WO2017122656A1 - スピニング装置およびスピニング方法 - Google Patents

スピニング装置およびスピニング方法 Download PDF

Info

Publication number
WO2017122656A1
WO2017122656A1 PCT/JP2017/000563 JP2017000563W WO2017122656A1 WO 2017122656 A1 WO2017122656 A1 WO 2017122656A1 JP 2017000563 W JP2017000563 W JP 2017000563W WO 2017122656 A1 WO2017122656 A1 WO 2017122656A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical tube
cylindrical
mandrel
conical
spinning
Prior art date
Application number
PCT/JP2017/000563
Other languages
English (en)
French (fr)
Inventor
好井 健司
博康 加藤
達朗 各務
啓太郎 榎並
岩倉 勇志
Original Assignee
トピー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トピー工業株式会社 filed Critical トピー工業株式会社
Priority to US16/070,174 priority Critical patent/US10946428B2/en
Priority to CN201780006493.1A priority patent/CN108463296B/zh
Priority to MX2018008559A priority patent/MX2018008559A/es
Priority to DE112017000383.0T priority patent/DE112017000383B4/de
Priority to JP2017561122A priority patent/JP6772189B2/ja
Publication of WO2017122656A1 publication Critical patent/WO2017122656A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • B21D22/16Spinning over shaping mandrels or formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/26Making other particular articles wheels or the like
    • B21D53/30Making other particular articles wheels or the like wheel rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/02Making articles shaped as bodies of revolution discs; disc wheels
    • B21H1/04Making articles shaped as bodies of revolution discs; disc wheels with rim, e.g. railways wheels or pulleys

