WO2017141607A1 - 車両駆動装置 - Google Patents

車両駆動装置 Download PDF

Info

Publication number
WO2017141607A1
WO2017141607A1 PCT/JP2017/001471 JP2017001471W WO2017141607A1 WO 2017141607 A1 WO2017141607 A1 WO 2017141607A1 JP 2017001471 W JP2017001471 W JP 2017001471W WO 2017141607 A1 WO2017141607 A1 WO 2017141607A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
coupling member
planetary gear
planetary
output
Prior art date
Application number
PCT/JP2017/001471
Other languages
English (en)
French (fr)
Inventor
鈴木 健一
雪島 良
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201780010234.6A priority Critical patent/CN108603579A/zh
Priority to US15/998,721 priority patent/US20190264790A1/en
Priority to EP17752871.8A priority patent/EP3418607A1/en
Publication of WO2017141607A1 publication Critical patent/WO2017141607A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/364Differential gearings characterised by intentionally generating speed difference between outputs using electric or hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02086Measures for reducing size of gearbox, e.g. for creating a more compact transmission casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02091Measures for reducing weight of gearbox
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle drive device capable of amplifying a torque difference and transmitting drive torque from two independent drive sources to left and right drive wheels.
  • each electric motor is controlled independently to give an appropriate drive torque difference between the left and right drive wheels, thereby reducing the turning moment of the vehicle. It is known to control. For example, when each electric motor is independently connected to the left and right drive wheels via a reduction gear, the rotational speed of each electric motor is reduced by the respective reduction gear, and the output torque of each electric motor is Amplified by each reduction gear and transmitted to the left and right drive wheels.
  • each electric motor has the same output characteristics, and each reduction gear has the same reduction ratio.
  • the output torque of the left and right electric motors transmitted to the left and right drive wheels is amplified according to the reduction gear ratio of the reducer.
  • the ratio of the difference between the output torques of the left and right drive wheels is the same as the ratio of the difference between the output torques of the left and right electric motors because the reduction ratio of the left and right reduction gears is the same.
  • the ratio of torque difference is not amplified.
  • the left and right drive is more than the ratio of the difference in output torque applied from the left and right electric motors. It may be effective to increase the ratio of the difference in output torque transmitted to the wheels.
  • Patent Document 1 and Patent Document 2 include a gear device in which two planetary gear mechanisms having three elements and two degrees of freedom are coaxially arranged between two drive sources and left and right drive wheels.
  • a vehicle drive device is disclosed that can amplify the difference between torques applied to the left and right driving wheels and amplify the difference.
  • FIG. 9 is a skeleton diagram showing the gear configuration of the vehicle drive device according to the prior art 1
  • FIG. 10 is a speed line for explaining the amplification factor of the torque difference by the gear device incorporated in the vehicle drive device according to the prior art 1.
  • FIG. 9 is a skeleton diagram showing the gear configuration of the vehicle drive device according to the prior art 1
  • FIG. 10 is a speed line for explaining the amplification factor of the torque difference by the gear device incorporated in the vehicle drive device according to the prior art 1.
  • the vehicle drive device 100 includes left and right electric motors 102L and 102R mounted on the vehicle, left drive wheels 104L and right drive wheels 104R, a gear device 105 and reduction gear trains 106L and 106R provided therebetween. 107L and 107R.
  • the electric motor 102L and the electric motor 102R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. .
  • the output shaft 102aL of the electric motor 102L and the output shaft 102aR of the electric motor 102R are connected to the coupling members 111 and 112 of the gear device 105 through reduction gear trains 106L and 106R, respectively.
  • the output from the gear unit 105 is given to the left and right drive wheels 104L and 104R via the reduction gear trains 107L and 107R.
  • the gear unit 105 is configured by combining two identical planetary gear mechanisms 110L and 110R with three elements and two degrees of freedom on the same axis.
  • the single pinion planetary gear mechanism includes a sun gear S L , S R and an internal gear R L , R R provided on the same axis, and between these sun gears S L , S R and the internal gears R L , R R.
  • a plurality of planetary gears P L and P R and planetary gears P L and P R are rotatably supported, and are provided coaxially with the sun gears S L and S R and the internal gears R L and R R. It is composed of planetary carriers C L and C R.
  • the sun gear S L, S R and the planetary gears P L, P R is the external gear having gear teeth on the outer circumference
  • the internal gear R L, R R is the internal gear having gear teeth on the inner peripheral is there.
  • the planetary gears P L and P R mesh with the sun gears S L and S R and the internal gears R L and R R.
  • the sun gears S L and S R and the internal gears R L and R R rotate in opposite directions.
  • L and R R and sun gears S L and S R are arranged on the opposite side to the planet carriers C L and C R.
  • the internal gears R L , R R are arranged on the opposite side of the sun gears S L , S R across the planetary carriers C L , C R.
  • the ratio of the length from the planet carriers C L , C R to the internal gears R L , R R and the length from the planet carriers C L , C R to the sun gears S L , S R. Is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr of the internal gears R L and R R and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R.
  • the gear unit 105 includes a first planetary gear mechanism 110L having a sun gear S L , a planetary carrier C L , a planetary gear P L and an internal gear RL , as well as a sun gear S R and a planet carrier.
  • C R, and a second planetary gear mechanism 110R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
  • the sun gear S L of the first planetary gear mechanism 110L and the internal gear R R of the second planetary gear mechanism 110R is coupled by a first coupling member 111, and the internal gear R L of the first planetary gear mechanism 110L second
  • the sun gear S R of the planetary gear mechanism 110R is coupled by the second coupling member 112.
  • the torque TM1 generated by the electric motor 102L is input to the first coupling member 111 via the reduction gear train 106L, and the torque TM2 generated by the electric motor 102R is input to the second coupling member 112 by the reduction gear train 106R. Is input through. Further, the planet carrier C R of the planetary carrier C L and the second planetary gear mechanism 110R of the first planetary gear mechanism 110L, respectively reduction gear train 107L, through 107R left and right drive wheels 104L, the output is connected to the 104R It is taken out.
  • the gear unit 105 is configured by combining two identical planetary gear mechanisms 110L and 110R, it can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the planetary gear mechanism 110L is shown on the upper side, and the speed diagram of the planetary gear mechanism 110R is shown on the lower side.
  • the sun gears S L and S R and the internal gears R L and R R are arranged in the left and right directions. That is, in FIG. 10, the internal gear R R of the second planetary gear mechanism 110R is arranged on the sun gear S L of the first planetary gear mechanism 110L, the internal gear R L of the first planetary gear mechanism 110L the sun gear S R of the second planetary gear mechanism 110R is disposed underneath.
  • the elements located at both ends of the two velocity diagrams shown in FIG. 10 are coupled by the first coupling member 111 and the second coupling member 112, respectively, as indicated by broken lines in the drawing. .
  • torques TM1 and TM2 output from the first motor 102L and the second electric motor 102R are input to the first connecting member 111 and the second connecting member 112, respectively.
  • the torques TM1 and TM2 output from the electric motors 102L and 102R are input to the coupling members 111 and 112 via the reduction gear trains 106L and 106R, respectively.
  • the reduction ratio is omitted, and the torques input to the coupling members 111 and 112 remain TM1 and TM2.
  • driving torques TL and TR transmitted from the planetary carriers C L and C R located in the middle of the velocity diagram shown in FIG. 10 to the left and right driving wheels 104L and 104R are output.
  • the coefficient ⁇ is a torque difference amplification factor.
  • the torque difference amplification factor ⁇ of the gear device 105 will be described.
  • the two planetary gear mechanisms 110L and 110R are single pinion planetary gear mechanisms and use gear elements having the same number of teeth
  • the internal gear R L and the planet carrier C L are represented in the velocity diagram.
  • the distance between the internal gear R R and the planetary carrier C R are equal to each other.
  • the distance between the sun gear S L and the carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
  • Torques TM1 and TM2 of the first electric motor 102L and the second electric motor 102R are input to the first coupling member 111 and the second coupling member 112 at the left and right ends, respectively, and the driving torque TL is output from the planetary carriers C L and C R.
  • the following equation (2) is obtained from the relationship between torque input and output.
  • Equation (3) the equation of moment with reference to the left end (R L , S R ) in the figure is the following equation (3).
  • the arrow M direction indicates the + moment direction.
  • TL ((a / (ba)) + 1) .TM2- (a / (ba)).
  • TM1 (4) TR ((a / (ba)) + 1) .TM1- (a / (ba)).
  • the torque difference amplification factor ⁇ is (Zr + Zs) / (Zr ⁇ Zs).
  • the inputs from the first electric motor 102L and the second electric motor 102R are S L + R R and S R + R L
  • the outputs to the drive wheels 104L and 104R are C L, the C R.
  • FIG. 11 is a skeleton diagram showing the gear configuration of the vehicle drive device according to the conventional technique 2
  • FIG. 12 is a velocity diagram for explaining the torque difference amplification factor by the vehicle drive apparatus according to the conventional technique 2.
  • the electric motors 102L and 102R are arranged on the left and right sides so as to be the same as in the prior art 1, and the same components are denoted by the same reference numerals. ing.
  • the vehicle drive device 100 is provided between a first electric motor 102L and a second electric motor 102R mounted on the vehicle, a left drive wheel 104L and a right drive wheel 104R, and these.
  • a gear device 105 and reduction gear trains 106L and 106R are provided.
  • the first electric motor 102L and the second electric motor 102R operate with electric power from a battery (not shown) mounted on the vehicle, and are individually controlled by an electronic control device (not shown) to generate different torques. Can be output.
  • the output shaft 102aL of the first electric motor 102L and the output shaft 102aR of the second electric motor 102R are connected to the sun gears S L and S R of the gear device 105 via reduction gear trains 106L and 106R, respectively.
  • the output from the gear unit 105 is given to the left and right drive wheels 104L, 104R.
  • the gear device 105 of the prior art 2 is configured by combining two identical planetary gear mechanisms 110L and 110R having three elements and two degrees of freedom on the same axis.
  • the planetary gear mechanisms 110L and 110R for example, a single pinion planetary gear mechanism is adopted.
  • the first electric motor 102L torque TM1 generated in is input to the sun gear S L of the first planetary gear mechanism 110L via a reduction gear train 106L, torque TM2 generated by the second electric motor 102R is decelerated It is input to the sun gear S R of the second planetary gear mechanism 110R through a gear train 106R.
  • first coupling member 111 and the second coupling member 112 are connected to the left and right drive wheels 104L and 104R, respectively, and outputs are taken out.
  • the inputs from the electric motors 102L and 102R are S L and S R
  • the outputs to the drive wheels 104L and 104R are C L + R R and C R + RL .
  • the gear device 105 is configured by combining two identical single pinion planetary gear mechanisms 110L and 110R, the gear device 105 can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 110L is shown on the upper side, and the speed of the second planetary gear mechanism 110R is shown on the lower side.
  • a diagram is shown.
  • the reduction ratio in each reduction gear train 106L, 106R is omitted, and each sun gear S L , S R is assigned to each sun gear S L , S R.
  • the input torque remains TM1 and TM2.
  • the torques TM1 and TM2 output from the first electric motor 102L and the second electric motor 102R are input to the sun gears S L and S R , respectively.
  • the drive torques TL and TR transmitted from the first coupling member 111 and the second coupling member 112 located in the middle of the velocity diagram to the left and right driving wheels 104L and 104R are output.
