WO2017159536A1 - 入力電圧制御装置 - Google Patents

入力電圧制御装置 Download PDF

Info

Publication number
WO2017159536A1
WO2017159536A1 PCT/JP2017/009476 JP2017009476W WO2017159536A1 WO 2017159536 A1 WO2017159536 A1 WO 2017159536A1 JP 2017009476 W JP2017009476 W JP 2017009476W WO 2017159536 A1 WO2017159536 A1 WO 2017159536A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
power supply
supply line
comparison
input voltage
Prior art date
Application number
PCT/JP2017/009476
Other languages
English (en)
French (fr)
Inventor
羽田 正二
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP17766537.9A priority Critical patent/EP3432435B1/en
Priority to US16/086,242 priority patent/US10528072B2/en
Priority to KR1020187022492A priority patent/KR20180124022A/ko
Priority to CN201780013828.2A priority patent/CN109075570A/zh
Publication of WO2017159536A1 publication Critical patent/WO2017159536A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F5/00Systems for regulating electric variables by detecting deviations in the electric input to the system and thereby controlling a device within the system to obtain a regulated output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25401Compensation of control signals as function of changing supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/24Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage
    • H02H3/243Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage for DC systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention is a system in which a plurality of load devices are connected to a bus to which a direct-current voltage is supplied (hereinafter referred to as a DC bus), and is arranged between the DC bus and each load device.
  • the present invention relates to an input voltage control device that controls the supply of the input voltage.
  • Patent Document 1 discloses a distributed power supply system in which a plurality of power generation devices whose output power varies and a plurality of load devices are connected to a DC bus.
  • the power generation device is, for example, a solar power generation device or a wind power generation device.
  • a load device having a low importance is selected according to the voltage level, and the power supply is cut off step by step.
  • Patent Document 2 discloses a voltage conversion device that, when detecting that the input voltage to the voltage conversion circuit has decreased, reduces the input current to the voltage conversion circuit and reduces the power supplied to the load by the voltage conversion circuit. Disclose.
  • Patent Document 1 only describes that a low-importance load device is selected according to the voltage level of the DC bus and power supply is cut off step by step, and specific means for that purpose are not described. Absent. Moreover, when the voltage level of the DC bus is lowered, the voltage conversion device described in Patent Document 2 reduces the power supplied to the load accordingly. However, for example, there are load devices, such as computers, where it is not desirable to reduce power gradually.
  • An object of the present invention is to provide an input voltage control device that is disposed between a DC bus and individual load devices and that can control supply and interruption of power according to the voltage level of the DC bus for each load device. It is to be.
  • the input voltage control apparatus of the present invention is A first power supply line to which a first potential is applied; A second power line that is divided into one line and the other line, and a second potential is applied to the one line; A third power line; It operates with a first potential supplied from the first power supply line and a second potential supplied from one of the second power supply lines, and the potential difference from the second potential is constant.
  • a comparator that outputs a conduction potential or a cut-off potential, One end of the current path is connected to one line of the second power supply line, the other end of the current path is connected to the other line of the second power supply line, and the control terminal is connected to the output terminal of the comparator
  • a semiconductor element that conducts the current path when the conduction potential is input to the control end and interrupts the current path when the cutoff potential is input to the control end; It is characterized by providing.
  • the input voltage control device of the present invention is
  • the reference potential generation unit includes at least one variable resistor, and the reference potential can be changed by changing a resistance value of the variable resistor.
  • the input voltage control device of the present invention is
  • the comparison potential generation unit includes at least one variable resistor, and the comparison potential can be changed by changing a resistance value of the variable resistor.
  • the input voltage control device of the present invention is The comparison potential generating unit drops a voltage that is a potential difference between a first potential supplied from the first power supply line and a second potential supplied from one of the second power supply lines.
  • a comparison element is included, and the comparison potential is generated based on the dropped voltage.
  • the input voltage control device of the present invention is
  • the semiconductor element is an NMOS transistor;
  • the comparison potential and the reference potential are input to the non-inverting input terminal and the inverting input terminal of the comparator, respectively. It is characterized by that.
  • power supply and interruption can be controlled for each load device according to the voltage level of the DC bus.
  • FIG. 1 shows an example of the configuration of an input voltage control apparatus 1A according to the first embodiment of the present invention.
  • the input voltage control device 1A includes a power supply line L1 that is a first power supply line, a power supply line L2 that is a second power supply line, a power supply line L3 that is a third power supply line, a smoothing capacitor C1, and a constant capacitor C1.
  • Voltage generator 2, reference potential generator 3A, comparison potential generator 4A, comparator 5, hysteresis resistor R5, NMOS transistor 6, which is a semiconductor element, transformer 7, resistor R6, and diode D1 Have The power line L1 is connected to the terminals T1 and T3.
  • the power supply line L2 is divided into one line and the other line.
  • An NMOS transistor 6 is disposed between one line and the other line.
  • One line of the power supply line L2 is connected to the terminal T2 and the source of the NMOS transistor 6.
  • the other line of the power supply line L2 is connected to the drain of the NMOS transistor 6 and the terminal T2.
  • a transformer 7 and a diode D1 connected in parallel are arranged in the middle of the other line of the power supply line L2.
  • One end of the primary coil of the transformer 7 and the anode of the diode D1 are connected to the drain (D) of the NMOS transistor 6, and the other end of the primary coil of the transformer 7 and the cathode of the diode D1 are connected to the terminal T4.
  • One end and the other end of the secondary coil of the transformer 7 are connected in a loop via a resistor R6. According to this configuration, the back electromotive voltage when the NMOS transistor 6 is turned off can be suppressed by the diode D1.
  • the transformer 7 can limit the current by the resistor R6 by mutual induction and suppress the magnetic saturation when the NMOS transistor 6 is turned on.
  • the resistor R6 determines the degree to which the inrush current is suppressed with respect to the load device.
  • the transformer 7 has no mutual induction after the inrush current has been suppressed, and only has a winding resistance (approximately 0 ⁇ ). Therefore, no power loss is normally generated.
  • Terminals T1 and T2 are connected to an external DC bus.
  • the DC bus constitutes a part of, for example, a high voltage direct current transmission / distribution system.
  • a potential V1 which is a first potential, is applied to the terminal T1.
  • the potential difference between the potential V1 and the potential V2 is the input voltage Vin.
  • the potential V1 and the potential V2 are, for example, 380V and 0V, respectively.
  • the potential V1 and the potential V2 may be, for example, 190V and ⁇ 190V, respectively.
