WO2016023311A1 - 像素驱动电路及其驱动方法和显示装置 - Google Patents

像素驱动电路及其驱动方法和显示装置 Download PDF

Info

Publication number
WO2016023311A1
WO2016023311A1 PCT/CN2014/093769 CN2014093769W WO2016023311A1 WO 2016023311 A1 WO2016023311 A1 WO 2016023311A1 CN 2014093769 W CN2014093769 W CN 2014093769W WO 2016023311 A1 WO2016023311 A1 WO 2016023311A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
control
driving
switching unit
Prior art date
Application number
PCT/CN2014/093769
Other languages
English (en)
French (fr)
Inventor
胡祖权
公伟刚
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2016023311A1 publication Critical patent/WO2016023311A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present disclosure relates to a pixel driving circuit, a driving method thereof, and a display device.
  • AMOLED Active Matrix/Organic Light Emitting Diode
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • OLEDs are current driven and require a constant current to control illumination. Due to the process process and device aging, etc., in the known driving circuit, the threshold voltage of the driving TFT of each pixel has non-uniformity, which causes the current flowing through the OLED of each pixel to change, thereby affecting the whole The display of the image.
  • Embodiments of the present disclosure provide a pixel driving circuit, a driving method thereof, and a display device, which can avoid the influence of threshold voltage drift of a driving transistor on a driving current of a light emitting device, thereby improving uniformity of a display image.
  • a pixel driving circuit includes: a light emitting device, a driving module, a light emitting control module, a threshold compensation module, and an energy storage module;
  • a first pole of the energy storage module is connected to a control end of the driving module, an output end of the lighting control module, and an output end of the threshold compensation module, and a second pole of the energy storage module is connected to the Driving the driving end of the module and the first pole of the light emitting device;
  • the threshold compensation module is connected to the signal input end and the control end of the driving module, and the threshold compensation module is configured to charge the first pole of the energy storage module by the reference potential under the control of the first scan signal, in the third scan Data signal through control of the signal and the fifth scan signal Charging the second pole of the energy storage module to compensate for the threshold voltage of the driving module;
  • the illuminating control module is connected to the control end and the signal input end of the driving module; the illuminating control module is configured to input a first control signal to the control end of the driving module through the energy storage unit under the control of the second scanning signal And inputting a first level to a signal input end of the driving module under the control of the fourth scan signal;
  • the second pole of the light emitting device is input to a second level
  • the driving module is configured to input a driving signal to the light emitting device through a driving end of the driving module to drive the light emitting device to emit light under the control of the first control signal and the first level.
  • the threshold compensation module includes: a first switch unit, a third switch unit, and a fifth switch unit;
  • the first switching unit inputs a first scanning signal, the first signal end of the first switching unit inputs a reference potential, and the second signal end of the first switching unit is connected to the first pole of the energy storage module;
  • the control end of the third switch unit inputs a third scan signal, the first signal end of the third switch unit inputs a data signal, and the second signal end of the third switch unit is connected to the control end of the drive module;
  • the control terminal of the fifth switch unit inputs a fifth scan signal, the first signal end of the fifth switch unit is connected to the signal input end of the drive module, and the second signal end of the fifth switch unit is connected to the drive module The console.
  • the illumination control module includes: a second switch unit and a fourth switch unit;
  • the control end of the second switch unit inputs a second scan signal, the first signal end of the second switch unit is connected to the control end of the drive module, and the second signal end of the second switch unit is connected to the first pole of the energy storage module ;
  • the control end of the fourth switch unit inputs a fourth scan signal, the first signal end of the fourth switch unit inputs a first level, and the second signal end of the fourth switch unit is connected to a signal input end of the drive module.
  • all scan signals are input to the control terminal of the corresponding switch unit through the scan line.
  • the switching unit is a switching transistor, a gate of the switching transistor is used as a control end of the switching unit, and a source of the switching transistor is used as a A signal terminal or a second signal terminal, the drain of the switching transistor is used as a second signal terminal or a first signal terminal of the switching unit.
  • control end of the first switching unit and the control end of the third switching unit are connected to the same scan line.
  • control end of the second switching unit and the control end of the fourth switching unit are connected to the same scan line.
  • the driving module is a driving transistor, a gate of the driving transistor is used as a control end of the driving module, and a drain of the driving transistor is used as a signal input end of the driving module, the driving The source of the transistor is used as the driving end of the drive module.
  • the light emitting device comprises: an organic light emitting diode.
  • a driving method of a pixel circuit including:
  • the first pole of the energy storage module is charged by the reference potential, and the first pole of the energy storage module is charged by the data signal to compensate the threshold voltage of the driving module;
  • the first level coupling increases the potential of the first pole of the energy storage module, and the driving module outputs the driver at the first level and the first control signal outputted by the first pole of the energy storage module.
  • the drive signal drives the light emitting device to emit light.
  • the threshold compensation module includes: a first switch unit, a third switch unit, and a fifth switch unit;
  • the first stage further includes: the first signal end and the second signal end of the first switch unit are turned on, the first signal end and the second signal end of the third switch unit are turned on, and the first signal of the fifth switch unit is The terminal and the second signal end are turned on;
  • the second stage further includes: the first signal end and the second signal end of the first switching unit are turned off, the first signal end and the second signal end of the third switching unit are turned off, and the first signal end of the fifth switching unit is The second signal terminal is turned off.
  • the illumination control module includes: a second switch unit and a fourth switch unit;
  • the first stage further includes: the first signal end and the second signal end of the second switch unit are turned off, and the first signal end and the second signal end of the fourth switch unit are turned off;
  • the second stage further includes: the first signal end and the second signal end of the second switch unit are turned on, and the first signal end and the second signal end of the fourth switch unit are turned on.
  • the switching transistor when the switching unit is a switching transistor, the switching transistor includes an off state and a conducting state.
  • the driving module is a driving transistor
  • the driving transistor in the second phase, the driving transistor is in a saturated state.
  • a display device including any of the above pixel driving circuits is provided.
  • 1 is a schematic structural view of a known pixel driving circuit
  • FIG. 2 is a schematic structural diagram of a pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a pixel driving circuit according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a pixel driving circuit according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a timing state of an input signal of a pixel driving circuit according to another embodiment of the present disclosure
  • 6a is a schematic diagram of an equivalent circuit of a pixel driving circuit in a first stage according to another embodiment of the present disclosure