  • the torque difference amplification factor ⁇ of the gear device 105 will be described. Also in this prior art 2, since the two single pinion type planetary gear mechanisms 110L and 110R use gear elements having the same number of teeth, the internal gear R L and the planet carrier C L And the distance between the internal gear R R and the planetary carrier C R are equal to each other. Further, the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
  • FIG. 12 shows the gear device 105 of the prior art 2 as a speed diagram.
  • the torque difference gain ⁇ can be obtained.
  • the arrow M direction indicates the + moment direction.
  • the inputs from the electric motors 102L, 102R are S L , S R , the outputs to the drive wheels 104L, 104R are C L + R R , C R + RL , and the torque difference amplification factor ⁇ is (2Zr + Zs) / Zs.
  • the gear device 105 receives the input torque.
  • the difference ⁇ TIN is amplified, and a driving torque difference ⁇ TOUT larger than the input torque difference ⁇ TIN can be obtained.
  • JP 2015-21594 A Japanese Patent No. 4907390
  • the vehicle drive device since the vehicle drive device is mounted on the vehicle body, it is essential to reduce the size and weight in order to secure the mounting space.
  • the vehicle drive device When the input shaft of the gear device of the vehicle drive device is directly connected to the motor and the output shaft of the gear device is connected to the drive wheel, motor power that matches the drive torque required for the drive wheel is required. End up. For this reason, the vehicle drive device has several gear shafts as a speed reduction mechanism that amplifies the torque of the motor and transmits it to the drive wheels.
  • the gear shaft is connected to the output shaft of the motor, and is engaged with the input gear shaft having a small diameter gear as an input gear, the output gear shaft having a large diameter gear as an output gear, and the input gear.
  • This is a two-stage reduction mechanism composed of an intermediate gear shaft in which a large-diameter gear and a small-diameter gear engaged with an output gear are coaxially arranged.
  • Prior art 1 and prior art 2 do not specifically mention the arrangement position of the gear device in the vehicle drive device, but in prior art 1, the gear device is arranged on the output side of the two-stage reduction.
  • An embodiment in which a gear device is arranged on the input side of the two-stage reduction is disclosed.
  • the gear unit When the gear unit is provided on the output side of the two-stage reduction, the component parts are enlarged to ensure the strength of the component gears and bearings against the output torque, resulting in an increase in the size of the vehicle drive device and an increase in manufacturing costs. There is a possibility.
  • each gear of the planetary gear mechanism constituting the gear device rotates at high speed, and frictional heat due to slippage between the gear tooth surfaces is likely to occur.
  • the present invention aims to solve the problem of lubrication in the conventional vehicle drive device by reducing the size of the gear device, which is a torque amplifying device incorporated in the vehicle drive device, and keeping the rotational speed of the input stage low. It is what.
  • a vehicle drive device comprising: a gear device in which two planetary gear mechanisms having three elements and two degrees of freedom on the same axis are combined; and the drive source is an electric motor having an outer rotor.
  • An input internal gear connected to the outer rotor of the motor, an output planetary carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a planetary planetary gear
  • a first coupling member that couples one planetary carrier of the two planetary gear mechanisms and the other sun gear, and a second coupling member that couples one sun gear and the other planetary carrier.
  • the internal gear engaged with the planetary gear of the planetary gear mechanism can be integrally provided at the inner end of the outer rotor of the electric motor.
  • the internal gear engaged with the planetary gear of the planetary gear mechanism may be provided separately at the inner end of the outer rotor of the electric motor.
  • a stator that is fastened to the housing that houses the vehicle drive device can be disposed on the inner diameter side of the outer rotor of the electric motor.
  • the planetary carrier of the planetary gear mechanism has a carrier flange on the inboard side and the outboard side of the vehicle via a carrier pin that supports the planetary gear, and a hollow shaft that extends on the outboard side to the carrier flange on the outboard side And an outer diameter of the hollow shaft portion can be supported inside the stator of the electric motor via a rolling bearing.
  • a large-diameter gear serving as an output gear of an output gear shaft connected to a driving wheel is provided on a carrier flange on the inboard side of the planetary gear mechanism and provided with a hollow shaft portion extending inward on the inboard side.
  • An output-side small-diameter gear that engages with the motor can be provided.
  • the housing of the vehicle drive device has a three-piece configuration including a center housing and left and right side housings.
  • a partition wall is provided at the center of the center housing to partition the left and right, and the first coupling member and the second coupling member are It can be provided through the partition wall.
  • One of the first coupling member and the second coupling member is a double structure including a hollow shaft, and the other coupling member is a shaft inserted into the hollow shaft, and the first coupling member and the second coupling member
  • the connection between the second coupling member and the planet carrier to which each coupling member is coupled can be spline fitting.
  • the spline fitting can be a fitting that can slide in the axial direction.
  • the oil supply hole can be provided in the inner diameter of the inner diameter side of the first coupling member and the second coupling member.
  • the drive source is an electric motor having an outer rotor, and an internal gear for input of the planetary gear mechanism. Is provided on the outer rotor of the electric motor, so that the rotational speed of the input stage of the planetary gear mechanism can be kept low, so that frictional heat due to slippage between the gear tooth surfaces hardly occurs, and there is a problem of gear lubrication. Is unlikely to occur.
  • the electric motor has an outer rotor structure and the outer diameter is increased, a larger torque can be output compared to a motor of the same volume. It can be set as a simple structure.
  • connection of the two planetary gear mechanisms of the gear device that is the torque difference amplification mechanism is a connection between the sun gear and the planet carrier, and a connection member having a larger diameter than the internal gear is not required, so the torque difference amplification mechanism is reduced.
  • the vehicle drive device including the torque difference amplification mechanism can be reduced in size and weight.
  • the two planetary gear mechanisms are coupled by a first coupling member and a second coupling member having a double structure comprising a hollow shaft and a shaft inserted into the hollow shaft, and are connected to the inner diameter side of the inner diameter side coupling member.
  • the shaft center oil supply can be performed, so that the gear tooth surface and the bearing portion inside the planetary gear mechanism can be easily lubricated.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 1 It is a skeleton figure which shows the gear structure of the vehicle drive device which concerns on the prior art 1.
  • FIG. It is a speed diagram for demonstrating the torque difference gain by the gear apparatus integrated in the vehicle drive device which concerns on the prior art 1.
  • FIG. It is a skeleton figure which shows the gear structure of the vehicle drive device which concerns on the prior art 2.
  • FIG. It is a speed diagram for demonstrating the torque difference gain by the gear apparatus integrated in the vehicle drive device which concerns on the prior art 2.
  • the electric vehicle AM shown in FIG. 5 is a rear wheel drive system, and includes a chassis 60, drive wheels 61L and 61R as rear wheels, front wheels 62L and 62R, and a two-motor vehicle drive device 1 according to the present invention.
  • a battery 63, an inverter 64, and the like are provided.
  • the gear structure of the vehicle drive device 1 is shown with the skeleton figure.
  • 1 and 3 includes two electric motors 2L and 2R that are mounted on a vehicle and can be controlled independently, left and right driving wheels 61L and 61R, and two electric motors 2L, 2R and 3R 2 planetary gear mechanisms 3L and 3R provided between 2R and 2R.
  • the driving torque of the two-motor type vehicle drive device 1 is transmitted to the left and right drive wheels 61L and 61R via a drive shaft composed of constant velocity joints 65a and 65b and an intermediate shaft 65c.
  • a front wheel drive method and a four wheel drive method may be used in addition to the rear wheel drive method shown in FIG.
  • the same standard outer rotor type electric motor having the same maximum output is used as the left and right electric motors 2L and 2R in the two-motor type vehicle drive device 1.
  • the 2-motor type vehicle drive device 1 is accommodated in the housing 4.
  • the housing 4 is divided into three pieces in a direction orthogonal to the axis of the planetary gear mechanisms 3L and 3R, and as shown in FIG. 1, the central housing 4a and left and right side housings fixed to both side surfaces of the central housing 4a. It has a 3 piece structure of 4bL and 4bR.
  • the left and right side housings 4bL and 4bR are fixed to the openings on both sides of the central housing 4a by a plurality of bolts (not shown).
  • the left and right side housings 4bL and 4bR are provided with cylindrical portions for accommodating the electric motors 2L and 2R, and outer walls 4cL and 4cR for closing the cylindrical portions are provided on the outer surfaces of the cylindrical portions.
  • the central housing 4a is provided with a partition wall 11 in the center.
  • the housing 4 is divided into left and right parts by the partition wall 11.
  • the electric motors 2L and 2R are of an outer rotor type, and have a structure in which a stator 6 that is fastened to the housing 4 that houses the vehicle drive device is provided on the inner diameter side of the outer rotor 5.
  • the stator 6 includes a stator core 6a and a coil portion 6b.
  • the stator core 6a is formed integrally with the outer walls 4cL and 4cR of the cylindrical portion that accommodates the electric motors 2L and 2R.
  • the outer rotor 5 is provided on the outer periphery of the stator 6 with an interval, and an end portion on the outboard side is rotatable by the rolling bearing 7 with respect to the outer walls 4cL and 4cR of the cylindrical portion that houses the electric motors 2L and 2R. It is supported.
  • the bearing fitting convex part 8 which fixes the rolling bearing 7 is provided in the inner wall of the outer side walls 4cL and 4cR of the cylindrical part that accommodates the electric motors 2L and 2R.
  • a gear device 30 for amplifying and distributing the torque applied from the two electric motors 2L, 2R to the left and right drive wheels 61L, 61R.
  • the constituting planetary gear mechanisms 3L and 3R having three elements and two degrees of freedom are accommodated.
  • the planetary gear mechanisms 3L, 3R constituting the gear device 30 are input internal gears R L , R R provided on the inner diameter surface of a cylindrical portion obtained by extending the outer rotor 5 of the electric motors 2L, 2R to the inboard side, internal gear R L, R R and the sun gear S L provided coaxially, S R and internal gear R L, R R and the sun gear S L, the planetary gear P L as a revolving gear meshing with S R, P R , planetary gears P L , P R connected to the internal gears R L , R R and provided coaxially with the output planet carriers C L , C R , and one planet carrier C L (in FIG.
  • the planet carrier C L, output-side small-diameter gear 13b is coupled to the C R, the planet carrier C L, although formed integrally with the C R, separately It may be formed.
  • Planet carrier C L, C R is the planetary gears P L, a carrier pin 33 which supports the P R, and the carrier flange 34a on the outboard side which is connected to the outboard side end portion of the carrier pin 33, inboard end And an inboard carrier flange 34b connected to the portion.
  • the carrier flange 34a on the outboard side includes a hollow shaft portion 35 extending toward the outboard side, and the outer diameter surface on the outboard side of the hollow shaft portion 35 is the end surface on the inboard side of the stator core 6a of the electric motors 2L and 2R. Is supported by a bearing fitting hole 19b formed through a rolling bearing 20b.
  • the carrier flange 34b on the inboard side includes a hollow shaft portion 36 extending toward the inboard side, and an end portion on the inboard side of the hollow shaft portion 36 is formed in a bearing fitting hole formed in the partition wall 11 of the central housing 4a. 19a is supported via a rolling bearing 20a.
  • the output side small diameter gear 13b is integrally formed on the outer peripheral surface of the hollow shaft portion 35 of the carrier flange 34a.
  • the planetary gears P L and P R are supported by the carrier pin 33 via the needle roller bearing 37.