  • the potential V1 and the potential V2 (input voltage Vin) applied to the terminals T1 and T2 vary.
  • Various load devices such as normal lighting, emergency lighting, an air conditioner, a computer, and a manufacturing apparatus are connected to the terminals T3 and T4.
  • One terminal and the other terminal of the smoothing capacitor C1 are respectively connected to one line of the power supply line L1 and the power supply line L2.
  • the smoothing capacitor C1 smoothes fluctuations in the input voltage Vin.
  • the constant voltage generator 2 operates by a voltage (input voltage Vin) supplied from one of the power supply line L1 and the power supply line L2, and outputs a potential V3 that is a third potential from the output terminal Out to the power supply line L3. To do.
  • the output of the constant voltage generator 2, that is, the potential difference (voltage, for example, 24V) between the potential V3 and the potential V2 is constant and stable.
  • the reference potential generation unit 3A is connected to the power supply line L3 and one of the power supply lines L2.
  • the reference potential generation unit 3A includes a variable resistor VR1 and a variable resistor VR2.
  • the variable resistor VR1 has one end connected to the power supply line L3 and the other end connected to one end of the variable resistor VR2. The other end of the variable resistor VR2 is connected to the power supply line L2.
  • the reference potential generator 3A divides the potential difference (voltage) between the potential V3 and the potential V2 by the variable resistor VR1 and the variable resistor VR2, generates the reference potential Vref, and outputs it.
  • the comparison potential generator 4A is connected to one of the power supply line L1 and the power supply line L2.
  • the comparison potential generation unit 4A includes a resistor R3 and a resistor R4.
  • the resistor R3 has one end connected to the power supply line L1 and the other end connected to one end of the resistor R4.
  • the other end of the resistor R4 is connected to the power supply line L2.
  • the potential difference (input voltage Vin) between the potential V1 and the potential V2 varies.
  • the comparison potential generator 4A divides the input voltage Vin by the resistors R3 and R4 to generate a comparison potential Vcmp in the range of the potential difference between the potential V3 and the potential V1 (for example, a range of 0V to 24V) and outputs it. .
  • the comparator 5 operates by a voltage (potential difference between the potential V3 and the potential V2, for example, 24V) supplied from one of the power supply line L3 and the power supply line L2.
  • the reference potential Vref which is the output of the reference potential generation unit 3A, is input to the inverting input terminal of the comparator 5.
  • the comparison potential Vcmp which is the output of the comparison potential generator 4A, is input to the non-inverting input terminal of the comparator 5.
  • the comparator 5 outputs a conduction potential (for example, 24 V) or a cutoff potential (for example, 0 V) based on the comparison between the comparison potential Vcmp and the reference potential Vref.
  • One terminal and the other terminal of the hysteresis resistor R5 are connected to the output terminal and the non-inverting input terminal of the comparator 5, respectively.
  • the hysteresis resistor R5 provides hysteresis to the output of the comparator 5.
  • the comparator 5 When there is no hysteresis resistor R5, the comparator 5 outputs a conduction potential when the comparison potential Vcmp is greater than the reference potential Vref, and outputs a blocking potential when the comparison potential Vcmp is less than the reference potential Vref.
  • the comparator 5 changes its output from the conduction potential. Change to cut-off potential. Further, when the comparison potential Vcmp that is lower than the reference potential Vref gradually increases and the comparison potential Vcmp becomes higher than the reference potential Vref by a predetermined potential, the comparator 5 changes its output from the cutoff potential to the conduction potential.
  • the source of the NMOS transistor 6 is connected to one line of the power supply line L2, and the drain is connected to the other line of the power supply line L2.
  • the gate of the NMOS transistor 6 is connected to the output terminal of the comparator 5.
  • the NMOS transistor 6 conducts a current path between the source and the drain when a conduction potential (for example, 24 V) is input to the gate. At this time, electric power is supplied to the load devices connected to the terminals T3 and T4.
  • the NMOS transistor 6 cuts off the current path when a cut-off potential (for example, 0 V) is input to the gate. At this time, the supply of power to the load device is interrupted.
  • FIG. 2 shows an example of the relationship among the input voltage Vin, the reference potential Vref, and the comparison potential Vcmp in the input voltage control apparatus 1A of FIG.
  • the reference potential Vref is generated by the following equation (1).
  • the comparison potential Vcmp is generated by dividing the input voltage Vin as shown in the following equation (2).
  • the comparison potential Vcmp is expressed by the equation (4).
  • the comparison potential Vcmp is a straight line having a slope a.
  • the reference potential Vref is a straight line with no inclination.
  • the reference potential Vref can be changed by changing the resistance value vr1 and the resistance value vr2. Assuming that there is no hysteresis resistor R5, the output of the comparator 5 changes from the conduction potential to the cutoff potential or vice versa at the intersection of the comparison potential Vcmp and the reference potential Vref.
  • FIG. 3 shows an example of the configuration of the constant voltage generator 2.
  • the constant voltage generation unit 2 includes a Zener diode Z20, a Zener diode Z21, an NPN transistor Tr20, an NPN transistor Tr21, a resistor R20, a resistor R21, a resistor R22, and a capacitor C20.
  • the Zener diode Z20 has an anode connected to the power supply line L2, and a cathode connected to one end of the resistor R21. The other end of the resistor R21 is connected to the power supply line L1.
  • the NPN transistor Tr20 and the NPN transistor Tr21 are Darlington connected.
  • the base of the NPN transistor Tr20 is connected to the cathode of the Zener diode Z20 and one end of the resistor R21.
  • the emitter of the NPN transistor Tr20 is connected to the output terminal Out via a resistor R22.
  • the emitter of the NPN transistor Tr21 is connected to the output terminal Out.
  • the collector of the NPN transistor Tr20 and the collector of the NPN transistor Tr21 are connected to one end of the resistor R20.
  • the other end of the resistor R20 is connected to the power supply line L1.
  • the resistor 20 is externally attached to the input voltage control device 1A for heat dissipation.
  • the Zener diode Z21 has an anode connected to the output terminal Out, and a cathode connected to the cathode of the Zener diode Z20 and one end of the resistor R21. One end and the other end of the capacitor C20 are connected to the power supply line L2 and the output terminal Out, respectively.
  • the constant voltage generator 2 outputs a constant and stable voltage (for example, 24 V) from the output terminal Out.
  • FIG. 4 shows an example of the configuration of the input voltage control apparatus 1B according to the second embodiment of the present invention.
  • the input voltage control device 1B includes a power supply line L1 that is a first power supply line, a power supply line L2 that is a second power supply line, a power supply line L3 that is a third power supply line, a smoothing capacitor C1, and a constant voltage.
  • the input voltage control device 1B is different from the reference potential generation unit 3A and the comparison potential generation unit 4A of the input voltage control device 1A according to the first embodiment in the configuration of the reference potential generation unit 3B and the comparison potential generation unit 4B. Other configurations are the same as those of the input voltage control apparatus 1A.
  • the comparison potential generation unit 4B includes a variable resistor VR3 and a variable resistor VR4.
  • the variable resistor VR3 has one end connected to the power supply line L1 and the other end connected to one end of the variable resistor VR4.