  • 6b is a schematic diagram of an equivalent circuit of a pixel driving circuit in a second stage according to another embodiment of the present disclosure.
  • the switching transistor and the driving transistor used in all embodiments of the present disclosure may each be a thin film transistor or a field effect transistor or other devices having the same characteristics. Since the source and drain of the switching transistor used here are symmetrical, the source and the drain are interchangeable. In the embodiment of the present disclosure, in order to distinguish the two poles of the transistor except the gate, one of the poles is referred to as a source and the other pole is referred to as a drain. According to the form in the drawing, the middle end of the switching transistor is a gate, the signal input end is a drain, and the signal output end is a source.
  • the switching transistor used in the embodiment of the present disclosure includes a P-type switching transistor and an N-type switching transistor, wherein the P-type switching transistor is turned on when the gate is at a low level, and is turned off when the gate is at a high level, and the N-type switching transistor is turned off.
  • the driving transistor includes a P type and an N type, wherein the P type driving transistor has a low level at the gate voltage (the gate voltage is less than the source voltage), And when the absolute value of the gate source voltage difference is greater than the threshold voltage, it is in an amplified state or full And a state in which the gate voltage of the N-type driving transistor is at a high level (the gate voltage is greater than the source voltage), and the absolute value of the voltage difference of the gate source is greater than the threshold voltage, and is in an amplified state or a saturated state.
  • FIG. 1 shows a schematic structural view of a known pixel driving circuit.
  • the driving current I OLED is generated by the voltage Vdata supplied from the data line acting on the saturation region of the driving transistor (DTFT). Current.
  • the driving current I OLED drives the OLED to emit light.
  • the threshold voltage (Vth) of the driving TFT of each pixel is uneven, and the threshold voltage of the driving TFT of each pixel (ie, T2 in the figure) is uneven, which results in The current flowing through the OLED at each pixel changes, thereby affecting the display effect of the entire image.
  • FIG. 2 is a schematic structural diagram of a pixel driving circuit provided in an embodiment of the present disclosure.
  • the pixel driving circuit includes a light emitting device 11, a driving module 12, a light emitting control module 13, a threshold compensation module 14, and an energy storage module 15.
  • the first pole a of the energy storage module 15 is connected to the control terminal of the driving module 12, one output of the lighting control module 13 and one output of the threshold compensation module 14.
  • the second pole b of the energy storage module 15 is connected to the driving module 12.
  • the threshold compensation module 14 is connected to the signal input terminal 2 and the control terminal 1 of the drive module 12, and the threshold compensation module 14 is also connected to the first pole a of the energy storage module 15.
  • the threshold compensation module 14 is configured to charge the first pole a of the energy storage module 15 by the reference potential under the control of the first scan signal, and pass the data signal to the energy storage module 15 under the control of the third scan signal and the fifth scan signal.
  • the second pole b is charged to compensate for the threshold voltage of the drive module 12.
  • the illumination control module 13 is connected to the control terminal 1 and the signal input terminal 2 of the drive module 12.
  • the illumination control module 13 is also connected to the first pole a of the energy storage module 15.
  • the illuminating control module 13 is configured to input a first control signal to the control end of the driving module 12 through the energy storage unit 15 under the control of the second scanning signal, and input to the signal input end of the driving module 12 under the control of the fourth scanning signal. The first level.
  • the second pole of the light emitting device 11 is input to a second level.
  • the driving module 12 is configured to input a driving signal to the light emitting device 11 through the driving end of the driving module 12 under the control of the first control signal and the first level to drive the light emitting device 11 to emit light.
  • the threshold compensation module 14 includes: a first switch unit, a third switch unit, and a fifth switch unit;
  • the first switching unit of the first switching unit inputs a first scanning signal, the first signal end of the first switching unit inputs a reference potential, the second signal end of the first switching unit is connected to the first pole a of the energy storage module 15;
  • the control end of the third switch unit inputs a third scan signal, the first signal end of the third switch unit inputs a data signal, and the second signal end of the third switch unit is connected to the control end of the drive module 12;
  • a fifth scanning signal is input to the control end of the fifth switching unit, a first signal end of the fifth switching unit is connected to a signal input end of the driving module 12, and a second signal end of the fifth switching unit is connected to the driving The control terminal of module 12.
  • FIG. 3 is a schematic structural diagram of a pixel driving circuit according to another embodiment of the present disclosure.
  • the illumination control module 13 may include a second switch unit and a fourth switch unit.
  • the control terminal 1 of the second switching unit inputs a second scanning signal
  • the first signal terminal 2 of the second switching unit is connected to the control terminal 1 of the driving module 12
  • the second signal terminal 3 of the second switching unit is connected to the energy storage module 15 One pole a.
  • the control terminal 1 of the fourth switching unit inputs a fourth scanning signal
  • the first signal terminal 2 of the fourth switching unit inputs a first level
  • the second signal terminal 3 of the fourth switching unit is connected to the signal input terminal 2 of the driving module 12.
  • all scan signals are input to the control terminal of the corresponding switch unit through the scan line.
  • the control end of the first switching unit and the control end of the third switching unit are connected to the same scan line; and/or the control end of the second switching unit and the fourth switching unit The control terminals are connected to the same scan line.
  • the control terminal of the switch unit when the control terminal of the switch unit is connected to the same scan line, the control terminal of the switch unit inputs the scan signal of the same timing.
  • the control terminals of the switch unit are respectively connected to different scan lines, the individual control of the switch unit can be realized, thereby achieving precise control of the pixel display time, ensuring the stability of the light-emitting device, and avoiding current passing through the non-light-emitting phase of the light-emitting device. Extends the life of the device.
  • each switch unit and the drive module are marked in the form of numbers 1, 2, and 3, wherein the control end of the switch unit is the terminal 1, the first letter The terminal is terminal 2, the second signal terminal is terminal 3; the control terminal of the driving module is terminal 1, the signal input terminal is terminal 2, and the driving terminal is terminal 3.
  • the pixel driving circuit of the embodiment of the present disclosure can perform threshold voltage compensation on the driving module through the threshold compensation module to avoid the influence of the threshold voltage drift of the driving module on the driving current of the light emitting device, thereby improving the uniformity of the display image.
  • the first pole of the energy storage module is charged by the reference potential, and the first pole of the energy storage module is charged by the data signal to compensate the threshold voltage of the driving module;
  • the first level coupling increases the potential of the first pole of the energy storage module
  • the driving module outputs a driving signal to drive the light at the driving end under the control of the first level and the first control signal outputted by the first pole of the energy storage module.
  • the device emits light.
  • the threshold compensation module 14 can include a first switching unit, a third switching unit, and a fifth switching unit.
