WO2017117952A1 - 像素电路及其驱动方法、显示面板以及显示器 - Google Patents

像素电路及其驱动方法、显示面板以及显示器 Download PDF

Info

Publication number
WO2017117952A1
WO2017117952A1 PCT/CN2016/089070 CN2016089070W WO2017117952A1 WO 2017117952 A1 WO2017117952 A1 WO 2017117952A1 CN 2016089070 W CN2016089070 W CN 2016089070W WO 2017117952 A1 WO2017117952 A1 WO 2017117952A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
transistor
turned
driving
voltage
Prior art date
Application number
PCT/CN2016/089070
Other languages
English (en)
French (fr)
Inventor
吴渊
蒋璐霞
李建军
聂军
王政
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/325,756 priority Critical patent/US10373561B2/en
Publication of WO2017117952A1 publication Critical patent/WO2017117952A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3283Details of drivers for data electrodes in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level

Definitions

  • the present invention relates to the field of flat panel display technologies, and in particular, to a pixel circuit and a driving method thereof, a display panel, and a display.
  • OLED display technology is an important development direction in current display technology.
  • OLED display technology uses self-illuminating organic light emitting diodes (OLEDs) to display images without the use of backlight elements.
  • OLEDs organic light emitting diodes
  • LCD liquid crystal display
  • backlight element Compared with a liquid crystal display (LCD) including a liquid crystal structure and a backlight element, it has the advantages of simple structure, thin thickness, fast response time, and the like. It can meet the requirements of users for lighter, thinner and more convenient displays.
  • the OLED display technology it is divided according to the driving method, and includes an Active Matrix Organic Light Emitting Diode (AMOLED) technology and a Passive Matrix Organic Light Emitting Diode (PMOLED) technology.
  • the PMOLED is simply formed in a matrix form with a cathode and an anode, and illuminates the pixels in the array in a scanning manner, and each pixel operates in a short pulse mode for instantaneous high-brightness illumination.
  • the advantage is that the structure is simple, and the manufacturing cost can be effectively reduced.
  • the driving voltage is high, making the PMOLED unsuitable for use on large-sized and high-resolution panels.
  • AMOLED technology uses a separate thin-film transistor to control each pixel. Each pixel can drive light continuously and independently. It can be driven by low-temperature polysilicon or oxide TFT, which has the advantages of low driving voltage and long life of light-emitting components. Therefore, AMOLED technology has become the focus of next-generation display technology.
  • FIG. 1 is a circuit diagram of a prior art AMOLED pixel circuit. As shown in Figure 1, this The pixel circuit uses a drain current compensation transistor (first transistor T1 and seventh transistor T7) and a threshold voltage compensation transistor (fourth transistor T4 and eighth transistor T8) to improve the flicker characteristic of the pixel, and display an image with low scintillation image quality. .
  • circuits in the prior art still have deficiencies.
  • the current flows from the drain to the source of the third transistor T3.
  • the current flows from the source to the drain of the third transistor T3.
  • the third transistor T3 has a symmetrical structure, the source and drain can be used interchangeably.
  • the circuit structure shown in FIG. 1 does not eliminate the leakage current through the OLED outside the illumination period, that is, the micro-brightness caused by the leakage current cannot be eliminated.
  • Embodiments of the present invention provide a pixel circuit and a driving method thereof, a display panel, and a display, so that a current direction flowing through a driving module when writing data and when emitting light is the same, improving control precision of the organic light emitting diode OLED, and solving OLED leakage current The slight phenomenon.
  • a pixel circuit includes: a reset module, a memory module, a data write module, a drive module, a control voltage compensation module, an illumination control module, and a light emitting module.
  • the reset module is connected to the third power source, the second scan line, and the storage module, and is configured to reset the voltage stored by the storage module.
  • the storage module is coupled to the first power source for storing a control voltage for driving the module.
  • the data write module is coupled to the data line and the third scan line for providing a voltage required for display of the pixel circuit to the drive module.
  • the driving module is connected to the storage module, and is configured to drive the lighting module to emit light according to the control voltage stored by the storage module.
  • the control voltage compensation module is connected to the third scan line and the driving module for compensating for the voltage provided by the data writing module to obtain a control voltage for driving the module.
  • the light emission control module is connected to the first scan line and the first power source for controlling a voltage for supplying the first power source to the driving module, and controlling driving of the light emitting module by the driving module.
  • the light emitting module is used to emit light under the driving of the driving module.
  • the drive module includes a control pole, a first pole, and a second pole.
  • the control pole of the drive module is connected to the storage module.
  • the first pole of the driving module is connected to the data writing module, and is connected to the first power source via the lighting control module.
  • the second pole of the driving module is connected to the lighting module via the lighting control module.
  • the control voltage compensation module is connected to the control pole of the driving module and the second pole.
  • the driving module includes a second transistor, and the control electrode, the first pole and the second pole of the second transistor are respectively connected to the control pole, the first pole and the second pole of the driving module.
  • the pixel circuit further includes a shunt module, and the shunt module is connected in parallel with the light emitting module for shunting current flowing through the light emitting module.
  • the shunt module includes a seventh transistor.
  • the first pole and the second pole of the seventh transistor are connected to the light emitting module, and the control pole is connected to the first scan line.
  • the reset module, the data write module, the control voltage compensation module, and the illumination control module are implemented using transistors.
  • the transistors other than the seventh transistor in the pixel circuit are P-type MOS transistors, and the seventh transistor is an N-type MOS transistor.
  • a method for driving the above pixel circuit comprising a first phase, a second phase, a third phase, a fourth phase, and a fifth phase.
  • the lighting module is initialized.
  • the voltage stored in the reset memory module is the voltage of the third power source.
  • the storage module is caused to store the control voltage of the drive module.
  • the lighting module is reset.
  • the driving module drives the light emitting module to emit light.
  • the pixel circuit further includes a shunt module, and the shunt module is connected in parallel with the light emitting module for shunting current flowing through the light emitting module.
  • the method also includes, in the first to fourth stages, the shunt module shunts the current flowing through the organic light emitting diode.
  • the shunt module includes a seventh transistor.
  • the first pole and the second pole of the seventh transistor are connected to the light emitting module.
  • the method also includes the first transistor to the fourth phase, the seventh transistor being turned on. In the fifth stage, the seventh transistor is turned off.
  • the driving module, the reset module, the data writing module, the control voltage compensation module, and the illumination control module are implemented by transistors.
  • the data writing module is cut off, the driving module is turned off, the control voltage compensation module is turned off, and the lighting control module is turned off, The bit module is turned off.
  • the data writing module is turned off, the driving module is turned on, the control voltage compensation module is turned off, the lighting control module is turned off, and the reset module is turned on.
  • the data writing module is turned on, the driving module is turned on, the control voltage compensation module is turned on, the lighting control module is turned off, and the reset module is turned off.
  • the data writing module is cut off, the driving module is turned off, the control voltage compensation module is turned off, the lighting control module is turned off, and the reset module is turned off.
  • the data writing module is turned off, the driving module is turned on, the control voltage compensation module is turned off, the lighting control module is turned on, and the reset module is turned off.
  • the seventh transistor in the pixel circuit, other transistors than the seventh transistor are P-type MOS transistors, and the seventh transistor is an N-type MOS transistor.
  • the method also includes, in the first phase, providing a high level voltage from the first scan line, a second scan line providing a high level voltage, a third scan line providing a high level voltage, and a low level voltage being provided by the data line.
  • a high level voltage is supplied from the first scan line
  • a low level voltage is supplied from the second scan line
  • a high level voltage is supplied from the third scan line
  • a low level voltage is supplied from the data line.
  • a high level voltage is supplied from the first scan line, a high level voltage is supplied from the second scan line, a low level voltage is supplied from the third scan line, and a high level voltage is supplied from the data line.