  • the other end of the variable resistor VR4 is connected to the power supply line L2.
  • the potential difference (input voltage Vin) between the potential V1 and the potential V2 varies.
  • the comparison potential generator 4B divides the input voltage Vin by the variable resistor VR3 and the variable resistor VR4 to generate a comparison potential Vcmp in the range of the potential difference between the potential V3 and the potential V1 (for example, a range of 0V to 24V). Output.
  • FIG. 5 shows an example of the relationship among the input voltage Vin, the reference potential Vref, and the comparison potential Vcmp in the input voltage control apparatus 1B of FIG.
  • the reference potential Vref is generated by the following equation (5).
  • the comparison potential Vcmp is generated by dividing the input voltage Vin as shown in the following equation (6).
  • the comparison potential Vcmp1 is expressed by the equation (8).
  • the comparison potential Vcmp1 and the comparison potential Vcmp2 are straight lines having an inclination A and an inclination B, respectively. However, the inclination A is larger than the inclination B.
  • the reference potential Vref is a straight line with no inclination. Assuming that there is no hysteresis resistor R5, the output of the comparator 5 changes from the conduction potential to the cutoff potential or vice versa at the intersection of the comparison potential Vcmp1 or the comparison potential Vcmp2 and the reference potential Vref.
  • the input voltage control device 1B adjusts the resistance values of the variable resistor VR3 and the variable resistor VR4 included in the comparison potential generation unit 4B, thereby adjusting the input voltage Vin for each load device. Accordingly, power supply and interruption can be controlled.
  • the comparison potential generator 4B includes the variable resistor VR3 and the variable resistor VR4. However, one of the resistors may have a fixed resistance value.
  • FIG. 6 shows an example of the configuration of an input voltage control apparatus 1C according to the third embodiment of the present invention.
  • the input voltage control device 1C includes a power supply line L1 that is a first power supply line, a power supply line L2 that is a second power supply line, a power supply line L3 that is a third power supply line, a smoothing capacitor C1, and a constant voltage.
  • Voltage generator 2, reference potential generator 3B, comparison potential generator 4C, comparator 5, hysteresis resistor R5, NMOS transistor 6 as a semiconductor element, transformer 7, resistor R6, and diode D1 Have The input voltage control device 1C is different from the comparison potential generation unit 4B of the input voltage control device 1B according to the second embodiment in the configuration of the comparison potential generation unit 4C. Other configurations are the same as those of the input voltage control device 1B.
  • the comparison potential generation unit 4C is connected to the power supply line L1 and the power supply line L2.
  • the comparison potential generation unit 4C includes a resistor R3, a Zener diode ZD, and a resistor R4.
  • the resistor R3 has one end connected to the power supply line L1 and the other end connected to the cathode of the Zener diode ZD.
  • the anode of the Zener diode ZD is connected to one end of the resistor R4.
  • the other end of the resistor R4 is connected to the power supply line L2.
  • the potential difference (input voltage Vin) between the potential V1 and the potential V2 varies.
  • the Zener diode ZD is a voltage sharing element that shares a voltage by the Zener voltage (breakdown voltage).
  • the Zener diode ZD drops the input voltage Vin by the Zener voltage.
  • the resistors R3 and R4 divide the dropped voltage to generate a comparison potential Vcmp in the range of the potential difference between the potential V3 and the potential V1 (for example, a range of 0V to 24V).
  • the comparison potential generator 4C outputs a comparison potential Vcmp.
  • FIG. 7 shows an example of the relationship among the input voltage Vin, the reference potential Vref, and the comparison potential Vcmp in the input voltage control apparatus 1C of FIG.
  • the reference potential Vref is generated by the above equation (5). If the resistance values of the resistors R3 and R4 are r3 and r4, respectively, the comparison potential Vcmp is generated by dividing the input voltage Vin as shown in the above equation (2) when there is no chainer diode ZD.
  • the comparison potential Vcmp3 in the absence of the Zener diode ZD is expressed by the following equation (11) as in the above-described equation (4).
  • the comparison potential Vcmp4 in the case where the Zener diode ZD is present is expressed by the following equation (12).
  • the comparison potential Vcmp3 and the comparison potential Vcmp4 are straight lines having the same slope a. However, the comparison potential Vcmp4 is translated in parallel to the higher side of the input voltage Vin by the Zener voltage Vzd.
  • the reference potential Vref is a straight line with no inclination. Assuming that there is no hysteresis resistor R5, the output of the comparator 5 changes from the conduction potential to the cutoff potential or vice versa at the intersection of the comparison potential Vcmp3 or the comparison potential Vcmp4 and the reference potential Vref.
  • the comparison potential Vcmp3 intersects the reference potential Vref when the input voltage Vin is Vlow, and the output of the comparator 5 changes from the conduction potential to the cutoff potential or vice versa.
  • the comparison potential Vcmp4 intersects the reference potential Vref when the input voltage Vin is Vhigh, and the output of the comparator 5 changes from the conduction potential to the cutoff potential or vice versa.
  • the input voltage control device 1C adjusts the Zener voltage Vzd of the Zener diode ZD included in the comparison potential generation unit 4C, thereby supplying power according to the input voltage Vin for each load device. Blocking can be controlled. A large voltage can be shared by the Zener diodes by connecting a plurality of the Zener diodes in series.
  • Zener voltage of a Zener diode when the Zener voltage of a Zener diode is 100V, 200V can be shared by two Chainer diodes by connecting two Chainer diodes in series.
  • a shunt regulator may be used instead of the Zener diode as the voltage sharing element, and the voltage shared by the voltage sharing element can be changed.
  • the potential difference (input voltage Vin) between the potential V1 of the power supply line L1 and the potential V2 of one of the power supply lines L2 is A / D converted to a digital signal, and is compared with the reference voltage generating units 3A and 3B.
  • Processing of the circuit including the generation units 4A, 4B, 4C, the comparator 5, and the hysteresis resistor R5 can be realized by a DSP (Digital Signal Processor) and its control program.
  • DSP Digital Signal Processor
  • power supply and interruption can be controlled for each load device in accordance with the voltage level of the DC bus.
  • the input voltage control device of the present invention when the input voltage control device of the present invention is connected to a load device having a low priority such as normal lighting, when the voltage of the DC bus is 380 V or more, the input voltage control device supplies power to the load device. When the voltage of the bus drops below 380V, the power supply to the load device can be cut off.
  • the input voltage control device of the present invention when the input voltage control device of the present invention is connected to a high priority load device such as a computer, the input voltage control device supplies power to the load device when the voltage of the DC bus is 300 V or more. The power supply to the load device can be cut off when the voltage of the voltage drops below 300V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】DCバスの電圧レベルに応じて負荷装置毎に電力の供給と遮断を制御する。 【解決手段】電源ラインL1(端子T1)に例えば300V~380V、電源ラインL2の一方の線(端子T2)に例えば0Vが印加される。電源ラインL1の電位と電源ラインL2の一方の線の電位との電位差である入力電圧Vinは変動する。定電圧生成部2は、電源ラインL3に一定の電位(例えば24V)を出力する。基準電位生成部3Aは例えば10Vの基準電位を出力する。比較電位生成部4Aは、入力電圧Vinに基づいて例えば0V~24Vの範囲で比較電位を出力する。コンパレータ5は、基準電位と比較電位との比較に基づいて導通電位(例えば、24V)または遮断電位(例えば0V)を出力する。コンパレータ5が導通電位を出力するときにNMOSトランジスタ6のソースとドレイン間は導通し、遮断電位を出力するときにソースとドレイン間は遮断される。