  • the first signal end and the second signal end of the first switch unit are turned on, the first signal end and the second signal end of the third switch unit are turned on, and the first signal end of the fifth switch unit is turned on. And the second signal end is turned on.
  • the first signal end and the second signal end of the first switching unit are turned off, the first signal end and the second signal end of the third switching unit are turned off, and the first signal end and the fifth end of the fifth switching unit The two signal ends are cut off.
  • the lighting control module 13 may include: a second switching unit and a fourth switching unit;
  • the first signal end and the second signal end of the second switching unit are turned off, and the first signal end and the second signal end of the fourth switching unit are turned off.
  • the first signal end and the second signal end of the second switching unit are turned on, and the first signal end and the second signal end of the fourth switching unit are turned on.
  • the driving method of the pixel driving circuit provided by the embodiment of the present disclosure can perform threshold voltage compensation on the driving module by the threshold compensation module to avoid the influence of the threshold voltage drift of the driving module on the driving current of the light emitting device, thereby improving the uniformity of the display image. Sex.
  • the switching unit is a switching transistor
  • the driving module is a driving transistor
  • the light emitting device is an OLED
  • the energy storage module is a storage capacitor as an example.
  • the gate of the switching transistor is used as The control terminal of the switching unit
  • the source of the switching transistor is used as the first signal terminal or the second signal terminal of the switching unit
  • the drain of the switching transistor is used as the second signal terminal or the first signal terminal of the switching unit.
  • the gate of the driving transistor is used as a control terminal of the driving module
  • the source of the driving transistor is used as a signal input terminal of the driving module
  • the drain of the driving transistor is used as a driving terminal of the driving module.
  • FIG. 4 is a schematic structural diagram of a pixel driving circuit according to another embodiment of the present disclosure.
  • the pixel driving circuit includes: five switching transistors (T1-T5), a light emitting device OLED, and a driving transistor DTFT and a storage capacitor C1, wherein the storage capacitor includes a first pole (node a) and a second Pole (node b). All the transistors in the circuit are exemplified by a P-type transistor, wherein the first level is a high level VDD, the second level is a low level VSS, and the first scan line Vscan provides a scan signal for the gates of T1 and T3.
  • the second scan line CR1 provides a scan signal for the gates of T2 and T4; CR2 provides a scan signal for the gate of T5, the data line Vdata provides a data signal for the drain of T3, and Vref provides a reference potential for the drain of T1, VDD And VSS provide power for the light emitting device OLED.
  • the gate of T1 is input to Vscan, the drain of T1 is input to Vref, the source of T1 is connected to node a; the gate of T2 is connected to CR1, the source of T2 is connected to node a, and the drain of T2 is connected.
  • the gate of DTFT is connected; the drain of T3 is connected to Vdata, the gate of T3 is connected to Vscan, the source of T3 is connected to the source of T5; the drain of T4 is input to VDD, the gate of T4 is connected to CR1, and the source of T4 is connected to DTFT.
  • the drain of T5 is connected to the source of T4, the gate of T5 is connected to CR2, the gate of DTFT is connected to the drain of T2, the source of DTFT is connected to the first pole of OLED, and the second pole of OLED is input to VSS.
  • the OLED is a bottom emission type OLED, and exemplarily, VSS is a ground.
  • FIG. 5 is a schematic diagram showing a timing state of an input signal of a pixel driving circuit provided in still another embodiment of the present disclosure.
  • 6a and 6b respectively show equivalent circuit diagrams of the pixel driving circuit provided in another embodiment of the present disclosure in the first stage and the second stage.
  • FIG. 4 referring to the signal timing state diagram of each input signal of the pixel driving circuit provided in FIG. 5, and referring to the equivalent circuit schematic diagram of the working states of the respective stages of the pixel driving circuit provided in FIGS. 6a and 6b, An example of how this circuit works is as follows:
  • the first phase t1 shown in Figure 5 is a pixel drive voltage compensation phase.
  • Vscan and CR2 are at a high level, and T1, T3 and T5 are turned on, so the data line high level signal Vdata is written to the gate of the DTFT. With the drain.
  • Vref is written to the left end node a of the storage capacitor C1 through T1. Since CR1 is low, T2 and T4 are turned off. Since Vdata is simultaneously written to the gate and drain of the DTFT, the DTFT is equivalent to a PN junction.
  • VSS is higher than the highest gray scale driving voltage of the OLED, so that the OLED is not turned on, so as to avoid display errors.
  • Vref-Vdata+Vth the voltage difference across the storage capacitor C1
  • C the amount of charge stored on the capacitor C1
  • the second phase t2 shown in Figure 5 is the OLED display phase.
  • Vscan and CR2 are at a low level, so T1, T3, and T5 are turned off, and since CR1 is at a high level, T2 and T4 are turned on. Due to the conduction of T4 and the charge retention of the storage capacitor C1, the DTFT continues to conduct. At this time, the OLED is turned on. When the stabilization phase is reached, the OLED has a stable voltage drop Voled, and the voltage of the right node b of the capacitor C1. For: Voled+Vss.
  • the voltage of the left node a of capacitor C1 is: Vref-Vdata+Vth+Voled+Vss, but the gate and source voltage of DTFT are maintained as: Vref-Vdata+ Vth. Therefore, the current Ioled that the DTFT conducts through the OLED is:
  • is the carrier mobility of the DTFT
  • Cox is the capacitance of the gate insulating layer of the DTFT
  • W/L is the aspect ratio of the DTFT.
  • the threshold voltage of the driving TFT of the OLED can be effectively compensated, the influence of the threshold voltage drift of the driving TFT on the brightness of the OLED is eliminated, and the display effect of the OLED panel is improved.
  • This design is well suited for industrial design due to the use of fewer TFTs and capacitors.
  • the switching transistor and the driving transistor are “P” type transistors.
  • the embodiment of the present disclosure does not limit the types of the respective switching transistors and driving transistors provided.
  • the types of the respective switching transistors and the driving transistors are changed, it is only necessary to adjust the level signal applied by the gate of the transistor.
  • the driving method of the pixel circuit provided by the embodiment of the present disclosure is accurate. Any combination that can be easily conceived and realized by those skilled in the art based on the pixel driving circuit and the driving method provided by the embodiments of the present disclosure is within the protection scope of the present disclosure.
  • turn-off The off state of a transistor in the art is also referred to as turn-off, turn-off, etc., and turn-on is also referred to as turn-on or the like.
  • turn-on is also referred to as turn-on or the like.
  • cut-off and conduction in the present application, and other forms of expression or modification are also within the scope of protection of the present application.
  • An embodiment of the present disclosure provides a display device including the above pixel driving circuit.
  • the display device can be a display device such as an electronic paper, a mobile phone, a television, a digital photo frame, or the like.
  • the display device provided by the embodiment of the present disclosure can perform threshold voltage compensation on the driving module through the threshold compensation module to avoid the influence of the threshold voltage drift of the driving module on the driving current of the light emitting device, thereby improving the uniformity of the display image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素驱动电路及其驱动方法和显示装置。像素驱动电路包括发光器件(11)、驱动模块(12)、发光控制模块(13)、阈值补偿模块(14)和储能模块(15)。阈值补偿模块(14)在第一扫描信号控制下通过参考电位为储能模块(15)的第一极(a)充电,在第三扫描信号和第五扫描信号控制下通过数据信号为储能模块(15)的第二极(b)充电以对驱动模块(12)的阈值电压进行补偿;发光控制模块(13)在第二扫描信号控制下通过储能单元(15)向驱动模块(12)的控制端输入第一控制信号并在第四扫描信号控制下向驱动模块(12)的信号输入端输入第一电平;驱动模块(12)在第一控制信号和第一电平控制下向发光器件(11)输入驱动信号以驱动发光器件(11)发光。该像素驱动电路能够避免驱动模块(12)的阈值电压漂移对发光器件(11)驱动电流的影响,提高显示图像的均匀性。