Definitions

  • the present invention relates to a spinning apparatus and a spinning method using the apparatus.
  • Patent Document 1 discloses the following technology. As shown in FIG. 14, using the mold 1 having the first inclined portion 1a, the processed portion 1c, and the second inclined portion 1b, only one end of the cylindrical workpiece 2 is clamped by the clamp claw 3 to form the cylindrical workpiece 2 The other end of is a free end without clamping. Thereafter, using a roller type (spinning roll) R, the work portion 2a corresponding to the first inclined portion 1a is formed. Thereafter, using the roller type R, the work portion 2b corresponding to the second inclined portion 1b and the work portion 2c corresponding to the processing portion 1c are formed. Thereafter, using a roller type R, the workpiece portion 2a corresponding to the first inclined portion 1a is pricked and its meat is stretched.
  • a roller type (spinning roll) R the work portion 2a corresponding to the first inclined portion 1a is formed.
  • the work portion 2b corresponding to the second inclined portion 1b and the work portion 2c corresponding to the processing portion 1c are formed. Thereafter,
  • Patent Document 1 has the following problems.
  • An object of the present invention is to provide a spinning apparatus and a spinning method capable of achieving at least one of a short processing time and easy sharing of molds to various wheel rims as compared with conventional spinning molding. It is.
  • the diameter of the tip of the conical convex portion of the mandrel is smaller than the inner diameter of the end of at least the other axial end of the cylindrical tube, and the diameter of the cylindrical portion of the mandrel is at least the diameter of the cylindrical tube.
  • a spinning method for reducing the thickness of at least a portion in the axial direction excluding one axial end portion of a cylindrical tube having a constant thickness The axial direction end of the cylindrical tube is fixed by the conical recess of the spindle chuck and the conical protrusion of the mandrel, and then the spinning roll is pressed against the cylindrical tube supported by the cylindrical portion of the mandrel to make the thickness of the cylindrical tube How to reduce the weight, spinning method.
  • the axial direction end of the cylindrical tube is bent conically by the conical recess of the spindle side chuck and the conical protrusion of the mandrel, and the axial direction end of the cylindrical tube is sandwiched and fixed. (4) Spinning method described.
  • a cylindrical portion of a mandrel having a diameter equal to or larger than the inner diameter of the cylindrical tube is pushed into the cylindrical tube to expand the diameter of the cylindrical tube while bending one axial end of the cylindrical tube conically How to spin.
  • a method of manufacturing a wheel rim for an automobile by molding a cylindrical tube of a constant thickness, A spindle-side chuck having a conical recess, A mandrel comprising a conical convex portion corresponding to the conical concave portion of the spindle side chuck and a cylindrical portion for supporting the cylindrical tube; A spinning roll which is pressed against a cylindrical tube supported by a cylindrical portion of the mandrel to reduce the thickness of the cylindrical tube; By a spinning device having The one axial end of the cylindrical tube is sandwiched and fixed between the conical recess of the main spindle side chuck and the conical protrusion of the mandrel, and then the spinning is performed on the cylindrical tube supported by the cylindrical portion of the mandrel A method of
  • one end of the cylindrical tube in the axial direction is fixed by the conical recess of the chuck on the spindle side and the conical protrusion of the mandrel.
  • the thickness of the cylindrical tube can be reduced by pressing the spinning roll against the cylindrical tube supported by the cylindrical portion. Therefore, since the clamping mechanism is simpler and the number of processes is smaller than that of conventional spinning molding, the processing time can be shortened. Further, since the thickness of the cylindrical tube is reduced by pressing the spinning roll against the cylindrical tube supported by the cylindrical portion of the mandrel, the shape of the cylindrical tube after the thinning process is simpler than that of the conventional mold. Therefore, it is easy to share a mandrel for molding of various wheel rims.
  • the cylindrical tube is fixed by sandwiching the axial direction one end of the cylindrical tube with the conical recess of the main chuck and the conical protrusion of the mandrel.
  • the axial direction one end of can be fixed securely.
  • the diameter of the tip of the conical convex portion of the mandrel is smaller than the inner diameter of the end of the other end in the axial direction of the cylindrical tube, so the mandrel can be reliably inserted into the cylindrical tube.
  • the diameter of the cylindrical portion of the mandrel is larger than the inner diameter of the end of the axial direction one end of the cylindrical tube, the cylindrical portion can stably support the cylindrical tube.
  • the axial direction one end of the cylindrical tube is bent conically by the conical recess of the spindle side chuck and the conical convex of the mandrel, and the axial direction one end of the cylindrical tube is Since the sandwiching and fixing are performed, the cylindrical tube can be securely fixed in a small number of steps.
  • a main spindle side chuck having a conical concave portion, a conical convex portion corresponding to the conical concave portion of the main spindle side chuck and a cylindrical portion for supporting a cylindrical tube
  • An axial direction end portion of the cylindrical tube is formed into a cone of the main chuck by a spinning device having a mandrel and a spinning roll which presses the cylindrical tube supported by the cylindrical portion of the mandrel to reduce the thickness of the cylindrical tube.
  • (A) shows the side view of the roll which shows the wheel rim for motor vehicles by the cross section in the state which pinches a cylindrical member between the upper roll and the lower roll, and it is in the state where roll forming is carried out and forming into a car wheel rim.
  • (B) shows a front view of a state in which a cylindrical member is sandwiched between an upper roll and a lower roll, and is roll-formed into an automobile wheel rim. It is sectional drawing of the wheel rim for motor vehicles after roll shaping
  • the cylindrical recess of the main shaft side chuck and the conical protrusion of the mandrel are used. It is sectional drawing in the state before fixing an axial direction one end.
  • the shaft of the cylindrical tube is formed by the conical recess of the spindle chuck and the conical protrusion of the mandrel. It is sectional drawing in the state before fixing a direction end part. It is process drawing of the conventional spinning process. (A) shows before a spinning process. (B) shows after the spinning step.
  • the spinning apparatus 20 and the spinning method of the embodiment of the present invention can be used to manufacture an automotive wheel rim 100 as shown in FIG.
  • the rim 100 is, for example, a rim for a passenger car, a truck and a bus, and an industrial vehicle.
  • the rim 100 has a flange portion 101, a bead seat portion 102, a sidewall portion 103, a drop portion 104, a sidewall portion 105, a bead seat portion 106, and a flange portion 107 in order from one axial end to the other end.
  • the flange portions 101 and 107 have a diameter larger than that of the bead seat portions 102 and 106, and the drop portion 104 has a diameter smaller than that of the bead seat portions 102 and 106.
  • a wheel disc (not shown) is inserted into the rim 100 and welded to form a welded type automobile wheel.
  • the rim 100 is an automobile wheel rim to be combined with a wheel disc which has the flange portion 101 or the flange portion 107 and has the flange portion 101 or the flange portion 107 of the rim 100 on the wheel disc side (not shown). It may be.
  • the spinning device 20 reduces the thickness of the cylindrical tube 10 having a constant thickness, as shown in FIGS.
  • the material of the cylindrical tube 10 is metal, and the metal is, for example, steel. However, the material of the cylindrical tube 10 may be non-ferrous metals (including aluminum, magnesium, titanium and their alloys).
  • the spinning device 20 reduces the thickness of at least a portion in the axial direction excluding one axial end portion 11 of the cylindrical tube 10 having a constant thickness, as shown in FIGS.
  • the cylindrical tube 10 having a constant thickness is formed into a cylindrical member 15 (see FIG. 6) which is spin-formed and the outer peripheral surface is made uneven in the axial direction.
  • the spinning device 20 has a spindle-side chuck 30, a mandrel 40 and a spinning roll 50.
  • the axis of the mandrel 40 coincides with the axis of the spindle chuck 30.
  • a plurality of spinning rolls 50 may be arranged in the circumferential direction of the mandrel 40.
  • the spindle-side chuck 30 has a conical recess 31. As shown in FIG. 2, the conical recess 31 of the spindle-side chuck 30 is recessed in the axial direction of the cylindrical tube 10 having a constant thickness, and receives the axial direction one end 11 of the cylindrical tube 10.