Description

入力電圧制御装置
 本発明は、直流電圧が供給されるバス(以下、DCバスという。)に複数の負荷装置が接続されたシステムにおいて、DCバスと各負荷装置との間にそれぞれ配設され、各負荷装置への入力電圧の供給を制御する入力電圧制御装置に関する。
 特許文献1は、出力電力が変動する複数の発電装置と複数の負荷装置とがDCバスに接続された分散電源システムを開示する。発電装置は、たとえば、太陽光発電装置や風力発電装置である。このシステムは、DCバスの電圧が低下したときに、電圧レベルに応じて重要度の低い負荷装置を選択して段階的に給電を遮断する。
 また、スマートグリッドへの適用を目指して、380V程度の高電圧直流(HVDC:High Voltage Direct Current)送電の研究開発が進められている。このような大規模な送配電系統では、個々の負荷装置が自律的に自らへの入力電圧の供給を制御することが望ましい。
 例えば、特許文献2は、電圧変換回路への入力電圧が低下したことを検知すると、その電圧変換回路への入力電流を減じ、その電圧変換回路が負荷に供給する電力を減少させる電圧変換装置を開示する。
特開2003-339118号公報 特開2013-126277号公報
 特許文献1には、DCバスの電圧レベルに応じて重要度の低い負荷装置を選択して段階的に給電を遮断すると記載されているのみであり、そのための具体的な手段については記載されていない。
 また、特許文献2に記載の電圧変換装置は、DCバスの電圧レベルが低下すると、それに応じて負荷に供給する電力を減少させる。しかし、例えば、コンピュータのように、電力を漸減させることが望ましくない負荷装置がある。
 本発明の目的は、DCバスと個々の負荷装置との間に配設され、負荷装置毎にDCバスの電圧レベルに応じて電力の供給と遮断を制御することができる入力電圧制御装置を提供することである。
 上記目的を達成するために、本発明の入力電圧制御装置は、
 第1の電位が印加される第1の電源ラインと、
 一方の線と他方の線に分割されており、当該一方の線に第2の電位が印加される第2の電源ラインと、
 第3の電源ラインと、
 前記第1の電源ラインから供給される第1の電位と前記第2の電源ラインの一方の線から供給される第2の電位とによって動作し、前記第2の電位との電位差が一定である第3の電位を前記第3の電源ラインに出力する定電圧生成部と、
 前記第3の電源ラインと前記第2の電源ラインの一方の線とに接続され、前記第3の電位と前記第2の電位とに基づいて基準電位を生成し、当該基準電位を出力する基準電位生成部と、
 前記第1の電源ラインと前記第2の電源ラインの一方の線に接続され、前記第1の電位と前記第2の電位に基づいて比較電位を生成し、当該比較電位を出力する比較電位生成部と、
 前記第3の電源ラインから供給される第3の電位と前記第2の電源ラインの一方の線から供給される第2の電位とによって動作し、前記基準電位と前記比較電位との比較に基づいて導通電位または遮断電位を出力するコンパレータと、
 電流路の一端が前記第2の電源ラインの一方の線に接続され、当該電流路の他端が前記第2の電源ラインの他方の線に接続され、制御端が前記コンパレータの出力端に接続されており、当該制御端に前記導通電位が入力されるときに当該電流路を導通させ、当該制御端に前記遮断電位が入力されるときに当該電流路を遮断する半導体素子と、
 を備えることを特徴とする。
 好ましくは、本発明の入力電圧制御装置は、
 前記基準電位生成部が、少なくとも1個の可変抵抗を含み、当該可変抵抗の抵抗値を変更することによって前記基準電位を変更することができることを特徴とする。
 好ましくは、本発明の入力電圧制御装置は、
 前記比較電位生成部が、少なくとも1個の可変抵抗を含み、当該可変抵抗の抵抗値を変更することによって前記比較電位を変更することができることを特徴とする。
 好ましくは、本発明の入力電圧制御装置は、
 前記比較電位生成部が、前記第1の電源ラインから供給される第1の電位と前記第2の電源ラインの一方の線から供給される第2の電位との電位差である電圧を降下させる電圧分担素子を含み、当該降下した電圧に基づいて前記比較電位を生成することを特徴とする。
 好ましくは、本発明の入力電圧制御装置は、
 前記半導体素子が、NMOSトランジスタであり、
 前記コンパレータの非反転入力端と反転入力端に、それぞれ前記比較電位と前記基準電位が入力される、
 ことを特徴とする。
 本発明によれば、DCバスの電圧レベルに応じて負荷装置毎に電力の供給と遮断を制御することができる。
本発明の第1の実施形態に係る入力電圧制御装置の構成の一例を示す図である。 図1の入力電圧制御装置における入力電圧と基準電位と比較電位との関係の一例を示す図である。 定電圧生成部の構成の一例を示す図である。 本発明の第2の実施形態に係る入力電圧制御装置の構成の一例を示す図である。 図4の入力電圧制御装置における入力電圧と基準電位と比較電位との関係の一例を示す図である。 本発明の第3の実施形態に係る入力電圧制御装置の構成の一例を示す図である。 図6の入力電圧制御装置における入力電圧と基準電位と比較電位との関係の一例を示す図である。
 以下、本発明の実施形態に係る入力電圧制御装置について図面を参照しながら詳細に説明する。なお、実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。
 図1は、本発明の第1の実施形態に係る入力電圧制御装置1Aの構成の一例を示す。
 入力電圧制御装置1Aは、第1の電源ラインである電源ラインL1と、第2の電源ラインである電源ラインL2と、第3の電源ラインである電源ラインL3と、平滑用コンデンサC1と、定電圧生成部2と、基準電位生成部3Aと、比較電位生成部4Aと、コンパレータ5と、ヒステリシス用抵抗R5と、半導体素子であるNMOSトランジスタ6と、トランス7と、抵抗R6と、ダイオードD1とを有する。
 電源ラインL1は、端子T1と端子T3に接続されている。
 電源ラインL2は、一方の線と他方の線に分割されている。一方の線と他方の線の間にはNMOSトランジスタ6が配設されている。電源ラインL2の一方の線は端子T2とNMOSトランジスタ6のソースに接続されている。
 電源ラインL2の他方の線は、NMOSトランジスタ6のドレインと端子T2に接続される。
 ただし、図1の入力電圧制御装置1Aでは、電源ラインL2の他方の線の中間に並列接続されたトランス7とダイオードD1が配設されている。トランス7の一次コイルの一端とダイオードD1のアノードとがNMOSトランジスタ6のドレイン(D)に接続され、トランス7の一次コイルの他端とダイオードD1のカソードとが端子T4に接続されている。トランス7の二次コイルの一端と他端は抵抗R6を介してループ状に接続されている。
 この構成によれば、ダイオードD1により、NMOSトランジスタ6がオフした時の逆起電圧を抑止することができる。また、トランス7により、NMOSトランジスタ6がオンした時に相互誘導により抵抗R6で電流制限すると共に磁気飽和を抑圧することができる。抵抗R6は、負荷装置に対し、突入電流を抑止する度合いを決める。トランス7は、突入電流を抑制し終わった後は相互誘導が無くなり、巻線抵抗のみ(略0Ω)となるため、通常時は電力損失を生じない。
 端子T1と端子T2は、外部のDCバスに接続される。DCバスは、例えば高電圧直流送配電系統の一部を構成する。端子T1には、第1の電位である電位V1が印加される。端子T2には、第2の電位である電位V2が印加される。電位V1と電位V2の電位差が入力電圧Vinである。電位V1と電位V2は例えばそれぞれ380Vと0Vである。または、電位V1と電位V2は例えばそれぞれ190Vと-190Vであってもよい。ただし、端子T1と端子T2に印加される電位V1と電位V2(入力電圧Vin)は変動する。
 端子T3と端子T4には、通常照明、非常用照明、冷暖房機、コンピュータ、製造装置等の様々な負荷装置が接続される。
 平滑用コンデンサC1の一方の端子と他方の端子は、電源ラインL1と電源ラインL2の一方の線とにそれぞれ接続されている。平滑用コンデンサC1は、入力電圧Vinの変動を平滑化する。
 定電圧生成部2は、電源ラインL1と電源ラインL2の一方の線から供給される電圧(入力電圧Vin)によって動作し、第3の電位である電位V3を出力端子Outから電源ラインL3に出力する。定電圧生成部2の出力、すなわち電位V3と電位V2との電位差(電圧、例えば24V)は、一定であって安定している。定電圧生成部2の構成の一例について、図3を参照して後で詳細に説明する。