Description

像素驱动电路及其驱动方法和显示装置 技术领域
本公开涉及一种像素驱动电路及其驱动方法和显示装置。
背景技术
有源矩阵有机发光二极管(Active Matrix/Organic Light Emitting Diode,AMOLED)显示器是当今平板显示器研究领域的热点之一,与液晶显示器相比,有机发光二极管OLED具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点,目前,在手机、掌上电脑(PDA)、数码相机等显示领域OLED已经开始取代传统的LCD显示屏。像素驱动电路设计是AMOLED显示器核心技术内容,具有重要的研究意义。
与薄膜场效应晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)利用稳定的电压控制亮度不同,OLED属于电流驱动,需要稳定的电流来控制发光。由于工艺制程和器件老化等原因,在已知的驱动电路中,各像素点的驱动TFT的阈值电压存在不均匀性,这样就导致了流过每个像素点OLED的电流发生变化,从而影响整个图像的显示效果。
发明内容
本公开的实施例提供一种像素驱动电路及其驱动方法和显示装置,能够避免驱动晶体管的阈值电压漂移对发光器件驱动电流的影响,进而提高了显示图像的均匀性。
按照本公开的一个方面,提供一种像素驱动电路,包括:发光器件、驱动模块、发光控制模块、阈值补偿模块和储能模块;
所述储能模块的第一极连接所述驱动模块的控制端、所述发光控制模块的一个输出端和所述阈值补偿模块的一个输出端,所述储能模块的第二极连接所述驱动模块的驱动端和所述发光器件的第一极;
所述阈值补偿模块连接所述驱动模块的信号输入端和控制端,所述阈值补偿模块用于在第一扫描信号的控制下通过参考电位为储能模块的第一极充电,在第三扫描信号和第五扫描信号的控制下通过数据信号 为储能模块的第二极充电以对驱动模块的阈值电压进行补偿;
所述发光控制模块连接所述驱动模块的控制端和信号输入端;所述发光控制模块用于在第二扫描信号的控制下通过储能单元向所述驱动模块的控制端输入第一控制信号;并在所述第四扫描信号的控制下向所述驱动模块的信号输入端输入第一电平;
所述发光器件的第二极输入第二电平;
所述驱动模块用于在所述第一控制信号和所述第一电平的控制下通过所述驱动模块的驱动端向所述发光器件输入驱动信号以驱动所述发光器件发光。
可选地,所述阈值补偿模块包括:第一开关单元、第三开关单元和第五开关单元;
第一开关单元的控制端输入第一扫描信号,所述第一开关单元的第一信号端输入参考电位,第一开关单元的第二信号端连接储能模块的第一极;
第三开关单元的控制端输入第三扫描信号,第三开关单元的第一信号端输入数据信号,第三开关单元的第二信号端连接所述驱动模块的控制端;
第五开关单元的控制端输入第五扫描信号,所述第五开关单元的第一信号端连接所述驱动模块的信号输入端,所述第五开关单元的第二信号端连接所述驱动模块的控制端。
可选地,所述发光控制模块包括:第二开关单元和第四开关单元;
第二开关单元的控制端输入第二扫描信号,第二开关单元的第一信号端连接所述驱动模块的控制端,第二开关单元的第二信号端连接所述储能模块的第一极;
第四开关单元的控制端输入第四扫描信号,所述第四开关单元第一信号端输入第一电平,所述第四开关单元第二信号端连接所述驱动模块的信号输入端。
可选地,所有扫描信号均通过扫描线输入对应的开关单元的控制端。
可选地,所述开关单元为开关晶体管,所述开关晶体管的栅极用作所述开关单元的控制端,所述开关晶体管的源极用作所述开关单元的第 一信号端或第二信号端,所述开关晶体管的漏极用作所述开关单元的第二信号端或第一信号端。
可选地,第一开关单元的控制端和第三开关单元的控制端连接相同的扫描线。
可选地,第二开关单元的控制端和第四开关单元的控制端连接相同的扫描线。
可选地,所述驱动模块为驱动晶体管,所述驱动晶体管的栅极用作所述驱动模块的控制端,所述驱动晶体管的漏极用作所述驱动模块的信号输入端,所述驱动晶体管的源极用作所述驱动模块的驱动端。
可选地,所述发光器件,包括:有机发光二极管。
按照本公开的另一方面,提供一种像素电路的驱动方法,包括:
第一阶段,通过参考电位为储能模块的第一极充电,通过数据信号为储能模块的第一极充电,以对驱动模块的阈值电压进行补偿;
第二阶段,第一电平耦合提升所述储能模块第一极的电位,驱动模块在第一电平和所述储能模块的第一极输出的第一控制信号的控制下在驱动端输出驱动信号驱动发光器件发光。
可选地,所述阈值补偿模块包括:第一开关单元、第三开关单元和第五开关单元;
所述第一阶段还包括:第一开关单元的第一信号端和第二信号端导通,第三开关单元的第一信号端和第二信号端导通,第五开关单元的第一信号端和第二信号端导通;
所述第二阶段还包括:第一开关单元的第一信号端和第二信号端截止,第三开关单元的第一信号端和第二信号端截止,第五开关单元的第一信号端和第二信号端截止。
可选地,所述发光控制模块包括:第二开关单元和第四开关单元;
所述第一阶段还包括:第二开关单元的第一信号端和第二信号端截止,第四开关单元的第一信号端和第二信号端截止;
所述第二阶段还包括:第二开关单元的第一信号端和第二信号端导通,第四开关单元的第一信号端和第二信号端导通。
可选地,所述开关单元为开关晶体管时,开关晶体管包括截止状态和导通状态。
可选地,所述驱动模块为驱动晶体管时,在所述第二阶段,所述驱动晶体管处于饱和状态。
按照本公开的另一方面,提供一种显示装置,包括上述任一像素驱动电路。
附图说明
图1为已知的一种像素驱动电路的结构示意图;
图2为本公开实施例提供的一种像素驱动电路的结构示意图;
图3为本公开另一实施例提供的一种像素驱动电路的结构示意图;
图4为本公开又一实施例提供的一种像素驱动电路的结构示意图;
图5为本公开又一实施例提供的像素驱动电路的输入信号时序状态示意图;
图6a为本公开又一实施例提供的像素驱动电路在第一阶段的等效电路示意图;
图6b为本公开又一实施例提供的像素驱动电路在第二阶段的等效电路示意图。
具体实施方式
下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述。