  • a high level voltage is supplied from the first scan line, a second high level voltage is supplied from the second scan line, a high level voltage is supplied from the third scan line, and a low level voltage is supplied from the data line.
  • a low level voltage is supplied from the first scan line, a high level voltage is supplied from the second scan line, a high level voltage is supplied from the third scan line, and a low level voltage is supplied from the data line.
  • a display panel comprising the pixel circuit of any of the above.
  • a display comprising the above display panel.
  • the connection mode of the driving circuit is changed, and the current collecting mode of the capacitor C is optimized, so that the current direction of the second transistor T2 is consistent at different stages, and the second transistor T2 is greatly improved. Uniformity and accuracy.
  • the overall contrast of the display panel can also be increased due to more precise control of each pixel.
  • the change of the connection mode reduces the space required for the display panel layout (Panel Layout), which is advantageous for resolution. Upgrade.
  • the seventh transistor T7 connected to the organic light emitting diode OLED is added, and the organic light emitting diode OLED is shunted outside the light emitting phase, thereby eliminating the lightening phenomenon caused by the leakage current. In the case of a black screen, low brightness can be guaranteed. When the white screen does not change, the contrast can be improved.
  • FIG. 1 is a circuit diagram of a prior art AMOLED pixel circuit
  • FIG. 2 is a block diagram of a pixel circuit in accordance with one embodiment of the present invention.
  • Figure 3 is a circuit diagram of a pixel circuit of the embodiment shown in Figure 2;
  • FIG. 4 is a circuit diagram of a pixel circuit in accordance with another embodiment of the present invention.
  • Figure 5 is a timing chart showing the operation of the pixel circuit of the embodiment shown in Figure 4;
  • FIG. 6 is a schematic diagram showing a state of a pixel circuit of the embodiment shown in FIG. 4 in a first stage
  • FIG. 7 is a schematic diagram showing a state of a pixel circuit of the embodiment shown in FIG. 4 in a second stage;
  • FIG. 8 is a schematic diagram showing a state of a pixel circuit of the embodiment shown in FIG. 4 in a third stage;
  • FIG. 9 is a schematic diagram showing a state of a pixel circuit of the embodiment shown in FIG. 4 in a fourth stage;
  • Figure 10 is a diagram showing the state of the pixel circuit of the embodiment shown in Figure 4 in the fifth stage.
  • the pixel circuit of this embodiment is composed of a first power source ELVDD, a second power source ELVSS, and a third power source Vint. Powering, and inputting a signal for controlling whether the pixel circuit emits light by the first scan line En, and inputting a reset signal for causing the pixel circuit by the second scan line Sn-1, for input by the third scan line Sn for the pixel circuit A signal for displaying data is written, and a signal corresponding to the display data of the pixel circuit is input from the data line Data.
  • the pixel circuit of this embodiment may include a reset module 1, a memory module 2, a data writing module 3, a driving module 4, a control voltage compensation module 5, an illumination control module 6, and a lighting module 7.
  • the reset module is connected to the third power source Vint, the second scan line Sn-1, and the memory module 2, and the reset module 1 is controlled by a signal input from the second scan line Sn-1 for resetting the voltage stored in the memory module 2.
  • the memory module 2 is connected to the first power source ELVDD and the driving module 4 for storing a control voltage for driving the module 4.
  • the data writing module is connected to the data line Data and the third scan line Sn, and is connected to the memory module 2 via the driving module 4 and the control voltage compensation module 5, and is controlled by a signal input from the third scanning line Sn for the driving module. Provides the voltage required for the display of the pixel circuit.
  • the driving module 4 is connected to the lighting control module 6 and the storage module 2 for driving the lighting module 7 to emit light via the lighting control module 6 according to the control voltage stored in the storage module 2.
  • the control voltage compensation module 5 is connected to the third scan line Sn, the driving module 4 and the memory module 2 for controlling the voltage supplied from the third scan line Sn to compensate the voltage supplied by the data writing module 3 to obtain the driving module 4 Control voltage.
  • the light emission control module 6 is connected to the first scan line En, the first power source ELVDD, the driving module 4, and the light emitting module 7 for controlling the driving module 4 and the first power source ELVDD according to the voltage input from the first scan line En.
  • the connection and the connection between the driving module 4 and the light emitting module 7 are controlled to supply the voltage of the first power source ELVDD to the driving mode 4 block, and control the driving of the light emitting module 7 by the driving module 4.
  • the light emitting module 7 is used to emit light under the driving of the driving module 4.
  • the driving module 4 includes a control pole, a first pole and a second pole.
  • the control electrode of the drive module 4 is connected to the storage module 2.
  • the first pole of the driving module 4 is connected to the data writing module 3, and is connected to the first power source ELVDD via the lighting control module 6.
  • the second pole of the drive module 4 is connected to the lighting module 7 via the lighting control module 6.
  • the control voltage compensation module 5 is connected to the control pole of the drive module 4 and the second pole. In this way, the direction of current flowing through the drive module at different stages can be made the same.
  • Figure 3 is a circuit diagram of a pixel circuit in accordance with the embodiment of Figure 2.
  • the drive The module 4 includes a second transistor T2, and the control electrode of the second transistor T2 is connected to the memory module 2.
  • the first pole of the second transistor T2 is connected to the data write module 3, and the first pole of the second transistor T2 is connected to the first power source ELVDD via the light emission control module 6.
  • the control voltage compensation module 5 is connected between the second pole and the control electrode of the second transistor T2, and the second pole of the second transistor T2 is connected to the light-emitting module 7 via the illumination control module 6.
  • the reset module 1 includes a sixth transistor T6.
  • the memory module 2 includes a capacitor C.
  • the data writing module 3 includes a first transistor T1.
  • the control voltage compensation module 5 includes a third transistor T3.
  • the illumination control module 6 includes a fourth transistor T4 and a fifth transistor T5.
  • the light emitting module 7 includes an organic light emitting diode OLED.
  • the control electrode of the first transistor T1 is connected to the third scan line Sn, the first electrode is connected to the data line Data, and the second electrode is connected to the first electrode of the second transistor T2.
  • the control electrode of the second transistor T2 is connected to the first electrode of the third transistor T3, and the second electrode is connected to the second electrode of the third transistor T3.
  • the gate of the third transistor T3 is connected to the third scan line Sn.
  • the control electrode of the fourth transistor T4 is connected to the first scan line En, the first electrode is connected to the first power source ELVDD, and the second electrode is connected to the second electrode of the first transistor T1.
  • the control electrode of the fifth transistor T5 is connected to the first scan line En, the first pole is connected to the second pole of the second transistor T2, and the second pole is connected to the first pole of the organic light emitting diode OLED.
  • the control electrode of the sixth transistor T6 is connected to the second scan line Sn-1, and the second electrode is connected to the third power source Vint.
  • the capacitor C is connected between the first power source ELVDD and the first pole of the sixth transistor T6.
  • the control voltage compensation module 5 two transistors may be used in series instead of one transistor.
  • the second pole of one transistor is connected to the first pole of the other transistor, the control poles of the two transistors are connected to each other, and then used for external wiring.
  • the reset module 1 one transistor may be used, or two transistors may be used. That is, the number of transistors can be adjusted by those skilled in the art according to specific circuit requirements.
  • the shunt module 8 is added.
  • the shunt module 8 is connected between the first pole and the second pole of the organic light emitting diode OLED.
  • the shunt module 8 can include a seventh transistor T7.
  • the control electrode of the seventh transistor T7 is connected to the first scan line En, the first pole is connected to the first pole of the organic light emitting diode OLED, and the second pole is connected to the second pole of the organic light emitting diode OLED Extremely connected.
  • the seventh transistor T7 can eliminate the current (including leakage current) passing through the organic light emitting diode OLED before the organic light emitting diode OLED emits light, and ensure the correctness of the state of the organic light emitting diode OLED.
  • the operation timing of the embodiment of the present invention will be described.
