿命試験の結果を、下記表1に示す。
 (比較例4)
 バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例4と同様にして測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例4の高加速度寿命試験の結果を、下記表1に示す。
 (比較例5)
 バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例5と同様にして測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例5の高加速度寿命試験の結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1においては、バリア金属膜56が設けられている場合「Y」と示され、バリア金属膜56が設けられていない場合「N」と示される。また上記表1において、感光性絶縁樹脂フィルム57が感光性絶縁樹脂フィルム52と同様にして形成された場合「α」と示され、感光性絶縁樹脂フィルム57がソルダーレジストフィルムを用いて形成された場合「β」と示される。表1より、実施例1~5の高加速度寿命試験の結果は全て評価Aであった一方で、比較例1~5の高加速度寿命試験の結果は全て評価Bであった。これらの結果より、バリア金属膜56の有無によって、測定評価用試料の絶縁信頼性が大きく異なることがわかった。
 図13(a)は、実施例2と比較例2との高加速度寿命試験の結果を示すグラフであり、図13(b)は、実施例3と比較例3との高加速度寿命試験の結果を示すグラフである。図13(a)及び図13(b)において、横軸は時間を示し、縦軸は第1の配線55aと第2の配線55bとの間の抵抗値を示す。図13(a)において、データ61は実施例2の試験結果であり、データ62は比較例2の試験結果である。図13(b)において、データ63は実施例3の試験結果であり、データ64は比較例3の試験結果である。
 図13(a)に示されるように、実施例2では試験開始から300時間経過時であっても、第1の配線55aと第2の配線55bとの間の抵抗値が1×10Ω以上を示した。一方、比較例2では試験開始から20時間程度の時点で急激に抵抗値が減少し、1×10Ω未満になった。同様に、図13(b)に示されるように、実施例3では試験開始から200時間経過時であっても、第1の配線55aと第2の配線55bとの間の抵抗値が1×10Ω以上を示した一方で、比較例2では試験開始から数時間の時点で急激に抵抗値が減少し、1×10Ω未満になった。
 図14(a)~(c)は、実施例3の硬化速度寿命試験を250時間経過した後の測定評価用試料50の断面サンプルをTEM(透過電子顕微鏡)/EDX(エネルギー分散形X線分析装置)にて銅、チタン、及びニッケルの成分を解析した結果を示す。図14(a)は、測定評価用試料50の断面サンプルにおけるCu(銅)の解析結果であり、図14(b)は、当該断面サンプルにおけるTi(チタン)の解析結果であり、図14(c)は、当該断面サンプルにおけるNi(ニッケル)の解析結果である。TEMとして日本電子株式会社製 JEM-2100Fを用い、EDXとして日本電子株式会社製 JED-2300を用い、加速電圧を200kVと設定し、上記解析を実施した。実施例3においては、EDX解析試験後に、配線及びバリア金属の感光性絶縁樹脂フィルムへの溶出は観測されなかった。具体的には、バリア金属膜54,56に囲まれる銅層を構成する銅の感光性絶縁樹脂フィルムへの拡散、バリア金属膜54を構成するチタンの感光性絶縁樹脂フィルムへの拡散、及びバリア金属膜56を構成するニッケルの感光性絶縁樹脂フィルムへの拡散は、いずれも確認されなかった。
 上記高加速度寿命試験後の比較例2,3の測定評価用試料50Aを目視したところ、比較例2,3においては、少なくとも感光性絶縁樹脂フィルム57が何らかの要因にて汚染されていることが確認された。一方、上記高加速度寿命試験後の実施例2,3の測定評価用試料50を目視したところ、感光性絶縁樹脂フィルム52,53,57の汚染は確認されなかった。
 以上より、比較例2,3における急激な抵抗値の減少は、第1の配線55a及び第2の配線55b内における金属材料が感光性絶縁樹脂フィルム57に拡散し、拡散した金属材料を介して第1の配線55aと第2の配線55bとが短絡したからであると推察される。一方で実施例2,3においては、第1の配線55a又は第2の配線55b内における金属材料の感光性絶縁樹脂フィルム52,53,57への拡散がバリア金属膜54,56によって防止され、第1の配線55aと第2の配線55bとが短絡しなかったと推察される。
 1…基板、2A~2D…半導体チップ、3A,3B…アンダーフィル、4…絶縁材料、10…有機インターポーザ、11…基板、12…有機絶縁積層体、13…配線、13A…配線層、14…バリア金属膜、15…スルー配線、21…第1の有機絶縁層、21a…溝部、21b…開口部、22…第2の有機絶縁層、31…第1のバリア金属膜、32…第2のバリア金属膜、100…半導体パッケージ、L…ライン幅、S…スペース幅。