  • the axis of the spindle chuck 30 coincides with the axis P of the cylindrical tube 10.
  • the conical recess 31 has a larger diameter on the mandrel 40 side.
  • the conical recess 31 includes a bottom surface 31 a and a side surface 31 b.
  • the bottom surface 31 a is a portion that brings the endmost portion 11 a of the axial direction one end portion 11 of the cylindrical tube 10 into contact with each other to position the cylindrical tube 10 in the axial direction.
  • the diameter of the bottom surface 31 a of the conical recess 31 may be larger than the outer diameter of the cylindrical tube 10 or smaller than the outer diameter of the cylindrical tube 10. It is desirable that the diameter of the bottom surface 31 a of the conical recess 31 be the same as or substantially the same as the outer diameter of the cylindrical tube 10 so that the cylindrical tube 10 can be stably attached to the spindle chuck 30.
  • the axial center P of the cylindrical tube 10 and the axial center of the cylindrical recess 31 are easily shifted when the cylindrical tube 10 is set.
  • the diameter of the bottom surface 31 a is smaller than the outer diameter of the cylindrical tube 10
  • the axial position of the cylindrical tube 10 easily shifts with respect to the main chuck 30.
  • the side surface 31 b of the conical recess 31 is provided continuously over the entire circumference. However, the side surface 31 b may partially have a relief on the large diameter side. The inclination angle of the side surface 31b with respect to the axis P is constant over the entire circumference.
  • the inclination angle of the side surface 31b with respect to the axis P may be changed in the axial direction.
  • the inclination angle of the side surface 31b with respect to the axis P is such that the cylindrical tube 10 can be fixed by the main chuck 30 and the mandrel 40 and the cylindrical member 15 can be easily extracted from the conical recess 31 of the main chuck 30 after molding. There is.
  • the inclination angle of the side surface 31b with respect to the axial center P is, as shown in FIGS. 9 and 10, a range in which there is no problem when the cylindrical member 15 is subjected to flare forming and roll forming.
  • the mandrel 40 includes a conical convex portion 41 corresponding to the conical concave portion 31 of the spindle-side chuck 30 and a cylindrical portion 42 that supports the cylindrical tube 10.
  • the conical convex portion 41 is provided at the axial end of the mandrel 40.
  • the conical convex portion 41 protrudes from the cylindrical portion 42 in a direction approaching the spindle chuck 30 in the axial direction of the mandrel 40.
  • the axial center of the mandrel 40 (the conical convex portion 41 and the cylindrical portion 42) coincides with the axial center P of the cylindrical tube 10.
  • the axial centers of the spindle chuck 30 and the mandrel 40 preferably face the vertical direction. When the axial center is in the vertical direction, alignment between the cylindrical tube 10 and the spindle chuck 30 is easy.
  • the conical convex portion 41 can enter into the conical concave portion 31.
  • the conical convex portion 41 has a diameter decreasing toward the spindle-side chuck 30 side.
  • the conical convex portion 41 includes a tip surface 41 a and a side surface 41 b.
  • the tip end surface 41 a of the conical convex portion 41 has a dimension and shape that does not contact the bottom surface 31 a of the conical concave portion 31 when the cylindrical tube 10 is set.
  • the side surface 41 b of the conical convex portion 41 is provided continuously over the entire circumference.
  • the inclination angle of the side surface 41b with respect to the axis P is constant over the entire circumference.
  • the inclination angle of the side surface 41b with respect to the axis P substantially coincides with the inclination angle of the side surface 31b of the conical recess 31 with respect to the axis P.
  • the inclination angle of 41 b may not be the same.
  • the diameter at the tip of the conical convex portion 41 is smaller than the inner diameter of the cylindrical tube 10. Therefore, the mandrel 40 can be easily inserted into the cylindrical tube 10. However, as shown in FIG. 12, according to the inner diameter of the end 12 a of the other axial end of the cylindrical tube 10 (the end on the side into which the conical projection 41 is inserted) 12, the tip of the conical projection 41 If the diameter is small, the diameter of the tip of the conical convex portion 41 may be larger than the inner diameter of the cylindrical tube 10 excluding the axial other end 12. The diameter at the cylindrical portion 42 side end of the conical convex portion 41 is larger than the inner diameter of the cylindrical tube 10 excluding the other axial end portion 12.
  • the cylindrical tube 10 is expanded in diameter by the mandrel 40.
  • the diameter of the conical convex portion 41 at the end on the side of the cylindrical portion 42 may be the same as or slightly smaller than the inner diameter of the cylindrical tube 10 excluding the one end 11 in the axial direction.
  • the diameter of the cylindrical portion 42 of the mandrel 40 is constant throughout the axial direction of the cylindrical portion 42.
  • the diameter of the cylindrical portion 42 may be slightly smaller than the boundary between the conical convex portion 41 and the cylindrical portion 42, or may be slightly larger as it is separated from the conical convex portion 41. There may be some irregularities along the direction.
  • the diameter of the cylindrical portion 42 is the same as or substantially the same as the diameter at the cylindrical portion 42 side end of the conical convex portion 41, and the cylindrical tube 10 can be stably and reliably supported.
  • the diameter of the cylindrical portion 42 is larger than the inner diameter of the endmost portion 11 a of the axial direction one end portion 11 of the cylindrical tube 10.
  • the conical convex portion 41 of the mandrel 40 is inserted into the cylindrical tube 10 from the other axial end 12 side of the cylindrical tube 10.
  • the cylindrical tube 10 is expanded by inserting it.
  • the portion of the cylindrical tube expanded in diameter by the conical convex portion 41 is deformed in a conical shape.
  • the conical convex portion 41 of the mandrel 40 was further pushed into the cylindrical tube 10, and the conical concave portion 31 of the spindle-side chuck 30 and the conical convex portion 41 of the mandrel 40 deformed conically.
  • the cylindrical tube 10 is fixed to the spinning device 20 by sandwiching the axial direction one end 11 of the cylindrical tube 10.
  • the spindle chuck 30 and the mandrel 40 both rotate around the axial center P of the cylindrical tube 10.
  • the spinning roll 50 moves in the axial direction and the radial direction of the cylindrical tube 10.
  • the spinning roll 50 is rotatable around an axis P1 of the spinning roll 50, as shown in FIG.
  • the spinning roll 50 is pressed against the cylindrical tube 10 supported by the cylindrical portion 42 of the mandrel 40.
  • the thickness of the cylindrical tube 10 is reduced by the spinning roll 50.
  • the spinning method of the embodiment of the present invention is a method of reducing the thickness of at least a part in the axial direction excluding one axial end portion 11 of the cylindrical tube 10 having a constant thickness.
  • one axial end portion of the cylindrical tube 10 is composed of the conical recess 31 of the spindle side chuck 30 and the conical protrusion 41 of the mandrel 40.
  • the spinning roll 50 is pressed against the cylindrical tube 10 supported by the cylindrical portion 42 of the mandrel 40 to make the thickness of the cylindrical tube 10 And (f) reducing the thickness of the material.
  • a cylindrical tube manufacturing step of manufacturing a cylindrical tube 10 of a fixed thickness from a flat plate-shaped material 5 of a fixed thickness as shown in FIG. 1 may be included.
  • the flat plate-like material 5 (rectangular material) 5 having a constant thickness is made of, for example, a strip member 4 having a constant thickness wound in a coil.
  • the strip-shaped member 4 is drawn out in a straight line and cut into a predetermined dimension.
  • the flat plate-like material 5 is cylindrically wound, and both ends of the cylindrically wound material are butted to each other to perform flash butt welding, butt welding, arc
  • the welding is performed by welding or the like, and the bulge and the burr of the welding portion 6 are trimmed to produce the cylindrical tube 10 having a predetermined thickness.
  • the pipe-like material (not shown) may be cut into a predetermined dimensional length to manufacture the cylindrical pipe 10 of a predetermined thickness.
  • the cylindrical tube 10 having a constant thickness is inserted into the conical recess 31 of the main chuck 30, and the axial direction one end portion 11 of the cylindrical tube 10 is After the endmost portion 11a is brought into contact with the bottom surface 31a and positioned in the axial direction, the conical convex portion 41 and the cylindrical portion 42 of the mandrel 40 are inserted into the cylindrical tube 10 to expand the diameter of the cylindrical tube 10.
  • the axial direction one end (the end on the side of the conical recess 31 of the cylindrical tube 10) 11 of the cylindrical tube 10 is radially deformed by the conical recess 31 and the conical protrusion 41.