  • the circuit in FIG. 4 is added to the OLED initial module 7 with respect to the circuit in FIG. 3, the operation timings of the embodiments shown in FIG. 3 and FIG. 4 are the same, so that only the embodiment of FIG. 4 will be described below.
  • the working sequence is explained.
  • the case where the first transistor T1 to the sixth transistor T6 are both P-type MOS transistors and the seventh transistor T7 is an N-type MOS transistor is The example is explained.
  • the first pole can refer to the source and the second pole can refer to the drain.
  • the first pole can refer to the drain and the second pole can refer to the source.
  • the description of the model of the above transistor and the description of the effective level on the scan line are not limited to the present invention, and those skilled in the art can effectively determine the type of the transistor and the scan line according to actual circuit requirements. Level selection.
  • Fig. 5 is a timing chart showing the operation of the pixel circuit of the embodiment shown in Fig. 4.
  • the pixel circuit operation timing of this embodiment includes five stages, namely, a first stage t1, a second stage t2, a third stage t3, a fourth stage t4, and a fifth stage t5.
  • the first scan line En, the second scan line Sn-1, the third scan line Sn, and the data line Data provide signals to the circuit at various stages.
  • the operation of the pixel circuit of the present embodiment will be described in detail in conjunction with the operation timing shown in FIG. 5 and the current flow directions and transistor states shown in FIGS. 6 to 10.
  • Fig. 6 is a view showing the state of the pixel circuit of the embodiment shown in Fig. 4 in the first stage t1, showing the current flow direction and the transistor state.
  • the organic light emitting diode OLED is initialized to prevent the periodic potential from abnormally emitting light.
  • the voltages of the first scan line En, the second scan line Sn-1, and the third scan line Sn are at a high level, and the voltage of the data line Data is at a low level (the voltage of the data line Data is low).
  • Flat indicates that the data signal is not transmitted).
  • the reset module 1 the memory module 2, the data write module 3, the drive module 4, the control voltage compensation module 5, the illumination control module 6, and the illumination module 7 do not operate.
  • the shunt module 8 operates to shunt the current flowing through the organic light emitting diode OLED.
  • the tube T3, the fourth transistor T4, the fifth transistor T5, and the sixth transistor T6 are turned off, so that there is no voltage difference across the organic light emitting diode OLED, and no current passes, thereby eliminating the luminescence phenomenon.
  • the seventh transistor T7 is turned on to turn on the first pole and the second pole of the organic light emitting diode OLED, which can further prevent leakage current that may still exist when the transistor in the circuit is turned off through the organic light emitting diode OLED.
  • the type of level on the scan line is determined here depending on the selection of the transistor.
  • the seventh transistor T7 is turned on, and a high-level voltage is supplied on the scanning line.
  • Fig. 7 is a view showing the state of the pixel circuit of the embodiment shown in Fig. 4 in the second stage t2, showing the current flow direction and the transistor state.
  • the voltage stored in the memory module 2 is reset to prepare for storing the voltage representing the data signal transmitted by the data line Data.
  • the voltage of the first scan line En is at a high level
  • the voltage of the second scan line Sn-1 is at a low level
  • the voltage of the third scan line Sn is at a high level
  • the voltage of the data line Data is Low level.
  • the data writing module 3, the driving module 4, the control voltage compensation module 5, the lighting control module 6, and the lighting module 7 do not operate.
  • the shunt module 8 is still working.
  • the reset module 1 and the memory module 2 operate to reset the voltage stored in the memory module 2 to the voltage Vvint of the third power source Vint (Vvint: the voltage of the third power source Vint).
  • the first transistor T1 is turned off, the second transistor T2 is turned on, the third transistor T3 is turned off, the fourth transistor T4 is turned off, the fifth transistor T5 is turned off, and the sixth transistor T6 is turned on, and the seventh transistor Transistor T7 is turned on.
  • Fig. 8 is a view showing the state of the pixel circuit of the embodiment shown in Fig. 4 in the third stage t3, showing the current flow direction and the transistor state.
  • the memory module 2 stores a voltage corresponding to the display data.
  • the voltage of the first scan line En is at a high level
  • the voltage of the second scan line Sn-1 is at a high level
  • the voltage of the third scan line Sn is at a low level
  • the voltage of the data line Data is High level.
  • the reset module 1 the illumination control module 6, and the organic The LED OLED does not work.
  • the shunt module 8 is still working.
  • the data writing module 3 supplies the voltage corresponding to the display content of the pixel circuit from the data line Data to the memory module 2 via the driving module 4 and the control voltage compensation module 5.
  • the control voltage compensation module 5 compensates the voltage supplied from the data writing module 3 to obtain the control voltage of the driving module 4 stored by the storage module 2.
  • the first transistor T1 is turned on, the second transistor T2 is turned on, the third transistor T3 is turned on, the fourth transistor T4 is turned off, the fifth transistor T5 is turned off, and the sixth transistor T6 is turned off.
  • Seven transistors T7 are turned on. Since the third transistor T3 is turned on, the second electrode of the second transistor T2 and the control electrode are short-circuited to form a structure similar to a diode.
  • the collector point N voltage changes to Vvdata+Vth (Vvdata: voltage transmitted by the data line, Vth: threshold voltage of the second transistor T2).
  • Vvdata voltage transmitted by the data line
  • Vth threshold voltage of the second transistor T2
  • the second transistor T2 turns on the threshold voltage Vth which is a threshold value of the voltage Vgs between the gate and the source.
  • Fig. 9 is a view showing the state of the pixel circuit of the embodiment shown in Fig. 4 in the fourth stage t4, showing the current flow direction and the transistor state.
  • the organic light emitting diode OLED is again initialized to prevent the periodic potential from abnormally emitting light.
  • the specific process is the same as the first step. Before the OLED illumination is performed, the initialization is performed again, which ensures that the OLED is accurately illuminated according to the display data signal during the illuminating phase, thereby ensuring display accuracy.
  • Fig. 10 is a view showing the state of the pixel circuit of the embodiment shown in Fig. 4 in the fifth stage t5, showing the current flow direction and the transistor state.
  • the organic light emitting diode OLED emits light to realize accurate display of the display data.
  • the voltage of the first scan line En is a low level
  • the voltage of the second scan line Sn-1 is a high level
  • the voltage of the third scan line Sn is a high level
  • the voltage of the data line Data is Low level.
  • the reset module 1 the data write module 3, the control voltage compensation module 5, and the shunt module 8 do not operate.
  • the storage module 2, the drive module 4, the illumination control module 6, and the organic light emitting diode OLED operate.
  • the driving module 4 drives the light emitting module 7 to emit light according to the voltage stored in the storage module 2.
  • the first transistor T1 is turned off, the second transistor T2 is turned on, the third transistor T3 is turned off, the fourth transistor T4 is turned on, the fifth transistor T5 is turned on, and the sixth transistor T6 is turned off. Seven transistors T7 are turned off.
  • the current flowing through the organic light emitting diode OLED is:
  • ⁇ , C ox is the process constant
  • W is the channel width of the second transistor T2
  • L is the channel length of the second transistor T2
  • both W and L are selectively designtable constants. Therefore, K is predeterminable. constant.
  • the current directions through the second transistor T2 are the same in the third phase t3 and the fifth phase t5, it can be ensured that the organic light emitting diode OLED emits light accurately according to the data signal during the light emitting phase, thereby ensuring display accuracy.
  • the seventh transistor T7 is turned off, and the efficiency and characteristics of the organic light emitting diode OLED can be ensured.
  • the above five stages constitute a complete illumination control cycle. After completing the fifth phase t5, the next illumination control cycle can be entered and a new first phase t1 is started.
  • the pixel circuits in the embodiment of the present invention are arranged in a matrix form, which can be used for a display panel.
  • the display panel can be used for a display.
  • the display may specifically be a product or a component having any display function such as a liquid crystal display, a liquid crystal television, an OLED display, an OLED television, an electronic paper, a mobile phone, a tablet computer, and a digital photo frame.
  • the light emitting module 7 in the embodiment of the present invention may be other kinds of light emitting elements or display elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素电路及其驱动方法,像素电路包括复位模块(1)、存储模块(2)、数据写入模块(3)、驱动模块(4)、控制电压补偿模块(5)、发光控制模块(6)以及发光模块(7)。复位模块(1)用于对存储模块(2)进行复位。存储模块(2)用于存储控制电压。数据写入模块(3)用于提供像素电路的显示所需的电压。驱动模块(4)用于驱动发光模块(7)发光。控制电压补偿模块(5)用于补偿数据写入模块(3)提供的电压,以获取用于驱动模块(4)的控制电压。发光控制模块(6)用于控制向驱动模块(4)提供第一电源(ELVDD)的电压,并控制驱动模块(4)对发光模块(7)的驱动。发光模块(7)用于发光。该像素电路改善了控制准确性,能够增加显示面板整体对比度,减小显示面板布局,有利于分辨率的提升;还能够消除漏电流引起的微亮现象。