Claims (15)

  1.  複数の有機絶縁層を含んでなる有機絶縁積層体と、
     前記有機絶縁積層体内に配列された複数の配線と、を備え、
     前記配線と前記有機絶縁層とがバリア金属膜によって仕切られている、有機インターポーザ。
  2.  前記有機絶縁積層体は、
     前記配線が配置された複数の溝部を有する第1の有機絶縁層と、
     前記配線を埋め込むように前記第1の有機絶縁層に積層された第2の有機絶縁層と、を含む、請求項1記載の有機インターポーザ。
  3.  前記バリア金属膜は、
     前記配線と前記溝部の内面との間に設けられた第1のバリア金属膜と、
     前記配線と前記第2の有機絶縁層との間に設けられた第2のバリア金属膜と、を含む、請求項2記載の有機インターポーザ。
  4.  前記第1のバリア金属膜は、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金の少なくとも一つを含む、請求項3記載の有機インターポーザ。
  5.  前記第2のバリア金属膜は、めっき膜である、請求項3又は4記載の有機インターポーザ。
  6.  前記第2のバリア金属膜は、ニッケルめっき膜である、請求項5記載の有機インターポーザ。
  7.  前記第2のバリア金属膜は、パラジウムめっき膜である、請求項5記載の有機インターポーザ。
  8.  前記第2のバリア金属膜の厚さは、0.001μm以上1μm以下である、請求項3~7のいずれか一項記載の有機インターポーザ。
  9.  前記第2のバリア金属膜の表面粗さは、0.01μm以上1μm以下である、請求項3~8のいずれか一項記載の有機インターポーザ。
  10.  前記第1の有機絶縁層の厚さは、1μm以上10μm以下である、請求項2~9のいずれか一項記載の有機インターポーザ。
  11.  前記第1の有機絶縁層は、光酸発生剤、フェノール性水酸基を有する化合物、及び熱硬化性樹脂を含む感光性の有機絶縁樹脂が硬化してなる硬化膜である、請求項2~10のいずれか一項記載の有機インターポーザ。
  12.  第1の有機絶縁層に複数の溝部を形成する第1工程と、
     前記溝部の内面を覆うように前記第1の有機絶縁層上に第1のバリア金属膜を形成する第2工程と、
     前記溝部を埋めるように前記第1のバリア金属膜上に配線層を形成する第3工程と、
     前記第1の有機絶縁層が露出するように前記配線層を薄化する第4工程と、
     前記溝部内の前記配線層を覆うように第2のバリア金属膜を形成する第5工程と、
     前記第1の有機絶縁層上及び前記第2のバリア金属膜上に第2の有機絶縁層を形成する第6工程と、を備える有機インターポーザの製造方法。
  13.  前記第3工程では、前記第1のバリア金属膜をシード層としためっき法によって前記配線層を形成する、請求項12記載の有機インターポーザの製造方法。
  14.  前記第5工程では、前記配線層をシード層としためっき法によって前記第2のバリア金属膜を形成する、請求項12又は13記載の有機インターポーザの製造方法。
  15.  前記第4工程では、前記溝部内の前記配線層の一部を除去し、
     前記第5工程では、前記溝部を埋めるように前記第2のバリア金属膜を形成する、請求項14記載の有機インターポーザの製造方法。
PCT/JP2017/006840 2016-03-25 2017-02-23 有機インターポーザ及び有機インターポーザの製造方法 WO2017163743A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020217038954A KR20210150593A (ko) 2016-03-25 2017-02-23 유기 인터포저 및 유기 인터포저의 제조 방법
US16/087,269 US10756008B2 (en) 2016-03-25 2017-02-23 Organic interposer and method for manufacturing organic interposer
JP2018507153A JP6741063B2 (ja) 2016-03-25 2017-02-23 有機インターポーザ及び有機インターポーザの製造方法
CN202311570231.1A CN117577592A (zh) 2016-03-25 2017-02-23 有机***体及有机***体的制造方法
KR1020187026837A KR102334181B1 (ko) 2016-03-25 2017-02-23 유기 인터포저 및 유기 인터포저의 제조 방법
CN201780019216.4A CN108886028A (zh) 2016-03-25 2017-02-23 有机***体及有机***体的制造方法
US16/983,012 US11562951B2 (en) 2016-03-25 2020-08-03 Organic interposer and method for manufacturing organic interposer
US18/068,032 US11990396B2 (en) 2016-03-25 2022-12-19 Substrate and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-061899 2016-03-25
JP2016061899 2016-03-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/087,269 A-371-Of-International US10756008B2 (en) 2016-03-25 2017-02-23 Organic interposer and method for manufacturing organic interposer
US16/983,012 Continuation US11562951B2 (en) 2016-03-25 2020-08-03 Organic interposer and method for manufacturing organic interposer