本公开所有实施例中采用的开关晶体管和驱动晶体管均可以为薄膜晶体管或场效应管或其他特性相同的器件。由于这里采用的开关晶体管的源极、漏极是对称的,所以其源极、漏极是可以互换的。在本公开实施例中,为区分晶体管除栅极之外的两极,将其中一极称为源极,另一极称为漏极。按附图中的形态规定开关晶体管的中间端为栅极、信号输入端为漏极、信号输出端为源极。此外本公开实施例所采用的开关晶体管包括P型开关晶体管和N型开关晶体管两种,其中,P型开关晶体管在栅极为低电平时导通,在栅极为高电平时截止,N型开关晶体管为在栅极为高电平时导通,在栅极为低电平时截止;驱动晶体管包括P型和N型,其中P型驱动晶体管在栅极电压为低电平(栅极电压小于源极电压),且栅极源极的压差的绝对值大于阈值电压时处于放大状态或饱 和状态;其中N型驱动晶体管的栅极电压为高电平(栅极电压大于源极电压),且栅极源极的压差的绝对值大于阈值电压时处于放大状态或饱和状态。
图1示出一种已知的像素驱动电路的结构示意图。如图1所示,在该已知的两个晶体管T1、T2和一个存储电容C1的驱动电路中,驱动电流IOLED是由于数据线提供的电压Vdata作用在驱动晶体管(DTFT)饱和区域而产生的电流。驱动电流IOLED驱动OLED发光。驱动电流计算公式为IOLED=K(VGS-Vth)2,其中VGS为驱动晶体管栅极和源极之间的电压,Vth为驱动晶体管的阈值电压。由于工艺制程和器件老化等原因,各像素点的驱动TFT的阈值电压(Vth)存在不均匀性,各像素点的驱动TFT(即图中T2)的阈值电压存在不均匀性,这样就导致了流过每个像素点OLED的电流发生变化,从而影响整个图像的显示效果。
图2示出本公开实施例中提供的一种像素驱动电路的结构示意图。如图2所示,该像素驱动电路包括:发光器件11、驱动模块12、发光控制模块13、阈值补偿模块14和储能模块15。
储能模块15的第一极a连接驱动模块12的控制端1、发光控制模块13的一个输出端和阈值补偿模块14的一个输出端,储能模块15的第二极b连接驱动模块12的驱动端3和发光器件11的第一极。
阈值补偿模块14连接驱动模块12的信号输入端2和控制端1,阈值补偿模块14还连接储能模块15的第一极a。阈值补偿模块14用于在第一扫描信号的控制下通过参考电位为储能模块15的第一极a充电,在第三扫描信号、第五扫描信号的控制下通过数据信号为储能模块15的第二极b充电,以对驱动模块12的阈值电压进行补偿。
发光控制模块13连接驱动模块12的控制端1和信号输入端2。发光控制模块13还连接储能模块15的第一极a。发光控制模块13用于在第二扫描信号的控制下通过储能单元15向驱动模块12的控制端输入第一控制信号,并在第四扫描信号的控制下向驱动模块12的信号输入端输入第一电平。
发光器件11的第二极输入第二电平。
驱动模块12用于在第一控制信号和第一电平的控制下通过驱动模块12的驱动端向发光器件11输入驱动信号以驱动发光器件11发光。
可选地,参照图3所示,所述阈值补偿模块14包括:第一开关单元、第三开关单元和第五开关单元;
第一开关单元的控制端输入第一扫描信号,所述第一开关单元的第一信号端输入参考电位,第一开关单元的第二信号端连接储能模块15的第一极a;
第三开关单元的控制端输入第三扫描信号,第三开关单元的第一信号端输入数据信号,第三开关单元的第二信号端连接所述驱动模块12的控制端;
第五开关单元的控制端输入第五扫描信号,所述第五开关单元的第一信号端连接所述驱动模块12的信号输入端,所述第五开关单元的第二信号端连接所述驱动模块12的控制端。
图3示出本公开另一实施例中提供的一种像素驱动电路的结构示意图。如图3所示,发光控制模块13可包括:第二开关单元和第四开关单元。
第二开关单元的控制端1输入第二扫描信号,第二开关单元的第一信号端2连接驱动模块12的控制端1,第二开关单元的第二信号端3连接储能模块15的第一极a。
第四开关单元的控制端1输入第四扫描信号,第四开关单元第一信号端2输入第一电平,第四开关单元第二信号端3连接驱动模块12的信号输入端2。
可选地,所有扫描信号均通过扫描线输入对应的开关单元的控制端。例如,为了节省布线开支一种可选方案是:第一开关单元的控制端和第三开关单元的控制端连接相同的扫描线;和/或,第二开关单元的控制端和第四开关单元的控制端连接相同的扫描线。
可以理解的是,开关单元的控制端连接相同的扫描线时开关单元的控制端输入相同时序的扫描信号。开关单元的控制端分别连接不同的扫描线时,可以实现开关单元的单独控制,进而实现了像素显示时间的精确控制,同时保证发光器件稳定性,避免发光器件的在非发光阶段有电流通过,延长了器件的使用寿命。
需要说明的是,在附图2和3中,以数字1、2、3的形式标记各个开关单元和驱动模块的端子,其中开关单元的控制端为端子1、第一信 号端为端子2、第二信号端为端子3;驱动模块的控制端为端子1、信号输入端为端子2和驱动端为端子3。
本公开的实施例的像素驱动电路,能够通过阈值补偿模块对驱动模块进行阈值电压补偿,以避免驱动模块的阈值电压漂移对发光器件驱动电流的影响,进而提高了显示图像的均匀性。
本公开的实施例中提供的上述像素驱动电路的驱动方法,包括:
第一阶段,通过参考电位为储能模块的第一极充电,通过数据信号为储能模块的第一极充电,以对驱动模块的阈值电压进行补偿;
第二阶段,第一电平耦合提升储能模块第一极的电位,驱动模块在第一电平和储能模块的第一极输出的第一控制信号的控制下在驱动端输出驱动信号驱动发光器件发光。
示例性地,阈值补偿模块14可以包括:第一开关单元、第三开关单元和第五开关单元。
在上述第一阶段中,第一开关单元的第一信号端和第二信号端导通,第三开关单元的第一信号端和第二信号端导通,第五开关单元的第一信号端和第二信号端导通。
在上述第二阶段中,第一开关单元的第一信号端和第二信号端截止,第三开关单元的第一信号端和第二信号端截止,第五开关单元的第一信号端和第二信号端截止。
示例性地,发光控制模块13可以包括:第二开关单元和第四开关单元;
在上述第一阶段中,第二开关单元的第一信号端和第二信号端截止,第四开关单元的第一信号端和第二信号端截止。
在上述第二阶段中,第二开关单元的第一信号端和第二信号端导通,第四开关单元的第一信号端和第二信号端导通。
本公开的实施例提供的像素驱动电路的驱动方法,能够通过阈值补偿模块对驱动模块进行阈值电压补偿,以避免驱动模块的阈值电压漂移对发光器件驱动电流的影响,进而提高了显示图像的均匀性。