Description

像素电路及其驱动方法、显示面板以及显示器
本申请要求2016年1月4日递交的中国专利申请第201610003811.6号的优先权,在此全文引用上述中国专利申请所公开的内容以作为本申请的一部分。
技术领域
本发明涉及平板显示技术领域,尤其涉及像素电路及其驱动方法、显示面板以及显示器。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示技术是当前显示技术中的一个重要发展方向。OLED显示技术使用自发光的有机发光二极管(OLED)来显示图像,不使用背光元件。与包括液晶结构和背光元件的液晶显示器(Liquid Crystal Displayer,LCD)相比,具有结构简单、厚度薄、响应时间快等优点。能够满足使用者对于显示器的更轻、更薄、更便捷等的要求。
在OLED显示技术中,按照驱动方式划分,包括有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)技术和无源矩阵有机发光二极管(Passive Matrix Organic Light Emitting Diode,PMOLED)技术。PMOLED单纯地以阴极、阳极构成矩阵状,以扫描方式点亮阵列中的像素,每个像素都是操作在短脉冲模式下,为瞬间高亮度发光。优点是结构简单,可以有效降低制造成本,然而驱动电压高,使PMOLED不适合应用在大尺寸与高分辨率面板上。AMOLED技术采用独立的薄膜电晶体去控制每个像素,每个像素皆可以连续且独立的驱动发光,可以使用低温多晶硅或者氧化物TFT驱动,具有驱动电压低,发光组件寿命长的优点。因此,AMOLED技术已经成为下一代显示技术的焦点。
图1是现有技术中的AMOLED像素电路的电路图。如图1所示,该 像素电路使用了漏电流补偿晶体管(第一晶体管T1和第七晶体管T7)以及阈值电压补偿晶体管(第四晶体管T4和第八晶体管T8)来改善像素的闪烁特性,显示具有低闪烁图像质量的图像。
然而,对于OLED的控制精度来说,现有技术中的电路仍然存在不足。图1所示的AMOLED像素电路中,在写入数据的阶段,电流流向为从第三晶体管T3的漏极到源极。在发光阶段,电流流向为从第三晶体管T3的源极到漏极。虽然第三晶体管T3为对称结构,可以交换源极和漏极使用。但是,第三晶体管T3的漏极到源极的压降和源极到漏极的压降存在细微的差异,这一差异将直接影响对于OLED的控制精度,从而影响OLED发光的精度。此外,图1所示的电路结构并不能消除发光时间段之外通过OLED的漏电流,即不能消除漏电流引起的微亮现象。
发明内容
本发明的实施例提供像素电路及其驱动方法、显示面板以及显示器,使得在写入数据时和发光时流过驱动模块的电流方向相同,提高有机发光二极管OLED控制精度,并且解决OLED漏电流引起的微亮现象。
根据本发明的第一个方面,提供了一种像素电路,包括:复位模块、存储模块、数据写入模块、驱动模块、控制电压补偿模块、发光控制模块以及发光模块。复位模块与第三电源、第二扫描线以及存储模块连接,用于对存储模块存储的电压进行复位。存储模块与第一电源连接,用于存储用于驱动模块的控制电压。数据写入模块与数据线以及第三扫描线连接,用于向驱动模块提供像素电路的显示所需的电压。驱动模块与存储模块连接,用于根据存储模块所存储的控制电压,经由发光控制模块来驱动发光模块发光。控制电压补偿模块与第三扫描线和驱动模块连接,用于补偿数据写入模块提供的电压,以获取用于驱动模块的控制电压。发光控制模块与第一扫描线和第一电源连接,用于控制向驱动模块提供第一电源的电压,并控制驱动模块对发光模块的驱动。发光模块用于在驱动模块的驱动下发光。
在本发明的实施例中,驱动模块包括控制极、第一极以及第二极。驱动模块的控制极与存储模块连接。驱动模块的第一极与数据写入模块连接,并经由发光控制模块连接第一电源。驱动模块的第二极经由发光控制模块连接发光模块。控制电压补偿模块与驱动模块的控制极与第二极连接。
在本发明的实施例中,驱动模块包括第二晶体管,第二晶体管的控制极、第一极以及第二极分别与驱动模块的控制极、第一极以及第二极连接。
在本发明的实施例中,像素电路还包括分流模块,分流模块与发光模块并行连接,用于对流经发光模块的电流分流。
在本发明的实施例中,分流模块包括第七晶体管。第七晶体管的第一极以及第二极与发光模块连接,控制极与第一扫描线连接。
在本发明的实施例中,复位模块、数据写入模块、控制电压补偿模块以及发光控制模块采用晶体管实现。像素电路中除了第七晶体管以外的其它晶体管是P型MOS管,第七晶体管是N型MOS管。
根据本发明的第二个方面,提供了一种用于驱动上述像素电路的方法,包括第一阶段,第二阶段,第三阶段,第四阶段,第五阶段。在第一阶段,初始化发光模块。在第二阶段,复位存储模块存储的电压为第三电源的电压。在第三阶段,使存储模块存储驱动模块的控制电压。在第四阶段,复位发光模块。在第五阶段,基于存储模块存储的电压,使驱动模块驱动发光模块发光。
在本发明的实施例中,像素电路还包括分流模块,分流模块与发光模块并行连接,用于对流经发光模块的电流分流。方法还包括在第一阶段至第四阶段,分流模块对流经有机发光二极管的电流分流。
在本发明的实施例中,分流模块包括第七晶体管。第七晶体管的第一极以及第二极与发光模块连接。方法还包括在第一阶段至第四阶段,第七晶体管导通。在第五阶段,第七晶体管截止。
在本发明的实施例中,驱动模块、复位模块、数据写入模块、控制电压补偿模块以及发光控制模块采用晶体管实现。在第一阶段,数据写入模块截止,驱动模块截止,控制电压补偿模块截止,发光控制模块截止,复 位模块截止。第二阶段,数据写入模块截止,驱动模块导通,控制电压补偿模块截止,发光控制模块截止,复位模块导通。第三阶段,数据写入模块导通,驱动模块导通,控制电压补偿模块导通,发光控制模块截止,复位模块截止。第四阶段,数据写入模块截止,驱动模块截止,控制电压补偿模块截止,发光控制模块截止,复位模块截止。第五阶段,数据写入模块截止,驱动模块导通,控制电压补偿模块截止,发光控制模块导通,复位模块截止。
在本发明的实施例中,在像素电路中,除了第七晶体管以外的其它晶体管是P型MOS管,第七晶体管是N型MOS管。方法还包括在第一阶段,由第一扫描线提供高电平电压,第二扫描线提供高电平电压,第三扫描线提供高电平电压,由数据线提供低电平电压。在第二阶段,由第一扫描线提供高电平电压,由第二扫描线提供低电平电压,由第三扫描线提供高电平电压,由数据线提供低电平电压。在第三阶段,由第一扫描线提供高电平电压,由第二扫描线提供高电平电压,由第三扫描线提供低电平电压,由数据线提供高电平电压。在第四阶段,由第一扫描线提供高电平电压,第二扫描线提供高电平电压,第三扫描线提供高电平电压,由数据线提供低电平电压。在第五阶段,由第一扫描线提供低电平电压,由第二扫描线提供高电平电压,由第三扫描线提供高电平电压,由数据线提供低电平电压。