  • the end 11a of the end portion 11 in the axial direction hardly changes in the radial direction, and the end 11 in the axial direction has a shape that is gradually enlarged in a conical shape as it is separated from the end 11a.
  • the axial direction one end 11 of the cylindrical tube 10 has a conical shape along the shapes of the conical recess 31 and the conical protrusion 41.
  • the end on the side of the cylindrical portion 42 of the conical convex portion 41 of the mandrel 40, which is a portion having a diameter larger than the inner diameter of the cylindrical tube 10, and the cylindrical portion 42 are pushed into the cylindrical tube 10 to expand the diameter of the cylindrical tube 10
  • the ten axial direction end portions 11 are formed in a conical shape.
  • the cylindrical tube 10 is fixed to the spinning device 20 by sandwiching the conical axial end portion 11 between the conical recess 31 and the conical protrusion 41. Only by pushing the mandrel 40 into the cylindrical tube 10, molding of the one axial end portion 11 of the cylindrical tube 10 and fixing of the cylindrical tube 10 are performed.
  • the portion 13 other than the axial end portion 11 of the cylindrical tube 10 is supported over the entire circumference and over the entire axial direction in a state where the diameter is increased by the cylindrical portion 42 of the mandrel 40.
  • the axial direction end 11 of the cylindrical tube 10 may be formed into a conical shape by reducing the diameter, or may be formed into a conical shape in a separate process. In that case, when inserting the mandrel 40 into the cylindrical tube 10, the cylindrical tube 10 may not be expanded.
  • FIG. 13 shows the case where one axial end portion 11 of the cylindrical tube 10 is formed into a conical shape in a separate step.
  • the spinning roll 50 is a cylindrical tube while the spindle chuck 30, the mandrel 40 and the cylindrical tube 10 are rotating around the axis P.
  • the thickness of the cylindrical tube 10 is reduced by moving in the axial direction of the cylindrical tube 10 while pressing against the portion 13 other than the axial direction one end 11 of 10.
  • the thickness of the portion 13 is reduced by pressing the spinning roll 50 against the portion 13 other than the axial direction end portion 11 of the cylindrical tube 10.
  • the thickness of the portion where the thickness reduction of the cylindrical tube 10 is required is reduced.
  • the spinning roll 50 While pressing the outer peripheral surface of the cylindrical tube 10 by the spinning roll 50, the spinning roll 50 is moved in a direction (direction of the other end 12 in the axial direction) away from the axial direction one end 11 of the cylindrical tube 10. Reduce the The cylindrical tube 10 extends in the moving direction of the spinning roll 50.
  • the thickness of the cylindrical tube 10 may be reduced by moving the spinning roll 50 in the direction of one axial end 11 of the cylindrical tube 10 (the direction away from the other axial end 12).
  • the cylindrical tube 10 extends in the opposite direction to the moving direction of the spinning roll 50.
  • the cylindrical tube 10 having a constant thickness is formed by spinning in the step of thinning, and is formed into a cylindrical member 15 of unequal thickness whose outer peripheral surface is made uneven in the axial direction.
  • the mandrel 40 is pulled out of the cylindrical member 15 after the above-described step (B) of reducing the thickness. At this time, the axial movement of the cylindrical member 15 is stopped by the stopper fitting 21 provided on the spinning device 20.
  • the cylindrical member 15 of unequal thickness is roll-formed into the shape of a wheel rim 100 for an automobile. Since the flanges 101 and 107 of the rim 100 are larger in diameter than the bead seat portions 102 and 106 and the drop portions 104 of the rim 100 are smaller in diameter than the bead seat portions 102 and 106, the roll forming process is shown in FIG. As shown in 9, it is performed after the axial direction both ends of the cylindrical member 15 are flared and expanded using the flare type
  • the axial direction end portion 14 of the cylindrical member 15 of unequal thickness formed in a conical shape in the fixing step is bent in the opposite direction in the flare step to form a flare shape.
  • the cylindrical member 15 is held between the lower roll 62 and the upper roll 63, and the roll is rotated to form the cylindrical member 15 into an automotive wheel rim 100 shape.
  • sizing processing for approaching a perfect circle and shaping of a cross section of a wheel rim for an automobile
  • an expander and / or a shrinker not shown
  • the flanges 101 and 107 of the rim 100 have a diameter larger than that of the bead sheet portions 102 and 106 in the roll forming process, and the drop portions 104 of the rim 100 have a diameter smaller than that of the bead sheet portions 102 and 106
  • a cylindrical tube having a constant inner diameter is spin-formed while maintaining a constant cylindrical diameter, or spin-formed so that both ends of the cylindrical tube have a flared shape.
  • the axial end portion 11 of the cylindrical tube 10 is expanded in diameter toward the portion 13 other than the axial end portion 11a from the endmost portion 11a to be deformed into a conical shape opposite to the flare shape.
  • the axial direction one end 11 of the cylindrical tube 10 is fixed by the conical concave portion 31 of the main spindle side chuck 30 and the conical convex portion 41 of the mandrel 40, and then the cylindrical tube 10 supported by the cylindrical portion 42 of the mandrel 40
  • the spinning roll 50 is pressed to reduce the thickness of the cylindrical tube 10. Therefore, since the clamping mechanism is simpler and the number of processes is smaller than that of conventional spinning molding, the processing time can be shortened.
  • the shape after the thickness reduction processing of the cylindrical tube 10 excludes the one end 11 in the axial direction
  • the inner diameter is almost constant and simpler than the conventional one. Therefore, it is easy to share the mandrel 40 for molding of various wheel rims.
  • the cylindrical tube 10 is fixed by sandwiching the axial direction one end 11 of the cylindrical tube 10 with the conical recess 31 of the main spindle side chuck 30 and the conical protrusion 41 of the mandrel 40, so the axial direction of the cylindrical tube 10 One end portion 11 can be fixed securely.
  • the mandrel 40 Since the diameter of the tip of the conical convex portion 41 of the mandrel 40 is smaller than the inner diameter of at least the end portion 12 a of the at least the other axial end 12 of the cylindrical tube 10, the mandrel 40 can be reliably inserted into the cylindrical tube 10. Further, since the diameter of the cylindrical portion 42 of the mandrel 40 is larger than the inner diameter of at least the end portion 11a of the at least one axial end portion 11 of the cylindrical tube 10, the cylindrical portion 42 can support the cylindrical tube 10 stably and reliably.
  • cylindrical tube 11 While the axial direction one end 11 of the cylindrical tube 10 is bent conically by the conical recess 31 of the spindle side chuck 30 and the conical protrusion 41 of the mandrel 40, the axial direction one end 11 of the cylindrical tube 10 is sandwiched In order to fix, cylindrical tube 11 can be fixed certainly at few processes.
  • the cylindrical portion 42 of the mandrel 40 having a diameter equal to or larger than the inner diameter of the cylindrical tube 10 is pushed into the cylindrical tube 10 to expand the diameter of the cylindrical tube 10 and deform one end 11 in the axial direction of the cylindrical tube 10 conically.
  • the roundness of 10, the dimensional accuracy of the inner diameter is improved, and thickness reduction can be stabilized.
  • the spinning roll 50 While pressing the outer peripheral surface of the cylindrical tube 10 by the spinning roll 50, the spinning roll 50 is moved in a direction (direction of the other end 12 in the axial direction) away from the axial direction end 11 of the cylindrical tube 10 Since it is possible to reduce the thickness of the necessary parts.
  • the cylindrical tube 10 can be extended (in the forward method) in the feeding direction of the spinning roll 50, the cylindrical tube 10 can be extended in the opposite direction to the feeding direction of the spinning roll 50 (in the backward method). , Easy to form.
  • the axial direction end 11 of the cylindrical tube 10 is formed into a cone of the spindle chuck 30 by the spinning device 20 having a spinning roll 50 which presses the cylindrical tube 10 supported by the cylinder 42 to reduce the thickness of the cylindrical tube 10.
  • the spinning roll 50 is pressed against the cylindrical tube 10 supported by the cylindrical portion 42 of the mandrel 40 to reduce the thickness of the cylindrical tube 10 by sandwiching and fixing by the concave portion 31 and the conical convex portion 41 of the mandrel 40 Then, after forming the cylindrical member 15 of unequal thickness, both end portions of the cylindrical member 15 are flared to expand the diameter in a conical shape, so the automatic process can be performed efficiently and easily It is possible to produce a use wheel rim 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