  • each carrier flange 34a, 34b facing surface and a planetary gear P L of, inserting the thrust plate 38 between the P R, the planetary gear P L, thereby achieving a smooth rotation of the P R.
  • each carrier flange 34a, 34b outer peripheral surface and the inner gear R L of the, between the R R, the rolling bearing 39a, are arranged 39 b.
  • the first coupling member 31 and the second coupling member 32 that couple the two planetary gear mechanisms 3L and 3R constituting the gear device 30 of the vehicle drive device 1 are the partition walls 11 that partition the central housing 4a of the housing 4 to the left and right. It is incorporated through.
  • the first coupling member 31 and the second coupling member 32 are arranged coaxially, and one coupling member (the second coupling member 32 in the embodiment of FIGS. 1 and 2) is a hollow shaft and the other coupling member. (In the embodiment of FIGS. 1 and 2, the first coupling member 31) has a double structure including a shaft inserted through the hollow shaft.
  • the end portion of the right side of the planetary gear mechanism 3R of the second coupling member 32 consists of a hollow shaft, the hollow shaft portion of the carrier flange 34b on the inboard side of the planet carrier C R the spline 41 is provided on the 36, are connected by spline fitting to the second coupling member 32 the planet carrier C R.
  • the spline and the end portion of the left planetary gear mechanism 3L of the first coupling member 31, to the hollow shaft portion 35 of the carrier flange 34a on the outboard side of the planet carrier C L 42 are provided, they are connected by spline fitting to the first coupling member 31 the planet carrier C L.
  • the two planetary gear mechanisms 3L, the first coupling member 31 of the 3R and the second coupling member 32 by connecting the splined to the planet carrier C L and the planet carrier C R, two The planetary gear mechanisms 3L and 3R can be divided into left and right, and can be incorporated into the three-piece housing 4 together with other reduction gear shafts from the left and right.
  • End of the planet carrier C L of the second coupling member 32 has, on its outer peripheral surface, the external gear meshing with the planetary gears P L of the left planetary gear mechanism 3L is formed, the outer gear left planetary gear mechanism 3L
  • the sun gear S L is configured.
  • the first coupling member 31 inserted through the second coupling member 32 constituted by a hollow shaft has a large diameter portion 43 at the end of the right planetary gear mechanism 3R, and on the outer peripheral surface of the large diameter portion 43, external gear meshing with the planetary gears P R of the right planetary gear mechanism 3R is formed, the outer gear constitutes the sun gear S R of the right planetary gear mechanism.
  • the maximum diameter of the sun gear S R are connected to the inner diameter side of the coupling member (first coupling member 31), the binding of the outer diameter side member (the second coupling by member 32) is set smaller than the minimum diameter of the spline hole of the inner surface of the hollow shaft portion 36 of the carrier flange 34b on the inboard side of the planet carrier C R fit fitting, the inner diameter side of the coupling member (first coupling member 31 ) Can be easily incorporated.
  • first coupling member 31 Between the outer peripheral surface of the inner diameter side coupling member (first coupling member 31) and the inner peripheral surface of the outer diameter side coupling member (second coupling member 32), there are needles 44 at both ends of the collar 44.
  • the roller bearings 45 and 46 are interposed.
  • the first coupling member 31 and the second coupling member 32 and the planetary carriers C L and C R are fitted to the planetary carriers C L and C R (splines 41 and 42) by using a fitting tolerance slidable in the axial direction. Uneven load on the gear tooth surface due to the thrust force can be prevented.
  • the axial movement of the first coupling member 31 and the second coupling member 32 and the planetary carriers C L and C R due to the sliding of the spline (splines 41 and 42) fitting portion is the outer diameter side coupling member (FIG. 1).
  • the second coupling member 32) is regulated by providing thrust bearings 47 and 48 at both ends.
  • the coupling member (the first coupling member 31 in the embodiment of FIGS. 1 and 2) on the inner diameter side of the double-structure shaft that couples the two planetary gear mechanisms 3L and 3R is the coupling member (implementation of FIGS. 1 and 2).
  • the shaft end opposite to the spline fitting between the first coupling member 31) and the planet carrier (C L in the embodiment of FIGS. 1 and 2) is connected to the other planet carrier (the embodiment of FIGS. 1 and 2).
  • C R is supported by a deep groove ball bearing 49.
  • An oil supply hole 50 is provided in the shaft center of the coupling member (the first coupling member 31 in the embodiment of FIGS. 1 and 2) on the inner diameter side of the double-structure shaft that couples the two planetary gear mechanisms.
  • the output gear shafts 14L and 14R have a large-diameter output gear 14a, and are formed in bearing fitting holes 53a formed on both surfaces of the partition wall 11 of the central housing 4a and bearing fitting holes 53b formed on the side housings 4bL and 4bR. It is supported by rolling bearings 54a and 54b.
  • the bearing fitting holes 53a and 53b have a stepped shape having a wall portion with which the outer rings of the rolling bearings 54a and 54b come into contact.
  • Outboard side ends of the output gear shafts 14L and 14R are drawn out of the housing 4 through openings formed in the side housings 4bL and 4bR, and the outboard side ends of the output gear shafts 14L and 14R are drawn out.
  • the outer joint portion of the constant velocity joint 65a is spline-coupled to the outer peripheral surface.
  • the constant velocity joint 65a coupled to the output gear shafts 14L and 14R is connected to the drive wheels 61L and 61R via the intermediate shaft 65c and the constant velocity joint 65b (FIG. 5).
  • An oil seal 55 is provided between the end of the output gear shafts 14L and 14R on the outboard side and the openings formed in the side housings 4bL and 4bR, so that the lubricating oil sealed in the housing 4 leaks from the outside. Intrusion of muddy water is prevented.
  • the gear configuration of the two-motor type vehicle drive device 1 of the embodiment shown in FIGS. 1 and 2 is as shown in the skeleton diagram shown in FIG.
  • the left and right electric motors 2 ⁇ / b> L and 2 ⁇ / b> R are operated by electric power supplied from a battery 63 mounted on the vehicle via an inverter 64.
  • the electric motors 2L and 2R are individually controlled by an electronic control device (not shown), and can generate and output different torques.
  • Torque of the outer rotor 5 of the electric motors 2L and 2R is transmitted to the internal gears R L and R R of the gear device 30.
  • the output-side small gear 13b of the planetary gear mechanisms 3L, 3R is engaged with the large-diameter output gear 14a of the output gear shafts 14L, 14R via the gear device 30, and the number of teeth of the output-side small gear 13b and the output gear 14a is increased.
  • the torque of the outer rotor 5 of the electric motors 2L, 2R is further amplified by the ratio and output to the drive wheels 61L, 61R.
  • the gear device 30 is configured by combining two identical planetary gear mechanisms 3L and 3R with three elements and two degrees of freedom on the same axis, and adopts a single pinion planetary gear mechanism as the planetary gear mechanism.
  • the planetary gear mechanisms 3L and 3R are arranged on the same axis with sun gears S L and S R and internal gears R L and R R, and between these sun gears S L and S R and the internal gears R L and R R.
  • a plurality of planetary gears P L, P R is close to the planetary gear P L, provided the P R rotatably supported by the sun gear S L, S R and the internal gear R L, on R R coaxial It is composed of planetary carriers C L and C R.
  • the sun gear S L, S R and the planetary gears P L, P R is the external gear having gear teeth on the outer circumference
  • the internal gear R L, R R is the internal gear having gear teeth on the inner peripheral is there.
  • the planetary gears P L and P R mesh with the sun gears S L and S R and the internal gears R L and R.
  • the gear device 30 includes the first planetary gear mechanism 3L having the sun gear S L , the planet carrier C L , the planet gear P L and the internal gear R L , and the sun gear S R and the planet carrier C.
  • a second planetary gear mechanism 3R with the planetary gears P R and the internal gear R R is configured by combining coaxially.
  • first planetary gear mechanism planet carrier C L and the first coupling member 31 and the sun gear S R is coupled to the second planetary gear mechanism 3R of 3L forms the sun gear of the first planetary gear mechanism and S L and the planet carrier C R of the second planetary gear mechanism 3R forms the second coupling member 32 are coupled.
  • Torque TM1 generated by the electric motor 2L in the internal gear RL of the first planetary gear mechanism 3L is transmitted to the output-side small-diameter gear 13b by the first planetary gear mechanism 3L, and the output-side small-diameter gear 13b and the output gear shaft 14L.
  • the output gear 14a meshes with each other and is decelerated by one step, and the drive torque TL is output from the output gear shaft 14L to the drive wheel 61L.
  • Torque TM2 generated in the internal gear R R by an electric motor 2R of the second planetary gear mechanism 3R is transmitted to the output side small-diameter gear 13b by the second planetary gear mechanism 3R, and the output-side small-diameter gear 13b output gear shaft 14R And the output gear 14a meshes with each other and is decelerated by one step, and the drive torque TR is output from the output gear shaft 14R to the drive wheel 61R.
  • Outputs from the electric motors 2L and 2R are given to the internal gears R L and R R of the two planetary gear mechanisms 3L and 3R, respectively, and outputs from the first coupling member 31 and the second coupling member 32 are drive wheels 61L. , 61R.
  • the 2nd coupling member 32 is comprised by the hollow shaft, the 1st coupling member 31 is penetrated in the inside, and the axis
  • the first coupling member 31 which is a solid shaft, has one end (right end in the drawing) serving as the rotation shaft of the sun gear S R , and the other end (left end in the drawing) penetrating the sun gear S L. It is connected to the carrier C L.
  • the second coupling member 32 is a hollow shaft, one end (left end in the drawing) has a rotation shaft of the sun gear S L, the other end (right end in the drawing) is connected to the planet carrier C R. Two planetary gear mechanisms are coupled by the first coupling member 31 and the second coupling member 32.
  • the gear device 30 Since the gear device 30 is configured by combining two identical single pinion planetary gear mechanisms 3L and 3R, it can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the left planetary gear mechanism 3L is shown on the upper side, and the speed diagram of the right planetary gear mechanism 3R is shown on the lower side.
  • the drive torques TL and TR extracted from the gear device 30 are transmitted to the left and right drive wheels 61L and 61R via the output-side small gear 13b meshing with the output gear 14a. Therefore, the reduction ratio is applied.
  • the driving torque remains TL and TR in the description of the velocity diagram and each calculation formula shown in FIG.
  • Two planetary gear mechanism 3L constituting the gear device 30, 3R because it uses the gear elements of the same number of teeth, the distance between the internal gear R L and the planet carrier C L in the velocity diagram, and the internal gear
  • the distance between R R and the planet carrier C R is equal, and this is a.
  • the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S L and the planet carrier C R are also equal, and this is b.
  • the electric motor 2L, input from 2R is, R L, R R, and the drive wheels 61L, the output of the 61R becomes S R + C L, S L + C R.
  • connection of the two planetary gear mechanism constituting the gear device 30 is a torque difference distribution mechanism, the sun gear S L and the planet carrier C R, since it is the sun gear S R and the planet carrier C L, the internal gear A connecting member having a larger diameter than R L and R R is not required.
  • the torque difference distribution mechanism can be made smaller than those of the prior art 1 and the prior art 2
  • the vehicle drive device 1 for an electric vehicle incorporating the torque difference distribution mechanism is made smaller and lighter.
  • torque output from the two planetary gear mechanisms 3L, 3R is transmitted to the output gear 14a of the output gear shafts 14L, 14R connected to the drive wheels 61L, 61R.
  • a multi-stage gear mechanism in which an intermediate gear shaft is provided between the gear mechanisms 3L and 3R and the output gear shafts 14L and 14R may be employed.
  • the electric motors 2 ⁇ / b> L and 2 ⁇ / b> R are used as the two drive sources, and the same standard electric motor having the same maximum output is illustrated, but the two drive sources are not limited thereto. .
  • the vehicle on which the vehicle drive device 1 is mounted is not limited to an electric vehicle or a hybrid electric vehicle, and may be, for example, a fuel cell vehicle that uses the first electric motor 2L and the second electric motor 2R as driving sources. Good.
  • the present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