根据本发明的第三个方面,提供了一种显示面板,包括上述任一项的像素电路。
根据本发明的第四个方面,提供了一种显示器,包括上述的显示面板。
根据本发明的实施例,改变了驱动电路的连线方式,优化了电容C的集电方式,使得在不同阶段通过第二晶体管T2的电流方向始终一致,大幅度改善了第二晶体管T2导通均匀性及准确性。由于对于每个像素进行了更加精确的控制,还能够增加显示面板整体对比度。并且,连线方式的改变减小了显示面板布局(Panel Layout)需要的空间,有利于分辨率的 提升。此外,增加了与有机发光二极管OLED连接的第七晶体管T7,在发光阶段之外对于有机发光二极管OLED进行分流,消除了漏电流引起的微亮现象。在黑画面的情况下,能够保证低亮度。在白画面不变的情况下,能够提高对比度。
附图说明
为了更清楚地说明本发明的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本发明的一些实施例,而非对本发明的限制,其中:
图1是现有技术的AMOLED像素电路电路图;
图2是根据本发明的一个实施例的像素电路的框图;
图3是图2所示实施例的像素电路的电路图;
图4是根据本发明的另一个实施例的像素电路的电路图;
图5是图4所示实施例的像素电路工作时序图;
图6是图4所示实施例的像素电路在第一阶段中的状态示意图;
图7是图4所示实施例的像素电路在第二阶段中的状态示意图;
图8是图4所示实施例的像素电路在第三阶段中的状态示意图;
图9是图4所示实施例的像素电路在第四阶段中的状态示意图;
图10是图4所示实施例的像素电路在第五阶段中的状态示意图。
具体实施方式
为了使本发明的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其他实施例,也都属于本发明保护的范围。
图2是根据本发明的一个实施例的像素电路的框图。如图2所示,本实施例的像素电路由第一电源ELVDD,第二电源ELVSS,第三电源Vint 供电,并且由第一扫描线En输入用于控制像素电路是否发光的信号,由第二扫描线Sn-1输入用于使像素电路的复位信号,由第三扫描线Sn输入用于对于像素电路写入显示数据的信号,由数据线Data输入对应于像素电路显示数据的信号。
本实施例的像素电路可包括复位模块1、存储模块2、数据写入模块3、驱动模块4、控制电压补偿模块5、发光控制模块6以及发光模块7。复位模块与第三电源Vint、第二扫描线Sn-1以及存储模块2连接,复位模块1由从第二扫描线Sn-1输入的信号控制,用于对存储模块2存储的电压进行复位。存储模块2与第一电源ELVDD、驱动模块4连接,用于存储用于驱动模块4的控制电压。数据写入模块与数据线Data以及第三扫描线Sn连接,并经由驱动模块4以及控制电压补偿模块5与存储模块2连接,由从第三扫描线Sn输入的信号控制,用于向驱动模块提供像素电路的显示所需的电压。驱动模块4与发光控制模块6以及存储模块2连接,用于根据存储模块2所存储的控制电压,经由发光控制模块6来驱动发光模块7发光。控制电压补偿模块5与第三扫描线Sn、驱动模块4以及存储模块2连接,用于由从第三扫描线Sn输入的信号控制,补偿数据写入模块3提供的电压,以获取驱动模块4的控制电压。发光控制模块6与第一扫描线En、第一电源ELVDD、驱动模块4以及发光模块7连接,用于根据从第一扫描线En输入的电压,控制驱动模块4与第一电源ELVDD之间的连接以及驱动模块4与发光模块7之间的连接,即控制向驱动模4块提供所述第一电源ELVDD的电压,并控制所述驱动模块4对所述发光模块7的驱动。发光模块7用于在驱动模块4的驱动下发光。
驱动模块4包括控制极、第一极以及第二极。驱动模块4的控制极与存储模块2连接。驱动模块4的第一极与数据写入模块3连接,并经由发光控制模块6连接第一电源ELVDD。驱动模块4的第二极经由发光控制模块6连接发光模块7。控制电压补偿模块5与驱动模块4的控制极与第二极连接。如此,可以使得在不同阶段流经驱动模块的电流方向相同。
图3是根据图2所示实施例的像素电路的电路图。如图3所示,驱动 模块4包括第二晶体管T2,第二晶体管T2的控制极与存储模块2连接。第二晶体管T2的第一极与数据写入模块3连接,并且,第二晶体管T2的第一极经由发光控制模块6连接到第一电源ELVDD。第二晶体管T2的第二极和控制极之间连接控制电压补偿模块5,并且,第二晶体管T2的第二极经由发光控制模块6连接到发光模块7。
复位模块1包括第六晶体管T6。存储模块2包括电容C。数据写入模块3包括第一晶体管T1。控制电压补偿模块5包括第三晶体管T3。发光控制模块6包括第四晶体管T4以及第五晶体管T5。发光模块7包括有机发光二极管OLED。第一晶体管T1的控制极与第三扫描线Sn连接,第一极与数据线Data连接,第二极与第二晶体管T2的第一极连接。第二晶体管T2的控制极与第三晶体管T3的第一极连接,第二极与第三晶体管T3的第二极连接。第三晶体管T3的控制极与第三扫描线Sn连接。第四晶体管T4的控制极与第一扫描线En连接,第一极与第一电源ELVDD连接,第二极与第一晶体管T1的第二极连接。第五晶体管T5的控制极与第一扫描线En连接,第一极与第二晶体管T2的第二极连接,第二极与有机发光二极管OLED的第一极连接。第六晶体管T6的控制极与第二扫描线Sn-1连接,第二极与第三电源Vint连接。电容C被连接在第一电源ELVDD与第六晶体管T6的第一极之间。
如图3所示,对于控制电压补偿模块5,也可以使用两个晶体管串联代替一个晶体管。将一个晶体管的第二极与另一个晶体管的第一极连接,二个晶体管的控制极互相连接,然后对外连线使用。此外,对于复位模块1,同样可以使用一个晶体管,也可以使用二个晶体管。即,本领域技术人员根据具体的电路需求,可以调整晶体管的数量。
图4是根据本发明的另一个实施例的像素电路的电路图。如图4所示,在图3所示实施例的基础上,增加了分流模块8。分流模块8被连接在有机发光二极管OLED的第一极和第二极之间。分流模块8可包括第七晶体管T7。第七晶体管T7的控制极与第一扫描线En连接,第一极与有机发光二极管OLED的第一极连接,第二极与有机发光二极管OLED的第二 极连接。第七晶体管T7能够在有机发光二极管OLED发光之前,消除经过有机发光二极管OLED的电流(包括漏电流),保证有机发光二极管OLED状态的正确性。