 基準電位生成部3Aは、電源ラインL3と電源ラインL2の一方の線とに接続される。基準電位生成部3Aは、可変抵抗VR1と可変抵抗VR2とを有する。可変抵抗VR1は、一端が電源ラインL3に接続されており、他端が可変抵抗VR2の一端に接続されている。可変抵抗VR2の他端は電源ラインL2に接続されている。基準電位生成部3Aは、可変抵抗VR1と可変抵抗VR2によって電位V3と電位V2の電位差(電圧)を分圧して基準電位Vrefを生成し、それを出力する。
 比較電位生成部4Aは、電源ラインL1と電源ラインL2の一方の線とに接続される。比較電位生成部4Aは、抵抗R3と抵抗R4とを有する。抵抗R3は、一端が電源ラインL1に接続されており、他端が抵抗R4の一端に接続されている。抵抗R4の他端は電源ラインL2に接続されている。電位V1と電位V2との電位差(入力電圧Vin)は変動する。比較電位生成部4Aは、抵抗R3と抵抗R4によって入力電圧Vinを分圧して電位V3と電位V1の電位差の範囲(例えば、0V~24Vの範囲)で比較電位Vcmpを生成し、それを出力する。
 コンパレータ5は、電源ラインL3と電源ラインL2の一方の線とから供給される電圧(電位V3と電位V2の電位差、例えば24V)によって動作する。コンパレータ5の反転入力端には基準電位生成部3Aの出力である基準電位Vrefが入力される。コンパレータ5の非反転入力端には比較電位生成部4Aの出力である比較電位Vcmpが入力される。コンパレータ5は、比較電位Vcmpと基準電位Vrefとの比較に基づいて導通電位(例えば24V)または遮断電位(例えば0V)を出力する。
 コンパレータ5の出力端と非反転入力端には、ヒステリシス用抵抗R5の一方の端子と他方の端子がそれぞれ接続されている。ヒステリシス用抵抗R5は、コンパレータ5の出力にヒステリシスを付与する。ヒステリシス用抵抗R5が無い場合、コンパレータ5は、比較電位Vcmpが基準電位Vrefより大きいときに導通電位を出力し、比較電位Vcmpが基準電位Vrefより小さいときに遮断電位を出力する。ただし、ヒステリシスがあるため、基準電位Vrefより高かった比較電位Vcmpが徐々に低下していき、比較電位Vcmpが基準電位Vrefより所定の電位だけ下がったときに、コンパレータ5はその出力を導通電位から遮断電位に変える。また、基準電位Vrefより低かった比較電位Vcmpが徐々に上がっていき、比較電位Vcmpが基準電位Vrefより所定の電位だけ高くなったときに、コンパレータ5はその出力を遮断電位から導通電位に変える。
 上述したように、NMOSトランジスタ6のソースは電源ラインL2の一方の線に接続され、ドレインは電源ラインL2の他方の線に接続されている。そして、NMOSトランジスタ6のゲートはコンパレータ5の出力端に接続されている。NMOSトランジスタ6は、ゲートに導通電位(例えば24V)が入力されるときにソース-ドレイン間の電流路を導通させる。このとき、端子T3と端子T4に接続されている負荷装置に電力が供給される。また、NMOSトランジスタ6は、ゲートに遮断電位(例えば0V)が入力されるときに電流路を遮断する。このとき、負荷装置への電力の供給は遮断される。
 図2は、図1の入力電圧制御装置1Aにおける入力電圧Vinと基準電位Vrefと比較電位Vcmpとの関係の一例を示す。
 可変抵抗VR1と可変抵抗VR2の抵抗値をそれぞれvr1とvr2とすると、基準電位Vrefは次の(1)式により生成される。
Figure JPOXMLDOC01-appb-M000001
 また、抵抗R3と抵抗R4の抵抗値をそれぞれr3とr4とすると、次の(2)式に示すように比較電位Vcmpは入力電圧Vinを分圧することよって生成される。(3)式に示すようにその分圧比をaとすると、比較電位Vcmpは(4)式で表される。
Figure JPOXMLDOC01-appb-M000002
 図2に示すように、比較電位Vcmpは、傾きaの直線である。一方、基準電位Vrefは傾きのない直線である。ただし、基準電位Vrefは、抵抗値vr1と抵抗値vr2を変化させることにより、変化させることができる。
 ヒステリシス用抵抗R5がないと仮定すると、コンパレータ5の出力は比較電位Vcmpと基準電位Vrefの交点で導通電位から遮断電位へ、またはその逆に変化する。例えば、抵抗値vr1と抵抗値vr2を調整することによって基準電位Vrefが高い値に設定されている場合、入力電圧VinがVhighであるときにコンパレータ5の出力は導通電位から遮断電位へ、またはその逆に変化する。一方、基準電位Vrefが低い値に設定されている場合、入力電圧VinがVlowであるときにコンパレータ5の出力は導通電位から遮断電位へ、またはその逆に変化する。
 このように、第1の実施形態に係る入力電圧制御装置1Aは、基準電位生成部3Aに含まれる可変抵抗VR1と可変抵抗VR2の抵抗値を調整することにより、負荷装置毎に入力電圧Vinに応じて電力の供給と遮断を制御することができる。
 なお、上記説明では基準電位生成部3Aが可変抵抗VR1と可変抵抗VR2を含むとしたが、いずれか一方は抵抗値が固定の抵抗であってもよい。
 図3は、定電圧生成部2の構成の一例を示す。
 定電圧生成部2は、チェナーダイオードZ20と、チェナーダイオードZ21と、NPNトランジスタTr20と、NPNトランジスタTr21と、抵抗R20と、抵抗R21と、抵抗R22と、コンデンサC20とを有する。
 チェナーダイオードZ20は、アノードが電源ラインL2に接続されており、カソードが抵抗R21の一端に接続されている。抵抗R21の他端は電源ラインL1に接続されている。
 NPNトランジスタTr20とNPNトランジスタTr21はダーリントン接続されている。
 NPNトランジスタTr20のベースは、チェナーダイオードZ20のカソードと抵抗R21の一端とに接続されている。NPNトランジスタTr20のエミッタは抵抗R22を介して出力端子Outに接続されている。NPNトランジスタTr21のエミッタは出力端子Outに接続されている。
 NPNトランジスタTr20のコレクタとNPNトランジスタTr21のコレクタは、抵抗R20の一端に接続されている。抵抗R20の他端は電源ラインL1に接続されている。なお、抵抗20は、放熱のために入力電圧制御装置1Aに外付けされる。
 チェナーダイオードZ21は、アノードが出力端子Outに接続されており、カソードがチェナーダイオードZ20のカソードと抵抗R21の一端に接続されている。
 コンデンサC20の一端と他端は、それぞれ電源ラインL2と出力端子Outに接続されている。
 定電圧生成部2は、出力端子Outから一定の安定した電圧(例えば24V)を出力する。
 図4は、本発明の第2の実施形態に係る入力電圧制御装置1Bの構成の一例を示す。
 入力電圧制御装置1Bは、第1の電源ラインである電源ラインL1と、第2の電源ラインである電源ラインL2と、第3の電源ラインである電源ラインL3と、平滑用コンデンサC1と、定電圧生成部2と、基準電位生成部3Bと、比較電位生成部4Bと、コンパレータ5と、ヒステリシス用抵抗R5と、半導体素子であるNMOSトランジスタ6と、トランス7と、抵抗R6と、ダイオードD1とを有する。
 入力電圧制御装置1Bは、基準電位生成部3Bおよび比較電位生成部4Bの構成が第1の実施形態に係る入力電圧制御装置1Aの基準電位生成部3Aおよび比較電位生成部4Aと異なる。他の構成は、入力電圧制御装置1Aと同一である。
 基準電位生成部3Bは、電源ラインL3と電源ラインL2の一方の線に接続される。基準電位生成部3Bは、抵抗R1と抵抗R2とを有する。抵抗R1は、一端が電源ラインL3に接続されており、他端が抵抗R2の一端に接続されている。抵抗R2の他端は電源ラインL2に接続されている。基準電位生成部3Bは、抵抗R1と抵抗R2によって電位V3と電位V2の電位差(電圧)を分圧して基準電位Vrefを生成し、それを出力する。
 比較電位生成部4Bは、電源ラインL1と電源ラインL2に接続される。比較電位生成部4Bは、可変抵抗VR3と可変抵抗VR4とを有する。可変抵抗VR3は、一端が電源ラインL1に接続されており、他端が可変抵抗VR4の一端に接続されている。可変抵抗VR4の他端は電源ラインL2に接続されている。電位V1と電位V2との電位差(入力電圧Vin)は変動する。比較電位生成部4Bは、可変抵抗VR3と可変抵抗VR4によって入力電圧Vinを分圧して電位V3と電位V1の電位差の範囲(例えば、0V~24Vの範囲)で比較電位Vcmpを生成し、それを出力する。