トルク差増幅機構を小さくして、トルク差増幅機構を含む車両駆動輪装置を小型、軽量化することを課題とする。アウタロータ(5)を有する電動モータ(2L、2R)と左右の駆動輪との間に設けられ、3要素2自由度の遊星歯車機構(3L、3R)を同軸上に二つ組み合わせた歯車装置とを備え、電動モータ(2L、2R)のアウタロータ(5)に連結される入力用の内歯車(RL、RR)と、内歯車(RL、RR)と同軸上に設けられた出力用の遊星キャリヤ(CL、CR)と、内歯車(RL、RR)と同軸上に設けられた太陽歯車(SL、SR)と、公転歯車としての遊星歯車(PL、PR)とを有し、二つの遊星歯車機構(3L、3R)の一方の遊星キャリヤ(CL)と他方の太陽歯車(SR)とを結合する第1結合部材(31)と、一方の太陽歯車(SL)と他方の遊星キャリヤ(CR)とを結合する第2結合部材(32)とを同軸上に配置し、遊星歯車機構(SL、SR)の遊星キャリヤ(CL、CR)と駆動輪の出力歯車軸(14L、14R)とを連結したことを特徴とする。

Description

車両駆動装置
 この発明は、独立した二つの駆動源からの駆動トルクを左右の駆動輪にトルク差を増幅して伝達することができる車両駆動装置に関するものである。
 電気自動車等の車両において、左右の駆動輪にそれぞれ電動モータを配置して、各電動モータを独立して制御することにより左右の駆動輪に適宜駆動トルク差を与え、これにより車両の旋回モーメントを制御することが知られている。例えば、各電動モータがそれぞれ減速機を介して左右の駆動輪に独立して接続されている場合、各電動モータの回転速度はそれぞれの減速機で減速され、かつ、各電動モータの出力トルクはそれぞれの減速機で増幅されて左右の駆動輪に伝達される。ここで、車両の右旋回時と左旋回時の挙動を同様にするために、各電動モータは同じ出力特性にして、それぞれの減速機も同じ減速比にしている。
 ところで、左右の駆動輪の出力トルクに差を付けたい場合、左右の電動モータの出力トルクに差を付け、左右の駆動輪に左右の電動モータの出力トルクを減速機を介して伝達する。
 左右の駆動輪に伝達される左右の電動モータの出力トルクは、減速機の減速比に応じて増幅される。但し、左右の駆動輪の出力トルクの差の比率は、左右の減速機の減速比が同じであるので、左右の電動モータの出力トルクの差の比率と同一であり、左右の駆動輪の出力トルクの差の比率が増幅されるわけではない。
 ところが、車両のスムーズな旋回走行の実現や、極端なアンダーステア、極端なオーバーステア等の車両の挙動変化を抑制するために、左右の電動モータから与えられる出力トルクの差の比率よりも左右の駆動輪に伝達される出力トルクの差の比率を大きくすることが有効な場合がある。
 特許文献1及び特許文献2には、二つの駆動源と左右の駆動輪との間に、3要素2自由度の遊星歯車機構を同軸上に二つ組み合わせた歯車装置を備え、二つの駆動源から与えられるトルクの差を増幅して左右の駆動輪に与えることができる車両駆動装置が開示されている。
 特許文献1に開示された車両駆動装置(以下、従来技術1という。)を図9及び図10を参照して説明する。図9は、従来技術1に係る車両駆動装置の歯車構成を示すスケルトン図、図10は従来技術1に係る車両駆動装置に組み込まれた歯車装置によるトルク差の増幅率を説明するための速度線図である。
 車両駆動装置100は、車両に搭載された左右の電動モータ102L及び電動モータ102Rと、左駆動輪104L及び右駆動輪104Rと、これらの間に設けられる歯車装置105と減速ギヤ列106L、106R、107L、107Rとを備えている。
 電動モータ102L及び電動モータ102Rは、車両に搭載されたバッテリ(図示省略)からの電力により動作し、電子制御装置(図示省略)により個別に制御され、異なるトルクを発生させて出力することができる。
 電動モータ102Lの出力軸102aL、電動モータ102Rの出力軸102aRは、それぞれ減速ギヤ列106L、106Rを介して歯車装置105の各結合部材111、112に接続される。歯車装置105からの出力は減速ギヤ列107L、107Rを介して左右の駆動輪104L、104Rに与えられる。
 歯車装置105は、3要素2自由度の同一の遊星歯車機構110L、110Rが同軸上に二つ組み合わされて構成されている。
 遊星歯車機構110L、110Rには、例えば、シングルピニオン遊星歯車機構が採用されている。シングルピニオン遊星歯車機構は、同軸上に設けられた太陽歯車SL、SR及び内歯車RL、RRと、これら太陽歯車SL、SRと内歯車RL、RRとの間に位置する複数の遊星歯車PL、PRと、遊星歯車PL、PRを回動可能に支持し、太陽歯車SL、SR及び内歯車RL、RRと同軸上に設けられた遊星キャリヤCL、CRとから構成される。ここで、太陽歯車SL、SRと遊星歯車PL、PRは外周にギヤ歯を有する外歯歯車であり、内歯車RL、RRは内周にギヤ歯を有する内歯歯車である。
 遊星歯車PL、PRは太陽歯車SL、SRと内歯車RL、RRとに噛み合っている。遊星歯車機構では、遊星キャリヤCL、CRを固定した場合に太陽歯車SL、SRと内歯車RL、RRとが逆方向に回転するため、速度線図に表すと内歯車RL、RR及び太陽歯車SL、SRが遊星キャリヤCL、CRに対して反対側に配置される。換言すると、内歯車RL、RRは遊星キャリヤCL、CRを挟んで太陽歯車SL、SRの反対側に配置される。
 図10に示す速度線図においては、遊星キャリヤCL、CRから内歯車RL、RRまでの長さと遊星キャリヤCL、CRから太陽歯車SL、SRまでの長さの比は、内歯車RL、RRの歯数Zrの逆数(1/Zr)と太陽歯車SL、SRの歯数Zsの逆数(1/Zs)との比と等しい。
 この歯車装置105は、図9に示すように、太陽歯車SL、遊星キャリヤCL、遊星歯車PL及び内歯車RLを有する第1遊星歯車機構110Lと、同じく太陽歯車SR、遊星キャリヤCR、遊星歯車PR及び内歯車RRを有する第2遊星歯車機構110Rとが同軸上に組み合わされて構成されている。
 そして、第1遊星歯車機構110Lの太陽歯車SLと第2遊星歯車機構110Rの内歯車RRとが第1結合部材111によって結合され、第1遊星歯車機構110Lの内歯車RLと第2遊星歯車機構110Rの太陽歯車SRとが第2結合部材112によって結合されている。
 第1結合部材111には、電動モータ102Lで発生されたトルクTM1が減速ギヤ列106Lを介して入力され、第2結合部材112には、電動モータ102Rで発生されたトルクTM2が減速ギヤ列106Rを介して入力される。また、第1遊星歯車機構110Lの遊星キャリヤCL及び第2遊星歯車機構110Rの遊星キャリヤCRは、それぞれ減速ギヤ列107L、107Rを介して左右の駆動輪104L、104Rに接続されて出力が取り出される。
 ここで、歯車装置105によって伝達される駆動トルクについて、図10に示す速度線図を用いて説明する。
 歯車装置105は、二つの同一の遊星歯車機構110L、110Rを組み合わせて構成されるため、図10に示すように二本の速度線図によって表すことができる。ここでは、理解を容易にするために、二本の速度線図を上下にずらし、上側に遊星歯車機構110Lの速度線図を示し、下側に遊星歯車機構110Rの速度線図を示す。
 また、第1の遊星歯車機構110Lの速度線図と第2の遊星歯車機構110Rの速度線図は、太陽歯車SL、SRと内歯車RL、RRが左右反対に配置される。すなわち、図10において、第1の遊星歯車機構110Lの太陽歯車SLの下に第2の遊星歯車機構110Rの内歯車RRが配置され、第1の遊星歯車機構110Lの内歯車RLの下に第2の遊星歯車機構110Rの太陽歯車SRが配置される。
 この歯車装置105は、図10に示す二本の速度線図の両端に位置する要素同士が、図中破線で示すように、第1結合部材111及び第2結合部材112によってそれぞれ結合されている。そして、第1結合部材111及び第2結合部材112に、それぞれ第1のモータ102L及び第2の電動モータ102Rから出力されたトルクTM1及びTM2が入力される。ここで、本来は、各電動モータ102L、102Rから出力されたトルクTM1及びTM2は各減速ギヤ列106L、106Rを介し各結合部材111、112に入力されるため、減速比が掛かるが、理解を容易にするため、速度線図及び各計算式の以降の説明においては、減速比を省略し、各結合部材111、112に入力されるトルクをTM1及びTM2のままとする。
 一方、図10に示す速度線図上で中間に位置する遊星キャリヤCL、CRから左右の駆動輪104L、104Rに伝達される駆動トルクTL、TRが出力される。
 このように構成された歯車装置105によって、第1の電動モータ102L及び第2の電動モータ102Rで発生させる各駆動トルクTM1、TM2にトルク差(入力トルク差)ΔTIN(=TM2-TM1)を与えると、左駆動輪104Lに伝達される駆動トルクTLと右駆動輪104Rに伝達される駆動トルクTRとに駆動トルク差ΔTOUT(=TL-TR)を発生させることができる。すなわち、この歯車装置105によれば、以下の式(1)の関係が得られる。なお、係数αはトルク差増幅率である。
 (TL-TR)=α×(TM2-TM1) …(1)
 この従来技術1に係る歯車装置105のトルク差増幅率αについて説明する。ここでは、二つの遊星歯車機構110L、110Rは、シングルピニオン遊星歯車機構であり、同一の歯数の歯車要素を使用しているため、速度線図においては内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLとキャリヤCLとの距離及び太陽歯車SRと遊星キャリヤCRとの距離も等しく、これをbとする。
 左右両端の第1結合部材111、第2結合部材112に、それぞれ第1の電動モータ102L、第2の電動モータ102RのトルクTM1、TM2を入力し、遊星キャリヤCL、CRから駆動トルクTL、TRを取り出す場合、トルクの入力と出力の関係から、以下の式(2)が得られる。
 TR+TL=TM1+TM2   …(2)
 また、図中の左端(RL、SR)を基準としたモーメントの式は以下の式(3)となる。なお、図10において、矢印M方向が+のモーメント方向を示している。
 0=aTL+bTR-(a+b)TM1  …(3)
 これら式(2)、(3)からTL、TRについてまとめると、以下の(4)、(5)式となる。
TL=((a/(b-a))+1)・TM2-(a/(b-a))・TM1…(4)
TR=((a/(b-a))+1)・TM1-(a/(b-a))・TM2…(5)
 これら(4)、(5)式から駆動トルク差(TL-TR)は以下の(6)式となる。
(TL-TR)=((a+b)/(b-a))・(TM2-TM1)…(6)
 シングルピニオン形式の遊星歯車機構の場合、長さaは内歯車RL、RRの歯数Zrの逆数(1/Zr)、長さbは太陽歯車SL、SRの歯数Zsの逆数(1/Zs)となるため、上記の式は(7)式のように書き換えられる。
 (TL-TR)=((Zr+Zs)/(Zr-Zs))・(TM2-TM1)…(7)
 上記(7)式よりトルク差増幅率αは、(Zr+Zs)/(Zr-Zs)となる。
 上記したように、この従来技術1では、第1の電動モータ102L、第2の電動モータ102Rからの入力は、SL+RR、SR+RLとなり、駆動輪104L、104Rへの出力はCL、CRとなる。
 二つの電動モータ102L、102Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTIN(=(TM2-TM1))を与えると、歯車装置105において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差α・ΔTINを得ることができる。すなわち、入力トルク差ΔTINが小さくても、歯車装置105において所定のトルク差増幅率αで入力トルク差ΔTINを増幅することができ、左駆動輪104Lと右駆動輪104Rとに伝達される駆動トルクTL、TRに、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUT(=α・(TM2-TM1))を与えることができる。