以下,对于本发明的实施例的工作时序进行说明。虽然图4中的电路相对于图3中的电路,增加了OLED初始模块7,但是图3和图4所示的实施例的工作时序相同,所以,以下仅对图4所示的实施例的工作时序进行说明。为了更方便的描述扫描线的电平与各晶体管的导通之间的关系,以第一晶体管T1~第六晶体管T6均为P型MOS管,第七晶体管T7为N型MOS管的情况为例进行说明。对于P型MOS管,第一极可以指源极,第二极可以指漏极。对于N型MOS管,第一极可以指漏极,第二极可以指源极。需要注意的是,上述晶体管的型号的说明以及下文中的扫描线上有效电平的说明并不是对于本发明的限制,本领域技术人员可以根据实际电路需求对于晶体管的型号以及扫描线上的有效电平进行选择。
图5是图4所示实施例的像素电路工作时序图。如图5所示,本实施例的像素电路工作时序包括5个阶段,即第一阶段t1、第二阶段t2、第三阶段t3、第四阶段t4以及第五阶段t5。第一扫描线En、第二扫描线Sn-1、第三扫描线Sn以及数据线Data在各个阶段对于电路提供信号。以下,结合图5所示的工作时序和图6~图10所示的电流流向以及晶体管状态对于本实施例的像素电路工作过程进行详细描述。
图6是图4所示实施例的像素电路在第一阶段t1的状态示意图,图中表示了电流流向以及晶体管状态。在第一阶段t1,对于有机发光二极管OLED进行初始化,防止周期性电位异常发光。如图5所示,第一扫描线En、第二扫描线Sn-1以及第三扫描线Sn的电压为高电平,数据线Data的电压为低电平(数据线Data的电压为低电平表示未传输数据信号)。在这种情况下,复位模块1、存储模块2、数据写入模块3、驱动模块4、控制电压补偿模块5、发光控制模块6以及发光模块7不工作。分流模块8工作,对于流经有机发光二极管OLED的电流进行分流。
具体而言,如图6所示,第一晶体管T1、第二晶体管T2、第三晶体 管T3、第四晶体管T4、第五晶体管T5以及第六晶体管T6截止,使有机发光二极管OLED两端没有电压差,没有电流通过的状态,消除发光现象。在本实施例中,第七晶体管T7导通,导通有机发光二极管OLED的第一极和第二极,可以进一步防止电路中晶体管截止时仍然可能存在的漏电流通过有机发光二极管OLED。
如上文中说明的,此处根据晶体管的选型确定了扫描线上电平的类型。为了使第一晶体管T1~第六晶体管T6截止,第七晶体管T7导通,扫描线上提供高电平电压。本领域技术人员能够理解的是,如果晶体管类型变化,相应的电平类型也随之变化。
图7是图4所示实施例的像素电路在第二阶段t2的状态示意图,图中表示了电流流向以及晶体管状态。在第二阶段t2,对于存储模块2存储的电压进行复位,为储存数据线Data传输的表示数据信号的电压做准备。如图5所示,第一扫描线En的电压为高电平,第二扫描线Sn-1的电压为低电平,第三扫描线Sn的电压为高电平,数据线Data的电压为低电平。在这种情况下,数据写入模块3、驱动模块4、控制电压补偿模块5、发光控制模块6以及发光模块7不工作。分流模块8仍然工作。复位模块1以及存储模块2工作,将存储模块2存储的电压复位为第三电源Vint的电压Vvint(Vvint:第三电源Vint的电压)。
具体而言,如图7所示,第一晶体管T1截止,第二晶体管T2导通,第三晶体管T3截止,第四晶体管T4截止,第五晶体管T5截止,第六晶体管T6导通,第七晶体管T7导通。图中集电点N(即电容C的第二极和第二晶体管T2的控制极的连接点)的电压复位到第三电源Vint的电压,即第二晶体管T2的控制极电压Vg=Vvint。
图8是图4所示实施例的像素电路在第三阶段t3的状态示意图,图中表示了电流流向以及晶体管状态。在第三阶段t3,存储模块2存储对应于显示数据的电压。如图5所示,第一扫描线En的电压为高电平,第二扫描线Sn-1的电压为高电平,第三扫描线Sn的电压为低电平,数据线Data的电压为高电平。在这种情况下,复位模块1、发光控制模块6以及有机 发光二极管OLED不工作。分流模块8仍然工作。数据写入模块3将来自数据线Data的对应于像素电路显示内容的电压经由驱动模块4、控制电压补偿模块5提供至存储模块2。控制电压补偿模块5补偿数据写入模块3提供的电压,以得到被存储模块2存储的驱动模块4的控制电压。
具体而言,如图8所示,第一晶体管T1导通,第二晶体管T2导通,第三晶体管T3导通,第四晶体管T4截止,第五晶体管T5截止,第六晶体管T6截止,第七晶体管T7导通。由于第三晶体管T3导通,则第二晶体管T2的第二极和控制极短接,构成类似与二极管的结构。集电点N电压变化为Vvdata+Vth(Vvdata:数据线传输的电压,Vth:第二晶体管T2阈值电压)。此处,第二晶体管T2导通阈值电压Vth是控制极和源极之间的电压Vgs的阈值。
图9是图4所示实施例的像素电路在第四阶段t4的状态示意图,图中表示了电流流向以及晶体管状态。在第四阶段t4,再次对于有机发光二极管OLED进行初始化,防止周期性电位异常发光。具体过程与第一步骤相同。在进行有机发光二极管OLED发光之前,再次进行初始化,能够保证在发光阶段,有机发光二极管OLED准确按照显示数据信号进行发光,保证显示的准确性。
图10是图4所示实施例的像素电路在第五阶段t5的状态示意图,图中表示了电流流向以及晶体管状态。在第五阶段t5,有机发光二极管OLED发光,实现显示数据的准确显示。如图5所示,第一扫描线En的电压为低电平,第二扫描线Sn-1的电压为高电平,第三扫描线Sn的电压为高电平,数据线Data的电压为低电平。在这种情况下,复位模块1、数据写入模块3、控制电压补偿模块5以及分流模块8不工作。存储模块2、驱动模块4、发光控制模块6、以及有机发光二极管OLED工作。驱动模块4根据存储模块2中存储的电压,驱动发光模块7发光。
具体而言,如图10所示,第一晶体管T1截止,第二晶体管T2导通,第三晶体管T3截止,第四晶体管T4导通,第五晶体管T5导通,第六晶体管T6截止,第七晶体管T7截止。第二晶体管T2控制极电压Vg=Vvdata+ Vth,第二晶体管T2第一极电压Vt21=Velvdd(Velvdd:第一电源ELVDD的电压),因此,第二晶体管T2的控制极和第一极之间的电压Vgs=Vvdata+Vth-Velvdd。
根据饱和电流公式,流过有机发光二极管OLED的电流为:
Ioled=K(Vgs-Vth)2
=K(Vvdata+Vth-Velvdd-Vth)2
=K(Vvdata-Velvdd)2
式中,
Figure PCTCN2016089070-appb-000001
μ、Cox为工艺常数,W为第二晶体管T2的沟道宽度,L为第二晶体管T2的沟道长度,W、L都为可选择性设计的常数,因此,K为可以预先确定的常数。由上式中可以看到流过有机发光二极管OLED的电流Ioled不受第二晶体管T2阈值电压Vth的影响,只与数据线传输的电压Vvdata和第一电源ELVDD的电压Velvdd有关。因此像素电路可以不受第二晶体管T2阈值电压Vth的影响,输出稳定的驱动电流。