 図5は、図4の入力電圧制御装置1Bにおける入力電圧Vinと基準電位Vrefと比較電位Vcmpとの関係の一例を示す。
 抵抗R1と抵抗R2の抵抗値をそれぞれr1とr2とすると、基準電位Vrefは次の(5)式により生成される。
Figure JPOXMLDOC01-appb-M000003
 また、可変抵抗VR3と可変抵抗VR4の抵抗値をそれぞれvr3とvr4とすると、次の(6)式に示すように比較電位Vcmpは入力電圧Vinを分圧することよって生成される。(7)式に示すようにその分圧比をAとすると、比較電位Vcmp1は(8)式で表される。そして、可変抵抗VR3と可変抵抗VR4の抵抗値をそれぞれvr3’とvr4’に変更し、(9)式に示すようにその分圧比をBとすると、比較電位Vcmp2は(10)式で表される。
Figure JPOXMLDOC01-appb-M000004
 図5に示すように、比較電位Vcmp1と比較電位Vcmp2は、それぞれ傾きAと傾きBの直線である。ただし、傾きAは傾きBより大きい。一方、基準電位Vrefは傾きのない直線である。
 ヒステリシス用抵抗R5がないと仮定すると、コンパレータ5の出力は比較電位Vcmp1または比較電位Vcmp2と基準電位Vrefの交点で導通電位から遮断電位へ、またはその逆に変化する。比較電位Vcmp1は、傾きが比較電位Vcmp2より大きいため、入力電圧VinがVlowであるときに基準電位Vrefと交差し、コンパレータ5の出力が導通電位から遮断電位へ、またはその逆に変化する。一方、比較電位Vcmp2は、入力電圧VinがVhighであるときに基準電位Vrefと交差し、コンパレータ5の出力が導通電位から遮断電位へ、またはその逆に変化する。
 このように、第2の実施形態に係る入力電圧制御装置1Bは、比較電位生成部4Bに含まれる可変抵抗VR3と可変抵抗VR4の抵抗値を調整することにより、負荷装置毎に入力電圧Vinに応じて電力の供給と遮断を制御することができる。
 なお、上記説明では比較電位生成部4Bが可変抵抗VR3と可変抵抗VR4を含むとしたが、いずれか一方は抵抗値が固定の抵抗であってもよい。
 図6は、本発明の第3の実施形態に係る入力電圧制御装置1Cの構成の一例を示す。
 入力電圧制御装置1Cは、第1の電源ラインである電源ラインL1と、第2の電源ラインである電源ラインL2と、第3の電源ラインである電源ラインL3と、平滑用コンデンサC1と、定電圧生成部2と、基準電位生成部3Bと、比較電位生成部4Cと、コンパレータ5と、ヒステリシス用抵抗R5と、半導体素子であるNMOSトランジスタ6と、トランス7と、抵抗R6と、ダイオードD1とを有する。
 入力電圧制御装置1Cは、比較電位生成部4Cの構成が第2の実施形態に係る入力電圧制御装置1Bの比較電位生成部4Bと異なる。他の構成は、入力電圧制御装置1Bと同一である。
 比較電位生成部4Cは、電源ラインL1と電源ラインL2に接続される。比較電位生成部4Cは、抵抗R3とチェナーダイオードZDと抵抗R4とを有する。抵抗R3は、一端が電源ラインL1に接続されており、他端がチェナーダイオードZDのカソードに接続されている。チェナーダイオードZDのアノードは抵抗R4の一端に接続されている。抵抗R4の他端は電源ラインL2に接続されている。電位V1と電位V2との電位差(入力電圧Vin)は変動する。
 チェナーダイオードZDはそのチェナー電圧(降伏電圧)だけ電圧を分担する電圧分担素子である。チェナーダイオードZDはそのチェナー電圧だけ入力電圧Vinを降下させる。抵抗R3と抵抗R4は降下した電圧を分圧して電位V3と電位V1の電位差の範囲(例えば、0V~24Vの範囲)で比較電位Vcmpを生成する。比較電位生成部4Cは、比較電位Vcmpを出力する。
 図7は、図6の入力電圧制御装置1Cにおける入力電圧Vinと基準電位Vrefと比較電位Vcmpとの関係の一例を示す。
 基準電位Vrefは上述した(5)式により生成される。
 また、抵抗R3と抵抗R4の抵抗値をそれぞれr3とr4とすると、チェナーダイオードZDが無い場合、上述した(2)式に示すように比較電位Vcmpは入力電圧Vinを分圧することよって生成される。上述した(3)式に示すようにその分圧比をaとすると、チェナーダイオードZDが無い場合の比較電位Vcmp3は上述した(4)式と同様に次の(11)式で表される。チェナーダイオードZDのチェナー電圧をVzdとすると、チェナーダイオードZDがある場合の比較電位Vcmp4は次の(12)式となる。
Figure JPOXMLDOC01-appb-M000005
 図7に示すように、比較電位Vcmp3と比較電位Vcmp4は、同一の傾きaの直線である。ただし、比較電位Vcmp4はチェナー電圧Vzdだけ入力電圧Vinの高い側に平行移動している。一方、基準電位Vrefは傾きのない直線である。
 ヒステリシス用抵抗R5がないと仮定すると、コンパレータ5の出力は比較電位Vcmp3または比較電位Vcmp4と基準電位Vrefの交点で導通電位から遮断電位へ、またはその逆に変化する。比較電位Vcmp3は、入力電圧VinがVlowであるときに基準電位Vrefと交差し、コンパレータ5の出力が導通電位から遮断電位へ、またはその逆に変化する。一方、比較電位Vcmp4は、入力電圧VinがVhighであるときに基準電位Vrefと交差し、コンパレータ5の出力が導通電位から遮断電位へ、またはその逆に変化する。
 第3の実施形態に係る入力電圧制御装置1Cは、比較電位生成部4Cに含まれるチェナーダイオードZDのチェナー電圧Vzdを調整することにより、負荷装置毎に入力電圧Vinに応じて電力の供給と遮断を制御することができる。
 なお、チェナーダイオードを複数個直列に接続することにより、チェナーダイオードにより大きな電圧を分担させることができる。例えばチェナーダイオードのチェナー電圧が100Vである場合にはチェナーダイオードを2個直列に接続することにより、2個のチェナーダイオードに200Vを分担させることができる。また、電圧分担素子としてチェナーダイオードの代わりにシャントレギュレータを用い、電圧分担素子の分担する電圧を変更可能な構成とすることもできる。
 なお、上述した実施形態では、電源ラインL2の一方の線と他方の線の間にNMOSトランジスタ6を配設する例を示したが、電源ラインL1を一方の線と他方の線に分割し、その間にPMOSトランジスタを配設する構成としてもよい。
 ただし、この場合には、PMOSトランジスタの電流路(ソースードレイン間)を導通させるときにはゲートに電源ラインL1の電位より所定の電圧(例えば、24V)だけ低い電位を入力し、電流路を遮断するときにはゲートに電源ラインL1の電位と同一の電位を入力する。
 また、この場合には、電源ラインL2が本発明の第1の電源ラインであり、電源ラインL1が本発明の第2の電源ラインである。
 また、電源ラインL1の電位V1と電源ラインL2の一方の線の電位V2との電位差(入力電圧Vin)をA/D変換してディジタル信号に変換し、基準電圧生成部3A,3Bと比較電圧生成部4A,4B,4Cとコンパレータ5とヒステリシス用抵抗R5とを含む回路の処理をDSP(Digital Signal Processor)とその制御プログラムで実現することもできる。
 以上説明したように、本発明によれば、DCバスの電圧レベルに応じて負荷装置毎に電力の供給と遮断を制御することができる。
 例えば、本発明の入力電圧制御装置は、通常照明のような優先度の低い負荷装置に接続されている場合、DCバスの電圧が380V以上であるときにその負荷装置に電力を供給し、DCバスの電圧が380Vより下がるとその負荷装置への電力供給を遮断することができる。一方、本発明の入力電圧制御装置は、コンピュータのような優先度の高い負荷装置に接続されている場合、DCバスの電圧が300V以上であるときにその負荷装置に電力を供給し、DCバスの電圧が300Vより下がるとその負荷装置への電力供給を遮断することができる。
 以上、本発明の実施形態について説明したが、設計上の都合やその他の要因によって必要となる様々な修正や組み合わせは、請求項に記載されている発明や発明の実施形態に記載されている具体例に対応する発明の範囲に含まれる。
1A,1B,1C…入力電圧制御装置、2…定電圧生成部、3A,3B…基準電位生成部、4A,4B,4C…比較電位生成部、5…コンパレータ、6…NMOSトランジスタ、7…トランス、L1,L2,L3…電源ライン、C1…平滑用コンデンサ、R1,R2,R3,R4,R6…抵抗、R5…ヒステリシス用抵抗、VR1,VR2,VR3,VR4…可変抵抗、ZD…チェナーダイオード、D1…ダイオード