主軸側チャック30の円錐状凹部31とマンドレル40の円錐状凸部41とで円筒管10の軸方向一端部11を固定し、ついで、マンドレル40の円柱部42に支持されている円筒管10にスピニングロール50を押し付けて円筒管10の厚みを減肉する。そのため、従来のスピニング成形よりクランプ機構が簡単で、工程数も少ないので、加工時間を短くできる。また、マンドレル40の円柱部42に支持されている円筒管10にスピニングロール50を押し付けて円筒管10の厚みを減肉するため、円筒管10の減肉後の形状は軸方向一端部11を除いて内径がほぼ一定であり、従来に比べて単純である。よって、マンドレル40を各種ホイールリムの成形に共用することが容易である。

Description

スピニング装置およびスピニング方法
 本発明は、スピニング装置および該装置を使用するスピニング方法に関する。
 特許文献1は、つぎの技術を開示している。
図14に示すように、第1傾斜部1a、加工部1c、第2傾斜部1bを有する金型1を用い、円筒状ワーク2の一端部のみをクランプ爪3によってクランプし、円筒状ワーク2の他端部はクランプしない自由端とする。その後、ローラ型(スピニングロール)Rを用いて、第1傾斜部1aに対応するワーク部分2aを成形する。その後、ローラ型Rを用いて、第2傾斜部1bに対応するワーク部分2b、加工部1cに対応するワーク部分2cを成形する。その後、ローラ型Rを用いて、第1傾斜部1aに対応するワーク部分2aをしごいてその肉を延伸させる。
上記の特許文献1に開示の技術にはつぎの問題点がある。
(i)円筒状ワーク2の一端部をクランプし、第1傾斜部1a、第2傾斜部1bおよび加工部1cに対応するワーク部分2a、2b、2cを成形した後、第1傾斜部1aに対応するワーク部分2aを減肉するため、工程数が多く、加工時間が長い。
(ii)金型1が第1傾斜部1a、第2傾斜部1bおよび加工部1cを有するため、金型1の各種ホイールリムへの共用が難しい。
特開2011-36912号公報
 本発明の目的は、従来のスピニング成形に比べて、加工時間が短いこと、金型の各種ホイールリムへの共用が容易なこと、の少なくとも1つを達成できる、スピニング装置およびスピニング方法を提供することにある。
 上記目的を達成する本発明はつぎの通りである。
(1)一定厚の円筒管の軸方向一端部を除いた軸方向の少なくとも一部の厚みを減肉するスピニング装置であって、
 円錐状凹部を有する主軸側チャックと、
 前記主軸側チャックの円錐状凹部に対応する円錐状凸部と前記円筒管を支持する円柱部とを備えるマンドレルと、
 前記マンドレルの円柱部に支持されている円筒管に押し付けられて前記円筒管の厚みを減肉するスピニングロールと、
を有するスピニング装置。
(2)前記主軸側チャックの円錐状凹部と、前記マンドレルの円錐状凸部とで、前記円筒管の前記軸方向一端部を挟み込むことで前記円筒管が固定される、(1)記載のスピニング装置。
(3)前記マンドレルの円錐状凸部の先端の径は、前記円筒管の少なくとも軸方向他端部の最端部の内径より小さく、前記マンドレルの円柱部の径は、前記円筒管の少なくとも前記軸方向一端部の最端部の内径より大きい、(1)または(2)記載のスピニング装置。
(4)一定厚の円筒管の軸方向一端部を除いた軸方向の少なくとも一部の厚みを減肉するスピニング方法であって、
 主軸側チャックの円錐状凹部とマンドレルの円錐状凸部とで円筒管の軸方向一端部を固定し、ついで、マンドレルの円柱部に支持されている円筒管にスピニングロールを押し付けて円筒管の厚みを減肉する、スピニング方法。
(5)主軸側チャックの円錐状凹部と、マンドレルの円錐状凸部とで、円筒管の軸方向一端部を円錐状に折り曲げるとともに円筒管の軸方向一端部を挟み込んで固定する、(4)記載のスピニング方法。
(6)円筒管の内径以上の径のマンドレルの円柱部を円筒管に押し込んで円筒管を拡径しつつ、円筒管の軸方向一端部を円錐状に折り曲げる、(4)または(5)記載のスピニング方法。
(7)一定厚の円筒管を成形して自動車用ホイールリムを製造する方法において、
円錐状凹部を有する主軸側チャックと、
前記主軸側チャックの円錐状凹部に対応する円錐状凸部と前記円筒管を支持する円柱部とを備えるマンドレルと、
前記マンドレルの円柱部に支持されている円筒管に押し付けられて前記円筒管の厚みを減肉するスピニングロールと、
を有するスピニング装置により、
 前記円筒管の軸方向一端部を前記主軸側チャックの円錐状凹部と前記マンドレルの円錐状凸部とで挟み込んで固定し、ついで、前記マンドレルの円柱部に支持されている前記円筒管に前記スピニングロールを押し付けて円筒管の厚みを減肉して不等厚の円筒部材とした後、該円筒部材の両端部をフレア加工して円錐状に拡径する、自動車用ホイールリムを製造する方法。
 上記(1)のスピニング装置または上記(4)のスピニング方法によれば、主軸側チャックの円錐状凹部とマンドレルの円錐状凸部とで円筒管の軸方向一端部を固定し、ついで、マンドレルの円柱部に支持されている円筒管にスピニングロールを押し付けて円筒管の厚みを減肉することができる。そのため、従来のスピニング成形より、クランプ機構が簡単で、工程数も少ないので、加工時間を短くできる。
また、マンドレルの円柱部に支持されている円筒管にスピニングロールを押し付けて円筒管の厚みを減肉するため、円筒管の減肉加工後の形状は従来の金型に比べて単純である。よって、マンドレルを各種ホイールリムの成形に共用することが容易である。
 上記(2)のスピニング装置によれば、主軸側チャックの円錐状凹部と、マンドレルの円錐状凸部とで、円筒管の軸方向一端部を挟み込むことで円筒管が固定されるため、円筒管の軸方向一端部を確実に固定できる。
上記(3)のスピニング装置によれば、マンドレルの円錐状凸部の先端の径が円筒管の軸方向他端部の最端部の内径より小さいため、円筒管にマンドレルを確実に挿入できる。また、マンドレルの円柱部の径が円筒管の軸方向一端部の最端部の内径より大きいため、円柱部で円筒管を安定して支持できる。
上記(5)のスピニング方法によれば、主軸側チャックの円錐状凹部と、マンドレルの円錐状凸部とで、円筒管の軸方向一端部を円錐状に折り曲げるとともに円筒管の軸方向一端部を挟み込んで固定するため、少ない工程で円筒管を確実に固定できる。
 上記(6)のスピニング方法によれば、円筒管の内径以上の径のマンドレルの円柱部を円筒管に押し込んで円筒管を拡径しつつ、円筒管の軸方向一端部を円錐状に折り曲げるため、円筒管の真円度、内径の寸法精度が向上し、減肉を安定してできる。
 上記(7)の自動車用ホイールリムの製造方法によれば、円錐状凹部を有する主軸側チャックと、主軸側チャックの円錐状凹部に対応する円錐状凸部と円筒管を支持する円柱部とを備えるマンドレルと、マンドレルの円柱部に支持されている円筒管に押し付けられて円筒管の厚みを減肉するスピニングロールと、を有するスピニング装置により、円筒管の軸方向一端部を主軸側チャックの円錐状凹部とマンドレルの円錐状凸部とで挟み込んで固定し、ついで、マンドレルの円柱部に支持されている円筒管にスピニングロールを押し付けて円筒管の厚みを減肉して不等厚の円筒部材とした後、円筒部材の両端部をフレア加工して円錐状に拡径するので、簡単な工程で、効率よく自動車用ホイールリムを製造することができる。
本発明実施例のスピニング方法の、スピニング加工の前に行われる円筒管製作工程を示す工程図である。(a)は、コイル状に巻かれた帯状部材を示す。(b)は、平板状の矩形の鋼板を示す。(c)は、鋼板が筒状に巻かれる状態を示す。(d)は、筒状に巻かれた鋼板の両端部を溶接接合する状態を示す。(e)は、溶接部の盛り上がりとバリをトリミングする状態を示す。(f)は、円筒管を示す。 本発明実施例のスピニング装置の、主軸側チャックの円錐状凹部とマンドレルの円錐状凸部とで円筒管の軸方向一端部を固定する前の状態における、断面図である。 本発明実施例のスピニング装置の、円筒管にマンドレルを挿入して、マンドレルの円錐状凸部で円筒管を拡径している状態における、断面図である。 本発明実施例のスピニング装置の、主軸側チャックの円錐状凹部とマンドレルの円錐状凸部とで円筒管の軸方向一端部を固定した状態における、断面図である。 本発明実施例のスピニング装置の、円筒管の厚みを減肉する前の状態における、断面図である。 本発明実施例のスピニング装置の、円筒管の厚みを減肉している状態における、断面図である。 本発明実施例のスピニング装置の、厚みが減肉された円筒部材からマンドレルを抜いた状態における、断面図である。 本発明実施例のスピニング方法で厚みが減肉された円筒部材の断面図である。 本発明実施例のスピニング方法で厚みが減肉された円筒部材をフレア加工するフレア工程の工程図である。(a)はフレア加工前を示す。(b)はフレア加工後を示す。 図9のフレア工程後に行われるロール成形工程の工程図である。(a)は上ロールと下ロールの間に円筒部材を挟み、ロール成形をして自動車用ホイールリムに成形している状態の、自動車用ホイールリムを断面図で示したロールの側面図を示す。(b)は上ロールと下ロールの間に円筒部材を挟み、ロール成形をして自動車用ホイールリムに成形している状態の正面図を示す。 図10のロール成形後の自動車用ホイールリムの断面図である。 本発明実施例のスピニング装置の、円筒管の軸方向他端部が別工程で円錐状に拡径された場合において、主軸側チャックの円錐状凹部とマンドレルの円錐状凸部とで円筒管の軸方向一端部を固定する前の状態における、断面図である。 本発明実施例のスピニング装置の、円筒管の軸方向一端部が別工程で円錐状に縮径された場合において、主軸側チャックの円錐状凹部とマンドレルの円錐状凸部とで円筒管の軸方向一端部を固定する前の状態における、断面図である。 従来のスピニング工程の工程図である。(a)はスピニング工程前を示す。(b)はスピニング工程後を示す。