Publications (1)

Publication Number Publication Date
WO2017163743A1 true WO2017163743A1 (ja) 2017-09-28

Family

ID=59899986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006840 WO2017163743A1 (ja) 2016-03-25 2017-02-23 有機インターポーザ及び有機インターポーザの製造方法

Country Status (6)

Country Link
US (3) US10756008B2 (ja)
JP (4) JP6741063B2 (ja)
KR (2) KR20210150593A (ja)
CN (2) CN108886028A (ja)
TW (3) TWI793625B (ja)
WO (1) WO2017163743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473987A (zh) * 2018-05-10 2019-11-19 夏普株式会社 基板的制造方法和显示装置的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210143999A (ko) * 2020-05-21 2021-11-30 엘지이노텍 주식회사 인쇄회로기판 및 이의 제조 방법
US20220359323A1 (en) * 2021-05-07 2022-11-10 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149847A (ja) * 1997-05-15 1999-02-23 Hitachi Ltd 感光性樹脂組成物とそれを用いた絶縁フィルム及び多層配線板
JP2001351918A (ja) * 2000-06-05 2001-12-21 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2007035734A (ja) * 2005-07-25 2007-02-08 Nec Electronics Corp 半導体装置およびその製造方法
JP2008205458A (ja) * 2007-02-16 2008-09-04 Internatl Business Mach Corp <Ibm> 2層金属キャップを有する相互接続構造体及びその製造方法
JP2010037617A (ja) * 2008-08-07 2010-02-18 Panasonic Corp 半導体装置の製造方法、半導体装置及び半導体装置の製造装置
WO2014069662A1 (ja) * 2012-11-05 2014-05-08 大日本印刷株式会社 配線構造体
JP2014143225A (ja) * 2013-01-22 2014-08-07 Fujitsu Ltd 半導体装置の製造方法および半導体装置
JP2014183127A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 半導体装置およびその製造方法
JP2015079850A (ja) * 2013-10-17 2015-04-23 富士通株式会社 配線構造及びその形成方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3304754B2 (ja) * 1996-04-11 2002-07-22 三菱電機株式会社 集積回路の多段埋め込み配線構造
JPH10163192A (ja) * 1996-10-03 1998-06-19 Fujitsu Ltd 半導体装置およびその製造方法
US6190834B1 (en) * 1997-05-15 2001-02-20 Hitachi, Ltd. Photosensitive resin composition, and multilayer printed circuit board using the same
JPH11354637A (ja) * 1998-06-11 1999-12-24 Oki Electric Ind Co Ltd 配線の接続構造及び配線の接続部の形成方法
US6214728B1 (en) * 1998-11-20 2001-04-10 Chartered Semiconductor Manufacturing, Ltd. Method to encapsulate copper plug for interconnect metallization
KR100367734B1 (ko) 2000-01-27 2003-01-10 주식회사 하이닉스반도체 반도체 소자의 배선형성 방법
JP2002009248A (ja) * 2000-06-26 2002-01-11 Oki Electric Ind Co Ltd キャパシタおよびその製造方法
US7008872B2 (en) * 2002-05-03 2006-03-07 Intel Corporation Use of conductive electrolessly deposited etch stop layers, liner layers and via plugs in interconnect structures
JP4106048B2 (ja) 2004-10-25 2008-06-25 松下電器産業株式会社 半導体装置の製造方法及び半導体装置
JP2007053133A (ja) * 2005-08-15 2007-03-01 Toshiba Corp 半導体装置及びその製造方法
US7276796B1 (en) * 2006-03-15 2007-10-02 International Business Machines Corporation Formation of oxidation-resistant seed layer for interconnect applications
JP4921945B2 (ja) * 2006-12-13 2012-04-25 株式会社東芝 半導体装置の製造方法及び半導体装置
JP2009026989A (ja) * 2007-07-20 2009-02-05 Toshiba Corp 半導体装置及び半導体装置の製造方法
US8227904B2 (en) 2009-06-24 2012-07-24 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
JP2011192726A (ja) 2010-03-12 2011-09-29 Renesas Electronics Corp 電子装置および電子装置の製造方法
JP5824808B2 (ja) * 2011-01-07 2015-12-02 富士通株式会社 半導体装置及びその製造方法
WO2013054790A1 (ja) * 2011-10-11 2013-04-18 日立化成株式会社 導体回路を有する構造体及びその製造方法並びに熱硬化性樹脂組成物
JP5816127B2 (ja) * 2012-04-27 2015-11-18 株式会社東芝 半導体発光装置およびその製造方法
TWI489658B (zh) * 2012-05-25 2015-06-21 Toshiba Kk 半導體發光裝置及光源單元
JP5989420B2 (ja) * 2012-06-28 2016-09-07 株式会社東芝 半導体発光装置
JP2014139999A (ja) * 2013-01-21 2014-07-31 Toshiba Corp 半導体発光装置
JP2015082606A (ja) * 2013-10-23 2015-04-27 日東電工株式会社 半導体パッケージの製造方法
JP2015126035A (ja) * 2013-12-25 2015-07-06 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9418924B2 (en) * 2014-03-20 2016-08-16 Invensas Corporation Stacked die integrated circuit
EP3128547B1 (en) * 2014-03-31 2019-07-17 Toppan Printing Co., Ltd. Interposer and semiconductor device
KR102321209B1 (ko) * 2014-11-03 2021-11-02 삼성전자주식회사 반도체 장치 및 이의 제조 방법
US9620446B2 (en) * 2014-12-10 2017-04-11 Shinko Electric Industries Co., Ltd. Wiring board, electronic component device, and method for manufacturing those