 次に、特許文献2に開示された車両駆動装置(以下、従来技術2という。)を図11及び図12を参照して説明する。図11は、従来技術2に係る車両駆動装置の歯車構成を示すスケルトン図、図12は従来技術2に係る車両駆動装置によるトルク差増幅率を説明するための速度線図である。
 なお、図11においては、従来技術1との差を分かりやすくするために、左右に電動モータ102L、102Rを配置して従来技術1と同様の図にし、同一構成部分には同一符号を付している。
 図11に示すように、車両駆動装置100は、車両に搭載された第1の電動モータ102L及び第2の電動モータ102Rと、左駆動輪104L及び右駆動輪104Rと、これらの間に設けられる歯車装置105と減速ギヤ列106L、106Rとを備えている。
 第1の電動モータ102L及び第2の電動モータ102Rは、車両に搭載されたバッテリ(図示省略)からの電力により動作し、電子制御装置(図示省略)により個別に制御され、異なるトルクを発生させて出力することができる。第1の電動モータ102Lの出力軸102aL、第2の電動モータ102Rの出力軸102aRは、それぞれ減速ギヤ列106L、106Rを介して歯車装置105の太陽歯車SL、SRに接続される。歯車装置105からの出力は左右の駆動輪104L、104Rに与えられる。
 従来技術1と同様に従来技術2の歯車装置105は、3要素2自由度の同一の遊星歯車機構110L、110Rが同軸上に二つ組み合わされて構成されている。遊星歯車機構110L、110Rには、例えば、シングルピニオン遊星歯車機構が採用されている。
 そして、第1の遊星歯車機構110Lの遊星キャリヤCLと第2の遊星歯車機構110Rの内歯車RRとが第1結合部材111によって結合され、第1の遊星歯車機構110Lの内歯車RLと第2の遊星歯車機構110Rの遊星キャリヤCRとが第2結合部材112によって結合されている。
 第1の電動モータ102Lで発生されたトルクTM1が減速ギヤ列106Lを介して第1の遊星歯車機構110Lの太陽歯車SLに入力され、第2の電動モータ102Rで発生されたトルクTM2が減速ギヤ列106Rを介して第2の遊星歯車機構110Rの太陽歯車SRに入力される。
 また、第1結合部材111、第2の結合部材112は、それぞれ左右の駆動輪104L、104Rに接続されて出力が取り出される。
 上記したように、この従来技術2では、電動モータ102L、102Rからの入力は、SL、SRとなり、駆動輪104L、104Rへの出力は、CL+RR、CR+RLとなる。
 ここで、従来技術2の歯車装置105によって伝達される駆動トルクについて、図12に示す速度線図を用いて説明する。
 歯車装置105は、二つの同一のシングルピニオンの遊星歯車機構110L、110Rを組み合わせて構成されるため、図10に示すように二本の速度線図によって表すことができる。ここでは、理解を容易にするために、二本の速度線図を上下にずらし、上側に第1の遊星歯車機構110Lの速度線図を示し、下側に第2の遊星歯車機構110Rの速度線図を示している。また、従来技術1での説明と同様に、速度線図及び各計算式の以降の説明においては、各減速ギヤ列106L、106Rでの減速比を省略し、各太陽歯車SL、SRに入力されるトルクをTM1及びTM2のままとする。
 図11に示す歯車装置105では、図12に示す遊星キャリヤCLと内歯車RRが、図中破線で示すように、第1結合部材111によって結合され、遊星キャリヤCRと内歯車RLが、図中破線で示すように、第2結合部材112によって結合されている。
 そして、太陽歯車SL、SRにそれぞれ第1の電動モータ102L及び第2の電動モータ102Rから出力されたトルクTM1及びTM2が入力される。一方、速度線図上で中間に位置する第1結合部材111、第2結合部材112から左右の駆動輪104L、104Rに伝達される駆動トルクTL、TRが出力される。
 このように構成された歯車装置105によっても、第1の電動モータ102L及び第2の電動モータ102Rで発生させる各駆動トルクTM1、TM2にトルク差(入力トルク差)ΔTIN(=TM2-TM1)を与えることで、左駆動輪104Lに伝達される駆動トルクTLと右駆動輪104Rに伝達される駆動トルクTRとに駆動トルク差ΔTOUT(=TR-TL)を発生させることができる。
 この従来技術2に係る歯車装置105のトルク差増幅率αについて説明する。この従来技術2においても、二つのシングルピニオン形式の遊星歯車機構110L、110Rは、同一の歯数の歯車要素を使用しているため、速度線図においては内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLと遊星キャリヤCLとの距離及び太陽歯車SRと遊星キャリヤCRとの距離も等しく、これをbとする。
 この従来技術2の歯車装置105を速度線図で示すと図12のようになる。
 この速度線図において、トルクの釣り合いを考えると、トルク差増幅率αを求めることができる。なお、図12において、矢印M方向が+のモーメント方向を示している。
 SRの点を基準にしたモーメントMの釣り合いから下記(8)式が算出される。
 b・TR+(a+b)・TL-(a+2b)・TM1=0 …(8)
 SLの点を基準にしたモーメントMの釣り合いから下記(9)式が算出される。
 -b・TL-(a+b)・TR+(a+2b)・TM2=0 …(9)
(8)式+(9)式より、下記(10)式が算出される。
a・(TR-TL)―(a+2b)・(TM2-TM1)=0
(TR-TL)=((a+2b)/a)・(TM2-TM1)  …(10)
 (10)式の(a+2b)/aがトルク差増幅率αとなる。
 a=1/Zr、b=1/Zsを代入すると、α=(2Zr+Zs)/Zsとなる。
 この従来技術2では、電動モータ102L、102Rからの入力は、SL、SR、駆動輪104L、104Rへの出力はCL+RR、CR+RLであり、トルク差増幅率αは、(2Zr+Zs)/Zsである。
 上記のように、従来技術1及び従来技術2に記載のものにおいては、二つの電動モータ102L、102Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTINを与えると、歯車装置105において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUTを得ることができる。
特開2015-21594号公報 特許第4907390号公報
 ところで、車両駆動装置は、車体に搭載されるため、搭載空間確保のために小型化、軽量化は必須である。
 車両駆動装置の歯車装置の入力軸を直接モータに連結し、歯車装置の出力軸を駆動輪に連結すると、駆動輪に必要な駆動トルクに合わせたモータ動力が必要となるため、モータが大型化してしまう。このため、車両駆動装置にはモータのトルクを増幅して駆動輪に伝達する減速機構としてのいくつかの歯車軸を有する。
 歯車軸は、モータの出力軸と連結し、入力歯車としての小径歯車を有する入力歯車軸と、駆動輪と連結し、出力歯車としての大径歯車を有する出力歯車軸と、入力歯車と係合する大径歯車および出力歯車と係合する小径歯車を同軸上に配した中間歯車軸から構成される2段減速機構である。
 従来技術1および従来技術2では、車両駆動装置における歯車装置の配置位置について具体的に言及されていないが、従来技術1では、2段減速の出力側に歯車装置が配置され、従来技術2では、2段減速の入力側に歯車装置が配置された実施例が開示されている。
 歯車装置を2段減速の出力側に設けた場合、出力トルクに対する構成部品歯車、軸受等の強度確保のため、構成部品が大型化し、その結果、車両駆動装置が大型化し、製作コストも上がってしまう可能性がある。
 また、歯車装置を2段減速の入力側に設けた場合、歯車装置を構成する遊星歯車機構の各歯車が高速で回転し、歯車の歯面同士のすべりによる摩擦熱が発生し易い。
 そして、歯車歯面の冷却に潤滑油を用いた場合には、遊星歯車機構を2つ連結することで構成が複雑になり、歯車装置内部への潤滑油路の確保が困難になる可能性がある。
 さらに、従来技術1及び従来技術2では、2つの遊星歯車機構を構成する内歯車RL、RRと結合部材とを接続することによりトルク差を増幅するようにしているため、左右どちらかの内歯車RL、RRと別部材を繋ぐ結合部材の1つが、必ず他方の内歯車RL、RRより大径になるため、装置が大型化するという問題がある。
 そこで、この発明は、車両駆動装置に組み込むトルク増幅装置である歯車装置を小型化すると共に、入力段の回転数を低く抑えることを可能にして、従来の車両駆動装置における潤滑の課題を解決しようとするものである。
 前記の課題を解決するために、この発明は、車両に搭載され独立して制御可能な二つの駆動源と、左右の駆動輪と、前記二つの駆動源と前記左右の駆動輪との間に設けられ、3要素2自由度の遊星歯車機構を同軸上に二つ組み合わせた歯車装置とを備える車両駆動装置において、前記駆動源がアウタロータを有する電動モータであり、前記遊星歯車機構は、前記電動モータのアウタロータに連結される入力用の内歯車と、前記内歯車と同軸上に設けられた出力用の遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての遊星歯車とを有し、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の太陽歯車とを結合する第1結合部材と、一方の太陽歯車と他方の遊星キャリヤとを結合する第2結合部材とを同軸上に配置し、前記遊星歯車機構の遊星キャリヤと駆動輪の出力歯車軸とを連結したことを特徴とする。
 前記遊星歯車機構の遊星歯車と係合する内歯車は、前記電動モータのアウタロータの内側端部に一体に設けることができる。
 前記遊星歯車機構の遊星歯車と係合する内歯車は、前記電動モータのアウタロータの内側端部に別体に設けるようにしてもよい。
 前記電動モータのアウタロータの内径側に、車両駆動装置を収容するハウジングに対して締結されるステータを配置することができる。
 前記遊星歯車機構の遊星キャリヤは、遊星歯車を支持するキャリヤピンを介して、車両のインボード側およびアウトボード側にキャリヤフランジを有し、アウトボード側のキャリヤフランジにアウトボード側に延びる中空軸部を設け、この中空軸部の外径を前記電動モータのステータの内側に転がり軸受を介して支持することができる。
 前記遊星歯車機構のインボード側のキャリヤフランジにインボード側に延びる中空軸部を設け、この中空軸部の外径面に、駆動輪に連結される出力歯車軸の出力歯車としての大径歯車に係合する出力側小径歯車を設けることができる。
 前記車両駆動装置のハウジングを、センタハウジングと左右のサイドハウジングからなる3ピース構成とし、前記センタハウジングの中央部には左右を仕切る仕切り壁を設け、前記第1結合部材と前記第2結合部材を前記仕切り壁を貫通して設けることができる。
 前記第1結合部材と第2結合部材の内の一方の結合部材が中空軸、他方の結合部材が前記中空軸内部に挿通される軸からなる2重構造であり、前記第1結合部材および前記第2結合部材と、それぞれの結合部材が連結する遊星キャリヤとの連結をスプライン嵌合とすることができる。
 前記スプライン嵌合は、軸方向に摺動可能な嵌合とすることができる。
 前記第1結合部材および第2結合部材の内、内径側の結合部材の内径に給油穴を設けることができる。