 以下に、本発明実施例のスピニング装置およびスピニング方法を、図面を参照して、説明する。
 本発明実施例のスピニング装置20およびスピニング方法は、図11に示すような、自動車用ホイールリム100を製造するのに用いられる。リム100は、たとえば乗用車用、トラック・バス用、産業車両用のリムである。
 リム100は、軸方向一端から他端に向って順に、フランジ部101、ビードシート部102、サイドウォール部103、ドロップ部104、サイドウォール部105、ビードシート部106、フランジ部107を有する。フランジ部101、107がビードシート部102,106より大径であり、ドロップ部104がビードシート部102,106より小径となっている。図示略のホイールディスクがリム100に嵌入され、溶接されて、溶接タイプの自動車用ホイールとなる。ただし、リム100は、フランジ部101またはフランジ部107が存在せず、図示略のホイールディスク側にリム100のフランジ部101またはフランジ部107を有している、ホイールディスクと組み合わせる自動車用ホイールリムであってもよい。
スピニング装置20は、図2~図6に示すように、一定厚の円筒管10の厚みを減肉する。円筒管10の材料は金属であり、金属は、たとえば、鋼である。ただし、円筒管10の材料は、非鉄金属(アルミニウム、マグネシウム、チタンおよびその合金を含む)であってもよい。
 スピニング装置20は、図2~図6に示すように、一定厚の円筒管10の軸方向一端部11を除いた軸方向の少なくとも一部の厚みを減肉する。スピニング装置20により、一定厚の円筒管10は、スピニング成形されて外周面が軸方向に凹凸面とされた円筒部材15(図6参照)に成形される。スピニング装置20は、主軸側チャック30と、マンドレル40と、スピニングロール50と、を有する。マンドレル40の軸芯は、主軸側チャック30の軸芯と一致する。スピニングロール50は、マンドレル40の周方向に複数配置されていてもよい。
主軸側チャック30は、円錐状凹部31を有する。主軸側チャック30の円錐状凹部31は、図2に示すように、一定厚の円筒管10の軸方向に凹んでおり、円筒管10の軸方向一端部11を受け入れる。主軸側チャック30(円錐状凹部31)の軸芯は、円筒管10の軸芯Pと一致する。円錐状凹部31は、マンドレル40側に径が大きくなっている。円錐状凹部31は、底面31aと、側面31bと、を備える。底面31aは、円筒管10の軸方向一端部11の最端部11aを当接させて、円筒管10の軸方向の位置決めをする部分である。円錐状凹部31の底面31aの径は、円筒管10の外径より大きくてもよく、円筒管10の外径より小さくてもよい。なお、円筒管10を安定して主軸側チャック30に装着できるようにするため、円錐状凹部31の底面31aの径は円筒管10の外径と一致またはほぼ一致していることが望ましい。底面31aの径が円筒管10の外径より大き過ぎると円筒管10をセットするときに、円筒管10の軸芯Pと円筒状凹部31の軸芯とがずれやすい。底面31aの径が円筒管10の外径より小さ過ぎると円筒管10を主軸側チャック30にセットするときに、主軸側チャック30に対して、円筒管10の軸方向の位置がずれやすい。円錐状凹部31の側面31bは、全周にわたって連続して設けられている。ただし、側面31bに部分的に大径側に逃がし部があってもよい。軸芯Pに対する側面31bの傾斜角度は、全周にわたって一定である。ただし、軸芯Pに対する側面31bの傾斜角度は、軸方向で変化していてもよい。軸芯Pに対する側面31bの傾斜角度は、円筒管10を主軸側チャック30とマンドレル40とで固定でき、かつ成形後に円筒部材15が主軸側チャック30の円錐状凹部31から抜き出しやすい角度とされている。軸芯Pに対する側面31bの傾斜角度は、図9、図10に示すように、円筒部材15をフレア成形およびロール成形する際に支障がない範囲とされている。
マンドレル40は、図2に示すように、主軸側チャック30の円錐状凹部31に対応する円錐状凸部41と、円筒管10を支持する円柱部42と、を備える。
 円錐状凸部41は、マンドレル40の軸方向の端部に設けられる。円錐状凸部41は、円柱部42からマンドレル40の軸方向で主軸側チャック30に接近する方向に突出している。マンドレル40(円錐状凸部41および円柱部42)の軸芯は、円筒管10の軸芯Pと一致する。主軸側チャック30およびマンドレル40の軸芯は、鉛直方向を向いていることが好ましい。軸芯が鉛直方向である場合、円筒管10と主軸側チャック30との位置合わせが容易である。円錐状凸部41は、円錐状凹部31内に進入可能である。円錐状凸部41は、主軸側チャック30側に向かって径が小さくなっている。円錐状凸部41は、先端面41aと、側面41bと、を備える。円錐状凸部41の先端面41aは、円筒管10をセットしたときに円錐状凹部31の底面31aと接触しない寸法形状となっている。円錐状凸部41の側面41bは、全周にわたって連続して設けられている。軸芯Pに対する側面41bの傾斜角度は、全周にわたって一定である。軸芯Pに対する側面41bの傾斜角度は、軸芯Pに対する円錐状凹部31の側面31bの傾斜角度とほぼ一致している。円錐状凸部41と円柱部42との境界部分、側面41bと先端面41aとの境界部分あるいはその他の一部分において、軸芯Pに対する円錐状凹部31の側面31bの傾斜角度と軸芯Pに対する側面41bの傾斜角度とが一致していなくてもよい。
円錐状凸部41の先端における径は、円筒管10の内径より小さい。このため、マンドレル40を円筒管10に容易に挿入可能である。ただし、図12に示すように、円筒管10の軸方向他端部(円錐状凸部41を挿入する側の端部)12の最端部12aの内径より、円錐状凸部41の先端の径が小さければ、軸方向他端部12を除く円筒管10の内径より円錐状凸部41の先端部の径が大きくてもよい。円錐状凸部41の、円柱部42側端における径は、軸方向他端部12を除く円筒管10の内径より大きい。このため、マンドレル40を円筒管10に挿入したとき円筒管10はマンドレル40で拡径される。ただし、図13に示すように、円筒管10の軸方向一端部(円錐状凹部31に挿入される側の端部)11が端部側に向って円錐状に径小になっている場合は、円柱部42側端における円錐状凸部41の径は、円筒管10の軸方向一端部11を除く内径と同じか、わずかに小さくてもよい。
 マンドレル40の円柱部42の径は、円柱部42の軸方向全体にわたって一定である。ただし、円錐状凸部41と円柱部42との境界部分よりわずかに円柱部42の径が小さくてもよく、円錐状凸部41から離れるにしたがってわずかに大径となっていてもよく、軸方向に沿って多少の凹凸があってもよい。円柱部42の径は、円錐状凸部41の円柱部42側端における径と同じかまたは略同じであり、円筒管10を安定して、確実に支持できる。円柱部42の径は、円筒管10の軸方向一端部11の最端部11aの内径より大きい。
図3に示すように、円筒管10を主軸側チャック30の円錐状凹部31に挿入した後、円筒管10の軸方向他端部12側からマンドレル40の円錐状凸部41を円筒管10に挿入して、円筒管10を拡径する。円錐状凸部41で拡径されている円筒管の部分が、円錐状に変形する。
図4に示すように、さらにマンドレル40の円錐状凸部41を円筒管10に押し込んでいき、主軸側チャック30の円錐状凹部31とマンドレル40の円錐状凸部41とで円錐状に変形した円筒管10の軸方向一端部11を挟み込むことで、円筒管10がスピニング装置20に固定される。主軸側チャック30とマンドレル40は、ともに、円筒管10の軸芯Pまわりに回転する。円筒管10がスピニング装置20に取り付けられた状態において、主軸側チャック30とマンドレル40と円筒管10とは、軸芯を共有する。また、スピニングロール50は、円筒管10の軸方向と径方向に動く。
スピニングロール50は、図5に示すように、スピニングロール50の軸芯P1まわりに回転可能である。スピニングロール50は、マンドレル40の円柱部42に支持された円筒管10に押し付けられる。スピニングロール50により、円筒管10の厚みが減肉される。
 つぎに、本発明実施例のスピニング方法を説明する。
本発明実施例のスピニング方法は、一定厚の円筒管10の軸方向一端部11を除いた軸方向の少なくとも一部の厚みを減肉する方法である。
 本発明実施例のスピニング方法は、(A)図2~図4に示すように、主軸側チャック30の円錐状凹部31とマンドレル40の円錐状凸部41とで円筒管10の軸方向一端部11を固定する固定工程と、ついで、(B)図5、図6に示すように、マンドレル40の円柱部42に支持されている円筒管10にスピニングロール50を押し付けて円筒管10の厚みを減肉する減肉工程と、を有する。
 上記(A)の固定工程の前に、図1に示すような、一定厚の平板状素材5から一定厚の円筒管10を作製する円筒管製作工程を有していてもよい。円筒管製作工程では、図1の(a)、(b)に示すように、一定厚の平板状素材5(矩形素材)5は、たとえばコイル状に巻かれた一定厚の帯状部材4から、帯状部材4を直線状に引き出して、所定寸法長さに切断することにより、作製される。ついで、図1の(c)~(e)に示すように、平板状素材5は、筒状に巻かれ、筒状に巻かれた両端部を互いに突き合せてフラッシュバット溶接、バット溶接、アーク溶接等で溶接し、溶接部6の盛り上がりとバリをトリミングして、一定厚の円筒管10を作製する。