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149847A (ja) * 1997-05-15 1999-02-23 Hitachi Ltd 感光性樹脂組成物とそれを用いた絶縁フィルム及び多層配線板
JP2001351918A (ja) * 2000-06-05 2001-12-21 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2007035734A (ja) * 2005-07-25 2007-02-08 Nec Electronics Corp 半導体装置およびその製造方法
JP2008205458A (ja) * 2007-02-16 2008-09-04 Internatl Business Mach Corp <Ibm> 2層金属キャップを有する相互接続構造体及びその製造方法
JP2010037617A (ja) * 2008-08-07 2010-02-18 Panasonic Corp 半導体装置の製造方法、半導体装置及び半導体装置の製造装置
WO2014069662A1 (ja) * 2012-11-05 2014-05-08 大日本印刷株式会社 配線構造体
JP2014143225A (ja) * 2013-01-22 2014-08-07 Fujitsu Ltd 半導体装置の製造方法および半導体装置
JP2014183127A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 半導体装置およびその製造方法
JP2015079850A (ja) * 2013-10-17 2015-04-23 富士通株式会社 配線構造及びその形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473987A (zh) * 2018-05-10 2019-11-19 夏普株式会社 基板的制造方法和显示装置的制造方法
CN110473987B (zh) * 2018-05-10 2021-12-28 夏普株式会社 基板的制造方法和显示装置的制造方法

Also Published As

Publication number Publication date
US11990396B2 (en) 2024-05-21
KR102334181B1 (ko) 2021-12-03
US20200365501A1 (en) 2020-11-19
TWI731040B (zh) 2021-06-21
TWI793625B (zh) 2023-02-21
JPWO2017163743A1 (ja) 2019-01-24
JP2020178140A (ja) 2020-10-29
US11562951B2 (en) 2023-01-24
TW202137474A (zh) 2021-10-01
US20230118368A1 (en) 2023-04-20
US10756008B2 (en) 2020-08-25
JP7020515B2 (ja) 2022-02-16
TW202331985A (zh) 2023-08-01
KR20180113591A (ko) 2018-10-16
CN108886028A (zh) 2018-11-23
JP7380724B2 (ja) 2023-11-15
KR20210150593A (ko) 2021-12-10
JP2022058869A (ja) 2022-04-12
TW201801258A (zh) 2018-01-01
CN117577592A (zh) 2024-02-20
JP2024014891A (ja) 2024-02-01
US20190109082A1 (en) 2019-04-11
JP6741063B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
JP7380724B2 (ja) 半導体パッケージ用基板及び半導体パッケージ用基板の製造方法
JP6911982B2 (ja) 半導体装置及びその製造方法
US20140102768A1 (en) Wiring board and method for manufacturing the same
JP4973743B2 (ja) 半導体素子実装基板及び半導体素子実装基板の製造方法
JP2022164707A (ja) 配線層の製造方法
Furuya et al. Demonstration of 2µm RDL wiring using dry film photoresists and 5µm RDL via by projection lithography for low-cost 2.5 D panel-based glass and organic interposers
JP2017211617A (ja) 感光性樹脂組成物、感光性樹脂膜、および電子装置
TWI739092B (zh) 凸塊保護膜用感光性樹脂組成物、半導體裝置、半導體裝置之製造方法及電子機器
EP4328963A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP7315062B2 (ja) 半導体装置製造用部材の製造方法
JP2021129052A (ja) 半導体装置の製造方法
JP2019029451A (ja) 半導体装置製造用部材の製造方法
JP2017212415A (ja) 電子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507153

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020187026837

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769789

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769789

Country of ref document: EP

Kind code of ref document: A1