由于在第三阶段t3和第五阶段t5,通过第二晶体管T2的电流方向相同,所以,能够保证在发光阶段,有机发光二极管OLED准确按照数据信号进行发光,保证显示的准确性。此外,第七晶体管T7截止,能够保证有机发光二极管OLED的效率及特性。
上述五个阶段构成了一个完整的发光控制周期,完成第五阶段t5之后,即可进入下一个发光控制周期,开始新的第一阶段t1。
将本发明的实施例中的像素电路按照矩阵形式排列,即可用于显示面板。该显示面板可以用于显示器。显示器具体可以为液晶显示器、液晶电视、OLED显示器、OLED电视、电子纸、手机、平板电脑以及数码相框等具有任何显示功能的产品或者部件。
此外,虽然在上述说明中以发光二极管OLED为例进行了说明,但是 这并不是对于本发明的限制。本发明的实施例中的发光模块7可以是其它种类的发光元件或者显示元件。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种像素电路,包括:复位模块、存储模块、数据写入模块、驱动模块、控制电压补偿模块、发光控制模块以及发光模块;
    其中,所述复位模块与第三电源、第二扫描线以及所述存储模块连接,用于对所述存储模块存储的电压进行复位;
    所述存储模块与第一电源连接,用于存储用于所述驱动模块的控制电压;
    所述数据写入模块与数据线以及第三扫描线连接,用于向所述驱动模块提供所述像素电路的显示所需的电压;
    所述驱动模块与所述存储模块连接,用于根据所述存储模块所存储的所述控制电压,经由所述发光控制模块来驱动所述发光模块发光;
    所述控制电压补偿模块与第三扫描线和所述驱动模块连接,用于补偿所述数据写入模块提供的电压,以获取用于所述驱动模块的所述控制电压;
    所述发光控制模块与第一扫描线和第一电源连接,用于控制向所述驱动模块提供所述第一电源的电压,并控制所述驱动模块对所述发光模块的驱动;
    所述发光模块用于在所述驱动模块的驱动下发光。
  2. 根据权利要求1所述的像素电路,其中,
    所述驱动模块包括控制极、第一极以及第二极;所述驱动模块的控制极与所述存储模块连接;所述驱动模块的第一极与数据写入模块连接,并经由发光控制模块连接第一电源;所述驱动模块的第二极经由发光控制模块连接所述发光模块;所述控制电压补偿模块与所述驱动模块的控制极与第二极连接。
  3. 根据权利要求2所述的像素电路,其中,
    所述驱动模块包括第二晶体管,所述第二晶体管的控制极、第一极以及第二极分别与所述驱动模块的控制极、第一极以及第二极连接。
  4. 根据权利要求1所述的像素电路,还包括分流模块,所述分流模块与所述发光模块并行连接,用于对流经所述发光模块的电流分流。
  5. 根据权利要求4所述的像素电路,其中,所述分流模块包括第七晶体管;所述第七晶体管的第一极以及第二极与所述发光模块连接,控制极与第一扫描线连接。
  6. 根据权利要求5所述的像素电路,其中,
    所述复位模块、所述数据写入模块、所述控制电压补偿模块以及所述发光控制模块采用晶体管实现;
    所述像素电路中除了所述第七晶体管以外的其它晶体管是P型MOS管,所述第七晶体管是N型MOS管。
  7. 一种用于驱动如权利要求1所述的像素电路的方法,包括第一阶段,第二阶段,第三阶段,第四阶段,第五阶段;
    在第一阶段,初始化发光模块;
    在第二阶段,复位存储模块存储的电压为第三电源的电压;
    在第三阶段,使存储模块存储驱动模块的控制电压;
    在第四阶段,复位发光模块;
    在第五阶段,基于存储模块存储的电压,使驱动模块驱动发光模块发光。
  8. 如权利要求7所述的方法,其中,所述的像素电路还包括分流模块,分流模块与发光模块并行连接,用于对流经所述发光模块的电流分流;
    其中,在第一阶段至第四阶段,分流模块对流经有机发光二极管的电流分流。
  9. 如权利要求8所述的方法,其中,分流模块包括第七晶体管;第七晶体管的第一极以及第二极与发光模块连接;
    在第一阶段至第四阶段,第七晶体管导通;在第五阶段,第七晶体管截止。
  10. 如权利要求9所述的方法,其中,
    驱动模块、复位模块、数据写入模块、控制电压补偿模块以及发光控制模块采用晶体管实现;
    在第一阶段,数据写入模块截止,驱动模块截止,控制电压补偿模块 截止,发光控制模块截止,复位模块截止;
    第二阶段,数据写入模块截止,驱动模块导通,控制电压补偿模块截止,发光控制模块截止,复位模块导通;
    第三阶段,数据写入模块导通,驱动模块导通,控制电压补偿模块导通,发光控制模块截止,复位模块截止;
    第四阶段,数据写入模块截止,驱动模块截止,控制电压补偿模块截止,发光控制模块截止,复位模块截止;
    第五阶段,数据写入模块截止,驱动模块导通,控制电压补偿模块截止,发光控制模块导通,复位模块截止。
  11. 根据权利要求10所述的方法,其中,在所述的像素电路中,除了第七晶体管以外的其它晶体管是P型MOS管,第七晶体管是N型MOS管;
    在第一阶段,由第一扫描线提供高电平电压,第二扫描线提供高电平电压,第三扫描线提供高电平电压,由数据线提供低电平电压;
    在第二阶段,由第一扫描线提供高电平电压,由第二扫描线提供低电平电压,由第三扫描线提供高电平电压,由数据线提供低电平电压;
    在第三阶段,由第一扫描线提供高电平电压,由第二扫描线提供高电平电压,由第三扫描线提供低电平电压,由数据线提供高电平电压;
    在第四阶段,由第一扫描线提供高电平电压,第二扫描线提供高电平电压,第三扫描线提供高电平电压,由数据线提供低电平电压;
    在第五阶段,由第一扫描线提供低电平电压,由第二扫描线提供高电平电压,由第三扫描线提供高电平电压,由数据线提供低电平电压。
  12. 一种显示面板,包括如权利要求1至6中任一项所述的像素电路。
  13. 一种显示器,包括如权利要求12所述的显示面板。
PCT/CN2016/089070 2016-01-04 2016-07-07 像素电路及其驱动方法、显示面板以及显示器 WO2017117952A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/325,756 US10373561B2 (en) 2016-01-04 2016-07-07 Pixel circuit and driving method thereof, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610003811.6A CN105427807A (zh) 2016-01-04 2016-01-04 像素电路及其驱动方法、显示面板以及显示器
CN201610003811.6 2016-01-04