 以上のように、この発明によれば、車両に搭載され独立して制御可能な二つの駆動源と、左右の駆動輪と、前記二つの駆動源と前記左右の駆動輪との間に設けられ、3要素2自由度の遊星歯車機構を同軸上に二つ組み合わせた歯車装置とを備える車両駆動装置において、前記駆動源を、アウタロータを有する電動モータとし、前記遊星歯車機構の入力用の内歯車を、電動モータのアウタロータに設けることにより、遊星歯車機構の入力段の回転数を低く抑えることが可能となるので、歯車の歯面同士のすべりによる摩擦熱が発生し難く、歯車の潤滑の課題が生じ難い。
 また、電動モータをアウタロータ構造とし、外径を大きくすることにより、同体積のモータに比較して、大きなトルクを出力することができるため、2段減速構成の車両駆動装置に対して、よりコンパクトな構成とすることができる。
 また、トルク差増幅機構である歯車装置の2つの遊星歯車機構の接続は、太陽歯車と遊星キャリヤの接続であり、内歯車より大径の接続部材は必要としないので、トルク差増幅機構を小さくすることができ、トルク差増幅機構を含む車両駆動装置を小型、軽量化することができる。
 また、2つの遊星歯車機構を、中空軸とその中空軸の内部に挿通される軸からなる2重構造の第1結合部材及び第2結合部材によって結合し、内径側の結合部材の内径側に給油穴を設けることより、軸心給油が行えるので、遊星歯車機構内部の歯車歯面や軸受部分への潤滑が容易になる。
この発明の車両駆動装置の実施形態を示す横断平面図である。 図1の実施形態の歯車装置部分の拡大図である。 図1のA-A線の断面図である。 図1のB-B線の断面図である。 図1の実施形態に係る車両駆動装置の歯車構成をスケルトン図で示した電気自動車の説明図である。 図1の実施形態に係る車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。 この発明の車両駆動装置の他の実施形態を示す横断平面図である。 図7の実施形態の歯車装置部分の拡大図である。 従来技術1に係る車両駆動装置の歯車構成を示すスケルトン図である。 従来技術1に係る車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。 従来技術2に係る車両駆動装置の歯車構成を示すスケルトン図である。 従来技術2に係る車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。
 以下、この発明の実施の形態を添付図面に基づいて説明する。
 図5に示す電気自動車AMは、後輪駆動方式であり、シャーシ60と、後輪としての駆動輪61L、61Rと、前輪62L、62Rと、この発明に係る2モータ式の車両駆動装置1、バッテリ63、インバータ64等を備える。図5では、車両駆動装置1の歯車構成をスケルトン図で示している。
 図1及び図3に示す車両駆動装置1は、車両に搭載され独立して制御可能な二つの駆動源としての電動モータ2L、2Rと、左右の駆動輪61L、61Rと二つの電動モータ2L、2Rとの間に設けられる左右2基の3要素2自由度の遊星歯車機構3L、3Rとを備える。
 2モータ式の車両駆動装置1の駆動トルクは、等速ジョイント65a、65bと中間シャフト65cからなるドライブシャフトを介して左右の駆動輪61L、61Rに伝達される。
 なお、2モータ式の車両駆動装置1の搭載形態としては、図5に示す後輪駆動方式の他、前輪駆動方式、四輪駆動方式でもよい。
 2モータ式の車両駆動装置1における左右の電動モータ2L、2Rは、同一の最大出力を有する同一規格のアウタロータ型の電動モータが用いられる。
 2モータ式の車両駆動装置1は、ハウジング4内に収容されている。
 ハウジング4は、遊星歯車機構3L、3Rの軸心と直交する方向に3ピースに分割され、図1に示すように、中央ハウジング4aとこの中央ハウジング4aの両側面に固定される左右の側面ハウジング4bL、4bRの3ピース構造になっている。左右の側面ハウジング4bL、4bRは、中央ハウジング4aの両側の開口部に複数のボルト(図示省略)によって固定されている。
 左右の側面ハウジング4bL、4bRには、電動モータ2L、2Rを収容する円筒部が設けられ、この円筒部の外側面には、円筒部を閉塞する外側壁4cL、4cRが設けられている。
 中央ハウジング4aには、図1に示すように、中央に仕切り壁11が設けられている。ハウジング4は、この仕切り壁11によって左右に2分割されている。
 電動モータ2L、2Rは、アウタロータ型であり、アウタロータ5の内径側に、車両駆動装置を収容するハウジング4に対して締結されるステータ6を設けた構造である。
 ステータ6は、ステータコア6aとコイル部6bとからなり、ステータコア6aは、電動モータ2L、2Rを収容する円筒部の外側壁4cL、4cRに対して一体に形成されている。
 アウタロータ5は、ステータ6の外周に間隔をおいて設けられ、アウトボード側の端部が、電動モータ2L、2Rを収容する円筒部の外側壁4cL、4cRに対して転がり軸受7によって回転可能に支持されている。
 電動モータ2L、2Rを収容する円筒部の外側壁4cL、4cRの内側壁には、転がり軸受7を固定する軸受嵌合凸部8を設けている。
 ハウジング4の中央の仕切り壁11と左右の電動モータ2L、2Rの間には、二つの電動モータ2L、2Rから与えられるトルクを左右の駆動輪61L、61Rに増幅して分配する歯車装置30を構成する3要素2自由度の遊星歯車機構3L、3Rが収容されている。
 歯車装置30を構成する遊星歯車機構3L、3Rは、電動モータ2L、2Rのアウタロータ5をインボード側に延長した円筒部の内径面に設けられた入力用の内歯車RL、RRと、内歯車RL、RRと同軸上に設けられた太陽歯車SL、SRと、内歯車RL、RRと太陽歯車SL、SRに噛み合う公転歯車としての遊星歯車PL、PRと、遊星歯車PL、PRに連結され、内歯車RL、RRと同軸上に設けられた出力用の遊星キャリヤCL、CRと、一方の遊星キャリヤCL(図1では図の左側)と他方の太陽歯車SR(図1及び図2では図の右側)とを結合する第1結合部材31と、一方の太陽歯車SL(図1及び図2では図の左側)と他方の遊星キャリヤCR(図1及び図2では図の右側)とを結合する第2結合部材32と、出力歯車軸14L、14Rの出力歯車14aと噛み合う出力側小径歯車13bとを有し、出力側小径歯車13bを、遊星キャリヤCL、CRに連結した構成である。
 なお、図1及び図2に示す実施形態では、電動モータ2L、2Rのアウタロータ5の内径面に、前記遊星歯車機構3L、3Rの遊星歯車PL、PRと係合する内歯車RL、RRを一体に設け、図7及び図8に示す実施形態では、前記遊星歯車機構3L、3Rの遊星歯車PL、PRと係合する内歯車RL、RRを、電動モータ2L、2Rのアウタロータ5の内側端部に別体で設けている。
 また、図1及び図2に示す実施形態では、遊星キャリヤCL、CRに連結された出力側小径歯車13bは、遊星キャリヤCL、CRと一体に形成しているが、別体に形成してもよい。
 遊星キャリヤCL、CRは、遊星歯車PL、PRを支持するキャリヤピン33と、キャリヤピン33のアウトボード側端部に連結されたアウトボード側のキャリヤフランジ34aと、インボード側端部に連結されたインボード側のキャリヤフランジ34bを有する。
 アウトボード側のキャリヤフランジ34aは、アウトボード側に延びる中空軸部35を備えており、中空軸部35のアウトボード側の外径面が、電動モータ2L、2Rのステータコア6aのインボード側端面に形成した軸受嵌合穴19bに転がり軸受20bを介して支持されている。
 インボード側のキャリヤフランジ34bは、インボード側に延びる中空軸部36を備えており、中空軸部36のインボード側の端部が、中央ハウジング4aの仕切り壁11に形成した軸受嵌合穴19aに転がり軸受20aを介して支持されている。
 前記出力側小径歯車13bは、キャリヤフランジ34aの中空軸部35の外周面に一体に形成されている。
 遊星歯車PL、PRは、針状ころ軸受37を介してキャリヤピン33によって支持されている。
 また、前記各キャリヤフランジ34a、34bの対向面と遊星歯車PL、PRの間にスラスト板38を挿入し、遊星歯車PL、PRの回転の円滑化を図っている。
 前記各キャリヤフランジ34a、34bの外周面と内歯車RL、RRとの間には、転がり軸受39a、39bを配置している。
 車両駆動装置1の歯車装置30を構成する2つの遊星歯車機構3L、3Rを連結している第1結合部材31および第2結合部材32は、ハウジング4の中央ハウジング4aを左右に仕切る仕切り壁11を貫通して組み込まれている。
 この第1結合部材31と第2結合部材32は、同軸上に配置されると共に、一方の結合部材(図1及び図2の実施形態では第2結合部材32)が中空軸、他方の結合部材(図1及び図2の実施形態では第1結合部材31)が中空軸に挿通される軸からなる2重構造になっている。
 図1及び図2に示す実施形態では、中空軸で構成される第2結合部材32の右側の遊星歯車機構3Rの端部と、遊星キャリヤCRのインボード側のキャリヤフランジ34bの中空軸部36とにスプライン41を設け、第2結合部材32を遊星キャリヤCRに対しスプライン嵌合により連結している。
 また、図1及び図2に示す実施形態では、第1結合部材31の左側の遊星歯車機構3Lの端部と、遊星キャリヤCLのアウトボード側のキャリヤフランジ34aの中空軸部35とにスプライン42を設けて、第1結合部材31を遊星キャリヤCLに対しスプライン嵌合により連結している。
 上記のように、2つの遊星歯車機構3L、3Rの第1結合部材31と第2結合部材32とを、遊星キャリヤCLと遊星キャリヤCRに対しスプライン嵌合によって連結することにより、2つの遊星歯車機構3L、3Rが左右に分割することが可能となり、3ピース構成のハウジング4に他の減速歯車軸と一緒に左右から組込むことができる。
 第2結合部材32の遊星キャリヤCL側の端部は、その外周面に、左側の遊星歯車機構3Lの遊星歯車PLと噛み合う外歯車が形成され、この外歯車が左側の遊星歯車機構3Lの太陽歯車SLを構成している。
 中空軸で構成される第2結合部材32に挿通される第1結合部材31は、右側の遊星歯車機構3Rの端部に大径部43を有し、この大径部43の外周面に、右側の遊星歯車機構3Rの遊星歯車PRと噛み合う外歯車が形成され、この外歯車が右側の遊星歯車機構の太陽歯車SRを構成している。
 第1結合部材31および第2結合部材32の内、内径側の結合部材(第1結合部材31)と連結している太陽歯車SRの最大径は、外径側の結合部材(第2結合部材32)が嵌合う遊星キャリヤCRのインボード側のキャリヤフランジ34bの中空軸部36の内面のスプライン穴の最小径よりも小さく設定することにより、内径側の結合部材(第1結合部材31)を容易に組み込むことが可能である。
 内径側の結合部材(第1結合部材31)の外周面と、外径側の結合部材(第2結合部材32)の内周面との間には、カラー44と、カラー44の両端に針状ころ軸受45、46を介在させている。
 第1結合部材31および第2結合部材32と遊星キャリヤCL、CRとの嵌合(スプライン41、42)は、軸方向に摺動可能な嵌め合い公差とすることにより、はすば歯車のスラスト力による歯車歯面への偏荷重を防ぐことができる。
 また、第1結合部材31および第2結合部材32と遊星キャリヤCL、CRとのスプライン(スプライン41、42)嵌合部の摺動による軸方向移動は、外径側結合部材(図1及び図2の実施形態では第2結合部材32)の両端にスラスト軸受47、48を設けることにより規制している。
 2つの遊星歯車機構3L、3Rを連結する2重構造の軸の内径側の結合部材(図1及び図2の実施形態では第1結合部材31)は、結合部材(図1及び図2の実施形態では第1結合部材31)と遊星キャリヤ(図1及び図2の実施形態ではCL)とのスプライン嵌合と反対側の軸端を、他方の遊星キャリヤ(図1及び図2の実施形態ではCR)に対して深溝玉軸受49によって支持している。
 2つの遊星歯車機構を連結する2重構造の軸の内径側の結合部材(図1及び図2の実施形態では第1結合部材31)には、軸心に給油穴50を設けている。