在本公开的实施例中,以开关单元为开关晶体管、驱动模块为驱动晶体管、发光器件为OLED,储能模块为存储电容为例进行说明。基于上述的开关晶体管和驱动晶体管的物理特性可知,开关晶体管的栅极用作 开关单元的控制端,开关晶体管的源极用作开关单元的第一信号端或第二信号端,开关晶体管的漏极用作开关单元的第二信号端或第一信号端。驱动晶体管的栅极用作驱动模块的控制端,驱动晶体管的源极用作驱动模块的信号输入端,驱动晶体管的漏极用作驱动模块的驱动端。
图4示出本公开又一实施例中提供的一种像素驱动电路的结构示意图。如图4所示,该像素驱动电路包括:五个开关晶体管(T1-T5)、发光器件OLED及一个驱动晶体管DTFT和一个存储电容C1,其中存储电容包括第一极(节点a)和第二极(节点b)。该电路中所有晶体管均采用P型晶体管为例说明,其中第一电平为高电平VDD,第二电平为低电平VSS,第一扫描线Vscan为T1和T3的栅极提供扫描信号,第二扫描线CR1为T2和T4的栅极提供扫描信号;CR2为T5的栅极提供扫描信号,数据线Vdata为T3的漏极提供数据信号,Vref为T1的漏极提供参考电位,VDD和VSS为发光器件OLED提供电源。
在图4所示电路中,T1的栅极输入Vscan,T1的漏极输入Vref,T1的源极连接节点a;T2的栅极连接CR1,T2的源极连接节点a,T2的漏极连接DTFT的栅极;T3的漏极连接Vdata,T3的栅极连接Vscan,T3的源极连接T5的源极;T4的漏极输入VDD,T4的栅极连接CR1,T4的源极连接DTFT的栅极;T5的漏极连接T4的源极,T5的栅极连接CR2;DTFT的栅极连接T2的漏极,DTFT的源极连接OLED的第一极,OLED的第二极输入VSS。
由于第一电平为高电平、第二电平为低电平,该OLED为底发射型OLED,示例性地,VSS为接地。
图5示出本公开又一实施例中提供的像素驱动电路的输入信号时序状态示意图。图6a和6b分别示出本公开又一实施例中提供的像素驱动电路在第一阶段和第二阶段的等效电路示意图。结合图4所示的像素驱动电路,参照图5提供的像素驱动电路各输入信号的信号时序状态示意图,同时参照图6a、6b所提供的像素驱动电路的各个阶段工作状态的等效电路示意图,对该电路的工作原理举例说明如下:
图5中所示的第一阶段t1为像素驱动电压补偿阶段。
如图6a所示的等效电路,在该阶段t1中,Vscan、CR2为高电平,T1、T3和T5导通,因此数据线高电平信号Vdata写入到DTFT的栅极 与漏极。同时,由于T1导通,参考电位Vref通过T1写入到存储电容C1的左端节点a。由于CR1为低电平,因此T2和T4截止,由于Vdata高电平同时写入到DTFT的栅极与漏极,此时DTFT相当于一个PN结。由于DTFT阈值电压(Vth)的存在,因此这时DTFT的源极电压为Vdata-Vth,即节点b的电压为Vdata-Vth。这时低电平VSS的设计需要满足:VSS高于OLED的最高灰阶驱动电压,以使得OLED不导通,以免造成显示的错误。此时存储电容C1两端的压差为Vab=Vref-Vdata+Vth,电容C1上存储的电荷量为:(Vref-Vdata+Vth)*C,C为电容常数。
图5中所示的第二阶段t2为OLED显示阶段。
如图6b所示,在该阶段t2中,Vscan、CR2为低电平,因此T1、T3和T5关断,同时由于CR1为高电平,因此T2和T4导通。由于T4的导通,以及存储电容C1的电荷保持作用,因此DTFT继续导通,此时OLED导通,在达到稳定阶段时,OLED上有稳定的压降Voled,电容C1的右边节点b的电压为:Voled+Vss。由于T1的关断以及电容C1的电荷保持作用,因此电容C1的左边节点a的电压为:Vref-Vdata+Vth+Voled+Vss,但是DTFT的栅极与源极电压维持为:Vref-Vdata+Vth。因此这时DTFT导通流经OLED的电流Ioled为:
Ioled=(1/2)*μ*Cox*(W/L)*(Vgs-Vth)2
=(1/2)*μ*Cox*(W/L)*(Vref-Vdata+Vth-Vth)2
=(1/2)*μ*Cox*(W/L)*(Vref-Vdata)2
在以上推导过程中,μ为DTFT的载流子迁移率迁移率,Cox为DTFT的栅极绝缘层的电容,W/L为DTFT的宽长比。由此可见,在OLED的正常工作时,DTFT的导通电流与其阈值电压Vth无关,与OLED正常工作的数据信号电压Vdata以及参考电位Vref有关,因此可以通过合理的设置Vref来补偿DTFT的阈值电压对OLED的导通电流的影响,从而能够提高OLED的显示亮度的均匀性,提高OLED面板的显示效果。
如前所述,通过改进传统的OLED像素电路,能够有效的对OLED的驱动TFT的阈值电压进行补偿,消除驱动TFT的阈值电压漂移对OLED亮度的影响,提高OLED面板的显示效果。由于使用较少的TFT和电容,因此该种设计能够较好的应用于工业设计中。
以上实施例以开关晶体管、驱动晶体管为“P”型晶体管为例,当然简单更换晶体管的类型时只需要相应的调整相应的扫描信号线输入的时序状态即可。即本公开实施例对提供的各个开关晶体管和驱动晶体管的类型不做限制,当各个开关晶体管和驱动晶体管的类型采取变化是只需调整晶体管栅极施加的电平信号即可,这里以能够实现本公开实施例提供的像素电路的驱动方法为准。本领域技术人员在本公开实施例提供的像素驱动电路和驱动方法的基础上可轻易想到并实现的任一组合均在本公开的保护范围内。在本领域内晶体管的截止状态也称为关闭、断开等等,导通也称为开启等。本申请中采用截止和导通进行说明,其他形式的表述或变形也应该属于本申请的保护范围。
本公开的实施例提供一种显示装置,包括:上述的像素驱动电路。该显示装置可以为电子纸、手机、电视、数码相框等等显示设备。
本公开实施例提供的显示装置,能够通过阈值补偿模块对驱动模块进行阈值电压补偿,以避免驱动模块的阈值电压漂移对发光器件驱动电流的影响,进而提高了显示图像的均匀性。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所附权利要求的保护范围为准。
本申请要求于2014年8月15日递交的中国专利申请第201410404104.9号的优先权,在此全文引用该中国专利申请公开的内容作为本申请的一部分。