Publications (1)

Publication Number Publication Date
WO2017117952A1 true WO2017117952A1 (zh) 2017-07-13

Family

ID=55505967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089070 WO2017117952A1 (zh) 2016-01-04 2016-07-07 像素电路及其驱动方法、显示面板以及显示器

Country Status (3)

Country Link
US (1) US10373561B2 (zh)
CN (1) CN105427807A (zh)
WO (1) WO2017117952A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427807A (zh) 2016-01-04 2016-03-23 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板以及显示器
KR102561294B1 (ko) 2016-07-01 2023-08-01 삼성디스플레이 주식회사 화소 및 스테이지 회로와 이를 가지는 유기전계발광 표시장치
KR102559544B1 (ko) 2016-07-01 2023-07-26 삼성디스플레이 주식회사 표시 장치
CN106023898B (zh) * 2016-07-26 2018-07-24 京东方科技集团股份有限公司 像素电路、显示面板及驱动方法
CN106297672B (zh) 2016-10-28 2017-08-29 京东方科技集团股份有限公司 像素驱动电路、驱动方法和显示设备
CN107342050B (zh) * 2017-08-30 2019-08-30 上海天马有机发光显示技术有限公司 一种显示基板及显示装置
CN108399893B (zh) * 2018-01-31 2020-11-13 昆山国显光电有限公司 一种像素补偿电路、像素补偿方法及显示装置
CN108399888B (zh) * 2018-05-29 2020-03-20 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、像素电路和显示面板
US20200202783A1 (en) * 2018-12-21 2020-06-25 Int Tech Co., Ltd. Pixel compensation circuit
US10916198B2 (en) 2019-01-11 2021-02-09 Apple Inc. Electronic display with hybrid in-pixel and external compensation
CN111462684A (zh) * 2020-05-18 2020-07-28 武汉华星光电技术有限公司 Micro LED显示单元及其Micro LED显示面板
CN115699145A (zh) 2021-02-10 2023-02-03 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
TWI773498B (zh) * 2021-08-25 2022-08-01 友達光電股份有限公司 像素電路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874627A (zh) * 2005-04-29 2006-12-06 三星Sdi株式会社 有机电致发光显示器
KR20070019463A (ko) * 2005-08-12 2007-02-15 삼성에스디아이 주식회사 유기 전계발광 표시장치
KR20080054764A (ko) * 2006-12-13 2008-06-19 삼성에스디아이 주식회사 유기 전계 발광 표시 장치
US20080169754A1 (en) * 2007-01-15 2008-07-17 Yang Sun A Organic electroluminescent display
US20100164847A1 (en) * 2008-12-29 2010-07-01 Lee Baek-Woon Display device and driving method thereof
CN102314829A (zh) * 2010-06-30 2012-01-11 三星移动显示器株式会社 像素和使用该像素的有机发光显示装置
CN103956140A (zh) * 2014-05-08 2014-07-30 上海和辉光电有限公司 场效应晶体管工作点状态重置电路、方法及其oled显示器
CN105427807A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板以及显示器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032138B2 (en) * 2008-01-16 2011-10-04 Research In Motion Limited Devices and methods for placing a call on a selected communication line
KR101760090B1 (ko) * 2010-08-11 2017-07-21 삼성디스플레이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN102346999B (zh) 2011-06-27 2013-11-06 昆山工研院新型平板显示技术中心有限公司 Amoled像素电路及其驱动方法
TWI427597B (zh) * 2011-08-11 2014-02-21 Innolux Corp 顯示器及其驅動方法
CN104867442B (zh) * 2014-02-20 2017-10-31 北京大学深圳研究生院 一种像素电路及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874627A (zh) * 2005-04-29 2006-12-06 三星Sdi株式会社 有机电致发光显示器
KR20070019463A (ko) * 2005-08-12 2007-02-15 삼성에스디아이 주식회사 유기 전계발광 표시장치
KR20080054764A (ko) * 2006-12-13 2008-06-19 삼성에스디아이 주식회사 유기 전계 발광 표시 장치
US20080169754A1 (en) * 2007-01-15 2008-07-17 Yang Sun A Organic electroluminescent display
US20100164847A1 (en) * 2008-12-29 2010-07-01 Lee Baek-Woon Display device and driving method thereof
CN102314829A (zh) * 2010-06-30 2012-01-11 三星移动显示器株式会社 像素和使用该像素的有机发光显示装置
CN103956140A (zh) * 2014-05-08 2014-07-30 上海和辉光电有限公司 场效应晶体管工作点状态重置电路、方法及其oled显示器
CN105427807A (zh) * 2016-01-04 2016-03-23 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板以及显示器

Also Published As

Publication number Publication date
CN105427807A (zh) 2016-03-23
US20180226025A1 (en) 2018-08-09
US10373561B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2017117952A1 (zh) 像素电路及其驱动方法、显示面板以及显示器
CN107358915B (zh) 一种像素电路、其驱动方法、显示面板及显示装置
WO2019205898A1 (zh) 像素电路及其驱动方法、显示面板
WO2016187990A1 (zh) 像素电路以及像素电路的驱动方法
WO2017215290A1 (zh) 像素电路、显示面板及驱动方法
WO2017080379A1 (zh) 像素补偿电路及其驱动方法、阵列基板以及显示装置
WO2018095031A1 (zh) 像素电路及其驱动方法、以及显示面板
WO2018036169A1 (zh) 像素电路、显示面板、显示设备及驱动方法
WO2017041453A1 (zh) 像素电路、其驱动方法及相关装置
Wu et al. A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays
WO2018188390A1 (zh) 像素电路及其驱动方法、显示装置
WO2016169388A1 (zh) 像素电路及其驱动方法和显示装置
WO2018045667A1 (zh) Amoled像素驱动电路及驱动方法
WO2019184068A1 (zh) 一种像素驱动电路及显示装置
WO2016150232A1 (zh) 像素电路及其驱动方法、显示装置
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
WO2015180419A1 (zh) 像素电路及其驱动方法和一种显示装置
WO2015180353A1 (zh) 像素电路及其驱动方法、oled显示面板和装置
WO2017117940A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
US20180108298A1 (en) Pixel driving circuits, pixel driving methods and display devices
WO2015180352A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016086627A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
WO2016086626A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
WO2016155183A1 (zh) 像素电路、显示装置及其驱动方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15325756

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883087

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 1205N)

122 Ep: pct application non-entry in european phase

Ref document number: 16883087

Country of ref document: EP

Kind code of ref document: A1