Claims (5)

  1.  第1の電位が印加される第1の電源ラインと、
     一方の線と他方の線に分割されており、当該一方の線に第2の電位が印加される第2の電源ラインと、
     第3の電源ラインと、
     前記第1の電源ラインから供給される第1の電位と前記第2の電源ラインの一方の線から供給される第2の電位とによって動作し、前記第2の電位との電位差が一定である第3の電位を前記第3の電源ラインに出力する定電圧生成部と、
     前記第3の電源ラインと前記第2の電源ラインの一方の線とに接続され、前記第3の電位と前記第2の電位とに基づいて基準電位を生成し、当該基準電位を出力する基準電位生成部と、
     前記第1の電源ラインと前記第2の電源ラインの一方の線に接続され、前記第1の電位と前記第2の電位に基づいて比較電位を生成し、当該比較電位を出力する比較電位生成部と、
     前記第3の電源ラインから供給される第3の電位と前記第2の電源ラインの一方の線から供給される第2の電位とによって動作し、前記基準電位と前記比較電位との比較に基づいて導通電位または遮断電位を出力するコンパレータと、
     電流路の一端が前記第2の電源ラインの一方の線に接続され、当該電流路の他端が前記第2の電源ラインの他方の線に接続され、制御端が前記コンパレータの出力端に接続されており、当該制御端に前記導通電位が入力されるときに当該電流路を導通させ、当該制御端に前記遮断電位が入力されるときに当該電流路を遮断する半導体素子と、
     を備えることを特徴とする入力電圧制御装置。
  2.  前記基準電位生成部が、少なくとも1個の可変抵抗を含み、当該可変抵抗の抵抗値を変更することによって前記基準電位を変更することができることを特徴とする請求項1に記載の入力電圧制御装置。
  3.  前記比較電位生成部が、少なくとも1個の可変抵抗を含み、当該可変抵抗の抵抗値を変更することによって前記比較電位を変更することができることを特徴とする請求項1に記載の入力電圧制御装置。
  4.  前記比較電位生成部が、前記第1の電源ラインから供給される第1の電位と前記第2の電源ラインの一方の線から供給される第2の電位との電位差である電圧を降下させる電圧分担素子を含み、当該降下した電圧に基づいて前記比較電位を生成することを特徴とする請求項1に記載の入力電圧制御装置。
  5.  前記半導体素子が、NMOSトランジスタであり、
     前記コンパレータの非反転入力端と反転入力端に、それぞれ前記比較電位と前記基準電位が入力される、
     ことを特徴とする請求項1ないし4のいずれか1項に記載の入力電圧制御装置。
PCT/JP2017/009476 2016-03-18 2017-03-09 入力電圧制御装置 WO2017159536A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17766537.9A EP3432435B1 (en) 2016-03-18 2017-03-09 Input voltage control device
US16/086,242 US10528072B2 (en) 2016-03-18 2017-03-09 Input voltage control device having three power lines
KR1020187022492A KR20180124022A (ko) 2016-03-18 2017-03-09 입력 전압 제어 장치
CN201780013828.2A CN109075570A (zh) 2016-03-18 2017-03-09 输入电压控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016055821A JP6641208B2 (ja) 2016-03-18 2016-03-18 入力電圧制御装置
JP2016-055821 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159536A1 true WO2017159536A1 (ja) 2017-09-21