Claims (15)

  1. 一种像素驱动电路,包括:发光器件、驱动模块、发光控制模块、阈值补偿模块和储能模块;
    所述储能模块的第一极连接所述驱动模块的控制端、所述发光控制模块的一个输出端和所述阈值补偿模块的一个输出端,所述储能模块的第二极连接所述驱动模块的驱动端和所述发光器件的第一极;
    所述阈值补偿模块连接所述驱动模块的信号输入端和控制端,所述阈值补偿模块用于在第一扫描信号的控制下通过参考电位为储能模块的第一极充电,在第三扫描信号和第五扫描信号的控制下通过数据信号为储能模块的第二极充电以对驱动模块的阈值电压进行补偿;
    所述发光控制模块连接所述驱动模块的控制端和信号输入端,所述发光控制模块用于在第二扫描信号的控制下通过储能单元向所述驱动模块的控制端输入第一控制信号,并在所述第四扫描信号的控制下向所述驱动模块的信号输入端输入第一电平;
    所述发光器件的第二极输入第二电平;
    所述驱动模块用于在所述第一控制信号和所述第一电平的控制下通过所述驱动模块的驱动端向所述发光器件输入驱动信号以驱动所述发光器件发光。
  2. 根据权利要求1所述的像素驱动电路,其中,所述阈值补偿模块包括:第一开关单元、第三开关单元和第五开关单元;
    第一开关单元的控制端输入第一扫描信号,所述第一开关单元的第一信号端输入参考电位,第一开关单元的第二信号端连接储能模块的第一极;
    第三开关单元的控制端输入第三扫描信号,第三开关单元的第一信号端输入数据信号,第三开关单元的第二信号端连接所述驱动模块的控制端;
    第五开关单元的控制端输入第五扫描信号,所述第五开关单元的第一信号端连接所述驱动模块的信号输入端,所述第五开关单元的第二信号端连接所述驱动模块的控制端。
  3. 根据权利要求1所述的像素驱动电路,其中,所述发光控制模块包括:第二开关单元和第四开关单元;
    第二开关单元的控制端输入第二扫描信号,第二开关单元的第一信号端连接所述驱动模块的控制端,第二开关单元的第二信号端连接所述储能模块的第一极;
    第四开关单元的控制端输入第四扫描信号,所述第四开关单元第一信号端输入第一电平,所述第四开关单元第二信号端连接所述驱动模块的信号输入端。
  4. 根据权利要求2或3所述的像素驱动电路,其中,所有扫描信号均通过扫描线输入对应的开关单元的控制端。
  5. 根据权利要求2或3所述的像素驱动电路,其中,
    所述开关单元为开关晶体管,所述开关晶体管的栅极用作所述开关单元的控制端,所述开关晶体管的源极用作所述开关单元的第一信号端或第二信号端,所述开关晶体管的漏极用作所述开关单元的第二信号端或第一信号端。
  6. 根据权利要求2所述的像素驱动电路,其中,第一开关单元的控制端和第三开关单元的控制端连接相同的扫描线。
  7. 根据权利要求3所述的像素驱动电路,其中,第二开关单元的控制端和第四开关单元的控制端连接相同的扫描线。
  8. 根据权利要求1所述的像素驱动电路,其中,所述驱动模块为驱动晶体管,所述驱动晶体管的栅极用作所述驱动模块的控制端,所述驱动晶体管的漏极用作所述驱动模块的信号输入端,所述驱动晶体管的源极用作所述驱动模块的驱动端。
  9. 根据权利要求1所述的像素驱动电路,其中,所述发光器件包括有机发光二极管。
  10. 一种像素电路的驱动方法,其中,包括:
    第一阶段,通过参考电位为储能模块的第一极充电,通过数据信号为储能模块的第一极充电,以对驱动模块的阈值电压进行补偿;
    第二阶段,第一电平耦合提升所述储能模块第一极的电位,驱动模块在第一电平和所述储能模块的第一极输出的第一控制信号的控制下在 驱动端输出驱动信号驱动发光器件发光。
  11. 根据权利要求10所述的方法,其中,所述阈值补偿模块包括:第一开关单元、第三开关单元和第五开关单元;
    所述第一阶段还包括:第一开关单元的第一信号端和第二信号端导通,第三开关单元的第一信号端和第二信号端导通,第五开关单元的第一信号端和第二信号端导通;
    所述第二阶段还包括:第一开关单元的第一信号端和第二信号端截止,第三开关单元的第一信号端和第二信号端截止,第五开关单元的第一信号端和第二信号端截止。
  12. 根据权利要求10所述的方法,其中,所述发光控制模块包括:第二开关单元和第四开关单元;
    所述第一阶段还包括:第二开关单元的第一信号端和第二信号端截止,第四开关单元的第一信号端和第二信号端截止;
    所述第二阶段还包括:第二开关单元的第一信号端和第二信号端导通,第四开关单元的第一信号端和第二信号端导通。
  13. 根据权利要求11或12所述的方法,其中,所述开关单元为开关晶体管时,开关晶体管包括截止状态和导通状态。
  14. 根据权利要求11-13任一项所述的方法,其中,所述驱动模块为驱动晶体管时,在所述第二阶段,所述驱动晶体管处于饱和状态。
  15. 一种显示装置,包括权利要求1-9任一项所述的像素驱动电路。
PCT/CN2014/093769 2014-08-15 2014-12-13 像素驱动电路及其驱动方法和显示装置 WO2016023311A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410404104.9A CN104157241A (zh) 2014-08-15 2014-08-15 一种像素驱动电路及其驱动方法和显示装置
CN201410404104.9 2014-08-15