 出力歯車軸14L、14Rは、大径の出力歯車14aを有し、中央ハウジング4aの仕切り壁11の両面に形成した軸受嵌合穴53aと側面ハウジング4bL、4bRに形成した軸受嵌合穴53bに転がり軸受54a、54bによって支持されている。そして、軸受嵌合穴53a、53bは、転がり軸受54a、54bの外輪が当接する壁部のある段付き形状になっている。
 出力歯車軸14L、14Rのアウトボード側の端部は、側面ハウジング4bL、4bRに形成した開口部からハウジング4の外側に引き出され、引き出された出力歯車軸14L、14Rのアウトボード側の端部の外周面に、等速ジョイント65aの外側継手部がスプライン結合されている。
 出力歯車軸14L、14Rに結合された等速ジョイント65aは、中間シャフト65c、等速ジョイント65bを介して駆動輪61L、61Rに接続される(図5)。
 出力歯車軸14L、14Rのアウトボード側の端部と側面ハウジング4bL、4bRに形成した開口部との間には、オイルシール55を設け、ハウジング4に封入された潤滑油の漏洩および外部からの泥水などの侵入を防止している。
 図1及び図2に示す実施形態の2モータ式の車両駆動装置1の歯車構成は、図5に示すスケルトン図の通りである。
 図5に示すように、左右の電動モータ2L及び電動モータ2Rは、車両に搭載されたバッテリ63からインバータ64を介して与えられた電力により動作する。そして、電動モータ2L、2Rは、電子制御装置(図示省略)により個別に制御され、異なるトルクを発生させて出力することができる。
 電動モータ2L、2Rのアウタロータ5のトルクは、歯車装置30の内歯車RL、RRに伝達される。
 そして、歯車装置30を介して遊星歯車機構3L、3Rの出力側小径歯車13bが出力歯車軸14L、14Rの大径の出力歯車14aに噛み合って出力側小径歯車13bと出力歯車14aとの歯数比で電動モータ2L、2Rのアウタロータ5のトルクがさらに増幅されて、駆動輪61L、61Rに出力される。
 歯車装置30は、3要素2自由度の同一の遊星歯車機構3L、3Rが同軸上に二つ組み合わされて構成され、遊星歯車機構として、シングルピニオン遊星歯車機構を採用している。
 遊星歯車機構3L、3Rは、同軸上に設けられた太陽歯車SL、SR及び内歯車RL、RRと、これら太陽歯車SL、SRと内歯車RL、RRとの間に位置する複数の遊星歯車PL、PRと、遊星歯車PL、PRを回動可能に支持し太陽歯車SL、SR及び内歯車RL、RRと同軸上に設けられた遊星キャリヤCL、CRとから構成される。ここで、太陽歯車SL、SRと遊星歯車PL、PRは外周にギヤ歯を有する外歯歯車であり、内歯車RL、RRは内周にギヤ歯を有する内歯歯車である。遊星歯車PL、PRは太陽歯車SL、SRと内歯車RL、RRとに噛み合っている。
 遊星歯車機構3L、3Rでは、遊星キャリヤCL、CRを固定した場合に太陽歯車SL、SRと内歯車RL、RRとが逆方向に回転するため、図6に示す速度線図に表すと内歯車RL、RR及び太陽歯車SL、SRが遊星キャリヤCL、CRに対して反対側に配置される。
 この歯車装置30は、前記のように、太陽歯車SL、遊星キャリヤCL、遊星歯車PL及び内歯車RLを有する第1の遊星歯車機構3Lと、同じく太陽歯車SR、遊星キャリヤCR、遊星歯車PR及び内歯車RRを有する第2の遊星歯車機構3Rとが同軸上に組み合わされて構成されている。
 そして、第1の遊星歯車機構3Lの遊星キャリヤCLと第2の遊星歯車機構3Rの太陽歯車SRとが結合されて第1結合部材31を形成し、第1の遊星歯車機構の太陽歯車SLと第2の遊星歯車機構3Rの遊星キャリヤCRとが結合されて第2結合部材32を形成している。
 第1の遊星歯車機構3Lの内歯車RLに電動モータ2Lで発生したトルクTM1が、第1の遊星歯車機構3Lによって出力側小径歯車13bに伝達され、出力側小径歯車13bと出力歯車軸14Lの出力歯車14aとが噛み合って1段減速されて出力歯車軸14Lから駆動輪61Lに駆動トルクTLが出力される。
 第2の遊星歯車機構3Rの内歯車RRに電動モータ2Rで発生したトルクTM2が、第2の遊星歯車機構3Rによって出力側小径歯車13bに伝達され、出力側小径歯車13bと出力歯車軸14Rの出力歯車14aとが噛み合って1段減速されて出力歯車軸14Rから駆動輪61Rに駆動トルクTRが出力される。
 電動モータ2L、2Rからの出力は、二つの遊星歯車機構3L、3Rのそれぞれの内歯車RL、RRに与えられ、第1結合部材31、第2結合部材32からの出力が駆動輪61L、61Rに与えられる。
 第2結合部材32は、中空軸で構成されており、その内部に第1結合部材31が挿通され、第1結合部材31と第2結合部材32を構成する軸は二重構造になっている。
 中実軸である第1結合部材31は、その一端(図中右端)が太陽歯車SRの回転軸であり、他端(図中左端)が太陽歯車SLを貫通して設けられ、遊星キャリヤCLに接続されている。また、中空軸である第2結合部材32は、一端(図中左端)が太陽歯車SLの回転軸となっており、他端(図中右端)は遊星キャリヤCRと接続されている。この第1結合部材31と第2結合部材32によって、二つの遊星歯車機構が結合されている。
 歯車装置30は、二つの同一のシングルピニオン形式の遊星歯車機構3L、3Rを組み合わせて構成されるため、図6に示すように二本の速度線図によって表すことができる。ここでは、分かりやすいように、二本の速度線図を上下にずらし、上側に左側の遊星歯車機構3Lの速度線図を示し、下側に右側の遊星歯車機構3Rの速度線図を示す。また本来は、図1及び図2の実施形態では、歯車装置30から取り出された駆動トルクTL、TRは、出力歯車14aと噛み合う出力側小径歯車13bを介し左右の駆動輪61L、61Rへ伝達されるため減速比が掛かるが、以降、理解を容易にするため、図6に示す速度線図及び各計算式の説明においては、駆動トルクはTL、TRのままとする。
 歯車装置30を構成する二つの遊星歯車機構3L、3Rは、同一の歯数の歯車要素を使用しているため、速度線図においては内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLと遊星キャリヤCLとの距離及び太陽歯車SLと遊星キャリヤCRとの距離も等しく、これをbとする。遊星キャリヤCL、CRから内歯車RL、RRまでの長さと遊星キャリヤCL、CRから太陽歯車SL、SRまでの長さの比は、内歯車RL、RRの歯数Zrの逆数(1/Zr)と太陽歯車SL、SRの歯数Zsの逆数(1/Zs)との比と等しい。よって、a=(1/Zr)、b=(1/Zs)である。
 RRの点を基準にしたモーメントMの釣り合いから下記(11)式が算出される。なお、図6において、図中矢印方向Mがモーメントの正方向である。
 a・TR+(a+b)・TL-(b+2a)・TM1=0 …(11)
 RLの点を基準にしたモーメントMの釣り合いから下記(12)式が算出される。
 -a・TL-(a+b)・TR+(b+2a)・TM2=0 …(12)
(11)式+(12)式より、下記(13)式が得られる。
-b・(TR-TL)+(2a+b)・(TM2-TM1)=0
(TR-TL)=((2a+b)/b)・(TM2-TM1)  …(13)
 (13)式の(2a+b)/bがトルク増幅率αとなる。a=1/Zr、b=1/Zsを代入すると、α=(Zr+2Zs)/Zrとなり、下記のトルク差増幅率αが得られる。
 α=(Zr+2Zs)/Zr
 この発明では、電動モータ2L、2Rからの入力は、RL、RRとなり、駆動輪61L、61Rへの出力はSR+CL、SL+CRとなる。
 そして、二つの電動モータ2L、2Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTIN(=(TM2-TM1))を与えると、歯車装置30において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差α・ΔTINを得ることができる。すなわち、入力トルク差ΔTINが小さくても、歯車装置30において上記したトルク差増幅率α(=(Zr+2Zs)/Zr)で入力トルク差ΔTINを増幅することができ、左の駆動輪61Lと右の駆動輪61Rとに伝達される駆動トルクTL、TRに、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUT(=α・(TM2-TM1))を与えることができる。
 従来技術1及び従来技術2では、トルク差増幅機構である歯車装置105の、2つの遊星歯車機構の左右接続部材に内歯車Rが含まれるため、左右どちらかの内歯車と別部材を繋ぐ結合部材の1つが必ず他方の内歯車Rより大径にならなければならない。
 この発明では、トルク差分配機構である歯車装置30を構成する2つの遊星歯車機構の接続は、太陽歯車SLと遊星キャリヤCR、太陽歯車SRと遊星キャリヤCLであるから、内歯車RL、RRよりも大径の接続部材を必要としない。このため、この発明では、従来技術1及び従来技術2のものに比してトルク差分配機構を小さくすることができので、トルク差分配機構を組み込んだ電気自動車用の車両駆動装置1を小さく軽量化することができる。
 電気自動車用の車両駆動装置1を小さく軽量化することにより、車両駆動装置1の車体搭載レイアウトと共に、周辺補機類の車体搭載レイアウトの自由度が向上する。
 また、車両駆動装置1が小型化することにより、車室空間が拡大する等のメリットがある。
 以上の実施形態では、二つの遊星歯車機構3L、3Rから出力されるトルクを、駆動輪61L、61Rに連結された出力歯車軸14L、14Rの出力歯車14aに伝達しているが、二つの遊星歯車機構3L、3Rと出力歯車軸14L、14Rとの間に、中間歯車軸を設けた複数段の歯車機構を採用することもできる。
 図1に示す実施形態では、二つの駆動源として電動モータ2L、2Rを用い、同一の最大出力を有する同一規格の電動モータである場合を例示したが、二つの駆動源はこれに限られない。
 なお、車両駆動装置1が搭載される車両は、電気自動車やハイブリッド電気自動車に限られず、例えば、第1の電動モータ2L及び第2の電動モータ2Rを駆動源とした燃料電池自動車であってもよい。
 この発明は前述した実施形態に何ら限定されるものではなく、この発明の要旨を逸脱しない範囲において、さらに種々の形態で実施し得る。
1    :車両駆動装置
2L、2R   :電動モータ
3L、3R   :遊星歯車機構
4    :ハウジング
4a   :中央ハウジング
4bL、4bR  :側面ハウジング
4cL、4cR  :外側壁
5    :アウタロータ
6    :ステータ
6a   :ステータコア
6b   :コイル部
7    :転がり軸受
8    :軸受嵌合凸部
11   :仕切り壁
13b  :出力側小径歯車
14L、14R  :出力歯車軸
14a  :出力歯車
19a、19b  :軸受嵌合穴
20a、20b  :転がり軸受
30   :歯車装置
31   :第1結合部材
32   :第2結合部材
33   :キャリヤピン
34a、34b  :キャリヤフランジ
35、36   :中空軸部
37   :針状ころ軸受
38   :スラスト板
39a、39b  :転がり軸受
41、42   :スプライン
43   :大径部
44   :カラー
45、46   :針状ころ軸受
47、48   :スラスト軸受
49   :深溝玉軸受
50   :給油穴
53a、53b  :軸受嵌合穴
54a、54b  :転がり軸受
55   :オイルシール
60   :シャーシ
61L、61R  :駆動輪
62L、62R  :前輪
63   :バッテリ
64   :インバータ
65a、65b  :等速ジョイント
65c  :中間シャフト
AM   :電気自動車
L、CR   :遊星キャリヤ
L、PR   :遊星歯車
L、RR   :内歯車
L、SR   :太陽歯車