Family

ID=59851490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009476 WO2017159536A1 (ja) 2016-03-18 2017-03-09 入力電圧制御装置

Country Status (6)

Country Link
US (1) US10528072B2 (ja)
EP (1) EP3432435B1 (ja)
JP (1) JP6641208B2 (ja)
KR (1) KR20180124022A (ja)
CN (1) CN109075570A (ja)
WO (1) WO2017159536A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694300B2 (ja) * 2016-03-22 2020-05-13 Ntn株式会社 制御信号生成回路
CN114442715B (zh) * 2021-12-29 2023-08-18 中国航空工业集团公司西安航空计算技术研究所 一种28v或开路的离散量输出电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215300A (ja) * 2006-02-08 2007-08-23 Toshiba Tec Corp 電源装置
JP2013252041A (ja) * 2012-06-04 2013-12-12 Asahi Kasei Electronics Co Ltd 直流電源装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479174A (en) * 1982-11-03 1984-10-23 Reliance Electric Company Efficiency increasing circuit for switching power supplies operating at low power levels
US5754414A (en) * 1996-02-23 1998-05-19 Hanington; Gary J. Self-compensating switching power converter
JP2002112469A (ja) * 2000-09-29 2002-04-12 Allied Tereshisu Kk 電界効果トランジスタで構成したor回路およびそれを用いた電源回路
JP4219567B2 (ja) * 2001-04-03 2009-02-04 三菱電機株式会社 半導体装置
JP2003339118A (ja) 2002-05-22 2003-11-28 My Way Giken Kk 分散電源システム
US7508176B2 (en) * 2004-05-14 2009-03-24 O2Micro International Limited Controller for a DC to DC converter having linear mode and switch mode capabilities
WO2006003751A1 (ja) * 2004-07-01 2006-01-12 Murata Manufacturing Co., Ltd. Dc-dcコンバータおよびコンバータ装置
JP4302070B2 (ja) * 2005-02-25 2009-07-22 Okiセミコンダクタ株式会社 電源切換回路、マイクロコンピュータ、携帯端末機器、および電源切換制御方法
JP4868918B2 (ja) * 2006-04-05 2012-02-01 株式会社東芝 基準電圧発生回路
TWI554030B (zh) * 2010-10-20 2016-10-11 羅姆股份有限公司 高壓側開關電路、界面電路及電子機器
JP5516320B2 (ja) * 2010-10-21 2014-06-11 ミツミ電機株式会社 レギュレータ用半導体集積回路
CN102063143B (zh) * 2010-11-10 2012-10-31 中国兵器工业集团第二一四研究所苏州研发中心 一种缓变电源管理电路
JP5797106B2 (ja) 2011-12-14 2015-10-21 エヌ・ティ・ティ・データ先端技術株式会社 電圧変換装置及び給電劣後制御システム
JP5988214B2 (ja) * 2012-12-04 2016-09-07 パナソニックIpマネジメント株式会社 点灯装置およびそれを用いた照明器具
CN105009436B (zh) * 2013-02-20 2018-06-12 松下知识产权经营株式会社 开关电源装置
CN104035827A (zh) * 2013-03-08 2014-09-10 鸿富锦精密工业(深圳)有限公司 电子装置
JP2015011505A (ja) * 2013-06-28 2015-01-19 ソニー株式会社 電圧検出器、電子機器、および、電圧検出器の制御方法
JP2015172904A (ja) * 2014-03-12 2015-10-01 株式会社東芝 Ldo型電圧レギュレータ、及び、受電装置
US9509216B2 (en) * 2014-07-04 2016-11-29 Rohm Co., Ltd. Switching power supply circuit
CN104219842B (zh) * 2014-08-29 2017-09-29 深圳市奋勇光电有限公司 Led恒流装置
JP6718109B2 (ja) * 2016-03-07 2020-07-08 富士通株式会社 過電圧保護回路及び過電圧保護制御方法
JP2018014561A (ja) * 2016-07-19 2018-01-25 富士電機株式会社 半導体装置
JP2019047621A (ja) * 2017-09-01 2019-03-22 ミツミ電機株式会社 電源制御用半導体装置および電源装置並びにxコンデンサの放電方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215300A (ja) * 2006-02-08 2007-08-23 Toshiba Tec Corp 電源装置
JP2013252041A (ja) * 2012-06-04 2013-12-12 Asahi Kasei Electronics Co Ltd 直流電源装置

Also Published As

Publication number Publication date
JP6641208B2 (ja) 2020-02-05
US10528072B2 (en) 2020-01-07
EP3432435A1 (en) 2019-01-23
JP2017175677A (ja) 2017-09-28
EP3432435A4 (en) 2019-11-13
KR20180124022A (ko) 2018-11-20
EP3432435B1 (en) 2020-10-07
US20190165574A1 (en) 2019-05-30
CN109075570A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US10770988B2 (en) Non-linear droop control
CN107888087B (zh) 包括逻辑电路的电源
CN104423407B (zh) 低压差线性稳压器及其启动方法、电子装置和芯片
JP2019033028A (ja) 調光装置および電力変換装置
US8193733B2 (en) LED driver circuit
TWI767399B (zh) 具有分段線性負載線的電壓調節器
EP3002993A1 (en) Devices for led direct driver
WO2017159536A1 (ja) 入力電圧制御装置
US20200169083A1 (en) Dc voltage regulation by independent power converters
JP2013196704A (ja) 定電圧生成回路及び定電圧生成方法
US10298021B2 (en) Method and control device for controlling an operating frequency of an energy source in an AC voltage network
US9369074B2 (en) Electric power supply system
US10609799B2 (en) Multi-output dimmable class-2 power supply in accord with american standard
US9660597B2 (en) Voltage supply for electrical focusing of electron beams
JP2015139321A (ja) 基準電圧出力回路および電源装置
TWI685167B (zh) 電流調節系統
JP2007304850A (ja) 電圧生成回路及びそれを備えた電気機器
JP5792504B2 (ja) 電源装置およびその制御回路、電子機器
TWI524164B (zh) Low Dropout Linear Regulator System and Low Dropout Regulator Module
EP2402834B1 (en) Alternating current regulating means
CN216596051U (zh) 一种线性稳压电路及电器设备
US20110317449A1 (en) Alternating current regulating means
JP7354726B2 (ja) ネガワット取引支援装置およびネガワット取引方法
EP3404812B1 (en) Controller ic device for a switched mode power converter and method for operating a controller ic device of a switched mode power converter
JP6694300B2 (ja) 制御信号生成回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187022492

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766537

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766537

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766537

Country of ref document: EP

Kind code of ref document: A1