なお、円筒管製作工程では、パイプ状素材(図示略)を所定寸法長さに切断して一定厚の円筒管10を作製してもよい。
 上記(A)の固定工程では、図2~図4に示すように、一定厚の円筒管10を主軸側チャック30の円錐状凹部31に挿入して、円筒管10の軸方向一端部11の最端部11aを底面31aに当接させて軸方向の位置決めをした後、マンドレル40の円錐状凸部41と円柱部42を円筒管10に挿入して円筒管10を拡径する。円筒管10の軸方向一端部(円筒管10の円錐状凹部31側の端部)11は、円錐状凹部31と円錐状凸部41とによって径方向に変形させられる。軸方向一端部11の最端部11aは、径方向にはほとんど変化せず、軸方向一端部11は、最端部11aから離れるにしたがって円錐形状に徐々に拡径された形状となる。円筒管10の軸方向一端部11は、円錐状凹部31および円錐状凸部41の形状に沿った円錐形状になる。円筒管10の内径より径が大きい部分であるマンドレル40の円錐状凸部41の円柱部42側の端部および円柱部42を円筒管10に押し込んで円筒管10を拡径しつつ、円筒管10の軸方向一端部11を円錐形状に成形する。円錐形状の軸方向一端部11が円錐状凹部31と円錐状凸部41とで挟み込まれることで、円筒管10がスピニング装置20に固定される。マンドレル40を円筒管10に押し込むだけで、円筒管10の軸方向一端部11の成形と円筒管10の固定が行われる。円筒管10の軸方向一端部11以外の部分13は、マンドレル40の円柱部42によって拡径された状態で、全周にわたってかつ軸方向の全体にわたって支持される。円筒管10の軸方向一端部11は、縮径によって円錐形状に成形されてもよく、別工程で円錐形状に成形されてもよい。その場合、マンドレル40を円筒管10に挿入するときに円筒管10を拡径しなくてもよい。図13は、円筒管10の軸方向一端部11が、別工程で円錐形状に成形された場合を示す。
上記(B)の減肉工程では、図5、図6に示すように、主軸側チャック30、マンドレル40および円筒管10が軸芯Pまわりに回転している状態で、スピニングロール50を円筒管10の軸方向一端部11以外の部分13に押し付けながら、円筒管10の軸方向に動かして円筒管10の厚みを減肉する。スピニングロール50が円筒管10の軸方向一端部11以外の部分13に押し付けられることで、該部分13の厚みが減肉される。減肉工程では、円筒管10の減肉が必要な部分の厚みを減肉する。
スピニングロール50で円筒管10の外周面を押圧しつつ、スピニングロール50を円筒管10の軸方向一端部11から離れる方向(軸方向他端部12方向)に移動させて、円筒管10の厚みを減肉する。円筒管10は、スピニングロール50の移動する方向に伸びる。スピニングロール50を円筒管10の軸方向一端部11方向(軸方向他端部12から離れる方向)に移動させて円筒管10の厚みを減肉してもよい。スピニングロール50を軸方向一端部11方向に移動させる場合、円筒管10は、スピニングロール50の移動する方向と反対方向に延びる。
一定厚の円筒管10は、減肉工程にてスピニング成形され、外周面が軸方向に凹凸面とされた不等厚の円筒部材15に成形される。
 上記(B)の減肉工程後、図7に示すように、マンドレル40が円筒部材15から引き抜かれる。この時、スピニング装置20に設けられるストッパ金具21で円筒部材15の軸方向の移動が止められる。
不等厚の円筒部材15は、減肉工程の後に、図10に示すように、自動車用ホイールリム100形状にロール成形される。リム100のフランジ部101,107がビードシート部102,106より大径であり、リム100のドロップ部104がビードシート部102,106より小径となるように成形するため、ロール成形工程は、図9に示すように、フレア型60,61を用いて円筒部材15の軸方向両端部をフレア加工して拡開した後に行われる。フレア工程では、図9(b)に示すように、円筒部材15の両端部を円錐状に拡管する(フレア形状にする)。固定工程で円錐状に成形された不等厚の円筒部材15の軸方向一端部14は、フレア工程で逆向きに曲げられて、フレア形状となる。ロール成形工程は、図10に示すように、下ロール62と上ロール63との間に円筒部材15を挟みロールを回転させ、円筒部材15を成形し、自動車用ホイールリム100形状に成形する。その後、図示略のエキスパンダーおよび/またはシュリンカーを用いてサイジング加工(真円に近づける加工および自動車用ホイールリム断面形状の整形加工)し、図11に示すように最終自動車用ホイールリム形状にする。
これまでのスピニング成形は、ロール成形工程においてリム100のフランジ部101,107がビードシート部102,106より大径であり、リム100のドロップ部104がビードシート部102,106より小径となるように成形するため、内径が一定の円筒管を内径が一定の円筒状のままスピニング成形されるか、または、円筒管の両端部が拡径されたフレア形状となるようにスピニング成形されていた。本発明では、円筒管10の軸方向一端部11を、最端部11aから軸方向一端部11以外の部分13に近づくにつれて拡径してフレア形状とは逆向きの円錐形状に変形させて、スピニング装置20に固定できるようにしている。主軸側チャック30とマンドレル40とで固定でき、かつ成形後に円筒部材15が主軸側チャック30の円錐状凹部31から抜き出しやすい角度となるような拡径量(半径で平板素材5の板厚程度)にしているため、簡単な機構でスピニング成形ができ、かつ、フレア成形以降の成形でも問題なく成形できるようになった。
 つぎに、本発明実施例の作用を説明する。
主軸側チャック30の円錐状凹部31とマンドレル40の円錐状凸部41とで円筒管10の軸方向一端部11を固定し、ついで、マンドレル40の円柱部42に支持されている円筒管10にスピニングロール50を押し付けて円筒管10の厚みを減肉する。そのため、従来のスピニング成形より、クランプ機構が簡単で、工程数も少ないので、加工時間を短くできる。
マンドレル40の円柱部42に支持されている円筒管10にスピニングロール50を押し付けて円筒管10の厚みを減肉するため、円筒管10の減肉加工後の形状は軸方向一端部11を除いて内径がほぼ一定であり、従来に比べて単純である。よって、マンドレル40を各種ホイールリムの成形に共用することが容易である。
 主軸側チャック30の円錐状凹部31と、マンドレル40の円錐状凸部41とで、円筒管10の軸方向一端部11を挟み込むことで円筒管10が固定されるため、円筒管10の軸方向一端部11を確実に固定できる。
マンドレル40の円錐状凸部41の先端の径が円筒管10の少なくとも軸方向他端部12の最端部12aの内径より小さいため、円筒管10にマンドレル40を確実に挿入できる。また、マンドレル40の円柱部42の径が円筒管10の少なくとも軸方向一端部11の最端部11aの内径より大きいため、円柱部42で円筒管10を安定して確実に支持できる。
主軸側チャック30の円錐状凹部31と、マンドレル40の円錐状凸部41とで、円筒管10の軸方向一端部11を円錐状に折り曲げるとともに、円筒管10の軸方向一端部11を挟み込んで固定するため、少ない工程で円筒管11を確実に固定できる。
 円筒管10の内径以上の径のマンドレル40の円柱部42を円筒管10に押し込んで円筒管10を拡径しつつ、円筒管10の軸方向一端部11を円錐状に変形させるため、円筒管10の真円度、内径の寸法精度が向上し、減肉を安定してできる。
 スピニングロール50で円筒管10の外周面を押圧しつつ、スピニングロール50を円筒管10の軸方向一端部11から離れる方向(軸方向他端部12方向)に移動させて円筒管10の厚みを減肉することができるため、必要な部分の減肉ができる。また、スピニングロール50の送り方向に円筒管10を伸ばす(フォワード方式である)ことができるため、スピニングロール50の送り方向と逆に円筒管10を伸ばす(バックワード方式である)場合に比べて、成形が容易である。
 円錐状凹部31を有する主軸側チャック30と主軸側チャック30の円錐状凹部31に対応する円錐状凸部41と円筒管10を支持する円柱部42とを備えるマンドレル40と、マンドレル40の円柱部42に支持されている円筒管10に押し付けられて円筒管10の厚みを減肉するスピニングロール50と、を有するスピニング装置20により、円筒管10の軸方向一端部11を主軸側チャック30の円錐状凹部31とマンドレル40の円錐状凸部41とで挟み込んで固定し、ついで、マンドレル40の円柱部42に支持されている円筒管10にスピニングロール50を押し付けて円筒管10の厚みを減肉して不等厚の円筒部材15とした後、円筒部材15の両端部をフレア加工して円錐状に拡径するので、簡単な工程で、効率よく自動車用ホイールリム100を製造することができる。
4 帯状部材
5 平板状素材
6 溶接部
10 円筒管
11 円筒管の軸方向一端部
11a 円筒管の軸方向一端部の最端部
12 円筒管の軸方向他端部
12a 円筒管の軸方向他端部の最端部
14 円筒部材の軸方向一端部
15 円筒部材
20 スピニング装置
21 ストッパ金具
30 主軸側チャック
31  円錐状凹部
31a 円錐状凹部の底面
31b 円錐状凹部の側面
40 マンドレル
41 円錐状凸部
41a 円錐状凸部の先端面
41b 円錐状凸部の側面
42 円柱部
50 スピニングロール
60,61 フレア型
62 下ロール
63 上ロール
100 自動車用ホイールリム