Publications (1)

Publication Number Publication Date
WO2016023311A1 true WO2016023311A1 (zh) 2016-02-18

Family

ID=51882726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093769 WO2016023311A1 (zh) 2014-08-15 2014-12-13 像素驱动电路及其驱动方法和显示装置

Country Status (2)

Country Link
CN (1) CN104157241A (zh)
WO (1) WO2016023311A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697884B (zh) * 2019-08-20 2020-07-01 友達光電股份有限公司 畫素電路

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157241A (zh) * 2014-08-15 2014-11-19 合肥鑫晟光电科技有限公司 一种像素驱动电路及其驱动方法和显示装置
CN104332138A (zh) * 2014-12-02 2015-02-04 京东方科技集团股份有限公司 像素驱动电路、显示装置和像素驱动方法
CN104575398B (zh) * 2015-02-10 2017-04-05 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN104916266B (zh) * 2015-07-13 2017-05-03 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法、显示面板及显示装置
CN105139805B (zh) * 2015-10-19 2017-09-22 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法、显示装置
CN105489168B (zh) 2016-01-04 2018-08-07 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法和显示装置
US10460664B2 (en) 2017-05-02 2019-10-29 Shenzhen China Star Technology Co., Ltd Pixel compensation circuit, scanning driving circuit and display device
CN107195274B (zh) * 2017-05-02 2019-03-15 深圳市华星光电技术有限公司 像素补偿电路、扫描驱动电路及显示装置
CN107393470B (zh) * 2017-08-31 2019-05-10 京东方科技集团股份有限公司 像素电路及其驱动方法、显示基板和显示装置
CN107680522B (zh) * 2017-09-30 2021-01-22 京东方科技集团股份有限公司 一种显示面板检测方法及其装置
CN107863878B (zh) * 2017-10-13 2019-11-08 瓴芯电子科技(无锡)有限公司 一种基于pwm控制的开关电源驱动电路
CN112365842A (zh) * 2020-12-02 2021-02-12 合肥维信诺科技有限公司 像素电路及其驱动方法和显示装置
CN114913804A (zh) * 2022-05-31 2022-08-16 Tcl华星光电技术有限公司 像素驱动电路和显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758308A (zh) * 2004-10-08 2006-04-12 三星Sdi株式会社 像素电路和包括该像素电路的发光显示器
CN102254510A (zh) * 2010-05-18 2011-11-23 乐金显示有限公司 有源矩阵有机发光二极管显示器的电压补偿型像素电路
TW201220277A (en) * 2010-11-11 2012-05-16 Au Optronics Corp Pixel driving circuit of an organic light emitting diode
CN102930821A (zh) * 2012-11-09 2013-02-13 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN103218970A (zh) * 2013-03-25 2013-07-24 京东方科技集团股份有限公司 Amoled像素单元及其驱动方法、显示装置
CN104157241A (zh) * 2014-08-15 2014-11-19 合肥鑫晟光电科技有限公司 一种像素驱动电路及其驱动方法和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653846B1 (ko) * 2005-04-11 2006-12-05 실리콘 디스플레이 (주) 유기 발광 다이오드의 구동 회로 및 구동 방법
KR101056318B1 (ko) * 2009-12-31 2011-08-11 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN102651198B (zh) * 2012-03-19 2015-04-01 京东方科技集团股份有限公司 Amoled驱动电路、方法和amoled显示装置
CN203179475U (zh) * 2013-03-25 2013-09-04 京东方科技集团股份有限公司 Amoled像素单元及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758308A (zh) * 2004-10-08 2006-04-12 三星Sdi株式会社 像素电路和包括该像素电路的发光显示器
CN102254510A (zh) * 2010-05-18 2011-11-23 乐金显示有限公司 有源矩阵有机发光二极管显示器的电压补偿型像素电路
TW201220277A (en) * 2010-11-11 2012-05-16 Au Optronics Corp Pixel driving circuit of an organic light emitting diode
CN102930821A (zh) * 2012-11-09 2013-02-13 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN103218970A (zh) * 2013-03-25 2013-07-24 京东方科技集团股份有限公司 Amoled像素单元及其驱动方法、显示装置
CN104157241A (zh) * 2014-08-15 2014-11-19 合肥鑫晟光电科技有限公司 一种像素驱动电路及其驱动方法和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697884B (zh) * 2019-08-20 2020-07-01 友達光電股份有限公司 畫素電路

Also Published As

Publication number Publication date
CN104157241A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
KR101788432B1 (ko) 픽셀 회로, 유기 전계 발광 표시 패널, 표시 장치 및 그 구동 방법
US9812082B2 (en) Pixel circuit, driving method, display panel and display device
US9508287B2 (en) Pixel circuit and driving method thereof, display apparatus
WO2020062802A1 (zh) 显示面板及像素电路的驱动方法
WO2017041453A1 (zh) 像素电路、其驱动方法及相关装置
CN109785797B (zh) 一种amoled像素电路
WO2016187990A1 (zh) 像素电路以及像素电路的驱动方法
WO2018076719A1 (zh) 像素驱动电路及其驱动方法、显示面板和显示装置
KR101485278B1 (ko) 픽셀 회로 및 그 구동 방법
WO2016165529A1 (zh) 像素电路及其驱动方法、显示装置
US10504436B2 (en) Pixel driving circuits, pixel driving methods and display devices
WO2018000982A1 (zh) 像素电路及驱动方法和显示设备
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2016188012A1 (zh) 像素电路、其驱动方法及显示装置
WO2015176474A1 (zh) 像素电路及驱动方法、有机电致发光显示面板及显示装置
WO2016155471A1 (zh) 像素电路及其驱动方法、显示装置
WO2017118124A1 (zh) 像素电路、驱动方法、有机电致发光显示面板及显示装置
WO2015180352A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015085699A1 (zh) Oled像素电路及驱动方法、显示装置
WO2015196730A1 (zh) 像素电路及其驱动方法和显示装置
WO2015180278A1 (zh) 像素电路及其驱动方法、显示装置
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
WO2016187991A1 (zh) 像素电路、驱动方法、有机电致发光显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14899791

Country of ref document: EP

Kind code of ref document: A1