Claims (9)

  1.  車両に搭載され独立して制御可能な二つの駆動源と、左右の駆動輪と、前記二つの駆動源と前記左右の駆動輪との間に設けられ、3要素2自由度の遊星歯車機構を同軸上に二つ組み合わせた歯車装置とを備える車両駆動装置において、前記駆動源がアウタロータを有する電動モータであり、前記遊星歯車機構は、前記電動モータのアウタロータに連結される入力用の内歯車と、前記内歯車と同軸上に設けられた出力用の遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての遊星歯車とを有し、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の太陽歯車とを結合する第1結合部材と、一方の太陽歯車と他方の遊星キャリヤとを結合する第2結合部材とを同軸上に配置し、前記遊星歯車機構の遊星キャリヤと駆動輪の出力歯車軸とを連結したことを特徴とする車両駆動装置。
  2.  前記電動モータのアウタロータの内径面に、前記遊星歯車機構の遊星歯車と係合する内歯車を一体に設けたことを特徴とする請求項1に記載の車両駆動装置。
  3.  前記遊星歯車機構の遊星歯車と係合する内歯車を、前記電動モータのアウタロータの内側端部に別体に設けたことを特徴とする請求項1に記載の車両駆動装置。
  4.  前記電動モータのアウタロータの内径側に、車両駆動装置を収容するハウジングに対して締結されるステータを配置したことを特徴とする請求項1~3のいずれかに記載の車両駆動装置。
  5.  前記遊星歯車機構の遊星キャリヤは、遊星歯車を支持するキャリヤピンを介して、車両のインボード側およびアウトボード側にキャリヤフランジを有し、アウトボード側のキャリヤフランジにアウトボード側に延びる中空軸部を設け、この中空軸部の外径を前記電動モータのステータの内側に転がり軸受を介して支持することを特徴とする請求項4に記載の車両駆動装置。
  6.  前記遊星歯車機構のインボード側のキャリヤフランジにインボード側に延びる軸部を設け、この軸部の外径面に、駆動輪に連結される出力歯車軸の出力歯車としての大径歯車に係合する出力側小径歯車を設けたことを特徴とする請求項4又は5に記載の車両駆動装置。
  7.  前記車両駆動装置のハウジングが、センタハウジングと左右のサイドハウジングからなる3ピース構成であり、前記センタハウジングの中央部には左右を仕切る仕切り壁が設けられ、前記第1結合部材と前記第2結合部材が前記仕切り壁を貫通していることを特徴とする請求項1~6のいずれかに記載の車両駆動装置。
  8.  前記第1結合部材と第2結合部材の内の一方の結合部材が中空軸、他方の結合部材が前記中空軸内部に挿通される軸からなる2重構造であり、前記第1結合部材および前記第2結合部材と、それぞれの結合部材が連結する遊星キャリヤとの連結がスプライン嵌合であることを特徴とする請求項1~7のいずれかに記載の車両駆動装置。
  9.  前記第1および第2結合部材の内、内径側の結合部材の内径に給油穴を設けたことを特徴とする請求項1~8のいずれかに記載の車両駆動装置。
PCT/JP2017/001471 2016-02-17 2017-01-18 車両駆動装置 WO2017141607A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780010234.6A CN108603579A (zh) 2016-02-17 2017-01-18 车辆驱动装置
US15/998,721 US20190264790A1 (en) 2016-02-17 2017-01-18 Vehicle-driving apparatus
EP17752871.8A EP3418607A1 (en) 2016-02-17 2017-01-18 Vehicle-driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016027506A JP2017145874A (ja) 2016-02-17 2016-02-17 車両駆動装置
JP2016-027506 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017141607A1 true WO2017141607A1 (ja) 2017-08-24

Family

ID=59625837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001471 WO2017141607A1 (ja) 2016-02-17 2017-01-18 車両駆動装置

Country Status (5)

Country Link
US (1) US20190264790A1 (ja)
EP (1) EP3418607A1 (ja)
JP (1) JP2017145874A (ja)
CN (1) CN108603579A (ja)
WO (1) WO2017141607A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6445091B2 (ja) * 2017-05-26 2018-12-26 本田技研工業株式会社 動力装置
US20220048375A1 (en) * 2019-03-06 2022-02-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Left-right wheel driving device
CN113661344A (zh) * 2019-03-28 2021-11-16 三菱自动车工业株式会社 左右轮驱动装置
DE102021208546B3 (de) 2021-08-06 2022-12-01 Zf Friedrichshafen Ag Antriebsstrang für ein Fahrzeug mit einer Torque-Vectoring-Überlagerungseinheit
DE102022101130B4 (de) 2022-01-19 2023-09-21 Schaeffler Technologies AG & Co. KG Elektrischer Achsantrieb mit einer Torque-Vectoring-Einheit und achsparalleler Anordnung
DE102022101739B4 (de) 2022-01-26 2024-06-20 Schaeffler Technologies AG & Co. KG Elektrische Antriebseinheit mit effizienter Lagerung zweier Sonnenräder
DE102022001679B3 (de) 2022-05-12 2023-10-12 Mercedes-Benz Group AG Elektrische Antriebsvorrichtung für ein Kraftfahrzeug mit zwei Elektromotoren und Torque-Vectoring- Funktion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017588A (ja) * 2006-07-05 2008-01-24 Nidec-Shimpo Corp 駆動装置
JP2008295173A (ja) * 2007-05-23 2008-12-04 Honda Motor Co Ltd 動力装置
JP2011193618A (ja) * 2010-03-15 2011-09-29 Jtekt Corp 電動回転アクチュエータ
JP2015114648A (ja) * 2013-12-16 2015-06-22 キヤノン株式会社 駆動伝達装置、及び画像形成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794392B2 (ja) * 2003-02-25 2006-07-05 日産自動車株式会社 電気自動車の駆動ユニット
DE10314234B3 (de) * 2003-03-29 2004-10-28 Aurator Treuhandgesellschaft Mbh Vier-Wellen-Leistungsverzweigungsgetriebe
US20060172847A1 (en) * 2005-01-28 2006-08-03 Mircea Gradu Torque-vectoring defferential
JP2007022386A (ja) * 2005-07-19 2007-02-01 Ntn Corp 電動式車輪駆動装置
EP2168802B1 (en) * 2008-09-24 2011-01-12 Magneti Marelli S.p.A. Hybrid traction system of thermal-electric type with concentric electric machines
CN102725493B (zh) * 2009-12-10 2015-05-13 沃尔沃卡车集团 用于车辆附件的驱动装置
WO2012162444A1 (en) * 2011-05-24 2012-11-29 Borealis Technical Limited Motor and gearing system for aircraft wheel
US10100910B2 (en) * 2013-12-16 2018-10-16 Honda Motor Co., Ltd. Driving system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017588A (ja) * 2006-07-05 2008-01-24 Nidec-Shimpo Corp 駆動装置
JP2008295173A (ja) * 2007-05-23 2008-12-04 Honda Motor Co Ltd 動力装置
JP2011193618A (ja) * 2010-03-15 2011-09-29 Jtekt Corp 電動回転アクチュエータ
JP2015114648A (ja) * 2013-12-16 2015-06-22 キヤノン株式会社 駆動伝達装置、及び画像形成装置

Also Published As

Publication number Publication date
JP2017145874A (ja) 2017-08-24
EP3418607A1 (en) 2018-12-26
US20190264790A1 (en) 2019-08-29
CN108603579A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2017141607A1 (ja) 車両駆動装置
US11072229B2 (en) Vehicle electric drive system
JP6290342B1 (ja) 左右輪駆動装置の制御装置
CN109789800B (zh) 驱动源控制装置
JP2017203503A (ja) 車両駆動装置
JP2015021594A (ja) 左右輪駆動装置
JP2018155310A (ja) 四輪駆動車両
JP2018155327A (ja) 車両駆動装置
JP2018054053A (ja) 車両用駆動装置
JP2017145931A (ja) 車両駆動装置
JP2018093612A (ja) モータ制御装置およびこのモータ制御装置を備えた車両
WO2017141617A1 (ja) 車両駆動装置
JP6170580B1 (ja) 車両駆動装置
WO2018034099A1 (ja) 車両駆動装置
JP2017141889A (ja) 車両駆動装置
JP2017180559A (ja) 車両駆動装置
WO2017163871A1 (ja) 車両駆動装置
JP2018048686A (ja) 車両駆動装置
JP2017145942A (ja) 車両駆動装置
US20210252959A1 (en) Electric solid axle
WO2017068913A1 (ja) 車両駆動装置
JP6647935B2 (ja) 遊星歯車装置及びそれを用いた車両駆動装置
WO2018012189A1 (ja) 車両駆動装置
JP2018028364A (ja) 車両駆動装置
JP2018048663A (ja) 車両駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017752871

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017752871

Country of ref document: EP

Effective date: 20180917