Claims (7)

  1. 一定厚の円筒管の軸方向一端部を除いた軸方向の少なくとも一部の厚みを減肉するスピニング装置であって、
     円錐状凹部を有する主軸側チャックと、
     前記主軸側チャックの円錐状凹部に対応する円錐状凸部と前記円筒管を支持する円柱部とを備えるマンドレルと、
     前記マンドレルの円柱部に支持されている円筒管に押し付けられて前記円筒管の厚みを減肉するスピニングロールと、
    を有するスピニング装置。
  2. 前記主軸側チャックの円錐状凹部と、前記マンドレルの円錐状凸部とで、前記円筒管の前記軸方向一端部を挟み込むことで前記円筒管が固定される、請求項1記載のスピニング装置。
  3.  前記マンドレルの円錐状凸部の先端の径は、前記円筒管の少なくとも軸方向他端部の最端部の内径より小さく、前記マンドレルの円柱部の径は、前記円筒管の少なくとも前記軸方向一端部の最端部の内径より大きい、請求項1または請求項2記載のスピニング装置。
  4. 一定厚の円筒管の軸方向一端部を除いた軸方向の少なくとも一部の厚みを減肉するスピニング方法であって、
     主軸側チャックの円錐状凹部とマンドレルの円錐状凸部とで円筒管の軸方向一端部を固定し、ついで、マンドレルの円柱部に支持されている円筒管にスピニングロールを押し付けて円筒管の厚みを減肉する、スピニング方法。
  5. 主軸側チャックの円錐状凹部と、マンドレルの円錐状凸部とで、円筒管の軸方向一端部を円錐状に折り曲げるとともに円筒管の軸方向一端部を挟み込んで固定する、請求項4記載のスピニング方法。
  6. 円筒管の内径以上の径のマンドレルの円柱部を円筒管に押し込んで円筒管を拡径しつつ、円筒管の軸方向一端部を円錐状に折り曲げる、請求項4または請求項5記載のスピニング方法。
  7. 一定厚の円筒管を成形して自動車用ホイールリムを製造する方法において、
    円錐状凹部を有する主軸側チャックと、
    前記主軸側チャックの円錐状凹部に対応する円錐状凸部と前記円筒管を支持する円柱部とを備えるマンドレルと、
    前記マンドレルの円柱部に支持されている円筒管に押し付けられて前記円筒管の厚みを減肉するスピニングロールと、
    を有するスピニング装置により、
     前記円筒管の軸方向一端部を前記主軸側チャックの円錐状凹部と前記マンドレルの円錐状凸部とで挟み込んで固定し、ついで、前記マンドレルの円柱部に支持されている前記円筒管に前記スピニングロールを押し付けて円筒管の厚みを減肉して不等厚の円筒部材とした後、該円筒部材の両端部をフレア加工して円錐状に拡径する、自動車用ホイールリムを製造する方法。
PCT/JP2017/000563 2016-01-14 2017-01-11 スピニング装置およびスピニング方法 WO2017122656A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/070,174 US10946428B2 (en) 2016-01-14 2017-01-11 Spinning apparatus and spinning method
CN201780006493.1A CN108463296B (zh) 2016-01-14 2017-01-11 旋压装置以及旋压方法
MX2018008559A MX2018008559A (es) 2016-01-14 2017-01-11 Aparato giratorio y metodo giratorio.
DE112017000383.0T DE112017000383B4 (de) 2016-01-14 2017-01-11 Drückvorrichtung und Drückverfahren
JP2017561122A JP6772189B2 (ja) 2016-01-14 2017-01-11 スピニング装置およびスピニング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004919 2016-01-14
JP2016-004919 2016-01-14

Publications (1)

Publication Number Publication Date
WO2017122656A1 true WO2017122656A1 (ja) 2017-07-20

Family

ID=59310982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000563 WO2017122656A1 (ja) 2016-01-14 2017-01-11 スピニング装置およびスピニング方法

Country Status (6)

Country Link
US (1) US10946428B2 (ja)
JP (1) JP6772189B2 (ja)
CN (1) CN108463296B (ja)
DE (1) DE112017000383B4 (ja)
MX (1) MX2018008559A (ja)
WO (1) WO2017122656A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019351126B2 (en) * 2018-09-27 2023-10-26 Inno-Spin LLC Multi-axis roll-forming of stepped-diameter cylinder
CN109465321B (zh) * 2018-11-30 2020-04-03 四川航天长征装备制造有限公司 一种带环向内加强筋筒体的制造方法
CN111230512A (zh) * 2020-03-21 2020-06-05 义乌紫英机械科技有限公司 一种铝合金的自行车轮一体成型机
CN113290116A (zh) * 2021-05-31 2021-08-24 西安交通大学 一种火箭专用铝裙的对轮旋压制造工艺
CN114029745B (zh) * 2021-10-22 2023-09-19 定南色耐特智能科技有限公司 适用于不同偏距轮辋的加工设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317563A (en) * 1976-07-31 1978-02-17 Bohner & Koehle Method of fabricating rims
JPS60121024A (ja) * 1983-12-06 1985-06-28 Kojima Press Co Ltd 板金製多段vプ−リの製造方法
JPS62220231A (ja) * 1986-03-20 1987-09-28 Aisin Seiki Co Ltd ポリvプ−リ・フランジ先端部成形方法
JP2014176859A (ja) * 2013-03-14 2014-09-25 Topy Ind Ltd リム製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2586029A (en) * 1949-01-12 1952-02-19 Budd Co Apparatus for forming drop-center rims
JPS57209730A (en) * 1981-06-19 1982-12-23 Toshiba Mach Co Ltd Manufacture of alloy wheel for vehicle
JPH036912A (ja) 1989-06-02 1991-01-14 Fujitsu Ltd 弾性表面波素子
US5740609A (en) 1995-12-08 1998-04-21 Motor Wheel Corporation Method of making one-piece vehicle wheels and the like
RU2153946C2 (ru) * 1998-06-24 2000-08-10 Институт проблем сверхпластичности металлов РАН Способ изготовления колес для транспортных средств
EP1092489B1 (de) 1999-10-15 2002-09-18 Rothe Erde GmbH Verfahren zum Herstellen eines Laufrades für Kettenfahrzeuge
NL1026796C2 (nl) * 2004-08-06 2006-02-07 Fontijne Grotnes B V Werkwijze en inrichting voor het door middel van koude vervorming vervaardigen van een velgring.
CN100358736C (zh) * 2006-05-08 2008-01-02 嘉兴市四通车轮制造有限公司 组装轮辋式钢制车轮制造工艺
JP5435190B2 (ja) * 2007-03-30 2014-03-05 日立オートモティブシステムズ株式会社 管体の加工方法及びシリンダ装置の製造方法
JP5193154B2 (ja) 2009-07-15 2013-05-08 本田技研工業株式会社 スピニング加工方法
WO2011102357A1 (ja) * 2010-02-17 2011-08-25 トピー工業株式会社 車両用ホイールリムの製造方法
JP5814628B2 (ja) * 2011-05-30 2015-11-17 中央精機株式会社 リム成形方法
CN102950240A (zh) * 2011-08-22 2013-03-06 金刚 一种铝合金汽车轮毂锻旋成形方法
WO2014024907A1 (ja) * 2012-08-07 2014-02-13 トピー工業株式会社 車両用ホイールリムの製造方法
JP6162540B2 (ja) 2013-08-22 2017-07-12 トピー工業株式会社 車両用ホイールディスクの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317563A (en) * 1976-07-31 1978-02-17 Bohner & Koehle Method of fabricating rims
JPS60121024A (ja) * 1983-12-06 1985-06-28 Kojima Press Co Ltd 板金製多段vプ−リの製造方法
JPS62220231A (ja) * 1986-03-20 1987-09-28 Aisin Seiki Co Ltd ポリvプ−リ・フランジ先端部成形方法
JP2014176859A (ja) * 2013-03-14 2014-09-25 Topy Ind Ltd リム製造方法

Also Published As

Publication number Publication date
US10946428B2 (en) 2021-03-16
DE112017000383T5 (de) 2018-09-27
JP6772189B2 (ja) 2020-10-21
MX2018008559A (es) 2018-11-09
JPWO2017122656A1 (ja) 2018-12-06
CN108463296B (zh) 2020-04-07
US20190022728A1 (en) 2019-01-24
DE112017000383B4 (de) 2019-10-10
CN108463296A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2017122656A1 (ja) スピニング装置およびスピニング方法
JP5244075B2 (ja) 筒状部材の製造方法
JP2010149182A5 (ja)
JP5191613B2 (ja) 車両用ホイールリムの製造方法
JP5309690B2 (ja) 転がり軸受の内外輪の製造方法
US5579578A (en) Method for producing a rim for a vechicle wheel
JP2008509005A (ja) 冷間成形によるリムベッドの製造方法および装置
JP5814628B2 (ja) リム成形方法
CN104540612B (zh) 车辆用车轮轮辋的制造方法
JP2018051631A (ja) ホイールリムの製造方法及び自動車用ホイールリムの製造方法
JP2014176859A (ja) リム製造方法
US6298702B1 (en) Method for making seamless wheel rims
JP5749708B2 (ja) 車両用ホイールリムの製造方法
JP6001146B2 (ja) リム成形方法
US4084526A (en) Method of forming rings
JP6187213B2 (ja) 自動車用ホイールリムの製造方法
JP6009266B2 (ja) 車両用ホイールリムの製造方法
JPH10180387A (ja) ホイール用リム素材の製造方法
JP2005074489A (ja) 自動車用ホイールの製造方法
JP5478876B2 (ja) ホイール用ディスクの製造方法
JP2006102752A (ja) 重合体とその製造方法
JP2004196133A (ja) ホイールのリム真円化成形方法とその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017561122

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/008559

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112017000383

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738410

Country of ref document: EP

Kind code of ref document: A1